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Abstract

In this paper we consider the problem of risk indifference pricing
on an incomplete market, namely on a jump diffusion market
where the controller has limited access to market information.
We use the maximum principle for stochastic differential games
to derive a formula for the risk indifference price pseller

risk (G, E) of
an European-type claim G.

1 Introduction

Suppose the value of a portfolio (π(t), S0(t)) is given by

X(π)
x (t) = x + π(t)S(t) + S0(t),

where x is the initial capital, S(t) is a semimartingle price process of a risky
asset, π(t) is the number of risky assets held at time t and S0(t) is the
amount invested in the risk free asset at time t. Then the cumulative cost
at time t is given by

P (t) = X(π)
x (t)−

∫ t

0
π(u−)dS(u). (1)
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If P (t) = p−constant for all t, then the portfolio strategies (π(t), S0(t))
is called self-financing. A contingent claim with expiration date T is a
nonnegative FT -measurable random variable G that represents the time T
payoff from seller to buyer. Suppose that for a contingent claim G there
exists a self-financing strategy such that X

(π)
x (T ) = G, that is,

p +
∫ T

0
π(u)dS(u) = G. (2)

Then p is the price of G in the complete market, i.e.,

p = EQ[G], (3)

where Q is any martingale measure equivalent to P on the probability space
(Ω,Ft, P ).

In an incomplete market, an exact replication of a contingent claim is
not always possible. One of the approaches to solve the replicating problems
in an incomplete market is the utility indifference pricing. See e.g. Grasselli
and Hurd [8] for the case of stochastic volatility model, Hodges and Neu-
berger [9] for the financial model with constraints, Takino [13] for model
with incomplete information. The utility indifference price p of a claim G
is the initial payment that makes the seller of the contract utility indiffer-
ent to the following two alternatives: either selling the contract with initial
payment p and with the obligation to pay out G at time T or not selling
the contract and hence receiving no initial payment..

Recently several papers discuss risk measure pricing rather than utility
pricing in incomplete markets. Some papers related to risk measure pricing
are the following: Xu [14] propose risk measure pricing and hedging in
incomplete markets, Barrieu and El Karoui [3] study a minimization problem
for risk measures subject to dynamic hedging, Kloppel and Schweizer [10]
study the indifference pricing of a payoff with a minus dynamic convex risk
measure. See also the references in these papers.

In our paper we study a pricing formula based on the risk indifference
principle in a jump diffusion market. The same problem was studied by
Øksendal and Sulem [12] with the restriction to Markov controls. So the
problem is solved by using the Hamilton-Jacobi-Bellman equation. In our
paper, the control process is required to be adapted to a given sub-filtration
of the filtration generated by the underlying Lévy processes. This makes
the control problem non-Markovian. Within the non-Markovian setting, the
dynamic programming cannot be used. Here we use the maximum principle
approach to find the solution for our problem.
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The paper is organized as follows: In Section 2 we will implement the
option pricing method in an incomplete market. In Section 3 we present
our problem in a jump diffusion market. In Section 4 we use a maximum
principle for a stochastic differential game to find the relation between the
optimal controls of the stochastic differential game and of a corresponding
stochastic control problem. Using this result we derive the relationship
between the two value functions of the two problems above, and then find
the formulas for the risk indifference prices for the seller and the buyer.

2 Statement of the problem

Assume that a filtered probability space (Ω,F , {Ft}0≤t≤T , P ) is given.

Definition 2.1. A non-negative random variable G on (Ω,Ft, P ) is called
a European contingent claim.

From now on we consider a European type option whose payoff at time t
is some nonnegative random variable G = g(S(t)). In the rest of the paper,
we shall identify a contingent claim with its payoff function g.

Let F be the space of all equivalence classes of real-valued random vari-
ables defined on Ω.

