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Chapter 1

Introduction

Administrators of pension funds manage �nancial portfolios of considerable
amounts. To control the risk involved and have grounds on which to �nd the
best management strategy, it is of interest to have a realistic model of the as-
set's behavior. Throughout the last decades several attempts have been made
of this from a mathematical point of view. Here included is the much used
geometric Brownian motion (GBM) of Samuelson (1965). A potential prob-
lem with the GBM is the normality assumption on the stock's log-returns.
Empirical facts tell us that this does not hold on short time spans like a
day or a week. The real distribution of log-returns is not symmetric and has
heavier tails than the normal distribution.

In this thesis I will study alternatives to the GBM where the log-return
follows a Lévy process. These processes allow for sudden jumps in the stock
price to happen and has been proven to �t the empirical data well. I especially
look at two types of Lévy processes; the normal inverse Gaussian (NIG) and
the CGMY.

My objective will be on model risk. Can we expect signi�cant di�erences
in risk by using such models instead of the GBM? With focus on Merton's
portfolio management problem 1 of deriving the maximum expected utility
of consumption over an in�nite time horizon and where the market consists
of one stock and one risk-less asset, I will compare the derivation of the
optimal portfolio, as well as its behavior, with the GBM and exponential
Lévy processes as alternative stock price models. I am particularly interested
in the risk involved when believing in the wrong model. As measures of risk
I use Value-at-Risk (VaR) and conditional Value-at-Risk (cVaR). To have a
fair comparison of the performance of the optimal portfolios I calibrate the
parameters of the models such that the log-returns have equal expectations

1First published in 1969 by Robert C. Merton(1944-), an american economist.
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2 CHAPTER 1. INTRODUCTION

and variances.
My results indicate that for a given strategy, the di�erences in VaR and

cVaR of the portfolios with GBM and NIG/CGMY as alternative stock price
models will be quite small as the time horizon increases. The di�erence in
risk between the models is mostly due to the derivation of the optimal strat-
egy which in turn depends on parameter estimates. This may well lead to
signi�cant di�erences in investment strategies and thus risk pro�les, at least
when the interest rate of the risk-less asset is close to the mean rate of return
on the stock. However, the parameter estimates are often uncertain and the
di�erences can go either way. Hence the utility of using the more complex
Lévy processes instead of the ordinary GBM may not be that big.

Here is an outline of the thesis: In chapter 2 I introduce some basic de�ni-
tions and properties of Lévy processes. Chapter 3 gives a short presentation
of the three stock price models that I apply. In chapter 4 Merton's port-
folio management problem and its solution in both the GBM case and the
exponential Lévy case is presented. I also present an approximation to the
optimal portfolio in the latter case which has a more intuitive form. Chapter
5 provides comparisons of the risk/return pro�le of the optimal portfolios
of the Merton problem in the GBM and exponential NIG cases. Chapter 6
concerns the same topic, but with the CGMY instead of the NIG as driver
of the stock price. Finally, in chapter 7, I make some concluding remarks.



Chapter 2

Lévy Processes

In this thesis I have used two types of Lévy processes as the driver of the
stock prices; the normal inverse Gaussian and the CGMY. Lévy processes is
a class of stochastic processes which includes jump processes. The following
de�nition of a Lévy process is found in Sato [13].

De�nition 2.1. Let (Ω,F , {Ft}t≥0, P ) be a �ltered probability space. An
adapted stochastic process {Lt}t≥0 taking values in R is a Lévy process if
it satis�es the following properties:

� {Lt} has independent increments: For any n ≥ 1 and 0 ≤ t0 ≤ · · · ≤ tn
we have that Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1 are independent

� {Lt} has stationary increments, that is, the distribution of Ls+t − Ls

where s, t ≥ 0, does not depend on s.

� {Lt} is stochastically continuous, that is, for any ε > 0, P (|Ls+t−Ls| >
ε) → 0 as t tends to s.

� L0 = 0 almost surely.

� {Lt} has a modi�cation with right continuous, left limited paths almost
surely,(càdlàg version).

A random variable X has an in�nitely divisible probability distribution
if for each n ≥ 1 there exists n i.i.d. variables X1, . . . , Xn such that

X
d
= X1 + · · ·+ Xn

or equivalently that

φX(u) = (φX1(u))n.

3



4 CHAPTER 2. LÉVY PROCESSES

A Lévy process {Lt} has the property that for each t, Lt has an in�nitely
divisible probability distribution. This is a consequence of it having station-
ary and independent increments. It turns out that any random variable with
an in�nitely divisible law de�nes a unique Lévy process.
Theorem 2.1 (Lévy-Khintchine representation). If a random variable X
has an in�nitely divisible probability distribution µ, then its characteristic
function has the form

φX(u) = E[exp(iuX)] = exp
(

ibu− 1
2
cu2 +

∫

R

(
eiux − 1− iux1|x|<1(x)

)
ν(dx)

)

(2.1)

where i =
√−1, b ∈ R, c ≥ 0 and ν is a measure on R satisfying ν({0}) = 0

and
∫
Rmax{1, x2}ν(dx) < ∞. The triplet (b, c, ν) is unique. Conversely, for

any triplet satisfying the conditions above, there exists a random variable with
in�nitely divisible probability distribution having (2.1) as its characteristic
function.

A Lévy process Lt is in�nitely divisible and thus has a Lévy-Khintchine
representation. The triplet (b, c, ν) is called the generating triplet or the Lévy
triplet. A unique Lévy process can be de�ned from it by setting φL1(u) equal
to the right hand side of (2.1). Then

φLt(u) = (φL1(u))t.

ν is called the Lévy measure. It is a measure on the Borel sets of R not
intersecting 0, B0. For each A ∈ B0, ν(A) measures the expected number of
jumps of size 4L ∈ A occurring in a unit time interval.

From the Lévy-Khintchine representation one can show that Lt equals
the sum of four Lévy processes. This is made concrete in the next theorem:
Theorem 2.2 (Lévy-Itô decomposition). A Lévy process Lt has the decom-
position

Lt = bt +
√

cWt +

∫ t

0

∫

|z|<1

zÑ(ds, dz) +

∫ t

0

∫

|z|≥1

zN(ds, dz) (2.2)

where Wt is a standard Brownian motion, N(ds, dz) is a Poisson random
measure with intensity ds× ν(dz) and Ñ(ds, dz) is the compensated Poisson
random measure N(ds, dz)− ds× ν(dz). Wt and N(t, ·) are independent.

The Poisson random measure N is de�ned as

N(t, A) =
∑

0<s≤t

1A(4Ls)
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where A ∈ B0 and4Ls = Ls−Ls− is the jump at time s. For a �xed A ∈ B0,
N(·, A) is a Poisson process of intensity ν(A). See Øksendal and Sulem [11],
thm. 1.5.

The Lévy-Itô decomposition shows that a Lévy process is a Brownian
motion with drift plus two jump terms. The càdlàg property secures that the
number of jumps of magnitude bigger than one is �nite on any �nite interval
(see Eberlein [9]). However, the Lévy process may have in�nitely many jumps
of magnitude less than one. That is the reason for using a compensated
measure in the third term. Subtracting the average sum of jumps secures
convergence of term three. It also makes it a martingale (see Øksendal and
Sulem [11]). The Brownian term is the continuous martingale part of Lt. If
c = 0, Lt is a purely discontinuous Lévy process (Eberlein [9]). It is this
together with the frequency of small jumps that decides whether or not the
paths have �nite variation.

Proposition 2.1. Let Lt be a Lévy process with triplet (b, c, ν).Then

(i) Almost all paths have �nite variation if c = 0 and
∫
|z|<1

|z|ν(dz) < ∞.

(ii) Almost all paths have in�nite variation if c 6= 0 or
∫
|z|<1

|z|ν(dz) = ∞.

With this in mind we see that a Lévy process is a semimartingale, that is,
a sum of a local martingale, a �nite variation process and an F0 measurable
random variable. The martingale part consists of the Brownian motion and
the compensated integral in (2.2). Since the uncompensated jump term in
(2.2) has a �nite number of jumps, it has �nite variation, as of course is the
case for the drift part as well. With this property a Lévy process can be used
as an integrator in stochastic integrals.

Remark 2.1. With E[|Lt|] < ∞,
∫
|z|≥1

|z|ν(dz) < ∞ and Lt can be decom-
posed as

Lt = E[L1]t +
√

cWt +

∫ t

0

∫

R\{0}
zÑ(ds, dz)

This follows from the fact that both Wt and the compensated integral term
are martingales with expectation 0. In this case we see that Lt is a martingale
if and only if E[L1] = 0.



Chapter 3

Stock Price Models

3.1 The Geometric Brownian Motion
A common model in �nancial mathematics for modelling the price of a stock
at time t is the geometric Brownian motion (GBM). It is the solution of the
stochastic di�erential equation

dSt = αStdt + σStdWt

where α is the drift coe�cient and σ is the volatility coe�cient of the stock.
From Itô's stochastic calculus using Itô's formula the solution can be shown
to be

St = S0 exp(µGBM t + σWt)

where I have used the notation µGBM := α − 1
2
σ. We see that the exponent

is a drifted Brownian motion with drift µGBM and volatility σ. Consequently
the log-return from a time t0 to time t1,

ln

(
St1

St0

)
= µGBM(t1 − t0) + σ(Wt1 −Wt0),

is normally distributed with mean µGBM(t1 − t0) and variance σ2(t1 − t0)
)
.

In this thesis I shall consider alternative stock price models where the
log-returns are distributed by other Lévy processes that contain jump parts,
like the normal inverse Gaussian and the CGMY. These models allow for
both skewness and heavier tails than the normal distribution.

6



3.2. THE NORMAL INVERSE GAUSSIAN DISTRIBUTION 7

3.2 The Normal Inverse Gaussian Distribution
The normal inverse Gaussian (NIG) distribution has four parameters; α, β,
µ and δ. α is a steepness parameter measuring heaviness of the tails, β is an
asymmetry parameter, µ is a location parameter and δ is a scale parameter.
The density function of a NIG distribution is:

nig(x; α, β, µ, δ) =
δα

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2

where K1 is the modi�ed Bessel function of the second kind of index 1 (see
Abramowitz/Stegun [1]). The parameters α, β, and δ satisfy the inequalities
δ > 0 and 0 ≤ |β| ≤ α.

Figure 3.1 shows how the density function varies with di�erent parame-
ters. In the �rst plot we see how the density function becomes steeper with
increasing α's. In the second plot I vary the β parameter. With a negative β
the distribution is skewed to the left and vice versa if β is negative. In the
two plots δ = 2. A higher δ would make the curves �atter as the variance
increases.

The NIG distribution has �nite moments of all order. The expectation
and variance of a NIG random variable L is

E[L] = µ +
δβ√

α2 − β2
, Var[L] =

δα2

(α2 − β2)3/2
.

We can model a stock price St as an exponential NIG process by writing
St = S0 exp(µNIGt + Lt)

where Lt is a Lévy process with unit increments having the distribution
NIG(α, β, 0, δ). NIG is closed under convolution of two variables X and Y
having the same scale and asymmetry parameters α and β (see Rydberg
[12]). This implies that Lt is distributed NIG(α, β, 0, δt).

By Remark 2.1 Lt can be decomposed as

Lt = γct +

∫ t

0

∫

R\{0}
zÑ(ds, dz)

where γc = E[L1] and Ñ(ds, dz) is the compensated Poisson random measure
associated to νNIG. The Lévy measure of the NIG process is

νNIG(dz) =
δα

π|z| exp(βz)K1(α|z|)dz

For any set of parameters, the NIG model has in�nite variation and in�-
nite activity. See e.g. Cont and Tankov [8] for more details.
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3.3 The CGMY Lévy Process

The CGMY Lévy Process is another model used for modelling log-returns of
stocks. It is a special form of tempered stable processes presented by Carr,
Geman, Madan and Yor in [7]. CGMY like the NIG has no di�usion part,
that is c = 0 in its Lévy triplet. It does not have a closed form expression of
its density function, but is de�ned via its Lévy density νCGMY :

νCGMY (z) =

{
C exp (−G|z|)

|z|1+Y if z < 0

C exp (−Mz)
z1+Y if z > 0

The parameters must satisfy C > 0, G ≥ 0, M ≥ 0 and Y < 2. C is
a parameter that determines the general level of activity. A higher C leads
to more jumps. Y is a parameter that de�nes the structure of the paths.
With Y < 1, the paths have �nite variation. With Y ≥ 1, they have in�nite
variation. 0 marks the limit for �nite activity. With Y < 0, CGMY has �nite
activity and in�nite activity with Y ≥ 0. G and M are parameters that
determine the skewness and kurtosis of the process. G < M means the left
tail is heavier and vice versa if G > M . With small G and M there is a high
probability of large jumps, so the kurtosis decrease with G and M . A CGMY
process has �nite moments of all orders and can be expressed as

Lt = γct +

∫ t

0

∫

R\{0}
zÑ(ds, dz) (3.1)

where γc = E[L1] and Ñ(ds, dz) is the compensated Poisson random measure
associated to νCGMY .

With νCGMY (z) de�ned, Lt's characteristic function can be expressed in
terms of the Gamma function:

φCGMY (u, t) = exp
(
t
(
γc + CΓ(−Y )[(M − iu)Y −MY + (G + iu)Y −GY

+ iuY MY−1 − iuY GY−1]
))

.
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By di�erentiating φCGMY we get the variance, skewness and kurtosis of Lt:

Var[Lt] = tCΓ(2− Y )
[ 1

M2−Y
− 1

G2−Y

]

Skew[Lt] =
tCΓ(3− Y )

[
1

M3−Y − 1
G3−Y

]

(Var[Lt])3/2

Kurt[Lt] =
tCΓ(4− Y )

[
1

M4−Y − 1
G4−Y

]

(Var[Lt])2

If Y < 1, the jumps of the process, Lj
t , is a compound Poisson process,

Lj
t =

∫ t

0

∫

R\{0}
zN(ds, dz), (3.2)

with characteristic function

φCGMY,j(u, t) = exp
(
t
(
CΓ(−Y )[(M − iu)Y −MY + (G + iu)Y −GY ]

))
,

implying that E[Lj
t ] = tCY [GY−1 −MY−1].

We can model a stock price St as an exponential CGMY process by writing

St = S0 exp(Lt) (3.3)

where Lt is a Lévy process in the form of (3.1) above. Five parameters are
needed; (C,G, M, Y ) describing the jumps along with the expectation γc

describing the drift.
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Chapter 4

Merton's Portfolio Management
Problem

4.1 Introduction
I wish to study the portfolio problem, stated by Merton, 1969, in [10], of
deriving the optimal investment and consumption strategy in a market with
one risk free asset, governed by a �xed interest rate intensity r, and one
risky asset following either a geometric Brownian motion or alternatively a
more general exponential Lévy process like the two presented in the previous
chapter. The investor is assumed to have a HARA (Hyperbolic Absolute Risk
Aversion) utility function. I also assume there are no transaction costs in the
market.

