
Master’s thesis

Self-supervised feature
extraction from video and
vehicle monitoring sensors
for autonomous driving

Andreas Sykas Sundfjord

Robotics and Intelligent Systems
30 ECTS study points

Departement of Informatics
Faculty of Mathematics and Natural Sciences

Spring 2023

Andreas Sykas Sundfjord

Self-supervised feature
extraction from video and

vehicle monitoring sensors
for autonomous driving

Abstract

The development of autonomous vehicles and Advanced Driver Assistance
Systems (ADAS) relies heavily on the accurate interpretation of driving
scenes. This task requires identifying and tracking multiple objects such
as traffic signs, pedestrians, and other vehicles. Moreover, it is essential
for these systems to accurately recognise various driving scenarios, such as
entering intersections and yielding to pedestrians. Current state-of-the-art
applications utilise deep learning methods and often need vast amounts of la-
belled data, which is expensive to acquire. A possible solution to this problem
is applying self-supervised learning methods to extract features from driving
scenes. This approach does not need labelled data and has high scalabil-
ity. The extracted features possess the potential for utility in various other
applications, such as recognising driving scenarios.

The main goal of this thesis is to extract features from unlabelled data
and assess whether the extracted features can be generalised for a broad
range of applications. This data consists of real-world driving scenes, which
are recorded with a front-facing camera and vehicle monitoring sensors. To
extract the features, various implementations of Autoencoders are utilised
and compared. Two primary tasks are selected to evaluate the extracted
features: clustering and classification. Clustering is used to identify similar
driving scenarios. The classification task is implemented for types of driv-
ing scenarios and perceived risk for driving scenes. In addition, the work
evaluates whether incorporating input from multiple sensors can improve
performance in these tasks.

The work found that combining the video and vehicle monitoring sensor
data using mid-level sensor fusion achieved a silhouette score of 0.34 for K-
Means clustering with four clusters, thus enhancing the performance of single
modality implementations. A different implementation utilising attention
layers improves performance in a 3-class classification task, achieving an
accuracy of 38.2%.

i

Acknowledgements

This thesis was written over one semester as part of an international collab-
oration with the Behavior Signal Processing Laboratory of Nagoya Univer-
sity in Nagoya, Japan through the Collaboration on Intelligent Machines 2
(COINMAC-2) project. I would like to thank my supervisor Jim Tørresen
for arranging my stay at this laboratory and supporting me with guidance
and feedback during my stay.

I would also like to thank the Behavior Signal Processing Laboratory and
Kazuya Takeda for allowing me to use the facilities and resources of the
laboratory and making sure I settled in. I am grateful for the help and
guidance of Kento Ohtani and Alexander Carballo, whose experience and
assistance proved invaluable.

Further, I would also like to thank PhD students Robin Karlsson and Kyle
Sama for welcoming me and assisting my work with their experience and
ideas.

This work is partially supported by The Research Council of Norway (RCN)
as a part of a grant to undertake the master project abroad through the
(COINMAC-2) project, under grant agreement no. 309869. The work is
also supported by National Research and Development Agency-New Energy
and Industrial Technology Development Organization (NEDO) in Japan.

Finally, I would like to thank my family and loved ones for their support
throughout my studies. Without them, none of this would have been pos-
sible.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Scope and Limitation . 3
1.4 Contributions . 4
1.5 Thesis Structure . 4

2 Background 5
2.1 Current State of Autonomous Driving 5
2.2 Sensors Used in Autonomous Driving 7

2.2.1 Sensor Fusion . 8
2.3 Artificial Neural Networks . 10

2.3.1 Spatial Data Models 11
2.3.2 Sequential Data Models 11

2.4 Self-Supervised Feature Extraction 14
2.4.1 Autoencoders . 14

2.5 Evaluation of Extracted Features 16
2.5.1 Clustering . 16
2.5.2 Supervised Evaluation Methods 21

3 Dataset 22
3.1 Classes and Annotation . 22

3.1.1 Annotation Process . 27
3.1.2 Imbalanced Class Distribution 28

3.2 Vehicle Monitoring Sensor Data 29
3.2.1 Selecting Features . 30
3.2.2 Sample rates . 34
3.2.3 VMS Data Pre-Processing 35

3.3 Video Data . 40

4 Feature Extraction and Evaluation 42
4.1 Data Augmentation . 42
4.2 Model Architectures . 43

4.2.1 Video Autoencoders 44

iii

4.2.2 Vehicle Monitoring Autoencoder 45
4.2.3 Multi-modal Autoencoders 49
4.2.4 Hierarchical Variational Autoencoder 50
4.2.5 Loss functions . 51

4.3 Model Training . 51
4.4 Evaluation . 54

4.4.1 Reconstruction . 55
4.4.2 Clustering . 56
4.4.3 Classification . 56

5 Experiments 58
5.1 Reconstruction task . 58

5.1.1 Analysis of Reconstruction Results 59
5.2 Clustering . 60

5.2.1 Analysis of Clustering Results 60
5.3 Classification Task . 61

5.3.1 Analysis of Classification Results 63
5.4 Discussion . 65

6 Future Work 67
6.1 Model improvements . 67

6.1.1 Improvement of VMS Variational Autoencoder 67
6.1.2 Loss Function . 68
6.1.3 Additional Self-Supervised Task 69
6.1.4 Ensemble Learning . 69

6.2 Add Modalities . 69
6.3 Validation . 69
6.4 Applications . 70

6.4.1 Clustering applications 70
6.4.2 Classification Tasks . 70

7 Conclusion 71

iv

List of Figures

2.1 Detected objects in a driving scene. The objects that are rel-
evant to an autonomous driving system are marked by bound-
ing boxes. 6

2.2 Artificial Neural Network containing fully connected layers
[37]. The blue nodes represent the input data, which is passed
through hidden layers before the output is eventually presen-
ted in the final grey layer. The connections between the nodes
represent weights. 10

2.3 Convolutional Neural Network layer [38] 12
2.4 Recurrent Neural Network repeating units [39] 13
2.5 Components in transformer encoder and decoder [48] 13
2.6 General autoencoder architecture [54]. The encoder and de-

coder are built by neural network layers, which can be fully
connected, convolutional, or recurrent layers. The encoded
representation in the middle has fewer dimensions than the
input data. 15

2.7 Mixture of two Gaussian distributions [66] 18
2.8 Clusters produced by the GMM algorithm [66] 18

3.1 Example of driving scene annotation 28
3.2 Distribution of classes in dataset 29
3.3 Mean number of samples for each feature 35
3.4 Standard deviation of the number of samples for each feature 36
3.5 Resampled data points of "blink rate" feature 37
3.6 Distribution of the number of data sample appearances for

features . 38
3.7 Frame from video of class 1 40
3.8 Frame from video of class 3 40
3.9 Logarithmic distribution of the number of frames in videos

from the dataset . 40
3.10 First frame of two separate resized videos from dataset 41

4.1 Flowchart of full experiment process 43
4.2 Flowchart of training process 44
4.3 MVAE encoder structure . 49

v

4.4 MTVAE encoder structure . 50
4.5 Flowchart of model inference 55

5.1 Reconstructed frame by Video VAE 59
5.2 Frame from original video . 59
5.3 Calinski-Harabasz scores for K-Means clusters 61
5.4 Silhouette scores for K-Means clusters 62
5.5 VMS VAE clusters after PCA, with K = 14 63
5.6 HVAE clusters after PCA, with K = 2 63
5.7 Confusion matrix for HVAE with GMM classification 64

7.1 Calinski-Harabasz scores for GMM clusters 75
7.2 Silhouette scores for GMM clusters 76
7.3 Calinski-Harabasz scores for spectral clusters 77
7.4 Silhouette scores for spectral clusters 78

List of Tables

3.1 Illustrations and explanations of driving scenario classes . . . 23
3.2 Description of VMS data features 31
3.3 Mean Square Error (MSE) and correlation for resampled time

series, averaged over all features from data based on 2000
random samples . 34

5.1 MSE and MAPE for reconstruction task 59
5.2 Fine-tuned model and GMM classification results for 3 classes 63
5.3 Risk prediction scores for fine-tuned models 65

7.1 Fine-tuned model and GMM classification results for 14 classes 74
7.2 MAPE for reconstructed masked features in VMS data. NaN

values indicate a very large difference or a programming error. 74
7.3 ARI and V Measure scores for K-Means cluster prediction of

class labels . 75

vi

List of Algorithms

1 Pseudo code for random masking of features 47

List of Equations

2.1 Mean Square Error loss 2.1 . 11
2.2 Cross entropy loss 2.2 . 11
2.3 L2 regularisation 2.4 . 11
2.4 Kullback–Leibler divergence 2.4 . 15
2.5 Kullback–Leibler divergence 2.5 . 16
2.6 Silhouette score calculation 2.5.1 18
2.7 Calinski-Harabasz score calculation 2.5.1 18
2.8 V Measure Score calculation 2.8 . 19
2.9 Adjusted Rand Index calculation 2.9 19
2.10Contrastive loss computation 2.10 20
2.11Triplet loss computation 2.11 . 20
3.1 Min-max normalisation 3.1 . 36
4.1 Final loss computation 4.1 . 51
4.2 Activation functions 4.2 . 53
4.3 Classification metrics 4.3 . 57

vii

Acronyms

ADAS Advanced Driver Assistance Systems

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

ARI Adjusted Rand Index

CAN Controller Area Network

CE Cross-Entropy

CH Calinski-Harabasz

CNN Convolutional Neural Network

CPC Contrastive Predictive Coding

GANs Generative Adversarial Networks

GMM Gaussian Mixture Model

GPS Global Positioning System

GRU Gated Recurrent Unit

HVAE Hierarchal Variational Autoencoder

KL Kullback–Leibler

KNN K Nearest Neighbors

LiDAR Light Detection and Ranging

LR Learning Rate

LSTM Long Short-Term Memory

viii

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Square Error

MSVAE Multi-Modal Semi-Variational Autoencoder

MTVAE Multi-Modal Transformer Variational Autoencoder

MVAE Multi-Modal Variational Autoencoder

NEDO National Research and Development Agency-New Energy and In-
dustrial Technology Development Organization

NLP Natural Language Processing

PCA Principal Component Analysis

RADAR Radio Detection And Ranging

RI Rand Index

RNN Recurrent Neural Network

SSL Self-Supervised Learning

SVM Support Vector Machine

TTC Time-To-Collision

TVAE Transformer Variational Autoencoder

VAE Variational Autoencoder

VMS Vehicle Monitoring Sensor

ix

x

Chapter 1

Introduction

This chapter introduces the outline and goals of this thesis. Section 1.1
provides some background on autonomous driving and describes what the
thesis aims to achieve. Section 1.2 states the thesis goals and research
questions. Section 1.3 expresses the scope and limitations of the work.
Section 1.4 explains the benefits of achieving the goals, and states the
contributions of this thesis. Finally, section 1.5 outlines the structure of
the thesis.

1.1 Motivation

An important area of focus in the Artificial Intelligence (AI) and Machine
Learning (ML) sectors is autonomous driving. This refers to vehicles that
can operate to a certain degree without the need for human intervention. A
fully self-driving vehicle must be able to navigate any kind of road without
human assistance or intervention. The emergence of this industry has the
potential to provide significant benefits to both the private and public sec-
tors [1, 2, 3]. One of these benefits is reducing motor accidents, where Treat
[4] estimated that human error was a definite cause in 70% of accidents.
Treat et al. [5] also estimated that human factors were a probable cause in
92.6% of motor accidents. Causes include falling asleep while driving [6], tex-
ting and driving [7], and driving under the influence of alcohol. Hence, the
implementation of autonomous vehicles could drastically reduce the num-
ber of motor accidents in the world. Autonomous driving also offers the
advantage of providing greater independence to individuals who are unable
to drive themselves, including elderly and disabled persons, in addition to
enhancing transportation accessibility overall [8]. Other potential benefits
included reduced energy consumption and pollution [8]. However, as further
explained in section 2.1, technological advancements must be made before
fully self-driving cars are ready to be made available.

This thesis attempts to extract features from driving scenes using Self-

1

Supervised Learning (SSL), which is a process where an ML model is trained
on unlabelled data. Specifically, the chosen approach utilises an Autoencoder
(AE) model to encode input data to a simpler, lower-dimensional representa-
tion that contains the extracted features. This method of feature extraction
is described in more detail in section 2.4, and the implementation is explained
in section 4.2. Being able to obtain features using only unlabelled data is
highly beneficial, due to the time-consuming process of annotating data.

The input data is acquired from a front-facing camera mounted on the
vehicle, and various Vehicle Monitoring Sensors (VMS). This is referred to
as modalities, which means how something is experienced or expressed. The
primary focus of this thesis is to compare and evaluate different approaches
to encoding and combining these modalities. The camera image provides
detailed descriptions of the scene in front of the vehicle, while the VMS
data provides information about the recording vehicle, driver, and surround-
ings. In addition, the VMS data includes detected vehicles, pedestrians, and
bicycles in the driving scene, which means that this work can focus on ap-
plying that information to other tasks, instead of training a model for object
detection.

The work aims to show that the representations can be used to group sim-
ilar driving scenes by comparing the extracted features, which demonstrates
that the model can distinctly encode and represent features from different
scenes. This process is known as clustering and is explained in subsection
2.5.1. However, a challenge with this evaluation approach is ensuring the
quality of the clusters, and understanding what these clusters represent in
terms of real-world driving scenes. This challenge is addressed in subsection
2.5.1. Clustering is also useful for anomaly detection, in addition to easily as-
signing a newly recorded driving scene to a group of similar ones. This thesis
also explores the viability of using the extracted features from an AE model
as input for a supervised classification model to assign labels. The predicted
labels include the classes that are explained in Table 3.1 and the risk level
of the driving scenes. This is a process known as fine-tuning, which often
performs better when data is limited compared to supervised ML methods
[9]. Tasks like clustering and fine-tuning are often referred to as downstream
tasks. This is a general term for tasks that involve using the output of one
task as the input for another, such as training a model for reconstructing
data and using the encoded data for a clustering task. This essentially means
applying previously acquired knowledge to solve a new problem.

To summarise, the thesis explores using different self-supervised AE mod-
els for extracting features from video and VMS data. Further, the work
determines which of the tested implementations performs the best for two
tasks, clustering and classification. This is tested using the NEDO dataset,
which is a collection of real-world driving scenes in city traffic. The dataset
contains annotations for types of driving scenarios, perceived risk, action
tags, environment tags and captions.

2

1.2 Research Questions

The goal of this work is to use sensor data from both a colour camera and
vehicle monitoring sensors and extract features from this data using Self-
Supervised Learning. The aim is to represent the extracted features from
driving scenes as a vector and ensure that it is generalised, to be used for
both clustering and classification tasks. With this goal in mind, this thesis
seeks to answer the research questions given below:

RQ1 How can features be extracted from driving scene sensor data using
self-supervised methods?

RQ2 What is an effective method to combine video and Vehicle Monitoring
Sensor data?

RQ3 Will using both modalities improve performance in clustering and clas-
sification of extracted features?

This thesis aims to answer these questions by evaluating different vari-
ations of ML models. The evaluation will examine how well the produced
representations generalise for different tasks, and compare the performance
of the implemented models. The tasks include grouping driving scenes by
similarity and predicting both the type of driving scenario and the perceived
risk.

1.3 Scope and Limitation

Amongst the limitations of this thesis are both the amount of variations
of implementations, and the different applications of the extracted features
from the driving scenes. Improvements could be made to the models, data
pre-processing techniques, and evaluation methods. However, the main goal
of this thesis is to show that a latent representation of multi-modal data can
be used for clustering and classification tasks and to compare different ways
of modality encoding and combination. Hence, optimising performance is
not a requirement and the goal is not to reach state-of-the-art performance.
However, it is essential to attain a level where the latent representations of
an individual are informative enough to have a positive impact. By achieving
this, it becomes possible to compare the different approaches. This work is
therefore limited to testing the viability of these methods with limited data.

The annotations in the utilised dataset present many possible applica-
tions for downstream tasks, such as action prediction, environment tag gen-
eration, and captioning. However, this work will only use the annotation for
types of driving scenarios and risk scores for classification tasks.

3

1.4 Contributions

The main contributions of this thesis are:

• A comparison of different implementations of encoding and combining
video and data from vehicle monitoring sensors.

• Further research on the viability of self-supervised methods for extract-
ing features from the two modalities. Specifically, the use of Autoen-
coders for this purpose.

• Evaluate the accuracy of extracted information from a model trained
with limited data.

Although the research questions are evaluated using driving scenes, the
proposed methods can in theory be applied to other areas of robotics that
utilise similar sensors.

1.5 Thesis Structure

The structure of this thesis is as follows:

• Chapter 1 provides background information about the field of autonom-
ous driving and introduces what the thesis aims to do.

• Chapter 2 expands on previous related research in this field, and the
methods on which the experiments build. This includes sensors used
in autonomous driving, common ML methods for SSL and evaluation
of results.

• Chapter 3 explains the dataset that is used in this thesis, what it
includes and its limitations, and how the data is pre-processed.

• Chapter 4 expands on the methods used in the experiments for this
thesis, including how the ML models and the evaluation techniques are
evaluated.

• Chapter 5 presents the experiments conducted in this report, includ-
ing why they are done, what the results are, and an analysis of these
results.

• Chapter 6 describes potential future work, regarding method im-
provements and additional applications.

• Chapter 7 contains the conclusion of the thesis.

4

Chapter 2

Background

This chapter reviews the relevant literature for this thesis, and the theoretical
framework the work is based on is explained. Section 2.1 briefly reports
the current state of the autonomous driving research field. Section 2.2
describes sensors commonly used in autonomous driving and how they have
been utilised together. Section 2.3 describes common ML models, and
section 2.4 concerns self-supervised feature extraction methods. Lastly,
section 2.5 explores methods to evaluate extracted features.

2.1 Current State of Autonomous Driving

This section briefly describes the current state of autonomous driving, in
addition to providing background on the technologies involved. Autonom-
ous driving builds on two key techniques: real-time communication between
vehicles [10] and the system’s ability to observe and comprehend traffic scenes
[11]. The latter is the focus of this thesis. It is a task that has been ap-
proached by applying ML methods, often utilising supervised methods that
need annotated data [12, 13]. To function effectively, an autonomous driv-
ing system must be able to identify important objects, including vehicles,
pedestrians, and traffic signals as shown in Figure 2.1. This is an important
research topic in autonomous driving where accuracy is critical [14, 15, 16].
Building on this, there are different approaches to training ML models to
understand driving scenes. One could classify driver actions and the reas-
oning for performing them [12]. Another alternative is to classify potential
dangers, where they are, and how important they are [17]. Thus, when a
system is capable of understanding driving scenes, it can make informed
decisions and operate autonomously.