Definition 2.2. ([6], [7]) A convex risk measure ρ : F → R ∪ {∞} is a
mapping satisfying the following properties, for X, Y ∈ F,

(i) (convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), λ ∈ (0, 1);

(ii) (monotonicity) If X ≤ Y then ρ(X) ≥ ρ(Y );

If an investor sells a liability to pay out the amount g(S(T )) at time T
and receives an initial payment p for such a contract, then the minimal risk
involved for the seller is

ΦG(x + p) = inf
π∈P

ρ(X(π)
x+p(T )− g(S(T ))), (4)

where P is the set of self-financing strategies such that X
(π)
x (t) ≥ c, for some

finite constant c and for 0 ≤ t ≤ T .
If the investor has not issued a claim (and hence no initial payment is

received), then the minimal risk for the investor is

Φ0(x) = inf
π∈P

ρ(X(π)
x (T )). (5)
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Definition 2.3. The seller’s risk indifference price, p = pseller
risk , of the claim

G is the solution p of the equation:

ΦG(x + p) = Φ0(x). (6)

Thus pseller
risk is the initial payment p that makes an investor risk indiffer-

ent between selling the contract with liability payoff G and not selling the
contract.

In view of the general representation formula for convex risk measures
(see [5]), we will assume that the risk measure ρ, that we consider, is of the
following type:

Theorem 2.4. (Representation Theorem [6], [7]) A map ρ : F → R
is a convex risk measure if and only if there exists a family L of measures
Q � P on FT and a convex “penalty” function ζ : L → (−∞,+∞) with
infQ∈L ζ(Q) = 0 such that

ρ(X) = sup
Q∈L

{EQ[−X]− ζ(Q)}, X ∈ F. (7)

By this representation we see that choosing a risk measure ρ is equivalent
to choosing the family L of measures and the penalty function ζ.

Using the representation (7) we can write (4) and (5) as follows:

ΦG(x + p) = inf
π∈P

(
sup
Q∈L

{EQ[−X
(π)
x+p(T ) + g(S(t))]− ζ(Q)}

)
, (8)

and
Φ0(x) = inf

π∈P

(
sup
Q∈L

{EQ[−X(π)
x (T )]− ζ(Q)}

)
, (9)

for a given penalty function ζ.
Thus the problem of finding the risk indifference price p = pseller

risk given by
(6) has turned into two stochastic differential game problems (8) and (9). In
the complete information, Markovian setting this problem was solved in [12]
where the authors use Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations
and PDEs to find the solution. In our paper the corresponding partial
information problem is considered by means of a maximum principle of
differential games for SDE’s.

3 The setup model

Suppose in a financial market, there are two investment possibilities:
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• A bond with unit price S0(t) = 1; t ∈ [0, T ].

• A stock with price dynamics, for t ∈ [0, T ],

dS(t) = S(t−)
[
α(t)dt + σ(t)dBt +

∫
R0

γ(t, z)Ñ(dt, dz)
]
, (10)

S(0) = s > 0,

Here Bt is a Brownian motion and Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is a
compensated Poisson random measure with Lévy measure ν. The processes
α(t), σ(t), γ(t, z) are Ft− predictable processes such that γ(t, z) > −1, for
a.s. t, z, and

E
[ ∫ T

0

{
|α(s)|+ σ2(s) +

∫
R0

| log(1 + γ(s, z))|2ν(dz)
}

ds
]

< ∞ a.s., (11)

for all T ≥ 0.
Let Et ⊆ Ft be a given sub-filtration. Denote by π(t), t ≥ 0, the fraction

of wealth invested in S(t) based on the partial market information Et ⊆ Ft

being available at time t. Thus we impose on π(t) to be Et− predictable.
Then the total wealth X(π)(t) with initial wealth x is given by the SDE

dX(π)(t) = π(t−)S(t−)
[
α(t)dt + σ(t)dBt +

∫
R0

γ(t, z)Ñ(dt, dz)
]
, (12)

X(π)(0) = x > 0.

In the sequel we shall call a portfolio π ∈ P admissible if π is Et-
predictable, permits a strong solution of the equation (12) and satisfies∫ T

0

{
|α(t)||π(t)|S(t) + σ2(t)π2(t)S2(t)

+ π2(t)S2(t)
∫

R0

γ2(t, z)ν(dz)
}

ds < ∞,

as well as
π(t)S(t)γ(t) > −1 (ω, t, z)− a.s.