The solutions to Merton's problem with geometric Brownian motion and
exponential Lévy processes with jumps will be compared and an approxima-
tion to the latter presented.

4.2 Assumptions and Problems
Let the wealth process at time t for an investor with consumption rate c =
(ct), fraction of wealth in the stock π = (πt) and initial wealth x ≥ 0 be
denoted by Xc,π,x

t . If the stock follows a geometric Brownian motion the
wealth process must follow the dynamics

dXc,π,x
t = [r + (µGBM +

1

2
σ2 − r)πt)]X

c,π,x
t dt− ctdt + σπtX

c,π,x
t dWt (4.1)

For stock models where the log-return follows a Lévy process with jumps, the
dynamics of wealth become more complicated. Benth, Karlsen and Reikvam

12
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show in [6] that the wealth dynamics for a general exponential Lévy process
with Lévy triplet (µ, σ2, ν) according to (2.1) is:

dXc,π,x
t = [r + (µ̂− r)πt]X

c,π,x
t dt− ctdt + πt−Xc,π,x

t−

∫

R\{0}
(ez − 1)Ñ(dt, dz)

where

µ̂ = µ +
1

2
σ2 +

∫

R\{0}
(ez − 1− z1|z|<1)ν(dz). (4.2)

µ̂ is the mean rate of return of the stock and is assumed to be higher than
r. The dynamics also rest on the assumption that

∫

|z|≥1

|ez − 1|ν(dz) < ∞ (4.3)

(see Benth et al. [6], p. 450).
The stochastic control problem of the investor is to �nd an admissible

pair of a consumption rate ct and a fraction of wealth πt that maximizes the
expected utility of consumption over an in�nite time horizon. One assumes
a discount rate η and a risk aversion coe�cient 1− γ.

The class of admissible controls (c, π) when initial wealth is x, Ax, can
be characterized as follows: (c, π) ∈ Ax if

� ct is nonnegative, adapted and satis�es
∫ t

0
E[cs]ds < ∞ ∀t ≥ 0.

� πt ∈ [0, 1], is adapted and has càdlàg paths

� ct is such that Xc,π,x
t ≥ 0 almost surely ∀t ≥ 0

The problem is for an initial wealth x ≥ 0 to �nd admissible c∗ and π∗

such that

V (x) = sup
(c,π)∈Ax

E
[∫ ∞

0

e−ηt c
γ
t

γ

]
= E

[∫ ∞

0

e−ηt (c
∗
t )

γ

γ

]

γ ∈ (0, 1) measures the investor's tolerance towards risk. A low γ will
give a higher utility of consumption in the early stages of the time period
in which wealth is well known, but if the wealth, and thereby implicitly the
consumption, should rise to a high level, low γ's will not give as high a utility
as big ones. Thus a "risk lover" will have a high γ.
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4.3 Solution
To solve this problem we apply the dynamic programming principle leading
to the Hamilton-Jacobi-Bellmann (HJB) equation. Given that the wealth at
present is x, the equation for the optimal consumption and investment is:

max
c≥0,π∈[0,1]

[
(r + (µ̂− r)π)xv′(x)− cv′(x)− ηv(x) +

cγ

γ
+

1

2
σ2π2x2v′′(x)

+

∫

R\{0}

(
v(x + πx(ez − 1))− v(x)− πxv′(x)(ez − 1)

)
ν(dz)

]
= 0

(4.4)

A good guess for the solution is V (x) = Kxγ. Benth et al. show in [6]
that this leads to an integral equation for π, which is independent of time:

(µ̂− r)− (1− γ)σ2π +

∫

R\{0}

(
(1 + π(ez − 1))γ−1 − 1

)
(ez − 1)ν(dz) = 0

(4.5)
The optimal consumption has a simpler expression:

c = (Kγ)
1

γ−1 x (4.6)

We see that it is optimal at all times to allocate a constant fraction of wealth
in the stock and to consume another constant fraction. To �nd the constant
K we substitute (4.6) into (4.4). This yields:

K =
1

γ

[ 1− γ

η − k(γ)

]1−γ

where

k(γ) = max
π∈[0,1]

[
γ
(
r + (µ̂− r)π

)− 1

2
σ2π2γ(1− γ)

+

∫

R\{0}

(
(1 + π(ez − 1))γ − 1− γπ(ez − 1)

)
ν(dz)

]
.

(4.7)

To secure that the value function is positive and �nite the condition

η > k(γ)

will su�ce. With this the optimal consumption strategy can be written more
compactly as

c∗(x) =
η − k(γ)

1− γ
x.
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By di�erentiating the expression which is to be maximized in (4.7) with
respect to π, we obtain an expression proportional to the left side of (4.5). It
thus follows that the maximizing π∗ in (4.7) is nothing but the solution π∗

of (4.5).
In the GBM the Lévy measure νGBM ≡ 0. Thus the optimal allocation in

the stock according to (4.5) is easily seen to be

π∗GBM =
µGBM + 1

2
σ2 − r

σ2(1− γ)
(4.8)

and the consumption rate is explicitly given since

kGBM(γ) = γ

[
r +

(µ + 1
2
σ2 − r)2

2σ2(1− γ)

]
. (4.9)

For exponential Lévy models with jump like NIG and CGMY, the solu-
tions are not as straightforward.

4.4 Analysis of the Optimal Stock Allocation
π∗

Let us analyze equation (4.5) a bit to see how the solution di�ers in the
geometric Brownian motion case compared to other exponential Lévy models
that satisfy the scheme of the Merton problem. I assume the alternative Lévy
process Lt driving the stock has no Gaussian part, but a nonzero jump part,
i.e. c = 0 and ν 6= 0 in its Lévy triplet. Assumption (4.3) implies that Lt can
be written as a compensated compound Poisson process,

Lt = γct +

∫ t

0

∫

R\{0}
zÑ(ds, dz)

as in remark 2.1. Included in this class of processes are the NIG and the
CGMY.

For such Lévy processes the variance is (see appendix B):

Var[Lt] = t

∫

R\{0}
z2ν(dz). (4.10)

µ̂ in the form of (4.2) is expressed through the standard truncation func-
tion 1|z|<1 of the Lévy-Khintchine representation. With NIG and CGMY we
may instead use the truncation function 1|z|<∞ leading to

µ̂ = γc +

∫

R\{0}
(ez − 1− z)ν(dz).
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This expression is better understood if we substitute the integrand with its
Taylor series expansion at z = 0. We then get

µ̂ = γc +

∫

R\{0}

(z2

2
+

z3

6
+

z4

24
+ . . .

)
ν(dz)

= γc +
1

2
Var[L1] +

∫

R\{0}

(z3

6
+

z4

24
+ . . .

)
ν(dz)

where I have applied (4.10). Recognizing that µ̂ = µGBM + 1
2
σ2 in the GBM

we see the resemblance of these.
Regarding the integral part of (4.5) we calculate the �rst terms in the

Taylor series of
(
(1 + π(ez − 1))γ−1 − 1

)
(ez − 1) at z = 0 to be

π(γ − 1)z2 +
1

2
(γ − 1)π(2 + π(γ − 2))z3.

By (4.10) it is thus possible to extract the term π(γ − 1)Var[L1] from
the integral, again similar to the term π(γ − 1)σ2 in the GBM case. If the
log increments of the GBM and the alternative exponential Lévy model have
equal mean and variance, the only part of (4.5) that di�er is a ν(dz)-integral
of a linear combination of terms zn of order n ≥ 3. These terms are usually
small compared to the other terms of the equation. More on this will follow
in the next section.

4.5 Optimal Portfolios under Di�erent Drivers
4.5.1 Geometric Brownian Motion
It is not hard to see that the process of the optimal portfolio under the geo-
metric Brownian motion is another geometric Brownian motion. Substitute
the expressions for optimal consumption and investment into (4.1) and we
get a model of the form:

dXc∗,π∗,x
t = aGBMXc∗,π∗,x

t dt + σπ∗GBMXc∗,π∗,x
t dWt (4.11)

where

aGBM = r + (µGBM +
1

2
σ2 − r)π∗GBM − η − kGBM(γ)

1− γ
.

The optimal portfolio thus follows the geometric Brownian motion

Xc∗,π∗,x
t = x exp

(
(aGBM − 1

2
σ2π∗GBM

2)t + σπ∗GBMWt

)
. (4.12)
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4.5.2 NIG and CGMY
This section, like section 4.4, will treat the cases where the driver of the stock
price is a Lévy process Lt with no Gaussian part, but with a nonzero jump
part, that is

Lt = γct +

∫ t

0

∫

R\{0}
zÑ(ds, dz)

The dynamics of the optimal portfolio is

dXc∗,π∗,x
t = aXtdt + π∗Xt−

∫

R\{0}
(ez − 1)Ñ(dt, dz) (4.13)

where

a = r + (µ̂− r)π∗ − η − k(γ)

1− γ
.

It is possible to obtain a closed solution to this stochastic di�erential equation
by applying Itô's formula for Lévy processes (see Øksendal/Sulem [11], p. 7).
From this formula we get that the optimal portfolio at time t can be expressed
as:

Xc∗,π∗,x
t =x exp

(
a · t +

∫ t

0

∫

R\{0}

(
ln

(
1 + π∗(ez − 1)

)− π∗(ez − 1)
)
ν(dz)ds

+

∫ t

0

∫

R\{0}
ln

(
1 + π∗(ez − 1)

)
Ñ(ds, dz)

)

(4.14)

Let us denote the exponent in this expression Yt = Y c∗,π∗,1
t = ln Xc∗,π∗,1

t .
If we let π∗ = 1, Yt should be of the same type as Lt and we see that
this indeed is true because the integral involving the compensated Poisson
random measure Ñ(ds, dz) then becomes

∫ t

0

∫
R\{0} zÑ(ds, dz), the jump part

of Lt.
Another question then arise. Is Yt close to being a process of the Lt type

even when π∗ < 1? To answer this we may look at the Taylor series expansion
of the integrand

fπ(z) := ln
(
1 + π(ez − 1)

)

at z = 0. fπ is in�nitely di�erentiable on R for any π ∈ [0, 1]. Taylors theorem
thus states that for any n ≥ 0:

fπ(z) = fπ(0) + f ′π(0)z +
1

2!
f ′′π (0)z2 + · · ·+ 1

n!
f (n)

π (0)zn + R(n + 1) (4.15)
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where the remainder term R(n + 1) satis�es

R(n + 1) =
f

(n+1)
π (ξ)

(n + 1)!
zn+1

for some ξ between 0 and z.
By straightforward di�erentiation we get

fπ(z) = ln
(
1 + π(ez − 1)

)
= πz +

1

2
π(1− π)z2 +

1

6
(2π3 − 3π2 + π)z3 + R(4)

(4.16)
In �gure 4.1 I have plotted fπ(z) along with the �rst term in its Taylor series,
πz, and the standard integrand in a Lévy process, z. We see that |fπ(z)| ≤
|z| ∀z so that Yt has jumps of smaller magnitude than Lt. f ′π(z) = πez

(1−π)+πez

tends to 1 when z → +∞ and to 0 when z → −∞. There is a good �t
around 0 between fπ(z) and πz, and since νNIG and νCGMY has most of its
mass centered in this area it seems natural to use the approximation πz for
fπ(z) in the jump part of Yt. πz gives smaller positive jumps than fπ(z),
but also negative jumps of greater magnitude. With πz instead of fπ(z) the
process Xt can be approximated as

Xc∗,π∗,x
t ≈ X̂t

c∗,π∗,x
:= x exp

(
(a + i)t + π∗

∫ t

0

∫

R\{0}
zÑ(ds, dz)

)
(4.17)

where i =
∫
R\{0}

(
ln

(
1 + π∗(ez − 1)

)− π∗(ez − 1)
)
ν(dz). The exponent has

a drift term and the same jump term as Lt, only scaled by the factor π∗.
I will now explain the similarities and di�erences of Xt in the GBM and

the NIG/CGMY cases. Like in section 4.4 we can write the mean rate of
return as

µ̂ = γc +

∫

R\{0}
(ez − 1− z)ν(dz).

The deterministic part (and expected value) of Y1 is then

a + i = r + (µ̂− r)π∗ − c +

∫

R\{0}

(
ln

(
1 + π∗(ez − 1)

)− π∗(ez − 1)
)
ν(dz)

= r(1− π∗)− c + π∗
(
γc +

∫

R\{0}
(ez − 1− z)ν(dz)

)

+

∫

R\{0}

(
ln

(
1 + π∗(ez − 1)

)− π∗(ez − 1)
)
ν(dz)

= r(1− π∗)− c + π∗γc +

∫

R\{0}

(
ln

(
1 + π∗(ez − 1)

)− π∗z
)
ν(dz)

= r(1− π∗)− c + π∗γc +

∫

R\{0}

(1

2
π∗(1− π∗)z2 + R(3)

)
ν(dz)
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Figure 4.1: The integrand fπ(z) in the jump part of Yt and its approximation
πz when π = 0.5.

where c denotes the consumption rate η−k(γ)
1−γ

. In the �nal step I have substi-
tuted fπ∗(z) by its Taylor expansion.

Let us compare the expected value of Yt in the GBM case (i), and with
Lt (NIG/CGMY) as the driver (ii):

(i)
[
r(1− π∗)− c + π∗µGBM + 1

2
σ2π∗(1− π∗)

]
t

(ii)
[
(r(1− π∗)− c + π∗γc +

∫
R\{0}

(
1
2
π∗(1− π∗)z2 + R(3)

)
ν(dz)

]
t

Apart from the last terms, (i) and (ii) have the same form. In the next
two chapters I shall compare the optimal portfolio with exponential NIG and
CGMY respectively as alternatives to GBM. I then calibrate the parameters
such that the mean and variance of ln St in both models coincide, i.e. µGBM =
γc and σ2 = Var[L1]. If we apply the same optimal (c∗, π∗) as well then the
only di�erence between (i) and (ii) is the last term.

For any Lévy process we have

Var[Lt] = t

∫

R\{0}
z2ν(dz).
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Thus if σ2 = Var[L1], the only di�erence between (i) and (ii) is the term
t
∫
R\{0} R(3)ν(dz) in (ii). As we will see in the next section, integrals of this

sort are often small compared to the other terms. νNIG(z) grows propor-
tional to |z|−2 and νCGMY (z) grows proportional to |z|−(1+Y ) as |z| → 0 (see
appendix A). Thus in both NIG and CGMY z3ν(z) → 0 as z → 0.

We know that the stochastic terms of Yt in cases (i) and (ii) are

(i) σπ∗Wt and

(ii)
∫ t

0

∫
R\{0} f(z)Ñ(ds, dz) ≈ π∗

∫ t

0

∫
R\{0} zÑ(ds, dz).

