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Abstract

The main topic of this thesis is SDEs driven by VMLV and VMBV processes.
Further study is done on their respective subclasses of processes, abbreviated
as LSS and BSS processes. Secondarily, SPDEs driven by ambit fields in an
infinite-dimensional Hilbert space are studied. In both cases, the aim is to
find conditions ensuring the existence and uniqueness of solutions. Moreover,
processes abbreviated as fBSS processes are analyzed. This is (to my knowledge)
a new process in the sense that it is defined in this thesis. We also look at
SDEs driven by such fBSS processes and attempt to define integrals where the
integrator is a fBSS process. Finally, some properties of integrals against VMLV
and VMBV processes and ambit fields are obtained.
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CHAPTER 1

Introduction

The subject of this thesis is stochastic differential equations (SDEs), that is,
differential equations with at least one stochastic term. The study of SDEs
makes up a large and varied field whose applications are many and wide-
ranging, like the evolution of interest rates in finance or physical phenomena
like temperature. The subject was birthed by Kiyosi Itô in his 1946 paper,
[Itô46], where he studied SDEs on the form

Xt = X0 +
∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dBs, (1.1)

where B is a standard Brownian motion. Terminologically, 1.1 is said to be a
Brownian motion driven SDE. The first integral term is called the drift and the
second integral term is called the noise, therefore, it is also common to say that
equation 1.1 is a SDE with Brownian noise. Equations with this type of noise
are by far the most studied. Interest rate models with Brownian noise are, for
instance, studied in [CT06]. Other types of noise are possible, such as processes
with jumps. Prominent examples of this are Lévy processes, and, in general,
semimartingales with jumps.

This thesis will focus on a particular type of SDE where the noise is not
necessarily a semimartingale, specifically, the focus will be on equations driven
by volatility modulated Lévy-driven Volterra (VMLV) processes, which, if
without drift, take on the following form∫ t

0
G(t, s)σ(s)dL(s), (1.2)

where L is a Lévy process, G is a deterministic function called the kernel function,
and σ is a stochastic process called the volatility. In case L is a Brownian motion,
then the process defined by (1.2) is called a volatility modulated Brownian-
driven Volterra (VMBV) process. These two classes of processes are rather large,
and particular attention is devoted to the subclass of VMLV processes called
Lévy semistationary (LSS) processes and the subclass of VMBV processes called
Brownian semistationary (BSS) processes. The core of this thesis is dedicated
to the study of the existence and uniqueness of solutions to VMLV and VMBV
driven equations.

The above discussion refers to real-valued SDEs, but another interesting
subject is stochastic partial differential equations (SPDEs) set on an infinite-
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1.1. Structure of the thesis

dimensional Hilbert space, that is, equations of the form

Xt = X0 +
∫ t

0
AXsds+

∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dB(s),

where A is an operator generating a C0-semigroup and, being a little informal,
B is a Brownian motion on the Hilbert space. The terminology from the
real-valued case is otherwise preserved. The theory on SPDEs is newer, but
by no means unstudied, and those interested in interest rate models are again
referred to [CT06], as they also treat infinite-dimensional SPDEs modeling
interest rates.

As for the real-valued case, our study of SPDEs is focused on equations
with a particular type of noise, known as ambit fields. VMBV processes are
real-valued, but, keeping the informal tone, one could think of Hilbert-valued
processes defined by ∫ t

0
G(t, s)σ(s)dB(s),

as a Hilbert-valued VMBV process. An examination of these equations is also
included, and the focal point is again the existence and uniqueness of solutions.

Differential equations, both stochastic and non-stochastic, are often written
in differential form, however, this hides an important part of the study of
S(P)DEs, which is ensuring that the noise term is even defined. Hence, integral
form has been chosen above to highlight that stochastic integration theory
is also an important part of the analysis of S(P)DEs. VMLV, or ambit field-
driven equations is no exception, and one must therefore know the meaning of
expressions of the sort: ∫ t

0
X(s)dY (s), (1.3)

where Y is a VMLV process or an ambit field, depending on the context. As
defining such expressions is non-trivial, the thesis is also comprised of a healthy
portion of relevant background theory. Most importantly, an introduction to
Malliavin calculus is given.

The final chapter is devoted to the study of fractional Brownian semista-
tionary (fBSS) processes, which are processes defined by∫ t

0
g(t− s)σ(s)dBH(s),

where BH is a fractional Brownian motion. Defining this integral requires
special attention, and a big theme in this chapter is how this should be done.
The chapter is finished with an attempt at defining integrals of the form 1.3
when Y is an fBSS process.

1.1 Structure of the thesis

The thesis has a total of eight chapters, all covering different theory. Chapters
2-5 are pretty much all background material borrowed from other sources and
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1.1. Structure of the thesis

clearly referenced. Chapters 6 and 8 consists partly of background theory and
partly of my own results. Finally, Chapter 7 is almost exclusively my own
work. However, the proof of some of the results draws upon certain results from
chapter 5, the extent of this will be made clear when we get there. In more
detail, the contents of each chapter are the following:

• Chapter 2: A short introduction to the basic concepts of stochastic
analysis needed in this thesis is given. Section 2.1 defines the Itô
integral and states the important Itô isometry. Section 2.2 gives a similar
introduction for stochastic integrals with respect to compensated Poisson
random measures, as this is a more technical concept, the introduction will
be correspondingly longer. Finally, section 2.3 is a collection of definitions
and results that, in my opinion, does not fit naturally into any other
section of this thesis.

• Chapter 3: The subject of this chapter is somewhat more exotic than
the theory presented in chapter 2, and therefore a rather comprehensive
introduction to the important concepts of real-valued Malliavin calculus
is given. Each section in this chapter considers a version of Malliavin
calculus. Section 3.1 considers the continuous case, specifically the case
for Brownian motions. And section 3.2 considers the discontinuous case of
a pure jump Lévy process. In both cases, the most important parts of the
sections are the definitions of the Malliavin derivative and the definition of
the Skorohod integral, but some important properties of these definitions
and their interplay are also treated.

• Chapter 4: Many of the same concepts as in chapter 2 and 3 are here
introduced, but this time for Hilbert spaces. Section 4.1 starts off with
the basic operator theoretical concepts of trace and Hilbert-Schmidt norm.
The following section, section 4.2, is a also a "deterministic" section and
introduces the Bochner integral and Fréchet derivative. The purpose of
these sections is also to declare notation for the following sections. Sections
4.2 and 4.3 corresponds to chapter 2 in the real-valued case and introduces
Hilbert-valued stochastic processes and stochastic integration respectively.
Finally, section 4.5 institutes Hilbert-valued Malliavin calculus. Of all the
sections on background theory, section 4.3, 4.4 and 4.5 have, in increasing
order of difficulty, been the hardest sections to write about. In part
because the mathematical level of these sections is above what I have
learned as part of the courses I have taken, and in part because finding
references that treat these topics rigorously have been difficult to obtain.

• Chapter 5: This chapter is meant as an appetizer on S(P)DEs and as
preparation for what is to come in chapter 7. The collection of results
presented in this chapter has been chosen with the aim of introducing
various solution techniques, solution concepts, and types of uniqueness of
solutions that we will encounter in chapter 7. We state some of the most
well-known theorems on S(P)DEs, but also some lesser-known results that
we will profit from later on. Mainly, these results are concentrated on
the existence and uniqueness of various S(P)DEs, but a result on the
Malliavin differentiability of a solution is also stated. The structure of this

3



1.2. Contributions

chapter is simple: section 5.1 deals with real-valued SDEs, and section 5.2
deals with Hilbert-valued SPDEs. Unlike the other preparatory chapters,
this one has a few proofs. In part, these proofs are given with the same
rationale as above. That is, they are given as an introduction to various
concepts encountered later on. But they are also given for the readers’
convenience, as certain results in chapter 7 apply these proofs.

• Chapter 6: After a fairly thorough inquiry into relevant but more
general background theory, this chapter is more specific and utilizes
the concepts of chapters 2, 3 and 4. The starting point in section 6.1
is a formal introduction to volatility modulated Lévy/Brownian-driven
Volterra processes. Thereafter, section 6.2 defines integration with respect
to VMLV/VMBV processes and looks at some properties of these integrals.
And, as in chapter 5, the Hilbert-valued case is split into its own singular
section. Hence, section 6.3 defines ambit fields, integration with respect
to ambit fields, and looks at some properties of this integral. The chapter
is rounded off by section 6.4, where further properties of integrals with
respect to VMLV/VMBV processes and ambit fields are studied.

• Chapter 7: This is the main destination of this thesis, and all the
preceding chapters play their part in ensuring that our study in this
chapter is well grounded. The subject is VMLV/VMBV/ambit field-
driven S(P)DEs. This is by far the longest chapter of this thesis, and
structurally, it follows the same recipe as chapter 5 and 6. That is,
it begins with the study of real-valued SDEs driven by VMLV/VMBV
processes and ends with the study of Hilbert-valued SPDEs driven by
ambit fields. More concretely, section 7.1 studies equations with linear
drift, section 7.2 studies equations with nonlinear drift, and section 7.3
studies nonlinear equations, all in the real-valued context. Finally, section
7.4 studies equations set on a Hilbert space.

• Chapter 8: The final chapter of this thesis is devoted to the study of
what I have termed a fractional Brownian semistationary process. The
name is chosen because the integrand is the same as for a BSS process, but
the integrator is a fractional Brownian motion (fBM) instead of a standard
Brownian motion. Since integration with respect to a fBM is not as easily
defined as integration with respect to a standard Brownian motion, the
structure of this chapter is determined by the three approaches chosen
for defining such an integral. Section 8.1 considers the easiest definition,
where the integral is defined as a Wiener integral, section 8.2 considers the
more complicated route of a pathwise integral, and lastly, we consider the
route via Skorohod integration, which is a generalization of the Wiener
integral approach of section 8.1.

1.2 Contributions

The main contribution of this thesis is chapter 7. Every statement and every
proof in this section is done by myself. However, certain proofs follow almost
immediately by proofs found in chapter 5, when this is the case, it is clearly
referenced. There are contributions in other chapters as well, we therefore list
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1.2. Contributions

them explicitly. By contribution, I mean any theorem, proposition, lemma,
corollary, definition or remark that I have not been able to find in the literature.

• Chapter 3:

– Remark 3.1.13, on moving deterministic functions in and out of the
Malliavin derivative in the Brownian motion case.

– Remark 3.1.15, on how a chain rule implies a more general product
rule. This is mentioned in [DØP09], but they have not written it
out.

– Proposition 3.1.22, on the commutation of the Malliavin derivative
and an integral with respect to a finite signed measure in the
Brownian motion case.

– Remark 3.2.11, on moving deterministic functions in and out of the
Malliavin derivative in the pure jump Lévy case.

– Proposition 3.2.17, on the commutation of the Malliavin derivative
and an integral with respect to a finite signed measure in the pure
jump Lévy case.

• Chapter 6: The subsection of section 6.1 on continuous modifications.

– Theorem 6.1.9, on the continuous modification of a BSS process.
– Theorem 6.1.10, on the continuous modification of a LSS process.
– Example 6.1.11, on examples of functions satisfying the conditions

of theorem 6.1.10.
– Proposition 6.2.7, on the integration by parts formula for VMLV

integrals. This is a result stated in [BBV18], but their formula was
wrong and this result corrects that mistake.

– Section 6.4, all results in this section are my own. This is also why I
have put these results in its own section.

• Chapter 7:

– Section 7.1, all results are my own, but Theorem 7.1.1 is inspired by
Proposition 25 in [BBV18].

– Section 7.2, all results are my own, but the proof of certain results
rely on proofs given in chapter 5.

– Section 7.3, all results are my own.
– Section 7.4, all results are my own, but Theorem 7.4.1 and Theorem

7.4.2 are in part proved by applying proofs given in chapter 5.

• Chapter 8:

– Definition 8.1.2, on the definition of a fBSS process through Wiener
integration.

– Proposition 8.1.3, on the autocovariance of a fBSS process.
– Theorem 8.1.5, on continuous modifications of fBSS processes.
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1.3. Comments on terminology and notation

– Theorem 8.1.6, on existence and uniqueness of a fBSS driven SDE,
but the proof relies on the result by [Eva14] given in chapter 5.

– Definition 8.2.5, on the definition of a fBSS process through pathwise
integration.

– Theorem 8.2.6, on the existence and uniqueness of a fBSS driven
SDE, but this follows almost immediately by a proof in [NR02]

– Definition 8.3.2, on the definition of a fBSS process through Skorohod
integration.

– Definition 8.3.3, on the derivation of an integral w.r.t. a fBSS process,
but the derivation of this definition is inspired by the derivation of
Definition 17 on page 120 in [BBV18]

– Proposition 8.3.4-8.3.6, on properties of the integral defined in 8.3.3,
but these are inspired by Lemma 12, Proposition 21 and Proposition
23, respectively, found in section 4.3 in [BBV18]

– Proposition 8.3.7-8.3.8, on further properties of the integral defined
in 8.3.3.

1.3 Comments on terminology and notation

Most of the notation used in each chapter is clarified at the beginning of it. I
have tried my best to remain as consistent as possible, but some things might
cause confusion. Firstly, I have attempted to use Brownian motion in the
real-valued setting and Wiener process in the Hilbert-valued setting. There are
several different types of these processes, and they are therefore listed below:

• B denotes a real-valued Brownian motion.

• B̄ denotes a two-sided real-valued Brownian motion.

• BH denotes a fractional Brownian motion

• W denotes a Q-Wiener process

• W̃ denotes a cylindrical Brownian motion.

Secondly, a source of confusion might be the notation used for the Skorohod
integral in the pure jump Lévy case. Here, I have failed to remain consistent.
The three following notations are all found in this thesis, but they all mean the
same thing:

Ñ(δt, dz) = Ñ(δz, δt) = Ñ(δz, dt).

In general, if there is a "δ" inside the parenthesis of Ñ(·, ·), then it is meant to
denote the Skorohod integral. If there is not, then it denotes the compensated
Poisson random measure, that is, Ñ(dt, dz) = Ñ(dz, dt).

Lastly, the term "integration by parts" is used in different ways. For this
reason, I have tried to consistently reference the specific formula in question,
although I do believe that this should be clear from the context.
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CHAPTER 2

Stochastic calculus

This chapter will introduce the most basic concepts relevant for this thesis. We
will also declare the notation used for the real-valued part of this thesis, the
Hilbert-valued part will be introduced in chapter 4. We assume that the reader
is familiar with the most basic concepts of probability theory, measure theory
and real analysis.

The framework is a complete filtered probability space, that is
(Ω,F ,F, P ), where Ω is a sample space, F is a complete σ-algebra on Ω,
F := {Ft}t≥0 is a filtration on the the measurable space (Ω,F) and P is
a probability measure. F is assumed to be complete and right-continuous
throughout this thesis. Respectively, this means that, for any t, Ft is augmented
for all null sets (w.r.t. P ), and

Ft = σ
{⋃
s<t

Fs
}
.

On a a bounded interval [0, T ], the filtration is simply F = {Ft}t∈[0,T ].
A Stochastic process is a parameterized collection of random variables

{Xt}t≥0 or {X(t)}t≥0 defined on (Ω,F , P ). If the stochastic process is defined
on a bounded interval [0, T ] as follows X : [0, T ] × Ω → R, (t, ω) 7→ X(t, ω),
we write {Xt}t∈[0,T ] or {Xt}0≤t≤T . {X(t)}t≥0 will be assumed to be B × F-
measurable, where B is the Borel σ-algebra on R+ := [0,∞), and we often set
X := {Xt}t∈[0,T ]. Furthermore if the dependence on ω is not needed we usually
write Xt or X(t) for X(t, ω). We call a stochastic process F-adapted if for all
t ≥ 0, the random variable X(t) = X(t, ω), ω ∈ Ω, is Ft-measurable.

We refer to [Øks13] for details on the above terminology and definitions.
The rest of this chapter relies on [Øks03], [DØP09] and [App09].

2.1 The Itô integral for Brownian motions

The natural starting point for the preliminary theory is to define Itô integrals and
look at some basic properties. First we define Brownian motions, sometimes
also referred to as Wiener processes. Without making any guarantees, we
have attempted to consistently use the terminology Brownian motion in the
real-valued context and Wiener process in the Hilbert-valued context.

Definition 2.1.1 (Brownian motion, [App09]). A stochastic process {B(t)}t≥0
on a probability space (Ω,F , P ) is a Brownian motion if

7



2.1. The Itô integral for Brownian motions

i) B(0) = 0 P -a.s.,

ii) B(t+ s) −B(t) is independent of B(u) for u ≤ s,

iii) B has centered Gaussian increments, i.e. B(t) −B(s) ∼ N (0, t− s),

iv) B has continuous paths.

With the above definition at hand we can define integrals with Brownian
motions as integrator. The version we present is called the Itô integral, and for
the Itô integral of a function to be defined it must satisfy the following criteria.

Definition 2.1.2 ([Øks03]). Let V = V(S, T ) be the class of functions f(t, ω) :
[0,∞) × Ω → R such that

i) (t, ω) 7→ f(t, ω) is B ×F -measurable, where B denotes the Borel σ-algebra
on R+.

ii) ω 7→ f(t, ω) is Ft-measurable for all 0 ≤ t ≤ T ,

iii) E
[ ∫ T

S
f(t, ω)2dt

]
< ∞.

Where Ft is the σ-algebra generated by the random variables {B(s)}0≤s≤t.

In the following and in the rest of this thesis we let χ denote the indicator
(characteristic) function, meaning that for some set X and some subset A ⊂ X
we define

χA(x) :=
{

1, for x ∈ A

0, for x /∈ A

The construction of the Itô integral is done via the limit of simple (elementary)
functions, in principle similar to the construction of the Lebesgue integral.

Definition 2.1.3 (Simple functions, [Øks03]). A function ϕ ∈ V is called simple
if it is on the following form

ϕ(t, ω) =
∞∑
j=1

ej(ω) · χ[tj ,tj+1)(t),

where the random variables ej must be Ftj -measurable for all j ∈ N ∪ {0}. For
simple functions the Itô integral is defined by∫ T

S

ϕ(t, ω)dBt(ω) :=
∞∑
j=1

ej(ω)[Btj+1 −Btj ](ω).

We now give the general definition of the Itô integral, and some nice
properties.

Definition 2.1.4 (The Itô integral, [Øks03]). Let f ∈ V(S, T ). Then the Itô
integral of f (from S to T ) is defined by∫ T

S

f(t)dB(t) = L2(P ) − lim
n→∞

∫ T

S

ϕn(t)dB(t)

8



2.2. The stochastic integral for compensated Poisson measures

where {ϕn} is a sequence of elementary functions such that

E

[∫ T

S

(f(t) − φn(t))2dt

]
→ 0 as n → ∞.

The Itô integral can be extended to a larger class of functions, we settle
with a small remark and refer to [KS98] for details.
Remark 2.1.5 ([Øks03], [KS98]). The condition iii) in definition 2.1.2 can be
relaxed to

P
(∫ T

0
f(s, ω)2dt < ∞

)
= 1.

Let L2
prob denote the set of measurable, adapted processes satisfying the above

integrability condition. For {X}t∈[0,T ] ∈ L2
prob one can define the Itô integral

through the use of localization. This extends the Itô integral of 2.1.4 in the
sense that V is a proper subset of L2

prob, and in the sense that for any Y ∈ V
the two integrals coincide.

The following properties hold for the Itô integral defined in 2.1.4, but not
necessarily for the extension of the Itô integral defined in the above remark.

Theorem 2.1.6 (Properties of the Itô integral, [Øks03]). Let f, g ∈ V(0, T ) and
let 0 ≤ S < U < T . Then

(i)
∫ T
S
f(t)dBt =

∫ U
S
f(t)dBt+

∫ T
U
f(t)dBt P -almost surely (P -a.s.),

(ii)
∫ T
S

(cf(t) + g(t))dBt = c
∫ T
S
f(t)dBt +

∫ T
S
g(t)dBt P -a.s., where c is a

constant in R,

(iii) E[
∫ T
S
f(t)dBt] = 0,

(iv)
∫ T
S
f(t)dB(t) is FT -measurable.

Finally, we state the Itô isometry, which is crucial not only to the construction
of the Itô integral via simple functions, but also in applications of the integral
as it connects the stochastic Itô integral with a deterministic integral in L2(P )
sense. This, and other versions of the Itô isometry for different stochastic
integrals, will be of great importance to us later on.

Theorem 2.1.7 (The Itô isometry, [Øks03]).

E

[(∫ T

S

f(t)dB(t)
)2
]

= E

[∫ T

S

f(t)2dt

]
for all f ∈ V(S, T )

2.2 The stochastic integral for compensated Poisson
measures

This section will give the definition of the stochastic integral with respect to
the compensated Poisson measure, for that we need a few definitions. We begin
with some notational preliminaries.

We define

9



2.2. The stochastic integral for compensated Poisson measures

• f(x−) := limy↑x f(y) for y < x to be the left limit of a function

• and f(x+) := limy↓x f(y) for y > x to be the right limit of a function.

We will occasionally use the terms càdlàg and càglàd, since these terms will
be used already in the definition of Lévy processes we define them here.

Definition 2.2.1 (Càdlàg and càglàd, [App09]). Let I = [a, b] be an interval in
R+. A mapping f : I → R is said to be càdlàg if, for all t ∈ [a, b], f has a left
limit at t and f is right-continuous at t, i.e.

• for all sequences {tn}n∈N in (a, b) with each tn < t and limn→∞ tn = t we
have that limn→∞ f(tn) exists;

• for all sequences {tn}n∈N in (a, b) with each tn ≥ t and limn→∞ tn = t we
have that limn→∞ f(tn) = f(t);

• for the end-points we stipulate that f is right continuous at a and has a
left limit at b.

A càglàd function (i.e. one that is left-continuous with right limits) is defined
similarly.

With these definitions at hand we can begin the main part of this section,
and defining Lévy processes is a natural starting point.

Definition 2.2.2 (Lévy process, [DØP09]). A one-dimensional Lévy process is a
stochastic process L = {L(t)}t≥0:

L(t) = L(t, ω), ω ∈ Ω,

with the following properties:

i) L(0) = 0 P -a.s.,

ii) L has independent increments, that is, for all t > 0 and h > 0, the
increment L(t+ h) − L(t) is independent of L(s) for all s ≤t,

iii) L has stationary increments, that is, for all h > 0 the increment
L(t+ h) − L(t) has the same probability law as L(h),

iv) It is stochastically continuous, that is, for every t ≥ 0 and ϵ > 0 then
lims→t P{|L(t) − L(s)| > ϵ} = 0,

v) L has càdlàg paths, that is, the trajectories are right-continuous with left
limits.

A process L satisfying (i)-(iv) is a Lévy process in law, and it can be shown
that such processes L always has a version with càdlàg paths.

The jump of L at time t is defined by

∆L(t) := L(t) − lim
s↑t

L(t)

Set R0 := R \ {0} and let B(R0) denote the σ-algebra generated by the
family of all Borel subsets U ⊂ R, such that the closure Ū ⊂ R0.

Defining the Poisson random measure is now possible. It measures the
amount of jumps of a certain size in a specific time interval for the Lévy process
in question.

10



2.2. The stochastic integral for compensated Poisson measures

Definition 2.2.3 (Poisson random measure, [DØP09]). If U ∈ B(R0) with
Ū ⊂ R0 and t > 0, we define

N(t, U) :=
∑

0≤s≤t

χU (∆L(s)),

the Poisson random measure on B(0,∞) × B(R0) is given by

N((a, b] × U) = N(b, U) −N(a, U), 0 < a ≤ b, U ∈ B(R0).

For our purposes the Poisson random measure is mainly important as a step
in defining the next two measures. We begin with the Lévy measure, which
measures the expected amount of jumps of a certain size in a time interval of
length 1.

Definition 2.2.4 (Lévy measure, [DØP09]). If U ∈ B(R0) with Ū ⊂ R0 and
t > 0, we define the Lévy measure ν of L to be

ν(U) := E[N(1, U)], U ∈ B(R0).

Remark 2.2.5. [DØP09] The Lévy measure always satisfies the following
integrability condition ∫

R0

min(1, z2)ν(dz) < ∞.

This is a consequence of the Lévy-Khintchine formula which we will state later.
Finally, we can define the compensated Poisson random measure (cPrm),

which is what will be integrated against in the forthcoming stochastic integral.
It is defined as the difference between the Poisson random measure and the
Lévy measure.

Definition 2.2.6 (Compensated Poisson random measure, [DØP09]). We define
the compensated Poisson measure Ñ , by

Ñ(dt, dz) := N(dt, dz) − ν(dz)dt.

The following formula, called the Lévy-Khintchine formula, allows one to
compute the characteristic function of any infinitely divisible process (see page
5 in [BBV18]) in a simple way. We only state the one dimensional version for
Lévy processes.

Theorem 2.2.7 (Lévy-Khintchine Formula for Lévy Processes, [DØP09]). Let L
be a Lévy process in law. Then

E[eiuL(t)] = eiψ(u), u ∈ R (i =
√

−1), (2.1)

with the characteristic exponent

ψ(u) := iαu− 1
2β

2u2 +
∫

|z|<1
(eiuz − 1 − iuz)ν(dz) +

∫
|z|≥1

(eiuz − 1)ν(dz)

(2.2)

11



2.2. The stochastic integral for compensated Poisson measures

where the parameters α ∈ R and β2 ≥ 0 are constants and ν = ν(dz), z ∈ R0,
is a σ-finite measure on B(R0) satisfying∫

R0

min(1, z2)ν(dz) < ∞. (2.3)

It follows that ν is the Lévy measure of L. Conversely, given the constants
α ∈ R and β2 and the σ-finite measure ν on B(R0) such that (2.3) holds, then
there exists a process L (unique in law) such that (2.1) and (2.2) hold. The
process L is a Lévy process in law.

