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ABSTRACT
Neural networks have been found suitable for virtual analog mod-
eling applications. Several analog audio effects have been success-
fully modeled with deep learning techniques, using low-latency
and conditioned architectures suitable for real-world applications.
Challenges remain with effects presenting more complex responses,
such as nonlinear and time-varying input-output relationships. This
paper proposes a deep-learning model for the analog compression
effect. The architecture we introduce is fully conditioned by the
device control parameters and it works on small audio segments,
allowing low-latency real-time implementations. The architecture
is used to model the CL 1B analog optical compressor, showing an
overall high accuracy and ability to capture the different attack and
release compression profiles. The proposed architecture’ ability to
model audio compression behaviors is also verified using datasets
from other compressors. Limitations remain with heavy compres-
sion scenarios determined by the conditioning parameters.

1. INTRODUCTION

The unique timbre and sound coloring provided by analog circuits
and their nonlinearities are still appealing to musicians and sound
engineers. The digital emulation of vintage analog musical instru-
ments and audio effects, known as Virtual Analog (VA), has been
an active field of research and development for several years [1].
To date, a variety of digital emulations of audio analog devices
have been introduced [2]. Recently artificial neural networks have
been successfully employed also for VA audio effects [3, 4]. In
particular, nonlinear distortion circuits [5, 6, 7] have been accu-
rately modeled using architectures based on Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN). Models
suitable for real-world applications (i.e., low-latency and real-time
computation) have also been proposed [8, 9, 10]. Challenges re-
main for nonlinear time-varying audio effects, where the state-of-
the-art employs models requiring long audio segments and large
networks [11], which are detrimental for latency and real-time
computation. This work further investigates time-varying effects,
in particular dynamic range compression. Audio compression is a
nonlinear effect that reduces the dynamic range of the input sig-
nal by a given amount when this exceeds a given threshold [12].
Compression is usually applied to reduce the dynamic range of
the signal. The gain reduction is time-varying according to vari-
able attack and release times. In an early attempt to model an
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analog compressor/leveling amplifier [13], an artificial neural net-
work, based on fully-connected layers, predicts the STFT of the
compressed signal. The model, in this case, is large and works
with long segments of the input signal. State-of-the-art modeling
of audio compression is based on Temporal Convolutional Net-
works (TCN), which have been adapted to model analog compres-
sion [14], allowing real-time computation. However, input-output
latency is still high because the model requires a long input seg-
ment (⇠1.5 seconds) to compute a segment of output accordingly
to the receptive field of the network. Specifically, the lower bound
latency is equal to the size of the receptive field, which in this case
is between 101 and 1008 ms. Both works aimed at modeling the
TELETRONIX LA-2A leveling amplifier with only two condition-
ing parameters: a binary switch to choose between the limit and
compression modes and the peak reduction. Lastly, a gray-box
model for the same device is presented in [15], where RNN and
Multi-Layer Perceptron (MLP) networks are used in combination
with traditional signal processing techniques. In particular, MLP
is used to predict the parameters of the static compression curve
based on the conditioning information, while RNN predicts the
time parameters for the filters controlling the attack and release
times. This model emulates only the compression mode (i.e., the
switch parameter is fixed) and includes the peak reduction param-
eter as conditioning.

In our previous work, we focused on dynamic range compres-
sion as well but modeling another analog compressor device [16].
We investigated the use of Encoder-Decoder (ED) Long Short
Term Memory (LSTM) based architectures to learn a static tem-
poral profile of the TUBE-TECH CL 1B opto compressor (i.e.,
fixed attack and release time) conditioned to two control parame-
ters: compression ratio and threshold. The architectures we used
are relatively small with respect to network size and length of in-
put segment, allowing low-latency real-time implementations of
the model. Here we present improvements to the previously pro-
posed architecture, and we use it for fully-conditioned modeling
of the CL 1B, including variable attack and release time. Gener-
ally, LSTMs, when taken alone, struggle to learn long temporal
dependencies, while CNNs require long receptive fields to model
them. We show how combining LSTM and CNN in an ED ar-
chitecture improves the modeling accuracy, enabling learning var-
ious compression amounts and temporal profiles given by differ-
ent combinations of threshold, ratio, attack, and release values.
The ED architecture can provide similar accuracy using networks
with a relatively small number of parameters and a small input
size compared to TCN-based works. The output gain parameter of
CL 1B, and of other compressors as well, is excluded from con-
ditioning because it controls an independent amplification stage
applied after the compression, which is not influencing the com-
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pression process. In analog compressor devices, the output gain
can add characteristic harmonic distortion after the compression
stage, but modeling distortion circuits is beyond the scope of this
work. Such circuits can be modeled separately from existing tech-
niques [8]. In addition, [13] showed that a single architecture can
model compressors with different characteristics; thus we evaluate
the proposed ED models with a set of heterogeneous compressors.
The rest of the paper is organized as follows. Sec. 2 presents the
various compressors used in this study and the associated datasets.
Section 3 details the proposed architecture. An overview of the ex-
periments carried out to validate the architecture is in Sec. 4, while
the results are presented in Sec. 5. Sec. 6 concludes the paper.

