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Abstract

Given a sequence of Galerkin spaces Xh of curl conforming vector
fields, we state necessary and sufficient conditions under which it is true
that the scalar product uh ·u′h of two sequences of vector fields uh, u′h ∈ Xh

converging weakly in L2, converges in the sense of distributions to the right
limit, whenever uh is discrete divergence free and curl uh is precompact
in H−1. The conditions on Xh are related to super-approximation and
discrete compactness results for mixed finite elements, and are satisfied
for Nédélec’s edge elements. We also provide examples of sequences of
discrete divergence free edge element vector fields converging weakly to 0
in L2 but whose divergence is not precompact in H−1

loc.

1 Introduction

The div-curl lemma of Murat [4] and Tartar [6] comes in many variants. For
instance it can be formulated for scalar products of differential forms and, more
generally still, for a quadratic form applied to vector-valued functions. We shall
be content with the following version, which captures much of its essence.

We say that a set U is precompact in a topological space X, and write U b X,
if it is included in X and its closure in X is compact. We say that a sequence is
precompact in a topological space X if its set of elements is precompact in X.
For an open subset S of Euclidean space we denote by D(S) the set of smooth
functions whose support is precompact in S.

In the following, let S be the interior of a bounded convex polyhedron in the
Euclidean space R3. All integrals will be on S equipped with Lebesgue measure.
Sequences will be indexed by a countable set of positive reals accumulating only
at 0 and the index variable denoted h.

Lemma 1.1 (div-curl). Suppose (uh) and (u′h) are sequences of L2(S) vector
fields such that:

• (uh) converges weakly in L2(S) to some u ∈ L2(S) and (div uh) is precom-
pact in H−1(S),

• (u′h) converges weakly in L2(S) to some u′ ∈ L2(S) and (curl uh) is pre-
compact in H−1(S).
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Then for any φ ∈ D(S) we have:

lim
h→0

∫
(uh · u′h)φ =

∫
(u · u′)φ. (1)

When (1) holds for all φ ∈ D(S) we shall say simply that (uh ·u′h) converges
vaguely to u · u′. This is also often referred to as (weak-star) convergence in
the sense of distributions. In this lemma, precompactness (resp. weak conver-
gence) in a Sobolev space X can be replaced by precompactness (resp. weak
convergence) in Xloc.

This result is optimal in many senses. For instance we have the following re-
ciprocal which sheds light on the results we shall prove. Suppose (uh) converges
weakly to u in L2(S). Suppose furthermore that for any (u′h) which converges
weakly in L2(S) to say u′ and has the property that (curlu′h) is precompact in
H−1(S), we have that (uh · u′h) converges vaguely to u · u′. Then (div uh) is
precompact in H−1

loc(S) (use u′h = grad ph for (ph) weakly converging in H1(S)
to obtain this).

We are interested in extending the above results to a Galerkin setting. Sup-
pose we have a family (Xh) of closed subspace of the space of vector fields:

Hcurl(S) = {u ∈ L2(S) : curl u ∈ L2(S)}, (2)

equipped with the graph norm. Define closed subspaces Yh and Ỹh of H1(S) by:

Yh = {p ∈ H1(S) : grad p ∈ Xh}, (3)

Ỹh = Yh ∩H1
0(S). (4)

In all of the following we will assume that:

∀u ∈ L2(S) lim
h→0

inf
uh∈Xh

‖u− uh‖L2 = 0, (5)

∀p ∈ H1(S) lim
h→0

inf
ph∈Yh

‖p− ph‖H1 = 0, (6)

∀p ∈ H1
0(S) lim

h→0
inf

ph∈Ỹh

‖p− ph‖H1 = 0. (7)

We shall say that a sequence of elements uh ∈ Xh is discrete divergence free
when for all h:

∀ph ∈ Ỹh :
∫

uh · grad ph = 0. (8)

Discrete divergence free vector fields need not be truly divergence free, but any
weak L2(S) limit of such vector fields must be, due to (7).