The second stochastic integral relevant for this thesis is now introduced.
The integrator is a compensated Poisson random measure instead of a Brownian
motion, and for this to work we need a different kind of probability space than
in section 2.1. So, for any t, let Ft be the complete σ-algebra generated by
the random variables B(s) and Ñ(ds, dz), z ∈ R0, s ≤ t. Further, equip the
probability space (Ω,F , P ) with the filtration F = {Ft}t≥0.

Definition 2.2.8 (cPrm Itô integral, [DØP09]). For any F-adapted process θ
such that

E

[∫ T

0

∫
R0

θ2(t, z)ν(dz)dt
]
< ∞ for some T > 0,

we define the stochastic integral w.r.t. the compensated Poisson random measure
by∫ T

0

∫
R0

θ(s, z)Ñ(ds, dz) = lim
n→∞

∫ T

0

∫
|z|≥1/n

θ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T,

where the limit is to be taken in L2(P ). This integral is also linear, centered
and FT -measurable, see Theorem 4.2.3 in [App09].

In the case where θ(s, z) = θ(s)z, which is the case when working with
VMLV processes, we also write∫ T

0
θ(s)dL(s) :=

∫ T

0

∫
R0

zθ(s)Ñ(ds, dz).

Remark 2.2.9. As in the Brownian motion case we can extend the cPrm Itô
integral to all processes θ(t, z), z ∈ R0, t ∈ [0, T ] such that∫ T

0

∫
R0

θ(s, z)ν(dz)ds < ∞, P − a.s.

We refer to [Pro10] for details.
There exist an isometry for these integrals which is analogous to the isometry

for Itô integrals in the Brownian motion case.

Theorem 2.2.10 (cPrm Itô isometry, [DØP09]).

E

[(∫ T

0

∫
R0

θ(t, z)Ñ(dt, dz)
)2
]

= E

[∫ T

0

∫
R0

θ(t, z)2ν(dz)dt
]
.
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2.2. The stochastic integral for compensated Poisson measures

By comparing the definitions of a Brownian motion and a Lévy process one
can see that a Brownian motion is a special case of a Lévy process. Furthermore,
all Lévy processes can be represented in the following way.

Theorem 2.2.11 (Lévy-Itô decomposition, [DØP09]). Let L = {L(t)}t≥0 be a
Lévy process. Then L, admits the following integral representation

L(t) = at+ σB(t) +
∫ t

0

∫
|z|<1

zÑ(ds, dz) +
∫ t

0

∫
|z|≥1

zN(ds, dz).

for some constants a, σ ∈ R.

This section is concluded with the Itô formula for Itô-Lévy processes, the
definition of these processes are motivated by the Lévy-Itô decomposition above.

Definition 2.2.12 (Lévy-Itô process, [DØP09]). Lévy-Itô processes are defined
as the process X = {Xt}t≥0 given by

X(t) = x+
∫ t

0
α(s)ds+

∫ t

0
β(s)dW (s) +

∫ t

0

∫
R0

γ(s, z)Ñ(ds, dz), (2.4)

where {αt}t≥0, {βt}t≥0, {γt}t≥0 are predictable processes satisfying the
following integrability condition∫ t

0

[
|α(s)| + β2(s) +

∫
R0

γ2(s, z)ν(dz)
]
ds < ∞, P − a.s.,

for all t > 0, z ∈ R0. Assuming this integrability condition the integrals are
well-defined and the Lévy-Itô process X is a local martingale. If we strengthen
the integrability condition to

E

[ ∫ t

0

[
|α(s)| + β2(s) +

∫
R0

γ2(s, z)ν(dz)
]
ds < ∞

]
,

for all t > 0, z ∈ R0, then X is a martingale. In differential form, (2.4) looks
like

dX(t) = α(t)dt+ β(t)dW (t) +
∫
R0

γ(t, z)Ñ(dt, dz), X0 = x.

Now the Itô formula follows, which we will need in section 7.1 where we
express the solution of an SDE with linear coefficients via the Itô formula.
Denote by C1,2(A×B) the space of functions on A×B differentiable at least
once in the first variable and at least twice in the second variable.

Theorem 2.2.13 (Itô formula, [DØP09]). Let X = {X(t)}t≥0, be the Lévy-Itô
process given by

X(t) = x+
∫ t

0
α(s)ds+

∫ t

0
β(s)dW (s) +

∫ t

0

∫
R0

γ(s, z)Ñ(ds, dz)

and let f : (0,∞) × R → R be a function in C1,2((0,∞) × R) and define

Y (t) := f(t,X(t)), t ≥ 0.

13



2.3. Useful results and definitions

Then the process Y = {Y (t)}t≥0, is also a Lévy-Itô process and its differential
form is given by

dY (t) = ∂f

∂t
(t,X(t))dt+ ∂f

∂x
(t,X(t))α(t)dt (2.5)

+ ∂f

∂x
(t,X(t))β(t)dW (t) + 1

2
∂2f

∂x2 (t,X(t))β2(t)dt (2.6)

+
∫
R0

[
f(t,X(t) + γ(t, z)) − f(t,X(t)) − ∂f

∂x
(t,X(t))γ(t, z)

]
ν(dz)dt (2.7)

+
∫
R0

[
f(t,X(t−) + γ(t, z)) − f(t,X(t−))

]
Ñ(dt, dz). (2.8)

2.3 Useful results and definitions

This section is a collection of theorems and definitions which will be needed,
but that does not fit naturally in any other section. We start with an inequality
that will be used many times.

Lemma 2.3.1 (Elementary inequality, [Mit64]). For 1 ≤ i ≤ n ∈ N, let ai ∈ R,
then ( n∑

i=1
ai

)2
≤ n

n∑
i=1

a2
i .

In chapter 5 and 7 we will come across two different ways in which two
distinct stochastic processes can be the same.

Definition 2.3.2 (Modification, Indistinguishable, [Øks03]). Suppose that X =
{X(t)}t≥0 and Y = {Y (t)}t≥0 are stochastic processes on (Ω,F , P ). Then we
say that X is a modification of (or a version of) Y if

P ({X(t, ω) = Y (t, ω)}) = 1 for all t.

A stronger sense of "sameness" is indistinguishability, it should be clear
from the following definition that two indistinguishable processes are also
modifications of each other.

The two processes X and Y are said to be indistinguishable (or pathwise
equal) if

P ({X(t, ω) = Y (t, ω) for all t ≥ 0}) = 1.
We end this section with some well known results. Firstly, Kolmogorov’s

continuity theorem, which are used in sections 6.1 and 8.1 where we show that
BSS, LSS and fBSS processes admits continuous modifications under certain
regularity conditions on g and σ. Secondly, the classical Fubini theorem as well
as a stochastic version of it are presented, these will be used in chapter 3 and
chapter 7.

Theorem 2.3.3 (Kolmogorov’s continuity theorem, [Øks03]). Suppose that the
process X = {Xt}t≥0 satisfies the following condition: For all T > 0 there exist
positive constants α, β,D such that

E[|Xt −Xs|α] ≤ D · |t− s|1+β ; 0 ≤ s, t ≤ T.

Then there exists a continuous version of X.
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2.3. Useful results and definitions

The famous classical Fubini theorem is now stated.

Theorem 2.3.4 (Fubini’s Theorem, [MW12]). Suppose that (X,A, µ), (Y,B, ν)
bare σ-finite measure spaces. Let f be a complex-valued A × B measurable
function on X × Y such that at least one of the integrals

•
∫
X×Y |f(x, y)|d(µ× ν)(x, y)

•
∫
X

∫
Y

|f(x, y)|dµ(x)dν(y)

•
∫
Y

∫
X

|f(x, y)|dν(x)dµ(y)

are finite, then the following equalities hold.∫
X×Y

f(x, y)d(µ× ν)(x, y) =
∫
X

∫
Y

f(x, y)dµ(x)dν(y)

=
∫
Y

∫
X

f(x, y)dν(x)dµ(y)

Lastly, in this chapter, we give the stochastic Fubini theorem of [Pro10].
There are plenty of other versions, but this is sufficient for our purposes.

Theorem 2.3.5 (Stochastic Fubini Theorem, [Pro10]). Let X be a semimartin-
gale, let H(a, t, ω) be A ⊗ P measurable, let µ be a finite positive measure on
A, and assume (∫

A

H2(a, t)dµ(a)
)1/2

is X integrable. Letting Zat =
∫ t

0 H(a, s)dXs be A ⊗ B(R+) ⊗ F measurable and
Za càdlàg for each a, then Yt =

∫
A
Zat dµ(a) exists and is a càdlàg version of

H ·X, where Ht =
∫
A
H(a, t)dµ(a).

See [Pro10] for details on what is meant by X integrable, as it is a general
definition and a somewhat lengthy construction we will not go into that. But
in connection with Remark 2.1.5 we point out that in the specific instance
where the semimartingale X is a Lévy process (see page 55 in [Pro10]), then a
sufficient condition for an adapted process {us}s∈[0,T ] being X integrable is the
following ∫ T

0
u2(s)ds < ∞ a.s.
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CHAPTER 3

Malliavin calculus

Building upon the concepts of stochastic calculus introduced in the last section,
we can explore the subject of Malliavin calculus. This topic is crucial for this
thesis, as the definition of integrals against VMBV/VMLV processes involves
both the Skorohod integral and the Malliavin derivative. Malliavin calculus is a
more exotic subject than stochastic calculus, and the presentation is therefore
more detailed. In particular, the construction of the concepts of Skorohod
integral and Malliavin derivative is included.

There are two ways of defining the Malliavin derivative and the Skorohod
integral in the real-valued case. Since we will consider integration against both
VMBV and VMLV processes and therefore need Malliavin calculus in both
the Brownian motion case and the pure jump Lévy case, we have chosen the
chaos expansion approach. As we shall see, these two cases are very similar
in their constructions. Alternatively, one could define the Malliavin derivative
as a stochastic gradient via directional derivatives. See [DØP09] for a more
detailed discussion on the pros and cons of these two approaches.

The definitions and results in this section are mainly gathered from chapters
1-3 and 10-12 in [DØP09], but [Nua06] has also been consulted for a different
point of view.

As mentioned, there are two slightly different cases and they will be
considered separately. We present the Brownian motion case first and then the
pure jump Lévy case.

3.1 Brownian motion case

Let B = {Bt}t∈[0,T ] be a one-dimensional Brownian motion on the complete
probability space (Ω,F , P ). Let Ft be the complete σ-algebra generated by
B(s), 0 ≤ s ≤ t, for all t ≥ 0. The corresponding filtration is denoted by
F = {F}t∈[0,T ].

Skorohod integrals and Malliavin derivatives are defined using the Wiener-
Itô chaos expansion, but to get there we must first define iterated Itô integrals
and symmetric functions.

Definition 3.1.1 (Symmetric function, [DØP09]). A real function g : [0, T ]n → R
is called symmetric if

g(tσ1 , ..., tσn) = g(t1, ..., tn)
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3.1. Brownian motion case

for all permutations σ = (σ1, ..., σn) of (1, 2, ..., n). Let L2([0, T ]n) be the
standard space of square integrable Borel real functions on [0, T ]n such that

∥g∥2
L2([0,T ]n) :=

∫
[0,T ]n

g2(t1, ..., tn)dt1 · · · dtn < ∞.

Not all functions are symmetric, but all functions can be symmetrized,
and for the definition of the Skorohod integral such a symmetrization will be
necessary.

Let L̃2([0, T ]n) ⊂ L2([0, T ]n) be the space of real symmetric square integrable
Borel functions on [0, T ]n.

Definition 3.1.2 (Symmetrization of a function, [DØP09]). If f is a real function
on [0, T ]n, then its symmetrization f̃ is defined by

f̃(t1, ..., tn) = 1
n!
∑
σ

f(tσ1 , ..., tσn
),

where the sum is taken over all permutations σ of (1, ..., n).

The definition of iterated Itô integrals is now viable and as will be
immediately clear, they are defined in a natural way considering the name.

Definition 3.1.3 (Iterated Itô integral, [DØP09]). Let f be a deterministic
function defined on

Sn = {(t1, ..., tn) ∈ [0, T ]n : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T}

such that
∥f∥2

L2(Sn) :=
∫
Sn

f2(t1, ..., tn)dt1 · · · dtn < ∞.

Then we can define the n-fold iterated Itô integral as

Jn(f) :=
∫ T

0

∫ tn

0
· · ·
∫ t3

0

∫ t2

0
f(t1, ..., tn)dB(t1)dB(t2) · · · dB(tn−1)dB(tn).

If g ∈ L̃2([0, T ]n) we define

In(g) :=
∫

[0,T ]n

g(t1, ..., tn)dB(t1) · · · dB(tn) := n!Jn(g). (3.1)

We also call In(g) the n-fold iterated Itô integral of g.

By the Itô isometry the following property holds.

Proposition 3.1.4 ([DØP09]). If g ∈ L̃2([0, T ]m) and h ∈ L̃2([0, T ]n), we have

E[Jm(g)Jn] = (g, h)L2(Sn)

{
0, m ̸= n

(g, h)L2(Sn), m = n
(3.2)

where

(g, h)L2(Sn) :=
∫
Sn

g(t1, ..., tn)h(t1, ..., tn)dt1 · · · dtn.
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3.1. Brownian motion case

Upcoming is the definition of the Wiener-Itô chaos expansion of a random
variable, this is a sum of iterated Itô integrals. The definitions of the Skorohod
integral and the Malliavin derivative relies fully on this construction.

Theorem 3.1.5 (The Wiener-Itô chaos expansion, [DØP09]). Let F be an FT -
measurable random variable in L2(P ). Then there exists a unique sequence
{fn}∞

n=0 of functions fn ∈ L̃2([0, T ]n) such that

F =
∞∑
n=0

In(fn),

where the convergence is in L2(P ). Moreover, we have the isometry

∥F∥2
L2(P ) =

∞∑
n=0

n!∥fn∥2
L2([0,T ]n).

As we define the Skorohod integral, the necessity of presenting the previous
definitions of this section becomes clear. This integral is fundamental for this
thesis as many of the SDEs we consider contains at least one term which involves
the Skorohod integral.

Definition 3.1.6 (The Skorohod integral, [DØP09]). Let {u(t)}t∈[0,T ], be a
measurable stochastic process such that for all t ∈ [0, T ] the random variable
u(t) is FT -measurable and E[

∫ T
0 u2(t)dt] < ∞. Let its Wiener–Itô chaos

expansion be

u(t) =
∞∑
n=0

In(fn,t) =
∞∑
n=0

In(fn(·, t)).

Then we define the Skorohod integral of u by

δ(u) :=
∫ T

0
u(t)δB(t) :=

∞∑
n=0

In+1(f̃n)

when convergent in L2(P ). Here f̃n, n = 1, 2, ... are the symmetric functions
derived from fn(·, t), n = 1, 2, ... We say that u is Skorohod integrable, and we
write u ∈ Dom(δ) if the series converges in L2(P ).

Note that a stochastic process u is in Dom(δ) if and only if

E[δ(u)2] =
∞∑
n=1

(n+ 1)!∥f̃∥2
L2[0,T ]n+1 < ∞. (3.3)

The Skorohod integral satisfies several properties which are usually
considered desirable for integrals, however, there is one exception which will be
pointed out.

Proposition 3.1.7 (Properties of the Skorohod integral, [DØP09]). Let u, v ∈
Dom(δ), α, β ∈ R and t ∈ [0, T ], then

(i) χ(0,t]u ∈ Dom(δ) and χ(t,T ]u ∈ Dom(δ),

(ii)
∫ t

0 u(s)δB(s) =
∫ T

0 χ(0,t](s)u(s)δB(s) and∫ T
t
u(s)δB(s) =

∫ T
0 χ(t,T ](s)u(s)δB(s),
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3.1. Brownian motion case

(iii)
∫ T

0 u(s)δB(s) =
∫ t

0 u(s)δB(s) +
∫ T
t
u(s)δB(s)

(iv) δ(αu+ βv) = αδ(u) + βδ(v),

(v) E[δ(u)] = 0.

Remark 3.1.8 ([DØP09]). Let u ∈ Dom(δ) and G be a FT -measurable random
variable with Gu ∈ Dom(δ). For Skorohod integrals we have in general

G

∫ T

0
u(t)δB(t) ̸=

∫ T

0
Gu(t)δB(t),

whereas if u was Itô integrable we would be able to pull G in and out of the
integral, that is

G

∫ T

0
u(t)dB(t) =

∫ T

0
Gu(t)dB(t).

See example 2.4 in [DØP09] for an example of this occurrence.
Since the Skorohod integral is defined as a sum of iterated Itô integrals it

makes sense for there to be some kind of correspondence between the two, in
fact, we even have equality for all adapted integrands.

Theorem 3.1.9 (The Skorohod integral extends the Itô integral, [DØP09]). Let
u = {u(t)}t∈[0,T ], be a measurable F-adapted stochastic process such that

E

[ ∫ T

0
u2(t)dt

]
< ∞.

Then u ∈ Dom(δ) and its Skorohod integral coincides with the Itô integral∫ T

0
u(t)δB(t) =

∫ T

0
u(t)dB(t).

Many of the SDEs under consideration in chapter 7 also contain at least
one term involving a Malliavin derivative, this definition too, relies fully on the
Wiener-Itô chaos expansion.

Definition 3.1.10 (Malliavin derivative, [DØP09]). Let F ∈ L2(P ) be FT -
measurable with chaos expansion

F =
∞∑
n=0

In(fn),

where fn ∈ L̃2([0, T ]n), n = 1, 2, ...

i) We say that F ∈ D1,2 if

∥F∥2
D1,2

:=
∞∑
n=1

nn!∥fn∥2
L2([0,T ]n) < ∞.

ii) If F ∈ D1,2 we define the Malliavin derivative DtF of F at time t as the
expansion

DtF =
∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ],
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3.1. Brownian motion case

where In−1(fn(·, t)) is the (n−1)-fold iterated integral of fn(t1, ..., tn−1, t)
with respect to the first n − 1 variables t1, ..., tn−1 and tn = t left as a
parameter.

The next property of the Malliavin derivative is crucial for the proof of
several of the results listed below.

Theorem 3.1.11 (Closability of the Malliavin derivative, [DØP09]). Suppose
F ∈ L2(P ) and Fk ∈ D1,2, k = 1, 2, ..., such that

(i) Fk → F , k → ∞, in L2(P )

(ii) {DtFk}∞
k=1 converges in L2(P × λ).

Then F ∈ D1,2 and DtFk → DtF , k → ∞, in L2(P × λ).

The Malliavin derivative, like the Skorohod integral, inherits linearity from
the Wiener-Itô chaos expansion, this is used frequently throughout this thesis.

Furthermore, the Malliavin derivative satisfies a product rule and a chain rule
similar to the classical derivative. We denote by D0

1,2 the set of all F ∈ L2(P )
whose chaos expansion has finitely many terms.

Theorem 3.1.12 (Product rule, [DØP09]). Suppose F1, F2 ∈ D0
1,2. Then

F1, F2 ∈ D1,2 and also F1F2 ∈ D1,2 with

Dt(F1F2) = F1DtF2 + F2DtF1.

The above product rule only holds for random variables with finite chaos
expansions, therefore, its direct use is limited. However, the set of all G ∈ D0

1,2 is
dense in L2(P ). Hence, it is often possible to use the product rule in combination
with a density argument to prove general results that hold for all G ∈ D1,2. For
many of our applications we escape such a density argument and the contents
of the following remark is often sufficient.
Remark 3.1.13. We will on several occasions want to move something
deterministic outside of the Malliavin derivative, this is therefore proved.

Let {Xt}t∈[0,T ] be a stochastic process with chaos expansion X(s) =∑∞
n=0 In(fn(·, s)), and let g be a deterministic function, then

Dt(g(s)X(s)) = Dt

(
g(s)

∞∑
n=0

In(fn(·, s))
)

= Dt

( ∞∑
n=0

g(s)In(fn(·, s))
)

= Dt

( ∞∑
n=0

In(g(s)fn(·, s))
)

=
∞∑
n=1

nIn−1(g(s)fn(·, t, s))

= g(s)
∞∑
n=1

nIn−1(fn(·, t, s)) = g(s)Dt

( ∞∑
n=0

In(fn(·, s))
)

= g(s)Dt(X(s))

for all s, t ∈ [0, T ]. For simplicity, we refer to the product rule instead of this
remark, since a product rule allowing for infinite chaos expansions would have
implied the above result.

The chain rule holds more generally and, as we shall see, it actually implies
a more general product rule as well.
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3.1. Brownian motion case

Theorem 3.1.14 (Chain rule, [DØP09]). Assume F1, ..., Fm ∈ L2(P ) is
Hida–Malliavin differentiable in L2(P ). Suppose that φ ∈ C1(Rm), DtFi ∈
L2(P ), for all t ∈ R, and ∂φ

xi
(F )D·Fi ∈ L2(P × dt) for i = 1, ...,m, where

F = (F1, ..., Fm). Then φ(F ) is Hida–Malliavin differentiable and

Dtφ(F ) =
m∑
i=1

∂φ

∂xi
(F )DtFi.

The Hida-Malliavin derivative is defined for a larger class of random variables
and coincides with the Malliavin derivative we have defined earlier when they
are both defined, since we never use the Hida-Malliavin derivative we refer to
[DØP09] for details.
Remark 3.1.15. Note that 3.1.14 extends the product rule. Choose F1, F2 ∈
L2(P ) with DtFi ∈ L2(P ), for i = 1, 2, and define φ ∈ C1(R2) by φ(F1, F2) =
F1F2. If we also assume

∂φ

∂xi
(F )D·Fi = FjD·Fi ∈ L2(P × dt),

for i, j = 1, 2 with i ̸= j, we get

Dtφ(F1, F2) = ∂φ(F1, F2)
∂x1

DtF1 + ∂φ(F1, F2)
∂x2

DtF2 = F2DtF1 + F1DtF2.

In particular, the above chain rule implies the following more simple chain
rule

Theorem 3.1.16 (Chain rule, [DØP09]). Let G ∈ D1,2 and g ∈ C1(R) with
bounded derivative. Then g(G) ∈ D1,2 and

Dtg(G) = g′(G)DtG.

Here g′(x) = d
dxg(x).

Another interesting property is that the Malliavin derivative preserves
adaptedness.

Theorem 3.1.17 (Malliavin derivative and adaptedness, [DØP09]). Let u =
{u(s)}s∈[0,T ], be an F-adapted stochastic process and assume that u(s) ∈ D1,2
for all s. Then

(i) Dtu(s), s ∈ [0, T ], is F-adapted for all t;

(ii) Dtu(s) = 0, for t > s.

We end this subsection with some important formulas for the relation
between the Skorohod integral and the Malliavin derivative.

Theorem 3.1.18 (Duality formula, [DØP09]). Let F ∈ D1,2 be FT -measurable
and let u be a Skorohod integrable stochastic process. Then

E

[
F

∫ T

0
u(t)δB(t)

]
= E

[ ∫ T

0
u(t)DtFdt

]
.
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3.1. Brownian motion case

Note that this duality, together with the closability of the Malliavin
derivative, implies that the Skorohod integral is closable in the sense that
if ∫ T

0
un(t)δB(t), n ∈ N

converges in L2(P ) and

lim
n→∞

un = 0, in L2(P × dt),

where dt denotes the Lebesgue measure on [0, T ], then

lim
n→∞

∫ T

0
un(t)δB(t) = 0 in L2(P ).

Another correspondence between the Malliavin derivative and the Skorohod
integral is the integration by parts formula. Recalling Remark 3.1.8, this formula
seems reasonable.

Theorem 3.1.19 (Integration by parts, [DØP09]). Let {u(t)}t∈[0,T ], be a
Skorohod integrable stochastic process and let F ∈ D1,2 such that the product
Fu(t), t ∈ [0, T ], is Skorohod integrable. Then

F

∫ T

0
u(t)δB(t) =

∫ T

0
Fu(t)δB(t) +

∫ T

0
u(t)DtFdt.

Furthermore, one might wonder what happens if we take the Malliavin
derivative of the Skorohod integral. The next theorem will quench this curiosity.

Theorem 3.1.20 (The fundamental theorem of calculus, [DØP09]). Let u =
{u(s)}s∈[0,T ], be a stochastic process such that

E

[ ∫ T

0
u2(s)ds

]
< ∞

and assume that, for all s ∈ [0, T ], u(s) ∈ D1,2 and that, for all t ∈ [0, T ],
Dtu ∈ Dom(δ). Assume also that

E

[ ∫ T

0

(
δ(Dtu)

)2
dt

]
< ∞

Then
∫ T

0 u(s)δB(s) is well-defined and belongs to D1,2 and

Dt

(∫ T

0
u(s)δB(s)

)
=
∫ T

0
Dtu(s)δB(s) + u(t)

The final correspondence result of this section is often more useful than the
L2(P ) equality (3.3), and will be used several times in chapter 7.

Theorem 3.1.21 (Isometry for Skorohod intgral, [DØP09]). Let u be a
measurable process such that u(s) ∈ D1,2 for a.a. s and

E

[∫ T

0
u2(t)dt+

∫ T

0

∫ T

0
|Dtu(s)Dsu(t)|dsdt

]
< ∞.
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3.1. Brownian motion case

Then u is Skorohod integrable and

E

[(∫ T

0
u(s)δB(s)

)2
]

= E

[∫ T

0
u2(t)dt+

∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

]
.

(3.4)

Notice that if u is also assumed to be F-adapted, then by Theorem 3.1.17,
the Skorohod isometry (3.4) reduces to the Itô isometry 2.1.7.