The class of admissible portfolios is denoted by Π.
Now we define the measures Qθ parameterized by given Ft-predictable

processes θ = (θ0(t), θ1(t, z)) such that

dQθ(ω) = Kθ(T )dP (ω) on FT , (13)
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where{
dKθ(t) = Kθ(t−)

[
θ0(t)dB(t) +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
; t ∈ [0, T ],

Kθ(0) = k > 0,
(14)

We assume that
θ1(t, z) ≥ −1 for a.a. t, z, (15)

and ∫ T

0

{
θ2
0(s) +

∫
R0

(log(1 + θ1(s, z)))2ν(dz)
}

ds < ∞ a.s. (16)

Then by the Itô formula the solution of (14) is given by

Kθ(t) =k exp
[
−

∫ t

0
θ0(s)dB(s)− 1

2

∫ t

0
θ2
0(s)ds

+
∫ t

0

∫
R0

ln(1− θ1(s, z))Ñ(dt, dz)

+
∫ t

0

∫
R0

{ln(1− θ1(s, z)) + θ1(s, z)}ν(dz)ds
]
. (17)

We say that the control θ = (θ0, θ1) is admissible and write θ ∈ Θ if θ is
adapted to the sub-filtration Et, satisfies (15)–(16) and

E[Kθ(T )] = Kθ(0) = k > 0.

We set

dY (t) =

 dY1(t)
dY2(t)
dY3(t)

 =

 dKθ(t)
dS(t)

dX(π)(t)

 =

 0
S(t−)α(t)

S(t−)π(t)α(t)

 dt

+

 Kθ(t−)θ0(t)
S(t−)σ(t)

S(t−)π(t)σ(t)

 dB(t) +
∫

R0

 Kθ(t−)θ1(t, z)
S(t−)γ(t, z)

S(t−)π(t)γ(t)

 Ñ(dt, dz),

(18)

Y (0) = y = (y1, y2, y3) = (k, s, x),

and

dỸ (t) =
[

dY1(t)
dY2(t)

]
=

[
dKθ(t)
dS(t)

]
, (19)
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Ỹ (0) = ỹ = (y1, y2) = (k, s).

We now define two sets L,M of measures as follows:

L = {Qθ; θ ∈ Θ}; (20)

M = {Qθ; θ ∈ M}, (21)

where
M = {θ ∈ Θ; E[Mθ(t, ỹ)|Et] = 0 for all t, ỹ}, (22)

and

Mθ(t, ỹ) = Mθ(t, k, s) = α(t) + σ(t)θ0(t) +
∫

R0

γ(t, z)θ1(t, z)ν(dz). (23)

In particular, by the Girsanov theorem, all the measures Qθ ∈ M with
E[Kθ(T )] = 1 are equivalent martingale measures for the Et-conditioned
market (S0(t), S1(t)) where

dS1(t) = S1(t−)
[
E[α(t)|Et]dt + E[σ(t)|Et]dBt

+
∫

R0

E[γ(t, z)|Et]Ñ(dt, dz)
]
,

S1(0) = s > 0.

(see e.g. [11], Ch. 1).
We assume that the penalty function ζ has the form

ζ(Qθ) = E
[ ∫ T

0

∫
R0

λ(t, θ0(t, Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)ν(dz)dt + h(Ỹ (T ))
]
,

(24)

for some convex functions λ ∈ C1(R2 × R0), h ∈ C1(R), such that

E
[ ∫ T

0

∫
R0

|λ(t, θ0(t, Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)|ν(dz)dt + |h(Ỹ (T ))|
]

< ∞,

for all (θ, π) ∈ Θ×Π.
Using the Y (t)-notation problem (8) can be written as follows:

Problem A Find ΦEG(t, y) and (θ∗, π∗) ∈ Θ×Π such that

ΦEG(t, y) := inf
π∈Π

(
sup
θ∈Θ

Jθ,π(t, y)
)

= Jθ∗,π∗
(t, y), (25)
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where

Jθ,π(t, y) =Ey
[
−

∫ T

t
Λ(θ(u, Ỹ (u)))du− h(Ỹ (T ))

+ Kθ(T )g(S(T ))−Kθ(T )X(π)(T )
]
, (26)

and

Λ(θ) = Λ(θ(t, ỹ)) =
∫

R0

λ(t, θ0(t, ỹ), θ1(t, ỹ, z), ỹ, z)ν(dz). (27)

We will relate Problem A to the following stochastic control problem:

ΨEG = sup
Q∈M

{EQ[G]− ζ(Q)} (28)

Using the Ỹ (t)-notation, the problem gets the following form:

Problem B Find ΨEG(t, ỹ) and θ̌ ∈ M such that

ΨEG(t, ỹ) := sup
θ∈M

Jθ
0 (t, ỹ) = J θ̌

0 (t, ỹ), (29)

where

Jθ
0 (t, ỹ) = Ey

[
−

∫ T

t
Λ(θ(u, Ỹ (u)))du− h(Ỹ (T )) + Kθ(T )g(S(T ))

]
. (30)

Define the Hamiltonian H : [0, T ]×R×R×R×Θ×Π×R×R×R → R
for Problem A by

H(t, k, s, x, θ, π, p, q, r(·, z))

= −Λ(t, Ỹ (t)) + sαp2 + sαπp3 + kθ0q1 + sσq2 + sσπq3

+
∫

R0

{kθ1r1(·, z) + sγ(t, z)r2(·, z) + sπγ(t, z)r3(·, z)}ν(dz), (31)

and the Hamiltonian H̃ : [0, T ]×R×R×Θ×R×R×R → R for Problem
B by

H̃(t, k, s, θ, p, q, r(·, z)) = −Λ(t, Ỹ (t)) + sαp2

+ kθ0q1 + sσq2 +
∫

R0

{kθ1(t, z)r1(·, z) + sγ(t, z)r2(·, z)}ν(dz). (32)
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Here R is the set of functions r : [0, T ] × R → R such that the integrals
in the (31) and (32) converge. We assume that H and H̃ are differentiable
with respect to k, s and x. The adjoint equations (corresponding to θ, π and
Y (t)) in the unknown adapted processes p(t), q(t), r(t, z) are the backwards
stochastic differential equations (BSDE)

dp1(t) =
(

∂Λ
∂k (t, Ỹ (t))− θ0(t)q1(t)−

∫
R0

θ1(t, z)r1(t, z)ν(dz)
)
dt

+q1(t)dB(t) +
∫

R0
r1(t, z)Ñ(dt, dz),

p1(T ) = −∂h
∂k (Ỹ (T )) + g(S(T ))−X(π)(T ),

(33)


dp2(t) =

(
∂Λ
∂s (t, Ỹ (t))− α(t)p2(t)− σ(t)q2(t)

−
∫

R0
γ(t, z)r2(t, z)ν(dz)

)
dt

+q2(t)dB(t) +
∫

R0
r2(t, z)Ñ(dt, dz),

p2(T ) = −∂h
∂s (Ỹ (T )) + Kθ(T )g

′
(S(T )),

(34)

and
dp3(t) =

(
− α(t)p3(t)− σ(t)q3(t)−

∫
R0

γ(t, z)r3(t, z)ν(dz)
)
dt

+q3(t)dB(t) +
∫

R0
r3(t, z)Ñ(dt, dz),

p3(T ) = −Kθ(T ).

(35)

Similarly, the adjoint equations (corresponding to θ and Ỹ (t)) in the
unknown processes p̃(t), q̃(t), r̃(t, z) are given by

dp̃1(t) =
(

∂Λ
∂k (t, Ỹ (t))− θ0(t)q̃1(t)−

∫
R0

θ1(t, z)r̃1(t, z)ν(dz)
)
dt

+q̃1(t)dB(t) +
∫

R0
r̃1(t, z)Ñ(dt, dz),

p̃1(T ) = −∂h
∂k (Ỹ (T )) + g(S(T )),

(36)

and 
dp̃2(t) =

(
∂Λ
∂s (t, Ỹ (t))− α(t)p̃2(t)− σ(t)q̃2(t)

−
∫

R0
γ(t, z)r̃2(t, z)ν(dz)

)
dt

+q̃2(t)dB(t) +
∫

R0
r̃2(t, z)Ñ(dt, dz),

p̃2(T ) = −∂h
∂s (Ỹ (T )) + Kθ(T )g

′
(S(T )).