We would like to obtain necessary and sufficient conditions on (Xh) for the
following to hold:

–Galerkin div-curl lemma (?): For any discrete divergence free sequence
of elements uh ∈ Xh converging weakly in L2(S) to u and any sequence of
elements u′h ∈ Xh converging weakly in L2(S) to u′ and having precompact curl
in H−1(S), (uh · u′h) converges vaguely to u · u′.

In a previous paper [1] we obtained sufficient conditions expressed as follows.
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Define Wh and Vh by:

Wh = {uh ∈ Xh : curl uh = 0} = {grad ph : ph ∈ Yh}, (9)

Vh = {uh ∈ Xh : ∀wh ∈ Wh

∫
uh · wh = 0}. (10)

–Super-approximation (SA) is the following property. For all φ ∈ D(S) we
have:

lim
h→0

sup
ph∈Yh

inf
p̃h∈Ỹh

‖ph − φp̃h‖H1(S)/‖ph‖H1(S) = 0. (11)

–Uniform norm equivalence (UNE) is the following property. There is C > 0
such that:

∀h ∀vh ∈ Vh ‖vh‖L2(S) ≤ C‖ curl vh‖H−1(S). (12)

In [1] we proved that these two conditions are sufficient and that they are
satisfied when Xh are Nédélec’s edge element spaces [5] of given polynomial
degree, attached to quasi-uniform meshes Th of mesh-width h. (SA) is appears
in super convergence results [7]. We also related (UNE) to discrete compactness
in the sense of Kikuchi [3]. Moreover we asked the question, if there are discrete
divergence free sequences uh ∈ Xh converging weakly in L2(S), whose divergence
is not precompact in H−1(S), but were not able to answer it.

In this paper we introduce weaker versions of (SA) and (UNE):
–Weak super-approximation (WSA) is the following property. For all φ ∈

D(S) we have:

lim
h→0

sup
uh∈Xh

sup
ph∈Yh

inf
p̃h∈Ỹh

|
∫

uh ·grad(φph− p̃h) |/(‖ph‖H1(S)‖uh‖L2(S)) = 0. (13)

–Local uniform norm estimate (LUNE) is the following property. For any
nonempty open subset S′ of S which is precompact in S, there is C > 0 such
that:

∀h ∀vh ∈ Vh ‖uh‖L2(S′) ≤ C‖ curluh‖H−1(S). (14)

We shall prove that (WSA) and (LUNE) together are necessary and sufficient
for (?) to hold. Moreover for the case when (Xh) are Nédélec’s edge elements,
we shall provide a big supply of sequences of vector fields uh ∈ Xh which are
discrete divergence free and converge weakly to 0 in L2(S) but nevertheless have
the property that for some precompact subsets S′ of S we have:

lim inf
h→0

‖div uh‖H−1(S′) > 0, (15)

which essentially says that (div uh) is not precompact in H−1(S′).
By this non-compactness result, the Galerkin div-curl lemma cannot be im-

mediately deduced from the continuous one. In view of the above mentioned
reciprocal to the continuous div-curl lemma it is therefore crucial that we have
the condition u′h ∈ Xh in the Galerkin version. On the other hand the contin-
uous div-curl Lemma 1.1 is a special case of the Galerkin one, corresponding
simply to the choice Xh = Hcurl(S) for all h. For this choice, (SA) is trivial and
(UNE) is quite standard (see Proposition 2.1 in [1] and the appended remark).
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2 Necessary and sufficient conditions

We introduce some notations. Define spaces V and W of vector fields by:

W = {u ∈ L2(S) : curl u = 0} = {grad p : p ∈ H1(S)}, (16)

V = {u ∈ L2(S) : ∀w ∈ W

∫
u · w = 0}. (17)

Recall that there is C > 0 such that:

∀u ∈ V ‖u‖L2(S) ≤ C‖ curlu‖H−1(S). (18)

This is a reformulation of the fact that curl : L2(S) → H−1(S) has closed range.
Let PV be the L2 orthogonal projection onto V . Its kernel is W , so it preserves
the curl.

We shall first prove that (WSA) and (LUNE) are sufficient for (?) to hold.