2. DATASETS

In this section, we describe the various compressor datasets we use
to train and test our models. Using multiple datasets collected from
devices with different characteristics allows for verifying whether
the proposed deep learning architecture can model audio compres-
sors in general rather than only a specific unit.

2.1. CL 1B Compressor

The CL 1B1 is an analog optical compressor manufactured by
TUBE-TECH. In optical compression, a lighting-emitting element
is fed with the audio signal, and this illuminates a light-sensitive
resistor, also known as a photocell. The amplitude of the input sig-
nal determines the brightness of the element that, in turn, changes
the resistance in the gain attenuation circuit. This device presents
five variable control parameters: ratio, threshold, attack, release
times, and output gain. We have built the CL 1B dataset2 by
recording data directly from the device as described in [16]. For
this study, we have extended the dataset to include variable ra-
tio, threshold, attack, and release time, but for each combination
of the control parameters, we have limited the audio recording to
210 seconds. The output gain is fixed to 0 dB. Input signals in-
clude frequency sweeps (ranging from 20 Hz to 20 kHz), white
noises with increasing amplitude (linear and logarithmic ramp),
guitar, bass, and drums recordings (loop and single notes), and vo-
cals. The output signal was recorded for 5 different values of each
of the four parameters (equally spaced within the selected range),
resulting in 625 combinations, which corresponds to a dataset of
⇠ 36 hours recorded at 48 kHz. Threshold values ranges from 0

to �40 dBu, ratio values from 2:1 to 10:1, attack time from 0.5
to 300 ms, and release time from 0.05 to 10 seconds. The exact
values of attack and release time are not marked on the device;
therefore, we assume a linear range between the maximum and the
minimum and the maximum indicated in the manual. The record-
ings associated with each combination of the control parameters
are split into 21 parts of 10 seconds. From these, 50% of them
are randomly removed, ensuring that no parameter combination
is either over- or under-represented in the training set (i.e., ran-
dom selection with uniform distribution against parameter com-
binations). Therefore, the complete training set includes ⇠ 18

hours of recording associated with 625 different parameter combi-
nations, out of which 20% is used for validation.

1http://www.tube-tech.com/
cl-1b-opto-compressor/

2https://doi.org/10.5281/zenodo.6497085

2.2. Software Compressors

To further verify the extent to which the proposed architecture
models audio compression, we have built three additional datasets
from software compressors. We have selected compressors im-
plemented as VST plugins because data collection can be com-
pletely automated, adapting an existing tool to work with audio
effects [17]. The selected plugins are: the Softube FET Compres-
sor3, the PSP MicroComp4, and the u-he Presswerk5. The first is a
pure digital audio compressor, while the other two are VA devices.
The input signal is the same described in Sec.2.1. For each soft-
ware compressor, we have selected 4 variable parameters, summa-
rized in Tab. 1, with functionality and range close to those selected
for the CL 1B dataset. Also, in these cases, the 210 seconds out-
put signals were recorded at 48 kHz for 625 different combinations
of the control parameters (i.e., 5 equally spaced values within the
selected ranges). The training, validation, and test set are built
identically to that of CL 1B. Since FET Compressor has a fixed
threshold, we have included in the set of variable parameters its
input gain, which allows us to vary the relative attack/release point
with respect to the input signal.

Table 1: Selected variable parameters and respective ranges for
the software compressors.