The variance in case (i) is π∗2σ2t since Var[Wt] = t. In case (ii) we apply
theorem B of appendix B. Let us put γ(z) = fπ(z). Then since f is deter-
ministic and |fπ(z)| ≤ |z| ∀z, the conditions in theorem B are satis�ed.
Thus:

Var[Yt] = t

∫

R\{0}
fπ∗(z)2ν(dz) = t

∫

R\{0}

(
ln

(
1 + π∗(ez − 1)

))2

ν(dz)

= t

∫

R\{0}

(
π∗2z2 + π∗2(1− π∗)z3 + R(4)

)
ν(dz)

= π∗2Var[L1]t + t

∫

R\{0}

(
π∗2(1− π∗)z3 + R(4)

)
ν(dz)

(4.18)

where I have substituted
(
ln

(
1 + π∗(ez − 1)

))2 with its Taylor expansion.
The variances in (i) and (ii) have similar forms except for the integral in
(4.18). This term is not present in the approximation case. Thus if σ2 =
Var[L1], the log-returns have equal variance.

4.5.3 Numerical Examples
To verify the results of the previous section, and see how well approximation
(4.17) works, we look at some examples where σ2 = Var[L1] and the controls
(c, π) are the same in both models.

Example A: Let Lt ∼ NIG(56.16, 2.641, −0.0006t, 0.015t). This process
will be the main example in the next chapter and has a realistic set of param-
eters for stock log-return. For simplicity let us put t = 1. By the formula for
variance of a NIG distributed variable in chapter 3.2, Var[L1] = 2.680 · 10−4.
Thus the variance of the approximation Ŷ1 with π = 0.5 is 0.52 ·2.680 ·10−4 =
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π = 0.5 Real/Appr. Var (+) Var (-) Var tot
Example A Real 3.59 · 10−5 3.12 · 10−5 6.708 · 10−5

Approx. 3.55 · 10−5 3.15 · 10−5 6.700 · 10−5

Example B Real 5.70 · 10−5 4.14 · 10−5 9.843 · 10−5

Approx. 5.58 · 10−5 4.21 · 10−5 9.791 · 10−5

Example C Real 3.75 · 10−5 6.69 · 10−5 1.044 · 10−4

Approx. 3.68 · 10−5 6.91 · 10−5 1.059 · 10−4

Table 4.1: Decomposition of variance of one-day portfolio log-returns in the
real process, Xt and in the approximated one, X̂t due to positive (+) and
negative (-) jumps.

6.700 · 10−5, which is the variance in the GBM case as well. The variance of
the real process Y1 in the NIG case is calculated from (4.18) to be 6.708·10−5,
just slightly higher. Looking at variance coming from positive and negative
jumps separately, the variance of positive jumps is lower in the approxima-
tion than in the real model (see table 4.1). With negative jumps it is the
opposite. This can be explained by looking at �gure 4.1 where we see that
the approximation has smaller positive jumps, but also negative jumps of
greater magnitude. The di�erence of the expectations of Y1 in the GBM and
exponential NIG cases is of order 10−9, and indicates that the integral of the
remainder term R(3) with respect to νNIG in Y1 is very small.

Example B: Let Lt ∼ NIG(32.50, 3.560, −0.0015t, 0.0125t). This is a pos-
itively skewed distribution with high kurtosis (see section 5.7). The di�erence
of the expectations of Y1 in the two models is of order less than 10−8. Other
results are similar to example A and displayed below.

Example C: Let Lt ∼ NIG(25.85, −6.262, 0.003t, 0.01t). This is a very
negatively skewed distribution with high kurtosis. See section 5.7 for more
details. Var[L1] = 4.236 · 10−4 and thus with, π = 0.5, the variance of Y1 in
the GBM case (and the approximation case) is 0.52 ·4.236·10−4 = 1.059·10−4.
Var[Y1] in the NIG case is calculated from (4.18) to be 1.044 · 10−4. The dif-
ference of the expectations of Y1 in the two models is of order 10−7.

The tables 4.2-4.4 show variance, skewness and kurtosis of the logarithm of
X1 and X̂1 for di�erent stock allocations π. The variance in example A and
B is higher in the real process than in its approximation. That is because the
Lévy process has positive skewness pushing more weight to the positive side
where the real jumps are higher than the approximated ones. In example C,
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Stock Real/Approx. π = 0.1 π = 0.5 π = 0.9

Example A Real 2.687 · 10−6 6.708 · 10−5 2.171 · 10−4

Approx. 2.680 · 10−6 6.700 · 10−5 2.171 · 10−4

Example B Real 3.958 · 10−6 9.843 · 10−5 3.175 · 10−4

Approx. 3.916 · 10−6 9.791 · 10−5 3.172 · 10−4

Example C Real 4.133 · 10−6 1.046 · 10−4 3.420 · 10−4

Approx. 4.236 · 10−6 1.059 · 10−4 3.431 · 10−4

Table 4.2: Variance of portfolio log-returns in the real model and in the
approximated one.

Stock Real/Approx. π = 0.1 π = 0.5 π = 0.9

Example A Real 0.233 0.198 0.163
Approx. 0.154 0.154 0.154

Example B Real 0.720 0.629 0.539
Approx. 0.517 0.517 0.517

Example C Real -1.11 -1.26 -1.41
Approx. -1.45 -1.45 -1.45

Table 4.3: Skewness of portfolio log-returns in the real model and in the
approximated one.

the process has negative skewness, it is the other way. The variances do not
deviate much and converge as π increases.

Skewness and kurtosis in the approximation is invariant of π. It is not
so in the real process. As we saw in �gure 4.1 jumps are higher in the real
process than in the approximation. Thus the real skewness is also higher, but
it steadily decreases and converges to the approximation's when π increases.
Kurtosis is similar to the variance in the sense that positive skewness makes
the kurtosis of the real process higher and the opposite if skewness is negative.

The values in tables 4.2-4.4 tells us that the approximation (4.17) is good,
at least when π is close to 1. Some further evidence of this is the QQ-plots
in �gure 4.2. I have simulated 200 thousand scenarios of 5 days portfolio log-
return with both the real process X5 and the approximation X̂5. The stock
allocation is π = 0.5. (See the next chapter for simulation details.) Real log-
returns appear to have slightly higher quantiles in both ends, especially in
the skewness direction. This is probably due to it having higher jumps than
the approximation. Still the conclusion must be that the approximation is
good. For comparison I have also made QQ-plots of ln X5 in the NIG and
GBM cases where the tail quantiles di�er more.
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Stock Real/Approx. π = 0.1 π = 0.5 π = 0.9

Example A Real 3.69 3.64 3.60
Approx. 3.60 3.60 3.60

Example B Real 8.53 8.13 7.84
Approx. 7.78 7.78 7.78

Example C Real 12.68 13.42 14.45
Approx. 14.77 14.77 14.77

Table 4.4: Kurtosis of portfolio log-returns in the real model and in the
approximated one.

To sum up: The small di�erences in both the expectations and variances
of Yt indicates that the Lévy integral terms zn of order n ≥ 3 is rather
insigni�cant. I have presented an approximation to the optimal portfolio Xt

in the Lévy case, expressed quite similarly to the GBM case, and perhaps
more easily interpreted. This approximation was shown to be quite good for
di�erent kind of stocks.

Figure 4.2: QQ plot of portfolio log-returns over 5 days in examples A (left),
B (center) and C (right). Stock allocation π = 0.5. Top: The real ln X5 in
NIG case vs its approximation ln X̂5. Bottom: ln X5 in the NIG vs GBM.



Chapter 5

GBM vs. Exponential NIG

5.1 Introduction
In this chapter I will analyze how the choice of stock price model a�ects the
risk/return pro�le of the optimal portfolio of the Merton problem. Compar-
isons will be made between the geometric Brownian motion and the exponen-
tial NIG model. I will employ the risk measures Value-at-Risk and conditional
Value-at-Risk (expected shortfall).

5.2 Risk Measures
There are several de�nitions of a risk measure. Acerbi and Tasche de�nes in
[2] a risk measure to be a mapping ρ : V 7→ R, where V is a given set of
random variables, such that ρ is

(i) (monotonous) X ∈ V, X ≥ 0 ⇒ ρ(X) ≤ 0

(ii) (sub-additive) X, Y, X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

(iii) (positively homogeneous) X ∈ V, h > 0, hX ∈ V ⇒ ρ(hX) = hρ(X)

(iv) (translation invariant) X ∈ V, a ∈ R ⇒ ρ(X + a) = ρ(X)− a

This is really a de�nition of a family of risk measures called coherent risk
measures. Not all risk measures are coherent. Value-at-Risk does not satisfy
the second property of sub-additivity. I will still use VaR as an example of a
risk measure since it satis�es the the other three conditions and is a market
norm for measuring risk.

24
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5.2.1 Value-at-Risk (VaR)
Value-at-risk is a commonly used measure of �nancial risk. In this thesis I
will use the following de�nition of VaR:

De�nition 5.1. Let Xt be a stochastic variable representing the value of a
portfolio at time t. Then we say that the Value-at-Risk of the portfolio at risk
level q is:

VaRq(Xt) = inf{x ∈ R : P (X0 −Xt > x) ≤ q} (5.1)

where X0 is the initial value of the portfolio.

Hence the probability of a greater loss than VaRq is exactly q. Value-at-
Risk is not a coherent risk measure, since it does not satisfy the condition of
subadditivity.

5.2.2 Conditional Value-at-Risk (cVaR)
Value-at-Risk has been criticized of not providing info of how bad things
really can go when they do. A way to measure this is the conditional Value-
at-Risk (cVaR), also called expected shortfall or expected tail loss. I will use
the de�nition given in Acerbi/Tasche [2].

De�nition 5.2. Let Xt be a stochastic variable representing the value of a
portfolio at time t. Then we say that the conditional Value-at-Risk of the
portfolio at risk level q is:

cVaRq(Xt) = E[X0 −Xt|Xt ≤ xq] (5.2)

where xq is the q-quantile in the distribution of Xt.

The cVaR is the mean of the losses that are worse that the VaR. It it
therefore more sensitive to the extreme values in the tail of the loss distribu-
tion.

5.3 Problems
I assume there exists a set of log-return data to which both a normal dis-
tribution, used in the geometric Brownian motion, and a NIG distribution
used in the exponential NIG model are �tted. Given an interest rate intensity
r and a discount rate η the �tted models leads to sets of optimal controls
(c∗GBM , π∗GBM) and (c∗NIG, π∗NIG) for every risk aversion coe�cient 1 − γ. I
want to answer two main questions concerning risk/return:
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1. What is the di�erence in VaR and cVaR when we compare portfolios
with the same pair (c∗, π∗), but with di�erent underlying models for
stock return?

2. What is the di�erence in VaR and cVaR when we compare portfolios
with di�erent optimal controls (c∗GBM , π∗GBM) and (c∗NIG, π∗NIG), but
with a �xed underlying model?

5.4 Methods
I have implemented results from the article [5] by Benth et al. where they
compare solutions to the Merton problem under the GBM and the exponen-
tial NIG. To obtain a set of realistic parameters, they use maximum likelihood
methods to �t both a NIG model and a normal one to daily log-return data
of Norsk Hydro on the New York Stock Exchange (NYSE) ranging from 1990
through 1998. I will use this example throughout the entire chapter. The es-
timated NIG-parameters were: α = 56.16, β = 2.641, µNIG = −0.0006 and
δ = 0.015. This giving an expected daily rate of return of µ̂ = 2.403 · 10−4

(6.01% yearly assuming 250 trading days). The distribution has a skewness
of 0.15 and a kurtosis of 3.60 (see appendix B for the de�nition of these).

The MLE for the normal distribution were µGBM = 0.000101 and σ =
0.0166 leading to an expected rate of return of 2.388 · 10−4 (5.97% yearly).

The interest rate intensity was taken to be r = 2 · 10−4 and η = 0.06
though not necessarily true for the given period. This easily leads to π∗GBM

and c∗GBM through the formulas (4.8) and (4.9). It it is harder though to
calculate π∗NIG and c∗NIG considering (4.5) and (4.7).

5.4.1 Deriving the Optimal NIG Portfolio
For deriving the optimal NIG portfolio there are integrals involving the Lévy
measure νNIG(dz) over R \ {0} that needs to be evaluated. The measure has
most of its mass centered around zero as is seen in �gure 5.1. I used the R
function "integrate" with a cuto� at ±2 and the build in Bessel function.
The cuto� should provide a good degree of precision, see the appendix for a
detailed discussion of this. To solve (4.5), which here takes the form

f(π) = (µ̂− r) +

∫

R\{0}

(
(1 + π(ez − 1))γ−1 − 1

)
(ez − 1)νNIG(dz) = 0

(5.3)
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Figure 5.1: Density of the Lévy measure ν(z) on log-scale for the parameters
of Norsk Hydro.

where

µ̂ = µNIG +
δβ√

α2 − β2
+

∫

R\{0}
(ez − 1− z)νNIG(dz) (5.4)

I use the method of bisection. The interval [0, 1] was bisected 14 times to
reach a precision of 2−14 = 6.1 · 10−5 of π∗NIG.

5.5 Simulation
Throughout this chapter I let the initial wealth X0 of the investor be 1 so
that VaR and cVaR are the fraction of wealth that is lost. To evaluate the
VaR and cVaR of the NIG portfolio, I employ Monte Carlo simulation of the
stock returns. Simulation of NIG variables has been well developed, e.g. by
Rydberg [12] , and will not be a topic in this thesis. I use the R package called
"fBasics" for generating NIG variables. Figure 5.2 indicates that the MC
simulated NIG variables follow the wanted NIG distribution well. To have
a reasonable approximation to the continuous re-allocation of the optimal
portfolio I choose to draw log-returns and re-allocate with one-day intervals.
This was found to be of su�cient precision.

To obtain a fair comparison of the portfolio performance under the GMB
and the exponential NIG model in question 1 I calibrate the models such
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Figure 5.2: Log-histogram of simulated daily log-returns for Norsk Hydro
under the NIG model. The full line shows the true log-density. The dashed
line is the corresponding normal log-density curve.

that the mean and variance of log-returns coincide. I simply exchange the ML
estimates µGBM and σ with the mean and standard deviation of the estimated
NIG distribution. With these new parameters in the GBM I simulate the
development of a portfolio under both models. Below is the results when
the optimal investment proportion was π∗GBM as an investor believing in the
GBM would apply. Since the time horizon is in�nite consumption rates are
small, ranging from 0.024% for γ = 0.10 to 0.036% for γ = 0.95. The investor
believing in the GBM had a slightly higher c∗, most noticeable for γ's close to
one. The di�erences however were small, and I have therefore chosen not to
include consumption in the results. The tables below contain VaR and cVaR
at levels 1% and 5 %. I have also included results on the right tail behavior
of the return distribution. Pq denotes the upper q quantile and TPq ("Tail
Pro�t") denotes the mean of the outcomes better than Pq.