In chapter 7 we will on many occasions want to commute the Malliavin
derivative and an integral which integrates against a Lebesgue-Stieltjes measure.
I have been unsuccessful in my attempts at finding a result on this in the
literature, so the following result is proved by me.

Proposition 3.1.22 (Commutation of Malliavin derivative and integral). Let µ
be a finite signed measure. Let X = {Xt}t∈[0,T ] be a stochastic process in L2(P )
such that Xs is FT -measurable for all s ∈ [0, T ]. Further we assume that X is
Malliavin differentiable and the integrability conditions∫ u

0
E
[
(Xs)2]dµ(s) < ∞ (3.5)

and ∫ u

0

∫ T

0
E
[
(DtXs)2]dtdµ(s) < ∞ (3.6)

for all u ∈ [0, T ]. Then,
∫ u

0 Xsdµ(s) ∈ D1,2 and

Dr

∫ u

0
Xsdµ(s) =

∫ u

0
DrXsdµ(s).

Proof. For starters, note that by the linearity of the Malliavin derivative we
have

Dr

(∫ u

0
Xsdµ(s)

)
= Dr

(∫ u

0
Xsdµ

+(s) −
∫ u

0
Xsdµ

−(s)
)

= Dr

∫ u

0
Xsdµ

+(s) −Dr

∫ u

0
Xsdµ

−(s),

where µ+ and µ− are positive measures stemming from the Jordan decomposi-
tion of µ, see [MW12] for details on the Jordan decomposition theorem. We
can therefore, without loss of generalization, assume µ is a positive measure.

The rest of this proof has two parts, we first show that

Dr

∫ u

0
Xm
s dµ(s) =

∫ u

0
DrX

m
s dµ(s), (3.7)

where Xm
s =

∑m
n=0 In(fn(·, s)) converges to X =

∑∞
n=0 In(fn(·, s)) in L2(P ).

Such a chaos expansion of X is guaranteed to exist by Theorem 3.1.5. To
obtain (3.7) we need to swap the µ integral with the iterated Itô integrals,
consequently we apply the stochastic Fubini theorem 2.3.5. This theorem
requires the integrand to be predictable and for a integrability condition to be
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3.1. Brownian motion case

satisfied. Even though we do not assume that X itself is predictable, this is not
a problem since the Itô integrals in the chaos expansions are predictable.

Furthermore, by (3.2) and Theorem 2.3.4, we have∫ u

0
E

[( m∑
n=0

n!Jn(fn(·, s))
)2
]
dµ(s)

=
∫ u

0

m∑
n=0

n!
∫
Sn

(fn(t1, ..., tn, s))2dt1 · · · dtndµ(s)

=
m∑
n=0

n!
∫ u

0

∫ T

0
· · ·
∫ t2

0
fn(t1, ..., tn, s)2dt1 · · · dtndµ(s)

= · · · =
m∑
n=0

n!
∫ T

0
· · ·
∫ t2

0

∫ u

0
fn(t1, ..., tn, s)2dµ(s)dt1 · · · dtn < ∞,

which is finite by assumption 3.5. Therefore, applying the stochastic Fubini
theorem 2.3.5 is justified, and we get

∫ u

0
DrX

m
s dµ(s) =

∫ u

0
Dr

m∑
n=0

In(fn(·, s))dµ(s)

=
∫ u

0

m∑
n=1

nIn−1(fn(·, r, s))dµ(s) =
m∑
n=1

n

∫ u

0
In−1(fn(·, r, s))dµ(s)

=
m∑
n=1

n

∫ u

0

∫ T

0
· · ·
∫ T

0
fn(t1, · · · , tn−1, r, s)dBt1 · · · dBtn−1dµ(s)

= · · · =
m∑
n=1

n

∫ T

0
· · ·
∫ T

0

∫ u

0
fn(t1, · · · , tn−1, r, s)dµ(s)dBt1 · · · dBtn−1

=
m∑
n=1

nIn−1

(∫ u

0
fn(·, r, s)dµ(s)

)
.

On the other hand we have

Dr

∫ u

0
Xm
s dµ(s) = Dr

∫ u

0

m∑
n=0

In(fn(·, s))dµ(s)

= · · · = Dr

m∑
n=0

In

(∫ u

0
fn(·, s)dµ(s)

)
=

m∑
n=1

nIn−1

(∫ u

0
fn(·, r, s)dµ(s)

)
.

Hence, equality (3.7) holds. For infinite chaos expansion we can not
automatically swap the sum and the integrand, we will instead take the limit
in equality (3.7). We have

E

[ ∫ T

0

(∫ u

0
DrXsdµ(s) −Dr

∫ u

0
Xm
s dµ(s)

)2
dr

]
E

[ ∫ T

0

(∫ u

0
DrXs −DrX

m
s dµ(s)

)2
dr

]
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3.2. Pure jump Lévy case

≤ µ([0, u])
∫ u

0
E

[ ∫ T

0

(
DrXs −DrX

m
s

)2
dr

]
dµ(s)

= µ([0, u])
∫ u

0
E

[ ∫ T

0

( ∞∑
n=m+1

In−1(f(·, s))
)2
dr

]
dµ(s), (3.8)

which goes to 0 as m → ∞ by assumption (3.6). Lastly, we have

E

[(∫ u

0
Xs −Xm

s dµ(s)
)2
]

≤ µ([0, u])
∫ u

0
E
[
(Xs −Xm

s )2]dµ(s) (3.9)

which goes to 0 by (3.5). Summing up, we know that
∫ u

0 Xm
s dµ(s) converges to∫ u

0 Xsdµ(s) in L2(P ) by (3.9), and that Dr

∫ u
0 Xm

s converges in L2(P × dt) by
(3.8), these are the conditions of Theorem 3.1.11. Therefore, by the closability
of the Malliavin derivative, we have that

∫ u
0 Xsdµ(s) ∈ D1,2 and that∫ u

0
DrXsdµ(s) = lim

m→∞

∫ u

0
DrX

m
s dµ(s)

= lim
m→∞

Dr

∫ u

0
Xm
s dµ(s) = Dr

∫ u

0
Xsdµ(s),

where the limit is taken in L2(P × dt).
■

3.2 Pure jump Lévy case

This section will give a similar summary for Malliavin calculus as the last
section, but this time with respect to the pure jump Lévy case, that is, a process
L = {L(t)}t≥0 of the form

L(t) =
∫ t

0

∫
R0

zÑ(dz, ds).

As this case is very similar to the Brownian motion case we keep it shorter, but
some differences will be pointed out.

Let L2((λ × ν)n) = L2(([0, T ] × R0)n) be the space of deterministic real
functions f such that

∥f∥L2((λ×ν)n) =
(∫

([0,T ]×R0)n

f2(t1, z1, ..., tn, zn)dt1ν(dz1) · · · dtnν(dzn)
)1/2

< ∞,

where λ denotes the Lebesgue measure on [0, T ].

Definition 3.2.1 (Symmetrization of a function, [DØP09]). The symmetrization
f̃ of f is defined by

f̃(t1, z1, ..., tn, zn) = 1
n!
∑
σ

f(tσ1 , zσ1 , ..., tσn , zσn),

the sum being taken over all permutations σ = (σ1, ..., σn) of {1, ..., n}. Note
that the symmetrization is over the n pairs (t1, z1), ..., (tn, zn) and not over the
2n variables t1, z1, ..., tn, zn.
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3.2. Pure jump Lévy case

Definition 3.2.2 (Symmetric function, [DØP09]). A function f ∈ L2((λ× ν)n)
is called symmetric if f = f̃ . We denote the space of all symmetric functions in
L2((λ× ν)n) by L̃2((λ× ν)n).

Definition 3.2.3 (Iterated integral, [DØP09]). Let f be a deterministic function
defined on

Gn = {(t1, z1, ..., tn, zn) : 0 ≤ t1 ≤ ... ≤ tn ≤ T, zi ∈ R0), i = 1, ..., n}

such that

∥f∥2
L2(Gn) :=

∫
Gn

f2(t1, z1, ..., tn, zn)dt1ν(dz1) · · · dtnν(dzn) < ∞.

Then we can define the n-fold iterated integral as

Jn(f) :=
∫ T

0

∫
R0

· · ·
∫ t−2

0

∫
R0

f(t1z1, ..., tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn).

If g ∈ L̃2((λ× ν)n) we define

In(g) :=
∫

([0,T ]×R0)n

g(t1z1, ..., tn, zn)Ñ⊗n(dt, dz) := n!Jn(g).

We also call In(g) the n-fold iterated integral of g.

Observe that the iterated integrals are taken with respect to the compensated
Poisson random measure associated to the Lévy process L and not with respect
to the process itself.

Theorem 3.2.4 (The Wiener-Itô chaos expansion, [DØP09]). Let F be an FT -
measurable random variable in L2(P ). Then there exists a unique sequence
{fn}∞

n=0 of functions fn ∈ L̃2((λ× ν)n) such that

F =
∞∑
n=0

In(fn),

where the convergence is in L2(P ). Moreover, we have the isometry

∥F∥2
L2(P ) =

∞∑
n=0

n!∥fn∥2
L2((λ×ν)n).

Definition 3.2.5 (The Skorohod integral, [DØP09]). Let X = X(t, z), 0 ≤ t ≤ T ,
z ∈ R0, be a stochastic process (more precisely a random field) such that X(t, z)
is an FT -measurable random variable for all (t, z) ∈ [0, T ] × R0 and

E

[∫ T

0

∫
R0

X2(t, z)ν(dz)dt
]
< ∞.

Then for each (t, z), the random variable X(t, z) has an expansion of the form

X(t, z) =
∞∑
n=0

In(fn(·, t, z)), where fn(·, t, z) ∈ L̃2((λ× ν)n).
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3.2. Pure jump Lévy case

Let f̃n(t1, z1, ..., tn, zn, tn+1, zn+1) be the symmetrization of
fn(t1, z1, ..., tn, zn, t, z) as a function of the n+1 pairs (t1, z1), ..., (tn, zn), (t, z) =
(tn+1, zn+1). Suppose that

∞∑
n=0

(n+ 1)!∥f̃n∥2
L2((λ×ν)n+1) < ∞.

Then we say that X is Skorohod integrable and we write X ∈ Dom(δ). We
define the Skorohod integral δ(X) of X with respect to Ñ by

δ(X) =
∫ T

0

∫
R0

X(t, z)Ñ(δt, dz) :=
∞∑
n=0

In+1(f̃n).

Furthermore, the following L2(P ) equality holds

E[δ(X)2] =
∞∑
n=1

(n+ 1)!∥f̃∥2
L2((λ×ν)n+1) < ∞.

Proposition 3.2.6 (Properties of the Skorohod integral, [DØP09]). Let u, v ∈
Dom(δ) and α, β ∈ R, then

i) δ(αu+ βv) = αδ(u) + βδ(v),

ii) E[δ(u)] = 0.

Theorem 3.2.7 (The Skorohod integral extends the Itô integral, [DØP09]). Let
X = X(t, z), t ∈ [0, T ], z ∈ R0, be a predictable process such that

E

[∫ T

0

∫
R0

X2(t, z)ν(dz)dt
]
< ∞.

Then X is both Itô and Skorohod integrable with respect to Ñ and∫ T

0

∫
R0

X(t, z)Ñ(δt, dz) =
∫ T

0

∫
R0

X(t, z)Ñ(dt, dz).

Note that in the above theorem the requirement is that the integrand is
predictable, which is stronger than the assumption in the Brownian case where
adaptedness of the integrand was enough.

Definition 3.2.8 (The Malliavin derivative, [DØP09]). Let F ∈ L2(P ) be FT -
measurable with chaos expansion

F =
∞∑
n=0

In(fn),

where fn ∈ L̃2((λ× ν)n), n = 1, 2, ...

i) We say that F ∈ D1,2 if

∥F∥2
D1,2

:=
∞∑
n=1

nn!∥fn∥2
L2((λ×ν)n) < ∞.
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3.2. Pure jump Lévy case

ii) If F ∈ D1,2 we define the Malliavin derivative Dt,zF of F at (t, z) ∈
[0, T ] × R0 as the expansion

Dt,zF =
∞∑
n=1

nIn−1(fn(·, t, z)),

where In−1(fn(·, t, z)) is the n− 1-fold iterated integral of
fn(t1, z1..., tn−1, zn−1, t, z) with respect to the first n−1 pairs of variables
(t1, z1), ..., (tn−1, zn−1 and (tn, zn) = (t, z) left as a parameter.

Theorem 3.2.9 (Closability of the Malliavin derivative, [DØP09]). Suppose
F ∈ L2(P ) and Fk, k = 1, 2, ..., are in D1,2 and that

(i) Fk → F , k → ∞ in L2(P ).

(ii) Dt,zFk, k = 1, 2, ..., converges in L2(P × λ× ν).

Then F ∈ D1,2 and Dt,zFk → Dt,zF , k → ∞, in L2(P × λ× ν).

In the Brownian case we saw that the Malliavin derivative satisfies a product
rule and a chain rule similar to that of the classical derivative. In the pure jump
Lévy case however, both the product rule and the chain rule takes on a different
form. We denote by Dexp

1,2 the set of all linear combinations of exponentials of
the form

exp
{∫ T

0

∫
R0

h(s)zÑ(ds, dz)
}
,

where h ∈ L2[0, T ].

Theorem 3.2.10 (Product rule, [DØP09]). Suppose F1, F2 ∈ Dexp
1,2 . Then

F1F2 ∈ Dexp
1,2 and

Dt,z(F1F2) = F1Dt,zF2 + F2Dt,zF1 +Dt,zFDt,zG.

As in the Brownian motion case this product rule is of limited direct use
and we remark again that we can move deterministic functions in and out of
the Malliavin derivative.
Remark 3.2.11. Let X(t, z), t ∈ [0, T ], z ∈ R0 be a stochastic process with chaos
expansion X(s, z) =

∑∞
n=0 In(fn(·, s, z)), and let g be a deterministic function,

then

Dt,y(g(s, z)X(s, z)) =
∞∑
n=1

nIn−1(g(s, z)fn(·, t, y, s, z))

= g(s, z)Dt

( ∞∑
n=0

In(fn(·, s, z))
)

= g(s, z)Dt,y(X(s, z))

for all t ∈ [0, T ], y ∈ R0. Unlike in the Brownian case we will refer to this
remark when it is used, since this product rule does not share its form with the
product rule for a traditional derivative.

There is another alternative product rule..
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3.2. Pure jump Lévy case

Theorem 3.2.12 (Alternative product rule, [Di +05]). Let F,G ∈ D1,2 with G
bounded. Then FG ∈ D1,2 and we have

Dt,z(FG) = FDt,zG+GDt,zF +Dt,zFDt,zG, λ× ν − a.e.

The chain rule holds more generally.

Theorem 3.2.13 (Chain rule, [DØP09]). Let F ∈ D1,2 and let g be a real
continuous function on R. Suppose g(F ) ∈ L2(P ) and g(F + Dt,zF ) ∈
L2(P × λ× ν). Then g(F ) ∈ D1,2 and

Dt,zg(F ) = g(F +Dt,zF ) − g(F ).

In opposition to the product rule and the chain rule, the duality formula is
analogous to the Brownian motion case.

Theorem 3.2.14 (Duality formula, [DØP09]). Let X(t, z), t ∈ [0, T ], z ∈ R, be
Skorohod integrable and F ∈ D1,2. Then

E

[
F

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)
]

= E

[ ∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt
]

The integration by parts formula is different from the Brownian case. This
is a direct consequence of the product rule, see [DØP09] for proof.

Theorem 3.2.15 (Integration by parts, [DØP09]). Let X(t, z), t ∈ [0, T ], z ∈ R,
be a Skorohod integrable stochastic process and F ∈ D1,2 such that the product
X(t, z) · (F +Dt,zF ), t ∈ [0, T ], z ∈ R, is Skorohod integrable. Then

F

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)

=
∫ T

0

∫
R0

X(t, z)
(
F +Dt,zF

)
Ñ(δt, dz) +

∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt.

The fundamental theorem of calculus takes on the same form as seen before.

Theorem 3.2.16 (The fundamental theorem of calculus, [DØP09]). Let X =
X(s, y), (s, y) ∈ [0, T ] × R0, be a stochastic process such that

E

[ ∫ T

0

∫
R0

X2(s, y)ν(dy)ds
]
< ∞.

Assume that X(s, y) ∈ D1,2 for all (s, y) ∈ [0, T ] × R0, and that Dt,zX(·, ·) is
Skorohod integrable with

E

[ ∫ T

0

∫
R0

(∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy)
)2
ν(dz)dt

]
< ∞.

Then ∫ T

0

∫
R0

X(s, y)Ñ(δs, dy) ∈ D1,2
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3.2. Pure jump Lévy case

and

Dt,z

∫ T

0

∫
R0

X(s, y)Ñ(δs, dy) =
∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy) +X(t, z).

In particular, if X(s, y) = Y (s)y, then

Dt,z

∫ T

0

∫
R0

Y (s)δL(s) =
∫ T

0

∫
R0

Dt,zY (s)δL(s) + zY (t).

Theorem 3.2.17 (The Lévy-Skorohod isometry, [DØP09]). Let X ∈ L2(P×λ×ν)
and DX ∈ L2(P × (λ× ν)2). Then the following isometry holds

E

[(∫ ∞

0

∫
R0

X(t, z)Ñ(δt, dz)
)2
]

= E

[ ∫ ∞

0

∫
R0

X2(t, z)ν(dz)dt

+
∫ ∞

0

∫
R0

∫ ∞

0

∫
R0

Dt,zX(s, y)Ds,yX(t, z)ν(dy)dsν(dz)dt
]

We end this chapter with the same type of commutation result as in the
last section.

Proposition 3.2.18 (Commutation of Malliavin derivative and integral). Let µ
be a finite signed measure. Let X = X(s, z), t ∈ [0, T ], z ∈ R0 be a stochastic
process in L2(P ) such that X(s, z) is FT -measurable for all (s, z) ∈ [0, T ] × R0.
Further we assume that X is Malliavin differentiable and the integrability
conditions ∫ u

0
E
[
(X(s, z))2]dµ(s) < ∞

and ∫ u

0

∫ T

0

∫
R0

E
[
(Dt,yX(s, z)2]ν(dy)dtdµ(s) < ∞

for all u ∈ [0, T ]. Then we have
∫ u

0 X(s, z)dµ(s) ∈ D1,2 and

Dr,y

∫ u

0
X(s, z)dµ(s) =

∫ u

0
Dr,yX(s, z)dµ(s).

Proof. The result follows by the same procedure as for Proposition 3.1.22. ■
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CHAPTER 4

Hilbert space preliminaries

Whereas the last two chapters have focused on the real-valued case of stochastic
analysis and Malliavin calculus, this chapter will introduce Malliavin calculus
and other necessary preliminaries in the Hilbert-valued case. Basics in functional
analysis will, for the most part, be assumed known, but relevant terminology
will be declared. This chapter is used in both chapter 5, 6 and 7, where we
will be looking at SDEs in a Hilbert space and integrals with ambit fields as
integrators.

Throughout this chapter we let H,G be real separable Hilbert spaces with
inner product denoted by ⟨·, ·⟩H, ⟨·, ·⟩G respectively. The norm of an element
h ∈ H will be denoted by ∥h∥H.

We begin by looking at two important classes of operators.

4.1 Hilbert-Schmidt and trace class operators

This section is based on appendices in [PZ07] and [Fol16]. Let L(H,G) be the
space of bounded linear operators from H → G equipped with the operator
norm

∥T∥L(H,G) = sup
x∈H,x ̸=0

∥Tx∥G

∥x∥H
.

If H = G we write L(H) := L(H,H), and we define the adjoint of T ∈ L(H,G)
to be the unique operator T ∗ ∈ L(G,H) satisfying

⟨Tx, y⟩ = ⟨x, T ∗y⟩, for all x ∈ H, y ∈ G.

T ∈ L(H,G) is called symmetric or self-adjoint if

⟨Tx, y⟩G = ⟨x, Ty⟩H, for all x, y ∈ H

that is T = T ∗. Furthermore, we say that T ∈ L(H) is nonnegative if

⟨Tx, x⟩H ≥ 0, for all x ∈ H.

Note that a symmetric operator and a self-adjoint operator is generally not
the same and that in functional analysis the above definition is usually the
definition of a self-adjoint operator. However, when the domain of T is H, as is
the case above, then they are equivalent definitions. Since the term symmetric
seems to be the most commonly used in books concerned with stochastic analysis
we will stick to this terminology.

31



4.2. The Bochner integral and the Fréchet derivative

In chapter 6 we will encounter Hilbert-Schmidt operators, we therefore define
them here. Let {ei}∞

i=1 be an orthonormal basis for H.

Definition 4.1.1 (Trace class operator, [Fol16]). An operator T ∈ L(H) is called
trace-class if the nonnegative operator |T | := (T ∗T )1/2 has finite trace, that is

Tr(|T |) =
∞∑
i=1

⟨|T |ei, ei⟩H < ∞.

Definition 4.1.2 (Hilbert-Schmidt operator, [PZ07], [Fol16]). An operator
T ∈ L(H,G) is called Hilbert-Schmidt if T ∗T is trace class, i.e.

Tr(T ∗T ) =
∞∑
i=1

∥Tei∥2
G < ∞.

The space of all Hilbert–Schmidt operators L2(H,G) acting from H into G
is itself a separable Hilbert space with inner product

⟨T, S⟩2 =
∞∑
i=1

⟨Tei, Sei⟩G

The corresponding Hilbert–Schmidt norm is denoted by ∥ · ∥2.

Moreover, the following useful estimates holds for the composition of
operators in the Hilbert-Schmidt norm. These will be useful in section 7.4.

Proposition 4.1.3 (Hilbert-Schmidt norm estimates, [LR15]). Let U be another
Hilbert space and assume S1 ∈ L(H,G), S2 ∈ L(G,U), T ∈ L2(U ,H). Then
S1T ∈ L2(U ,G) and TS2 ∈ L2(G,H) and

∥S1T∥L2(U,G) ≤ ∥S1∥L(H,G)∥T∥L2(U,H)

∥TS2∥L2(G,H) ≤ ∥T∥L2(U,H)∥S2∥L(G,U)

4.2 The Bochner integral and the Fréchet derivative

This section will construct the Bochner integral based on the material found
in section 2.6 in [HE15]. The framework is the measure space (X,A, µ) and a
Banach space B with norm ∥ · ∥, omitting the subscript B for simplicity. For the
function f : X → B, the Bochner integral is defined as

∫
X
fdµ. We formalize

the definition in the following. The definition of the Fréchet derivative is also
included.

The construction of the Bochner integral closely resembles the construction
of the Lebesgue integral. We begin with the definition of simple Banach valued
functions and the definition of Bochner integrals for simple integrands.

Definition 4.2.1 (Simple function, [HE15]). A function f : E → B is called
simple if it can be represented as

f(x) =
n∑
i=1

χAi
(x)hi

for some n ∈ N and for Ai ∈ A and hi ∈ B for 1 ≤ i ≤ n.
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4.2. The Bochner integral and the Fréchet derivative

The definition of the Bochner integral for simple functions now follow, and
it takes on the same form as the Lebesgue integral with simple integrands.

Definition 4.2.2 (Bochner integral for simple function, [HE15]). A function
f : E → B is called simple if it can be represented as

f(x) =
n∑
i=1

χAi(x)hi

for some n ∈ N and for Ai ∈ A and hi ∈ B for 1 ≤ i ≤ n.

The general Bochner integral is now viable, we will need it in the definition
of integrals against ambit fields in section 6.3 and in section 7.4 where we
consider Hilbert valued SPDEs.

Definition 4.2.3 (Bochner integral, [HE15]). A measurable function f is said to
be Bochner integrable if there exists a sequence {fn}n∈N of simple and Bochner
integrable functions such that

lim
n→∞

∫
X

∥fn − f∥dµ = 0,

where the integral on the left hand side of the equality is an ordinary Lebesgue
integral. In this case, the Bochner integral of f is defined as∫

X

fdµ = lim
n→∞

∫
X

fndµ.

This limit exist, as by the triangle inequality applied twice, with {fn}n∈N a
sequence of simple functions, we get∥∥∥∥∫

X

fndµ−
∫
X

fmdµ

∥∥∥∥ ≤
∫
X

∥fn − fm∥dµ

≤
∫
X

∥fn − f∥dµ+
∫
X

∥f − fm∥dµ

where both terms converge to 0 as n,m → ∞ by assumption. Hence,
{
∫
X
fndµ}n∈N is a Cauchy sequence, and its limit must exist by the completeness

of B. Lastly, the limit is independent of the approximating sequence and
therefore the integral

∫
X
fdµ is well-defined.

Such an approximating sequence is not guaranteed to exist in general, but
the following condition ensures it does.

Theorem 4.2.4 ([HE15]). Let f be a measurable function from X to B with∫
X

∥f∥dµ < ∞.

Suppose that for each n there exists a finite-dimensional subspace Bn of B such
that

lim
n→∞

∫
X

∥f − gn∥dµ = 0

for some measurable sequence of functions {gn}n∈N taking values in {Bn}n∈N.
Then, there exist a sequence of simple and Bochner integrable functions {fn}n∈N
such that

lim
n→∞

∫
X

∥fn − f∥dµ = 0.
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4.3. Stochastic processes

Our work is done in separable Hilbert spaces, and fortunately, in this case the
integrability condition

∫
X

∥f∥dµ < ∞ ensures the existence of such a sequence
{gn}n∈N.

Theorem 4.2.5 (Bochner Integral in separable Hilbert space, [HE15]). Suppose
B is a separable Hilbert space and f is a measurable function from X to B with∫
X

∥f∥dµ < ∞. Then, f is Bochner integrable.