There are several definitions of autonomous driving, often expressing dif-
ferent extents of autonomy. A common description, proposed by the Society
of Automotive Engineers, divides technologies into different levels of auto-
mated driving [18]:

5

Figure 2.1: Detected objects in a driving scene. The objects that are relevant
to an autonomous driving system are marked by bounding boxes.

1. No automation. At this level, there is no automation, and the driver
performs every action unassisted.

2. Driving assistance. There is some assistance in steering, braking,
or accelerating. An example of this is adaptive cruise control, which
automatically keeps a safe distance from the vehicle in front.

3. Partial Driving Automation. This level applies to vehicles with
Advanced Driver Assistance Systems (ADAS)1, with systems that can
take over steering, acceleration, and braking. The driver is still re-
quired to actively supervise the vehicle at this level.

4. Conditional driving automation. At this level, the driver does not
need to supervise the system. However, the driver is required to stay
alert and be ready to take control of the vehicle at all times. This level
is constrained to specific situations and locations.

5. High driving automation. At this level, the driver is not needed at
all and is not required to take control of the vehicle at any point. This
level is limited to specific locations and conditions.

6. Full driving automation. At the final level, the vehicle can operate
automatically at any location, under any condition.

1ADAS is meant to assist human drivers and prevent accidents.

6

Although level 3 systems exist and have been certified in some countries
[19], they are not mass-produced nor commonly found as of June 2023. Sig-
nificant technological advancements must be made before fully-self driving
vehicles at levels 4 and 5 are safe. Even then, there are significant challenges
that need to be addressed regarding security and privacy [20], in addition to
concerns about ethics, policies, strategies, and liability [21].

2.2 Sensors Used in Autonomous Driving

As mentioned in section 1.1, understanding and observing the surroundings
is crucial for any autonomous driving technology. To achieve this, various
sensors are utilised, each with its specific purpose. This section discusses
commonly used sensors and their functions. Additionally, an essential aspect
of autonomous driving research is finding ways to effectively integrate and
use these sensors to enhance decision-making, predict potential risks, and
gain a better understanding of driving scenarios.

Colour Camera One of the most common sensors is the colour camera.
They are widely used due to their cost-effectiveness and ability to provide
high-quality information. Often, vehicles are mounted with multiple cameras
facing in different directions to give gain a comprehensive understanding of
the driving scene and detect objects 360 degrees around the ego vehicle2.
However, there is an additional computational cost for the challenging task
of assembling the images from various cameras. Despite their usefulness,
colour cameras have limitations, including the inability to provide informa-
tion about an object’s distance and susceptibility to weather conditions like
varying illumination, rain, and snow.

Depth Sensors There are many kinds of depth sensors available, such
as Light Detection and Ranging (LiDAR), Radio Detection And Ranging
(RADAR) and stereo cameras. These sensors provide information about the
distance from objects to the sensor. Some depth sensors are also more robust
to the effects of illumination and weather conditions than colour cameras.
As regular colour cameras do not provide information about the distance to
objects, these two sensors are often combined [22, 23].

Thermal Camera A thermal camera captures light at a near-infrared
range and measures the temperature that is emitted from objects. Hence,
thermal cameras use the heat emitted from vehicles and humans to detect
them. This is especially useful in low-illumination scenarios, such as driving
scenes during night time, and situations where vision is occluded by dust

2Ego vehicle refers to the vehicle that is recording the driving scene.

7

and fog. This covers an area where colour cameras struggle to capture useful
information, sparking an interest in researching the combination of the two
sensors [24].

Vehicle Sensors Information can be collected by sensors both inside and
outside of the vehicle. The Controller Area Network (CAN) protocol is com-
monly used to monitor the performance and safety of a vehicle by providing
data on velocity, acceleration, and controls. Additionally, GPS can be util-
ised to gather similar information and track the position of the vehicle. An
example of successful implementation of vehicle sensor data comes from re-
search by Zhang et al. [13], who used sensor information in conjunction with
video from a front-facing camera to improve performance in a video caption-
ing task. By supplementing the video with vehicle sensor data, they were
able to obtain information about the driver’s actions even though the vehicle
itself was not visible in the footage.

AI-Based Sensors Modern vehicles often have systems on board that
are based on AI models and algorithms. The systems process raw images
and output object detection results, object trajectories, Time-To-Collision
(TTC), and other useful information. An example of an AI-based sensor is
Mobileye, which is often used in ADAS. However, it is important to ensure
the accuracy of the model outputs. It has been shown that the Mobileye
sensors can be fooled by projecting traffic signs on other vehicles [25]. How-
ever, for normal driving scenarios, Mobileye and other AI-based sensors can
be deemed trustworthy.

2.2.1 Sensor Fusion

This part explores the different ways sensor fusion has been researched in
the ML field. It is an important area of research, both regarding autonom-
ous vehicles, and other topics [26, 27]. In their review, Yeong et al. [28]
describe and evaluate different approaches for multi-sensor fusion in driving
scenes. Combining input from different sensors often requires initial input
processing, as modalities may have varying representations. Yeong et al. [28]
categorise sensor fusion into three approaches: low-level, mid-level, and high-
level fusion. Low-level fusion involves combining the raw data with minimal
pre-processing, high-level fusion involves combining the extracted features
from each sensor, and mid-level is somewhere in between. While high-level
fusion has the advantage of being the least complex method, Yeong et al. [28]
state that low-level fusion often achieves better performance. Tellamekala
et al. [29] propose a novel sensor fusion framework, which combines different
encoded modalities at a high level while taking into account the uncertainty
of each modality, showing that good results can be achieved with high-level
modality fusion.

8

Numerous researchers have delved into the realm of multi-modal sensor
fusion, with several studies regarding autonomous driving [30, 28]. As shown
in the review by Rizzoli, Barbato and Zanuttigh [31], multiple papers have
researched combining colour cameras and other sensors to improve the per-
formance of semantic segmentation3. A popular sensor combination involves
a colour camera and a depth sensor, which work together to provide inform-
ation on an object’s appearance and location [32, 33]. Researchers have also
successfully paired colour cameras with thermal cameras to enhance per-
formance in detecting objects under low-illumination conditions. This has
been achieved through the implementation of various mid-level fusion tech-
niques, including graph attention networks [34] and summation [35]. It has
also been found that combining sensor data from a colour camera with VMS
data improves accuracy in a classification problem for understanding real-
world driving scenes [12]. Seeking to understand driving scenes, Ramanishka
et al. [12] propose a novel 4-level representation to describe driver decisions:

• Goal-oriented. An action made to reach a goal. This could mean
turning left to reach the destination.

• Stimulus-driven. An action made responding to stimuli. This could
mean stopping as a pedestrian crosses the road.

• Cause. The cause of the stimulus-driven action. This could be traffic
congestion or a crossing pedestrian. This is marked by a bounding box.

• Attention. When driving, humans pay attention to other traffic par-
ticipants. This level of the 4-level representation uses a bounding box
to mark other traffic participants, such as a pedestrian walking on the
sidewalk.

[12] combine the two modalities at mid-level, by concatenating the feature
vectors. In their paper, Huang et al. [36] propose a novel algorithm for
combining multi-modal sensor input for end-to-end driving and scene under-
standing. They used simulated driving scene data gathered using CARLA4,
and found a performance improvement when using a multi-modal sensor fu-
sion encoder network. Huang et al. [36] used colour images, with a depth
image layered on top, as input for the encoder network. The resulting com-
bined encoded representation was used for modelling a driving policy. Thus,
it is well documented that multiple modalities can increase performance in
autonomous driving tasks, as opposed to relying on input from a single type
of sensor.

3Semantic segmentation is the process of assigning a label to every pixel in an image
or a video

4CARLA is an open-source simulator for autonomous driving research and stands for
Car Learning to Act.

9

2.3 Artificial Neural Networks

This section explains the different types of ML models relevant to this thesis,
and why they are used. The different models can be used alone, or together
to form more complex models.

Figure 2.2: Artificial Neural Network containing fully connected layers [37].
The blue nodes represent the input data, which is passed through hidden
layers before the output is eventually presented in the final grey layer. The
connections between the nodes represent weights.

The Artificial Neural Network (ANN) is the basis of deep learning al-
gorithms in ML and is loosely inspired by the structure and function of
biological neurons in the brain. In an ANN, the model consists of multiple
layers of artificial neurons, often called nodes, which are connected via a
set of weights. Each neuron receives input from the previous layer, applies a
non-linear activation function to the input, and passes the output to the next
layer. A common layer is a fully connected layer, as illustrated in Figure 2.2.

Training a model When training an ML model, the training objective
is formulated as a loss function. Loss functions often compare the differ-
ence between predicted and actual values to optimise a training objective,
from which gradients are calculated. The gradients are then used to update
the model weights in a way that decreases the loss, thus decreasing said
difference. Examples of loss functions are Mean Square Error (MSE) and
Cross-Entropy (CE). The formula for MSE is shown in equation 2.1, which

10

calculates the square difference between the model output and true value. It
is one of the most common loss functions used in ML and is used to minimise
this difference.

MSE =
D∑
i=1

(xi − yi)
2 (2.1)

For classification tasks, CE loss is often used. The variant of cross en-
tropy loss shown in equation 2.2 is for when there are more than 2 classes.
Essentially it returns the natural logarithm of the probability of the correct
class. When predicting classes, there is not necessarily an inherent similarity
between classes, as there is with numeric values. Therefore, CE loss is used
to maximise the probability of the true class.

CE = −
M∑
c=1

yo,c log(po,c) (2.2)

L2 regularisation, also known as Ridge regression, encourages smaller
weights in the model. As shown in equation 2.3, the squared value of all the
weights in the model is summed, and multiplied by a factor lambda. This
is used in addition to another loss function and helps prevent overfitting the
model to the training data.

L2 = λ
n∑
1

w2
i (2.3)

2.3.1 Spatial Data Models

One type of neural network that is commonly used is called a Convolutional
Neural Network (CNN). This network is specifically designed to identify
spatial patterns within data. The CNN typically consists of convolutional
layers that extract features from the data, followed by pooling layers that
reduce the size of the feature maps. In Figure 2.3, you can see how a pixel
in one layer takes a group of nearby pixels from the previous layer as input.
A convolutional operation is then performed to represent these pixels as a
single value. This allows for context to be taken from nearby pixels, which
makes it a great tool for processing images. The CNN can also be used to
process and extract features from videos by using 3D convolution.

2.3.2 Sequential Data Models

The Recurrent Neural Network (RNN) is a type of neural network specific-
ally designed to process sequential data, like human language, making them

11

Figure 2.3: Convolutional Neural Network layer [38]

a popular choice in Natural Language Processing (NLP). RNNs are designed
to recognise temporal patterns in the input data by passing information from
one time step to the next. The network is made up of a series of repeating
units, each processing a time step of the input sequence, as shown in Figure
2.4. The figure illustrates how the RNN takes input at each timestep, pro-
cesses it, and passes it to both the output layer and the next timestep. This
allows information from previous timesteps to influence future ones.

An issue that arises with RNNs is the vanishing gradients problem, where
the gradients become too small to significantly update the model weights.
This can occur when the gradients are consecutively passed through the
repeating units and effectively stops the model from training further. The
GRU model addresses this issue by controlling which information is passed
on to the output [40]. Other benefits of the GRU models are faster training
time and smaller memory usage. Another RNN variation is the Long Short-
Term Memory (LSTM) model, proposed by Hochreiter and Schmidhuber
[41]. It has been shown to outperform the GRU model in certain scenarios,
depending on sequence length and dataset size [42].

Transformers Although LSTMs are more accurate with longer sequences
than regular RNN and GRU models, they still have limitations. A Trans-

12

Figure 2.4: Recurrent Neural Network repeating units [39]

Figure 2.5: Components in transformer encoder and decoder [48]

former is another type of neural network architecture that was proposed in
2017 by Vaswani et al. [43], which proved to outperform RNNs in various
tasks [44]. Transformers are primarily used for NLP tasks such as language
translation, language modelling, and text classification, but have been found
to perform well with video data in various tasks as well [45, 46]. They
have been used in SSL for combining sequential multi-modal data, showing
promising results [47].

The key innovation of the Transformer is the self-attention mechanism,
which allows the model to capture long-range dependencies between input
tokens without the need for recurrent layers. Self-attention works by com-
puting a weighted sum of the input tokens, where the weights are learned
based on the similarity between the tokens. The use of an attention mech-
anism is widespread in many neural networks. It enables the model to focus
on and remember parts of the input that are deemed important, ultimately
improving accuracy and robustness on various tasks. Due to its effective-
ness, the attention mechanism has become a popular choice for numerous
ML applications.

Transformers employ stacked encoders and decoders with identical struc-
tures but without shared weights. These structures are depicted in Figure
2.5. Each encoder feeds the output to the next one until the last encoder
passes the output to the decoders.

13

2.4 Self-Supervised Feature Extraction

This section presents algorithms and models proposed to extract feature
information. Feature extraction involves converting raw data into represent-
ative numerical values while retaining the information from the original data.
This work researches extracting feature information without using the labels
of the data set, thus focusing on self-supervised methods, as stated in RQ1
in section 1.2. The basis of the proposed models in this thesis is the AE,
which is explored further in the next subsection. There are many AE vari-
ations, such as convolutional AEs [49], graph AEs [50], and recurrent AEs
[51]. The convolutional and recurrent autoencoders are especially relevant
to this thesis, as the modalities used are both video and sequential numer-
ical data. Other methods include Generative Adversarial Networks (GANs),
which are often used for data generation, and Contrastive Predictive Coding
(CPC) [52], which predicts past or future data points in sequential data.
AEs can be trained as a foundation for downstream tasks [53], which makes
them a promising method regarding RQ1.

Latent space representations Extracted features from raw data can be
referred to as latent representations. A latent representation is a fundamental
concept in ML that refers to a set of hidden or unobserved variables that
capture the underlying structure and patterns in the data. The goal is to
have similar data samples positioned closely in the latent space, thus having
similar latent representations. This concept is often used in the context of
SSL, where, as mentioned in section 1.1, the objective is to learn a compact,
lower-dimensional representation of the input data.

2.4.1 Autoencoders

As stated in section 1.1, this thesis will look at how AEs can be used to
understand driving scenes, specifically how they can be used to obtain latent
representations of multi-modal data. The AE is a type of neural network
that is designed to learn a compressed representation of input data and is
often used in SSL tasks. The architecture of an AE typically consists of an
encoder, which maps the input data into a lower-dimensional latent space,
and a decoder, which reconstructs the original input from the latent space
representation. By minimising the difference between the input and the
reconstructed output, the AE learns to capture the most important features
of the data in the latent space. These features can then be used for tasks
such as classification [55], clustering [56], and prediction [57].

Figure 2.6 illustrates a general AE structure. The layers can be of any
type, such as the aforementioned CNN, RNN, and fully connected layers.
Note that the encoded vector referenced as "Code" in the illustration, is ref-
erenced as the latent representation in this thesis. The following paragraphs

14

Figure 2.6: General autoencoder architecture [54]. The encoder and decoder
are built by neural network layers, which can be fully connected, convolu-
tional, or recurrent layers. The encoded representation in the middle has
fewer dimensions than the input data.

describe relevant AE variations.

Variational Autoencoder One of these variations is the Variational Au-
toencoder (VAE), which regularises the encoded vectors to ensure that the
latent space contains good properties. This can be achieved by utilising
Kullback–Leibler (KL) divergence, which is used to minimise the difference
between the distribution of the encoder output and a given distribution.
Adding this to a loss function will help to regularise the latent space. The
formula used to calculate the KL divergence is shown in equation 2.4, where ŷ
is the latent space distribution, and y is the desired distribution to approx-
imate. When approximating a standard multivariate normal distribution,
the formula can be calculated as shown in equation 2.5, where µ is the mean
and σ2 is the variance of the latent distribution. This can be achieved by
training two separate fully connected layers, one for the mean and one for the
variance, instead of just one fully connected layer for the encoded output.

KL(ŷ||y) =
M∑
c=1

ŷc log
ŷc
yc

(2.4)

KL = −0.5 ∗
M∑
c=1

1 + log(σ2)− µ2 − elog(σ
2) (2.5)

15

Using KL divergence in the loss computation prevents overfitting the
latent space, ensuring that a latent representation does not only contain
the information necessary to reconstruct the original data sample. Because
of this property, VAEs have been used to generate new data samples, and
shown to meet state-of-the-art data generation methods [58].

Another benefit of the property of the latent space produced by VAEs is
the ability to handle incomplete input data. In many cases, the input data
can lack sequences of data or even features altogether. In their paper, Yu et
al. [59] show that using a Variational Autoencoder (VAE) for massive data
wireless multimedia sensor networks can help in extracting features from
incomplete data.

Hierarchical VAE Another type of AE is the Hierarchal Variational Au-
toencoder (HVAE), which is an extension of the VAE model that adds a
hierarchical structure to the latent space. In a HVAE, the latent space is
divided into multiple levels, with each level representing a different level of
abstraction or complexity. The lower levels capture more detailed local fea-
tures of the data, while the higher levels capture more global features. This
allows the HVAE to capture more complex structures of information in the
latent representations. However, they also require more training time and
computational resources due to their hierarchical structure. Karlsson et al.
[60] propose a method to predict complete states from incomplete input for
real-world modelling, using a HVAE.

Multi-modal Autoencoder The final AE variation to be discussed is
the Multi-Modal Variational Autoencoder (MVAE). Essentially, a MVAE
combines input data from multiple sensors. The advantage of this method
is the added context from other modalities, both in reconstructing original
samples, and forming a more descriptive latent space. As described in sub-
section 2.2.1, the combination of modalities can be done at low-, mid- and
high-level. The MVAE can also be combined with the previously discussed
variations, such as VAEs and HVAEs [61, 62].

2.5 Evaluation of Extracted Features

In this section, both supervised and self-supervised approaches to evaluating
latent space representations are presented.

2.5.1 Clustering

Clustering is an unsupervised method, which groups data samples based
on similarity. There are different methods to compute and determine this
similarity.

16

K-Means A common clustering method is the K-Means algorithm. This
algorithm starts by randomly selecting K cluster centres, and then iterat-
ively assigns each latent representation to the nearest centre. The cluster
centres are then updated to be the mean of the samples in the cluster. The
process continues until the centres no longer move, the change is below a
threshold, or a maximum number of iterations is reached. It is a simple, yet
effective algorithm for measuring how well the latent representations are sep-
arated. However, the decision boundaries between cluster centres are linear,
which might not adequately separate the samples. If this is the case, other
clustering algorithms should be considered.

Spectral clustering Spectral clustering stems from graph theory and as-
signs clusters to nodes based on the edges connecting them. This technique
works well for non-linear data structures and handles high-dimensional data
well. In short, the method consists of calculating a weighted adjacency mat-
rix of the data points, using this to compute the graph Laplacian matrix
for the data. Then, the eigenvalues of the graph Laplacian matrix are cal-
culated and used to embed the data points to a lower dimensional space.
The resulting embedded data can then be used for a simpler algorithm, such
as K-means. Spectral clustering has been found to produce more distinct
clusters than the K-Means algorithm in previous research [63].