VST Parameter Values
ratio [2:1, 12:1]

MicroComp threshold [0, -30] dB
attack time [0.5, 300] ms
release time [0.05, 3.30] s
ratio [2:1, 10:1]

Fet Compressor input [-6, +6] dB
attack time [20, 800] µs
release time [0.05, 1.1] s
ratio [2:1, 10:1]

Presswerk threshold [-10, -40] dB
attack time [0.1, 150] ms
release time [0.015, 2.5] s

2.3. LA-2A Leveling Amplifier

Teletronix LA-2A Leveling Amplifier6 is an analog lim-
iter/compressor, whose optical gain reduction works similarly to
the CL 1B. The LA-2A is used in all previous works on black box
modeling of analog compression [14, 15]. We consider this de-
vice in our experiments to allow a performance comparison with
the state-of-the-art, although the LA-2A has a fundamental differ-
ence from other compressors used in our study. The LA-2A does
not present variable attack and release time that users can fix us-
ing dials. Instead, the LA-2A presents an average attack time of
10 ms and a multi-stage release. The duration of the first stage is
0.06 seconds, while the second stage of release is controlled by
the photocell’s memory, which depends on the brightness and time
the light-emitting has been on. The duration of the second stage
ranges from 0.5 to 5 seconds for the complete release. This implies

3https://www.softube.com/fet-compressor-mk-ii
4https://www.pspaudioware.com/products/

psp-mastercomp#psp-microcomp
5https://u-he.com/products/presswerk/
6https://www.uaudio.com/hardware/la-2a.html
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that if the compression is heavy and/or the signal has been above
the threshold for a long time, the LA-2A’s release will be slower.
Therefore the attack and release times of the LA-2A are unknown
a priori but depend on the past input signal. The device presents
an output gain, a switch controlling if the device is operating in
a limit or compression mode, and a peak reduction that controls
the amount of compression to apply. The LA-2A dataset7 [13]
contains approximately 20 hours of recordings at 44.1 kHz of the
device fed with various acoustic and synthetic instruments, per-
cussive clips, excerpts of musical pieces, tones, and noise bursts.
The dataset includes the variations of two control parameters (in
total 20 combinations): the binary switch that sets the device in ei-
ther compress or limit mode and the peak reduction parameter that
controls the amount of compression as a function of the input level.
We use the same training, validation, and test split included in the
dataset, representing 80%, 15%, and 5%, respectively. Record-
ings taken for each combination of the control parameters are not
identical in both duration and contents.

3. PROPOSED ARCHITECTURE

The architecture we propose was developed by experimenting pri-
marily with the CL 1B dataset, starting from the ED model we
investigated in our previous work [16]. The encoder processes n
past sample of the input sequence together with the additional con-
ditioning parameters and returns its final internal states and output.
The output is discarded while the internal state is passed to the de-
coder as its initial internal state. The decoder learns to predict the
target sample at each time step, given the input sample at the cur-
rent time step and a number n of past input samples. The improved
architecture we propose in this paper is illustrated in Fig. 1. The
input signal and conditioning parameters are fed to the network
separately. In order to reduce the model complexity of the en-
coder, we replaced the LSTM layer with a 1D convolutional layer,
which provides a representation of the signal’s past information us-
ing fewer trainable parameters. Control parameters are fed to the
encoder through a simpler fully-connected layer. The decoder still
includes an LSTM layer, but it works on a larger input-output au-
dio segment rather than on single samples. The architecture uses as
input a segment of 2w past sample of the input signal x, which we
split into two halves: one labeled as "far" past ([x�2w, ..., x�w])
and one labeled "recent" past ([x�w, ..., x0]). The "far" past rep-
resents the input for the encoder, and the "recent" past is the input
for the decoder, both of size w. The encoder output, representing
the internal states of the LSTM layer in the decoder, must match
the LSTM number of neurons u. The LSTM layer is followed
by a fully-connected layer with sigmoid activation function. Fi-
nally, at the output, we have another fully-connected layer with, in
our case, a number of neurons of the same decoder input segment,
where each neuron predicts an audio sample. With this architec-
ture, the size of the output layer, o, can be reduced to predict as
little as one sample at a time, allowing a fine-grain accuracy at the
expense of the computational cost. In our experiments, we used
input and output signal segments of identical size to minimize the
computational complexity of the model and to work similarly to
most real-time audio stream processing applications, in which in-
put and output buffer sizes are identical. Lastly, preliminary exper-
iments showed that kernels of the convolutional layer with identi-
cal size to the encoder input size led to better accuracy. In addition,

7https://zenodo.org/record/3824876

this choice simplifies the architecture as no transformation of the
convolutional layer’s output is needed to match the dimensional-
ity of the LSTM internal state. Conditioning parameters compose
the input vector for the fully-connected layer in the encoder, as
illustrated in Fig. 1. Before feeding the networks, the condition-
ing values are normalized between [0, 1]. The output of the fully-
connected layer is added to the output of the convolutional one in
order to compute the states to give to the decoder. The internal
state size has to match the number of units of the LSTM layer; for
this reason, the number of units is the same for all the layers.