This section is concluded with the definition of the Fréchet derivative, which
will be needed when we study the integrals of section 6.3. This definition is
borrowed from Definition 6.1.1 and Definition 6.1.3 in [Lin17].

Theorem 4.2.6 (Fréchet derivative, [Lin17]). Let X,Y be normed spaces and U
an open set of X. A function f : U → Y is Fréchet differentiable at x ∈ U if
there exists a bounded linear operator A : X → Y such that

lim
h→0

∥f(x+ h) − f(x) −Ah∥Y
∥h∥X

= 0.

We call f ′(x) := A the Fréchet derivative of f and say that f is Fréchet
differentiable on U if f is Fréchet differentiable at each x ∈ U .

4.3 Stochastic processes

This section is mainly a collection of definitions of Hilbert-valued stochastic
processes which will be needed in the forthcoming section. Throughout
this section (U, ⟨·, ·⟩U ) is a Hilbert space and (Ω,F , {Ft}t≥0, P ) is a filtered
probability space satisfying the usual conditions.

We start with the definition of a Hilbert-valued martingale, and, as we
shall immediately see, its definition is analogous to the definition of real-valued
martingales.

Definition 4.3.1 (Martingale, [DZ14]). Let B be a separable Banach space with
norm ∥ · ∥B and I an interval of R. An integrable and adapted E-valued process
X = {X(t)}t∈I , is said to be a martingale if

i) X is integrable, that is E∥X(t)∥B < +∞ for all t ∈ I.

ii) E(X(t) | Fs) = X(s), P − a.s. for arbitrary t, s ∈ I, t ≥ s.

There are several different ways of defining Wiener processes and Lévy
processes on a Hilbert space, so we begin with the one that most closely
resembles the real-valued case.

Definition 4.3.2 (Lévy process, [PZ07]). Let B be a Banach space. A stochastic
process L = {L(t)}t≥0 taking values in B and that satisfies the following
conditions

(i) L(0) = 0,

(ii) L has independent and stationary increments,

(iii) L is stochastically continuous,

is called a Lévy process.
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4.3. Stochastic processes

In the following, let Q be a trace class, symmetric and nonnegative operator
on the Hilbert space U . Then, the Wiener processes on a Hilbert space called
Q-Wiener processes can be defined as follows.

Definition 4.3.3 (Q-Wiener process, [DZ14]). A U -valued stochastic process
{W (t)}t≥0 is called a Q-Wiener process if

(i) W (0) = 0,

(ii) W has continuous trajectories,

(iii) W has independent increments,

(iv) (W (t) −W (s)) ∼ N(0, (t− s)Q), t ≤ s ≤ 0.

Let now {fj}∞
j=1 be an ONB in U diagonalizing Q, and let the corresponding

eigenvalues be {λj}∞
j=1. Let {wj(t)}t≥0, j = 1, 2, ..., be a sequence of

independent (real-valued) Brownian motions defined on (Ω,F , {Ft}t, P ). A
Q-Wiener {W}t≥0 process admits the decomposition

Wt =
∞∑
n=1

λ
1/2
j wj(t)ej .

Finally, we define the generalized Wiener process and the special case of a
cylindrical Wiener process which is what we will need in this thesis.

Definition 4.3.4 (Generalized Wiener process, [GM11], [DZ14]). We call a
family {W̃ (t, ·)}t≥0 defined on a filtered probability space (Ω,F , {Ft}t≥0, P ) a
generalized Wiener process in a Hilbert space U if:

(1) For an arbitrary t ≥ 0, the mapping W̃t : U → L2(Ω,F , P ) is linear;

(2) For an arbitrary u ∈ U , W̃ (t, u) is an Ft-Brownian motion;

(3) For arbitrary u, u′ ∈ U and t ≥ 0,

E(W̃ (t, u)W̃ (t, u′)) = t⟨Qu, u′⟩U . (4.2)

Where the operator Q is symmetric and nonnegative.

If Q equals the identity operator the generalized Wiener process is called a
cylindrical Wiener process.

For an arbitrary self-adjoint and nonnegative definite operator Q, a
generalized Wiener process a → W̃ (a, ·) satisfying (4.2) can be constructed.

Let {ej}∞
j=1 be a complete and orthonormal basis in U and {Bj}∞

j=1 a
sequence of independent real valued Brownian motions. Then, the following
defines the required generalized Wiener process

W̃ (t, a) =
∞∑
j=1

⟨Q1/2ej , a⟩Bj(t), t ≥ 0, a ∈ U.

Furthermore, we can use the same orthonormal basis and the same sequence of
Wiener processes to define a Q-Wiener process.
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4.4. Stochastic integration

Proposition 4.3.5 ([DZ14]). Let U1 be a Hilbert space such that U0 = Q1/2(U)
is embedded into U1 with a Hilbert–Schmidt embedding J . Then the formula

W (t) =
∞∑
j=1

Q1/2ejBj(t), t ≥ 0,

defines a U1-valued Q-Wiener process. Moreover, if Q1 is the covariance of W
then the spaces Q1/2

1 (U1) and Q1/2(U) are identical.

4.4 Stochastic integration

A natural continuation of the last section is to define stochastic integration on
Hilbert spaces. The theory is collected from chapter 8 in [PZ07] and chapter 4
in [DZ14]. There are two separate cases that will be considered, one is integrals
with respect to generalized Wiener processes and the other is integrals with
respect to càdlàg square integrable martingales, this includes the special cases
of Q-Wiener processes and Lévy processes as defined in the last section.

Let M2(U) denote the space of all càdlàg square integrable martingales in
U with respect to {Ft}t≥0. The space of trace class (or nuclear) operators on
U will be denoted by L1(U) and the space of symmetric nonnegative trace class
operators on U will be denoted by L+

1 (U).

AssumeM,N ∈ M2(U), then ⟨M |N⟩ denotes the unique predictable process,
with trajectories having locally bounded variation, such that

⟨M(t), N(t)⟩U − ⟨M |N⟩t, t ≥ 0,

is a martingale. ⟨M |N⟩ is called the angle bracket. We will also introduce the
operator-valued angle bracket ⟨⟨M |N⟩⟩. To avoid any confusion we underscore
that ⟨· | ·⟩ is not the same thing as the inner product ⟨·, ·⟩.

For x, y, z ∈ U , we define the linear operator x⊗ y by (x⊗ y)(z) = ⟨y, z⟩Ux.

Definition 4.4.1 (Martingale covariance, [PZ07]). Let M ∈ M2(U). Then
there is a unique right-continuous L+

1 (U)-valued increasing predictable process
⟨⟨M |M⟩⟩t, t ≥ 0 such that ⟨⟨M |M⟩⟩0 = 0 and the process (M(t) ⊗ M(t) −
⟨⟨M |M⟩⟩t, t ≥ 0) is an L1(U)-valued martingale. Moreover, there exists a
predictable L+

1 (U)-valued process (Qt, t ≥ 0) such that

⟨⟨M |M⟩⟩t =
∫ t

0
Qsd⟨M |M⟩s, ∀t ≥ 0 (4.1)

The L+
1 (U)-valued process Q satisfying (4.1) is called the martingale

covariance of M .
As usual, the stochastic integral is constructed through the aid of simple

processes.

Definition 4.4.2 (Simple process, [PZ07]). An L(U,H)-valued stochastic process
ψ is said to be simple if there exist a sequence of non-negative numbers
t0 = 0 < t1 < · · · < tm, a sequence of operators ψj ∈ L(U,H), j = 1, ...,m, and
a sequence of events Aj ∈ Ftj , j = 0, ...,m− 1, such that

ψ(s)
m−1∑
j=0

χAjχ(tj ,tj+1](s)ψj , s ≥ 0.
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4.4. Stochastic integration

The class of all simple processes with values in L(U,H) is denoted by
S := S(U,H). For a simple process ψ, we set

IMt (ψ) =
m−1∑
j=0

χAjψ(M(tj+1 ∧ t) −M(tj ∧ t), t ≥ 0.

Let T < ∞ and equip S = S(U,H) with the seminorm

∥ψ∥2
M,T := E

∫ T

0
∥ψ(s)Q1/2

s ∥2
L2(U,H)d⟨M |M⟩s.

If some ϕ ∈ S satisfies ∥ψ − ϕ∥M,T = 0, then ϕ and ψ are identified with each
other. Let L2

M,T (H) be the completion of (S, ∥ · ∥M,T ) with norm denoted
by ∥ · ∥M,T . We also introduce the space L2

M,T,U (H) to be the class of all
L(U,H)-valued processes belonging to L2

M,T (H).

Theorem 4.4.3 (Martingale stochastic integral, [PZ07]).

(i) For any t ∈ [0, T ], there is a unique extension of IMt to a continuous
linear operator, denoted also by IMt , from (L2

M,T (H), ∥ · ∥M,T ) into
L2(Ω,F , P ;H), so for ψ ∈ L2

M,T (H) we have

IMt (ψ) :=
∫ t

0
ψ(s)dM(s).

Furthermore for any 0 ≤ r ≤ t ≤ T we have the isometry

E

[∥∥∥ ∫ t

r

ψ(s)dM(s)
∥∥∥2

H

]
= E

∫ t

r

∥ψ(s)Q1/2
s ∥2

L2(U,H)d⟨M |M⟩s

and the inequality
∥χ(r,t]ψ∥2

M,T ≤ ∥ψ∥2
M,T

(ii) For any ψ ∈ L2
M,T (H), (IMt (ψ), t ∈ [0, T ]) is an H-valued martingale. It

is square integrable and mean-square continuous, meaning

lim
t→t0

E
[
∥IMt (ψ) − IMt0 (ψ)∥2

H

]
= 0.

Also IM0 (ψ) = 0.

(iii) Let A be a bounded linear operator from H into a Hilbert space V . Then,
for every ψ ∈ L2

M,T (H), Aψ ∈ L2
M,T (V ) and AIM (ψ) = IM (Aψ).

The following lemma facilitates the characterization of the space L2
M,T (H)

by granting a decomposition of the covariance operator Qt. Let P[0,T ] denote
the σ-algebra of predictable sets in Ω × [0, T ].

Lemma 4.4.4 ([PZ07]). There are predictable real-valued processes γn = γn(t, ω)
and predictable U -valued processes gn = gn(t, ω), n ∈ N, such that

Qt(ω) =
∞∑
n=1

γn(t, ω)gn(t, ω) ⊗ gn(t, ω), t ≥ 0, ω ∈ Ω.
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4.4. Stochastic integration

Define the Hilbert space H, with an orthonormal basis {en}∞
n=1, let T̃ (ω, t)

be the unique continuous linear operator from Q1/2(ω)U into H satisfying

T̃ (ω, t)
√
γn(ω, t)gn(ω, t) = en, n ∈ N.

On the space ([0, T ] × Ω,×P[0,T ), introduce the σ-finite measure given by

µM (dω, dt) = d⟨M |M⟩t(ω)P (dω).

We can now characterize the space L2
M,T (H).

Theorem 4.4.5 (Characterization of admissible integrands, [PZ07]). For ψ ∈
L2(Ω × [0, T ],P[0,T ], µM ;L2(H, H)), it follows that

L2
M,T (H) =

{
ψ ◦ T̃ : ψ ∈ L2(Ω × [0, T ],P[0,T ], µM ;L2(H, H))

}
and

∥ψ ◦ T̃∥2
M,T =

∫
Ω

∫ T

0
∥ψ(ω, t)∥2

L2(H,H)µM (dω, dt).

If we are in the setting where the martingale process M has a constant
martingale covariance process Q, then, the space H equals Q1/2(U) =: U0,
which is known as the reproducing kernel space of M . This is the case, for
instance, when M is a Lévy process. We have the following corollary to Theorem
4.4.3 and to Theorem 4.4.5.

Corollary 4.4.6 ([PZ07]). If Q is constant then L2
M,T (H) =

L2(Ω × [0, T ],P[0,T ], P × dt;L2(U0, H)). Moreover, for ψ ∈ L2
M,T (H), the

stochastic integral is a square integrable martingale with

E

[∥∥∥ ∫ t

0
ψ(s)dMs

∥∥∥2

H

]
= E

[ ∫ t

0

∥∥ψ(s)
∥∥2
L2(U0,H)

]
ds.

If the Lévy process is aQ-Wiener process, then one can see that the stochastic
integral defined above coincides with the definition of [DZ14]. Hence, we employ
their theory to define stochastic integrals for generalized Wiener processes.

By the discussion following definition 4.3.4 and proposition 4.3.5, if
{W̃ (t, ·)}t≥0 is a generalized Wiener process with covariance Q, then there exists
a sequence {Bj}∞

j=1 of independent Brownian motions and an orthonormal basis
{ej}∞

j=1 in U such that

W̃ (a, t) =
∞∑
j=1

⟨a,Q1/2ej⟩Bj(t), a ∈ U, t ≥ 0.

Furthermore, the process defined by

W (t) =
∞∑
j=1

Q1/2ejBj(t), t ≥ 0

is a Q-Wiener process on any Hilbert space U1 ⊃ U0 with Hilbert-Schmidt
embedding. We also have the equality

W̃ (a, t) = ⟨a,W (t)⟩.

The stochastic integral for cylindrical Wiener processes can now be
constructed in the following way, recall that Q = I in this case.
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4.5. Malliavin calculus

Definition 4.4.7 (Cylindrical stochastic integral, [DZ14], [GM11]). Let {Wt}t≥0
be defined as above and let ψ ∈ L2(U0, H), then the stochastic integral with
respect to a cylindrical Wiener process is defined as∫ t

0
ψ(s)dW (s) :=

∞∑
j=1

∫ t

0
ψ(s)ejdBj(s).

In addition, we have the same isometry as for the definition of stochastic
integrals with respect to Q-Wiener processes

E

[∥∥∥ ∫ t

0
ψ(s)dW (s)

∥∥∥2

H

]
= E

[ ∫ t

0
∥ψ(s)∥2

L2(U,H)

]
.

4.5 Malliavin calculus

The last section of this chapter will be devoted to Malliavin calculus on Hilbert
spaces, in the real-valued case we used the theory of chaos expansions, but
in the Hilbert-valued case this is not an option, and we are forced to take a
different route. This is the method mentioned in chapter 2 where the Malliavin
derivative is defined, in a sense, like a directional derivative.

First we need the definition of an isonormal Gaussian process.

Definition 4.5.1 (Isonormal Gaussian process, [Nua06]). Let G be a separable
Hilbert space. We say that a stochastic process W = {W (h), h ∈ G} defined in
a complete probability space (Ω,F , P ) is an isonormal Gaussian process if W
is a centered Gaussian family of random variables such that

E(W (h)W (g)) = ⟨h, g⟩G , for all h, g ∈ G.

Introduce the following notation: let G,G1 be separable Hilbert spaces,
let (Ω,F , P ) be the probability space induced by the isonormal Gaussian
process W , and consider the class of Hilbert-valued smooth random elements
F ∈ L2(Ω; G1) given by F = f(W (h1), ...,W (hn)) for h1, ..., hn ∈ G, n ∈ N,
and f : Rn → G1 which are infinitely Fréchet differentiable with polynomial
bound. These functions f are dense in L2(Ω; G1). The definition of the Malliavin
derivative is now feasible.

Definition 4.5.2 (Malliavin derivative, [BS16][CT06]). The Malliavin derivative
of F is defined as

DF :=
n∑
j=1

∂f

∂xj
(W (h1), ...,W (hn)) ⊗ hj .

Since G1 ⊗ G is isomorphic to L2(G,G1), the space of Hilbert-Schmidt operators
from G1 to G, we can interpret the Malliavin derivative of smooth F as another
random element with values in L2(G,G1).

We can also extract one-dimensional Malliavin calculus from this definition,
simply apply projections onto the coordinates of G1. Let l ∈ G1, we get

DlF := ⟨DF, l⟩G1 =
n∑
i=1

〈
∂f

∂xj
(W (h1), ...,W (hn)), l

〉
G1

hj .
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4.5. Malliavin calculus

The Malliavin derivative D is closable for random smooth elements in
L2(Ω; G1). Hence, D can be extended to the larger domain denoted by D1,2(G1).

Definition 4.5.3 (Extended Malliavin derivative, [BS16], [CT06]). If F is the
L2(Ω; G1) limit of a sequence {Fn}n≥1 of smooth random variables such that
{DFn}n≥1 converges in L2(Ω;L2(G,G1)), we define DF as

DF = lim
n→∞

DFn.

The subspace D1,2(G1) ⊂ L2(Ω; G1) is a separable Hilbert space with the
norm

∥F∥2
D1,2(G1) = E

[
∥F∥

]2
G1

+ E
[
∥DF∥

]2
L2(G,G1).

As the Malliavin derivative is linear and closed we can define an adjoint
operator called the divergence operator.

Definition 4.5.4 (Divergence operator, [BS16], [CT06]). We define the diver-
gence operator δG1 : L2(Ω, L2(G,G1)) → L2(Ω,G1) to be the adjoint of the
Malliavin derivative D, that is∣∣E[⟨DF,G⟩L2(G,G1)

]∣∣ = E
[
⟨F, δG1G⟩G1

]
.

For all F ∈ D1,2(G1) and all G ∈ L2(Ω, L2(G,G1)). The divergence δG1 is
an unbounded operator and its domain is given by the set of random variables
G ∈ L2(Ω, L2(G,G1)) s.t.∣∣E[⟨DF,G⟩L2(G,G1)

]∣∣ ≤ C
(
E∥G∥G1

)1/2
, F ∈ D1,2(G1).

In the rest of this chapter we uphold the subscript notation, but in future
chapters we simply write δ.

The Malliavin derivative on Hilbert spaces defined above satisfies a product
rule and a chain rule similar to the real valued case. Let in the following
G1,G2,G3 be separable Hilbert spaces.

Theorem 4.5.5 (Product rule, [BS16]). Let F ∈ D1,2(L2(G1,G2)) and G ∈
D1,2(L2(G2,G3)), then GF ∈ D1,2(L2(G1,G3)) and

D(GF ) = (DG)F +GDF,

where this equality has to be interpreted as (D(GF ))h = (DG)F (h) +G(DF )(h)
for all h ∈ G1.

Theorem 4.5.6 (Chain rule, [BS16]). Let ϕ : G1 → G2 be Lipschitz and let
F ∈ D1,2(G1), then ϕ(F ) ∈ D1,2(G2) and

Dϕ(F ) = ϕ̄(F )DF,

where ϕ̄ : G1 → G2 is a random linear operator whose norm is almost surely
bounded by the smallest Lipschitz constant of ϕ. In the case where ϕ is Fréchet
differentiable we have ϕ̄ = ϕ′, where ϕ′ is the Fréchet derivative of ϕ.

For the remaining part of this thesis we will focus on a type of isonormal
Gaussian process given by cylindrical Wiener integrals. Let K be yet another
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4.5. Malliavin calculus

separable Hilbert space, then we are interested in processes {Wh}h∈G on the
separable Hilbert space G := L2([0, T ],K) given by

W (h) :=
∫ T

0
h(t)dW̃ (t), h ∈ G,

where dW̃ is the representative of the cylindrical Wiener process in K. We
can now associate the Malliavin derivative of F with a stochastic process
(DtF )t∈[0,T ] with values in L2(K,G1) as follows

DtF =
n∑
i=1

∂f

∂xi
(W (h1),W (h2), ...,W (hn)) ⊗ hi(t).

We refer to [BS16] for further details.
The adjoint of the Malliavin derivative is now a special type of the divergence

operator called the Skorohod integral.

Definition 4.5.7. For an element u ∈ Dom(δG1) we write

δG1(u) :=
∫ T

0
u(s)δW̃ (s),

and call this the Skorohod integral.

The Hilbert-valued Skorohod integral satisfies similar properties as the real-
valued Skorohod integral. The first property is the Hilbert space equivalent of
the fundamental theorem of calculus. This property is a consequence of the
general commutation relationship between the Malliavin derivative and the
divergence operator which states that Dδ(u) = δ(Du) + u.

Furthermore, we define the space L1,2(G1) := L2([0, T ];D1,2(G1)) with norm
given by

∥F∥2
L1,2(G1) =

∫ T

0
E
[
∥Ft∥G1

]
dt+

∫ T

0

∫ T

0
E
[
∥DsFt∥L2(K,G1)

]
dsdt.

Theorem 4.5.8 (Fundamental theorem of calculus). Let u be a stochastic process
in L1,2(L2(K,G1)), assume that for all t ∈ [0, T ], the process {Dtu(s)}s∈[0,T ] is
Skorohod integrable and that the process {

∫ T
0 Dtu(s)δW̃ (s)}t∈[0,T ] has a version

which is in L2(Ω × [0, T ];L2(K,G1)). Then
∫ T

0 u(s)δW̃ (s) ∈ D1,2(G1) and for
all t ∈ [0, T ]

Dt

∫ T

0
u(s)δW̃ (s) =

∫ T

0
Dtu(s)δW̃ (s) + u(t)

For the duality formula and the integration by parts formula we introduce
the object TrG1 , defined by

TrG1A =
∞∑
k=1

(A(fk))(fk), A ∈ L(G1, L(G1,G3))

whenever this sum converges in G3, and where {fk}k∈N is an orthonormal basis
of G1. Note that this is not the traditional trace defined earlier in this chapter,
we use the subscript, in this case G1, to indicate the difference.

A consequence of the above defined extended trace is that the duality formula
is twofolded.
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4.5. Malliavin calculus

Theorem 4.5.9 (Duality formulas). From the definition of the Skorohod integral
as the adjoint of the Malliavin derivative one has that for all u ∈ L2(Ω ×
[0, T ];L2(K,G1)) and A ∈ D1,2(L2(G1,G2))

E

[
A

∫ T

0
u(s)δW̃ (s)

]
= E

[ ∫ T

0
TrG1((DsA)u(s))ds

]
,

where the integrand is G2-valued and the integral is understood as a Bochner
integral. Similarly, one could write the trace outside the integral, which would
yield an L2(K, L2(K,G2))-valued integrand and integral, that is

E

[
A

∫ T

0
u(s)δW̃ (s)

]
= E

[
TrK

∫ T

0
(DsA)u(s)ds

]
.

There is also an integration by parts formula similar to the real-valued case.
This is important for the (heuristic) derivation of the definition of the stochastic
integral with an ambit field as integrator, see [BBV18].

Theorem 4.5.10 (Integration by parts, [BS16]). Let u ∈ L2(Ω×[0, T ];L2(K,G1))
be in the domain of the Skorohod integral δG1 and let A ∈ D1,2(L2(G1,G2)). Then
Au ∈ Dom(δG2) and∫ t

0
Au(s)δW̃ (s) = A

∫ t

0
u(s)δW̃ (s) − TrK

∫ t

0
Ds(A)u(s)ds,

for all t ∈ [0, T ]. Note that under the conditions above, the right-hand side of
this equality is an element in L2(Ω; G2).

Finally, in this section, we relate the Skorohod integral to the Itô integral.

Theorem 4.5.11 (The Skorohod integral extends the Itô integral, [CT06]). Let
u : Ω × [0, T ] → L2(G1,G2) be a predictable process with

E

[ ∫ T

0
∥u(s)∥2

L2(G1,G2)ds

]
< ∞

then u is in the domain of the Skorohod integral δG2 and

δG2(u) =
∫ T

0
u(s)dW̃ (s)

where the integral on the right hand side is a cylindrical Wiener integral as
defined in section 4.4.
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CHAPTER 5

S(P)DE summary

Since the main topic of this thesis is S(P)DEs, it seems natural to summarize
some of the existing theory on the subject. We have again two cases, the
real-valued case and the Hilbert-valued case. Some of the results presented
in this chapter are chosen because they are well known, and some are chosen
because they play a crucial role for some of the results we obtain in chapter
7, either in the form of inspiration or where parts of the proof are directly
applicable to our situation. There are mainly two strategies for proving the
existence of a solution of a S(P)DE: the first is the Picard iteration technique,
and the second utilizes Banach’s fixed point theorem, the latter also guarantees
uniqueness in a certain sense.

5.1 Real valued SDEs

In this section we will look at SDEs with values in Rn for some n ∈ N.
Throughout this chapter we let {Bt}t≥0 denote a multidimensional Brownian
motion on the probability space (Ω,F , P ) and {Ft}t≥0 an increasing family
of σ-algebras such that {Bt}t≥0 is an {Ft}t≥0 Brownian motion. Further
specifications regarding dimension and time interval is clarified later on.

There are, as mentioned, two strategies for proving existence of a solution,
and contrary to other chapters regarding background material, we also give
some proofs.

When applying the Picard iteration technique we are not guaranteed
uniqueness, hence, uniqueness must be proved separately. The standard
approach for doing so utilizes an inequality called Grönwall’s inequality. We
therefore start of with this result.

Theorem 5.1.1 (Grönwall’s inequality, [App09]). Let [a, b] be a closed interval in
R and α, β : [a, b] → R be non-negative with α locally bounded and β integrable.
If there exists C ≥ 0 such that, for all t ∈ [a, b],

α(t) ≤ C +
∫ t

a

α(s)β(s)ds

then we have
α(t) ≤ C exp

∫ t

a

β(s)ds

for all t ∈ [a, b]. We will only need the special case when β(s) = 1 for all
s ∈ [a, b].
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5.1. Real valued SDEs

We begin our consideration of real-valued SDEs with the following SDE

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs.

This equation is well known to have a unique solution by the Picard iteration
technique and by Grönwall’s inequality. Since we will do proofs in chapter 7 in
the same "spirit", the proof of the following theorem is somewhat cut down.