Gaussian Mixture Models There are some limitations to the K-Means
algorithm, one of them being that it is a hard clustering algorithm, mean-
ing it assigns each data point to only one cluster. Although the Gaussian
Mixture Model (GMM) method is similar, it bases the clusters on probab-
ility instead of distance. The method assumes that the data samples are
from multiple Gaussian distributions, which can be interpreted as clusters.
The illustrations in Figures 2.7 and 2.8 visualise how two distributions can
be used to form clusters. Patel and Kushwaha [64] found that using GMM
for clustering provided better results and more distinct boundaries than the
K-Means algorithm. GMMs have also been used for classification tasks [65].

Cluster Evaluation For clustering tasks, a metric should measure the
compactness of the clusters, and the separation of different clusters. If labels
are available, metrics that measure how the predicted labels match the true
labels can be used. Some of the common metrics are described below.

One option for self-supervised metrics is the silhouette score, which cal-
culates the mean within-cluster distance a and the mean nearest-cluster dis-
tance b. The score is then computed as seen in Equation 2.5.1, taking the
mean score of all samples. The best possible score is 1, and the worst is
-1. Values near 0 indicate overlapping clusters and negative values generally

17

Figure 2.7: Mixture of two Gaus-
sian distributions [66]

Figure 2.8: Clusters produced by
the GMM algorithm [66]

indicate that a sample has been assigned to the wrong cluster, as a different
cluster is more similar. The latter would generally indicate that something
is wrong with the clustering algorithm.

Silhouette =
1

n

n∑
1

b− a

max(a, b)
(2.6)

Another option is the Calinski-Harabasz (CH) score, which is also known
as the Variance Ratio Criterion. This metric computes the ratio of the
sum of between-cluster dispersion and within-cluster dispersion as shown in
Equation 2.5.1. B is the between-cluster variance, and W is the within-
cluster variance, both calculated with the sum of squares, while k is the
number of clusters and n is the number of data samples. The objective is to
maximise B and minimise W , and a higher CH score is therefore desirable.

CH =
B ∗ (n− k)

W ∗ (k − 1)
(2.7)

Although both the silhouette score and CH score indicate how distinct
clusters are, they do so based on different criteria. While the silhouette score
measures the distance between and within clusters, the CH score measures
the dispersion. It can therefore be beneficial to evaluate clusters using both
metrics.

When true labels for classes are available, other metrics can be used as
well. Completeness measures how many data samples from the same class
are in the same cluster, while homogeneity measures how many data samples
in a cluster are from the same class. V Measure Score is the harmonic mean
of the completeness and homogeneity, calculated as shown in Equation 2.8.
The calculation for homogeneity and completeness is also shown, where C
is the predicted class, K is the true class, and H is the entropy of a given
group of samples.

18

homogeneity(C) = 1− H(C|K)

H(C)

completeness(C) = 1− H(K|C)

H(C)

v =
2 ∗ homogeneity ∗ completeness

homogeneity + completeness

(2.8)

Another supervised clustering metric is Adjusted Rand Index (ARI),
which is based on the Rand Index (RI). The RI score measures the sim-
ilarity between two clusters, considering all possible pairs of data samples.
The pairs that are in the same or different clusters in the predicted and true
clusters are then counted. This score is adjusted for chance, as shown in
equation 2.9. The best score for this metric is 1, and it is lower bound to
-0.5.

ARI = (RI − Expected_RI)/(max(RI)− Expected_RI) (2.9)

In addition to metrics, visual inspection of clusters can also be advantage-
ous. For high-dimensional latent representations, it is difficult to present the
clusters. Therefore, dimensionality reduction techniques, such as Principal
Component Analysis (PCA), can be of interest. PCA transforms vectors to
a lower-dimensional representation, while still preserving the closeness of the
original dimensions. This is desirable for evaluating clusters, as it allows the
transformation of the latent space to a 3D space, which can be plotted and
visualised easily. However, several things can make the transformed latent
space collapse into one single cluster. One of these things is noisy samples.
Brubaker [67] proposed to use Robust PCA to handle noisy samples, which
was applied before clustering.

Metrics such as silhouette score and Calinski-Harabasz (CH) score show
how compact the clusters are, and how separated different clusters are from
each other. On the other hand, when clustering is performed on latent rep-
resentations, these metrics do not demonstrate how this grouping translates
to the raw input data. Metrics that are based on labels might not provide a
good basis for evaluation either, as the clusters can represent something else
than the labelled classes. It is therefore difficult to meaningfully evaluate
these clusters. When dealing with this challenge, Zhao et al. [56] propose
splitting driving scenes into separate samples, thus augmenting the dataset.
By doing this, [56] create labels for which samples are known to be similar,
as they are the same driving scenes, and can modify the loss function to force
these samples closer together in the latent space. Multiple loss functions can
be used for this purpose, one of them being contrastive loss, proposed by

19

Hadsell, Chopra and LeCun [68]. Contrastive loss is often used in SSL and
minimises the distance between neighbouring samples while maximising the
distance to samples that are further away. By doing this, instead of using
a typical loss function employed in classification tasks such as CE loss, one
does not need labels, only prior information to identify neighbours [68]. The
computation of contrastive loss is shown in Equation 2.10. In this formula,
xij is the measure of similarity between samples i and j, which can be the
Euclidian distance, and τ is a temperature normalisation factor.

Li,j = −log
exij/τ∑2N

k=1[k ̸=i] e
xik/τ

(2.10)

Another loss function that can be used is triplet loss, proposed by Schroff,
Kalenichenko and Philbin [69]. In previous research, it has often been used
for training Siamese networks5 [70] but has also been used for training VAEs
[71]. Triplet loss, and other derived variations, have been used for a variety
of clustering tasks in previous research [72, 73, 74]. It can be defined as
shown in Equation 2.11, where xa,n is the distance between an anchor and a
negative sample, and xa,p is the distance between an anchor and a positive
sample. Negative and positive samples refer to whether a sample is deemed
similar to the anchor sample from a priori knowledge. The last variable,
m, is a margin value used to keep dissimilar samples far apart. Again,
this minimises the distance in the latent space between similar samples and
maximises the distance between dissimilar samples. The distance function
can be the Euclidian distance. However, when the latent space is highly
dimensional, all samples are deemed far apart. Therefore, using the cosine
angle between latent vectors can be more efficient.

Li,j = max(xa,n − xa,p +m, 0) (2.11)

While the contrastive loss is greedy and tries to force samples from the
same class to be in the same spot in the latent space, triplet loss converges to
a point where samples from different classes are easily separated. In addition,
triplet loss considers the margin value when considering samples from the
same class, thus structuring the space within clusters as well. This can
be beneficial for the goal of generalising latent representations and further
organising the latent space.

Anomaly Detection Clustering has also been used as a method for an-
omaly detection. Li et al. [75] propose a clustering-based approach to de-
tect anomalies in the amplitude and shape of multivariate time series data.

5Siamese neural networks apply the same weights to two inputs, allowing comparisons
of the two resulting feature vectors.

20

Ouyang and Sanchez [76] propose a probability-based approach to clustering
latent representations. The latent representations are generated by a deep
denoising AE, and the method is used to cluster videos.

2.5.2 Supervised Evaluation Methods

In cases where labelled data is available, it is possible to evaluate latent rep-
resentations using supervised methods such as classification. As latent rep-
resentations are easier to handle than raw input data due to the decreased
dimensions, several methods can be applied for classification tasks. Previ-
ously researched methods include GMMs, fine-tuned models, Support Vector
Machines (SVM), and random forests [77]. Fine-tuning is a form of transfer
learning, which is a technique where a model is first trained for one task
with sufficient available data, and then trained for a similar task [78] where
data might be limited. In their survey, Zhuang et al. [79] explore the many
forms of transfer learning, in addition to describing successful applications
in sectors such as medicine, bioinformatics, and transportation.

21

Chapter 3

Dataset

This chapter presents the dataset used for the reported experiments and is
divided into three sections. Section 3.1 describes the classes and other la-
bels included in the dataset. It also describes how the dataset was annotated.
Section 3.2 describes the VMS data and how it is pre-processed. Section
3.3 describes the video data and how it is pre-processed.

The NEDO dataset contains real-world city traffic scenes and is used for
testing the implementations and hypothesis of this thesis. NEDO stands
for National Research and Development Agency-New Energy and Industrial
Technology Development Organization, and the dataset was collected by the
organisation for an AI research and development project called "Develop-
ment of next-generation artificial intelligence/robot core technology".

The reported experiments are tested using data collected in 2019. The
first reason for only using one year out of the four available is that the an-
notation and gathering methods change each year, making it difficult to train
a model using data from every year. The second reason is that only NEDO-
2019 contains sensor data from Mobileye, which is an AI-based sensor, as
mentioned in section 2.2. In short, the NEDO-2019 dataset contains 2685
driving scenes gathered around the Nagoya University campus, where each
recording lasts approximately seven seconds.

3.1 Classes and Annotation

This section describes the different types of labels in the dataset, and how the
dataset was annotated. The driving scenes are categorised into 14 classes,
each of which is listed, illustrated, and explained in Table 3.1. The illustra-
tions were made by the Behaviour Signal Processing Laboratory of Nagoya
University.

22

Table 3.1: Illustrations and explanations of driving scenario
classes

Class and illustra-
tion Explanation

1. Pedestrian or
bicycle crossing

Single or multiple pedestrians/bicycles on a
crosswalk in front of the ego vehicle. Pedes-
trians and bicycles more than 30m away are
not covered.

2. Passing Pedestrians
and Bicycles

Pedestrians/bicycles on or next to the road,
being overtaken by the ego vehicle.

3. Overtaking parked
vehicles

A parked vehicle on the street is overtaken by
the ego vehicle.

23

Class and illustra-
tion Explanation

4. Pedestrians and
cyclists when turning

left

Ego vehicle entering an intersection to turn
left, with pedestrians/bicycles in the scene.
Pedestrian or bicycle does not need to be
crossing the road.

5. Pedestrians and
cyclists when turning

right

Ego vehicle entering an intersection to turn
right, with pedestrians/bicycles in the scene.
Pedestrian or bicycle does not need to be
crossing the road.

6. Car facing straight
when turning right

Ego vehicle entering an intersection to turn
right, with an opposing car going straight into
the intersection.

24

Class and illustra-
tion Explanation

7. Motorcycle facing
straight when turning

right

Ego vehicle entering an intersection to turn
right, with an opposing motorcycle, or mul-
tiple, going straight in the intersection.

8. Car turning right
when going straight

When the vehicle is about to go straight
through an intersection, a car in the oncoming
lane is turning right.

9. Motorcycle that
turns right when
going straight

When the vehicle is about to go straight
through an intersection, a motorcycle in the
oncoming lane is turning right.

25

Class and illustra-
tion Explanation

10. Car(s) crossing
when going straight

One or multiple cars crosses in front of the ego
vehicle. Does not depend on whether the ego
vehicle is stopped or moving.

11. Motorcycle(s)
crossing when going

straight

One or multiple motorcycles crosses in front of
the ego vehicle. Does not depend on whether
the ego vehicle is stopped or moving.

12. Illegal Pedestrians
and Bicycles

Single or multiple pedestrians/bicyclists
crossing the road, not in a crosswalk.

26

Class and illustra-
tion Explanation

13. Near-miss denoted
by the driver

A near miss, meaning close to an accident, is
denoted by the driver. This can include driv-
ing scenes where a near miss happens that
is difficult to observe from the video record-
ing, as the driver might observe something the
forward-facing camera does not capture.

14. Near-miss denoted
by the annotator

A near miss, meaning close to an accident, is
marked by the annotator.

3.1.1 Annotation Process

13 annotators worked on the data set, all of which annotated a different
number of samples. The annotation includes scene ID and class label, risk
score, subjective risk, situation description, risk factors, environment tags,
and action tags. An example of an annotated scene is given in Figure 3.1.
The annotation is originally done in Japanese but is translated to English
for this example. The different annotations are explained below.

1. Scene ID: ID for each scene of urban driving

2. RiskScore: Risk score calculated by post-processing

3. Subjective risk: Five levels of risk assigned to the scene by the operator
(1: Safety => 5: Dangerous)

4. Situation description: Short sentence sequence that describes the driv-
ing situation

5. Risk factor: Short sentence string that describes the risk factor (only
for scenes where the operator gives subjective risk levels of 4 and 5)

6. Environment tag: Static keyword that indicates the driving environ-
ment/situation

27

7. Action tag: Short sentence string that indicates the driving environ-
ment/status

In the data set, the class label is given by the last number of the scene
ID: 999_16000000130000000584_x, where x denotes which of the 14 classes
the sample belongs to. RiskScore is a score obtained by normalising the five
levels of subjective risk of scenes assigned by each operator using Likert’s
sigma method [80], resulting in a single value that represents the combined
assessment of all annotators.

Figure 3.1: Example of driving scene annotation

3.1.2 Imbalanced Class Distribution

As seen in Figure 3.2, the dataset does not contain an equal number of
samples for each of the 14 classes. However, the uneven distribution is not
significant, and this distribution will suffice for this report. The two classes
that are noteworthy in terms of the number of samples are class 7 when a
motorcycle is facing straight and the ego vehicle is turning right and 9 when
a motorcycle in the oncoming lane turns right and the ego vehicle is going
straight. This class imbalance is something to be mindful of when evaluating
label classification performance. It is outside the scope of this report, but had
it been a significant difference in the number of samples in each class, data
augmentation could have been an option. As Wang et al. [81] show, regular
data augmentation techniques often do not work as well for driving-related
images, such as mirroring an image. Regular data augmentation techniques
often result in images where the driver sits on the wrong side of the car,

28

or where cars drive on the wrong side of the road. Another option would
be the VideoMix algorithm proposed by Yun et al. [82], where they place a
video within another video, thus creating a new, noisy data sample. This
algorithm shows promising results in their paper. In their paper, Zhu et al.
[83] propose an algorithm to detect dangerous driving behaviour in a data
set with a small proportion of dangerous drivers. Drawing inspiration from
[83] could be an option if mainly focusing on predicting risk scores. However,
as this thesis includes working with both video and VMS data, generating
new data for data augmentation is a difficult and complex task. Since the
data is sequential, splitting the sequences into multiple data samples is a
more viable option, thus keeping the relation between modalities consistent.

Figure 3.2: Distribution of classes in dataset

3.2 Vehicle Monitoring Sensor Data

One of the modalities used in this dataset is a collection of VMS data that de-
scribe different aspects of the driving scenes. The VMS data comes from four
different sensors and is given as sequential numerical data. The first three
sensors are GPS, CAN, and recorded driver information, of which there are
74 unique features. The recorded driver information describes the driver,
such as whether their eyes are open, their heart rate, and where their head

29

is facing. The information from the other two sensors has an overlap in
features, such as those describing velocity and acceleration. In addition to
these features, there is also data from the AI-based Mobileye sensor, which
contains 19 features describing the ego vehicle and environment, 16 features
for each car that appears in the driving scene, and 7 features for each ped-
estrian and bicycle in the driving scene. There is also some overlap between
the Mobileye and GPS features, such as lane information and yaw and pitch
of the ego vehicle.

3.2.1 Selecting Features

Before using this modality, it is important to analyze the features to review
contributions, correlations, and anomalies. This process is described in this
subsection, where some features are removed based on the results.

To start, there are quite a few features that only contain values of zero.
This can come from a fault in the sensor during recording, or from the
similarity of the driving scenes, causing the value to be the same for every
scene. Some categorical features also use zero as "unknown", which can be
the reason as well. These features will not be used for the experiments of
this report. There are some features, such as the ID of objects and other
formalities, which are also removed before using the VMS data.

K Nearest Neighbors A common method for feature analysis and selec-
tion is the K Nearest Neighbors (KNN) algorithm, which is non-parametric
and uses labels to assign the class of a sample. The algorithm works by
choosing the majority class of the K nearest neighbours of a sample. Al-
though it is quite computationally expensive and takes a long time to run,
it requires no training. In addition, the error rate is upper bound to twice
the optimal error rate, which gives a good estimate of how well a given fea-
ture will perform. However, given poor initial test results, no features are
removed based on this test.

Correlation Another approach to selecting features is to calculate the
correlation between each feature. As mentioned previously at the beginning
of section 3.2, the GPS and vehicle sensors provide some similar features.
Ideally one would choose the sensor that provides the most accurate data for
each feature, but that is difficult to do in practice. It is especially important
to remove features that are present in two or more sensors, as it would give
too much weight to that information. However, perhaps due to the varying
format of different sensor inputs, the results of this test are inconclusive.
Therefore, it is not possible to reasonably remove features based on the
calculated correlation. Some features are however removed based on manual
analysis, as they essentially provide the same information as other features.

30

Selected features Table 3.2 lists and describes the features which are
used in the reported experiments.

Table 3.2: Description of VMS data features

Feature Description
From sensor: Driver

Eye-opening rate The openness of the driver’s eyes given in mil-
limetres

Face pitch The forward/backward tilt of the driver’s
head, given in degrees

Face yaw The left/right direction the driver’s face is
pointed, given in degrees.

Horizontal gaze The horizontal direction the driver is looking,
given in degrees.