4. EXPERIMENTAL DESIGN

4.1. Models

As stated in previous sections, our objective is to achieve an accu-
rate black-box modeling of audio compression using deep-learning
models with low latency and low computational complexity. We
limit our investigation to ED models with w set to (16, 32, 64),
representing the number of input samples for both the encoder and
decoder. The size w is also the intrinsic audio latency of our archi-
tecture. Our models work with an overall input segment size of 2w
samples. Therefore, in a hypothetical real-time audio stream pro-
cessing application, the overall latency of the system is 5w samples
(4w of latency for the double input-output buffering). To contain
the computational cost of the models’ inference, we take two ap-
proaches. First, we limit the number of trainable parameters to
⇠ 100k at most, and therefore we investigate only models with
(32, 64, 128) numbers of units u. Second, we minimize the fre-
quency at which the inference has to be executed to predict the
stream of output samples. In particular, we consider only out-
put sizes o equal to w, which requires only two predictions to fill
the output audio block with size 2w. Execution time and mem-
ory requirements can be further reduced using existing techniques
such as pruning [18], quantization [19], tensor decomposition [20],
knowledge distillation [21], and skip-RNN [22]. Low-latency for
digital audio effects is essential for live-audio applications, while
in production settings, modern digital audio workstations can au-
tomatically compensate for the plugin’s latency to avoid temporal
misalignment in multi-track mixing. However, automatic compen-
sation works only within a limited range. For example, AVID Pro
Tools can automatically manage up to 4096 samples of latency.

In order to compare our architecture with the state-of-the-art,
we implemented a TCN network that can be trained with our CL
1B dataset. We adapted the best architecture from [14] to work
at 48 kHz, taking as input 72, 000 samples (1.5 s) of the au-
dio signal and predicting an output segment of 58, 668 samples
(⇠ 1.2 s) with a receptive field of 13, 332 samples (⇠ 278 ms).
This, together with the use of the LA-2A dataset in our experi-
ments, allows a comprehensive cross-comparison of our architec-
ture against the state-of-the-art. Comparisons with baseline archi-
tectures, such as simple LSTM or dense layers, are detailed in our
previous work [16].

4.2. Training & Testing

All models are trained with a batch size of 128 and employing
Adam [23] optimizer with gradient norm scaling of 1 [24]. ED
models use an initial learning rate of 10�4, while TCN model uses
3 10

�4, as reported in [14]. Models are trained for 50 epochs ex-
cept for the LA-2A case, in which we train models for 60 epochs
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Figure 1: Proposed architecture. Encoder consists of two layers: one taking the conditioning control parameters and the other one taking
the past of the input signal. Control parameters are processed by a fully-connected layer, while the input is processed by the convolutional
layer. The outputs of both layers are added to each other to compute the internal states that act as conditioning for the LSTM layer
composing the decoder. The decoder takes the "current" input signal. w is the size in samples of the encoder and decoder input signals,
and u is the number of units, representing as well dimension of the layer’s outputs. The internal states dimension must match the number
of units of the LSTM layer; for this reason, we selected the same number of units for all the layers. A fully-connected layer with p units and
sigmoid activation function is placed after the LSTM layer, producing the decoder’s output. This is fed to another fully-connected layer,
including o neurons with linear activation function generating the o output samples of the model.

to allow a comparison with [14]. Preliminary experiments vary-
ing input size 2w and the number of units u of the ED models
use only half of the CL 1B dataset, still representing 625 combi-
nations of conditioning parameters. The best-performing model,
detailed in Sec. 4, is trained using the full dataset for 200 epochs
in total. Results for the test loss are computed with the model’s
weights that minimize the validation loss throughout the training
epochs. We have asserted the ability of the ED architecture to
predict conditioning values never seen during the training in our
previous investigation [16]. On the other hand, predicting abrupt
and quick changes in the dynamic was challenging for the network.
Similar behavior is also present in [15], where the prediction error
increases with the increasing of the conditioning peak reduction
value (i.e., in scenarios with larger dynamics change between in-
put and output). Instead, conditioning values unseen during train-
ing do not determine a significant increase in the prediction error.
For this reason, in this study, we test the generalization capability
of the network using pairs of input signals and conditioning values
unseen during the training phase, as detailed in the CL 1B dataset
description.