Theorem 5.1.2 (Existence and uniqueness, [Øks03]). Let T > 0 and b(·, ·) :
[0, T ]×Rn → Rn, σ(·, ·) : [0, T ]×Rn → Rn×m be measurable functions satisfying

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |σ|2 =
∑

|σij |2) and such that

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]

for some constant D. Let Z be a random variable which is independent of the
σ-algebra F (m)

∞ generated by Bs(·), s ≥ 0 and such that

E[|Z|2] < ∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T

X0 = Z

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted
to the filtration FZ

t generated by Z and Bs(·); s ≤ t and

E

[ ∫ T

0
|Xt|2dt

]
< ∞.

Proof. Sketch of the proof of existence and uniqueness. The existence
part of the proof uses the method of Picard iteration. That is, we define
Y 0
t = X0 and

Y k+1
t = X0 +

∫ t

0
b(s, Y ks )ds+

∫ t

0
σ(s, Y ks )dBs.

Then by using the assumptions on the coefficients one can show that

E[|Y k+1
t − Y kt |2] ≤ C1

∫ t

0
E[|Y ks − Y k−1

s )|2]ds (5.1)

for k ≥ 1, t ≤ T and that,

E[|Y 1
t − Y 0

t |2] ≤ C2t

where C1, C2 > 0 are constants. Furthermore, it can be showed that {Y kt }∞
k=1

is a Cauchy sequence in L2(P × λ), then by completeness it converges to some
Xt. The last step of the existence part of the proof is to show that

Xt := L2(P × λ) − lim
k→∞

Y kt
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5.1. Real valued SDEs

solves the equation, this can be done using the same estimates as in equation
(5.1).

For the uniqueness part of the proof we define two solutions Xt(ω) and
X̂t(ω) with the same initial condition X0, then, by again applying the same
method as in the derivation of equation (5.1) one obtains

E[|Xt − X̂t|2] ≤ C

∫ t

0
E[|Xs − X̂s|2]ds.

The uniqueness now follows by Grönwall’s inequality since we get

P [|Xt − X̂t| = 0, for all t ∈ Q ∩ [0, T ]] = 1,

and by continuity of t → |Xt − X̂t| it follows that P [|Xt(ω) − X̂t(ω)| = 0 for
all t ∈ [0, T ]] = 1 and we are done. ■

As mentioned, we can also use the Banach fixed point theorem to prove
existence and uniqueness of a solution. We state a general version since we also
need the Banach fixed point theorem later on, while studying Hilbert-valued
SPDEs.

Theorem 5.1.3 (Banach’s Fixed Point Theorem, [Eva10]). Let X be Banach
space. Assume

A : X → X

is a nonlinear mapping, and suppose that

∥Ax−Ay∥ ≤ γ∥x− y∥, x, y ∈ X

for some constant γ < 1. Then A has a unique fixed point, i.e. there is a unique
x ∈ X with Ax = x.

The next result is applied very directly in section 7.2, and a full proof is
therefore given for the readers convenience. First we need some notation, the
following is taken from [BK81].

Let λ denote the Lebesgue measure and let {Ft}t≥0 be an increasing family
of sigma-algebras such that {Bt}t≥0 is an {Ft}t≥0-Brownian motion.

Let P be the σ-algebra of predictable sets on R+ × Ω. Define the spaces
L2 = L2(R+ × Ω,P, λ × P ) and H2 of predictable processes X = {Xt}t≥0 in
Rd such that

∥X∥2 :=
(
E
[ ∫ ∞

0
|Xt|2dt

])1/2
< ∞

∥X∥ :=
(

sup
t≥0

E
[
|Xt|2

])1/2
< ∞

respectively.
Let L2

loc (respectively H2
loc) denote the space of processes X such that there

is an increasing sequence of {Ft}t≥0-stopping times {Tn}n∈N → ∞ P -a.s. such
that Xχ[0,Tn] belongs to L2 (respectively the process XT∗

n := XTnχ{Tn≥0}
belongs H2) for all n ∈ N. The sequence {Tn}n ∈N is said to be a localizing
sequence of X.
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5.1. Real valued SDEs

Explicitly, this means that L2
loc consists of the following processes

L2
loc = {X predictable |

∫ t

0
|Xs|2dt < ∞ for all t ≥ 0, P − a.s}

Furthermore, any continuous adapted Rd-valued process C belongs to H2
loc,

with localizing sequence given by Tn := inf{t ≥ 0 | |Ct| ≥ n}, n ∈ N. Now a
definition necessary for the proof of the theorem.

Proposition 5.1.4 ([BK81]). For any stopping time T , the quotient space H2
T

of H2 defined by the kernel of the seminorm on H2

∥X∥T := ∥XT ∥

is a Banach space with the norm ∥X∥T .

The following is the main result of [BK81].

Theorem 5.1.5 (Existence and uniqueness, [BK81]). Consider on R+ × Rd the
stochastic differential equation

Xt = Ct +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs

where the initial process C is continuous adapted with values in Rd, and the
coefficients are measurable functions f : R+ ×Rd → Rd and G : R+ ×Rd → Rdm
(d×m - matrix valued) satisfying the following conditions:

1) Lipschitz condition: There is a function ℓ ∈ L2
loc(Rd, λ) such that

|b(s, x) − b(s, y)| + |σ(s, x) − σ(s, y)| ≤ ℓ(t)|x− y|

for all t ∈ R+, x, y ∈ Rd.

2) b(·, x), σ(·, x) ∈ L2
loc(Rd, λ) for some x ∈ Rd

Then there exists a global solution X ∈ H2
loc with continuous paths which is

unique up to stochastic equivalence.

Before we write the proof we need a couple lemmas ensuring the integral
terms are in H2

loc.

Lemma 5.1.6 ([BK81]). Under the hypotheses of 5.1.5, the process Yt :=∫ t
0 b(s,Xs)ds, t ≥ 0, is in H2

loc for every X ∈ H2
loc. For X ∈ H2, the stopping

times Tn := n, n ∈ N, localize Y .

The stochastic term can also be showed to be in H2
loc, and we refer to [BK81]

for proof of both these lemmas.

Lemma 5.1.7 ([BK81]). Under the hypotheses of 5.1.5, the process Zt :=∫ t
0 b(s,Xs)dBs, t ≥ 0, is in H2

loc for every X ∈ H2
loc. For X ∈ H2, the

stopping times T: = n, n ∈ N, localize Z.

Note that the above theorem and the following proof uses the terminology
of stochastic equivalence, this corresponds to our terminology of modification.
That is, two processes are stochastically equivalent if and only if they are
modifications of each other.
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5.1. Real valued SDEs

Proof. Consider the, in general non-linear, operator S : H2
loc → H2

loc defined by

SXt = Ct +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, t ≥ 0.

The initial process C ∈ H2
loc is localized by the stopping times Tn := inf{t ≥

0 | |Ct| ≥ n} ∧ n, n ∈ N, and so is SX for all X ∈ H2 by Lemma 5.1.6 and
5.1.7. The map X → (SX)T∗

n therefore defines an operator Sn : H2 → H2. For
all X,Y ∈ H2 and t ≥ 0 we get

E
[
|SnXt − SnYt|2

]
≤ 2E

(
Tn

∫ t∧Tn

0
|b(s,Xs) − b(s, Ys)|2ds

)
+ 2E

(∣∣∣∣ ∫ t∧Tn

0
b(s,Xs) − b(s, Ys)dBs

∣∣∣∣2)
≤ 2nE

(∫ t∧Tn

0
|b(s,Xs) − b(s, Ys)|2ds

)
+ 2E

(∫ t∧Tn

0
|b(s,Xs) − b(s, Ys)|2ds

)
≤ 2(n+ 1)

∫ t∧n

0
E
[
|XTn

s − Y Tn
s |2

]
ℓ2(s)ds

showing in particular that Sn can be considered as an operator on the quotient
space H2

Tn
. Inserting e−αL(s)eαL(s) with α ≥ 0 and L(s) :=

∫ s
0 l

2(r)dr for s ≥ 0
yields

E
[
|SnXt − SnYt|2

]
≤ 2(n+ 1)

∫ t∧n

0
E
[
|XTn

s − Y Tn
s |2

]
e−αL(s)eαL(s)ℓ2(s)ds

≤ 2(n+ 1) sup
s≥0

E
[
|XTn

s − Y Tn
s |2

]
e−αL(s∧n)

∫ t∧n

0
eαL(s)ℓ2(s)ds

≤ 2(n+ 1)∥X − Y ∥2
sup,Tn

1
α
eαL(t∧n)

Where ∥ · ∥sup,Tn
denotes the seminorm on H2 defined by

∥X∥sup,Tn
:=
(

sup
t≥0

E
[
|XTn

t |2e−αL(t∧n)])1/2

Since e−αL(n)/2∥X∥Tn
≤ ∥X∥sup,Tn

≤ ∥X∥Tn
, it is equivalent to ∥ · ∥Tn

and so
it defines an equivalent norm on H2

Tn
. The above estimate now reads

∥SnX − SnY ∥2
sup,Tn

≤ 2(n+ 1)
α

∥X − Y ∥2
sup,Tn

.

For a suitable choice of α, e.g. α = 8(n+ 1), the mapping Sn is a contraction
on H2

Tn
. By the Banach fixed point theorem there is a unique fixed point

Xn ∈ H2
Tn

. As for X ∈ H2, ∥X∥sup,Tn
= 0 is equivalent to E[|XTn

t |] = 0 for all
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t ≥ 0, this fixed point corresponds to a process Xn ∈ H2 such that for all t ≥ 0,
(Xn

t )Tn is uniquely determined up to stochastic equivalence.
For m > n with the corresponding fixed points Xm ∈ H2

Tm
and Xn ∈ H2

Tn

we have
(Xm)T

∗
n = (SmXm)T

∗
n = Sn((Xm

t )T
∗
n ),

in H2
Tn

, hence by the uniqueness property (Xm
t )T∗

n = Xn
t
Tn P -a.s. for all t ≥ 0

and any representatives Xm, Xn in H2, and a global solution X ∈ H2
loc is

determined uniquely up to stochastic equivalence.
By the continuity properties of the Lebesgue integral and of the Itô integral

there exist continuous versions of X, and these versions are unique up to
stochastic equivalence since it is possible to find a common null set outside of
which the trajectories coincide. ■

Comparing Theorem 5.1.5 and Theorem 5.1.2 we can see that they have a
few differences, firstly there is no linear growth assumption on the coefficients in
the result of [BK81], there are instead integrability assumptions. Secondly the
Lipschitz condition is relaxed to be a predictable, locally square integrable
process instead of a constant, this is possible by the use of equivalent
norms. Moreover, [BK81] constructs a global solution, that is, a solution not
limited to a compact interval [0, T ], through the use of localization techniques.
Lastly, the uniqueness is not the same, in [Øks03] the solution is unique
up to indistinguishability, however, [BK81] only achieves uniqueness up to
modification. Hence, we can see that there are pros and cons of both approaches.
An extension of Theorem 5.1.2 to a global solution can be found in chapter 5 of
[KS98].

We also have similar results for SDEs driven by the compensated Poisson
random measure. This result is taken from chapter 6 in [App09], and is a
generalization of Theorem 5.1.2 as it includes several noise terms, including a
noise term driven by a Brownian motion.

Let B = {B(t)}t≥0 be an r-dimensional standard Brownian motion and N
an independent Poisson random measure on R+ × (Rd − {0}) with associated
compensator Ñ and Lévy measure ν. Assume that B and N are independent of
F0, where {Ft}t≥0 is the filtration on (Ω,F , P ). We will look at the following
SDE:

dY (t) = b(Y (t−))dt+ σ(Y (t−))dB(t)

+
∫

|z|<c
F (Y (t−), z)Ñ(dt, dz)

+
∫

|z|≥c
G(Y (t−), z)N(dt, dz), (5.2)

The parameter c ∈ [0,∞] specifies what is meant by small and large jumps.
Now we state an existence and uniqueness result for an equation involving only
small jumps.

Theorem 5.1.8 (Poisson random measure driven SDE with small jumps,
[App09]). Consider the SDE

dZ(t) = b(Z(t−))dt+ σ(Z(t−))dB(t) +
∫

|z|<c
F (Z(t−), z)Ñ(dt, dz), (5.3)
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with the following assumptions on the coefficients:

(C1) There exists K1 > 0 such that, for all y1, y2 ∈ Rd,

|b(y1) − b(y2)|2 + ∥a(y1, y1) − 2a(y1, y2) + a(y2, y2)∥

+
∫

|z|<c
|F (y1, z) − F (y2, z)|2ν(dz) ≤ K1|y1 − y2|2

(C2) There exists K2 > 0 such that, for all y ∈ Rd,

|b(y)|2 + ∥a(y, y)∥ +
∫

|z|<c
|F (y, z)|2ν(dz) ≤ K2(1 + |y|2).

Where, for each x, y ∈ Rd we introduce the d× d matrix

a(x, y) = σ(x)σ(y)T ,

so that aik(x, y) =
∑r
j=1 σ

i
j(x)σkj (y) for each 1 ≤ i, k ≤ d. Furthermore, ∥ · ∥

denotes the matrix seminorm on d× d matrices, given by

∥a∥ =
∞∑
i=1

|aii|.

Then there exists a unique solution Z = {(Z(t)}t≥0, to the SDE (5.3) with the
initial condition Y (0) = Y0 (a.s.), for which Y0 is F0-measurable. The process
Z is adapted and càdlàg.

Proof. The proof uses Picard iteration and is therefore very similar to the proof
of Theorem 5.1.2, see [App09]. ■

By uniqueness in the preceding theorem we mean uniqueness up to indistin-
guishability, which is the same type of uniqueness as in the result by [Øks03].
The solution to the above theorem can be extended to allow for large jumps
through the use of what [App09] terms interlacing.

Theorem 5.1.9 (Poisson random measure driven SDE with big jumps, [App09]).
Assume that c > 0 and that the mapping y 7→ G(y, x) is continuous for all
x ≤ c. With the conditions of Theorem 5.1.8, there exists a unique càdlàg
adapted solution to (5.2).

Proof. Let (τn, n ∈ N) be the arrival times for the jumps of the compound
Poisson process (P (t), t ≥ 0), where each P (t) =

∫
|z|≥c zN(t, dx). We then

construct a solution to (5.2) as follows:

Y (t) = Z(t) for 0 ≤ t < τ1,

Y (τ1) = Z(τ1−) +G(Z(τ1−),∆P (τ1)) for t = τ1,

Y (t) = Y (τ1) + Z1(t) − Z1(τ1) for τ1 < t < τ2,

Y (τ2) = Y (τ2−) +G(Y (τ2−),∆P (τ2)) for t = τ2,

and so on, recursively. This technique is called interlacing. Here Z1 is the unique
solution to (5.3) with initial condition Z1(0) = Y (τ1). Y is clearly adapted,
càdlàg and solves (5.3). Uniqueness follows by the uniqueness in Theorem 5.1.8
and the interlacing structure. ■
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In chapter 7 we will study SDEs containing Malliavin derivatives, and it
therefore seems natural to give a result on the Malliavin differentiability of
the solutions found in this section. This theorem is taken from chapter 17 in
[DØP09], and for the proof they use the following lemma.

Lemma 5.1.10 ([DØP09]). Let {Fn}n≥1, be a sequence in D1,2 such that

Fn → F, n → ∞,

in L2(P ). Further, we require that

sup
n≥1

E

[ ∫ T

0

∫
R0

|Ds,zFn|2ν(dz)ds
]
< ∞.

Then F ∈ D1,2 and {D·,·Fn}n≥1 converges to D·,·F in the sense of the weak
topology of L2(P × λ× ν), where λ denotes the Lebesgue measure and ν denotes
the Lévy measure.

The theorem concerning Malliavin differentiability of solutions is now given.
Notice that the only added assumption, compared with Theorem 5.1.8, is the
integrability assumption on the Lévy measure.

Theorem 5.1.11 (Malliavin differentiability of solutions [DØP09]). There exists
a unique Malliavin differentiable strong solution X to the SDE

X(t) = X0 +
∫ T

0

∫
R0

γ(s,X(s−), z)Ñ(ds, dz), 0 ≤ t ≤ T, (5.4)

for X0 ∈ R, where γ : [0, T ] × R × R0 → R satisfies the linear growth condition∫
R0

|γ(t, x, z)|2ν(dz) ≤ C(1 + |x|2), 0 ≤ t ≤ T, x ∈ R, (5.5)

for a constant C < ∞ as well as the Lipschitz condition∫
R0

|γ(t, x, z) − γ(t, y, z)|2ν(dz) ≤ K|x− y|2, 0 ≤ t ≤ T, x ∈ R. (5.6)

On the Lévy measure we impose the following integrability assumption∫
R0

z2ν(dz) < ∞.

Proof. The idea of the proof is first to show that the Picard approximations
Xn(t), n ≥ 0, to X given by

Xn+1 = X0 +
∫ T

0

∫
R0

γ(s,Xn(s−), z)Ñ(ds, dz),

are in D1,2 and then to perform the limit n → ∞. Let us first prove by induction
on n that

Xn(t) ∈ D1,2 (5.7)
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and that

ϕn+1(t) ≤ k1 + k2

∫ t

0
ϕn(s)ds (5.8)

for all 0 ≤ t ≤ T , n ≥ 0, where k1, k2 are constants and

ϕn(t) := sup
0≤r≤t

E

[ ∫
R0

sup
r≤s≤t

(Dr,·Xn(s))2ν(dz)
]
< ∞.

One can check that (5.7) and (5.8) are fulfilled for n = 0, since

Dt,z

∫ T

0

∫
R0

γ(s, x, y)Ñ(ds, dy) = γ(t, x, z)

by the fundamental theorem of calculus 3.2.16. We assume that (5.7) and (5.8)
hold for n. Then, the closability of the Malliavin derivative Dt,z 3.2.9 and the
chain rule 3.2.13 imply that

Dr,zγ(t,Xn(t−), z) = γ(t,Xn(t−) +Dr,zXn(t−), z) − γ(t,Xn(t−), z)

for r ≤ t a.e. and ν-a.e. Hence, the fundamental theorem of calculus 3.2.16
gives that Xn+1(t) ∈ D1,2 and

Dr,zXn+1(t) =
∫ t

0

∫
R0

Dr,zγ(s,Xn(s−), y)Ñ(ds, dy) + γ(r,Xn(r−), z)

=
∫ t

r

∫
R0

(
γ(s,Xn(s−) +Dr,zXn(s−), y) − γ(s,Xn(s−), y)

)
Ñ(ds, dy)

+ γ(r,Xn(r−), z)

for r ≤ t a.e. and ν-a.e. So it follows from (5.5), (5.6), Doob maximal inequality,
Fubini theorem, and the Itô isometry that

E

[ ∫
R0

sup
r≤s≤t

(Dr,·Xn+1(s))2ν(dz)
]

≤ 8K
∫ t

r

E

[ ∫
R0

Dr,zXn(u−)ν(dz)
]
du+ 2C

(
1 + E[|Xn(r−)|2]

)
≤ 8K

∫ t

r

E

[ ∫
R0

Dr,zXn(u−)ν(dz)du+ 2C(1 + λ), (5.9)

where

sup
n≥0

E
[

sup
0≤s≤T

|Xn(s)|2
]
< ∞.

Note that

E
[

sup
0≤s≤T

|Xn(s) −X(s)|2
]

→ 0, n → ∞,

by the Picard iteration scheme. Thus (5.9) shows that (5.7) and (5.8) are valid
for n + 1. Finally, a discrete version of Gronwall inequality applied to (5.11)
yields

sup
n≥0

E

[ ∫ T

0

∫
R0

|Ds,zXn(t)|2ν(dz)ds
]
< ∞

for all 0 ≤ t ≤ T . Then it follows from Lemma 5.1.10 that X ∈ D1,2. ■
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In [DØP09] they claim that it can be proved, with similar arguments, that
the solution X to the following the more general equation is also Malliavin
differentiable

X(t) = X0 +
∫ t

0
α(s,X(s))ds+

∫ t

0
β(s,X(s))dW (s)

+
∫ t

0

∫
R0

γ(s,X(s−), z)Ñ(ds, dz),

for 0 ≤ t ≤ T , X0 ∈ R. Where the coefficients α, β, γ satisfies certain regularity
conditions.

We end this section with a slightly different result compared to those considered
above. This is a simpler version of the equations we have previously looked at
in this chapter and the proof is essentially "non-stochastic" in nature.

Theorem 5.1.12 (Existence and uniqueness of equation with constant noise
coefficient [Eva14]). Suppose that b : [0, T ] × R → R satisfies

(i) |b(s, x)| ≤ (1 + |x|),

(ii) |b(s, x) − b(s, y)| ≤ L|x− y|.

Then the SDE

X(t) = X0 +
∫ t

0
b(s,X(s))ds+W (t), X0 ∈ R,

has a unique solution up to indistinguishability.

Proof. Define Z0(t) = X0, for all t ∈ [0, T ] and then

Zn+1(t) := X0 +
∫ t

0
b(s, Zn(s))ds+W (t)

for n = 0, 1, .... Next write,

Dn(t) := max
0≤s≤t

|Zn+1(s) − Zn(s)|

and notice that for a given continuous sample path of the Brownian motion, we
have

D0(t) = max
0≤s≤t

∣∣∣ ∫ s

0
b(r, x)dr +W (s)

∣∣∣ ≤ C

for all times 0 ≤ t ≤ T, where C depends on ω. We now claim that

Dn(t) ≤ C
Ln

n! t
n

for n = 0, 1, ..., 0 ≤ t ≤ T . To see this note that

Dn(t) = max
0≤s≤t

∣∣∣ ∫ s

0
(b(s, Zn(s)) − b(s, Zn(s))dr

∣∣∣ ≤ L

∫ t

0
Dn−1(s)ds
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≤ L

∫ t

0
C

Ln−1

(n− 1)! t
n−1 ≤ C

Ln

n! t
n

In view of the claim, for m ≥ n we have

max
0≤t≤T

|Zm(t) − Zn(t)| ≤ C

∞∑
k=n

LkT k

k! → 0, n → ∞

Thus for almost every ω, Zn converges uniformly for 0 ≤ t ≤ T to a limit
process X which, as can be checked, solves the equation. ■

In the above theorem there is no proof of uniqueness, but uniqueness up to
indistinguishability follows by Theorem 5.1.2.

5.2 Hilbert valued SPDEs

This section will give a brief summary on some existing results on Hilbert-valued
SPDEs. Unlike in the real-valued, where we only considered strong solutions,
we will here also look at different solution concepts. We mainly follow chapter
9 in [PZ07], and our introduction of the fairly technical theory on stochastic
integrals from the last section will now come in handy.

The definition of what is known as mild solutions depends on the concept
of C0-semigroups, therefore, a natural starting point is to look at its definition
and some of its properties.

Definition 5.2.1 (C0-semigroups, [PZ07]). A family S = (S(t), t ≥ 0) of bounded
linear operators on a Banach space (B, ∥ · ∥B) is called a C0-semigroup if

(i) S(0) is the identity operator I,

(ii) S(t)S(s) = S(t+ s) for all t, s ≥ 0,

(iii) [0,∞) ∋ t 7→ S(t)z ∈ B is continuous for each z ∈ B.

A C0-semigroup is generated by a possibly unbounded operator.

Definition 5.2.2 (Generator of C0-semigroup, [PZ07]). Assume that S is a
C0-semigroup on B. We say that an element z ∈ B is in the domain of the
generator of S if

lim
t↓0

(S(t)z − z)
t

=: Az

exists. The set of all such z is denoted by D(A) and Az, z ∈ D(A), is then a
linear operator called the generator of S.

C0-semigroups has some important properties which come in handy while
studying SPDEs.

Theorem 5.2.3 (Properties of C0-semigroups, [PZ07]).

(i) If S is a C0-semigroup on B then, for some ω and M > 0,

∥S(t)z∥B ≤ eωtM∥z∥B , ∀z ∈ B, ∀t ≥ 0.
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5.2. Hilbert valued SPDEs

(ii) If a densely defined operator A generates a C0-semigroup S then A is
closed and, for any z ∈ D(A) and t > 0,

S(t)z ∈ D(A) and d

dt
S(t)z = AS(t)z = S(t)Az.

The equation under consideration in the first part of this section is the
following

dX = AXdt+ F (X)dt+G(X)dMt, X(t0) = X0 (5.10)

where A is the generator of a C0-semigroup S on a Hilbert space H, and M ,
defined on another Hilbert space U , is a square integrable martingale. M is
assumed to be defined on a filtered probability space (Ω,F , (Ft)t≥0, P ) and to
satisfy the condition

∃Q ∈ L+
1 (U) : ∀t ≥ s ≥ 0, ⟨⟨M |M⟩⟩t − ⟨⟨M |M⟩⟩s ≤ (t− s)Q,

where we recall that L+
1 (U) is the space of symmetric nonnegative trace class

operators on U . Define H := Q1/2(U).
We can now look at solution concepts to Hilbert-valued SPDEs of the form

(5.10), there are several different types of solutions and we will state two of
them, see e.g. chapter 8 in [DZ14] for martingale solutions and appendix G
in [LR15] for strong solutions and the relation between strong, mild and weak
solutions.

Definition 5.2.4 (Mild solution, [PZ07]). Let X0 be a square integrable Ft0-
measurable random variable in H. A predictable process X : [t0,∞) × Ω → H
is called a mild solution to (5.10) starting at time t0 from X0 if

sup
t∈[t0,T ]

E∥X(t)∥2
H < ∞, ∀T ∈ (t0,∞)

and

X(t) = S(t− t0)X0 +
∫ t

t0

S(t− s)F (X(s))ds∫ t

t0

S(t− s)G(X(s))dM(s), ∀t ≥ t0.

The main theorem of this section now follow, since we give a similar proof
in section 7.3, the proof is shortened and we refer to [PZ07] for the full proof.