Vertical gaze The vertical direction the driver is looking,
given in degrees

Heart rate Heart rate of the driver, given in bpm
From sensor: GPS

Distance from the last
intersection Given in centimetres

Distance to last inter-
section Given in centimetres

Road curvature Given in degrees
Intersection 1 if scene contains an intersection, 0 if not
Traffic light 1 if scene contains a traffic light, 0 if not

Lanes Categorical feature indicating which of 11
types of lanes is in the driving scene

Road type Categorical feature indicating which of 63
types of road is in the driving scene

Road width Categorical feature indicating which of 11
classes of road width is in the driving scene

Vehicle turn state A categorical feature which indicates if the
vehicle is turning right, left, or not at all

Vehicle movement Vehicle velocity, given in km/h

Vehicle pitch angle The forward/backward tilt of the car, given in
degrees

Vehicle yaw rate The left/right orientation of the vehicle, given
in degrees

From sensor: Mobileye
Mobileye 2 Lane marker type on the left side, 7 classes
Mobileye 3 Lane marker type on the right side, 7 classes

31

Feature Description

Mobileye 4 Distance to the left lane marker, given in
meters

Mobileye 5 Distance to the right lane marker, given in
meters

Mobileye 6 The speed limit in the driving scene, given in
km/h

Mobileye 7 The pitch angle of the vehicle, given in radians
Mobileye 8 Yaw angle of the vehicle, given in radians
Mobileye 9 Road curvature, given in 1/m

Mobileye 10

Road curvature detection, 0: unknown, 1: R
< 100, 2: 100 < R < 300, 3: 300 < R < 500,
4: 500 < R < 700, 5: 700 < R < 1000, 6: 1000
< R

Mobileye 11 Lane change information, 0: unknown, 1:
right-side change, 2: left-side change

Mobileye 14 The direction of the vehicle ahead, 0: Not Ap-
proaching, 1: Approaching

Mobileye 15
Status of approaching vehicle, 0: unknown 1:
Approaching from left 2: Approaching from
the right

Mobileye 16 Distance to car ahead, given in meters
Mobileye 17 The velocity of the car ahead, given in m/s
Mobileye 18 Time to collision (TTC), given in seconds
Mobileye 19 Pedestrian/bicycle amount in driving scene
Mobileye: observed
cars 2

Neighbouring object longitudinal position
(forward), given in meters

Mobileye: observed
cars 3

Neighbouring object latitudinal position (ho-
rizontal), given in meters

Mobileye: observed
cars 4

Lane change information of a neighbouring
vehicle, categorical feature

Mobileye: observed
cars 5

Blinker information of a neighbouring vehicle,
categorical feature

Mobileye: observed
cars 6

Relative Speed to a neighbouring vehicle,
given in m/s

Mobileye: observed
cars 7

Neighbouring vehicle type, regular car, truck,
motorcycle or unknown

Mobileye: observed
cars 8 Movement state of neighbouring vehicle

Mobileye: observed
cars 9

Neighbouring vehicle brake light status, 0: off,
1: on

Mobileye: observed
cars 10

Neighbouring vehicle length estimation, given
in meters

32

Feature Description
Mobileye: observed
cars 11

Neighbouring vehicle width estimation, given
in meters

Mobileye: observed
cars 12 Number of detections

Mobileye: observed
cars 13

Cruising Lane, 0: not assigned, 1: ego lane, 2:
different lane 3: invalid signal

Mobileye: observed
cars 14 Neighbouring vehicle speed, given in m/s

Mobileye: observed
cars 15 Relative Acceleration, given in m/s2

Mobileye: observed
cars 16

Neighbouring vehicle eccentricity (yaw), given
in degrees

Mobileye: observed
pedestrians/bicycles 2

Pedestrian/Bicycle detection, 0: Unknown, 1:
Pedestrian detected, 2: Bicycle detected

Mobileye: observed
pedestrians/bicycles 3 Pedestrian/bicycle distance, given in meters

Mobileye: observed
pedestrians/bicycles 4

Pedestrian/bicycle distance lateral position,
given in meters

Mobileye: observed
pedestrians/bicycles 5 Pedestrian/bicycle TTC, given in seconds

Mobileye: observed
pedestrians/bicycles 6 Number of detections

From sensor: CAN
Linear acceleration x,
y, z

The acceleration of the ego vehicle in direc-
tions x, y, and z, given in m/s2

Speed pulse The original pulse signal from which the
vehicle velocity is calculated

Brake pedal hydraulic The hydraulics of the brake pedal, given in
Mpa

Gas pedal position Percentage of how much the gas pedal is
pressed

Speed The velocity of the ego vehicle, given in km/h

Steering angle The angle of the steering wheel, given in de-
grees

Back signal Indicates whether the back signal of the ego
vehicle is on or off

Brake signal Indicates whether the brake signal of the ego
vehicle is on or off

Seat belt state Indicates whether the seat belt of the driver
is used

Turn signal State of ego vehicle’s turn signal
Headlight state State of ego vehicle’s headlight state

33

3.2.2 Sample rates

Each of the 4 sensors has different sample rate ranges. Combined with a
slight difference in the length of each driving scene, there is a large variation
in the number of data points across and within features of a data sample.
Figures 3.3 and 3.4 show the mean and standard deviation of the number of
samples of each feature respectively and demonstrate the large variation in
the number of data points. This leads to varying shapes of the inputs, which
is a problem for most ML models. To remedy this, the data is resampled
to a fixed number of timesteps, using interpolation for continuous features
and copying the previously observed value for categorical features. To find
a good number of timesteps, the MSE between the original and resampled
values at equal timesteps is calculated. However, this method only measures
the difference in values and does not account for a shift in the timestamps.
Therefore the correlation between the original and resampled values is also
calculated. As seen in Table 3.3, 256 appears to be a reasonable number of
samples as the MSE and correlation values do not decrease as much when
increasing the number of timesteps further.

Table 3.3: Mean Square Error (MSE) and correlation for resampled time
series, averaged over all features from data based on 2000 random samples

N samples MSE Correlation
50 83112890652 0.89
100 3.115 0.98
150 2,282 0.987
200 2,046 0.99
300 1,098 0.997
500 0 0.999

In addition, Figure 3.3 shows that not many features contain more than
256 data points. Keeping in mind that increasing the number of timesteps
would also increase computational cost, 256 samples seem reasonable. The
number 256 is chosen instead of 250, as it is a binary number, and therefore
easier to work with in an ML context.

As seen in Figure 3.5, where blue crosses mark the resampled values and
red dots mark the original values, the overlap of resampled and original data
points is quite good. Note that the x-axis shows timesteps and not sample
numbers. The number of timesteps is larger than the number of samples, due
to the slight difference in timestamps of original and resampled data points.
However, even though the new number of samples is larger than the original
number of samples, a certain period might contain more data points, leading
to down-sampling in that specific time frame. The figure also indicates that
there might be missing data points in a sequence. This is also supported by
the standard deviation of the number of data points as shown in Figure 3.4,

34

Figure 3.3: Mean number of samples for each feature

which is quite high given the small variation in the length of different driving
scenes. These missing data points are also filled by either interpolation or
mean values for continuous and categorical variables respectively.

3.2.3 VMS Data Pre-Processing

There are several things to consider before using the VMS data. The data
contains output from several sensors, so they must be treated differently.
This subsection describes how the data is normalised, and how the different
types of data are handled.

Normalisation The VMS features are given in different metrics including
km/h, m/s, radians, and degrees. Some features, such as relative velocity,
can have negative values, while others can not. For these reasons, normalisa-
tion is applied to the features as part of the pre-processing stage. Min-max
normalisation is a common technique, which scales all values between 0-1,
and the calculation is shown in Equation 3.1. This results in giving equal
importance to each feature, regardless of the value ranges. However, there is
a question of which min and max values to apply. The sensor for the velocity
of the vehicle has a range between 0 and 255, as has several other features.
However, as most of the driving scenes are recorded in urban areas, the ve-

35

Figure 3.4: Standard deviation of the number of samples for each feature

locity seldom exceeds 100 km/h, and the max velocity found in the dataset
is 120 km/h. For this reason, using minimum and maximum values from
sensor documentation for min-max normalisation is not the best alternative.
Therefore the minimum and maximum values found in the dataset are used
for min-max normalisation. Another option would be to use z-score stand-
ardisation, which handles outliers better than normalisation. As with the
resampling procedure, it is important to handle categorical features differ-
ently, which need not be normalised.

xscaled =
x− xmin

xmax − xmin
(3.1)

Categorical features Some of the categorical features can be either 0 or
1 and do not need further handling, while others have a higher number of
categories. The latter type of categorical features can be handled by using
embeddings. Using learned embeddings is more computationally effective
than one-hot-encoding1 [84, 85]. Using one-hot-encoding would lead to a very
large input dimension, and thus too many trainable parameters. Meanwhile,

1One-hot-encoding uses an array with one value describing the probability of each
category.

36

Figure 3.5: Resampled data points of "blink rate" feature

embeddings transform the 1-dimensional feature vector to a 2-dimensional
vector of a given size, while preserving semantic relationships. This means
that similar categories are represented close to each other in the embedded
vector space. While not applied in this thesis, an option is to vary the size
of each embedding based on the number of categories in the feature.

The categorical features are already encoded with integer encoding, mean-
ing that instead of the category label, an integer denoting the label is given.
Although this is possible to use as input for an ML model, it is not optimal.
Integer encoding implies similarity between categories when the integers are
close, which is not necessarily the case.

Missing features Of the 67 chosen features, the 47 that are not specific to
detected objects should in theory be available in all data samples. However,
only a handful is available in all of them, as shown in Figure 3.6. This poses
a problem as each sample will have a different number of features, again
leading to varying input sizes. This processing step is quite simple, as it just
involves adding the missing features using the masking value -99.

It is important to make sure that each feature appears in enough samples
to be able to properly train the model parameters relating to that feature.

37

As shown in Figure 3.6, there is a big spread in the number of appearances
of different features. However, all features with lower than 1700 appearances
are specific to detected objects, which is explained in the next paragraph.
It is recommended to have at least 5 data samples per feature [86], and the
features describing the ego vehicle have enough data to be properly trained.

Figure 3.6: Distribution of the number of data sample appearances for fea-
tures

Features for detected objects These are features that describe either a
vehicle, pedestrian, or bicycle observed in the driving scene. Handling these
features presents a similar problem to the one discussed in the previous
paragraph. Although there are no missing features for an object if it is
detected, the number of objects varies across data samples. This leads to
practical problems when using a data loader2 with a batch size, as all samples
in the batch need to have the same dimensions. Again, this can be solved
by adding features, this time until all samples in the batch have the same
number of features. It is important to use a value that separates these
features from others, and -99 is chosen for this purpose.

2A data loader is a coding implementation that fetches data from a dataset and often
fetches it in batches.

38

As mentioned at the beginning of section 3.2, there are 16 different fea-
tures describing each of the neighbouring cars that appear in the driving
scenes, and 7 different features describing each choosing pedestrian or bi-
cycle in the detected object features. The highest recorded number of neigh-
bouring cars in a driving scene is 12, and 11 for pedestrians/bicycles. This
results in a high number of features if they were to be handled as individual
features. Handling them as multiple instances of the same features would
drastically lower the number of features, and lower the number of paramet-
ers needed in a model. Importantly, many of these features do not appear
many times in the dataset, meaning that the weights involved would not be
trained properly. This is due to the varying number of cars, pedestrians, and
bicycles in each driving scene. Therefore, treating them as the same features
will most likely lead to higher performance, even though it might provide
some additional difficulties when setting up the model structure. Another
option would be to set a cut-off point for minimum appearances of a feature,
and only use those that would allow for proper training of corresponding
weights. An issue with this approach is that the available information is not
used to its full extent.

Presenting data for models Before using the data for the models, it is
split into eight groups:

1. Continuous standard3 features

2. Binary standard features

3. Categorical standard features

4. Continuous features describing pedestrians and bicycles detected in the
driving scene

5. Categorical features describing pedestrians and bicycles detected in the
driving scene

6. Continuous features describing cars detected in the driving scene

7. Binary features describing cars detected in the driving scene

8. Categorical features describing cars detected in the driving scene

Note that there are no binary features for pedestrians and bicycles. The
reason for splitting the features into continuous, binary, and categorical is for
practical reasons, making it easier to know which features must be handled
differently regarding normalisation and embeddings.

3These are features from all the sensors that describe the ego vehicle and its surround-
ings.

39

3.3 Video Data

The cars are equipped with a front-facing colour camera, that records a video
for each driving scene. The ego vehicle is not visible in the driving scene.
Each video is about 7 seconds long and has a frame rate of 26 frames per
second. Shown in Figures 3.7 and 3.8 are frames taken from two separate
videos.

Figure 3.7: Frame from video of
class 1

Figure 3.8: Frame from video of
class 3

Figure 3.9: Logarithmic distribution of the number of frames in videos from
the dataset

Frame rate However, as mentioned in subsection 3.2.2, some driving scenes
are not precisely seven seconds long. As shown in Figure 3.9, most of the

40

videos contain a similar number of frames. Note that the figure shows the
natural logarithm of frame rates, to better visualise the smaller values. 99%
of the videos contain 180, 181, or 182 frames. As mentioned in subsection
3.2 regarding the time series data, most ML models need a fixed input size,
so the variation in frames can pose a problem. As a frame rate of 26 fps can
be excessive regarding computational expense, 5-10 fps should be enough.
An alternative is to choose a fixed, smaller number of frames. This means
that the frame rate will vary across samples, but given the distribution of
frames in the samples this should not be significant. The videos are therefore
resampled to contain 64 frames, thus refraining from up-sampling any videos
and resulting in 9 fps.

Further processing As the videos contain values from 0 to 255 for each
RGB channel, it is uncomplicated to normalise the values before training the
model. There is also the issue of choosing a reasonable size for each frame
and finding a middle ground between information loss and computational
complexity. The complexity of the problem decreases as the frame rate and
image size decrease, but the latent space might not be as useful for separating
the videos into classes if the video quality is too low. The images shown in
Figure 3.10 show frames from two videos that are resized to 256x256 pixels.

Figure 3.10: First frame of two separate resized videos from dataset

41

Chapter 4

Feature Extraction and
Evaluation

This chapter describes the proposed methods of this thesis. Section 4.1 ex-
plains how and why data augmentation is performed on the dataset. In sec-
tion 4.2 the encoder and decoder parts depicted in Figure 4.1 are described,
and section 4.3 explains concepts and considerations regarding model train-
ing. Section 4.4 describes the evaluation tasks: clustering and classification.

Figure 4.1 illustrates the full process of the experiments. The encoder
takes video and VMS data and produces latent representations. The repres-
entations are first decoded to reconstruct the original input, and the model is
trained to optimise this objective. Note that for the models that only use one
of the modalities, the process is the same, but with only one of the inputs,
and one of the reconstructed outputs. After the model training is complete,
the latent representations are evaluated in the clustering and classification
tasks.

4.1 Data Augmentation

An important preparation step in this thesis is data augmentation. As men-
tioned in subsection 3.1.2, this can be done by splitting each sequence into
equal parts. Given that the sequences are approximately 7 seconds each,
an appropriate number of splits is four new samples. Any less, and there
would not be much to gain from the data augmentation. Any more, and the
sequences would be too short. Although there is enough data in the dataset
to properly train the models, augmentation of the dataset has the following
benefits:

• More data available. This allows for better training of the models.

• Less complex tasks. As the sequence is shorter, there are fewer fea-
tures to extract. This can make it more likely to achieve good results.

42

Figure 4.1: Flowchart of full experiment process

• Creation of labels for similarity. It is now possible to determine
similarity, as two samples that are from the same sequence are more
similar than two that are not.

The latter is the most significant benefit and is the reason behind per-
forming data augmentation. This makes it possible to use triplet loss when
training the models. Applying triplet loss will to some extent ensure that
similarity in the latent space can be interpreted as similarity in input data.
This makes the clustering results more meaningful and reliable, thus allowing
the evaluation of the latent space with clustering.

4.2 Model Architectures

This section describes the architecture and implementation of the different
models that are tested in this report. The models are implemented using the
Pytorch library [87].

Figure 4.2 illustrates the training process of the models, and subsection
4.2.5 further explains the depicted loss functions. In short, the training
objective is to reconstruct the given input. The other components of the
loss function are forms of regularisation to prevent overfitting the models
to both the training set and the reconstruction task. The loss function is
designed to generalise the latent representations for a variety of tasks. The
main components of the encoders can be described as:

• Feature extraction. Depending on the input data, this can be fully
connected layers, convolutional layers, sequential layers, or a combin-
ation.

43

Figure 4.2: Flowchart of training process

• Sequence compression. Transforms the sequential data to a 1-
dimensional vector.

• Final layer. The final fully connected layer produces either the latent
representation or the mean and logarithmic variance to the distribution
the representation is sampled from.

The specifics of the feature extraction component depend on the model. As
for the decoders, they are essentially reverse copies of the encoder.

To address RQ1 from section 1.2, several model variations are implemen-
ted. By comparing a regular and a variational AE for the video data, the
effect of incorporating KL into the loss function is studied. Further, another
model is implemented to test the effect of 3D convolution vs. 2D convolu-
tion paired with a transformer layer. For VMS data, the effect of using GRU
layers vs. transformer layers is researched. For RQ2 three different ways of
combining modalities are tested: attention layers, high-level concatenation,
and mid-level concatenation.

4.2.1 Video Autoencoders

In this segment, the structures of the Video AEs utilised in this thesis will
be described. Three different variations are implemented and tested:

• Video AE

• Video VAE

• Video Transformer VAE

44

Video AE and Video VAE The first two implementations are quite
similar. They both consist of four stacked 3D CNN layers in the encoder,
which reduce the height, width, and number of frames of the input video.
This method performs feature extraction and sequence compression concur-
rently with 3D convolution. The extracted features are then flattened to a
1-dimensional vector and passed through a fully connected layer. The dif-
ference between the two implementations is in the last layer of the encoder.
The Video AE has an additional fully connected layer, which outputs the
final latent representation, while the Video VAE has two separate fully con-
nected layers. One of these outputs the mean of the distribution of the latent
representation, and the second outputs the logarithmic variance. These out-
puts are then used to calculate the KL divergence as shown in Equation 2.5,
which shapes the latent representation distribution. A latent representation
is then sampled from this distribution and used for the reconstruction task.
The encoder structure for both variations is depicted in Figure 4.3. The
illustration includes vector fusion with the VMS modality, which is not the
case for these models.

Video TVAE The last implementation for the video modality is the Video
Transformer VAE. Again, stacked convolution layers are used to extract fea-
tures from each frame. As opposed to the two aforementioned implementa-
tions, this one does not decrease the number of frames in the convolutional
layers. The resulting sequential output contains the extracted features from
the video, which is used as input for the transformer encoder layer. For
the sequence compression stage, the output from the transformer encoder
layer is flattened into a 1-dimensional vector, which is passed through a
fully connected layer. As with the Video VAE model, the final layer is a
two-part output, providing the mean and logarithmic variance of the latent
representation. The structure of the encoder is illustrated in Figure 4.4.

For this model, the transformer decoder layer takes two additional inputs:
memory and mask. The purpose of the memory in the transformer decoder
layer is to provide information from the encoder about the input sequence,
which is used by the decoder to generate the output sequence. The mask
controls the flow of information in the transformer during training so that it
can only access relevant parts of the input.

4.2.2 Vehicle Monitoring Autoencoder

Two variations for vehicle monitoring data feature extraction are implemen-
ted and tested in this report:

• Vehicle Monitoring Sensor VAE

• Vehicle Monitoring Sensor Transformer VAE

45

The reason for not testing a regular AE for the vehicle monitoring data,
is the missing features discussed in subsection 3.2.3. Based on previous work
described in subsection 2.4.1, Variational Autoencoders are a better fit for
this task, as they do not encode the raw data directly to a latent represent-
ation, but rather to a probable representation sampled from a distribution.
This means that even though the values for certain features are masked, the
VAE should be able to extract the most probable feature information based
on other features.

As outlined in section 3.2, managing the data from vehicle monitoring
is a complex task. There are numerous factors to take into account when
implementing the VMS AE models.