4.3. Loss Function

As emerged in our previous work on CL 1B [16], error hikes dur-
ing the attack phase of the compressor, triggered by fast changes in
the input signal amplitude. To address this limitation, we investi-
gate the use of different loss functions: we evaluate the Mean Ab-
solute error (MAE), the Error-to-Signal Ratio (ESR), and a Short-
Time Fourier Transform-based (STFT) loss function with different
resolutions (window size of [8, 16, 32] and hop size of [2, 4, 8], re-
spectively). As expressed in Eq. 1, the STFT-based loss function
minimizes the spectral difference between the target and the pre-

dictions with a multi-resolution spectral loss. The component of
the spectral loss with resolution m compares the two audio signals
by summing the L1 differences between both their linear- and log-
spectrograms. The models are trained for 50 epochs using differ-
ent loss functions. Since absolute values returned by different loss
functions are not comparable, results are qualitatively assessed by
inspecting the waveforms of the predictions against the true out-
puts, focusing on the accuracy of the attack phase of the com-
pression. Subsequently, we further explore combinations of the
mentioned loss functions for training the model.

LSTFT (y, ŷ) = |||STFTm(y)|� |STFTm(ŷ)|||1
+ || log(|STFTm(y)|)� log(|STFTm(ŷ)|)||1

(Eq. 1)

5. RESULTS & COMPARISONS

This section details the performance of the proposed architecture
with the datasets detailed in Sec. 4. Comparisons with the state-of-
the-art are included in Sec. 5.1, where the best TCN architecture
from [14] is used to model the CL 1B; in Sec. 5.4 where our best
ED architecture is used to model the LA2A used in all previous
works on deep-learning modeling of dynamic range compression;
and in Sec. 5.5, where latency and computational cost of our best
ED model are compared with the best TCN architecture from [14].
Datasets, source code, trained models, audio examples, and addi-
tional figures available online8.

8https://github.com/RiccardoVib/
CONDITIONED-MODELING-OF-OPTICAL-COMPRESSOR
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5.1. CL 1B

Tab. 2 details validation and test loss for models with different
input segment size 2w and different numbers of units u. Accu-
racy is inversely proportional to the input size. Smaller sizes allow
predicting output samples with a finer grain, resulting in smaller
errors, although the network is fed with a smaller segment of au-
dio samples. The accuracy is proportional to the number of units
u, as larger networks appear to be beneficial to the model’s ac-
curacy. The most accurate model presents input segments 2w of
32 samples and 128 internal units u. Even if the best configura-
tions resulted in 128 internal units, we used 64 hidden units for
the final model. Therefore, we trained the model for 200 epochs,
and we will refer to it for the figures and results detailed in the
rest of this section. Associated validation and test loss are shown
at the bottom of Tab 2. The model continues to learn at the in-
crease of epochs, and conceivably losses could further decrease if
training continues. The choice of 64 units is determined by our
goal of minimizing computational complexity. A model with 128

units has almost four times the number of trainable parameters and
brings improvements in the losses that do not justify the choice of
having a bigger computational complexity. On the other hand, a
bigger number of hidden units could lead to more remarkable im-
provements when increasing the number of training epochs. We
noticed that the predicted signals include spurious tones generated
by errors at the boundary of the output segments. We found that
the frequency of such tones is equal to nFr/o, where Fr is the
sampling rate, o is the output size, and n is an integer represent-
ing the number of overtones, ranging from 1 to 6. The amplitude
of the spurious tones does not exceed �70 dB; hence these are
often masked by the compressed output audio signals within high-
frequency contents. Cumulative figures on prediction error, such

Table 2: Validation and test loss (MSE) for ED model against dif-
ferent input segment sizes 2w and the number of units u. The test
loss refers to unseen audio samples during training but seen con-
ditioning values. The number of trainable parameters and epochs
is also detailed. The models are trained for 50 epochs, using half
dataset and MSE as the loss function. The bottom section of the ta-
ble refers to the selected best model, which has been trained using
the full dataset for up to 200 epochs.