For the 5 days horizon we see that there are distinct di�erences in both
VaR0.01 and cVaR0.01 when looking at question 1. With all wealth invested in
the stock VaR0.01 is 8.45% with NIG and 8.14% with GBM, a relative di�er-
ence of 4%. The cVaR at this level is 10.00% and 9.30% respectively, a relative
di�erence of 7.5%. We see from �gure 5.3 that this di�erence distributes itself
smoothly over all the γ's, which is to be expected from the results of section
4.5.2. At level 5% we notice that the VaR is actually slightly higher for the
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Figure 5.3: The same weights, but di�erent underlying models, (question
1). Left side: VaR0.01 and cVaR0.01. Right side: VaR0.05 and cVaR0.05. Top: 5
days horizon. Center: 20 days. Bottom: 60 days. Exponential NIG is the full
line and GBM is the dashed line.
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Figure 5.4: Left side: P0.95 and TP0.95. Right side: P0.99 and TP0.99. Top: 5
days horizon. Center: 20 days. Bottom: 60 days. Exponential NIG is the full
line and GBM is the dashed line.
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π = 15.6% π = 56.3% π = 100%
t = 5 VaRq cVaRq VaRq cVaRq VaRq cVaRq

GBM, q=0.01 1.22 1.41 4.59 5.27 8.14 9.30
NIG, q=0.01 1.27 1.52 4.77 5.66 8.45 10.00

GBM, q=0.05 0.83 1.07 3.23 4.07 5.78 7.22
NIG, q=0.05 0.81 1.09 3.17 4.16 5.69 7.39

Pq TPq Pq TPq Pq TPq

GBM, q=0.95 1.05 1.30 3.55 4.46 6.27 7.93
NIG, q=0.95 1.06 1.37 3.56 4.72 6.27 8.38

GBM, q=0.99 1.46 1.66 5.03 5.78 8.98 10.35
NIG, q=0.99 1.57 1.87 5.45 6.56 9.70 11.73

Table 5.1: Simulation results answering question 1 (where the underlying
models are di�erent, but we apply the same weights). Time horizon is 5 days.
The three weights correspond to γ = 0.10, 0.75 and γ > 0.90 respectively. All
results are in %.

π = 15.6% π = 56.3% π = 100%
t = 20 VaRq cVaRq VaRq cVaRq VaRq cVaRq

GBM, q=0.01 2.22 2.60 8.77 10.04 15.44 17.51
NIG, q=0.01 2.23 2.64 8.84 10.20 15.58 17.81

GBM, q=0.05 1.46 1.92 6.20 7.78 11.13 13.78
NIG, q=0.05 1.45 1.93 6.16 7.81 11.07 13.84

Pq TPq Pq TPq Pq TPq

GBM, q=0.95 2.32 2.81 7.41 9.30 13.04 16.59
NIG, q=0.95 2.33 2.87 7.43 9.49 13.06 16.92

GBM, q=0.99 3.12 3.51 10.46 12.00 18.79 21.75
NIG, q=0.99 3.21 3.68 10.76 12.57 19.31 22.76

Table 5.2: Simulation results answering question 1 (where the underlying
models are di�erent, but we apply the same weights). Time horizon is 20 days.
The three weights correspond to γ = 0.10, 0.75 and γ > 0.90 respectively. All
results are in %.
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π = 15.6% π = 56.3% π = 100%
t = 60 VaRq cVaRq VaRq cVaRq VaRq cVaRq

GBM, q=0.01 3.33 3.98 14.34 16.42 25.05 28.19
NIG, q=0.01 3.32 3.97 14.33 16.40 25.03 28.21

GBM, q=0.05 2.02 2.82 10.09 12.71 18.29 22.43
NIG, q=0.05 2.00 2.81 10.04 12.66 18.22 22.37

Pq TPq Pq TPq Pq TPq

GBM, q=0.95 4.59 5.46 13.72 17.18 24.05 30.88
NIG, q=0.95 4.61 5.52 13.75 17.38 24.08 31.21

GBM, q=0.99 6.01 6.71 19.35 22.22 35.14 40.99
NIG, q=0.99 6.10 6.86 19.67 22.78 35.70 42.03

Table 5.3: Simulation results answering question 1 (where the underlying
models are di�erent, but we apply the same weights). Time horizon is 60 days.
The three weights correspond to γ = 0.10, 0.75 and γ > 0.90 respectively. All
results are in %.

GBM than for the NIG, 5.78% vs 5.69% at π = 1. However, when looking
at the cVaR, the heavier tail of the NIG push this di�erence the opposite
way. From �gure 5.3 we see that the VaR and cVaR quickly converge when
we increase the time horizon. At the bottom, where the time horizon is 60
days, or a quarter of a year, the di�erences between the curves are barely
noticeable. This can also be seen in table 5.3.

Figure 5.4 shows the potential for high return under the two models. I
have plotted the upper 95% and 99% quantiles of the return distribution
along with the associated tail pro�ts as de�ned above. At the 95% level, the
two models are very similar, but NIG has higher tail pro�t. The di�erence is
still small, but more distinct at level 99%. This is also shown in tables 5.1-5.3
where we see for example that P0.99 is 35.70% for NIG and 35.14% for GBM
at 60 days and π = 1. Regarding question 1 we may conclude that for the
Norsk Hydro stock we don't have to look at long time horizons before the
di�erences in risk/return gets very small indeed.

What about question 2? In �gures 5.5 and 5.6 I have plotted VaR, cVaR,
P and TP when di�erent optimal weights is applied to the same underlying
model (NIG). This leads to a horizontal shift between the curves of the
GBM and the exponential NIG. Table 5.4 compares the results when γ =
0.75. Here π∗NIG = 60.0% and π∗GBM = 56.3%. The relative di�erences stays
almost constant with t as opposed to the situation in question 1. For t = 5
VaR0.01 is 5.06% with NIG and 4.74% with GBM, a 7% relative di�erence.
For t = 60 the values are 15.33% and 14.33%, also a 7% relative di�erence.
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Figure 5.5: Results with di�erent weights, but the same underlying model.
Left side: VaR0.01 and cVaR0.01. Right side: VaR0.05 and cVaR0.05. Top: 5
days horizon. Center: 20 days. Bottom: 60 days. Exponential NIG is the full
line and GBM is the dashed line.
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Figure 5.6: Left side: P0.95 and TP0.95. Right side: P0.99 TP0.99. Top: 5 days
horizon. Center: 20 days. Bottom: 60 days. Exponential NIG is the full line
and GBM is the dashed line.



5.6. CONVERGENCE TO THE NORMAL DISTRIBUTION 35

πGBM = 56.3% t = 5 t = 20 t = 60
πNIG = 60.0% VaRq cVaRq VaRq cVaRq VaRq cVaRq

GBM, q=0.01 4.74 5.62 8.84 10.19 14.33 16.37
NIG, q=0.01 5.06 6.00 9.43 10.87 15.33 17.50

GBM, q=0.05 3.17 4.14 6.14 7.79 10.07 12.68
NIG, q=0.05 3.39 4.42 7.45 8.32 10.79 13.55

Pq TPq Pq TPq Pq TPq

GBM, q=0.95 3.56 4.72 7.45 9.52 13.76 17.39
NIG, q=0.95 3.79 5.03 7.93 10.14 14.62 18.53

GBM, q=0.99 5.44 6.55 10.80 12.64 19.66 22.81
NIG, q=0.99 5.80 6.99 11.52 13.49 20.97 24.33

Table 5.4: Simulation results answering question 2 (with the same under-
lying model, but di�erent weights). Time horizon is 5, 20 and 60 days. The
two weights correspond to γ = 0.75. All results are in %.

This fact is also evident for cVaR, P, and TP at all levels. For all of these
categories the values with π∗NIG is about 6.5-7% higher relative to the values
with π∗GBM . This applies to all time horizons all well. The reason for this
di�erence is obviously that π∗NIG > π∗GBM , making the portfolio more risky.
π∗NIG is actually about 6.6% higher than π∗GBM . Based on the answer to
question 1 we can say that for time periods longer than a few days, the e�ect
of weights being di�erent far outweighs the e�ect of the underlying models
being di�erent. We shall later see that with an interest rate closer to the
mean rate of return, weights would di�er more they do in this example.

5.6 Convergence to the Normal Distribution
The NIG distribution has the property of being closed under convolution. If
L1 ∼ NIG(α, β, µ, δ) then Lt = NIG(α, β, µt, δt). As a consequence of the
central limit theorem, the distribution of Lt tends to a normal one with the
same mean and variance when t increases. For large t we have that

Lt ∼ N

(
(
µ +

δβ√
α2 − β2

) · t, δα2

(α2 − β2)3/2
· t

)
(5.5)

Figure 5.7 shows the convergence of the distribution NIG(56.16, 2.641,
−0.0006t, 0.015t) to the normal distribution with the same mean and vari-
ance. From the plots of one day log-returns (t = 1) we see that the NIG
distribution clearly has heavier tails and more mass near the mean than the
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Figure 5.7: Log-return distribution for Norsk Hydro under the exponential
NIG model and the GBM.

normal distribution. But the distribution converges quite quickly. For t = 20
the di�erence is seemingly very low, and even more so for t = 60. Figure 5.8,
where log-densities are plotted, gives a better impression of the tail behavior
of the two distributions.

Another view on convergence speed is illustrated in �gures 5.9 and 5.10.
Figure 5.9 shows the di�erence between the quantiles of the NIG and the
corresponding normal distribution for t = 1, 5, 20 and 125. This di�erence is
in absolute terms, and we see that the scales on the y-axes do not change
much. It seems like increasing t provides a shift of same magnitude for both
distributions. Notice how the range of quantiles where the NIG is the larger
(where the graph is above the horizontal line) shift downwards. This is due
to the positive skewness of this NIG distribution, implying that the NIG
median is below the normal one.

Figure 5.10 provides more details on the tail behavior. In the upper part
I have plotted the di�erence of the lowest ten per cent quantiles. With t = 1
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Figure 5.8: Log-return log-density for Norsk Hydro under the exponential
NIG model and the GBM.

the NIG distribution has the most extreme quantile for levels 3.2% and lower.
With t = 125 the same limit is 0.3%. This is interesting as it determines which
of the two models has the highest Value-at-Risk. For long time horizons and
with the parameters as in the Norsk Hydro example, you must go to extremely
low levels q of VaRq to �nd the portfolio following the NIG model to be the
most risky.

I have also plotted the di�erence of the highest 15 per cent quantiles.
Since the NIG in this example has positive skewness, you don't have to go as
far out to see the NIG quantile being the most extreme. If the NIG model had
had negative skewness instead, circumstances would have been the opposite.
More of the lower NIG quantiles would have been smaller than the normal
ones. We shall see examples of this in the next section. In "normal times"
of the �nancial world most stocks probably has positive skewness, see Benth
[4].

Figure 5.10 shows the di�erence in quantiles relative to the magnitude
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Figure 5.9: Absolute di�erence in quantiles of log-returns under the expo-
nential NIG model and the GBM. Mind the scales on the y-axes! Quantiles
included: 0.1%-99.9%.

(absolute value) of the normal quantile. Notice on the scales on the Y-axes
how fast the quantiles converge. If we consider the 99% quantiles the NIG is
20.8% higher for t = 1, 7.6% higher for t = 5, 2.7% higher for t = 20 and
0.5% higher for t = 200. The convergence is even faster in the other end.
With the 0.01% quantiles the NIG is 70.7% lower for t = 1, 21.3% lower for
t = 5, 5.6% lower for t = 20 and 0.5% lower for t = 125. This indicates once
again that for longer time horizons, it does not matter much weather it's
the GBM or the NIG-model that the stock follows. It all comes down to the
strategy we put in and with that the calculation of optimal weights π∗.
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Figure 5.10: Relative di�erence in tail quantiles of log-returns under the
exponential NIG model and the GBM. Mind the scales on the y-axes!



40 CHAPTER 5. GBM VS. EXPONENTIAL NIG

α β µ δ

Stock 1 56.16 2.641 -0.0006 0.0150
Stock 2 32.50 3.560 -0.0015 0.0125
Stock 3 49.07 -10.10 0.0060 0.0250
Stock 4 25.85 -6.262 0.0030 0.0100

Table 5.5: Parameters of the NIG Lévy processes driving the stocks in section
5.7.
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Figure 5.11: NIG shape triangle with the coordinates given by stocks 1-4.

5.7 Results for Other Stocks
Let us see if the results obtained in the previous sections are con�rmed when
we look at stocks of various levels of skewness and kurtosis. We will focus
on four stocks with parameters given in table 5.5. Stock 1 is Norsk Hydro
introduced earlier. Stock 2 has a fairly high positive skewness and kurtosis.
Stock 3 has a fairly high negative skewness, but low kurtosis while Stock 4
has a very high negative skewness and kurtosis. The "NIG shape triangle"
(see e.g. Rydberg [12]) provides a nice way to illustrate the shape of a NIG
distribution. Stocks 1-4 are shown in the "NIG shape triangle" in �gure 5.11
and should cover most shapes that are common for stocks.

Since both the normal distribution and the NIG distribution has explicitly
given distribution functions it is possible to obtain the exact Value-at-Risk
and cVaR for a portfolio with all wealth invested in the stock. To compare the
di�erence in the exponential NIG and GBM I again calibrate sets of normal
parameters such that the mean and variance of log-returns of the stocks
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Figure 5.12: VaRq and cVaRq for di�erent levels of q with the exponential
NIG model (full lines) and the corresponding GBM (dashed lines). Top: Stock
1, Center: Stock 2, Bottom: Stock 3.
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Mean Std dev (yearly) Skewness Kurtosis
Stock 1 0.00011 0.0164 (25.9%) 0.15 3.60
Stock 2 -0.00012 0.0198 (31.3%) 0.52 7.79
Stock 3 0.00074 0.0233 (36.9%) -0.56 2.92
Stock 4 0.00050 0.0206 (32.5%) -1.45 14.77

Table 5.6: Mean, standard deviation, skewness and kurtosis of unit time
increments of the NIG Lévy processes driving the stocks in section 5.7.
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Figure 5.13: Stock 4: VaRq and cVaRq for di�erent levels of q.

under the two models coincide. The plots on the left hand side in �gure 5.12
show VaRq and cVaRq of stocks 1-3 on a 5 days horizon for di�erent levels q.
Stock 3 has a negative skewness which make the VaR and cVaR in the NIG
case higher for low q's. In the plots on the right hand side the time horizon
is 60 days. The di�erences here are clearly smaller, especially for the stocks
with positive skewness (see the table below where the values of VaR, cVaR
in the GBM are given in fraction of the NIG values). Stock 4 has somewhat
more extreme levels of skewness and kurtosis. The evolvement of VaR and
cVaR with time is shown in �gure 5.13. At t = 5 the VaR0.01 and cVaR0.01 of
the corresponding GBM model are just 78.8% respectively 71.2% of those of
the NIG model. However the convergence of the two models are quite fast.
At t = 60 the VaR0.01 in the GBM case is 93.7% of that in the NIG and at
t = 250 (1 year) the VaR0.01 in GBM is 97.3% of VaR0.01 in the NIG. We
see that even with NIG driven stocks that have NIG parameters far from
normality, with high skewness and/or kurtosis, the levels of VaR and cVaR
still approach the VaR and cVaR of the corresponding GBM at a fast pace.
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t 5 60 250
NIG VaR0.01 cVaR0.01 VaR0.01 cVaR0.01 VaR0.01 cVaR0.01

Stock 1 8.42 9.95 25.06 28.24 43.71 48.28
GBM in % 96.3 92.8 100.0 99.8 100.1 100.1
Stock 2 10.25 12.32 30.29 33.85 52.92 57.43

GBM in % 95.9 90.6 100.7 100.3 100.5 100.4
Stock 3 12.31 14.60 32.08 36.36 49.47 55.32

GBM in % 90.1 86.6 97.6 97.1 98.9 98.8
Stock 4 12.60 15.88 30.81 35.35 48.13 53.84

GBM in % 78.8 71.2 93.7 92.0 97.3 96.8

Table 5.7: VaR0.01 and cVaR0.01 in per cent at time horizons t=5, 60 and
250 days. GBM values displayed as % of NIG values.