(37)
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Lemma 3.1. Let θ ∈ Θ and suppose that p̃(t) = (p̃1(t), p̃2(t)) is a solution
of the corresponding adjoint equations (36) and (37). For all π ∈ R, define

p1(t) = p̃1(t)−X(π)(t) (38)
p2(t) = p̃2(t) (39)
p3(t) = −Kθ(t) (40)

If θ ∈ M then p(t) = (p1(t), p2(t), p3(t)) is a solution of the adjoint equations
(33), (34) and (35). Then the following holds:

H(t, Y (t), θ, π, p(t), q(t), r(t, z)) = H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))

− S(t)πKθ(t)
(
α(t) + 2θ0(t)σ(t) + 2

∫
R0

θ1(t, z)γ(t, z)ν(dz)
)
. (41)

Proof. Differentiating both sides of equation (38) we get

dp1(t) = dp̃1(t)− dX(π)(t)

=
(∂Λ

∂k
(t, Ỹ (t))− θ0(t)q̃1(t)−

∫
R0

θ1(t, z)r̃1(t, z)ν(dz)− S(t)α(t)π(t)
)
dt

+ (q̃1(t)− S(t)σ(t)π(t))dB(t) +
∫

R0

(r̃1(t, z)− S(t)π(t)γ(t, z))Ñ(dt, dz).

(42)

Comparing this with (33) by equating the dt, dB(t), Ñ(dt, dz) coefficients,
respectively, we get

∂Λ
∂k (t, Ỹ (t))− θ0(t)q1(t)−

∫
R0

θ1(t, z)r1(t, z)ν(dz)

= ∂Λ
∂k (t, Ỹ (t))− θ0(t)q̃1(t)−

∫
R0

θ1(t, z)r̃1(t, z)ν(dz)− S(t)α(t)π(t), (43)

and

q1(t) = q̃1(t)− S(t)σ(t)π(t), (44)
r1(t, z) = r̃1(t, z)− S(t)γ(t, z)π(t). (45)

Substituting (44) and (45) into equation (43), we get

S(t)π(t)
(
α(t) + θ0(t)σ(t) +

∫
R0

θ1(t, z)γ(t, z)ν(dz)
)

= 0. (46)

Since θ ∈ M, equation (46) is satisfied and hence p1(t) is a solution of
equation (33).
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Proceeding as above with the processes p2(t) and p3(t), we get

q2(t) = q̃2(t); r2(t) = r̃2; (47)

and

−α(t)p3(t)− σ(t)q3(t)−
∫

R0

γ(t, z)r3(t, z)ν(dz) = 0; (48)

q3(t) = −Kθ(t)θ0(t); r3(t, z) = −Kθ(t)θ1(t, z). (49)

With the values p3(t), q3(t) and r3(t, z) defined as above, relation (48) is
satisfied if θ ∈ M. Hence p1(t), p2(t) and p3(t) are solutions of equations
(38), (39) and (40), respectively.

The equations (31) and (32) give the following relation between H and
H̃:

H(t, y, θ, π, p, q, r(·, z)) = H̃(t, ỹ, θ, p, q, r(·, z))

+ sπ
(
αp3 + σq3 +

∫
R0

γ(t, z)r3(·, z)ν(dz)
)
. (50)

Hence,

H(t, Y (t), θ, π, p(t), q(t), r(t, z))

= H̃(t, Ỹ (t), θ, p1(t), p2(t), q1(t), q2(t), r1(t, z), r2(t, z))

− S(t)π(t)
(
α(t)p3(t) + σq3(t) +

∫
R0

γ(t, z)r3(t, z)ν(dz)
)

= H̃(t, Ỹ (t), θ, p̃1(t), p̃2(t), q̃1(t), q̃2(t), r̃1(t, z), r̃2(t, z))

− S(t)σ(t)π(t)Kθ(t)θ0(t)−
∫

R0

S(t)γ(t, z)π(t)Kθ(t)θ1(t, z)ν(dz)

− S(t)π(t)Kθ(t)
(
α(t) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t)ν(dz)
)

= H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))

− sπKθ(t)
(
α(t) + 2σ(t)θ0(t) + 2

∫
R0

γ(t, z)θ1(t, z)ν(dz)
)
. (51)

Lemma 3.2. Let p1(t), p2(t) and p3(t) be as in Lemma 3.1. Suppose that,
for all π ∈ R, the function

θ → E[H(t, Y (t), θ, π(t), p(t), q(t), r(t, z))|Et], θ ∈ Θ,
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has a maximum point at θ̂ = θ̂(π). Moreover, suppose that the function

π → E[H(t, Y (t), θ̂(π), π, p(t), q(t), r(t, z))|Et], π ∈ R,

has a minimum point at π̂ ∈ R. Then,

Mθ̂(π̂) = 0. (52)