2w u Val Loss Test Loss Params Ep. Data
32 32 1.45e�5 1.12e�5 8,912 50 50%
- 64 1.09e�5 8.75e�6 24,912 - -
- 128 1.00e�5 8.08e�6 81,488 - -

64 32 6.01e�5 5.39e�5 10,976 - -
- 64 1.60e�5 1.29e�5 28,000 - -
- 128 1.03e�5 8.76e�6 86,624 - -

128 32 3.28e�4 3.47e�4 15,104 - -
- 64 3.60e�4 3.79e�4 34,176 - -
- 128 3.13e�4 3.20e�4 96,896 - -

32 64 1.42e�5 1.74e�5 24,912 50 100%
- - 6.92e�6

8.21e�6 - 200 -

as averages across the entire dataset, are poorly informative with
respect to the model’s conditioned behavior. For this reason, we
analyze the trend of prediction accuracy against the four condi-
tioning parameters. The two colormaps in Fig. 2 display the errors
for all combinations of attack and release time with fixed ratio and
threshold, as well as for all combinations of ratio and threshold

with fixed attack and release time. The fixed parameters were set
at the middle of their range. To provide a fair and informative
representation of the model’s conditioned behavior, the MSEs are
computed using the same audio signal for all parameter combi-
nations, which includes 10 second of percussive and bass sounds
taken from the test set. The various conditioning scenarios de-
termine major changes in the dynamic range of the output signal,
which should be taken into account when comparing the MSEs. To
overcome this challenge and allow direct comparison of the errors,
we compute the MSEs represented in Fig. 2 after normalizing tar-
get outputs to [�1,+1] and applying the same normalization fac-
tor to the model’s predictions. From the left image, it is evident
that the prediction accuracy drops with the growth of attack and,
in particular, release time. This reflects that with longer temporal
dependencies, accurate prediction is more challenging. The right
image shows that heavy compression scenarios (i.e., higher ratio
and lower threshold) are also more challenging to be predicted ac-
curately. Since the dataset was randomly split, for some parameter
combinations, the overall percentage of signal above the threshold,
which triggers the compressor, may not be identical between the
training and test set. This, in turn, could be the reason why the
error variations are not monotonic, in particular for the left col-
ormap. However, we should also consider that the MSE ranges
illustrated in Fig. 2 are extremely small, as visible from the associ-
ated color-bar values. Fig. 3 shows an example with three different
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Figure 2: ColorMaps of the test loss (MSE) for different combina-
tions of conditioning parameters. Test errors for different values of
attack and release times, with ratio and threshold fixed to �20 dBu
and 6:1 (Left). Test errors for different values of ratio and thresh-
old, with attack and release time fixed to the middle of their range
(Right). Errors are computed after normalizing targets to [�1,+1]

and applying the same normalization factor to the predictions.

settings of attack time, specifically for 0.5, 150, and 225 ms. Other
parameters are fixed to ratio 6:1, threshold �30 dBu, and release
time 0.05 s. It is visible how the model has learned different com-
pression temporal profiles. The model handles the RMS envelope
quite accurately, applying the gain reduction accordingly to the
different attack time values. Lastly, Tab.3 compares the test losses
(MSE and MAE) of the best TCN model from [14] and of our best
ED model when trained with the CL 1B dataset. The losses after
50 epochs are reported, and the ED model shows better perfor-
mance. In addition, from informal listening, it is evident that the
TCN model introduces more audible artifacts than the ED model.

5.2. Loss Functions

Fig. 4 shows prediction versus target output for a plucked bass ex-
ample using models trained with four different loss functions. We

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

292



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 3: Example of input waveform (first row) and associate
output predicted versus target waveforms (second to fourth rows)
for increasing values of attack time: 0.5, 150, and 225 ms. The
ratio, threshold, and release time are set to 6:1, �30 dBu, and
0.05 s, respectively. The horizontal lines on the input waveform
represent the threshold level.

Table 3: Test losses (MSE and MAE) for ED and TCN model.
Losses refer to unseen audio samples during training but seen con-
ditioning values. The number of trainable parameters and units is
also detailed. The kernel size k, dilation factor d, and number of
TCN blocks are reported for the case of TCN networks. The models
are trained for 50 epochs with MSE as the loss function.