5.8 Parameter Dependence
5.8.1 Explaining the Di�erent Weights
With the NIG and normal parameters in the Norsk Hydro case and with
daily interest rate r = 2 · 10−4, I obtained optimal weights π∗GBM and π∗NIG

shown in table 5.8. π∗NIG is here around 6.6% higher than π∗GBM . Benth et
al. show in [5] that the relative di�erence in weights increases as r tends to
the mean rate of return of the stocks, µ̂.

It might be tricky to get hold of this di�erence by comparing f(π) = 0 in
the NIG and GBM cases, the latter with solution

π∗GBM =
µGBM + 1

2
σ2 − r

σ2(1− γ)
. (5.6)

In section 4.4 I pointed out the similarities of these two equations. Results
indicated that putting µ and σ, corresponding to the mean and standard
deviation of the NIG distribution, into (5.6) would lead to well approximated
NIG-weights, at least if skewness and kurtosis are small. This is the case
with Norsk Hydro (see column three of table 5.8). In the GBM µ̂GBM =
2.3878 · 10−4. With NIG, µ̄:=mean+ 1

2
sd2 = 2.4017 · 10−4. In addition the

NIG distribution has positive skewness giving an extra contribution to the
mean rate of return µ̂. We have µ̂ = 2.4029 · 10−4 > 2.4017 · 10−4 = µ̄. This
di�erence is low compared do the di�erence µ̂− µ̂GBM , but might cause the
mentioned approximation of f(π) = 0 to be less precise for high r. With
r = 2 · 10−4 this is not a problem.
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It is now easy to see that the di�erence in weights is due to the higher
mean rate of return in the NIG model combined with the NIG model having
lower variance, 2.68 ·10−4 vs 2.76 ·10−4 in the Gaussian one. With r = 2 ·10−4

µ̄−r
µ̃GBM−r

= 4.017
3.878

= 1.036 and ( σ
sd[NIG]

)2 = 1.028. Multiplying these gives 1.065
which is close to the real ratio between π∗NIG and π∗GBM . With r tending to
µ̂GBM the �rst ratio grows and scales up the di�erences. With lower values
of r, the relation between µ̄ − r and µ̂GBM − r is more balanced and the
di�erence in variance becomes more signi�cant. If for example the estimated
GBM has a larger rate of return, but also larger volatility, then π∗GBM > π∗NIG

for large r, but possibly π∗GBM < π∗NIG for small r. Such a case was found:
Based on daily closing prices of General Motors (GM) on the New York

Stock Exchange from January 2, 1962 to December 31, 2006, giving a total of
11,327 daily log-returns1, the methods "nigFit" and "nFit" from R's package
"fBasics" provided NIG and normal ML-estimates. µ̂ of NIG was 3.79 · 10−4

(9.47% yearly) and µ̂GBM was 3.82 · 10−4 (9.55% yearly). Standard deviation
of the estimated NIG was 0.0169 (26.8% yearly) and σ was 0.0171 (27.0%
yearly). Skewness and kurtosis was 0.24 and 3.50, quite similar to Norsk
Hydro. With r = 0.0002 (5 % yearly), π∗NIG is about 0.3% (relative) higher
than π∗GBM . With r = 0.00035 (8.75% yearly), π∗GBM is about 6.7% higher.

γ πGBM(%) πNIG (%) πNIG (%) approx
0.10 15.64 16.67 16.65
0.20 17.59 18.75 18.73
0.30 20.10 21.43 21.41
0.40 23.46 25.00 24.98
0.50 28.15 30.00 29.98
0.60 35.18 37.51 37.47
0.65 40.21 42.87 42.83
0.70 46.91 50.02 49.96
0.75 56.29 60.04 59.96
0.80 70.37 75.06 74.94
0.85 93.82 >100 99.92
0.90 >100 >100 >100

Table 5.8: Optimal weights in the risky asset of Norsk Hydro. The third
column is the weights given by the approximation method.

1Obtained from Yahoo Finance [14]
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5.8.2 Parameter Uncertainty
How does parameter uncertainty in�uence π∗GBM and π∗NIG? We know em-
pirical log-returns are �tted well by a NIG distribution and data sets of size
1000 might be common for parameter estimation. I therefore employed the
estimated NIG parameters of General Motors to make 100 data sets, each
containing 1000 simulated NIG log-returns. For each set I �tted both a NIG
and a normal distribution. The 100 estimated µ̂GBM varied from -0.001 to
0.0015 (-27% to 38% yearly), a huge spread indicating the uncertainty in
parameter estimates (especially due to the mean). My focus though is on
model deviations. The di�erence between µ̂ and µ̂GBM in the 100 estimated
exponential NIG and GBM's varied from about −5 · 10−6 to 5 · 10−6 (see
histogram). Hence, given that true log-returns really followed the NIG from
GM data, both the exponential NIG and the GBM could have been assumed
to have the greatest mean rate of return. If the data set utilized for parameter
estimation is not yet realized, it thus seems quite random which of the in-
vestors, one believing in the GBM, the other the exponential NIG, will have
the greatest optimal stock allocation, and thus taking the greatest risk. We
also see that (absolute) di�erences of the mean rates of return in the �tted
models are quite small (± 0.13% yearly). To have signi�cantly di�erent op-
timal weights in the Merton problem the interest rate r has to be quite close
to the estimated mean rate of return.
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GBM vs. Exponential CGMY

6.1 Introduction
This chapter will treat much of the same problems as the previous chapter,
but this time with the CGMY instead of the NIG as driver of the stock price.
I will present ways of simulating such processes and discuss in what ways an
exponential CGMY model di�ers from the GBM and also the exponential
NIG.

6.2 The Variance Gamma Process
The Variance Gamma (VG) is the member of the family of CGMY processes
with Y = 0. A VG process Lt (without drift as in (3.2)) can be expressed
as the di�erence of two Gamma stochastic processes or as a time changed
Brownian motion with drift where the time change (a nondecreasing Lévy
process) follows a Gamma process. I will use the latter form and write

Lt = θGν
t + σW (Gν

t ) (6.1)

where θ ≥ 0, Gν
t ∼ Gamma(with mean t and variance νt) and W is a Brow-

nian motion. This representation makes it simple to simulate a VG process
since Gamma generators are build into most mathematical computer soft-
ware. A VG process Lt as above has the following expressions for expectation,
variance, skewness and kurtosis in terms of θ, ν and σ:

E[Lt] θt
Var[Lt] = κ2 (σ2 + θ2ν)t

Skewness[Lt] κ
−3/2
2 · (2θ3ν2 + 3σ2θν)t

Kurtosis[Lt] κ−2
2 · (3σ4ν + 6θ4ν3 + 12σ2θ2ν2)t

46
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Figure 6.1: VaR0.01 and cVaR0.01 at 5 days (left) and 60 days (right). All
values are in percent.

The connection between θ, ν, σ and C, G, M are as follows (see Carr et
al. [7]):

C =
1

ν
, G =

1

ηn

and M =
1

ηp

where ηn =
√

θ2ν2

4
+ σ2ν

2
− θν

2
and ηp =

√
θ2ν2

4
+ σ2ν

2
+ θν

2
.

By choosing the parameters θ = 7.04 · 10−4, ν = 1.1937, σ = 0.01635 and
adding a drift term bt such that γc = θ + b = 1.06 · 10−4, the resulting VG
process has exactly the same expectation, variance, skewness and kurtosis as
the NIG process of Norsk Hydro in the previous chapter. Is there then any
real di�erence between the VG in this case and the NIG? To answer this we
again turn to the scheme in question 1 of section 5.3 where the same weights
π were applied to both the exponential Lévy model and the corresponding
GBM. As in the previous chapter I let the daily interest rate r be 0.0002.
Figure 6.1 shows the VaR0.01 and cVaR0.01 of the optimal solution to the
Merton problem, and table 6.1 shows the values when all wealth is invested
in stocks. Results on the upper 99% P and TP are also included. We see that
the plots have the same shape as in the NIG case and the values are very
similar to the NIG results. The optimal weights π∗V G was found to be almost
identical as well.
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t = 5 VaR0.01 cVaR0.01 P0.99 TP0.99

GBM 8.11 9.24 8.89 10.27
VG 8.46 9.98 9.71 11.72

t = 60

GBM 25.05 28.17 35.13 41.25
VG 25.08 28.21 35.57 42.05

Table 6.1: VaR0.01, cVaR0.01 and P0.99, TP0.99 for portfolios with π=1 in the
comparison with VG. Values are in %.

6.3 CGMY with Y 6= 0

6.3.1 Simulation Approach
To simulate a CGMY process Lt with Y 6= 0 proved more di�cult than
the VG case. I have simulated CGMY's with Y > 0 and will present the
algorithm used. The Lévy-Itô decomposition (2.2) expresses Lt as the sum
of a deterministic drift term, a compensated compound Poisson process of
small jumps and a compound Poisson process of big jumps (remember the
Gaussian part is zero):

Lt = bt +

∫ t

0

∫

|z|<1

zÑ(ds, dz) +

∫ t

0

∫

|z|≥1

zN(ds, dz)

If Y < 0 we remember that Lt has �nite activity, i.e. �nitely many jumps,
which allows us to not compensate for small jumps, but write the jump part
of Lt as a pure compound Poisson process. A general algorithm for simulating
such processes are as follows (Cont and Tankov [8], p. 174) :

Algorithm 6.1 (Compound Poisson simulation). If Lt is a pure compound
Poisson process one can generate it in this way:

� Simulate the number N of jumps in the interval [0, T ]. N is Poisson
distributed with intensity λT , where λ = ν(R \ {0}).

� The N jumps Yi, i = 1, . . . , N are i.i.d. with law ν(dz)
λ

.

� For i = 1, . . . , N , let Ui ∼ Unif(0, T), where Ui are independent, rep-
resent the jump times.

� The process at t ∈ [0, T ] is then Lt =
∑N

i=1 1Ui<tYi.
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For the simulations in this thesis I have chosen to re-allocate with daily
intervals. Increments over this time frame are obtained by applying the algo-
rithm with T = 1. The actual jump times are insigni�cant for our purpose so
point 3 is omitted. What stands as the di�cult part of the algorithm is point
2, i.e. to simulate from the density ν(z)

λ
. I will not go into this for Y < 0, but

focus on the cases where Y > 0.
For processes with Y ∈ (0, 2) there are in�nitely many small jumps. One

then choose a truncation level ε > 0 that is close to 0. Jumps lower than ε in
absolute size is not simulated and the compensated term

∫ t

0

∫
|z|<ε

zÑ(ds, dz)
of Lt is thus not included.

It might be smart to split the compound Poisson process into a sum of
positive jumps and negative jumps. The expected number of positive jumps
greater than ε on a unit time interval is

νε
pos := C

∫ ∞

ε

e−Mz

zY +1
dz.

To simulate from the distribution with density pε(z) := ν(z)
νε

pos
1z>ε I use a

method described in Cont/Tankov [8], p. 188. Since

pε(z) ≤ f ε(z)
Ce−Mε

Y εY νε
pos

,

where f ε(z) = Y εY

zY +11z>ε is a density function, we may apply acceptance-
rejection sampling. We simulate X from f ε by drawing U ∼ Unif(0,1) and
letting X = F−1(1−U) = εU−1/Y where F is f 's distribution function. Each
X is then accepted with probability pε(X)

K·fε(X)
where K = Ce−Mε

Y εY νε
pos

. An accepted
variable X has the distribution pε. Simulating negative jumps is perfectly
similar.

To make the approximation better we can use a result from Asmussen
and Rosi«ski [3]. They prove that the error in the approximation of Lt,

Rε
t = Lt −

[
bt +

∫ t

0

∫

|z|>ε

zN(ds, dz)− t

∫

ε<|z|<1

zν(dz)
]

=

∫ t

0

∫

|z|<ε

zÑ(ds, dz),

(6.2)

tends to a Brownian motion when the truncation level ε tends to 0. We
know E[Rε

t] = 0 and from theorem B.1 Var[Rε
t] = t

∫
|z|<ε

z2ν(dz), but [3] also
provides a condition by which the entire distribution is obtained. The precise
statement is:
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Theorem 6.1. Let σ(ε) =
∫
|z|<ε

z2ν(dz). If σ(ε)
ε
→∞ as ε → 0 then

1

σ(ε)
Rε

t → Wt in distribution as ε → 0

where Wt is a Brownian motion.

With CGMY σ(ε) ∼ ε1−Y/2 near 0, so the condition in the theorem is
satis�ed with Y > 0. The approximation is particularly good when Y is close
to 2. In that case the activity just around zero is very high and the variation
this bring is well handled by adding the term σ(ε)Wt.

6.3.2 Some Results
We will look at two examples where I have applied the simulation approach
described above.

Example A Let Lt have the parameters C = 0.11, G = 45, M = 64,
Y = 0.5 and γc = 0.00074. This distribution has about the same mean,
standard deviation, skewness and kurtosis as stock 3 of the previous chapter.
The precise values are sd[L1] = 0.0227, Skew[L1] = −0.54 and Kurt[L1] =
2.93. With these parameters the daily mean rate of return µ̂ on the stock is
9.957 · 10−3 (24.89% yearly). To match this high rate of return I choose the
daily interest rate r = 0.0009 (22.5% yearly). Solving the Merton problem
then provides optimal weights π∗CGMY ranging from 20.9% for γ = 0.10 to
100% for γ's greater than 0.85. The optimal weights in the GBM where log-
returns has equal mean and variance is only marginally higher, e.g. 94.2%
vs. 93.5% for γ = 0.80. As before I leave out consumption.