Proposition 2.1. Suppose (WSA) holds. Suppose uh ∈ Xh converges weakly
in L2(S) to u and is discrete divergence free. Suppose ph ∈ Yh converges weakly
to p in H1(S). Then (uh · grad ph) converges vaguely to u · grad p.

Proof. Pick φ ∈ D(S) and write:∫
(uh · grad ph)φ =

∫
uh · grad(φph)−

∫
(uh · gradφ)ph, (19)

=
∫

uh · grad(φph − p̃h)−
∫

(uh · gradφ)ph. (20)

The first term can be made to tend to 0. By Rellich compactness H1(S) → L2(S)
and the divergence freeness of u, the second converges to:

−
∫

(u · gradφ)p =
∫

(u · grad p)φ. (21)

This completes the proof.

Proposition 2.2. Suppose (LUNE) holds. Suppose uh ∈ Xh converges weakly
in L2(S) to u, that:

∀h ∀ph ∈ Yh

∫
uh · grad ph = 0, (22)

and that (curluh) is precompact in H−1(S). Then (uh) converges to u in L2
loc(S).

Proof. Remark that u must be an element of V by (6). Moreover since (curluh)
is precompact in H−1(S) and converges weakly in this space, the convergence is
actually strong. Therefore (PV uh) converges to u in L2(S).

Let Ph be the L2 orthogonal projection onto Xh and remark that (Phu)
converges to u in L2(S) by (5). Moreover Phu ∈ Vh. Let S′ be a non-empty,
precompact subset of S. By (LUNE) we have:

‖uh − Phu‖L2(S′) ≤ C‖ curluh − curlPhu‖H−1(S), (23)

≤ C‖ curlPV uh − curlPhu‖H−1(S), (24)

≤ C‖PV uh − Phu‖L2(S) → 0. (25)
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Hence:
lim
h→0

‖uh − u‖L2(S′) = 0. (26)

This ends the proof.

Theorem 2.3. If (WSA) and (LUNE) hold, then (?) holds.

Proof. In the proof of Theorem 4.2 in [1], the above Propositions 2.1 and 2.2
are adequate substitutes for Propositions 3.4 and 3.2 of that paper.

Now we shall prove that (WSA) and (LUNE) are necessary for (?) to hold.

Proposition 2.4. If (?) holds then (WSA) holds.

Proof. Let Ph denote the projection in H1(S) onto Ỹh, determined by the scalar
product:

(p, p′) 7→
∫

grad p · grad p′. (27)

If (WSA) does not hold we have a φ ∈ D(S), an index set G and subsequences
uh ∈ Xh, ph ∈ Yh indexed by G, such that for all h in G:

‖uh‖L2(S) ≤ 1, (28)
‖ph‖H1(S) ≤ 1, (29)∫

uh · grad(φph − Ph(φph)) ≥ 1/C, (30)

for some C > 0. We may suppose in addition that (uh) is discrete divergence
free and, extracting subsequences, that (uh) converges weakly in L2(S) to u,
and that (ph) converges weakly in H1(S) to p. For the indices h not in G we let
uh be the L2(S) projection on Xh of u (it is discrete divergence free), and ph

be the best H1(S) approximation in Yh of p. We still have weakly convergent
sequences. Moreover:∫

(uh · grad ph)φ =
∫

uh · grad(φph − Ph(φph))−
∫

(uh · gradφ)ph. (31)

As in the proof of Proposition 2.1 the last term converges to:∫
(u · grad p)φ. (32)

Thus by (30) we have a counterexample to (?).

Proposition 2.5. If (?) holds then (LUNE) holds.

Proof. Suppose (LUNE) does not hold. We get a subsequence (uh)h∈G such
that for some (non-negative) φ ∈ D(S) we have:

∀h ∀ph ∈ Yh

∫
uh · grad ph = 0, (33)∫

|uh|2φ = 1, (34)

lim
h→0

‖ curluh‖H−1(S) = 0. (35)
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We have for any vector field v ∈ H1
0(S) and any scalar field p ∈ H1(S):∫

uh · (curl v + grad p) → 0. (36)

From results in [2] it follows that (uh) converges weakly in L2(S) to 0. For
indices h not in G define uh = 0. If (?) were to hold we would have:

lim
h→0

∫
|uh|2φ = 0, (37)

which contradicts (34).