Missing Features Firstly, the missing features described in subsection
3.2.3 are handled. They are identified, added, and masked with the same
value of -99. This value was chosen because real values are usually posit-
ive due to normalisation. While embedded values can be negative, they are
typically close to 0. This approach indicates that the value is not real and
that the true value should be based on a learned probability and context
from other features. Another option is to fill missing features with the mean
values from the batch, but this approach could hinder learning latent repres-
entations that differentiate between various driving scenes and would make
data samples more similar.

Multiple Detected Objects As explained and shown in 3.2, there is a
set of features for each detected vehicle and pedestrian/bicycle that appears
in the driving scene. The maximum number of vehicles detected in a scene
is 12, and the maximum number of pedestrians or bicycles is 11. The sets of
features that describe the first vehicle and the first pedestrian/bicycle appear
in almost all data samples. However, the number of appearances decreases
as the number of detections increases, and the last sets of features only
appear in a handful of samples. Due to this, the model weights connected
to these inputs won’t be properly trained. A solution to this is to reuse the
same parameters for each object, thus allowing the parameters to be trained
thoroughly. However, because of the varying number of objects in each data
sample, this leads to the problem of varying dimensions. The output must
therefore be combined in some way, into a set dimension.

More importantly, this might be a problem in the decoding part of the
model. As there is an encoder and decoder for each feature, but not for each
set of features for each detected object, the same encoder and decoder will
be reused for each instance of detected cars and pedestrians/bicycles. This
should be fine for the encoder, as each instance will have a different input.
For the decoder, however, each instance takes the same input, the latent
vector, and has to provide different outputs from that.

46

Loss for missing features As there is no way of knowing what the ori-
ginal data sample looks like for missing features, these are excluded from
the loss calculation1. Nevertheless, it is desirable to train the model to
decode these features properly, thus enforcing the latent representation to
include this information. Therefore a random number of recorded features
are masked and still included in the loss calculation. The pseudo-code for
this is shown in Algorithm 1, which is structured so that it is highly prob-
able that at least one feature in one of the data samples is masked, with a
maximum of five features being masked. The code sets the full sequence of
one feature, of one of the samples in the batch, to the mask value -99. There
is a lot of room for optimising the probabilities and the maximum number
of masked features. However, seeing as reconstructing missing features is
not the main goal of the thesis, the results achieved with this method are
adequate. The original feature tensor from Algorithm 1 is one of the eight
split parts of the batched dataset. A random batch and feature are chosen,
and the full sequence for that batch and feature is masked by -99, denoted
by maskedtensor[batchidx, :, featureidx]. If the random batch and feature
is a missing feature, and already masked as -99, new indices are randomly
chosen.

Algorithm 1 Pseudo code for random masking of features
1: masked_tensor ← original feature tensor
2: for p in [0.9, 0.7, 0.5, 0.3, 0.1] do
3: p← p scaled by the number of features in input
4: random_number ← 1 with probability p, else 0
5: if random_number = 1 then
6: batch_idx← random batch index
7: feature_idx← random feature index
8: while masked_tensor[batch_idx, :, feature_idx] = −99 do
9: masked_tensor[batch_idx, :, feature_idx]← −99

10: batch_idx← random batch index
11: feature_idx← random feature index
12: end while
13: end if
14: end for
15: return masked_tensor

Implementation This implementation concatenates the input into three
different parts:

• Standard features, describing ego vehicle and surroundings
1This is the case with the padded detected object features as well.

47

• Features describing detected pedestrians and bicycles

• Features describing detected neighbouring vehicles

This allows the model to reuse the trained parameters for the different
detected objects, which would not have worked had the model used the
full input combined. By only splitting the input into three different parts,
the model benefits from the added context of using multiple features. It
is also more computationally effective, as opposed to encoding each feature
individually. However, there is a downside to this implementation as well,
arising from the practical side of implementing an ML model. As the size
of the input is fixed, the input includes the masked missing features, in
addition to the padded detected object features. These will then influence
the encoded latent vector to an unknown degree.

Vehicle Monitoring Sensor VAE The VMS VAE is the first of the two
VMS Autoencoders and is illustrated in Figure 4.3. This model uses a GRU
layer to extract features from the standard features, and each detected object
individually. Each resulting sequence is then compressed to a 1D vector by
reshaping. This is followed by a fully connected layer, then two additional
fully connected layers that output the mean and logarithmic variance of the
latent representation distribution. After the process, the encoded standard
features, and encoded features for a varying number of neighbouring vehicles,
pedestrians, and bicycles are obtained. All encoded vectors for neighbouring
vehicles are then summed together, and the same is done for encoded vectors
for pedestrians and bicycles. Now there are three sets of mean and logar-
ithmic variance vectors, one describing the ego vehicle and the surroundings,
one describing neighbouring vehicles, and one describing pedestrians and bi-
cycles. These are combined using an attention layer, which is trained to
include the most useful information from all three sets of vectors. Ideally, an
attention layer would be used to combine all features describing individual
detected objects. However, because of the varying number of objects, this is
difficult to implement.

VMS Transformer VAE The architecture of the VMS TVAE is slightly
different. Here, the standard features, and detected object features are
passed through separate fully connected layers, to obtain the same dimen-
sions. Then, as with the model described above, the individual object fea-
tures are summed together, to obtain three sequential vectors for standard
features, neighbouring vehicle features, and pedestrian and bicycle features.
These are combined using an attention layer. The single vector is then
processed by a transformer encoder layer and finally passed through fully
connected layers to obtain the mean and logarithmic variance of the latent
representation distribution. This implementation is illustrated in Figure 4.4,
only without the video components.

48

Figure 4.3: MVAE encoder structure

Again, the decoders of both models have the same structure as the en-
coder, only in reverse. As in the Video TVAE architecture described in
subsection 4.2.1, the transformer decoder is slightly different, as it uses the
unprocessed output from the transformer encoder as memory.

4.2.3 Multi-modal Autoencoders

Finally, the multi-modal AE implementations. There are three implementa-
tions:

• Multi-Modal Semi-Variational Autoencoder (MSVAE)

• Multi-Modal Variational Autoencoder (MVAE)

• Multi-Modal Transformer Variational Autoencoder (MTVAE)

The first two implementations are illustrated in Figure 4.3, the difference be-
ing in the vector fusion stage, and that the MSVAE model does not produce
a mean and logarithmic variance of the latent representation from the video
input. The MTVAE model is illustrated in Figure 4.4. All three models can
be compared to their single-modality counterparts to answer RQ3.

The first implementation is a combination of the Video AE and VMS
VAE, combining the two simplest individual AEs. The two modalities are
encoded individually before the sampled VMS representation is concatenated
with the encoded video representation at the most abstract level possible.

The second implementation combines the Video VAE and the VMS VAE.
Instead of combining the encoded vectors through concatenation, this model
does so by employing an attention layer, which extracts the most useful parts
of both encoded modalities. These two models provide insight for answer-
ing RQ2 from section 1.2, allowing comparisons between concatenation and
attention layers as means for modality fusion.

49

Figure 4.4: MTVAE encoder structure

The last implementation combines the Video Transformer VAE and the
VMS Transformer VAE. The modalities are processed by some of the layers,
to obtain the same shape, then combined by concatenation. The fused mod-
alities are then passed through the transformer encoder layer, before a fully
connected layer. Finally, two fully connected layers output the mean and
logarithmic variance of the distribution of the latent representation. When
compared to the MSVAE model, this model allows comparisons between
high-level and mid-level modality fusion, which is of interest for RQ2.

4.2.4 Hierarchical Variational Autoencoder

The last model that is tested in these experiments, is the HVAE. The way it is
implemented, it functions more as an extension of an AE. By using an already
trained model, the HVAE takes the encoded vectors as input and encodes and
decodes this as a regular VAE. The model then returns the encoded vector
from the pre-trained model concatenated with the hierarchical features. This
implementation has two hierarchical layers and utilises the MTVAE model
to explore whether there is any improvement between the two. This model
is tested as another possible approach for RQ1, to see if using HVAEs can
be of interest for generalising the latent space.

Although this implementation works as a downstream task by using the
output of a different model, one could have the hierarchical layers trained
simultaneously. In this fashion, the first layer could use the concatenated
output from both layers for decoding. However, for practical reasons such
as training efficiency and back-propagation, the outlined implementation is
chosen for the reported experiment.

50

4.2.5 Loss functions

The final loss computation is a combination of selected loss functions, that
were previously described in sections 2.3 and 2.5.

• MSE loss is used for the reconstruction task, comparing the recon-
structed samples to the original input. This loss function is the basis
of the AE model and ensures the latent representations contain enough
information to reconstruct the original data sample, thus ensuring a
meaningful representation that contains extracted features from the
raw input. This loss function is computed as shown in Equation 2.1.

• KL divergence is used to regularise the latent space and ensure that
it contains more information than what is needed to reconstruct a
sample. This is also used to shape the distribution latent samples are
drawn from, and the loss is computed as shown in Equation 2.5. Note
that the Video AE does not apply KL divergence during training.

• Triplet loss is applied to ensure that samples from the same driving
scene are closer together in the latent space, and further away from
samples from other scenes. As explained in section 4.1, this ensures to
an extent that closeness in the latent space translates to a similarity in
original data samples. The triplet loss that is implemented in this work
is based on the Euclidean distance between a latent vector (anchor),
the mean of the latent vectors from the same sequence (positive), and
the closest mean of a different sequence (negative). Using these values,
and a margin value of 2, the calculations are as shown in Equation
2.11.

• L2 loss is also used, to prevent overfitting the weights to the data in the
training set and keeping the values of the weights small. This should
help generalise the models and handle unseen data more accurately. It
is implemented as shown in Equation 2.3, with a lambda value of 0.01.

The final loss function is presented in Equation 4.1.

L = MSE +KL+ Triplet+ L2 (4.1)

4.3 Model Training

This section describes the various hyperparameters2 and other specifics re-
lated to training and testing ML models. As mentioned in section 1.3, the

2Hyperparameter is a common term in ML practices for values that are used to control
the training process.

51

goal of this thesis is not optimisation. Nonetheless, the results must be
adequate for comparison purposes to address the research questions from
section 1.2. Another reason for not extensively fine-tuning the hyperpara-
meters is the testing of different AE implementations. Finding an optimal
set of hyperparameters for each model would be too time-consuming, and
fine-tuning based on the performance of only one model would lead to biased
results. Consequently, the hyperparameters are primarily tuned to prevent
exploding or vanishing gradients. They are selected based on the task’s com-
plexity, the size of the dataset, and brief tuning based on the reconstruction
results.

Batch Size The first hyperparameter is the batch size, meaning the num-
ber of samples that are processed at the same time. Using a batch size that is
too large can lead to poor generalisation, but so does using a batch size of 1.
As the loss is calculated per batch, the batch size also affects how often the
model weights are updated, which can also affect performance. Therefore,
it is important, and not always straightforward, to find a reasonable batch
size. Based on the size of the available data in this report, a batch size of
32 is used, which is commonly chosen as a starting point [88, 89].

Epochs An epoch is the common ML term to describe the number of times
to process the whole dataset. After a certain number of epochs, the test loss
will stop to decrease, and might even increase if the model starts to overfit
to the training data. Therefore it is important to use a sensible number of
epochs or implement early stopping. In the experiments of this thesis, the
model from the epoch with the lowest test loss is saved, which is a
form of early stopping. Training for 150 epochs allows the training for all
the different models to converge.

Learning Rate (LR) The LR is the hyperparameter that determines how
big the step is when updating the model weights. Typical values lay in the
range of less than 1 and 10̂-6 [90]. A value of 0.00001 is used for the
experiments, as higher LR values lead to exploding gradients, and lower
values lead to slower convergence. Research has also found a correlation
between batch size and LR [88], where a small batch size performs better
with a smaller LR.

LR Scheduler While a certain LR value can produce good results in the
early stages of training, the value might be too high in the latter stages. In
the beginning, the model weights are far away from an optimal solution and
thus benefit from large steps towards the optima. However, when getting
closer, large steps might cause the model to overshoot and miss the optimal
solution. Therefore, an LR scheduler is applied, which reduces the LR after

52

a certain amount of time. Specifically, a scheduler that reduces the LR when
the test loss has reached a plateau and does not decrease for a given number
of epochs, namely ReduceLROnPlateau from PyTorch [87]. Although
this implementation ensures that the LR does not decrease while the test
loss is improving, fluctuations in the test loss might prevent the scheduler
from working properly.

Optimizer An optimizer is the algorithm that updates the model weights,
based on the loss values and LR. Some of the common optimizers include
Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-
prop), and Adaptive Moment Estimation algorithm (Adam) [91]. The
latter is applied in the experiments of this report, with benefits including low
memory requirements, and high performance for large data. Adam uses mo-
mentum when computing the updated weights, meaning that it takes into
account the previous gradients of earlier increments. This allows the model
to pass local optima, making it more likely to find the global optima. Adam
also compares favourably to other optimizers [92] and is utilised in the ex-
periments for these reasons.

Dropout Dropout is used to disregard certain nodes when calculating the
output. The nodes are chosen at random, and the dropout rate decides how
likely it is that some nodes are disregarded. This practice ensures that nodes
are not codependent, and prevents overfitting. For this thesis, a dropout
rate of 0.2 is utilised in hidden layers. The value was chosen through tuning.

Activation Functions It is common practice to use an activation function
after each layer in an ML model. In the reported models the Leaky ReLU
activation function is mainly used for hidden layers, except for when the
output should be strictly positive. Leaky ReLU allows positive values to
pass and downscales negative values, and can be described as shown in the
second formula in Equation 4.2. The sigmoid activation function can be
expressed as shown in the last formula in Equation 4.2 and transforms the
input to the range 0-1. For this reason, the sigmoid activation function
is used when values should be confined to this interval, such as predicting
normalised pixel values in videos.

ReLU = max(0, x)

LeakyReLU = max(0.01 ∗ x, x)

σ =
1

1 + ex

(4.2)

53

Weight Initialisation Weight initialisation can have a significant impact
on the training of an ML model. It is the process of setting the model
weights to small, random values. Doing so can prevent vanishing and ex-
ploding gradients. The optimal way to initialise the weights depends on the
type of layer and the activation function that follows. For fully connected,
convolutional, and transformer layers, Kaiming initialisation is applied with
a normal distribution.

Latent Vector Size The choice of latent vector size can greatly influence
performance in clustering and classification tasks. Testing found that a latent
vector size of 32 provides a good basis for evaluation and comparisons, while
still being more computationally effective than larger latent representations.
It was also found that increasing the size of the latent representation did not
significantly improve any results. The MSVAE and HVAE models produce
a latent vector size of 64, because of the concatenation of vectors.

Validation Due to the size of the dataset, a validation set is not used
for the reported experiments. A training and testing set is used, and the
available dataset is split in a 70/30 ratio for the training set and testing
set respectively. As there is a class imbalance in the dataset, the dataset is
first sorted by the class label, and then equally distributed among the two
sets. As two of the classes denote near misses, the risk scores should also be
somewhat equally distributed as a result.

Validation sets are often used if the test set is used to tune the hyper-
parameters, which is the case for this thesis. The original plan was to use
a larger dataset for cross-validation, which is why K-fold cross-validation3

is not utilised. However, the time constraint of this thesis did not allow
the usage of a different dataset. Therefore, this part of the experiments is
designated as future work and is further discussed in 6.3.

4.4 Evaluation

This section describes the process of evaluating the produced latent repres-
entations. Three different tasks are chosen for this purpose:

• Reconstruction

• Clustering

• Classification
3K-fold cross-validation evaluates a model’s performance for unseen data by splitting

the training set into K folds

54

Figure 4.5 illustrates the evaluation process. As this thesis mainly focuses
on how well the latent spaces generalise to different downstream tasks, the
illustration only includes the clustering and classification tasks. The research
questions given in section 1.2 are addressed by evaluating these tasks.

Figure 4.5: Flowchart of model inference

4.4.1 Reconstruction

No additional implementation is needed for this task, as it simply evaluates
the performance of the training objective of the model. To evaluate this task,
the test set is used to calculate the Mean Square Error between the original
and reconstructed samples. Additionally, the Mean Absolute Percentage
Error (MAPE) score is provided to give a more intuitive metric that describes
the mean error in percentages. While the best possible score is 0, the upper
limit is not restricted to 1. It is important to note that when the true values
are close to 0, the MAPE score can give arbitrarily high values, which should
be taken into consideration.

55

4.4.2 Clustering

Three different methods are utilised for the clustering task to examine whether
there is an underlying pattern in the latent space that works best with a
specific method. The three forms of clustering applied in the reported ex-
periments are:

• K-Means

• Spectral Clustering

• Gaussian Mixture Models

The first step in the evaluation process is to produce latent representa-
tions for the full test set, by using the encoders of the AE implementations.
Using this set of latent representations, the three clustering algorithms are
applied with increasing K values. To evaluate the resulting clusters, both
the Silhouette score and Calinski-Harabasz are calculated and demonstrate
how well the driving scenes are separated in the latent space. As described
in subsection 4.1, each driving scene is divided into 4 separate data samples
and used for calculating the triplet loss outlined in subsection 2.5.1. Thus,
the resulting latent space should reflect similarity in the real-world driving
scenes.

All three cluster algorithms and cluster evaluation methods are imple-
mented using the scikit-learn library [93] and are outlined in subsection 2.5.1.

4.4.3 Classification

The objective of this task is to classify two aspects: class labels that indicate
the type of driving scenario, and RiskScores, which measure the risk of a
driving scene. The purpose is to assess the amount of information that can
be obtained from the latent representation. The clustering task determines
to which degree the driving scenes are distinguishable in the latent space,
while this task evaluates the adaptability of the latent space to particular
tasks.

Class labels To assign class labels to the driving scenes based on their
latent representations, two methods were utilised: fine-tuned model and
GMM. The fine-tuned model, which was explained in subsection 2.5.2, in-
volves training a small ML model with two fully connected layers to classify
the samples. The model utilises the ReLU activation function and outputs
the probability for each class. CE loss is used to train the model, with
weights accounting for the class imbalance of the dataset. The latter ap-
proach combines GMMs with logistic regression. The fine-tuned model was
implemented using PyTorch [87], while the sci-kit [93] library was used for

56

the GMM method. Even though the fine-tuned model has the advantage
of requiring less labelled data, these experiments were conducted with the
same training and testing data as the reconstruction task to ensure adequate
results. Testing the fine-tuned model with less data would be part of any
future work, and is mentioned in section 6.3.

Risk score In this task, a fine-tuned model is utilised to assign a risk score
to each driving scene. As the risk scores are continuous values, the model
architecture for this differs slightly from the one used for label classification.
The model generates a single value, which is passed through a modified
sigmoid activation function to limit the output between -5 and 5. To train
the model, MSE loss is implemented.

The class distribution depicted in Figure 3.2 reveals that there are only
276 samples from classes 13 and 14, which include near misses. This suggests
an imbalance in the distribution of risk scores as well, which can affect the
ability of the model to accurately classify high-risk driving scenes.