The left side of �gure 6.2 shows the resulting VaR0.01 and cVaR0.01 at
a 5 days horizon for the di�erent risk levels γ. As was also seen in section
5.7 the negative skewness of the stock provides a greater di�erence in VaR
and cVaR than with positive skewness. At t = 60 much of the di�erence has
disappeared as we notice in the plot on the right hand side of �gure 6.2. Like
the case with VG, the shape is similar to the GBM/NIG plots of the previous
chapter. Simulations were done with 500 thousand scenarios and the results
resemble those of stock 3 of section 5.7. Table 6.2 displays VaR0.01, cVaR0.01,
P0.99 and TP0.99 with a portfolio where all wealth is allocated in the stock. At
t = 5 VaR0.01 in the CGMY case is 11.94%. The corresponding GBM value
is 10.79% which is 90.4% of the CGMY. At t = 60 the VaR0.01 in the GBM
case is 30.50%, 97.6% of that of the CGMY.
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Figure 6.2: VaR0.01 and cVaR0.01 at 5 days (left) and 60 days (right) in
example A.

Example B Let Lt have the parameters C = 0.00044, G = 21.6, M = 13.7,
Y = 1.5 and γc = 0. Standard deviation, skewness and kurtosis of unit time
increments Lt+1 − Lt

d
= L1 are then sd[L1] = 0.0195, Skew[L1] = 0.52 and

Kurt[L1] = 7.60. This is essentially the values of stock 2 from section 5.7.
The mean rate of return on the stock driven by this process is µ̂ = 1.90 ·10−4

(4.75% yearly). I choose a daily interest rate intensity r = 1.5 · 10−4 (3.75%
yearly). Solving the Merton problem then provides optimal weights π∗CGMY

ranging from 12.6% for γ = 0.10 to 100% for γ's greater than 0.90. With
the corresponding GBM the optimal stock allocation is a little higher. γ =
0.85 for example gives πCGMY = 75.6% and πGBM = 69.1%. This is due to
the positive skewness of the CGMY distribution and the high interest rate
compared to µ̂. Going forward as in example A, using equal weights and
leaving out consumption, we get the results shown in table 6.3 and �gure
6.3. The shape of the curves seems to be consistent with earlier results. With
all wealth allocated in stocks the risk measures at level q = 0.01 show minor
di�erences. At t = 5 VaR and cVaR in the two models di�er only slightly.
VaR0.01 is 9.62% with GBM and 9.70% with CGMY, a relative di�erence
of just 1%. This is less than with GBM/NIG in section 5.7 where the GBM
value was 95.9% of the NIG one. A possible explanation is that with Y = 1.5,
νCGMY has more of its mass near zero than νNIG. This is because νCGMY (z) ∼
|z|−(1+Y ) near zero whereas νNIG ∼ |z|−2 near zero (see appendix A for
results on asymptotic behavior of the Bessel function). At t = 60 the CGMY
portfolios are actually the least risky when looking at VaR0.01 and cVaR0.01.
The di�erences however are small.
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t = 5 VaR0.01 cVaR0.01 P0.99 TP0.99

GBM 10.79 12.30 12.93 14.89
CGMY 11.94 14.13 12.59 14.82
t = 60

GBM 30.50 34.42 57.25 66.93
CGMY 31.24 35.45 56.36 65.61

Table 6.2: VaR0.01, cVaR0.01 and P0.99, TP0.99 for portfolios with π=1 in
example A. Values are in %.

t = 5 VaR0.01 cVaR0.01 P0.99 TP0.99

GBM 9.62 10.94 10.65 12.30
CGMY 9.70 11.64 11.90 15.47
t = 60

GBM 29.57 33.01 41.98 49.60
CGMY 29.22 32.78 43.42 52.47

Table 6.3: VaR0.01, cVaR0.01 and P0.99, TP0.99 for portfolios with π=1 in
example B. Values are in %.
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Figure 6.3: VaR0.01 and cVaR0.01 at 5 days (left) and 60 days (right) in
example B.
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Conclusion

Alternative stock price models to the GBM where the log-returns follow Lévy
processes with jumps have been presented, in particular the NIG and the
CGMY. Merton's portfolio management problem, of deriving the maximum
expected utility from consumption over an in�nite time horizon, has been
stated and its solution presented. We have seen that it is optimal to allocate
a constant fraction of wealth in the risky asset, a fraction determined by an
integral equation involving the Lévy measure ν of the driver.

We have studied some properties of the optimal portfolio and, in partic-
ular, stated an approximation to it in terms of the Lévy process driving the
stock. Since the Lévy measure of such drivers has most of its mass close to
0, the approximation seemed to work quite well for various stocks.

A great part of the thesis has been devoted to a comparison of the optimal
portfolio when the GBM and exponential NIG are the alternative underly-
ing models. If log-returns in both models have the same expectations and
variances then results indicated that the di�erence in risk and return of the
optimal portfolio decreases quite rapidly as the time horizon increases. This
was noticed with stocks of several shapes and particularly evident in the main
example with the Norsk Hydro stock. Essentially the same results was noticed
in the case of CGMY log-returns, the distribution of which seemed quite sim-
ilar to normal inverse Gaussian's. If the stock's log-return had a right-skewed
distribution then the lowest levels q of VaRq tended to be greatest in the case
of the geometric Brownian motion and opposite with a left-skewed distribu-
tion. But even with very skewed distributions the convergence to normality
was rapid.

I found the main source of model risk in the long run to lie in the deriva-
tions of optimal strategies. Given an in�nite time horizon the consumption
rate was low and very similar in the GBM and NIG/CGMY cases, whilst the
solution of the mentioned integral equation could di�er more. An analysis of
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the equation told us that interest rates r close to the mean rate of return on
the stock, µ̂, could lead to major di�erences in the stock allocation π∗ and
thus also the risk and return of the portfolio. An experiment where I �tted
simulated log-return data to both a NIG and a normal distribution indicated
however that it is quite random which of the GBM or NIG/CGMY models to
produce the highest optimal stock allocation given a true underlying model.
The experiment also showed that the interest rate r had to be quite close
to µ̂ to see any signi�cant di�erences in weights and thus, risk. Hence the
utility of using more complex Lévy processes instead of the ordinary GBM
may not be that big in the case of Merton's problem.

It should be noted that the models presented here do not include some
important facts of stock behavior. I have not included real phenomena such
as positive autocorrelation, transaction costs, stochastic interest rate and
volatility. Models including these will probably give higher levels of risk if
the same strategy as here is employed. This has to be accounted for when
managing risk.



Appendix A

Errors in Estimation of π∗

Equation (4.5) giving the optimal π∗ of the Merton problem involves integrals
over R \ {0} with respect to ν. We remember the form

(µ̂− r)− (1− γ)σ2π∗ +

∫

R\{0}

(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)ν(dz) = 0

(A.1)

where

µ̂ = µ +
1

2
σ2 +

∫

R\{0}
(ez − 1− z1|z|<1)ν(dz).

I will explain the error of truncating these integrals at a level ±L.
In the normal inverse Gaussian case the Lévy measure is

νNIG(dz) =
δα

π|z|e
βzK1(α|z|)dz (A.2)

The asymptotic behavior of the modi�ed Bessel function of the second
kind and index 1, K1, is as follows (see e.g. Cont and Tankov [8]).

Proposition A.1. When z →∞

K1(z) = e−z

√
π

2z

[
1 + O

(
1

z

)]
.

When z → 0

K1(z) ∼ 1

z
.
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The integrand in (A.1) is negative for all z when γ ∈ (0, 1) and π∗ ∈ [0, 1].
In the NIG case, substituting K1(α|z|) with e−α|z|

√
π

2α|z| for |z| > L provides
an easier form of the integrand. For z > 0 the integrand is

(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)

δα

πz
eβzK1(αz)

≥(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)

δα

πz
eβze−αz

√
π

2αz

=
(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)δ

√
α

2π
z−3/2e−(α−β)z

≥− δ

√
α

2π
z−3/2(ez − 1)e−(α−β)z

≥− δ

√
α

2π
z−3/2e−(α−β−1)z

(A.3)

If α > β +1 the last expression decays faster than exponentially to 0 as z
grows. This is true for most stocks (see e.g. Benth [4]). For z < 0 we exploit
the fact that (1 + π∗(ez − 1))γ−1 ≤ ez(γ−1) to get

(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)

δα

π|z|e
βzK1(α|z|)

≥(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)δ

√
α

2π
|z|−3/2e−(α+β)|z|

≥δ

√
α

2π
|z|−3/2(ez(γ−1) − 1)(ez − 1)e−(α+β)|z|

≥− δ

√
α

2π
|z|−3/2e−(α+β+γ−1)|z|

(A.4)

Again we have an exponentially decreasing integrand. In the NIG model
�tted to Norsk Hydro discussed in chapter 5, α = 56.16 and β = 2.641. With
this the error of truncating at ±L is surely less than∫

z>L
δ
√

α
2π

z−3/2e−(α−β−1)zdz+
∫

z<−L
δ
√

α
2π
|z|−3/2e−(α+β+γ−1)|z|dz which is

of order 10−16 if L = 0.5 and 10−26 if L = 1. Clearly this is more than
su�cient.

In the CGMY case the Lévy measure has the simpler form

νCGMY (dz) = C

[
e−G|z|

|z|1+Y
1z<0 +

e−Mz

z1+Y
1z>0

]
dz.

Similar calculations as above give



57

∣∣∣∣
∫

|z|>L

(
(1 + π∗(ez − 1))γ−1 − 1

)
(ez − 1)νCGMY (dz)

∣∣∣∣

≤C

[∫

z>L

z−(1+Y )e−(M−1)zdz +

∫

z<−L

|z|−(1+Y )e−(G+γ−1)|z|dz

]
.

Typically M and G is greater than 10 which makes the error small even
for quite small L. With the parameters of example B of section 6.3 the error
is of order 10−11 if L = 1 and 10−17 if L = 2.



Appendix B

Cumulants, Skewness and
Kurtosis

In this thesis I apply the skewness and kurtosis as measures of asymmetry
and heavy tails. These are de�ned in terms the cumulants, κn. The cumulants
of a random variable X are derived from its cumulant generating function,
i.e. the logarithm of its characteristic function φX . The cumulants of X, κn,
are given as

κn(X) =
1

in
dn

dun
ln φX(u)

∣∣∣
u=0

. (B.1)

The �rst cumulant κ1 is the mean and the second cumulant κ2 is the variance.

De�nition B.1. If X is a random variable then the skewness of X is de�ned
as

Skew[X] =
κ3(X)

κ2(X)3/2
.

The skewness measures the asymmetry of the distribution of X. Positive
skewness means the right of the distribution tail is longer. Outcomes high
above the mean is likely.

When I use the term kurtosis in this thesis I always mean the excess
kurtosis :

De�nition B.2. If X is a random variable then the excess kurtosis of X is
de�ned as

Kurt[X] =
κ4(X)

κ2(X)2
.
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The normal distribution has an excess kurtosis of 0. The kurtosis measures
the degree to which the variance is due to infrequent extreme deviations as
opposed to frequent small and medium deviations. By that it is a measure
of how heavy-tailed the distribution is.

In Lévy process the kurtosis is always positive. Skewness and kurtosis is
expressed via its Lévy measures ν. This is a consequence of the following
more general result:
Theorem B.1. If Lt =

∫ t

0

∫
R\{0} γ(z)Ñ(ds, dz) where γ : R→ R is a deter-

ministic function then

κn(Lt) = t

∫

R\{0}
γ(z)nν(dz) ∀ n ≥ 2 (B.2)

provided that the integral is �nite.
Proof. From exercise 1.6 of Øksendal/Sulem [11]

φLt(u) = E[exp (iuLt)] = exp

(∫ t

0

∫

R\{0}

(
eiuγ(z) − 1− iuγ(z)

)
ν(dz)ds

)
.

Hence

κ2(Lt) =
1

i2
d2

du2
ln φLt(u)

∣∣∣
u=0

=
1

i2
d

du
t

∫

R\{0}

(
iγ(z)eiuγ(z) − iγ(z)

)
ν(dz)

∣∣∣
u=0

= t

∫

R\{0}
γ(z)2ν(dz).

(B.3)
By induction the result holds for any n ≥ 2.
Corollary B.1. If Lt is a Lévy process with Lévy triplet (b, σ2, ν) then

Var[Lt] = κ3(Lt) = t
(
σ2 +

∫

R\{0}
z2ν(dz)

)
.

and

Skew[Lt] =
κ3(Lt)

κ2(Lt)3/2
, Kurt[Lt] =

κ4(Lt)

κ2(Lt)2

where

κn(Lt) = t

∫

R\{0}
znν(dz) ∀ n ≥ 3.

Thus the skewness of an increment Lt+4 − Lt decays proportional to 4−1/2

while the kurtosis decays as 4−2.