Proof. The first order conditions for a maximum point θ̂ = θ̂(π) of the
function E[H(t, Y (t), θ, π(t), p(t), q(t), r(t, z))|Et] is

E[5θ(H(t, Y (t), θ, π(t), p(t), q(t), r(t, z)))θ=θ̂(π)|Et] = 0, (53)

where 5θ = ( ∂
∂θ0

, ∂
∂θ1

) is the gradient operator. The first order condition for
a minimum point π̂ of the function E[H(t, Y (t), θ̂(π), π, p(t), q(t), r(t, z))|Et]
is

E[5π(H(t, Y (t), θ̂(π), π(t), p(t), q(t), r(t, z)))π=π̂|Et] = 0,

i.e.,

E
[
5θ (H(t, Y (t), θ, π̂, p(t), q(t), r(t, z)))θ=θ̂(π̂)

(dθ̂(π)
dπ

)
π=π̂

+5π

(
H(t, Y (t), θ, π, p(t), q(t), r(t, z))

)
π=π̂
θ=θ̂(π̂)

∣∣∣Et

]
= 0. (54)

Choose π = π̂. Then, by (53) and (54), we have

E[5π

(
H(t, Y (t), θ, π, p(t), q(t), r(t, z))

)
π=π̂
θ=θ̂(π̂)

| Et] = 0,

i.e.,

E
[
S(t)α(t)p3(t) + S(t)σ(t)q3(t) +

∫
R0

S(t)γ(t, z)r3(t, z)ν(dz) | Et

]
= 0.

(55)

Substituting the values p3(t), q3(t), and r3(t, z) as in Lemma 3.1 into (55),
we get

E
[
S(t)Kθ(t)

{
α(t) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)ν(dz)
}∣∣∣Et

]
= 0. (56)

This gives,
Mθ̂(π̂) = 0.
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4 Maximum principle for stochastic differential games

Problem A is related to what is known as stochastic games studied in [1].
Applying Theorem 2.1 in [1] to our setting we get the following jump dif-
fusion version of the maximum principle (of Ferris and Mangasarian type
[4]):

Theorem 4.1. (Maximum principle for stochastic differential games
[1]) Let (θ̂, π̂) ∈ Θ×Π and suppose that the adjoint equations (33), (34) and
(35) admit solutions (p̂1(t), q̂1(t), r̂1(t, z)), (p̂2(t), q̂2(t), r̂2(t, z)) and (p̂3(t), q̂3(t), r̂3(t, z)),
respectively. Moreover, suppose that, for all t ∈ [0, T ], the following partial
information maximum principle holds

sup
θ∈Θ

E[H(t, Y (t), θ, π̂(t), p̂(t), q̂(t), r̂(t, z)) | Et]

= E[H(t, Y (t), θ̂(t), π̂(t), p̂(t), q̂(t), r̂(t, z)) | Et]

= inf
π∈Π

E[H(t, Y (t), θ̂(t), π, p̂(t), q̂(t), r̂(t, z)) | Et]. (57)

Suppose that the function
θ → J(θ, π̂)

is concave and that the function

π → J(θ̂, π)

is convex. Then (θ∗, π∗) := (θ̂, π̂) is an optimal control and

ΦEG(x) = inf
π∈Π

(
sup
θ∈Θ

J(θ, π)
)

= sup
θ∈Θ

(
inf
π∈Π

J(θ, π)
)

= sup
θ∈Θ

J(θ, π̂) = inf
π∈Π

J(θ̂, π) = J(θ̂, π̂) (58)

Theorem 4.2. Let p̃1(t), p̃2(t) be respectively solutions of adjoint equations
(36), (37) and p1(t), p2(t), p3(t) be defined as in Lemma 3.1. Suppose
θ → H̃(t, Ỹ (t), θ, p̃(t); q̃(t), r̃(t, ·)) is concave. Let (θ̂(π̂), π̂) be an optimal
pair for Problem A, as given in Lemma 3.2. Then,

θ̌ := θ̂(π̂) (59)

is optimal for Problem B.

13



Proof. By Theorem 4.1 for Problem B, θ̌ solves Problem B under partial
information Et if

sup
θ∈M

E[H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))|Et]

= E[H̃(t, Ỹ (t), θ̌, p̃(t), q̃(t), r̃(t, z))|Et],

i.e., if there exists C = C(t) such that,

E[5θ(H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z)))− C(t)M(θ))θ=θ̌|Et] = 0, (60)

and

E[Mθ̌(t)|Et] = 0.