Classification task metrics Accuracy is a common metric for classifica-
tion tasks and measures how often a label is correctly predicted. However,
for data sets with uneven class distributions, this metric does not adequately
measure performance. Therefore, precision and recall are often used. The
former measures the proportion of true positives among all predicted pos-
itives, while the latter measures the proportion of true positives among all
actual positives. Another option is the F1 score, which is the harmonic mean
of precision and recall. A form of visualisation that is often used, is the con-
fusion matrix, which shows the number of correctly and incorrectly predicted
samples for each class. The equations for each of the four metrics are shown
in the list of equations 4.3.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN

(4.3)

For continuous values, metrics such as MAPE and MAE can be used to
measure how close the predictions are on average.

57

Chapter 5

Experiments

The chapter consists of five sections. The first, section 5.1, describes the
results of the reconstruction task. Section 5.2 presents and analyses the
results of the clustering task. Section 5.3 describes the results of the classi-
fication task, using both a fine-tuned model and a GMM classifier. The last
one, section 5.4, summarises the results. By comparing the AE variations
in these tasks, the chapter addresses the research questions from section 1.2.

5.1 Reconstruction task

In this section, the results of the reconstruction task are presented and ana-
lysed. Although the primary focus of the research is not on the reconstruction
task, it is still important to assess how well the different implementations
can reconstruct the input data since the task is used to train the models.
Moreover, it allows for the examination of whether there is a correlation
between performance in this task and clustering or classification, which is
not always guaranteed. At the very least, the ability to decode an encoded
vector to reconstruct the original data sample demonstrates that the latent
representation contains extracted features.

For this task, the MSE between reconstructed and original data samples
is used for evaluation. However, as MSE does not provide a particularly
intuitive value for how close the predicted values are, MAPE is also included
as a metric. The MAPE values are given such that a score of 100 is equivalent
to 100%. Because of the way MAPE is calculated, it can output very large
values when the true values are close to zero. As this is the case for the VMS
data, where values are often zero, both the true and predicted values of the
VMS data are incremented by 1 to get a better estimate. These values are
shown for each model in Table 5.1.

To visualise the difference between the reconstructed and original Video
data, the first frame from a reconstructed video is included in Figure 5.1.
For comparison, the original frame is shown in Figure 5.2.

58

Table 5.1: MSE and MAPE for reconstruction task
Model Video MSE VMS MSE Video

MAPE
VMS
MAPE

Video AE 328824 N/A 2.439 N/A
Video VAE 321625 N/A 2.486 N/A
Video TVAE 354947 N/A 2.443 N/A
VMS VAE N/A 4516 N/A 1.030
VMS TVAE N/A 46738 N/A 1.461
MSVAE 341024 10403 2.616 1.124
MVAE 326049 47362 2.524 1.212
MTVAE 581364 57970 4.152 1.467

Figure 5.1: Reconstructed frame
by Video VAE

Figure 5.2: Frame from original
video

5.1.1 Analysis of Reconstruction Results

Judging by the MAPE values in Table 5.1, the reconstructed samples are
quite close to the original ones. The results demonstrate that all models are
capable of creating latent representations that can be decoded to reproduce
the input data. The models perform quite similarly, however, the VMS VAE
and the MTVAE stand out. The first model is the only one to significantly
outperform the others, with a MAPE score of 1.03%. The latter performs
considerably worse in reconstructing the video data. A possible explanation
for this is that the VMS TVAE performs poorly compared to the GRU-
based implementation, and thus affects the reconstruction of video data when
combined in the MTVAE architecture.

Although the MAPE scores present a promising mean difference in the
range of 1-4%, Figures 5.1 and 5.2 visualise this difference between the ori-
ginal and reconstructed video input better. The reconstructed image fails

59

to capture details and colours from the original input. It includes coarse
differences in lighting, but identifying objects in the reconstructed image is
quite difficult.

The reconstruction results of the HVAE model are not included, as the
model reconstructs a given latent representation. Thus, it does not make
sense to compare this to the other models.

5.2 Clustering

In this section, the latent spaces are assessed using three clustering al-
gorithms: K-Means, spectral clustering, and GMM clustering. However,
since all three methods yield similar results, this section focuses on the K-
Means method. The results obtained from the other two algorithms are
included in the appendix. The compactness and separation of the clusters
are evaluated using the silhouette and CH scores. Different K values ran-
ging from 2 to 14 are tested to determine the number of clusters that the
data samples can be grouped into. Up to 14 clusters are tested due to the
14 categories in the class labels. Due to the CH score not having an up-
per bound, there is a large variance in the scores. The CH plot in Figure
5.3 is therefore presented with a logarithmic y-axis. The silhouette score is
presented in Figure 5.4. To visualise the clusters, PCA has been applied to
present the latent space in a 3D plot, as shown in Figures 5.5 and 5.6. The
two figures illustrate the difference between the highest- and lowest-scoring
models in both the silhouette and CH scores.

As mentioned in subsection 2.5.1, K-Means is a hard algorithm, meaning
that repeating the experiment would yield the same results every time.

5.2.1 Analysis of Clustering Results

As explained in subsection 2.5.1 for the latter metric, 1 is the best value,
which indicates that the clusters are well separated. Values near 0 indicate
overlapping clusters. As a baseline for the clustering task, a silhouette score
of 0 can be used, as this would be the same as randomly assigning samples
to clusters. Also explained in subsection 2.5.1, the CH score measures the
variance of the clusters, and a higher score indicates more compact clusters.

All the models perform better than the baseline with 2 clusters, except
the HVAE model, which performs significantly worse than the other models
in both metrics. As the number of clusters increases, most of the models only
perform slightly better than the baseline. The VMS VAE, Video TVAE, and
the VMS TVAE outperform the other models for two clusters, with over 0.6
in silhouette score. As K increases, the VMS VAE and MTVAE perform
well, with a silhouette score of 0.34 for K = 4. The performance decreases
drastically as K increases past 2 clusters, which proves to be the highest
number of well-separated clusters.

60

Figure 5.3: Calinski-Harabasz scores for K-Means clusters

The axis values shown in Figures 5.5 and 5.6 demonstrate the difference in
the size of the latent spaces. Although this is the PCA reduced and not actual
latent spaces, it shows that the VMS VAE produces latent representations
that are more spread out.

5.3 Classification Task

This section describes experiments for classifying both class labels and risk
scores, using fine-tuned models and GMMs. The experiments are done to
examine how descriptive the latent representations are, and what type of
information can be extracted from it. As classifying the original 14 labels
can be a demanding task, the experiment is done using only three classes,
each with the same number of classes. Classification results for all 14 classes

61

Figure 5.4: Silhouette scores for K-Means clusters

can be found in the appendix in Table 7.1.
It is acceptable to use accuracy as an evaluation metric since the three

chosen classes have an equal number of samples. As all classes have equal
probability, random guessing would lead to an accuracy of 0.33, which is used
as a baseline. The results of both the fine-tuned and GMM label classification
are given in Table 5.2. The confusion matrix of the highest-scoring model is
shown in Figure 5.7.

For the risk score task, the MAPE score is used to evaluate each model.
Due to the actual risk scores being close to zero, the MAPE scores are quite
high. Therefore, the Mean Absolute Error is also included. Assigning a value
of zero for every driving scene results in a MAPE score of 100% and MAE
of 0.367. These values are used as a baseline, as this is the strategy that
provides the best score without making informed predictions. The results
are presented in Table 5.3.

62

Figure 5.5: VMS VAE clusters
after PCA, with K = 14

Figure 5.6: HVAE clusters after
PCA, with K = 2

Table 5.2: Fine-tuned model and GMM classification results for 3 classes

Model Fine-tuned GMM
F1 Accuracy F1 Accuracy

Video AE 0.332 0.369 0.292 0.300
Video VAE 0.220 0.34 0.334 0.342

Video TVAE 0.295 0.360 0.337 0.34
VMS VAE 0.340 0.343 0.166 0.293

VMS TVAE 0.325 0.328 0.175 0.311
MSVAE 0.345 0.351 0.309 0.341
MVAE 0.382 0.382 0.387 0.391

MTVAE 0.300 0.312 0.208 0.261
HVAE 0.298 0.301 0.388 0.400

5.3.1 Analysis of Classification Results

This subsection analyses and highlights the important results from the clas-
sification experiments.

GMM label classification The two models that achieve the highest
scores are the MVAE and HVAE, with 39.1% and 40% accuracy re-
spectively, which is higher than the baseline. The other models produce
accuracies around or below the baseline.

Repeating the GMM classification 100 times with the MVAE model
demonstrates a standard deviation of 0.05 for accuracy and 0.06 for the
F1 score. Thus, assuming all models have a similar standard deviation, the
only models that can be said to outperform the baseline with confidence is
the MVAE and MTVAE models.

63

Figure 5.7: Confusion matrix for HVAE with GMM classification

Fine-tuned label classification The MVAE achieves the highest score
in this experiment, with an accuracy of 38.2%. Again, most of the models
achieve an accuracy close to or below the baseline.

Because the training time of the fine-tuned models is significantly longer
than the GMMs, the experiment is only repeated 10 times, resulting in a
standard deviation of 0.023 and 0.029 for the accuracy and F1 score re-
spectively. The standard deviation was calculated using the MVAE model.
As sample sizes increase, standard deviations usually decrease, indicating
that the standard deviation of this task could be smaller. The results of
this experiment can then be considered more reliable than the results of the
GMM classification.

Fine-tuned risk score classification In the last classification task, as-
signing risk scores using a fine-tuned model, the VMS TVAE and Video
AE achieve the highest scores, with 0.383 and 0.413 MAE respectively.
All models produce quite large errors percentage-wise, as shown by the
MAPE scores in Table 5.3, none of which outperform the baseline. Due
to this, this experiment will not be considered as much as the others in the
final evaluation.

The poor performance in this task could stem from the utilised activation

64

Table 5.3: Risk prediction scores for fine-tuned models
Model MAPE MAE

Video AE 151 0.413
Video VAE 571 0.539

Video TVAE 1950 1.277
VMS VAE 6245 4.562

VMS TVAE 147 0.383
MSVAE 7560 5.013
MVAE 765 0.660

MTVAE 300 0.439
HVAE 405 0.495

function. The range of -5 to 5 of the modified sigmoid function might make
it difficult to accurately predict values close to 0, where a large portion of
the samples is located. Although there is some variance in the results of
this performance, no model consistently performs better than the baseline.
Because of the large variance in performance between different models, a
single measure of standard deviation does not accurately portray the variance
in each model.

5.4 Discussion

In this section the research questions from section 1.2 are discussed. Al-
though the results can be improved upon, they provide a satisfactory basis
for comparisons. The models perform better than the baseline in all tasks,
except for risk classification.

Research Question 1 The first research question asks how features can
be extracted from each modality using self-supervised methods. This thesis
examines the use of autoencoders for this task and compares the performance
of regular and variational AEs. The results are similar for the Video AE and
Video VAE across all tasks, making it difficult to draw any conclusions about
this. The usage of hierarchical VAEs is also studied, which showed promising
results in the label classification tasks, especially in predicting class labels
using GMMs. However, the clustering results of the HVAE are exceptionally
poor. Given the results in other tasks, this could indicate an error in the
clustering process. Both of the AE variations warrant further testing in any
future work.

The three Video Autoencoder implementations perform similarly in the
reconstruction and label classification tasks. In the clustering tasks, the
Video TVAE outperforms the other two, while for risk classification, it un-
derperforms compared to the other two. Given the generally poor results

65

in the risk classification task, it suggests that the transformer approach is
worth exploring further.

The two VMS Autoencoder variations achieve similar scores in the clas-
sification tasks. However, in the reconstruction and clustering tasks, the
GRU-based implementation significantly outperforms the other model, in-
dicating that using a transformer layer for the VMS data is not beneficial.

Research Question 2 The second research question asks how modalities
can be combined to enhance the performance of the single-modality com-
ponents. As stated in section 4.2, the three approaches to modality fusion
are high-level concatenation, high-level attention layer, and mid-level con-
catenation.

The first approach, high-level concatenation, performs slightly worse than
its components in the reconstruction task. For the clustering and fine-tuned
label classification tasks, the results are similar, and thus no significant im-
provement. In the GMM classification task, the results have improved. How-
ever, accounting for the high standard deviation of this task, the improve-
ment is not significant.

The second approach, which utilises the high-level attention layer, per-
forms well in both fine-tuned and GMM-based driving scenario classification,
compared to the single modality AEs. However, there is no significant im-
provement in the clustering task.

The last approach, mid-level concatenation, is the only fusion approach
that significantly increases the clustering results. Although not as notable
as the clustering task, the results for classifying risk scores also improve
utilising this method. In the other tasks, this approach does not increase the
performance.

Research Question 3 Lastly, the third research question asks whether
performance improves when modalities are combined. It depends on both
the fusion method and task, as each experiment provides various answers.
The most significant improvement can be seen in the clustering task for the
mid-level concatenation. The attention layer approach also improves results
in the classification tasks.

66

Chapter 6

Future Work

In this chapter future work is described. As the results of the experiments
described in chapter 5 indicate, improvements should be made to the model
implementations. Therefore, any future work should primarily involve such
improvements, as described in section 6.1. Given promising results from
this, adding other modalities to the framework is also of interest, as section
6.2 explains. Section 6.3 discusses the need for a validation set. Finally,
section 6.4 describes potential applications that are of interest for future
work.

6.1 Model improvements

The primary goal of any future work would be to improve the models for
the tasks already tested in this thesis. There are always improvements to be
made, and while optimisation is not the main objective of this thesis, there
are some improvements that could be worth testing in future research. Any
improvement of individual or multi-modal models would be a step towards
the original goal: producing a useful and generalised latent space using SSL.
It would also be easier to further evaluate the three research questions from
section 1.2 if performance improves.

Given the summary in section 5.4, some variants should be tested in fu-
ture work. As the GRU layer performed better than the transformer layer for
VMS data, a MTVAE variant with GRU layers should be tested. Similarly,
the modality fusion with attention layers demonstrated promising results.
Therefore, a model that utilises mid-level fusion with attention layers should
be evaluated.

6.1.1 Improvement of VMS Variational Autoencoder

After further research and understanding of the NEDO dataset and the type
of data it contains, there are some modifications to the VMS VAE model that

67

are interesting. It seems that there are data points in some feature sequences
that are missing. Currently, this is not explicitly handled. Those missing
data points are filled using interpolation in the data preparation stage, which
might not be the optimal solution. The Variational Autoencoder might allow
better reconstruction of the missing data samples, due to the method of
sampling a probable representation from a distribution. Thus, these missing
data samples would be masked in the data preparation stage, rather than
filled by interpolation or similar techniques.

In addition, it seems that many of the categorical variables represent
states that do not change throughout the driving scene. Other features
represent states that could change over time, but since the driving scene
only lasts around seven seconds, they seldom do change. The static features
could be separated and encoded in a different model in future work.

For increased performance, certain features could be highlighted. Al-
though it is preferred to avoid human bias in selecting and handling features,
some features such as the velocity and acceleration of the ego vehicle could
be processed differently. As Zhu et al. [83] do in their paper, the velocity
and acceleration can be Fourier1 transformed to obtain characterisations of
driver behaviour. This would be an interesting approach for any future work,
as it would allow the transformation of a 1-dimensional feature sequence to
a 2-dimensional vector. This can be layered on top of the video data for
low-level modality fusion. Any other approaches that enable low-level fusion
are also of interest for future work.

6.1.2 Loss Function

As explained in subsection 4.2.5, triplet loss is included as part of the loss
function used to train the models. This is done by splitting a driving scene
into four different sequences and using the mean Euclidian distance of these
to calculate the triplet loss. The intended effect of this is to ensure to some
degree that closeness in the latent space is translated to a similarity in the
driving scenes. However, the loss function can be improved in future work
by testing different measures of distance. Another improvement could be
to calculate the triplet loss with individual sequences, instead of the mean
of sequences from each driving scene. In addition to these improvements,
weighting the different components of the loss function would also be an
aspect worth testing. It is worth revisiting the loss function in any future
work, as it is the basis of shaping the latent space and the information it
contains.

1Fourier transform is the mathematical process of transferring a signal from one domain
to another.

68

6.1.3 Additional Self-Supervised Task

Another option for future work would be a structural change to the training
framework. By training an AE to encode and decode individual frames
and timesteps, the resulting latent representation would be a sequence of
extracted features. Another model, such as the CPC model briefly described
in section 2.4, can then be used to learn a representation of this sequence.
Other interesting approaches for future work include testing other forms of
sequence compression and compare to the current approach. As described in
section 4.2, the current approach is a simple one: flattening the sequential
vector and applying fully connected layers. Thus, this stage of the model
training has the potential for improvement in any future work.

6.1.4 Ensemble Learning

As the AEs are trained on the augmented dataset, the models expect the
sequence length of the inputs to be a certain length. For this reason, it is
difficult to make a single prediction for a whole driving scene. However, a
possible remedy for this is ensemble learning, which is the process of having
multiple models make predictions, and combining the outputs to enhance
accuracy. Sagi and Rokach [94] review different methods of ensemble learn-
ing. Taking inspiration from this, future work can combine the classification
for each sequence of a driving scene, and study whether this improves per-
formance.

6.2 Add Modalities

This thesis uses input from a colour camera sensor, in addition to a collec-
tion of vehicle sensors. In future work, adding other modalities would be
interesting to research. As described in section 2.2, depth sensors are com-
monly used in autonomous driving. Thus, after an adequate improvement to
the already implemented models, future work with a different dataset that
contains depth sensor outputs would be of interest.

6.3 Validation

Given adequate improvements in current tasks, future work should test the
framework on a larger dataset. This would allow the creation and usage of the
planned validation set, as mentioned in section 4.3. Future work should also
compare the proposed methods from this thesis with supervised methods, by
training a classifier with similar architecture as the encoder from each model
on labelled data. The classifiers and fine-tuned models should be trained on
a subset of the larger dataset. This would allow the evaluation of whether
the fine-tuned models perform better than supervised methods when labelled

69

data is limited, which is one of the main benefits of fine-tuning, as discussed
in section 1.1. Another benefit of utilising a larger dataset is that the size
of the models can be increased. The size of the current dataset limits the
optimal size of a model, but the complexity of the task of extracting features
from video and VMS data might require a larger model.

6.4 Applications

If the performance is improved in the reported tasks, other applications could
be worth exploring in future work.

6.4.1 Clustering applications

As mentioned in section 1.1, anomaly detection is a common application of
clusters. To do this, there must be anomalies in the dataset. Depending on
which type of anomaly is desirable to detect, there are several methods to do
this. If the goal is to detect corrupted data, this can be added to the dataset
by adding noise to individual samples, or occluding parts of the input data.