Models k u d n MSE MAE Params
TCN 13 32 10 4 9.54e�4 1.33e�2 51,464

ED-32 - 64 - - 1.74e�5 1.93e�3 24,912

select a plucked bass sound because its amplitude envelope (sharp
attack and decaying amplitude) is representative of scenarios that
the model struggles to cope with, in particular during the initial
phase of the compression. The plots refer to heavy-compressed
scenarios (�40 dBu as threshold and 10:1 as ratio). In general, we
found that models introduce more audible artifacts when these are
accurate with onsets crossing the threshold and vice versa. When
using MAE as the loss function, the models generate fewer arti-
facts but fail to learn the compression attack phase, applying the
gain reduction instantaneously. On the other hand, when using
MSE, the models learn the compressor attack and release phases
more accurately but produce more audible artifacts. Using ESR
or STFT-based loss functions provided poor performances, in par-
ticular, the latter one. The STFT-based’s poor performance could
be affected by the small output segment sizes that do not allow
adequate frequency resolution. No combinations of loss functions
led to advantages with respect to the attack phase. For this reason,
we use the MSE only as the loss function for the training of our

models, whose performance is detailed in previous sections.

Figure 4: Predicted waveform against the target for models trained
using different loss functions: MSE, MAE, ESR, and STFT-based.
The target example refers to a heavy-compressed plucked bass sce-
nario (�40 dBu as threshold and 10:1 as ratio). These results are
used to determine the influence of the loss functions on the predic-
tions and are not representative of the accuracy of the final model.

5.3. Software Compressors

Tab. 4 reports the validation and test loss associated with the soft-
ware compressor datasets. These are obtained training for 50

epochs, the best model configuration derived from the CL 1B ex-
periments, which uses 32 samples as the input segment 2w, 64
hidden units u, and MSE as the loss function. The order of mag-
nitude of the losses for all software compressors is similar to the
CL 1B case, proving that the ED model is able to learn different
compression profiles.

Table 4: Validation and test losses (MSE) for ED model against
software compressors. The models have 64 as the number of units
u, and the input segment size 2w is equal to 32 samples. The
models are trained for 50 epochs and use MSE as the loss function.

Dataset Val Loss Test Loss
MicroComp 5.85�5

8.35e�6

Fet Compressor 1.25e�4
6.68e�5

Presswerk 4.42e�5
5.29e�5

5.4. LA-2A

Tab. 5 shows different test losses of our model trained on the LA-
2A dataset for 60 epochs using different input segment sizes. The
trend is similar to CL 1B, smaller input/output size turns in more
accurate results. The MAE loss is also reported in the table in or-
der to have a direct comparison with the TCN models in [14]. The
number of hidden units is set to 64 to limit the number of train-
able parameters, which are detailed in the table as well. Our pro-
posed architecture trained on the LA-2A dataset presents an MSE
two orders of magnitude greater than the one obtained with the
CL 1B dataset. Although the ED model presents a higher loss,
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it is still competitive with the TCN-based stat-or-the-art black-
box model of the LA-2A, which presents a lower MAE equal to
7.66e�3 but uses almost twice as many trainable parameters and
has a latency of 302 ms. Convolutional models generally converge
quicker than LSTMs, which need a considerably larger number of
training epochs to achieve similar losses. Hence this comparison
based on an equal number of training epochs may be unfair to our
ED model, which features an LSTM layer in the decoder. In addi-
tion, the LA-2A device presents faster attack and release time and
fewer conditioning parameters than CL 1B. As stated before, the
LA-2A has no tunable attack and release times, but these depend
on the past state of the luminescent element. This can motivate
the slight drop in accuracy of our architecture, which may not be
able to infer the right compression temporal profile from the audio
signal without explicit input data on attack and release time. The
difference in the MSE can also be determined by differences be-
tween the datasets, such as type and levels of input signals, which
have an impact on the overall amount and distribution of the audio
compression.

Table 5: Test loss (MAE, MSE, and ESR) for the ED model against
different window input sizes. Both the encoder and decoder have
64 as the number of units. Input size refers to the number of to-
tal input samples used to compute the outputs; the encoder and
decoder input sizes has to be considered half of this value. The
number of trainable parameters is also reported. The models are
trained for 50 epochs and use MSE as the loss function.