3 A non-compactness result

For the case of Nédélec’s edge elements we shall construct sequences uh ∈ Xh

which are discrete divergence free and converge weakly in L2(S) to 0, but whose
divergence is not precompact in H−1(S′) for some precompact subsets S′ of S.
We shall work in dimension 2 rather than 3 since this eases the exposition yet
captures the essence of the problem. Once this case is at hand, extension to any
higher dimension is easy. We shall use for Xh the lowest order tensor product
edge elements on the unit square S, equipped with the uniform Cartesian mesh
of width h. Thus our examples hold in the nicest possible setting.

First let N > 1 be an integer and subdivide the sides of the unit square in N
intervals of equal length. The unit square is equipped with the corresponding
Cartesian grid. There are 2(N − 1)N interior edges and (N + 1)2 vertices.
An edge element function on this grid is truly divergence free iff its degrees
of freedom are constant on each horizontal line and each vertical line. Thus
the space of truly divergence free edge element vector fields on this grid has
dimension 2(N + 1). It includes the constant vector fields. Denote by ZN the
space of edge element vector fields whose degrees of freedom on the boundary
of the square are 0, which are L2-orthogonal to the gradients of continuous
piecewise bilinear functions (possibly non-zero at the boundary vertices), and
to the subspace of truly divergence free fields. We have:

dim ZN ≥ 2(N − 1)N − (N + 1)2 − 2(N + 1) = (N − 3)2 − 12. (38)

For N ≥ 7 the space is non-zero. Pick an element z of Z7 with L2 norm 1. We
put:

‖div z‖H−1(S) = δ > 0. (39)

For any domain S′ we consider that H1
0(S

′) is equipped with the norm:

p 7→ (
∫
| grad p|2)1/2, (40)

and that H−1(S′) is equipped with the dual norm. These norms behave better
under scaling than the standard H1(S′) norm. We shall use that for a vector
field u, ‖u‖L2 and ‖div u‖H−1 scale in the same way, under maps x 7→ nx, for
n 6= 0.

Now let h = 1/(7n) for integer n > 0 be the mesh width. Consider the unit
square to be filled with n2 macro squares consisting of 7×7 micro squares of side
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width h, in the obvious way. Let Mn be the set of macro squares, for a given
n. Remark that for any set S of macro squares in Mn we have an embedding
of norm 1: ⊕

s∈S
H1

0(s) → H1
0(∪S), (41)

which gives an embedding of norm 1:

H−1(∪S) →
⊕
s∈S

H−1(s). (42)

Here we use the standard Hilbertian direct sum.
For each macro square s ∈ Mn, let zs be the transported version of z to s

which has L2(S) norm 1 (the scaled pull-back, by a map of the form x 7→ nx+a).
For coefficients α = (αs)s∈Mn

put:

uα =
∑

s∈Mn

αszs. (43)

Then uα is a discrete divergence free element of Xh. It is L2 orthogonal to all
the vector fields that are constant in each s ∈ Mn and:

‖uα‖2
L2(S) =

∑
s∈Mn

|αs|2. (44)

Moreover if S′ is an open subset of S:

‖div uα‖2
H−1(S′) ≥

∑
s∈Mn : s⊂S′

|αs|2‖div zs‖2
H−1(s) =

∑
s∈Mn : s⊂S′

|αs|2δ2. (45)

Thus any sequence of coefficients αn = (αn
s )s∈Mn , indexed by n > 0, for

which: ∑
s∈Mn

|αn
s |2 is bounded, (46)

gives rise to a discrete divergence free sequence of fields uh ∈ Xh converging
weakly in L2(S) to 0, and special choices of αn will guarantee that div uh|S′
does not converge to 0 in the H−1(S′) norm. Since (div uh) converges weakly
to 0 in H−1(S), this rules out precompactness of (div uh) in H−1

loc(S).
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