Another interesting path for future work is the real-time clustering of
new driving scenes. Given a previously collected dataset, which is divided
into clusters, live driving scenes can easily be grouped with similar scenes.
This would be a form of recognising and identifying what kind of driving
scenario the ego vehicle is in.

6.4.2 Classification Tasks

In this thesis, GMMs and fine-tuned models are used for classification tasks.
Other classification methods might perform better, such as random forest
classification [95] or the Support Vector Machine (SVM) model, which per-
forms well with non-linear data. Another approach to improve the classific-
ation experiments could be to perform feature selection of the latent repres-
entation. There is a possibility that not all latent features are needed for
certain tasks, such as classifying the risk of a scene. Approaches of interest
include recursive feature elimination and random forest importance.

The NEDO dataset also contains action tags, environment tags, and
scene descriptions. If model improvements lead to reasonable performances
in the fine-tuning tasks that are tested in this work, other fine-tuning tasks
can be tested in future research as well. Training a model to provide scene
descriptions would be a highly useful application, as it would be a step to-
wards explainable AI. This could augment the results of clustering and other
potential tasks by justifying decisions made by the model. Explainable AI is
the research field of making decisions made by AI models more transparent,
and therefore more trustworthy [96]. This is especially important in sectors
such as healthcare, finance, and autonomous driving.

70

Chapter 7

Conclusion

This thesis proposes methods that use self-supervised learning methods to
extract features from video and Vehicle Monitoring Sensor input. The ob-
jective is to represent the extracted features as latent representations, which
can be used for clustering and classification tasks. This method is applied
using a dataset containing real-world driving scenes. The research consists
of training several Machine Learning model variations, based on the Au-
toencoder structure. Although state-of-the-art performance is not achieved
in reconstructing the original video and vehicle monitoring sensor data, the
models perform adequately in this task. This demonstrates that the models
are trained correctly and can produce valid latent representations.

Finally, the model variations are evaluated by using produced latent rep-
resentations for clustering and classification tasks. The Vehicle Monitor-
ing Sensor VAE and the Multi-Modal Transformer Variational Autoencoder
models achieve a silhouette score of 0.34 for 4 clusters with the K-Means
algorithm. The best result for the classification tasks is achieved by the
Multi-Modal Variational Autoencoder model, with an accuracy of 38.2%
for 3 classes. These results reveal that the implementations presented in
this thesis are not sufficient for use in classification tasks, and should be
improved upon in future work. However, they also demonstrate that the
approach is better than random guessing, thus indicating that adjustments
can lead to enhanced performance. The clustering results show that the
Vehicle Monitoring Sensor VAE and Multi-Modal Transformer Variational
Autoencoder can produce latent representations that are sufficiently distinct
to be separated into four clusters.

In conclusion, the methods that provide the best results for research
question 1 are using transformers for video data, and GRU layers for VMS
data. For research question 2, the best approach proved to be mid-level
concatenation. However, mid-level fusion with attention layers could further
enhance the performance and should be tested in future work. Finally, for
research question 3, the experiments reveal that mid-level fusion significantly

71

improves results in the clustering task.

72

Appendix

Hardware

The reported experiments were conducted on a machine with these specific-
ations:

• CPU: AMD EPYC 7F72 24-Core

• GPU: NVIDIA RTX A6000

Software

These are the software specifications used for the reported experiments:

• OS Ubuntu 20.04.5 LTS

• Python 3.8.10

• torch 1.13.1

• torchvision 0.14.1

• numpy 1.24.2

• matplotlib 3.7.0

• pandas 1.5.3

• pickle-mixin 1.0.2

• seaborn 0.12.2

• Pillow 9.4.0

Code

The code used for the experiments of this thesis is available in this GitHub
repository:
https://github.com/andrseassundfjord/thesis/tree/main

73

Additional Results

This section includes additional results that are not significant to the main
objectives of this thesis.

Table 7.1: Fine-tuned model and GMM classification results for 14 classes

Model Fine-tuned GMM
F1 Accuracy F1 Accuracy

Video AE 0.0654 0.0877 0.0582 0.0722
Video VAE 0.0805 0.0864 0.0866 0.1145

Video TVAE 0.0508 0.0833 0.0636 0.0765
VMS VAE 0.0744 0.0793 0.0403 0.0633

VMS TVAE 0.0779 0.0873 0.0761 0.1145
MSVAE 0.0766 0.0815 0.0326 0.0383
MVAE 0.0895 0.0969 0.0592 0.0873

MTVAE 0.0833 0.0920 0.0663 0.0941
HVAE 0.0757 0.0852 0.0585 0.0685

Table 7.2: MAPE for reconstructed masked features in VMS data. NaN
values indicate a very large difference or a programming error.

Model MAPE
VMS VAE 1.774

VMS TVAE 1.853
MSVAE NaN
MVAE NaN

MTVAE NaN

74

Figure 7.1: Calinski-Harabasz scores for GMM clusters

Table 7.3: ARI and V Measure scores for K-Means cluster prediction of class
labels

Model ARI V Measure
Video AE 0.02611 0.07883
Video VAE 0.02996 0.08739

Video TVAE 0.01553 0.05726
VMS VAE 0.04926 0.13371

VMS TVAE 0.00181 0.01922
MSVAE 0.02718 0.07785
MVAE 0.02666 0.08183

MTVAE 0.01457 0.05499
HVAE -0.00014 0.01039

75

Figure 7.2: Silhouette scores for GMM clusters

76

Figure 7.3: Calinski-Harabasz scores for spectral clusters

77

Figure 7.4: Silhouette scores for spectral clusters

78

Bibliography

[1] Mohd. Hafiz Hasan and Pascal Van Hentenryck. ‘The benefits of autonom-
ous vehicles for community-based trip sharing’. In: Transportation Re-
search Part C: Emerging Technologies 124 (2021), p. 102929. issn:
0968-090X. doi: https : / / doi . org / 10 . 1016 / j . trc . 2020 . 102929. url:
https://www.sciencedirect.com/science/article/pii/S0968090X20308287.

[2] W David Montgomery. ‘Public and private benefits of autonomous
vehicles’. In: (2018).

[3] Simone Pettigrew, Zenobia Talati and Richard Norman. ‘The health
benefits of autonomous vehicles: Public awareness and receptivity in
Australia’. In: Australian and New Zealand journal of public health 42.5
(2018), pp. 480–483.

[4] John R Treat. ‘A study of precrash factors involved in traffic accidents.’
In: HSRI Research review (1980).

[5] John R Treat, Nicholas S Tumbas, Stephen T McDonald, David Shinar,
Rex D Hume, RE Mayer, RL Stansifer and N John Castellan. Tri-level
study of the causes of traffic accidents: final report. Executive summary.
Tech. rep. Indiana University, Bloomington, Institute for Research in
Public Safety, 1979.

[6] Fridulv Sagberg. ‘Road accidents caused by drivers falling asleep’. In:
Accident Analysis & Prevention 31.6 (1999), pp. 639–649. issn: 0001-
4575. doi: https : / / doi . org /10 .1016 /S0001 - 4575(99)00023 - 8. url:
https://www.sciencedirect.com/science/article/pii/S0001457599000238.

[7] Jeff K. Caird, Kate A. Johnston, Chelsea R. Willness, Mark Asbridge
and Piers Steel. ‘A meta-analysis of the effects of texting on driving’.
In: Accident Analysis & Prevention 71 (2014), pp. 311–318. issn: 0001-
4575. doi: https : / /doi .org /10 .1016 / j .aap.2014 .06 .005. url: https :
//www.sciencedirect.com/science/article/pii/S000145751400178X.

[8] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi and Tracey Oliver.
‘Autonomous vehicles: challenges, opportunities, and future implica-
tions for transportation policies’. In: Journal of modern transportation
24 (2016), pp. 284–303.

79

https://doi.org/https://doi.org/10.1016/j.trc.2020.102929
https://www.sciencedirect.com/science/article/pii/S0968090X20308287
https://doi.org/https://doi.org/10.1016/S0001-4575(99)00023-8
https://www.sciencedirect.com/science/article/pii/S0001457599000238
https://doi.org/https://doi.org/10.1016/j.aap.2014.06.005
https://www.sciencedirect.com/science/article/pii/S000145751400178X
https://www.sciencedirect.com/science/article/pii/S000145751400178X

[9] Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-
tuning for Text Classification. 2018. arXiv: 1801.06146 [cs.CL].

[10] Ryan Florin and Stephan Olariu. ‘Towards real-time density estimation
using vehicle-to-vehicle communications’. In: Transportation research
part B: methodological 138 (2020), pp. 435–456.

[11] Jian-Ru Xue, Jian-Wu Fang and Pu Zhang. ‘A survey of scene under-
standing by event reasoning in autonomous driving’. In: International
Journal of Automation and Computing 15.3 (2018), pp. 249–266.

[12] Vasili Ramanishka, Yi-Ting Chen, Teruhisa Misu and Kate Saenko.
Toward Driving Scene Understanding: A Dataset for Learning Driver
Behavior and Causal Reasoning. 2018. arXiv: 1811.02307 [cs.CV].

[13] Hongkuan Zhang, Koichi Takeda, Ryohei Sasano, Yusuke Adachi and
Kento Ohtani. ‘Driving behavior aware caption generation for ego-
centric driving videos using in-vehicle sensors’. In: 2021 IEEE Intel-
ligent Vehicles Symposium Workshops (IV Workshops). IEEE. 2021,
pp. 287–292.

[14] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein,
Claudius Glaeser, Fabian Timm, Werner Wiesbeck and Klaus Diet-
mayer. ‘Deep multi-modal object detection and semantic segmenta-
tion for autonomous driving: Datasets, methods, and challenges’. In:
IEEE Transactions on Intelligent Transportation Systems 22.3 (2020),
pp. 1341–1360.

[15] Esraa Khatab, Ahmed Onsy, Martin Varley and Ahmed Abouelfarag.
‘Vulnerable objects detection for autonomous driving: A review’. In:
Integration 78 (2021), pp. 36–48.

[16] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak,
Oliver Bringmann, Alexander S Ecker, Matthias Bethge and Wieland
Brendel. ‘Benchmarking robustness in object detection: Autonomous
driving when winter is coming’. In: arXiv preprint arXiv:1907.07484
(2019).

[17] Yingjie Niu, Ming Ding, Yuxiao Zhang, Kento Ohtani and Kazuya
Takeda. ‘Auditory and visual warning information generation of the
risk object in driving scenes based on weakly supervised learning’. In:
2022 IEEE Intelligent Vehicles Symposium (IV). 2022, pp. 1572–1577.
doi: 10.1109/IV51971.2022.9827382.

[18] Jessica Shea Choksey and Christian Wardlaw. Levels of Autonomous
Driving, Explained. https: / /www.jdpower.com/cars/shopping- guides/
levels-of-autonomous-driving-explained. Accessed: 2023-05-28.

80

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1811.02307
https://doi.org/10.1109/IV51971.2022.9827382
https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-explained
https://www.jdpower.com/cars/shopping-guides/levels-of-autonomous-driving-explained

[19] Pranav Dixit. Mercedes beats Tesla in self-driving, becomes first certi-
fied Level-3 autonomous car company in US. https://www.businesstoday.
in / technology / news / story / mercedes - beats - tesla - in - self - driving -
becomes - first - certified - level - 3 - autonomous - car - company - in - us -
367937-2023-01-28. Accessed: 2023-05-28.

[20] Gonzalo De La Torre, Paul Rad and Kim-Kwang Raymond Choo.
‘Driverless vehicle security: Challenges and future research opportun-
ities’. In: Future Generation Computer Systems 108 (2020), pp. 1092–
1111. issn: 0167-739X. doi: https : / / doi . org /10 .1016 / j . future .2017 .
12 . 041. url: https : / / www . sciencedirect . com / science / article / pii /
S0167739X17315066.

[21] Margarita Martínez-Díaz and Francesc Soriguera. ‘Autonomous vehicles:
theoretical and practical challenges’. In: Transportation Research Pro-
cedia 33 (2018). XIII Conference on Transport Engineering, CIT2018,
pp. 275–282. issn: 2352-1465. doi: https : / / doi . org /10 .1016 / j . trpro.
2018.10.103. url: https://www.sciencedirect.com/science/article/pii/
S2352146518302606.

[22] Luca Caltagirone, Mauro Bellone, Lennart Svensson and Mattias Wahde.
‘LIDAR–camera fusion for road detection using fully convolutional
neural networks’. In: Robotics and Autonomous Systems 111 (2019),
pp. 125–131.

[23] Feihu Zhang, Daniel Clarke and Alois Knoll. ‘Vehicle detection based
on LiDAR and camera fusion’. In: 17th International IEEE Conference
on Intelligent Transportation Systems (ITSC). IEEE. 2014, pp. 1620–
1625.

[24] Pål Primstad. ‘A Thermal and RGB feature extraction system for use
in autonomous navigation’. MA thesis. 2020.

[25] Dudi Nassi, Raz Ben-Netanel, Yuval Elovici and Ben Nassi. MobilBye:
Attacking ADAS with Camera Spoofing. 2019. arXiv: 1906.09765 [cs.CR].

[26] Farzan Majeed Noori, Michael Riegler, Md Zia Uddin and Jim Tor-
resen. ‘Human Activity Recognition from Multiple Sensors Data Using
Multi-Fusion Representations and CNNs’. In: ACM Trans. Multime-
dia Comput. Commun. Appl. 16.2 (May 2020). issn: 1551-6857. doi:
10.1145/3377882. url: https://doi.org/10.1145/3377882.

[27] David Bordvik, Jie Hou, Farzan Majeed Noori, Md. Zia Uddin and
Jim Torresen. ‘Monitoring In-Home Emergency Situation and Preserve
Privacy using Multi-modal Sensing and Deep Learning’. In: Feb. 2022,
pp. 1–6. doi: 10.1109/ICEIC54506.2022.9748829.

81

https://www.businesstoday.in/technology/news/story/mercedes-beats-tesla-in-self-driving-becomes-first-certified-level-3-autonomous-car-company-in-us-367937-2023-01-28
https://www.businesstoday.in/technology/news/story/mercedes-beats-tesla-in-self-driving-becomes-first-certified-level-3-autonomous-car-company-in-us-367937-2023-01-28
https://www.businesstoday.in/technology/news/story/mercedes-beats-tesla-in-self-driving-becomes-first-certified-level-3-autonomous-car-company-in-us-367937-2023-01-28
https://www.businesstoday.in/technology/news/story/mercedes-beats-tesla-in-self-driving-becomes-first-certified-level-3-autonomous-car-company-in-us-367937-2023-01-28
https://doi.org/https://doi.org/10.1016/j.future.2017.12.041
https://doi.org/https://doi.org/10.1016/j.future.2017.12.041
https://www.sciencedirect.com/science/article/pii/S0167739X17315066
https://www.sciencedirect.com/science/article/pii/S0167739X17315066
https://doi.org/https://doi.org/10.1016/j.trpro.2018.10.103
https://doi.org/https://doi.org/10.1016/j.trpro.2018.10.103
https://www.sciencedirect.com/science/article/pii/S2352146518302606
https://www.sciencedirect.com/science/article/pii/S2352146518302606
https://arxiv.org/abs/1906.09765
https://doi.org/10.1145/3377882
https://doi.org/10.1145/3377882
https://doi.org/10.1109/ICEIC54506.2022.9748829

[28] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry and Joseph
Walsh. ‘Sensor and Sensor Fusion Technology in Autonomous Vehicles:
A Review’. In: Sensors 21.6 (2021). issn: 1424-8220. doi: 10.3390/
s21062140. url: https://www.mdpi.com/1424-8220/21/6/2140.

[29] Mani Kumar Tellamekala, Shahin Amiriparian, Björn W. Schuller,
Elisabeth André, Timo Giesbrecht and Michel Valstar. COLD Fusion:
Calibrated and Ordinal Latent Distribution Fusion for Uncertainty-
Aware Multimodal Emotion Recognition. 2022. arXiv: 2206.05833 [cs.CV].

[30] Jelena Kocić, Nenad Jovičić and Vujo Drndarević. ‘Sensors and Sensor
Fusion in Autonomous Vehicles’. In: 2018 26th Telecommunications
Forum (TELFOR). 2018, pp. 420–425. doi: 10.1109/TELFOR.2018.
8612054.

[31] Giulia Rizzoli, Francesco Barbato and Pietro Zanuttigh. ‘Multimodal
Semantic Segmentation in Autonomous Driving: A Review of Current
Approaches and Future Perspectives’. In: Technologies 10.4 (2022).
issn: 2227-7080. doi: 10 . 3390 / technologies10040090. url: https : / /
www.mdpi.com/2227-7080/10/4/90.

[32] Chen Fu, Christoph Mertz and John M Dolan. ‘Lidar and monocu-
lar camera fusion: On-road depth completion for autonomous driving’.
In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE. 2019, pp. 273–278.

[33] Hongbo Gao, Bo Cheng, Jianqiang Wang, Keqiang Li, Jianhui Zhao
and Deyi Li. ‘Object classification using CNN-based fusion of vision
and LIDAR in autonomous vehicle environment’. In: IEEE Transac-
tions on Industrial Informatics 14.9 (2018), pp. 4224–4231.

[34] Kinjal Dasgupta, Arindam Das, Sudip Das, Ujjwal Bhattacharya and
Senthil Yogamani. ‘Spatio-Contextual Deep Network-Based Multimodal
Pedestrian Detection for Autonomous Driving’. In: IEEE Transactions
on Intelligent Transportation Systems 23.9 (2022), pp. 15940–15950.
doi: 10.1109/TITS.2022.3146575.

[35] Ravi Yadav, Ahmed Samir, Hazem Rashed, Senthil Yogamani and
Rozenn Dahyot. ‘Cnn based color and thermal image fusion for object
detection in automated driving’. In: Irish Machine Vision and Image
Processing (2020).

[36] Zhiyu Huang, Chen Lv, Yang Xing and Jingda Wu. ‘Multi-Modal
Sensor Fusion-Based Deep Neural Network for End-to-End Autonom-
ous Driving With Scene Understanding’. In: IEEE Sensors Journal
21.10 (May 2021), pp. 11781–11790. doi: 10.1109/jsen.2020.3003121.
url: https://doi.org/10.1109%5C%2Fjsen.2020.3003121.

[37] Arc. Convolutional Neural Network. https://towardsdatascience.com/
convolutional-neural-network-17fb77e76c05. Accessed: 2023-06-05.