Assumption 5.2.5 ([PZ07]). We assume that F : D(F ) → H and G : D(G) →
L(H, H) satisfy Lipschitz-type conditions:

(F) D(F ) is dense in H and there is a function a : (0,∞) → (0,∞) satisfying∫ T
0 a(t)dt < ∞ for all T < ∞ such that, for all t > 0, and x, y ∈ D(F )

∥S(t)F (x)∥H ≤ a(t)(1 + ∥x∥H),
∥S(t)(F (x) − F (y))∥H ≤ a(t)∥x− y∥H
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(G) D(G) is dense in H and there is a function b : (0,∞) → (0,∞) satisfying∫ T
0 b2(t)dt < ∞ for all T < ∞ such that, for all t > 0 and x, y ∈ D(G),

∥S(t)G(x)∥L2(H,H) ≤ b(t)(1 + ∥x∥H),
∥S(t)(G(x) −G(y))∥L2(H,H) ≤ b(t)∥x− y∥H .

Theorem 5.2.6 (Existence and uniqueness of SPDE driven by square integrable
martingale, [PZ07]). Assume that conditions (F ) and (G) from assumption
5.2.5 are satisfied. Then for all t0 ≥ 0 and all Ft0-measurable square integrable
random variables X0 in H there exists a unique (up to modification) solution
of (5.10).

Proof. Given 0 ≤ t0 ≤ T < ∞ we denote by XT the space of all predictable
processes Y : [t0, T ] × Ω 7→ H such that

∥Y ∥T :=
(

sup
t∈[t0,T ]

E
[
∥Y (t)∥H

])1/2
< ∞.

Given β ∈ R and Y ∈ XT , write

∥Y ∥T,β :=
(

sup
t∈[t0,T ]

e−βtE
[
∥Y (t)∥H

])1/2

Clearly XT with the norm ∥ · ∥T = ∥ · ∥T,0 is a Banach space. Moreover, the
norms ∥ · ∥T,β , β ∈ R are equivalent. Note that, from (F) and (G), for all
Y ∈ XT and t ∈ [t0, T ] the integrals

IF (Y )(t) :=
∫ T

t0

S(t− s)F (Y (s))ds

JG(Y )(t) :=
∫ T

t0

S(t− s)G(Y (s))dM(s)

are well defined. By Proposition 3.21 in [PZ07] they have predictable versions
since they are adapted and stochastically continuous. By the Banach fixed-point
theorem it suffices to show that, for any T < ∞, there are β ∈ R and a constant
C < 1 such that

∥IF (Y ) + JG(Y ) − IF (V ) − JG(V )∥T,β ≤ C∥Y − V ∥T,β , Y, Z ∈ XT .

To this end, we fix Y, V ∈ XT . Then

∥IF (Y ) + JG(Y ) − IF (V ) − JG(V )∥2
T,β

≤ 2∥IF (Y ) − IF (V )∥2
T,β + 2∥JG(Y ) − JG(V )∥2

T,β

Next, by (F), it can be shown that

∥IF (Y ) − IF (V )∥2
T,β ≤ C1∥Y − V ∥2

T,β ,

and by (G) that

∥JG(Y ) − JG(V )∥2
T,β ≤ C2∥Y − V ∥2

T,β ,

where C1 and C2 are positive constants depending on T and β. Then, for
sufficiently large β, C1 + C2 < 1. ■
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Interestingly, the linear growth assumptions in 5.2.5 are not actually used
for the proof of the theorem, their importance lies in ensuring the integrals
in Definition 5.2.4 are well defined. Recall Theorem 5.1.5, which also proved
existence by applying the Banach fixed point theorem, but did not assume
any linear growth assumption on the coefficients and instead ensured that
the integrals were well defined through local integrability conditions on the
coefficients.

We also include a couple of explanatory remarks from [PZ07].
Remark 5.2.7 ([PZ07]). Since the domains D(F ) and D(G) are dense in H,
conditions (F) and (G) imply that, for each t > 0, S(t)F and S(t)G have unique
extensions to continuous mappings from H to H and from H to L(H, H),
respectively. We also denote these extensions by S(t)F and S(t)G. Clearly, for
all t > 0 and x, y ∈ H,

∥S(t)F (x)||H ≤ a(t)(1 + ∥x∥H), ∥S(t)(F (x) − F (y))∥H ≤ a(t)∥x− y∥H

and

∥S(t)G(x)∥L2(H,H) ≤ b(t)(1 + ∥x∥H),
∥S(t)(G(x) −G(y))∥L2(H,H) ≤ b(t)∥x− y∥H .

Remark 5.2.8. The function t 7→ ∥S(t)∥L(H,H) is bounded on any finite interval
[0, T ]. Thus, if F : H → H and G : H → L2(H, H) are Lipschitz continuous,
then F and G also satisfies the linear growth assumptions of (F) and (G).

An alternative type of solution of SPDEs is the solution type known as a
weak solution.

Definition 5.2.9 (Weak solution, [PZ07]). Assume that (F) and (G) from
Assumption 5.2.5 hold. Let t0 ≥ 0, and let X0 be a square integrable Ft0-
measurable random variable in H. We say that a predictable H-valued process
{X(t)}t≥t0 is a weak solution to (5.4) if

sup
t∈[t0,T ]

E∥X(t)∥2
H < ∞, ∀T ∈ (t0,∞)

and, for all a ∈ D(A∗) and t ≥ t0

⟨a,X(t)⟩H = ⟨a,X0⟩H +
∫ t

t0

⟨A∗a,X(s)⟩Hds

+⟨a, F (X(s)⟩Hds+
∫ t

t0

⟨G∗(X(s))a, dM(s)⟩H.

Under the right assumptions, weak and mild solutions coincide.

Theorem 5.2.10 (Equivalence of weak and mild solutions, [PZ07]). Assume that
(F) and (G) from Assumption 5.2.5 hold. Then X is a mild solution of (5.10)
if and only if X is a weak solution.

Cylindrical Wiener case

Above, the noise term was driven by a square integrable martingale, but this
is not the only type of noise that can be considered. The equation to be
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investigated here, is of the same form as (5.10), and with the same assumptions
on A, but this time the noise term is driven by a cylindrical Wiener process,
that is,

dX = AXdt+ F (t,X)dt+G(X)dW̃t, X(t0) = X0. (5.11)

We continue to let U,H denote Hilbert spaces and recall that P[0,T ] denotes
the predictable σ-algebra on ΩT := [0, T ] × Ω. The following is gathered from
chapter 7 in [DZ14].

Let Hp, for p ≥ 2, be the Banach space of all predictable processes Y on H
defined on the time interval [0, T ] such that(

sup
t∈[0,T ]

E[|Y (t)|p]
)1/p

< ∞.

The following assumptions on the coefficients of (5.11) are made.

Assumption 5.2.11 ([DZ14]).

(i) The mapping

F : [0, T ] × Ω ×H → H, (t, ω, x) 7→ F (t, ω, x)

is measurable from (ΩT ×H,PT × B(H)) into (H,B(H)). Moreover there
exists a constant C > 0 such that for all x, y ∈ H, t ∈ [0, T ], ω ∈ Ω we
have

∥F (t, ω, x) − F (t, ω, y)∥H ≤ C∥x− y∥H
and

∥F (t, ω, x)∥H ≤ C(1 + ∥x∥H)

(ii) G is a strongly continuous mapping from H into L(U,H), that is, for any
u ∈ U the mapping x 7→ G(x)u from H to H is continuous, such that for
any t > 0 and x ∈ H, S(t)G(x) belongs to L2(U,H). We also assume
that there exists a mapping K : [0,+∞) → [0,+∞), t 7→ K(t) satisfying∫ T

0
K2(t)dt < ∞, ∀T < ∞

such that

∥S(t)G(x)∥L2(U,H) ≤ K(t)(1 + ∥x∥H), t > 0, x ∈ H,

and

∥S(t)G(x) − S(t)G(y)∥L2(U,H) ≤ K(t)∥x− y∥H , t > 0, x, y ∈ H.

With these assumptions there exist a unique solution to (5.11), formalized
in the following theorem. Again, we only provide a short proof and refer to
[DZ14] for the full proof.
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Theorem 5.2.12 (Existence and uniqueness of SPDE driven by cylindrical
Wiener process, [DZ14]). Assume Assumption 5.2.11 and let p ≥ 2. Then for
an arbitrary F0-measurable initial condition X0 such that E[|X0|p] < +∞ there
exists a unique mild solution X of (5.5) in Hp and there exists a constant CT ,
independent of X0, such that

sup
t∈[0,T ]

E[|X(t)|p] ≤ CT (1 + E[|X0|p]).

Proof. Adopting the notation from the proof of Theorem 5.2.6 and applying
assumption (i) and (ii) one can show that, for fixed U, V ∈ Hp,

sup
t∈[0,T ]

E
[
∥IF (U)(t) + JG(U)(t) − IF (V )(t) − JG(V )(t)∥pH

≤ c sup
t∈[0,T ]

E
[
∥U(t) − V (t)∥pH ,

where c > 0. If T is small enough, then c < 1, and consequently, by Banach’s
fixed point theorem, equation (5.11) has a unique solution in Hp. The case of
general T > 0 can be treated by considering the equation in intervals [0, T̃ ],
[T̃ , 2T̃ ], ... with T̃ such that c(T̃ ) < 1. ■

We have slightly simplified the above theorem. They have written the
assumptions (i), (ii) for an arbitrary generalized Wiener process, but we have
limited ourselves to the case where the covariance operator Q equals the identity
operator I on U , as this is the only case we will need.

Note also that the assumptions on the coefficients in 5.2.12 are slightly
different from the assumptions on the coefficients in 5.2.6. Hence, it is probably
possible to prove these theorems under somewhat different assumptions. Lastly,
observe that these two theorems use different techniques for applying Banach’s
fixed point theorem. Theorem 5.2.6 uses equivalent norms and chooses a
sufficiently small β, whereas Theorem 5.2.12 considers the equation on a
sufficiently small interval.
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CHAPTER 6

VMLV processes and ambit fields

We have now arrived at the core of this thesis. Where the preceding chapters
have all been fairly general and focused on giving an overview of relevant theory,
this chapter will be more specific and introduces the class of stochastic processes
called volatility modulated Lévy-driven Volterra (VMLV) processes and its
subclass of volatility modulated Brownian-driven Volterra (VMBV) processes.
Special attention will be given to the subclass of VMLV/VMBV processes called
Lévy/Brownian semistationary processes.

Integration theory with respect to VMLV processes will also be established.
As before, we split this chapter in two, where one part deals with the real-valued
case and the other deals with the Hilbert-valued case. In the more general
framework of Hilbert spaces, VMLV processes are called ambit fields.

Since the next chapter considers SDEs driven by VMLV processes and
SPDEs driven by ambit fields, the definitions in this chapter are crucial. The
following is collected from chapters 1, 4, and 7 in [BBV18] and from [BS16].

We begin with the simplest case which is the real-valued one.

6.1 VMBV and VMLV processes

The obvious starting point is to state the definition of VMLV processes and
some properties.

Let (Ω,F , P ) denote a complete probability space equipped with a filtration
F = {Ft}t∈R satisfying the usual conditions of right-continuity and completeness.

Definition 6.1.1 (Two-sided Lévy process, [BBV18]). Let L1 = {L1(t)}t≥0
denote a one-dimensional Lévy process. Further, let L2 be an independent
copy of L1 having the same characteristic triplet as L1. The stochastic process
L = {L(t))}t∈R defined by

L(t) :=
{
L1(t), for t ≥ 0,
−L2(−(t−)), for t < 0,

is called a Lévy process on R.

In the following we consider a Lévy process on R with respect to F and with
characteristic triplet (ζ,A, ν).

The definitions of VMLV and VMBV processes now follow, later in this
chapter, and in chapter 7 we will, in various settings, make several specifications
to this rather large class of processes.

59



6.1. VMBV and VMLV processes

Definition 6.1.2 (VMLV/VMBV processes, [BBV18]). Let L denote a Lévy
process on R and let {σ(s−)}s∈R denote a predictable, càdlàg, nonnegative
stochastic process and a a càdlàg stochastic process. Further let G,Q : R2 → R
be measurable deterministic functions with G(t, s) = Q(t, s) = 0 for t < s, also
let µ ∈ R. The stochastic process given by

X(t) = µ+
∫ t

−∞
G(t, s)σ(s−)dL(s) +

∫ t

−∞
Q(t, s)a(s)ds, t ∈ R,

and satisfying the integrability conditions∫ t

−∞
AG2(t, s)σ2(s)ds < ∞, (6.1)∫ t

−∞

∫
R0

min
(

1, (G(t, s)σ(s)z)2
)
ν(dz)ds < ∞, (6.2)∫ t

−∞

∣∣∣∣G(t, s)σ(s)ζ +
∫
R0

[
τ(G(t, s)σ(s)z) −G(t, s)σ(s)τ(z)

]
ν(dz)

∣∣∣∣ds < ∞,

(6.3)∫ t

−∞
|Q(t, s)a(s)|ds < ∞, (6.4)

is called a volatility modulated Lévy-driven Volterra (VMLV) process.
The functions g, q are called kernel functions and σ is called the volatility/in-

termittency process. Furthermore, if L is a Brownian motion on R we call the
VMLV process a Brownian-driven Volterra (VMBV) process.

Due to a result of [RR89] the characteristic function of a VMLV process
takes on the following form.

Proposition 6.1.3 (Characteristic function of VMLV process, [BBV18]).
Suppose that (σ, a) and L are independent and define Fσ = {Fσ

t }t∈R with
Fσ
t = σ{σ(s) : s ≤ t}, and Fa = {Fa

t }t∈R where Fa
t = σ{a(s) : s ≤ t}. The

conditional characteristic function of X(t) is given by

E[exp(iθX(t)) | Fσ ∨ Fa]

= exp
(
iθµ+ iθ

∫ t

−∞
Q(t, s)a(s)ds+

∫ t

−∞
C(θG(t, s)σ(s);L(1))ds

)
,

where C(·;L(1)) denotes the cumulant function of L(1)

From the characteristic function one can deduce the second order structure
of VMLV processes.

Proposition 6.1.4 (Second order structure of VMLV process,
[BBV18]). The conditional second order structure of X is given by

E(X(t) | Fσ ∨ F a) = µ+
∫ t

−∞
Q(t, s)a(s)ds+ E[L(1)]

∫ t

−∞
G(t, s)σ(s)ds,

Var(X(t) | Fσ ∨ F a) = Var(L(1))
∫ t

−∞
G2(t, s)σ2(s)ds,
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Cov((X(t+ h), X(t)) | Fσ ∨ F a) = Var(L(1))
∫ t

−∞
G(t+ h, s)G(t, s)σ2(s)ds,

for t ∈ R, h ≥ 0.

One of the simplifications we will make later on is setting σ = 1, if we also
set a = 1 we can see that the unconditional second order structure takes on the
same form as above.

This thesis will devote a sizable amount of focus on a subclass of VMLV/VMBV
processes called Lévy/Brownian semistationary (LSS/BSS) processes. They are
defined by setting G(t, s) = g(t− s) and Q(t, s) = q(t− s).

Definition 6.1.5 (LSS/BSS process, [BBV18]). Let L denote a Lévy process
on R and let {σ(s−)}s∈R denote a predictable, càdlàg, non-negative stochastic
process and a a càdlàg stochastic process. Further let g, q : (0,∞) → R denote
deterministic functions and suppose that µ ∈ R. The stochastic process given
by

X(t) = µ+
∫ t

−∞
g(t− s)σ(s−)dL(s) +

∫ t

−∞
q(t− s)a(s)ds, µ ∈ R

and satisfying the integrability conditions (6.1), (6.2), (6.3) and (6.4) for
G(t, s) = g(t− s) and Q(t, s) = q(t− s), is called a Lévy semistationary (LSS)
process. If L is a Brownian motion on R we call X a Brownian semistationary
(BSS) process.

Using the same characteristic function as for VMLV processes one can
compute the second order structure of LSS processes, note that by the nature
of g and q, a time shift can be performed.

Proposition 6.1.6 (Second order structure of LSS process,
[BBV18]). The conditional second order structure of X is given by

E(X(t) | Fσ ∨ F a) = µ+
∫ ∞

0
q(x)a(t− x)dx+ E[L(1)]

∫ ∞

0
g(x)σ(t− x)dx,

Var(X(t) | Fσ ∨ F a) = Var(L(1))
∫ ∞

0
g2(x)σ2(t− x)dx

Cov((X(t+ h), X(t)) | Fσ ∨ F a) = Var(L(1))
∫ ∞

0
g(x+ h)g(x)σ2(t− x)dx,

for t ∈ R, h ≥ 0.

LSS processes are in general not semimartingales, but in the following
proposition we can see that under the right conditions they will be.

Proposition 6.1.7 (Semimartingale conditions of LSS process, [BBV18]). Let X
be an LSS process and let F denote a filtration such that L is a semimartingale
in that filtration and that both σ and a are adapted to it. Suppose the following
conditions hold:

(i) E|L(1)| < ∞.

(ii) The function values g(0+) and q(0+) exist and are finite.
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(iii) The kernel function g is absolutely continuous with square integrable
derivative g′.

(iv) The process (g′(t− s)σ(s−))s∈R is square integrable for each t ∈ R.

(v) The process (q′(t− s)a(s))s∈R is integrable for each t ∈ R.

Then {X(t)}t≥0 is an F-semimartingale with representation

X(t) = X(0) + g(0+)
∫ t

0
σ(s−)dL̄(s) +

∫ t

0
A(s)ds for t ≥ 0

where L̄(s) = L(s) − E(L(s)) for s ∈ R and

A(s) = g(0+)σ(s−)E[L(1)] +
∫ s

−∞
g′(s− u)σ(u−)dL(u)

+ q(0+)a(s) +
∫ s

−∞
q′(s− u)a(u)du.

A well-known example of an LSS process is the Ornstein-Uhlenbeck (OU)
process, this is also an example of a semimartingale under the right condition.

Example 6.1.8 (Ornstein-Uhlenbeck process, [BBV18]). Let g(t− s) = e−λ(t−s)

for λ > 0 and s ≤ t, then

X(t) =
∫ t

−∞
e−λ(t−s)σ(s−)dL(s)

is a volatility-modulated Lévy driven OU process, which also happens to be a
semimartingale if we assume E[L(1)] < ∞.

Continuous modifications

We will in this subsection show that BSS processes and LSS processes admit
continuous modifications with appropriate assumptions on g and σ. The
conditions in the case of an LSS process will be stronger than in the case of a
BSS process. This is a natural consequence of the fact that Brownian motions
are continuous, whereas Lévy processes are not.

Theorem 6.1.9 (Continuous modification of BSS processes). Let Y = {Y (t)}t≥0
be a BSS process, that is,

Y (t) =
∫ t

0
g(t− s)σ(s)dB(s).

Assume that g is Hölder continuous with exponent α > 1/4, i.e.

|g(t) − g(s)| ≤ |t− s|α,

also assume the integrability conditions∫ T

0
σ2(s)ds < ∞ (6.5)
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∫ T

0
g(t− s)2(2+ϵ)σ2(2+ϵ)ds < ∞ (6.6)

for some small ϵ > 0. Then Y has a continuous modification by Kolmogorov’s
continuity theorem, see 2.3.3.

Proof. In short, we use 2.3.1 repeatedly to get two separate terms. Then we
can then apply the integrability assumption on the first term and the Hölder
continuity assumption on the second term. So by applying 2.3.1, and assuming
t ≥ u we have,

|Y (t) − Y (u)|4 =
∣∣∣ ∫ t

0
g(t− s)σ(s)dB(s) −

∫ u

0
g(u− s)σ(s)dB(s)

∣∣∣4
≤
(∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s)dB(s)

∣∣∣+
∣∣∣ ∫ t

u

g(t− s)σ(s)dB(s)
∣∣∣)4

≤
(

2 ·
∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s)dB(s)

∣∣∣2 + 2 ·
∣∣∣ ∫ t

u

g(t− s)σ(s)dB(s)
∣∣∣2)2

≤ 2 · 4
∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s)dB(s)

∣∣∣4 + 2 · 4
∣∣∣ ∫ t

u

g(t− s)σ(s)dB(s)
∣∣∣4

We can now consider each term separately. Since the integrals are normally
distributed we can use the 4th moment of Gaussian variables. By also applying
Hölder’s inequality with p = 2 + ϵ and q = 2 − δ where 1 > ϵ, δ > 0 are such
that 1/q + 1/p = 1, we get

E

[∣∣∣ ∫ t

u

g(t− s)σ(s)dB(s)
∣∣∣4] = 3

(∫ t

u

g2(t− s)σ2(s)ds
)2

≤ 3
((∫ t

u

(g2(t− s)σ2(s))2+ϵds
)1/(2+ϵ)(∫ t

u

12−δds
)1/(2−δ)

)2

= (t− u)2/(2−δ) · 3
(∫ T

0
g2(2+ϵ)(t− s)σ2(2+ϵ)(s)ds

)1/(2+ϵ)
.

For the second term we apply the assumption of Hölder continuity with
exponent α > 1/4,

E

[∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s)dB(s)

∣∣∣4]

= 3
(∫ u

0
(g(t− s) − g(u− s))2σ2(s)ds

)2

≤ 3
(∫ u

0
|(t− s) − (u− s)|2ασ2(s)ds

)2

= 3(t− u)4α
(∫ u

0
σ2(s)ds

)2
≤ (t− u)4α · 3

(∫ T

0
σ2(s)ds

)2

where 4α > 1. Putting everything together gives

63



6.1. VMBV and VMLV processes

E[|Y (t) − Y (u)|4]

≤ (t− u)4α
(

8 · 3
(∫ T

0
σ2(s)ds

)2

+ (t− u)2/(2−δ)

(t− u)4α 8 · 3
(∫ T

0
g2(2+ϵ)(t− s)σ2(2+ϵ)(s)ds

)1/(2+ϵ)
)

≤ (t− u)4α
(

24
(∫ T

0
σ2(s)ds

)2

+ T 2/(2−δ)−4α24
(∫ T

0
g2(2+ϵ)(t− s)σ2(2+ϵ)(s)ds

)1/(2+ϵ)
)
,

where we have assumed that 2/(2 − δ) > 4α, assuming the reverse inequality
would work as well.

Hence we can conclude that Y does have a continuous modification with
the Hölder continuity assumption and the integrability assumptions (6.5) and
(6.6). ■

As already mentioned, the corresponding result for LSS processes requires
stronger assumptions, we will therefore give some examples of functions that
satisfies these assumptions afterwards.

Theorem 6.1.10 (Continuous modification of LSS processes). Let Y = {Y (t)}t≥0
be a LSS process, that is

Y (t) =
∫ t

0
g(t− s)σ(s−)dL(s).

Assume the following

(i)
∫
R0
z2ν(dz) ≤ M < ∞,

(ii) g(0) = 0,

(iii) g is Hölder continuous with α > 1/2, i.e. |g(s) − g(u)| ≤ |s− u|α,

(iv)
∫ T

0 σ2(s)ds < ∞.

Then Y has a continuous modification by Kolmogorov’s continuity theorem, see
2.3.3.

Proof. The approach follows along the same path as the proof of 6.1.9. We use
the elementary inequality 2.3.1 to obtain two terms, and subsequently use the
appropriate assumptions to get an expression where we can apply Kolmogorov’s
continuity theorem. We have,

|Y (t) − Y (u)|2 =
∣∣∣ ∫ t

0
g(t− s)σ(s−)dL(s) −

∫ u

0
g(u− s)σ(s−)dL(s)

∣∣∣2
≤
(∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s−)dLs

∣∣∣+
∣∣∣ ∫ t

u

g(t− s)σ(s−)dL(s)
∣∣∣)2
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≤ 2 ·
∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s−)dL(s)

∣∣∣2 + 2 ·
∣∣∣ ∫ t

u

g(t− s)σ(s−)dL(s)
∣∣∣2.

The first term can be dealt with using the Itô isometry 2.2.10 and assumption
(i), (ii) and (iii),

E

[∣∣∣ ∫ t

u

g(t− s)σ(s−)dL(s)
∣∣∣2] =

∫ t

u

∫
R0

z2g2(t− s)σ2(s)ν(dz)ds

≤ M

∫ t

u

(g(t− s) − g(0))2σ2(s)ds ≤ M

∫ t

u

(t− s)2ασ2(s)ds

≤ M

∫ t

u

(t− u)2ασ2(s)ds = M(t− u)2α
∫ T

0
σ2(s)ds.

The second term is dealt with using the Itô isometry and assumption (i)
and (iii), we get

E

[∣∣∣ ∫ u

0
(g(t− s) − g(u− s))σ(s−)dL(s)

∣∣∣2]
=
∫ u

0
z2(g(t− s) − g(u− s))2σ2(s)ν(z)ds

≤ M

∫ u

0
|(t− s) − (u− s)|2ασ2(s)ds

= M

∫ u

0
|t− u|2ασ2(s)ds ≤ (t− u)2αM

∫ T

0
σ2(s)ds

Putting everything together gives

E[|Y (t) − Y (u)|2] ≤ (t− u)2α
(
M

∫ T

0
σ2(s)ds+M

∫ T

0
σ2(s)ds

)
= (t− u)2α2M

∫ T

0
σ2(s)ds

Hence, by Kolmogorov’s continuity theorem, Y does have a continuous
modification under the assumptions (i), (ii), (iii), (iv). ■

The assumptions on the kernel function g are rather heavy and the set of kernel
functions satisfying (ii) and (iii) is therefore somewhat small, but not empty.

Example 6.1.11 (Examples of functions satisfying (ii) and (iii) from 6.1.10).

(a) g defined by g(x) = xα satisfies the required assumption for all α > 1/2.

(b) If we for simplicity set α = 1, we can see that another example of a
function satisfying (ii) and (iii) is defined by

g(x) =
{

ln(x), if x ≥ 1
0, if x ≤ 1

where ln(x) denotes the natural logarithm of x.