2w MAE MSE ESR Params
32 2.48e�2 1.59e�3 2.43e�1 24,656
64 2.54e�2 1.63e�3 2.49e�1 27,744
128 2.65e�2 1.64e�3 2.51e�1 33,920

5.5. Efficiency

The architecture we propose is designed to minimize latency and
computational complexity, aiming at live audio applications. Con-
sidering the best model with 32 samples as input segment 2w, the
ED model has a latency of 16 samples, equivalent to 0.33 ms sam-
ples at 48 kHz sampling rate. The total latency in real-time audio
stream processing application, including the double input-output
buffering, is equal to 80 samples, equivalent to 1.66 ms. Tab. 7
reports the Floating Point Operations (FLOPs) required for each
layer of the ED model. Breaking down the network, we have three
Fully Connected (FC), one convolutional, and one LSTM layer.
Each layer requires a different number of FLOPs, depending on
the encoder and decoder input sizes w, number of conditioning
parameters d, and output size o. The convolutional layer’s FLOPs
are influenced by the length of the kernel k and the number of
filters f , which in our architecture are equal to w and u, respec-
tively. In Tab. 7, we detail FLOPs for ED models with different
input-output sizes and the respective intrinsic latencies, which are
a key difference from the state-of-the-art TCN models. In [14],
the most accurate TCN model has a latency of 302 ms, whereas
experiments are detailed with other TCN models with latency as
small as 101 ms. In our case, the best ED model presents a la-
tency of only 0.33 ms. On the other hand, the most accurate TCN
model is less computationally demanding since the inference pre-
dicts significantly longer segments of audio than our ED model.
In particular, the inference requires 215, 664 FLOPs, equivalent to

just 4 FLOPs per sample. Finally, we have also experimented us-
ing a TCN architecture that can deliver latency as low as our best
ED model, using input and output segments of 32 and 16 samples,
respectively. Results show that the TCN model trained on the CL
1B dataset is less accurate than the equivalent ED model. In partic-
ular, the MSE after 50 epochs is 4.20e�5 (TCN) versus 1.74e�5

(ED) as reported in Tab.2.

Table 6: Number of Floating Point Operations (FLOPs) for the
different layers of the ED model. d is the number of conditioning
parameters, w is the input size, o is the output size, u is the number
of hidden units, k is the kernel shape, and f is the number of filters.

Layer FLOPs
FC (conditioning) 2 x d x u
FC (decoder) 2 x u x u
FC (output) 2 x u x o
Convolutional 2 x f x k
LSTM 8 x (w + u) × u
Sigmoid function 4 x u

Table 7: FLOPs for ED models with different input-output sizes
(total FLOPs for inference, FLOPs per audio samples, and re-
quired GFLOPS for real-time implementation) and associated
intrinsic latency (without accounting for the audio input-output
buffering), considering 48 kHz sampling rate.

2w u FLOPs FLOPs/smp GFLOPS Latency
32 32 16,256 1,016 0,49 0.33 ms
32 64 52,480 3,280 1.57 -
32 128 186,368 11,648 5.59 -
64 32 22,912 716 0.34 0.66 ms
64 64 64,256 2,008 0.96 -
64 128 208,384 6,512 3.13 -

128 32 39,296 614 0.29 1.33 ms
128 64 90,880 1,420 0.68 -
128 128 255,488 3,992 1.92 -

6. CONCLUSION

We proposed a deep-learning architecture for black-box modeling
of audio dynamic range compression. The model is in an Encoder-
Decoder based on LSTM and convolutional layers. The encoder
processes the near-past audio samples together with the values of
the control parameters, which are encoded in a state helping the
decoder to infer the output given the associated input samples. We
demonstrated that the proposed architecture is able to model dif-
ferent types of compressors, three software, and two analog ones,
with different compression characteristics. The model is designed
to minimize latency and computational complexity and ease imple-
mentation in real-time audio stream processing applications. We
conditioned the model against variations of the compressor’s con-
trol parameters, including compression ratio, threshold, attack, and
release time. The latter two change the system’s temporal charac-
teristics because the gain reduction is applied and removed in a
different amount of time. Therefore, the architecture is able to
learn nonlinear time-varying characteristics of the dynamic range
compression, subject to attack and release time values, passed as
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conditioning parameters to the network. The model is competi-
tive with state-of-the-art works presenting similar accuracy while
using shorter input signal segments. Prediction accuracy drops
slightly with heavy compression settings. In particular drastic
dynamic changes during the attack phase of the compression are
the most challenging to predict and produce audible artifacts. We
have also investigated the influence of different training loss func-
tions, showing how the MSE is the most suitable to model the
initial phase of the compression. Finally, we detailed the latency
and computational complexity of the proposed architecture. Fu-
ture work includes investigations to reduce the presence of audible
artifacts, which are also clearly visible from spectrograms of the
predicted output. Preliminary experiments suggest that ED mod-
els with smaller output sizes may significantly contribute to min-
imizing the presence of audible artifacts while slightly penalizing
efficiency in terms of computational cost and intrinsic latency.
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