Appendix C

R Code

C.1 Portfolio Simulation with NIG
##### Simulation of Portfolio Development with NIG #############################
################################################################################

## Packages ##
library(fBasics)
library(HyperbolicDist)
require(gplots)

## Parameters from [1], Norsk Hydro ##
muNig=-0.006
alfaNig=56.16
betaNig=2.641
deltaNig=0.015
r=0.0002
muNorMLE=0.000101
sigmaNorMLE=0.0166

## Parameters for normaldistr log-returns ##
muNor=muNig+deltaNig*betaNig/sqrt(alfaNig^2-betaNig^2)
sigmaNor=sqrt(deltaNig*alfaNig^2/(alfaNig^2-betaNig^2)^1.5)
muNor + .5*sigmaNor^2

## Calculation of optimal portfolio weights ##

#Levy density
nu=function(z){
deltaNig*alfaNig/(pi*abs(z))*exp(betaNig*z)*besselK(alfaNig*abs(z),nu=1)
}

ipos=integrate(function(z){(exp(z)-1-z)*nu(z)},0,2,abs.tol=10^(-8))$value
ineg=integrate(function(z){(exp(z)-1-z)*nu(z)},-2,0,abs.tol=10^(-8))$value
ipos+ineg
muhatNig=muNig+deltaNig*betaNig/sqrt(alfaNig^2-betaNig^2)+ipos+ineg
muhatNig

int=function(pigamma){
p=pigamma[1]; gam=pigamma[2];
integrand=function(z){((1+p*(exp(z)-1))^(gam-1)-1)*(exp(z)-1)*nu(z)}
integrate(integrand,-2,0,subdivisions=20000,abs.tol=10^(-8))$value +
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integrate(integrand,0,2,subdivisions=20000,abs.tol=10^(-8))$value
}

int2=function(pigamma){
p=pigamma[1]; gam=pigamma[2];
integrand=function(z){((1+p*(exp(z)-1))^gam-1-gam*p*(exp(z)-1))*nu(z)}
integrate(integrand,-2,0,subdivisions=20000,abs.tol=10^(-8))$value +
integrate(integrand,0,2,subdivisions=20000,abs.tol=10^(-8))$value
}

gamma=c(seq(.10,.95,.05),seq(.96,.99,.01))
npoints=length(gamma)
PiNig=rep(0,npoints)
PiNor=rep(0,npoints)
k_Nig=rep(0,npoints)
k_gbm=rep(0,npoints)
for(i in 1:npoints){
gam=gamma[i]
low=0
up=1
Pistar=(low+up)/2
for(j in 1:14){
left=muhatNig-r+int(c(Pistar,gam))
if(left<0){up=Pistar}else{low=Pistar}
Pistar=(low+up)/2
}
PiNig[i]=Pistar
PiNor[i]=min(1,(muNorMLE+.5*sigmaNorMLE^2-r)/(sigmaNorMLE^2*(1-gam)))
PiNor[i]=max(0,PiNor[i])
k_Nig[i]=gam*(r+(muhatNig-r)*Pistar)+int2(c(Pistar,gam))
k_gbm[i]=gam*(r+(muNorMLE+.5*sigmaNorMLE^2-r)*PiNor[i])-
.5*gam*(1-gam)*sigmaNorMLE^2*PiNor[i]^2
}
eta=0.06/250
c_Nig=(eta-k_Nig)/(1-gamma)
c_Nig_in_percent=100*c_Nig
c_Nor=(eta-k_gbm)/(1-gamma)
c_Nor_in_percent=100*c_Nor
round(cbind(gamma,PiNig,PiNor,c_Nig_in_percent,c_Nor_in_percent),4)

#ConsistencyCheck
eta>k_gbm
eta>k_Nig

## Simulation of log-returns ##
nDays=5
nScenarios=500000
nSim=ndays*nscenarios
lavkNig=matrix(rnig(nSim, mu=muNig, delta=deltaNig,
alpha=alfaNig, beta=betaNig),nDays,nScenarios)
lavkNor=matrix(rnorm(nSim, mean=muNor, sd=sigmaNor), nDays, nScenarios)

par(mfrow=c(2,2))
hist(lavkNig, n=100, probability=TRUE, border="white", col="steelblue",
xlab="log-return",main="Histogram of NIG log-returns")
x = seq(-.3,.3 , 0.0005)
lines(x, dnig(x, alpha=alfaNig, beta=betaNig, delta=deltaNig, mu=muNig))

hist(lavkNor, n=100, probability=TRUE, border="white", col="steelblue")
lines(x, dnorm(x, mean=muNor,sd=sigmaNor))
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logHist(lavkNig)
lines(x, log(dnig(x,alpha=alfaNig,beta=betaNig,delta=deltaNig,mu=muNig)),type="l")
lines(x, log(dnorm(x, mean=muNor,sd=sigmaNor)),type="l")

logHist(lavkNor)
lines(x, log(dnorm(x, mean=muNor,sd=sigmaNor)),type="l")
cbind(c(quantile(lavkNig,0.01),qnig(0.01, alpha=alfaNig, beta=betaNig,
delta=deltaNig, mu=muNig)),c(quantile(lavkNor,0.01),
qnorm(0.01,mean=muNor,sd=sigmaNor)))

theoreticExp=muNig+deltaNig*betaNig/sqrt(alfaNig^2-betaNig^2)
theoreticVar=deltaNig*alfaNig^2/(alfaNig^2-betaNig^2)^1.5
rbind(c(mean(lavkNig),var(lavkNig[1,])),c(theoreticExp,theoreticVar))

## Calculation of portefolio developments ##
P0=1
PNig=matrix(0,nscenarios,npoints)
PNor=matrix(0,nscenarios,npoints)
VaR0.01Nig =0*(1:npoints)
VaR0.05Nig =0*(1:npoints)
VaR0.01Nor =0*(1:npoints)
VaR0.05Nor =0*(1:npoints)
cVaR0.01Nig=0*(1:npoints)
cVaR0.05Nig=0*(1:npoints)
cVaR0.01Nor=0*(1:npoints)
cVaR0.05Nor=0*(1:npoints)
P0.95Nig =0*(1:npoints)
P0.99Nig =0*(1:npoints)
P0.95Nor =0*(1:npoints)
P0.99Nor =0*(1:npoints)
TP0.95Nig =0*(1:npoints)
TP0.99Nig =0*(1:npoints)
TP0.95Nor =0*(1:npoints)
TP0.99Nor =0*(1:npoints)

#Daily rebalancing
for(j in 1:nDays){
# weights from normalMLE, development in both models
PNig=PNig%*%diag(1-PiNor)*exp(r)+PNig%*%diag(PiNor)*exp(lavkNig[j,])
PNor=PNor%*%diag(1-PiNor)*exp(r)+PNor%*%diag(PiNor)*exp(lavkNor[j,])
}

for(i in 1:npoints){
Q0.01Nig=quantile(PNig[,i],0.01)
Q0.05Nig=quantile(PNig[,i],0.05)
Q0.95Nig=quantile(PNig[,i],0.95)
Q0.99Nig=quantile(PNig[,i],0.99)
Q0.01Nor=quantile(PNor[,i],0.01)
Q0.05Nor=quantile(PNor[,i],0.05)
Q0.95Nor=quantile(PNor[,i],0.95)
Q0.99Nor=quantile(PNor[,i],0.99)

VaR0.01Nig[i] =1-Q0.01Nig
VaR0.05Nig[i] =1-Q0.05Nig
VaR0.01Nor[i] =1-Q0.01Nor
VaR0.05Nor[i] =1-Q0.05Nor
P0.95Nig[i] =Q0.95Nig-1
P0.99Nig[i] =Q0.99Nig-1
P0.95Nor[i] =Q0.95Nor-1
P0.99Nor[i] =Q0.99Nor-1
cVaR0.01Nig[i]=1-mean(PNig[PNig[,i]<Q0.01Nig,i])
cVaR0.05Nig[i]=1-mean(PNig[PNig[,i]<Q0.05Nig,i])
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cVaR0.01Nor[i]=1-mean(PNor[PNor[,i]<Q0.01Nor,i])
cVaR0.05Nor[i]=1-mean(PNor[PNor[,i]<Q0.05Nor,i])
TP0.95Nig[i] =mean(PNig[PNig[,i]>Q0.95Nig,i])-1
TP0.99Nig[i] =mean(PNig[PNig[,i]>Q0.99Nig,i])-1
TP0.95Nor[i] =mean(PNor[PNor[,i]>Q0.95Nor,i])-1
TP0.99Nor[i] =mean(PNor[PNor[,i]>Q0.99Nor,i])-1
}

#1%
plot(gamma,cVaR0.01Nig,type="l",col="blue",main="1% VaR and cVaR ",ylab="")
smartlegend(x="left",y="top",inset=0,legend=c("NIG", "GBM"),
lty=1:2,col=c("blue","red"),bg = "white")
lines(gamma,cVaR0.01Nor,col="red",lty=2)
lines(gamma,VaR0.01Nor,col="red",lty=2)
lines(gamma,VaR0.01Nig,col="blue")
#5%
plot(gamma,cVaR0.05Nig,type="l",col="blue",main="5% VaR and cVaR ",ylab="")
smartlegend(x="left",y="top",inset=0,legend=c("NIG", "GBM"),
lty=1:2,col=c("blue","red"),bg = "white")
lines(gamma,cVaR0.05Nor,col="red",lty=2)
lines(gamma,VaR0.05Nor,col="red",lty=2)
lines(gamma,VaR0.05Nig,col="blue")
#95%
plot(gamma,TP0.95Nig,type="l",col="blue",main="95% P and TP ",ylab="")
smartlegend(x="left",y="top",inset=0,legend=c("NIG", "GBM"),
lty=1:2,col=c("blue","red"),bg = "white")
lines(gamma,TP0.95Nor,col="red",lty=2)
lines(gamma,P0.95Nor,col="red",lty=2)
lines(gamma,P0.95Nig,col="blue")
#99%
plot(gamma,TP0.99Nig,type="l",col="blue",main="99% P and TP ",ylab="")
smartlegend(x="left",y="top",inset=0,legend=c("NIG", "GBM"),
lty=1:2,col=c("blue","red"),bg = "white")
lines(gamma,TP0.99Nor,col="red",lty=2)
lines(gamma,P0.99Nor,col="red",lty=2)
lines(gamma,P0.99Nig,col="blue")

print(100*c(VaR0.01Nor[1],VaR0.01Nig[1],cVaR0.01Nor[1],cVaR0.01Nig[1]),4)
print(100*c(VaR0.05Nor[1],VaR0.05Nig[1],cVaR0.05Nor[1],cVaR0.05Nig[1]),4)
print(100*c(VaR0.01Nor[14],VaR0.01Nig[14],cVaR0.01Nor[14],cVaR0.01Nig[14]),4)
print(100*c(VaR0.05Nor[14],VaR0.05Nig[14],cVaR0.05Nor[14],cVaR0.05Nig[14]),4)
print(100*c(VaR0.01Nor[22],VaR0.01Nig[22],cVaR0.01Nor[22],cVaR0.01Nig[22]),4)
print(100*c(VaR0.05Nor[22],VaR0.05Nig[22],cVaR0.05Nor[22],cVaR0.05Nig[22]),4)

print(100*c(P0.95Nor[1],P0.95Nig[1],TP0.95Nor[1],TP0.95Nig[1]),5)
print(100*c(P0.99Nor[1],P0.99Nig[1],TP0.99Nor[1],TP0.99Nig[1]),5)
print(100*c(P0.95Nor[14],P0.95Nig[14],TP0.95Nor[14],TP0.95Nig[14]),5)
print(100*c(P0.99Nor[14],P0.99Nig[14],TP0.99Nor[14],TP0.99Nig[14]),5)
print(100*c(P0.95Nor[22],P0.95Nig[22],TP0.95Nor[22],TP0.95Nig[22]),5)
print(100*c(P0.99Nor[22],P0.99Nig[22],TP0.99Nor[22],TP0.99Nig[22]),5)

## Testing the approximation of the optimal portfolio ##
l1=log(PNig[,14])
a=rnig(nScenarios, mu=nDays*muNig, delta=nDays*deltaNig, alpha=alfaNig,beta=betaNig)
approx1=mean(l1)+PiNor[14]*(a-mean(a))
qqplot(approx1,l1,xlab="Approximation",ylab="True process",main="QQ-plot of ln X_5")
plot.qqline(approx1,l1)
qqplot(log(PNor[,14]),l1, xlab="GBM case", ylab="NIG case",main="QQ-plot of ln X_5")
plot.qqline(log(PNor[,14]),l1)

## Testing Gaussian aggregation of log-returns ##
aggr=matrix(0,2,nScenarios)
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for(t in 1:nScenarios){
aggr[1,t]=sum(lavkNig[,t])
aggr[2,t]=sum(lavkNor[,t])
}

#Comparing mean, st dev and quantiles
c(mean(aggr[1,]),mean(aggr[2,]),mean(aggr[1,])/mean(aggr[2,]))
c(sd(aggr[1,]),sd(aggr[2,]),sd(aggr[1,])/sd(aggr[2,]))
quantile(aggr[1,],0.99)
quantile(aggr[2,],0.99)
plot(density(aggr[1,]),col="blue",xlab="blue-NIG, red-normal")
lines(density(aggr[2,]),col="red")
qqnorm(aggr[1,])
qqline(aggr[1,])

#[1] Benth,Karlsen,Reikvam: "Non Gaussian Portfolio Management"

C.2 Portfolio Simulation with CGMY
##### Simulation of portfolio development with CGMY ##############################
##################################################################################

## Parameters ##
E=0.000074
sigmaNor=0.01637

## Case Y=0: Variance Gamma ##
theta=0.000703585 # Drift of Brownian motion
ny=1.19365 # Variance rate of Gamma subordinator
sigma=sqrt(sigmaNor^2-theta^2*ny) # Volatility of Brownian motion
C= 1/ny
G= 1/(sqrt(theta^2*ny^2/4+sigma^2*ny/2)-theta*ny/2)
M= 1/(sqrt(theta^2*ny^2/4+sigma^2*ny/2)+theta*ny/2)
Y= 0
c(C,G,M,Y)

## CGMY ##
C<- .00044
G<- 21.6
M<- 13.7
Y<- 1.5

sigmaNor=sqrt(C*gamma(2-Y)*(G^(Y-2)+M^(Y-2)))
ExpJumps=C*gamma(-Y)*Y*(G^(Y-1)-M^(Y-1))
r=0.00015

##### Weights ####################################################################
# CGMY Levy measure
nuCGMY=function(x){ (abs(x)>0)*(C*exp(-M*x*1*(x>0)+G*x*1*(x<0))/abs(x)^(1+Y))}
muNorMLE=E
sigmaNorMLE=sigmaNor

#The rest of the calculations are similar to the NIG case.