82

https://doi.org/10.3390/s21062140
https://doi.org/10.3390/s21062140
https://www.mdpi.com/1424-8220/21/6/2140
https://arxiv.org/abs/2206.05833
https://doi.org/10.1109/TELFOR.2018.8612054
https://doi.org/10.1109/TELFOR.2018.8612054
https://doi.org/10.3390/technologies10040090
https://www.mdpi.com/2227-7080/10/4/90
https://www.mdpi.com/2227-7080/10/4/90
https://doi.org/10.1109/TITS.2022.3146575
https://doi.org/10.1109/jsen.2020.3003121
https://doi.org/10.1109%5C%2Fjsen.2020.3003121
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05

[38] Paul-Louis Pröve. An Introduction to different Types of Convolutions
in Deep Learning. https://towardsdatascience.com/types-of-convolutions-
in-deep-learning-717013397f4d. Accessed: 2023-06-05.

[39] Giuliano Giacaglia. How Transformers Work. https://towardsdatascience.
com/transformers-141e32e69591. Accessed: 2023-06-05.

[40] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk and Yoshua Bengio. Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

[41] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long short-term memory’.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[42] Shudong Yang, Xueying Yu and Ying Zhou. ‘LSTM and GRU Neural
Network Performance Comparison Study: Taking Yelp Review Dataset
as an Example’. In: 2020 International Workshop on Electronic Com-
munication and Artificial Intelligence (IWECAI). 2020, pp. 98–101.
doi: 10.1109/IWECAI50956.2020.00027.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser and Illia Polosukhin. ‘Atten-
tion is All you Need’. In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan and R. Garnett. Vol. 30. Curran Associates,
Inc., 2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[44] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi
Inaguma, Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin,
Ryuichi Yamamoto, Xiaofei Wang et al. ‘A comparative study on
transformer vs rnn in speech applications’. In: 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE. 2019,
pp. 449–456.

[45] Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai,
Mengchen Liu, Yu-Gang Jiang, Luowei Zhou and Lu Yuan. ‘BEVT:
BERT Pretraining of Video Transformers’. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
June 2022, pp. 14733–14743.

[46] Javier Selva, Anders S. Johansen, Sergio Escalera, Kamal Nasrollahi,
Thomas B. Moeslund and Albert Clapés. ‘Video Transformers: A Sur-
vey’. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2023), pp. 1–20. doi: 10.1109/TPAMI.2023.3243465.

83

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/transformers-141e32e69591
https://towardsdatascience.com/transformers-141e32e69591
https://arxiv.org/abs/1406.1078
https://doi.org/10.1109/IWECAI50956.2020.00027
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/TPAMI.2023.3243465

[47] Shamane Siriwardhana, Tharindu Kaluarachchi, Mark Billinghurst and
Suranga Nanayakkara. ‘Multimodal Emotion Recognition With Transformer-
Based Self Supervised Feature Fusion’. In: IEEE Access 8 (2020),
pp. 176274–176285. doi: 10.1109/ACCESS.2020.3026823.

[48] Ransaka Ravihara. Gaussian Mixture Model Clearly Explained. http :
//jalammar.github.io/illustrated-transformer/. Accessed: 2023-06-05.

[49] Seunghyoung Ryu, Hyungeun Choi, Hyoseop Lee and Hongseok Kim.
‘Convolutional Autoencoder Based Feature Extraction and Clustering
for Customer Load Analysis’. In: IEEE Transactions on Power Systems
35.2 (2020), pp. 1048–1060. doi: 10.1109/TPWRS.2019.2936293.

[50] Yongshan Zhang, Yang Wang, Xiaohong Chen, Xinwei Jiang and Yicong
Zhou. ‘Spectral–Spatial Feature Extraction With Dual Graph Autoen-
coder for Hyperspectral Image Clustering’. In: IEEE Transactions on
Circuits and Systems for Video Technology 32.12 (2022), pp. 8500–
8511. doi: 10.1109/TCSVT.2022.3196679.

[51] Chunyong Yin, Sun Zhang, Jin Wang and Neal N. Xiong. ‘Anomaly De-
tection Based on Convolutional Recurrent Autoencoder for IoT Time
Series’. In: IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems 52.1 (2022), pp. 112–122. doi: 10.1109/TSMC.2020.2968516.

[52] Aaron van den Oord, Yazhe Li and Oriol Vinyals. ‘Representation
learning with contrastive predictive coding’. In: arXiv preprint arXiv:1807.03748
(2018).

[53] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi
Wang, Yali Wang and Yu Qiao. VideoMAE V2: Scaling Video Masked
Autoencoders with Dual Masking. 2023. arXiv: 2303.16727 [cs.CV].

[54] Arden Dertat. Applied Deep Learning - Part 3: Autoencoders. https:
//towardsdatascience.com/applied-deep-learning-part-3-autoencoders-
1c083af4d798. Accessed: 2023-06-05.

[55] QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang and
Di He. ‘Denoising Masked Autoencoders Help Robust Classification’.
In: The Eleventh International Conference on Learning Representa-
tions. 2023. url: https://openreview.net/forum?id=zDjtZZBZtqK.

[56] Jinxin Zhao, Jin Fang, Zhixian Ye and Liangjun Zhang. Large Scale
Autonomous Driving Scenarios Clustering with Self-supervised Feature
Extraction. 2021. arXiv: 2103.16101 [cs.CV].

[57] Wangyang Wei, Honghai Wu and Huadong Ma. ‘An AutoEncoder
and LSTM-Based Traffic Flow Prediction Method’. In: Sensors 19.13
(2019). issn: 1424-8220. doi: 10.3390/s19132946. url: https://www.
mdpi.com/1424-8220/19/13/2946.

84

https://doi.org/10.1109/ACCESS.2020.3026823
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://doi.org/10.1109/TPWRS.2019.2936293
https://doi.org/10.1109/TCSVT.2022.3196679
https://doi.org/10.1109/TSMC.2020.2968516
https://arxiv.org/abs/2303.16727
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://openreview.net/forum?id=zDjtZZBZtqK
https://arxiv.org/abs/2103.16101
https://doi.org/10.3390/s19132946
https://www.mdpi.com/1424-8220/19/13/2946
https://www.mdpi.com/1424-8220/19/13/2946

[58] Abhyuday Desai, Cynthia Freeman, Zuhui Wang and Ian Beaver. TimeVAE:
A Variational Auto-Encoder for Multivariate Time Series Generation.
2021. arXiv: 2111.08095 [cs.LG].

[59] Xiulan Yu, Hongyu Li, Zufan Zhang and Chenquan Gan. ‘The Optim-
ally Designed Variational Autoencoder Networks for Clustering and
Recovery of Incomplete Multimedia Data’. In: Sensors 19.4 (2019).
issn: 1424-8220. doi: 10.3390/s19040809. url: https://www.mdpi.com/
1424-8220/19/4/809.

[60] Robin Karlsson, Alexander Carballo, Keisuke Fujii, Kento Ohtani and
Kazuya Takeda. Predictive World Models from Real-World Partial Ob-
servations. 2023. arXiv: 2301.04783 [cs.CV].

[61] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee
and Andrew Y Ng. ‘Multimodal deep learning’. In: Proceedings of the
28th international conference on machine learning (ICML-11). 2011,
pp. 689–696.

[62] Dhruv Khattar, Jaipal Singh Goud, Manish Gupta and Vasudeva Varma.
‘Mvae: Multimodal variational autoencoder for fake news detection’.
In: The world wide web conference. 2019, pp. 2915–2921.

[63] Kyle Sama, Yoichi Morales, Hailong Liu, Naoki Akai, Alexander Car-
ballo, Eijiro Takeuchi and Kazuya Takeda. ‘Extracting human-like
driving behaviors from expert driver data using deep learning’. In:
IEEE transactions on vehicular technology 69.9 (2020), pp. 9315–9329.

[64] Eva Patel and Dharmender Singh Kushwaha. ‘Clustering Cloud Work-
loads: K-Means vs Gaussian Mixture Model’. In: Procedia Computer
Science 171 (2020). Third International Conference on Computing
and Network Communications (CoCoNet’19), pp. 158–167. issn: 1877-
0509. doi: https:/ /doi.org/10.1016/j .procs.2020.04.017. url: https:
//www.sciencedirect.com/science/article/pii/S1877050920309820.

[65] Paul D. McNicholas. ‘Model-based classification using latent Gaus-
sian mixture models’. In: Journal of Statistical Planning and Inference
140.5 (2010), pp. 1175–1181. issn: 0378-3758. doi: https://doi.org/10.
1016/j.jspi.2009.11.006. url: https://www.sciencedirect.com/science/
article/pii/S0378375809003607.

[66] Jay Alammar. The Illustrated Transformer. https://towardsdatascience.
com / gaussian - mixture - model - clearly - explained - 115010f7d4cf. Ac-
cessed: 2023-06-05.

[67] S. Charles Brubaker. Proceedings of the 2009 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). Ed. by Claire Mathieu. Phil-
adelphia, PA: Society for Industrial and Applied Mathematics, 2009.
doi: 10.1137/1.9781611973068. eprint: https://epubs.siam.org/doi/pdf/

85

https://arxiv.org/abs/2111.08095
https://doi.org/10.3390/s19040809
https://www.mdpi.com/1424-8220/19/4/809
https://www.mdpi.com/1424-8220/19/4/809
https://arxiv.org/abs/2301.04783
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.017
https://www.sciencedirect.com/science/article/pii/S1877050920309820
https://www.sciencedirect.com/science/article/pii/S1877050920309820
https://doi.org/https://doi.org/10.1016/j.jspi.2009.11.006
https://doi.org/https://doi.org/10.1016/j.jspi.2009.11.006
https://www.sciencedirect.com/science/article/pii/S0378375809003607
https://www.sciencedirect.com/science/article/pii/S0378375809003607
https://towardsdatascience.com/gaussian-mixture-model-clearly-explained-115010f7d4cf
https://towardsdatascience.com/gaussian-mixture-model-clearly-explained-115010f7d4cf
https://doi.org/10.1137/1.9781611973068
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068

10.1137/1.9781611973068. url: https://epubs.siam.org/doi/abs/10.
1137/1.9781611973068.

[68] R. Hadsell, S. Chopra and Y. LeCun. ‘Dimensionality Reduction by
Learning an Invariant Mapping’. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06).
Vol. 2. 2006, pp. 1735–1742. doi: 10.1109/CVPR.2006.100.

[69] Florian Schroff, Dmitry Kalenichenko and James Philbin. ‘FaceNet: A
unified embedding for face recognition and clustering’. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2015. doi: 10 . 1109 / cvpr . 2015 . 7298682. url: https : / /
doi.org/10.1109%5C%2Fcvpr.2015.7298682.

[70] Xingping Dong and Jianbing Shen. ‘Triplet Loss in Siamese Network
for Object Tracking’. In: Proceedings of the European Conference on
Computer Vision (ECCV). Sept. 2018.

[71] Sahil Sharma and Vijay Kumar. ‘3D landmark-based face restoration
for recognition using variational autoencoder and triplet loss’. In: IET
Biometrics 10.1 (2021), pp. 87–98.

[72] Kaiwei Zeng, Munan Ning, Yaohua Wang and Yang Guo. ‘Hierarchical
clustering with hard-batch triplet loss for person re-identification’. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 13657–13665.

[73] Yuanjie Yan, Hongyan Hao, Baile Xu, Jian Zhao and Furao Shen.
‘Image clustering via deep embedded dimensionality reduction and
probability-based triplet loss’. In: IEEE Transactions on Image Pro-
cessing 29 (2020), pp. 5652–5661.

[74] Şaban Öztürk and Tolga Çukur. ‘Deep clustering via center-oriented
margin free-triplet loss for skin lesion detection in highly imbalanced
datasets’. In: IEEE Journal of Biomedical and Health Informatics 26.9
(2022), pp. 4679–4690.

[75] Jinbo Li, Hesam Izakian, Witold Pedrycz and Iqbal Jamal. ‘Clustering-
based anomaly detection in multivariate time series data’. In: Applied
Soft Computing 100 (2021), p. 106919. issn: 1568-4946. doi: https :
//doi.org/10.1016/j.asoc.2020.106919. url: https://www.sciencedirect.
com/science/article/pii/S1568494620308577.

[76] Yuqi Ouyang and Victor Sanchez. ‘Video Anomaly Detection by Es-
timating Likelihood of Representations’. In: 2020 25th International
Conference on Pattern Recognition (ICPR). 2021, pp. 8984–8991. doi:
10.1109/ICPR48806.2021.9412694.

86

https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109%5C%2Fcvpr.2015.7298682
https://doi.org/10.1109%5C%2Fcvpr.2015.7298682
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106919
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106919
https://www.sciencedirect.com/science/article/pii/S1568494620308577
https://www.sciencedirect.com/science/article/pii/S1568494620308577
https://doi.org/10.1109/ICPR48806.2021.9412694

[77] Neelum Noreen, Sellapan Palaniappan, Abdul Qayyum, Iftikhar Ahmad
and Madini O Alassafi. ‘Brain Tumor Classification Based on Fine-
Tuned Models and the Ensemble Method.’ In: Computers, Materials
& Continua 67.3 (2021).

[78] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[79] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,
Hengshu Zhu, Hui Xiong and Qing He. ‘A Comprehensive Survey on
Transfer Learning’. In: Proceedings of the IEEE 109.1 (2021), pp. 43–
76. doi: 10.1109/JPROC.2020.3004555.

[80] Rensis Likert, Sydney Roslow and Gardner Murphy. ‘A Simple and
Reliable Method of Scoring the Thurstone Attitude Scales’. In: The
Journal of Social Psychology 5.2 (1934), pp. 228–238. doi: 10.1080/
00224545.1934.9919450. eprint: https: / /doi .org/10.1080/00224545.
1934.9919450. url: https://doi.org/10.1080/00224545.1934.9919450.

[81] Jing Wang, ZhongCheng Wu, Fang Li and Jun Zhang. ‘A Data Aug-
mentation Approach to Distracted Driving Detection’. In: Future In-
ternet 13.1 (2021). issn: 1999-5903. doi: 10.3390 /fi13010001. url:
https://www.mdpi.com/1999-5903/13/1/1.

[82] Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyoon Han and
Jinhyung Kim. VideoMix: Rethinking Data Augmentation for Video
Classification. 2020. arXiv: 2012.03457 [cs.CV].

[83] Shengxue Zhu, Chongyi Li, Kexin Fang, Yichuan Peng, Yuming Ji-
ang and Yajie Zou. ‘An Optimized Algorithm for Dangerous Driving
Behavior Identification Based on Unbalanced Data’. In: Electronics
11.10 (2022). issn: 2079-9292. doi: 10.3390/electronics11101557. url:
https://www.mdpi.com/2079-9292/11/10/1557.

[84] Mwamba Kasongo Dahouda and Inwhee Joe. ‘A deep-learned embed-
ding technique for categorical features encoding’. In: IEEE Access 9
(2021), pp. 114381–114391.

[85] Cheng Guo and Felix Berkhahn. ‘Entity embeddings of categorical vari-
ables’. In: arXiv preprint arXiv:1604.06737 (2016).

[86] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recogni-
tion. Elsevier, 2006.

[87] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai and Soumith Chintala. PyTorch: An Im-

87

https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1080/00224545.1934.9919450
https://doi.org/10.1080/00224545.1934.9919450
https://doi.org/10.1080/00224545.1934.9919450
https://doi.org/10.1080/00224545.1934.9919450
https://doi.org/10.1080/00224545.1934.9919450
https://doi.org/10.3390/fi13010001
https://www.mdpi.com/1999-5903/13/1/1
https://arxiv.org/abs/2012.03457
https://doi.org/10.3390/electronics11101557
https://www.mdpi.com/2079-9292/11/10/1557

perative Style, High-Performance Deep Learning Library. 2019. arXiv:
1912.01703 [cs.LG].

[88] Ibrahem Kandel and Mauro Castelli. ‘The effect of batch size on the
generalizability of the convolutional neural networks on a histopath-
ology dataset’. In: ICT Express 6.4 (2020), pp. 312–315. issn: 2405-
9595. doi: https : / / doi .org /10 .1016 / j . icte .2020 .04 .010. url: https :
//www.sciencedirect.com/science/article/pii/S2405959519303455.

[89] Yoshua Bengio. ‘Practical recommendations for gradient-based train-
ing of deep architectures’. In: Neural Networks: Tricks of the Trade:
Second Edition (2012), pp. 437–478.

[90] Yoshua Bengio. ‘Practical recommendations for gradient-based train-
ing of deep architectures’. In: CoRR abs/1206.5533 (2012). arXiv:
1206.5533. url: http://arxiv.org/abs/1206.5533.

[91] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[92] Robin M. Schmidt, Frank Schneider and Philipp Hennig. Descending
through a Crowded Valley - Benchmarking Deep Learning Optimizers.
2021. arXiv: 2007.01547 [cs.LG].

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duch-
esnay. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830.

[94] Omer Sagi and Lior Rokach. ‘Ensemble learning: A survey’. In: Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4
(2018), e1249.

[95] Friedrich Kruber, Jonas Wurst, Eduardo Sánchez Morales, Samarjit
Chakraborty and Michael Botsch. ‘Unsupervised and Supervised Learn-
ing with the Random Forest Algorithm for Traffic Scenario Cluster-
ing and Classification’. In: 2019 IEEE Intelligent Vehicles Symposium
(IV). 2019, pp. 2463–2470. doi: 10.1109/IVS.2019.8813994.

[96] Filip Karlo Došilović, Mario Brčić and Nikica Hlupić. ‘Explainable ar-
tificial intelligence: A survey’. In: 2018 41st International Convention
on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO). 2018, pp. 0210–0215. doi: 10.23919/MIPRO.
2018.8400040.

88

https://arxiv.org/abs/1912.01703
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2007.01547
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.23919/MIPRO.2018.8400040

	Introduction
	Motivation
	Research Questions
	Scope and Limitation
	Contributions
	Thesis Structure

	Background
	Current State of Autonomous Driving
	Sensors Used in Autonomous Driving
	Sensor Fusion

	Artificial Neural Networks
	Spatial Data Models
	Sequential Data Models

	Self-Supervised Feature Extraction
	Autoencoders

	Evaluation of Extracted Features
	Clustering
	Supervised Evaluation Methods

	Dataset
	Classes and Annotation
	Annotation Process
	Imbalanced Class Distribution

	Vehicle Monitoring Sensor Data
	Selecting Features
	Sample rates
	VMS Data Pre-Processing

	Video Data

	Feature Extraction and Evaluation
	Data Augmentation
	Model Architectures
	Video Autoencoders
	Vehicle Monitoring Autoencoder
	Multi-modal Autoencoders
	Hierarchical Variational Autoencoder
	Loss functions

	Model Training
	Evaluation
	Reconstruction
	Clustering
	Classification

	Experiments
	Reconstruction task
	Analysis of Reconstruction Results

	Clustering
	Analysis of Clustering Results

	Classification Task
	Analysis of Classification Results

	Discussion

	Future Work
	Model improvements
	Improvement of VMS Variational Autoencoder
	Loss Function
	Additional Self-Supervised Task
	Ensemble Learning

	Add Modalities
	Validation
	Applications
	Clustering applications
	Classification Tasks

	Conclusion