65



6.2. Integration with respect to VMBV and VMLV processes

(c) If we again set α = 1, then the function defined by g(x) = e−λx − 1 or
g(x) = 1 − e−λx will also satisfy (ii) and (iii) for 0 < λ ≤ 1 + c, where c is
some positive constant slightly smaller than 0.4. The process Y will in
this case be a "shifted" Ornstein-Uhlenbeck process.

In example (c) it is probably possible to find and explicit relationship
between α and λ, we have not looked into that and the constant c was "found"
through trial and error.

6.2 Integration with respect to VMBV and VMLV processes

This section will introduce stochastic integration with respect to VMLV and
VMBV processes. We consider VMLV/VMBV process without drift, that is, a
process X defined by

X(t) =
∫ t

0
G(t, s)σ(s−)dL(s).

We begin with the case of VMBV processes. Define the operator KG acting on
measurable functions h : [s, t] → R for t ≥ s ≥ 0, by

KG(h)(t, s) = h(s)G(t, s) +
∫ t

s

(h(u) − h(s))G(du, s).

Definition 6.2.1 (Integration w.r.t. VMBV process, [BBV18]). Suppose that
for s ∈ R+ the mapping t 7→ G(t, s) is of bounded variation on [u, v] for all
0 ≤ s < u < v < ∞. Assume that the stochastic process Y (s) on 0 ≤ s ≤ t for
fixed t > 0 satisfies the following conditions:

(1) For s ∈ [0, t], the process u 7→ (Y (u) − Y (s)), s ≤ u ≤ t, is integrable
with respect to G(du, s) a.s.,

(2) The mapping
s 7→ KG(Y )(t, s)σ(s)χ[0,t](s)

is Skorohod integrable,

(3) KG(Y )(t, s) is Malliavin differentiable for s ∈ [0, t], with

s 7→ Ds{KG(Y )(t, s)}σ(s)

being Lebesgue integrable on [0, t] .

We say that Y is L([0, t])-integrable, and define∫ t

0
Y (s)dX(s) =

∫ t

0
KG(Y )(t, s)σ(s)δB(s) +

∫ t

0
Ds{KG(Y )(t, s)}σ(s)ds.

When G(t, s) = g(t− s) the operator KG can be written in an alternative
way, which we will benefit a lot from in chapter 7.
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Lemma 6.2.2 ([BBV18])). Suppose G(t, s) := g(t− s) for t ≥ s. If u 7→ h(u) is
Lebesgue-Stieltjes integrable on [s, t] with respect to G(du, s), then u 7→ h(s+ u)
is Lebesgue-Stieltjes integrable on [0, t− s] with respect to g(du) and∫ t

s

h(u)G(du, s) =
∫ t−s

0
h(u+ s)g(du).

This allows us to write

KG(h)(t, s) = h(s)g(t− s) +
∫ t−s

0
(h(u+ s) − h(s))g(du)

for G(t, s) = g(t− s).

In the case of a pure jump Lévy process the stochastic integral looks slightly
different, the reason for this is that the integration by parts formula in the
Brownian and pure jump Lévy case, as defined in Theorem 3.1.19 and Theorem
3.2.15 respectively, is different (see [BBV18] for details).

Definition 6.2.3 (Integration w.r.t. VMLV process, [BBV18]). Suppose that
for s ∈ R+ the mapping t 7→ G(t, s) on (s, T ] is of bounded variation. Assume
that the stochastic process Y (s) on 0 ≤ s ≤ t for fixed 0 < t ≤ T satisfies the
following conditions:

1. For s ∈ [0, t], the process u 7→ (Y (u) − Y (s)), s < u ≤ t, is integrable
with respect to G(du, s) a.s.,

2. The mapping

(s, z) 7→ z
{
KG(Y )(t, s) + Ds,z(KG(Y )(t, s))

}
σ(s)χ[0,t](s)

is Skorohod integrable on [0, T ] × R0 w.r.t. Ñ(δz, ds),

3. KG(Y )(t, s) is Malliavin differentiable for (s, z) ∈ [0, t] × R0, with

(s, z) 7→ Ds,z{KG(Y )(t, s)}σ(s)

being ν(dz)ds integrable on [0, t] × R0.

We say that Y is L̃([0, t])-integrable, and define∫ t

0
Y (s)dX(s) =

∫ t

0

∫
R0

z
{
KG(Y )(t, s) +Ds,z(KG(Y )(t, s))

}
σ(s)Ñ(δz, ds)

+
∫ t

0

∫
R0

Ds,z(KG(Y )(t, s))σ(s)ν(dz)ds.

Note that the above definition does not require t 7→ G(t, ·) to be right
continuous. This does however seem to be necessary, and it is definitely
necessary for parts of our examination of S(P)DEs in chapter 7. Therefore,
we add the assumption that t 7→ G(t, ·) is right continuous and maintain this
assumption throughout the rest of this thesis, both in the real-valued case and
in the Hilbert-valued case. When G(t, s) = g(t− s), we simply assume that g is
right-continuous.

Integrals w.r.t. VMLV/VMBV processes satisfies some of the same desirable
properties as classical integrals.
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Lemma 6.2.4 ([BBV18]). Let 0 < t1 < t2 and assume that s 7→ Y (s) is
L([0, t1])-integrable (respectively L̃([0, t1])-integrable). Then s 7→ Y (s)χ{s≤t1}(s)
is(L([0, t2])-integrable (respectively L̃([0, t2])-integrable) and∫ t2

0
Y (s)χ{s≤t1}(s)dX(s) =

∫ t1

0
Y (s)dX(s).

The very desirable property of linearity is also satisfied.

Lemma 6.2.5 ([BBV18])). If Y and Z are two processes which are L([0, t])-
integrable (respectively L̃([0, t])-integrable) and a, b ∈ R are two constants, then
s 7→ aY (s) + bZ(s) is L([0, t])-integrable (respectively L̃([0, t])-integrable), and∫ t

0
(aY (s) + bZ(s))dX(s) = a

∫ t

0
Y (s)dX(s) + b

∫ t

0
Z(s)dX(s).

The respective integration by parts formulas of VMLV processes and VMBV
processes are also analogous, however there is a mistake in [BBV18] which we
point out.

Proposition 6.2.6 (Integration by parts for VMBV integrals, [BBV18]). Suppose
that s 7→ Y (s) is L([0, t])-integrable and Z a bounded random variable such that
s 7→ ZY (s) is L([0, t])-integrable. Then∫ t

0
ZY (s)dX(s) = Z

∫ t

0
Y (s)dX(s).

The corresponding integration by parts formula for VMLV processes given
in [BBV18] is wrong, as they forgot a term when applying the product rule
3.2.11.

Proposition 6.2.7 (Integration by parts for VMLV integrals, [BBV18]). Suppose
that s 7→ Y (s) is L̃([0, t])-integrable and Z a bounded random variable such that
s 7→ ZY (s) is L̃([0, t])-integrable. Then∫ t

0
ZY (s)dX(s) = Z

∫ t

0
Y (s)dX(s)

For the proof we point out two mistakes.

Proof. Firstly,

KG(ZY )(t, s) = ZY (s)G(t, s) +
∫ t

s

(ZY (u) + ZY (s))G(du, s)

= Z
(
Y (s)G(t, s) +

∫ t

s

(Y (u) + Y (s))G(du, s)
)

= ZKG(Y )(t, s).

The first mistake is just a typo, the lower integral bound is supposed to be s,
as above, and not 0 as written in [BBV18], see page 137. The second mistake is
that there is a missing term in their application of the product rule 3.2.11, see
page 138 in [BBV18], the forgotten term is the third term on the right hand
side in the following equality:

Ds,z{ZKG(Y )(t, s)} = Ds,z{Z}KG(Y )(t, s) + ZDs,z{KG(Y )(t, s)}
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+Ds,z{Z}Ds,z{KG(Y )(t, s)}.

From here on and out, no mistakes have been found, but the extra term will
actually simplify our computations slightly.

Using the above application of the product rule gives∫ t

0
ZY (s)dX(s) (6.7)

=
∫ t

0

∫
R0

z
(
KG(ZY )(t, s) +Ds,z{KG(ZY )(t, s)}

)
σ(s−)Ñ(δz, ds)

+
∫ t

0

∫
R0

zDs,z{KG(ZY )(t, s)}σ(s)ν(dz)ds

=
∫ t

0

∫
R0

z
(
Z +Ds,z{Z}

)
KG(Y )(t, s)σ(s−)Ñ(δz, ds) (6.8)

+
∫ t

0

∫
R0

z
(
Z +Ds,z{Z}

)
Ds,z{KG(Y )(t, s)}σ(s−)Ñ(δz, ds) (6.9)

+
∫ t

0

∫
R0

zZDs,z{KG(Y )(t, s)}σ(s)ν(dz)ds (6.10)

+
∫ t

0

∫
R0

zDs,z{Z}KG(Y )(t, s)σ(s)ν(dz)ds (6.11)

+
∫ t

0

∫
R0

zDs,z{Z}Ds,z{KG(Y )(t, s)}σ(s)ν(dz)ds (6.12)

From the integration by parts formula 3.2.15, we have the equality

Z

∫ t

0

∫
R0

zKG(Y )(t, s)σ(s−)Ñ(δz, ds)

=
∫ t

0

∫
R0

z
(
Z +Ds,z{Z}

)
KG(Y )(t, s)σ(s−)Ñ(δz, ds)

+
∫ t

0

∫
R0

zDs,z{Z}KG(Y )(t, s)σ(s)ν(dz)ds,

where the right hand side equals the terms (6.8) and (6.11).
Similarly,

Z

∫ t

0

∫
R0

zDs,z{KG(Y )(t, s)}σ(s−)Ñ(δz, ds)

=
∫ t

0

∫
R0

z
(
Z +Ds,z{Z}

)
Ds,z{KG(Y )(t, s)}σ(s−)Ñ(δz, ds)

+
∫ t

0

∫
R0

zDs,z{Z}Ds,z{KG(Y )(t, s)}σ(s)ν(dz)ds,

where the right hand side equals the terms (6.9) and (6.12).
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Thus, ∫ t

0
ZY (s)dX(s) = Z

∫ t

0

∫
R0

zKG(Y )(t, s)σ(s−)Ñ(δz, ds)

+ Z

∫ t

0

∫
R0

zDs,z{KG(Y )(t, s)}σ(s−)Ñ(δz, ds)

+ Z

∫ t

0

∫
R0

zDs,z{KG(Y )(t, s)}σ(s)ν(dz)ds

= Z

∫ t

0
Y (s)dX(s)

■

The integrals with respect to VMLV/VMBV processes also satisfies the
property of localization, which basically means that the integral of 0 is 0.

Proposition 6.2.8 (Localization property of VMLV integrals,
[BBV18]). Suppose that s 7→ Y (s) = 0 for a.e. s ≤ t, a.s. Then Y is L([0, t])-
integrable (respectively L̃([0, t])-integrable), and∫ t

0
Y (s)dX(s) = 0, a.s.

6.3 Ambit fields

The spotlight is now turned to ambit fields, their definition is stated, and
integrals against ambit fields are defined. Some properties of this integral will
also be presented.

Ambit fields in a Hilbert space is the analogous process to a VMBV process
in R. The definition given for ambit fields encompasses less generality than
the one given for VMBV processes, we set the lower integrand bound to 0 and
exclude the drift term completely. It is however more general in the sense that
we do not require predictablity or adaptedness of σ.

Let H1,H2,H3 denote separable Hilbert spaces.

Definition 6.3.1 (Ambit field, [BBV18]). Let W̃ be a cylindrical Wiener process
on H1, {σ(t)}t∈[0,T ] be a stochastic process with values in L(H1,H2), not
necessarily adapted to the Wiener process W̃ and G be a deterministic function
depending on two time parameters such that G(t, s) ∈ L(H2,H2) for all
0 ≤ s ≤ t ≤ T . Furthermore, assume that G(t, ·)σ(·) is Skorohod integrable on
[0, t]. Then we can define

X(t) =
∫ t

0
G(t, s)σ(s)δW̃ (s), (6.13)

as a random element of H2.

As for LSS processes there exist conditions ensuring that X, as defined in
(6.13), is a semimartingale.
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6.3. Ambit fields

Proposition 6.3.2 (Semimartingale conditions for ambit fields, [BBV18]). For
t > 0, assume that G(t, s) is well-defined for all 0 ≤ s ≤ t. Furthermore,
suppose there exists a measurable function ϕ : [0, T ] × [0, T ] → L(H2) such that

G(t, s) = G(s, s) +
∫ t

s

ϕ(v, s)dv

for all 0 ≤ s ≤ t, where the integral on the right-hand side is defined in the
Bochner sense and∫ t

0
∥G(s, s)∥2

L(H2)ds, and
∫ t

0

∫ u

0
∥ϕ(v, s)∥2

L(H2)dsdv < ∞.

We furthermore suppose that σ is adapted to W̃ and pathwise locally bounded
almost surely. Then X defined in (6.13) is a semimartingale with decomposition

X(t) =
∫ t

0
G(s, s)σ(s)dW̃ (s) +

∫ t

0

∫ s

0
ϕ(s, u)σ(u)dW̃ (u)ds.

Integrating against an ambit field takes on the exact same form as in the
real-valued case. But first we need the definition of a vector measure, which
takes the place of the Lebesgue-Stieltjes measure in the real-valued case.

Definition 6.3.3 (Vector measure, [BBV18]). Let (Ω,A) be a measurable space
and B a Banach space. A set function µ : A → B is called a vector measure if

µ(F1 ∪ F2) = µ(F1) + µ(F2)

for any disjoint F1, F2 ∈ A. If, moreover, for any sequence {Fn}n∈N ⊂ A
of pairwise disjoint subsets of Ω , we have µ(

⋃∞
n=1 Fn) =

∑∞
n=1 µ(Fn) (with

convergence in the norm topology of B), then the vector measure µ is called
countably additive.

The total variation of a vector measure is defined analogously to the total
variation of a signed measure.

Definition 6.3.4 (Total variation of vector measures, [BBV18]). The total
variation |µ| of a vector measure µ on the measure space (Ω,A) with values
in a Banach space B, is defined as the set function on (Ω,A) with values in
R+ ∪ {∞} by

|µ|(G) = sup
π

∑
A∈π

∥µ(A)∥B ,

for G ∈ A. Here, π is the collection of partitions of G into a finite number of
pairwise disjoint sets A ∈ Ω . If |µ(A)| < ∞, we say that µ is a vector measure
of finite variation.

We can now define the integral against an ambit field. The following
assumptions are assumed throughout the rest of this thesis.

Assumption 6.3.5 ([BBV18]). Suppose that for all s ∈ [0, t), t ≤ T , the
L(H2)-valued vector measure G(du, s) is of bounded variation on [u, v] for
all 0 ≤ s < u < v ≤ t, and that G and σ are such that for all 0 ≤ s < t,
G(t, s)σ(s) ∈ L2(H1,H2) and χ[0,t](·)G(t, ·)σ(·) is Skorohod integrable for all
t ≤ T .
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6.3. Ambit fields

Recall the extension of the trace TrH1 defined by

TrH1A =
∞∑
k=1

(A(fk))(fk), A ∈ L(H1, L(H1,H3))

whenever this sum converges in H3, and where {fk}k∈N is an orthonormal basis
of H1.

Definition 6.3.6 (Integration w.r.t ambit fields, [BBV18]). Let X be defined
as in (6.13) with Assumption 6.3.5 being valid. For fixed t ≥ 0, the stochastic
process {Y (s)}s∈[0,t] is integrable with respect to X on [0, t] if

(i) the process u 7→ Y (u) − Y (s), for u ∈ (s, t), is integrable with respect to
the vector measure G(du, s) almost surely,

(ii) the process s 7→ KG(Y )(t, s)σ(s)χ[0,t](s) is in the domain of the Skorohod
integral with respect to W̃ , that is, in the domain of the H3-valued
divergence operator δW̃ , and

(iii) KG(Y )(t, s) is Malliavin differentiable with respect to Ds, for all s ∈ [0, t],
and the H3-valued stochastic process s 7→ TrH1Ds(KG(Y )(t, s))σ(s) is
Bochner integrable on [0, t] almost surely.

In this case, we say that Y ∈ IX(0, t) and define the stochastic integral by∫ t

0
Y (s)dX(s) =

∫ t

0
KG(Y )(t, s)σ(s)δW̃ (s)+TrH1

∫ t

0
Ds(KG(Y )(t, s))σ(s)ds.

The integral above satisfies many of the same useful properties that integrals
against BSS processes satisfy, like linearity and the property of localization,
and perhaps more interestingly, a similar integration by parts formula.

Proposition 6.3.7 (Basic calculus rules, [BS16]). Let Y,Z ∈ IX(0, t) and
a, b ∈ R be two constants, then aY + bZ ∈ IX(0, t) and∫ t

0
(aY (s) + bZ(s))dX(s) = a

∫ t

0
Y (s)dX(s) + b

∫ t

0
Z(s)dX(s).

If also 0 < t < T and Y ∈ IX(0, t) then Y χ[0,t] ∈ IX(0, T ) and∫ T

0
χ[0,t](s)Y (s)dX(s) =

∫ t

0
Y (s)dX(s).

Now it also follows that for 0 ≤ u < v ≤ t and Y ∈ IX(0, u) ∩ IX(0, v), that
Y χ[u,v] ∈ IX(0, t) and∫ t

0
Y (s)χ[u,v](s)dX(s) =

∫ v

0
Y (s)dX(s) −

∫ u

0
Y (s)dX(s).

The rules in the last proposition can be used to prove the following properties,
we refer to [BS16] for proof.

Proposition 6.3.8 (Properties of the ambit field integral, [BS16]). Let t > 0
and assume Y ∈ IX(0, t).
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6.4. Further properties of VMBV/VMLV and ambit field integrals

(i) (Integration by parts) Let Z be a random linear operator from H3 to
another separable Hilbert space H4 which is almost surely bounded. Then
ZY ∈ IX(0, t) and

Z

∫ t

0
Y (s)dX(s) =

∫ t

0
ZY (s)dX(s) almost surely.

(ii) (Localizedness) The X-integral is local, that is, if Y = 0 on a measurable
set A ⊂ Ω, then ∫ t

0
Y (s)dX(s) = 0 on A.

(iii) Let Y be a simple process, that is, Y =
∑n−1
j=1 Zjχ(tj ,tj+1] where Zj is a

random linear operator from H2 to H3 which is almost surely bounded for
all j = 1, ..., n− 1 and 0 ≤ t1 < · · · < tn ≤ t is a partition of the interval
[0, t]. Then Y ∈ IX(0, t) and∫ t

0
Y (s)dX(s) =

n−1∑
j=1

Zj(X(tj+1) −X(tj)).

(iv) Let furthermore σ be Malliavin differentiable. Then the X-integral is a
continuous linear operator from IX(0, t) to L2(Ω; H3).

6.4 Further properties of VMBV/VMLV and ambit field
integrals

Since VMBV and VMLV integrals involve both Malliavin derivatives and
Skorohod integrals, it would be interesting to see how they behave when
imitating some of the properties of the Skorohod integral. We start with
imitating the Skorohod isometry 3.1.21 (respectively 3.2.17), then we look at
what happens if we imitate the duality formula 3.1.18 (respectively 3.2.14), and
finally, the fundamental theorem of calculus 3.1.20 (respectively 3.2.16).

Let Y be a VMBV process, then

E

[(∫ t

0
u(s)dY (s)

)2
]

= E

[(∫ t

0
KG(u)(t, s)σ(s)δB(s)) +

∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

)2
]

= E

[(∫ t

0
KG(u)(t, s)σ(s)δB(s))

)2
+
(∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

)2
]
,

where the last equality follows since E[
∫ t

0 KG(u)(t, s)σ(s)δB(s)] = 0.
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6.4. Further properties of VMBV/VMLV and ambit field integrals

When Y is a VMLV process we have

E

[(∫ t

0
u(s)dY (s)

)2
]

= E

[(∫ t

0
z
[
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

]
σ(s)Ñ(δz, ds)

+
∫ t

0
Ds,z{KG(u)(t, s)}σ(s)ν(dz)ds

)2
]

= E

[(∫ t

0
zKG(u)(t, s)σ(s)Ñ(δz, ds)

)2

+
(∫ t

0
zDs,z{KG(u)(t, s)}σ(s)Ñ(δz, ds)

)2

+
(∫ t

0
Ds,z{KG(u)(t, s)}σ(s)ν(dz)ds

)2
]
,

where the last equality again follows since the Skorohod integral has expectation
0.

Imitating the duality formulas grants nice expressions both in the VMBV
case and in the VMLV case.

Proposition 6.4.1. Let Y be a VMBV process and let u be L([0, t])-integrable.
Assume that the random variable F is in D1,2, and that F and KG(u)(t, s)
satisfies the conditions of 3.1.14, then

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[ ∫ t

0
Ds{KG(u)(t, s)F}σ(s)ds

]
Proof.

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[
F

∫ t

0
KG(u)(t, s)σ(s)δB(s) + F

∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

]
= E

[ ∫ t

0
KG(u)(t, s)σ(s)DsFds+

∫ t

0
Ds{KG(u)(t, s)}Fσ(s)ds

]
= E

[ ∫ t

0
Ds{KG(u)(t, s)F}σ(s)ds

]
,

where the second equality follows by the duality formula 3.1.18 and the third
equality follows by 3.1.14. ■

For the VMLV case we get a similar formula.

Proposition 6.4.2. Let Y be a VMLV process and let u = u(s, z), s ∈ [0, t],
z ∈ R0 be L̃([0, t])-integrable. Assume that the random variable F is in D1,2,
and that F and KG(u)(t, s) satisfies the conditions of 3.2.10 or of 3.2.12, then

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[ ∫ t

0

∫
R0

zDs,z{KG(u)(t, s)F}σ(s)ν(dz)ds
]
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Proof.

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[
F

∫ t

0

∫
R0

z
[
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

]
σ(s)Ñ(δz, ds)

+ F

∫ t

0

∫
R0

zDs{KG(u)(t, s)}σ(s)ds
]

= E

[ ∫ t

0

∫
R0

z
[
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

]
Ds,z{F}σ(s)ν(dz)ds

+
∫ t

0

∫
R0

zDs,z{KG(u)(t, s)}Fσ(s)ν(dz)ds
]

= E

[ ∫ t

0

∫
R0

zDs,z{KG(u)(t, s)F}σ(s)ν(dz)ds
]
,

where the second equality follows by the duality formula 3.2.14 and the third
equality follows by the product rule 3.2.10 or by 3.2.12. ■

Finally, we imitate the fundamental theorem of calculus. For a particular
choice of σ, this is the best imitation, and naming it the fundamental theorem
of calculus for VMBV and VMLV integrals seems justified. But first, a couple
lemmas.

Lemma 6.4.3. For a twice Malliavin differentiable random variable F with
chaos expansion

∑∞
n=0 In(fn) we have

DrDs{F} = DsDr{F}

and in the jump case

Dr,yDs,z{F} = Ds,zDr,y{F}

Proof. Since the proof follows in the exact same way in both cases, we only
proves the jump case.

Dr,yDs,z{F} = Dr,y

( ∞∑
n=1

nIn−1(fn(·, s, z))
)

=
∞∑
n=2

n(n− 1)In−2(fn(·, r, y, s, z)) =
∞∑
n=2

n(n− 1)In−2(fn(·, s, z, r, y))

= Ds,z

( ∞∑
n=1

nIn−1(fn(·, r, y))
)

= Ds,zDr,y{F},

where the third equality follows since fn is symmetric. ■

We also separate the manipulation of the Malliavin derivative and the kernel
operator KG into its own lemma.
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Lemma 6.4.4. For the kernel operator

KG(h)(t, s) = G(t, s)h(s) +
∫ t

s

(h(u) − h(s))G(du, s)

we have

Dr

[
Ds{KG(h)(t, s)}σ(s)

]
= Ds{KG(Drh)(t, s)}σ(s) +Ds{KG(h)(t, s)}Dr{σ(s)},

where we assume the necessary conditions on σ and KG(h)(t, s) such that 3.1.14
is applicable.

Proof. By the product rule 3.1.14 and Lemma 6.4.3 we have

Dr

[
Ds{KG(h)(t, s)}σ(s)

]
= DrDs{KG(h)(t, s)}σ(s) +Ds{KG(h)(t, s)}Dr{σ(s)}
= DsDr{KG(h)(t, s)}σ(s) +Ds{KG(h)(t, s)}Dr{σ(s)}.

Now, by the commutation of the Malliavin derivative and the Lebesgue-Stieltjes
integral we have

Dr{KG(h)(t, s)} = Dr

{
G(t, s)h(s) +

∫ t

s

(h(u) − h(s))G(du, s)
}

= G(t, s)Dr{h(s)} +
∫ t

s

(Dr{h(u)} −Dr{h(s)})G(du, s)

= KG(Drh)(t, s).

Hence,

DsDr{KG(h)(t, s)}σ(s) +DsKG(h)(t, s)Dr{σ(s)}
= Ds{KG(Drh)(t, s)}σ(s) +Ds{KG(h)(t, s)}Dr{σ(s)}

■

With the aid of the two preceding lemmas, the proof of the next theorem is
simplified.