####### Functions ################################################################

## VG simulation ##
VGunitIncr=function(par){ #Returns simulated unit increment of VG
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n=par[1]; theta=par[2]; sigma=par[3]; ny=par[4];
dGamma=rgamma(n,shape=(1/ny),scale=ny)
sigma*rnorm(n)*sqrt(dGamma)+theta*dGamma
}

## Compound Poisson simulation ##
eps=0.008
divisorPos=integrate(nuCGMY,eps,Inf)$value
divisorNeg=integrate(nuCGMY,-Inf,-eps)$value
tail=integrate(nuCGMY,-Inf,-1)$value +integrate(nuCGMY,1,Inf)$value
KPos=C*eps^(-Y)/(Y*divisorPos)*exp(-M*eps)
KNeg=C*eps^(-Y)/(Y*divisorNeg)*exp(-G*eps)
f=function(x){Y*eps^Y/abs(x)^(Y+1)*(abs(x)>eps)}

CGMYunitIncrComPois=function(n){ #Returns simulated unit increment of CGMY
nJumpsPos=rpois(n,divisorPos)
nJumpsNeg=rpois(n,divisorNeg)

jumpSizesPos=array(0,sum(nJumpsPos))
jumpSizesNeg=array(0,sum(nJumpsNeg))
xtraFactor=max(KPos,KNeg)*1.05
WPos=runif(round(sum(nJumpsPos)*xtraFactor))
WNeg=runif(round(sum(nJumpsNeg)*xtraFactor))
VPos=runif(round(sum(nJumpsPos)*xtraFactor))
VNeg=runif(round(sum(nJumpsNeg)*xtraFactor))
XcanPos=eps*WPos^(-1/Y)
XcanNeg=-eps*WNeg^(-1/Y)

TPos=nuCGMY(XcanPos)/(divisorPos*KPos*f(XcanPos))
TNeg=nuCGMY(XcanNeg)/(divisorNeg*KNeg*f(XcanNeg))
XPos=XcanPos[VPos<TPos]
XNeg=XcanNeg[VNeg<TNeg]
jumpSizesPos=XPos[1:sum(nJumpsPos)];
jumpSizesNeg=XNeg[1:sum(nJumpsNeg)];
acceptanceRatio=length(XPos)/length(XcanPos)

startP=1
startN=1
Out=0*(1:n)
merk=(1:n)*(nJumpsPos>0)
index=merk[merk>0]
merkN=(1:n)*(nJumpsNeg>0)
indexN=merkN[merkN>0]
for(o in 1:length(index)){
Out[index[o]]=sum(jumpSizesPos[startP:(startP+nJumpsPos[index[o]]-1)])
startP=startP+nJumpsPos[index[o]];
}
for(o in 1:length(indexN)){
Out[indexN[o]]=Out[indexN[o]]
+sum(jumpSizesNeg[startN:(startN+nJumpsNeg[indexN[o]]-1)]);
startN=startN+nJumpsNeg[indexN[o]];
}
Out
} #end function returning simulations

######### Simulation of log-returns ##############################################
nDays=5
nScenarios=5*10^5
nSim=nDays*nScenarios
lavkNor=matrix(rnorm(nSim, mean=E, sd=sigmaNor),nDays, nScenarios)

## Case Y=0 ##
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if(Y==0){sample=E-theta+VGunitIncr(c(nSim,theta,sigma,ny))}

## Case 0<Y<1: Finite variation, infinite activity, compound Poisson ##
ExpectedSmallJumps=integrate(function(x){C*(exp(-M*x)-exp(-G*x))/x^Y},0,eps)$value
sigmaepsSquared=integrate(function(x){x^2*nuCGMY(x)},0,eps)$value
+integrate(function(x){x^2*nuCGMY(x)},-eps,0)$value
sigmaeps=sqrt(sigmaepsSquared)
if(Y>0 && Y<1){sample=E-ExpJumps+CGMYunitIncrComPois(nSim)
+ExpectedSmallJumps+sigmaeps*rnorm(nSim)}

## Case 1=<Y<2 Infinite variation, infinite activity ##
sigmaepsSquared=integrate(function(x){x^2*nuCGMY(x)},0,eps)$value
+integrate(function(x){x^2*nuCGMY(x)},-eps,0)$value
sigmaeps=sqrt(sigmaepsSquared)
drift=E-integrate(function(x){x*nuCGMY(x)},eps,Inf)$value
-integrate(function(x){x*nuCGMY(x)},-Inf,-eps)$value
if(Y>1 && Y<2){sample=drift+CGMYunitIncrComPois(nSim)+sigmaeps*rnorm(nSim)}

lavkCGMY=matrix(sample, nDays, nScenarios)

########### Calculation of portfolio developments ################################
# Similar to the NIG case

C.3 Exact VaR and cVaR for GBM and Expo-
nential NIG

library(fBasics)
library(gplots)

########### NIG parameters #######################################################
p=matrix(0,4,5)
p[,1]=c(56.16, 2.641 ,0.0150,-0.0006) # Norsk Hydro
p[,2]=c(32.50, 3.560 ,0.0125,-0.0015) # High pos skewness and kurtosis
p[,3]=c(49.07,-10.10 ,0.0250, .0060) # Negative skewness, moderate kurtosis
p[,4]=c(25.85,-6.262 ,0.0100, .0030) # Big negative skewness, high kurtosis

choice=2
a<-p[1,choice]
b<-p[2,choice]
d<-p[3,choice]
m<-p[4,choice]
qrange=c(seq(0.0001,0.005,0.0001),seq(0.01,0.2,0.005))

## Mean,sd,skewness,kurtosis ##
info=c(m+d*b/sqrt(a^2-b^2),sqrt(d*a^2/(a^2-b^2)^1.5),
3*b/(a*sqrt(d*sqrt(a^2-b^2))),3*(1+4*b^2/a^2)/(d*sqrt(a^2-b^2)))
round(info,5)

## Exact VaR and cVaR of stock in the NIG case ##
nig=function(u,t){d*t*a/pi*exp(d*t*sqrt(a^2-b^2)+b*(u-m*t))
*besselK(a*sqrt((d*t)^2+(u-m*t)^2),1)/sqrt((d*t)^2+(u-m*t)^2)}
VaRNIG=function(t){1-exp(qnig(qrange,mu=m*t,alpha=a,beta=b,delta=d*t))}

cVaRNIG=function(t){ # Returns cVaR of stock at time t.
resvec=array(0,length(qrange))
nig_t=function(x){nig(x,t)}
for(i in 1:length(qrange)){
div=qrange[i]
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integrand=function(x){exp(x)*nig_t(x)/div}
resvec[i]=1-integrate(integrand,-10,qnig(qrange[i],
mu=m*t,alpha=a,beta=b,delta=d*t))$value
}
resvec
}

########### Normal parameters ####################################################
#mu=0.000101
#sigma=0.01637
mu=m+d*b/sqrt(a^2-b^2)
sigma=sqrt(d*a^2/(a^2-b^2)^1.5)

## Exact VaR and cVaR of stock with time horizon t
VaRNor=function(t){1-exp(sigma*sqrt(t)*qnorm(qrange)+t*mu)}

cVaRNor=function(t){
resvec=array(0,length(qrange))
for(i in 1:length(qrange)){
div=qrange[i]
integrandNor=function(x){exp(sigma*sqrt(t)*x)*dnorm(x)/div}
resvec[i]=1-exp(mu*t)*integrate(integrandNor,-Inf,qnorm(qrange[i]))$value
}
resvec
}

########### VaR plots ##########################################################
days=60
plot(qrange,VaRNIG(days),type="l",col="blue",
main=paste("VaR and cVaR at t=",days),ylab="VaR",xlab="Quantiles")
smartlegend(x="right",y="top",inset=0,legend=c("NIG","GBM"),lwd=1:2,
lty=1:2,col=c("blue","red"),bg = "white")
lines(qrange,VaRNor(days),lty=2,col="red",lwd=2)
abline(v=c(seq(0,0.2,.05)),lty=2)

## cVaR plot ##
plot(qrange,cVaRNIG(days),type="l",col="blue",
main=paste("Conditional Value at Risk at t=",days),ylab="cVaR",xlab="Quantiles")
lines(qrange,cVaRNor(days),lty=2,lwd=2,col="red")
abline(v=c(seq(0,0.2,.05)),lty=2)
lines(qrange,cVaRNIG(days),lty=1,col="blue")

######## NIG shape triangle ######################################################
xi=array(0,4)
chi=array(0,4)
for(i in 1:4){
xi[i]=(1+p[3,i]*sqrt(p[1,i]^2-p[2,i]^2))^-.5
chi[i]=xi[i]*p[2,i]/p[1,i]
}
points=c(0,-1,1,0)
end=c(0,1,1,0)
plot(chi,xi,xlim=c(-1,1),ylim=c(0,1),xlab="chi",ylab="xi",pch=c("1","2","3","4"),
main="NIG shape triangle")
lines(points,end)

C.4 General Motors Calculations
#### Packages ####
library(fBasics)
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library(HyperbolicDist)

#### Read file and find log-returns ####
tabell=read.csv("GM.csv") #csv file downloaded from YahooFinance
date=tabell[,1]
price=rev(tabell[,7]) #stock prices
Days=length(kurs)
logretGM=log(price[2:Days]/price[1:(Days-1)])
plot(logretGM)
hist(logretGM)

##### Maximum Likelihood #####
## NormalMLE
nFit(logretGM)
#Estimated Parameter(s):
# mean sd
#0.0002356632 0.0170982911

## NIGMLE
nf=nigFit(logretGM)
#Parameter Estimates: 55.53495 4.134795 0.01581245 -0.0009449254

## Shape triangle:
nigShapeTriangle(nf)
#$chi 0.05436322 $zeta 0.7301592

##### Simulation of GM log-returns and ML-estimatimation #############################
######################################################################################

library(fBasics)
est=matrix(0,100,4)
estnor=matrix(0,100,2)

# Simulate 100 sets of log-returns, 1000 data in each set
# Fits the data to both a NIG and a normal distribution
for(i in 1:100){
data=rnig(1000,alpha=55.53,beta=4.1348,delta=0.015812,mu=-.0009449)
nf=nigFit(data)
norf=nFit(data)
est[i,]=slot(nf,name="fit")$estimate
estnor[i,]=slot(norf,name="fit")$estimate
}

NIG=matrix(0,100,6)
NOR=rep(0,100)
# Calculates the mean rate of return
for(i in 1:100){
NIG[i,1]=est[i,4]+est[i,3]*est[i,2]/sqrt(est[i,1]^2-est[i,2]^2 # Mean
NIG[i,2]=sqrt(est[i,3]*est[i,1]^2/(est[i,1]^2-est[i,2]^2)^1.5) # St dev
NIG[i,3]=3*est[i,2]/(est[i,1]*sqrt(est[i,3]*sqrt(est[i,1]^2-est[i,2]^2))) # Skewness
NIG[i,4]=3*(1+4*est[i,2]^2/est[i,1]^2)/ # Kurtosis
(est[i,3]*sqrt(est[i,1]^2-est[i,2]^2))
nu=function(z){
est[i,3]*est[i,1]/(pi*abs(z))*exp(est[i,2]*z)*besselK(est[i,1]*abs(z),nu=1)
}
ipos=integrate(function(z){(exp(z)-1-z)*nu(z)},0,2,abs.tol=10^(-8))$value
ineg=integrate(function(z){(exp(z)-1-z)*nu(z)},-2,0,abs.tol=10^(-8))$value
NIG[i,6]=NIG[i,1]+ipos+ineg # Mean rate of return NIG
NOR[i]=estnor[i,1]+ .5*estnor[i,2]^2 # Mean rate of return GBM
}
print(cbind(NIG[,6],NOR))
hist(NIG[,6])
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hist(NIG[,6]-NOR,breaks=12,xlab="NIG-GBM" ,
main=expression(paste("Difference between ",hat(mu)," in estimated NIG and GBM")))

C.5 Calculations on the Portfolio Approx. (Math-
ematica)

Taylor series
Series[Log[1+(Exp[z]-1)p],{z,0,5}]
p z+1/2 (p-p^2) z^2+1/6 (p-3 p^2+2 p^3) z^3+1/24 (p-7 p^2+12 p^3-6 p^4) z^4
+ 1/120 (p-15 p^2+50 p^3-60 p^4+24 p^5) z^5+O[z]^6

Comparing the real portfolio process with its approximation:
Norsk Hydro:
{\[Mu]NIG,\[Delta],\[Alpha],\[Beta]}={0.0002,-0.006,0.015,56.16,2.641};
Stock 2:
{\[Mu]NIG,\[Delta],\[Alpha],\[Beta]}={0.0002,0.0015,0.0125,32.5,3.56};
Stock 4:
In[9]:= {\[Mu]NIG,\[Delta],\[Alpha],\[Beta]}={0.003,0.01,25.85,-6.262};
In[11]:=nu[z_]:=(\[Delta]\[Alpha])/(\[Pi]Abs[z]) Exp[\[Beta]z] BesselK[1,\[Alpha] Abs[z]]

p={.1,.5,.9};

Difference in expectation:
In[14]:=
NIntegrate[(Log[1+(Exp[z]-1) p]-p z-1/2 p (1-p) z^2)nu[z],{z,0.0001,5}]+
NIntegrate[(Log[1+(Exp[z]-1) p]-p z-1/2 p (1-p) z^2)nu[z],{z,-5,-0.0001}];

Decomposed variance, skewness and kurtosis for(1): NIG approx and
(2): the real optimal portfolio :
In[28]:= TableForm[{{"Positive","Negative","Sum"},
v1=Append[vec={NIntegrate[(z p)^2 nu[z],{z,0,5}],
NIntegrate[(z p)^2 nu[z],{z,-5,0}]},Total[vec]]}]

Out[28]//TableForm= Positive Negative Sum
1.42011*10^-6 1.25971*10^-6 2.67982*10^-6
0.0000355028 0.0000314928 0.0000669956
0.000115029 0.000102037 0.000217066

skew1=NIntegrate[(z p)^3 nu[z],{z,0,5}]/(NIntegrate[(z p)^2 nu[z],{z,0,5}]
+NIntegrate[(z p)^2 nu[z],{z,-5,0}])^1.5 + NIntegrate[(zp)^3nu[z],{z,-5,0}]/
(NIntegrate[(z p)^2 nu[z],{z,0,5}]+NIntegrate[(z p)^2 nu[z],{z,-5,0}])^1.5

Out[26]= {0.153796,0.153796,0.153796}

In[29]:= kurt1=NIntegrate[(z p)^4 nu[z],{z,0,5}]/(NIntegrate[(z p)^2 nu[z],{z,0,5}]
+NIntegrate[(z p)^2 nu[z],{z,-5,0}])^2 +NIntegrate[(z p)^4 nu[z],{z,-5,0}]/
(NIntegrate[(z p)^2 nu[z],{z,0,5}]+NIntegrate[(z p)^2 nu[z],{z,-5,0}])^2;

TableForm[{{"Positive","Negative","Sum"},
v2=Append[vec2={NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,0,5}],
NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,-5,0}]},Total[vec2]]}]

Out[30]//TableForm= Positive Negative Sum
1.45131*10^-6 1.23573*10^-6 2.68704*10^-6
0.0000359291 0.0000311549 0.000067084
0.000115301 0.000101815 0.000217115
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In[31]:= skew2=NIntegrate[Log[1+(Exp[z]-1) p]^3 nu[z],{z,0,5}]/
(NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,0,5}]+
NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,-5,0}])^1.5 +
NIntegrate[Log[1+(Exp[z]-1) p]^3 nu[z],{z,-5,0}]/
(NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,0,5}] +
NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,-5,0}])^1.5

Out[31]= {0.233187,0.197697,0.162548}

In[33]:= kurt2=NIntegrate[Log[1+(Exp[z]-1) p]^4 nu[z],{z,0,5}]/
(NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,0,5}] +
NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,-5,0}])^2 +
NIntegrate[Log[1+(Exp[z]-1) p]^4 nu[z],{z,-5,0}]/
(NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,0,5}] +
NIntegrate[Log[1+(Exp[z]-1) p]^2 nu[z],{z,-5,0}])^2;

In[22]:= NIntegrate[z^2 nu[z],{z,0,5}]+NIntegrate[z^2 nu[z],{z,-5,0}]
Out[22]= 0.000267982

In[23]:= NIntegrate[z^4 nu[z],{z,0,5}]+NIntegrate[z^4 nu[z],{z,-5,0}]
Out[23]= 2.58298*10^-7
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