Let π̂, θ̂(π̂) be as in Lemma 3.2. Then,

E[5θ(H(t, Y (t), θ, π̂(t), p(t), q(t), r(t, z))θ=θ̂(π̂(t))|Et] = 0, (61)

and

E[Mθ̂(π̂)(t)|Et] = 0.

Hence, by Lemma 3.1,

0 = E
[
5θ

{
H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))

− S(t)π̂(t)Kθ(t)
(
α(t) + 2σ(t)θ0 + 2

∫
R0

γ(t, z)θ1(z)ν(dz)
)}

θ=θ̂(π̂(t))

∣∣∣Et

]
= E

[
5θ (H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))− 2S(t)π̂(t)Kθ(t)Mθ)θ=θ̂(π̂(t))|Et].

(62)

Therefore, if we choose

C(t) = 2S(t)π̂(t)Kθ(t) (63)

we see that (60) holds with θ̌ = θ̂(π̂), as claimed.

5 Risk indifference pricing

Let (θ∗, π∗) = (θ̌, π̂) be as in Theorem 4.2 with the corresponding state
process Y ∗ = Y θ∗,π∗

. Suppose that Y = Y θ̂(π̂),π is the state process cor-
responding to an optimal control (θ̂(π̂), π). Then the value function ΦEG,
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which is defined by (25) and (26), becomes

ΦEG(t, y) = inf
π∈Π

(
sup
θ∈Θ

Jθ,π(t, y)
)

= inf
π∈Π

(
sup
θ∈Θ

Ey
[
−

∫ T

t
Λ(θ(u, Ỹ (u)))du− h(Kθ(T ), S(T ))

+ Kθ(T )g(S(T ))−Kθ(T )X(π)(T )
])

= inf
π∈Π

(
Ey

[
−

∫ T

t
Λ(θ∗(u, Ỹ ∗(u)))du− h(Kθ∗(T ), S(T ))

+ Kθ∗(T )g(S(T ))−Kθ∗(T )X(π)(T )
])

. (64)

We have that, for all π ∈ Π,

Ey[Kθ∗(T )X(π)(T )] = Ey[Kθ(T )X(π)(T )] = kEk,s,x
1
k
Qθ̌

[X(π)(T )] = kx, (65)

since 1
kQθ̌ is an equivalent martingale measure for Et−conditioned market.

On the other hand, the first part of equation (64) does not depend on the
parameter π. Hence, (64) becomes

ΦEG(t, y) = Ey
[
−

∫ T

t
Λ(θ̌(u, Ỹ (u)))du− h(Kθ̌(T ), S(T ))

+ Kθ̌(T )g(S(T ))
]
− kx

= sup
θ∈M

Jθ
0 (t, ỹ)− kx

= ΨEG(t, ỹ)− kx. (66)

We have proved the following result for the relation between the value
function for Problem A and the value function for Problem B in the partial
information case, that is the same as in Øksendal and Sulem [12] for the full
information case.

Lemma 5.1. The relationship between the value function ΨEG(t, ỹ) for Prob-
lem B and the value function ΦEG(t, y) for Problem A is

ΦEG(t, y) = ΨEG(t, ỹ)− kx. (67)

We now apply Lemma 5.1 to find the risk indifference price p = pseller
risk ,

given as a solution of the equation

ΦEG(t, k, s, x + p) = ΦE0 (t, k, s, x). (68)
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By Lemma 5.1, this becomes

ΨEG(t, k, s)− k(x + p) = ΨE0 (t, k, s)− kx, (69)

which has the solution

p = pseller
risk = k−1(ΨEG(t, k, s)−ΨE0 (t, k, s)) (70)

In particular, choosing k = 1 (i.e., all measures Q ∈ L are probability
measures), we get the following:

Theorem 5.1. Suppose that the conditions of Theorem 4.2 hold. Then the
risk indifference price for the seller of claim G, pseller

risk (G, E), is given by

pseller
risk (G, E) = sup

Q∈M
{EQ[G]− ζ(Q)} − sup

Q∈M
{−ζ(Q)}. (71)
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