Proposition 6.4.5 (The fundamental theorem of calculus for VMBV integrals
with constant volatility). Let Y be a VMBV process with volatility σ = 1.
Assume for all r ∈ [0, t], that Dr{u(·)} is L([0, t])-integrable, and that the
application of Lemma 6.4.4 is justified. Then

∫ t
0 u(s)dY (s) ∈ D1,2 and

Dr

(∫ t

0
u(s)dY (s)

)
=
∫ t

0
Dru(s)dY (s) +KG(u)(t, r) (6.14)

Proof. As it is interesting in its own right, we first write out the case when σ is
general and then set σ = 1 to get (6.14),

Dr

(∫ t

0
u(s)dY (s)

)
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= Dr

(∫ t

0
KG(u)(t, s)σ(s)δB(s) +

∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

)
=
∫ t

0
Dr{KG(u)(t, s)σ(s)}δB(s) +KG(u)(t, r)σ(r)

+
∫ t

0
Dr

[
Ds{KG(u)(t, s)}σ(s)

]
ds

=
∫ t

0

[
KG(Dru)(t, s)σ(s) +KG(u)(t, s)Dr{σ(s)}

]
δB(s) +KG(u)(t, r)σ(r)

+
∫ t

0

[
Ds{KG(Dru)(t, s)}σ(s) +Ds{KG(u)(t, s)}Dr{σ(s)}

]
ds.

Where the second equality use the fundamental theorem of calculus 3.1.20 and
the third equality uses Lemma 6.4.4 and 3.1.14.

If now σ = 1, then Drσ(s) = 0 and we have

Dr

(∫ t

0
u(s)dY (s)

)
=
∫ t

0
{KG(Dru)(t, s)}δB(s) +KG(u)(t, r)

+
∫ t

0
Ds{KG(Dru)(t, s)}ds

)
=
∫ t

0
Dru(s)dY (s) +KG(u)(t, r).

■

The corresponding result and lemma for VMLV processes take on a more
complicated form.

Lemma 6.4.6. For the kernel operator

KG(h)(t, s) = G(t, s)h(s) +
∫ t

s

(h(u) − h(s))G(du, s)

we have

Dr,y

[
Ds,z{KG(h)(t, s)}σ(s)

]
= Ds,z{KG(Dr,y{h})(t, s)}σ(s)

+Ds,z{KG(h)(t, s)}Dr,y{σ(s)} +Ds,z{KG(Dr,y{h})(t, s)}Dr,y{σ(s)},

where we assume the necessary conditions on σ and KG(h)(t, s) such that either
3.2.10 or 3.2.12 is applicable.

Proof. By the product rule 3.2.10, or by 3.2.12, and Lemma 6.4.3, we have

Dr,y

[
Ds,z{KG(h)(t, s)}σ(s)

]
= Ds,z{Dr,y{KG(h)(t, s)}}σ(s)

+Ds,z{KG(h)(t, s)}Dr,y{σ(s)} +Ds,z{Dr,y{KG(h)(t, s)}}Dr,y{σ(s)}.

Now, by the commutation of the Malliavin derivative and the Lebesgue-Stieltjes
integral (see 3.2.18) we have, similarly to 6.4.4,

Dr,y{KG(h)(t, s)} = KG(Dr,yh)(t, s).
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Hence,

Ds,z{Dr,y{KG(h)(t, s)}}σ(s) +Ds,z{KG(h)(t, s)}Dr,y{σ(s)}
+Ds,z{Dr,y{KG(h)(t, s)}}Dr,y{σ(s)}

= Ds,z{KG(Dr,y{h})(t, s)}σ(s) +Ds,z{KG(h)(t, s)}Dr,y{σ(s)}
+Ds,z{KG(Dr,y{h})(t, s)}Dr,y{σ(s)}.

■

Even though the fundamental theorem of calculus takes on a more
complicated form in the VMLV case, in principle, we get the same formula
as for VMBV processes. The difference stems from the difference in their
corresponding definitions.

Proposition 6.4.7 (The fundamental theorem of calculus for VMLV integrals
with constant volatility). Let Y be a VMLV process with volatility σ = 1.
Assume for all r ∈ [0, t], y ∈ R, that Dr,y{u(·)} is L̃([0, t])-integrable, and that
the application of Lemma 6.4.6 is justified. Then

∫ t
0 u(s)dY (s) ∈ D1,2 and

Dr,y

(∫ t

0
u(s)dY (s)

)
=
∫ t

0
Dr,yu(s)dY (s) + y

(
KG(u)(t, r) +Dr,y{KG(u)(t, r)}

)
(6.15)

Proof. Again, we first write out the case when σ is general and then set σ = 1
to get (6.15),

Dr,y

(∫ t

0
u(s)dY (s)

)
= Dr,y

(∫ t

0

∫
R0

z
[
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

]
σ(s)Ñ(δz, ds)

+
∫ t

0

∫
R0

zDs,z{KG(u)(t, s)}σ(s)ν(dz)ds
)

=
∫ t

0

∫
R0

Dr,y

[
z
(
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

)
σ(s)

]
Ñ(δz, ds)

+ yKG(u)(t, r)σ(r) + yDr,y{yKG(u)(t, r)}σ(r)

+
∫ t

0

∫
R0

Dr,y

[
zDs,z{KG(u)(t, s)}σ(s)

]
ν(dz)ds

=
∫ t

0

∫
R0

z
([
KG(Dr,yu)(t, s) +Ds,z{KG(Dr,yu)(t, s)}

]
σ(s)

+
[
KG(u)(t, s) +Ds,z{KG(u)(t, s)}

]
Dr,y{σ(s)}

+
[
KG(Dr,yu)(t, s) +Ds,z{KG(Dr,yu)(t, s)}

]
Dr,y{σ(s)}

)
Ñ(δz, ds)

+ yKG(u)(t, r)σ(r) + yDr,y{KG(u)(t, r)}σ(r)

+
∫ t

0

∫
R0

z
(
Ds,z{KG(Dr,yu)(t, s)}σ(s)

+Ds,z{KG(u)(t, s)}Dr,y{σ(s)}
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+Ds,z{KG(Dr,yu)(t, s)}Dr,y{σ(s)}
)
ν(dz)ds

Where the second equality uses the fundamental theorem of calculus 3.2.16 and
the third equality uses Lemma 6.4.6 and 3.2.10 or 3.2.12.

As we can see, we get a very ugly formula unless we assume σ = 1, then
Dr,yσ(s) = 0 and we have

Dr,y

(∫ t

0
u(s)dY (s)

)
=
∫ t

0

∫
R0

z
[
KG(Dr,yu)(t, s) +Ds,z{KG(Dr,yu)(t, s)}

]
Ñ(δz, ds)

+ yKG(u)(t, r) + yDr,y{KG(u)(t, r)}

+
∫ t

0

∫
R0

Ds,z{KG(Dr,yu)(t, s)}ν(dz)ds
)

=
∫ t

0
Dr,y{u(s)}dY (s) + y

(
KG(u)(t, r) +Dr,y{KG(u)(t, r)}

)
■

Further properties of ambit field integrals

In a similar fashion to the real-valued case, we can calculate the L2(P ) norm of∫ t

0
Y (s)dX(s),

and imitate the duality formula. Imitating the fundamental theorem of calculus
is a little more difficult, we will return to this discussion later. For the L2(P )
norm we get

E

[(∫ t

0
u(s)dY (s)

)2
]

= E

[(∫ t

0
KG(u)(t, s)σ(s)δW̃ (s)) +

∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

)2
]

= E

[(∫ t

0
KG(u)(t, s)σ(s)δB(s))

)2
+
(∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

)2
]
,

where the last equality follows since E[
∫ t

0 KG(u)(t, s)σ(s)δW̃ (s)] = 0.
Recall the notation from section 6.3 and let H4 be another separable Hilbert

space.

Lemma 6.4.8. For A ∈ L(H1, L(H1,H3) and F ∈ L(H3,H4) we have

TrH1(FA) = FTrH1(A) ∈ H4

Proof. Let {ek}k∈N be an orthonormal basis of H1, then

((FA)(ek))(ek) = (F (A(ek)))(ek) = F ((A(ek))(ek)),
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6.4. Further properties of VMBV/VMLV and ambit field integrals

since this is the only thing that makes sense. Hence,

TrH1(FA) =
∞∑
k=1

((FA)(ek))(ek) =
∞∑
k=1

F ((A(ek))(ek)) = F

∞∑
k=1

(A(ek))(ek)

= FTrH1(A)

■

The "duality formula" for integrals with respect to ambit fields now follow.

Proposition 6.4.9. Let u be IX(0, t)-integrable and let F ∈ D1,2(L2(H3,H4)).
Then,

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[
TrH1

∫ t

0
Ds{FKG(u)(t, s)}σ(s)ds

]
Proof.

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[
F

∫ t

0
KG(u)(t, s)σ(s)δW̃ (s) + F T rH1

∫ t

0
Ds{KG(u)(t, s)}σ(s)ds

]
= E

[
T rH1

∫ t

0
Ds{F }KG(u)(t, s)σ(s)ds + T rH1

∫ t

0
F Ds{KG(u)(t, s)}σ(s)ds

]
= E

[
T rH1

∫ t

0
Ds{F KG(u)(t, s)}σ(s)ds

]
,

where the second equality follows by the duality formula 4.5.9 and the third
equality follows by the product rule 4.5.5 and Lemma 6.4.8. ■

The "fundamental theorem of calculus" for ambit field integrals might also
be possible to prove, the start off such a proof would be

Dr

∫ t

0
u(s)dY (s) = Dr

(∫ t

0
u(s)δB(s) + TrH1

∫ t

0
Dsu(s)ds

)
.

On the first term, one can apply 4.5.8, but the second term is trickier. To get
the same shape as in 6.4.5 one would need to commute the Malliavin derivative
and the operator TrH1 , and secondly Dr and Ds would need to be switched
around. Neither of these issues has, to my eyes, obvious solutions. Furthermore,
we cannot commute the Malliavin derivative and the Lebesgue-Stieltjes integral
in the same way as in the real-valued case, this might be provable as well, but
without such a result, one would have to assume that the kernel function G is
Fréchet differentiable. The product rule issues we observed in the real-valued
case is not an issue here, however, since we have a general product rule.
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CHAPTER 7

SDEs and SPDEs driven by VMLV
processes and ambit fields

In the last chapter we introduced LSS processes and ambit fields, and integrals
with respect to them. This chapter will look at SDEs and SPDEs driven by
these processes, that is, in the real-valued case, equations of the form

X(t) = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
c(s,Xs))dY (s), (7.1)

and in the Hilbert-valued case, equations of the form

X(t) = X0 +
∫ t

0
AX(s)ds+

∫ t

0
b(s,Xs)ds+

∫ t

0
c(s,Xs)dY (s).

We will concentrate on finding solutions to these equations, and in what sense
they are unique, but a couple results on the Malliavin differentiability of the
solutions will also be presented. These solutions will be non-adapted whenever
the noise coefficient is time dependent. This is caused by the operator KG since,
even if c : [0, T ] × Ω → R is predictable, we have

KG(c)(t, s) = c(s)G(t, s) +
∫ t

s

(c(u) − c(s))G(du, s)

where we can see that the Lebesgue-Stieltjes integral integrates c up to t which
is bigger than s, and which implies that the stochastic integral in (7.1) cannot
be adapted. Hence, the solution itself can not be adapted either.

In both the real-valued case and the Hilbert-valued case, we will consider
linear and non-linear coefficients, and we let the initial condition X0 be a
random variable in L2(P ) with values in either R or in the appropriate Hilbert
space. The framework in the real valued case is the usual complete filtered
probability space (Ω,F , {Ft}t, P ), but note that Ft is either generated by the
Brownian motion {B(s)}0≤s≤t, or by the Lévy process {L(s)}0≤s≤t depending
on whether we are considering the case of a VMBV process or the case of a
VMLV process. The framework in the Hilbert-valued case will be specified when
we get there.

Before we begin our study, we remark that if Y is an LSS process and
satisfies the assumptions of Proposition 6.1.6, so that Y is a semimartingale,
then there already exists theory on the existence and uniqueness of solutions to
(7.1), see e.g. [Pro10].
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7.1. Linear equations

7.1 Linear equations

In this section we will study the case when b is linear and σ is constant, then
(7.1) takes the form

X(t) = X0 +
∫ t

0
(aX(s) + c)ds+

∫ t

0
βdY (s). (7.2)

We will also express the solution, in differential form, through the use of Itô’s
formula.

The following theorem is quite similar to Proposition 25 in [BBV18], the
difference is that we consider G(t, s) = g(t− s) and that we include an extra
drift term. We have also imposed slightly different assumptions.

Theorem 7.1.1 (Linear b, constant σ). Let b(x) = ax+ c and σ(x) = β, where
a, c, β ∈ R. Assume ∫ t

0

∫ s

0
g2(s− u)σ(u)2duds < ∞. (7.3)∫ t

0
σ2(u)du < ∞. (7.4)

Also assume that there exist a nonnegative function θ ∈ L2([0, T ]) such that

|vg|(t) ≤
∫ t

0
θ(s)ds, 0 ≤ t ≤ T (7.5)

Then the equation (7.2) will have an explicit solution of the form:

X(t) = eat
(
X0 + c

∫ t

0
e−asds+ β

∫ t

0
e−asdY (s)

)
. (7.6)

Proof. By inserting the proposed solution above in to the second term of (7.2)
we get

a

∫ t

0
Xsds = a

(
X0

∫ t

0
easds + c

∫ t

0
eas

∫ s

0
e−aududs + β

∫ t

0
eas

∫ s

0
e−audY (u)ds

)
calculating term wise, we have for the first term

aX0

∫ t

0
easds = X0(eat − 1),

the second term

ac

∫ t

0
eas
∫ s

0
e−audu ds = ac

∫ t

0
eas(−1

a
(e−as − 1))ds

= c

∫ t

0
(eas − 1)ds = c

(
eat
∫ t

0
e−asds−

∫ t

0
ds

)
,

and the third term
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7.1. Linear equations

aβ

∫ t

0
eas
∫ s

0
e−audY (u)ds = aβ

∫ t

0

∫ t

u

ease−auds dY (u)

= aβ

∫ t

0

1
a

[eat − eau]e−audY (u) = eatβ

∫ t

0
e−audY (u) − β

∫ t

0
dY (u).

where we used the stochastic Fubini theorem 2.3.5 in the second equality. Adding
the terms together gives

X(t) = X0 +
∫ t

0
(aX(s) + c)ds+

∫ t

0
βdY (s)

= eat
(
X0 + c

∫ t

0
e−asds+ β

∫ t

0
e−asdY (s)

)
■

We now justify the application of the stochastic Fubini theorem.

Lemma 7.1.2. Let f(t) := e−at. Under the conditions of 7.1.1 we have∫ t

0

∫ s

0
e2asK2

g (f)(s, u)σ2(u)duds < ∞.

This justifies the use of the stochastic Fubini theorem 2.3.5

Proof. Since Kg(f)(t, s) is deterministic Ds,z{Kg(f)(t, s)} = 0, hence it follows
that ∫ t

0
eas
∫ s

0
e−audY (u)ds =

∫ t

0
eas
∫ s

0
Kg(f)(s, u)σ(u)dL(u)ds.

Since Kg(f)(s, u) = f(u)g(s−u) +
∫ s
u

(f(v) − f(u))g(dv), we can check each
term separately using the inequality 2.3.1. The first term gives∫ t

0

∫ s

0
e2ase−2aug2(s− u)σ2(u)duds ≤ e2at

∫ t

0

∫ s

0
g2(s− u)σ2(u)duds < ∞.

By using Cauchy-Schwarz and (7.5) we get for the second term

∫ t

0

∫ t

u

(
eas
∫ s

u

[e−av − e−au]g(dv)
)2
σ2(u)dsdu

≤
∫ t

0

∫ t

u

(
eas
∫ s

u

|e−av − e−au|vg(dv)
)2
σ2(u)dsdu

≤ e2at
∫ t

0

∫ t

u

(∫ s

u

|e−av − e−au|θ(v)dv
)2
dsσ2(u)du

≤ e2at
∫ t

0

∫ t

u

(∫ s

u

|e−av − e−au|2dv
∫ s

u

θ2(v)dv
)
dsσ2(u)du

≤ e2at
∫ t

0

∫ t

u

(∫ s

u

12dv

∫ t

0
θ2(v)dv

)
dsσ2(u)du

≤ e2att

∫ t

0
σ2(u)du

∫ t

0
θ2(v)dv
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7.1. Linear equations

which is finite by assumption. ■

Furthermore, we can express this solution using Itô’s formula.

Proposition 7.1.3. Assume that g(0) is defined, that g is differentiable, and
that ∫ t

0

∫ t

u

(g′(s− u))2dsdu < ∞ (7.7)

Then we can apply Itô’s formula to get the following representation of (7.6)

dX(t) = aeatZ(t)dt+ eat(ce−at + βV (t))dt+ β

∫
R
zeath(t, t)Ñ(dt, dz),

where

Z(t) = X0 + c

∫ t

0
e−audu+ β

∫ t

0
e−audY (u),

V (t) =
∫ t

0
∂
∂th(t, u)dL(u), and

h(t, u) := Kg(f)(t, u) =
(
f(u)g(t− u) +

∫ t

u

[f(v) − f(u)]g(dv)
)
.

Proof. Firstly, since g is differentiable we have that h(t, u) is differentiable in
the first variable and we can write h(t, u) = h(u, u) +

∫ t
u
∂
∂sh(s, u)ds, where

∂

∂s
h(s, u) = ∂

∂s
Kg(f)(s, u)

= ∂

∂s

(
f(u)g(s− u) +

∫ s

u

(f(v) − f(u))g(dv)
)

= ∂

∂s

(
f(u)g(s− u) +

∫ s

u

(f(v) − f(u))g′(v)dv
)

= f(u)g′(s− u) − (f(s) − f(u))g′(s).

Then, since f is bounded by 1 we get directly that∫ t

0

∫ t

u

( ∂
∂s
h(s, u)

)2
dsdu < ∞,

hence we can apply Theorem 2.3.5, which gives

∫ t

0
h(t, u)dL(u) =

∫ t

0
h(u, u)dL(u) +

∫ t

0

∫ t

u

∂

∂s
h(s, u)dsdL(u)

=
∫ t

0
h(u, u)dL(u) +

∫ t

0

∫ s

0

∂

∂s
h(s, u)dL(u)ds.

Now, let V (s) =
∫ s

0
∂
∂sh(s, u)dL(u) and Z(t) = X0 + c

∫ t
0 e

−audu +∫ t
0 e

−audY (u). We then get the expression
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7.1. Linear equations

∫ t

0
e−audY (u) =

∫ t

0

∫
R
z
{
Kg(f)(t, u) +Du,z{Kg(f)(t, u)}

}
σ(u)Ñ(δz, δu)

+
∫ t

0

∫
R
zDu,z{Kg(f)(t, u)}σ(u)ν(dz)ds

=
∫ t

0

∫
R
zKg(f)(t, u)σ(u)Ñ(dz, du)

=
∫ t

0
h(u, u)dL(u) +

∫ t

0
V (s)ds,

where we recall that Kg(f)(t, u) is deterministic, hence predictable and with
Du,z{Kg(f)(t, u)} = 0. With the preceding calculations we can express Z(t) as
a Lévy-Itô process

Z(t) = X0 + c

∫ t

0
e−audu+ β

∫ t

0
e−audY (u)

= X0 +
∫ t

0
(ce−au + βV (u))du+ β

∫ t

0
zh(u, u)Ñ(du, dz),

where we have just changed the variable of V . Finally we can apply Itô’s
formula, see 2.2.13. Let X(t) = F (t, Z(t)) = eatZ(t), then

dX(t) = ∂F

∂t
(t, Z(t))dt+ ∂F

∂z
(t, Z(t))α(t)dt+ ∂F

∂z
(t, Z(t))ζ(t)dB(t)

+ 1
2
∂2F

∂z2 (t, Z(t))ζ2(t)dt+
∫
R

[
F (t, Z(t) + γ(t, z)) − F (t, Z(t))

− ∂F

∂z
(t, Z(t))γ(t, z)

]
ν(dz)dt

+
∫
R

[
F (t, Z(t−) + γ(t, z)) − F (t, Z(t−))

]
Ñ(dt, dz)

= ∂F

∂t
(t, Z(t))dt+ ∂F

∂z
(t, Z(t))α(t)dt

+
∫
R

[
F (t, γ(t, z)) − ∂F

∂z
(t, Z(t))γ(t, z)

]
ν(dz)dt+

∫
R
F (t, γ(t, z))Ñ(dt, dz)

= aeatZ(t)dt+ eat(ce−at + βV (t))dt+ β

∫
R
zeath(t, t)Ñ(dt, dz).

■

From 7.1.3 we get the following corollary.

Corollary 7.1.4. Let Y be a BSS process. Assume the assumption of 7.1.3, then
(7.6) admits the representation

aeatZ(t)dt+ eat(ce−at + βV (t))dt+ βeath(t, t)dB(t)
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7.2. Equations with nonlinear drift

Proof. In the proof of 7.1.3 let L = B be a Brownian motion, then we have

Z(t) = X0 + c

∫ t

0
e−asds+ β

∫ t

0
e−asdY (s)

= X0 +
∫ t

0
(ce−as + βV (t))dt+

∫ t

0
h(s, s)dB(s)

and by Itô’s formula

dX(t) = ∂F

∂t
(t, Z(t))dt+ ∂F

∂z
(t, Z(t))α(t)dt+ ∂F

∂z
(t, Z(t))ζ(t)dB(t)

+ 1
2
∂2F

∂z2 (t, Z(t))ζ2(t)dt

= aeatZ(t)dt+ eat(ce−at + βV (t))dt+ βeath(t, t)dB(t)

■

7.2 Equations with nonlinear drift

This section will deal with equations of the type

X(t) = X0 +
∫ t

0
b(t,Xs)dt+

∫ t

0
c(s)dY (s) (7.8)

where b satisfies the usual conditions of linear growth and Lipschitzianity, and
c is a stochastic process whose properties will be defined later on. Y can be a
VMLV or a VMBV process. Showing the existence and uniqueness of solutions
to these SDEs can be done in several ways, depending on what we assume on c,
and we will draw upon the results in chapter 5.

First we must define what we mean by "solution". Since we will use the
same concept of solution in the next section about nonlinear SDEs, we define
the solution for the following more general equation

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
c(s,Xs)dY (s). (7.9)

Definition 7.2.1. A process X = {Xt}t∈[0,T ] is called a solution to 7.9 if

i) X ∈ L2(P ),

ii) c(·, X·) is L([0, T ])-integrable,

iii) X satisfies the equation.

The assumptions on b and the initial condition X0 will be the same
throughout this section.

Assumption 7.2.2. Assume that b : [0, T ] × R → R satisfies the following

(i) |b(t, x)| ≤ C(1 + |x|) for all t ∈ [0, T ], x ∈ R and some C > 0,

(ii) |b(t, x) − b(t, y)| ≤ D|x− y| for all t ∈ [0, T ], x, y ∈ R and some D > 0.
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7.2. Equations with nonlinear drift

Assumption 7.2.3. Assume that the initial condition X0 is a F0-measurable
random variable that satisfies

E[X2
0 ] < ∞.

The first case we will look at is the most general. It uses the proof of 5.1.2
and here the assumptions on σ are limited.

Theorem 7.2.4 (Existence and uniqueness via Picard iteration). Consider the
equation defined in (7.8). Let Y be a VMLV process. Let b and X0 be as in
7.2.2 and 7.2.3 respectively and assume the stochastic process c = {ct}t∈[0,T ]
satisfies (1)-(3) in 6.2.1 for all t ∈ [0, T ], that is, c is L̃([0, t])-integrable for all
t ∈ [0, T ]. Furthermore, assume that

E

[∣∣∣ ∫ t

0
c(s)dY (s)

∣∣∣2] ≤ S < ∞, t ∈ [0, T ]

Then there exists a solution, unique up to modification, of (7.8).

Proof. Firstly we have assumed that the integral∫ t

0
c(s)dY (s)

is defined. Now define Z0
t = X0 and Zk inductively in the Picard iteration way,

that is

Zk+1 = X0 +
∫ t

0
b(s, Zks )ds+

∫ t

0
c(s)dY (s).

The goal is to show that {Zkt }∞
n=0 is a Cauchy sequence in L2(P × dt) via

induction. For k = 0 this means that we have to find an upper bound on
E[|Z1

t − Z0
t |2]. We have

E[|Z1
t − Z0

t |2] = E

[∣∣∣ ∫ t

0
b(s, Z0

s )ds+
∫ t

0
c(s)dY (s)

∣∣∣2]
≤ 2E

[∣∣∣ ∫ t

0
b(s, Z0

s )ds
∣∣∣2]+ 2E

[∣∣∣ ∫ t

0
c(s)dY (s)

∣∣∣2].
The first term is standard

E

[∣∣∣ ∫ t

0
b(s, Z0

s )ds
∣∣∣2] ≤ tE

[ ∫ t

0
|b(s, Z0

s )|2ds
]

≤ TE

[ ∫ t

0
(1 + |X0|2)ds

]
≤ T 2(1 + E[|X0|2]) < ∞.

And by assumption we have

E

[∣∣∣ ∫ t

0
c(s)dY (s)

∣∣∣2] ≤ S < ∞.

Set C := 2(S + T (1 + E[|X0|2])). Assume now, for k ≥ 1, that

E[|Zkt − Zk−1
t |2] ≤ C

T k−1Dk−1

(k − 1)! tk−1.
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7.2. Equations with nonlinear drift

By induction, we have

E[|Zk+1
t − Zkt |2] = E

[∣∣∣ ∫ t

0
b(s, Zks ) − b(s, Zk−1

s )ds
∣∣∣2]

≤ tE

[ ∫ t

0
|b(s, Zks ) − b(s, Zk−1

s )|2ds
]

≤ TD

∫ t

0
E[|Zks − Zk−1|2]ds

≤ TD

∫ t

0
S
T k−1Dk−1

(k − 1)! sk−1ds = C
T kDk

k! tk.

Furthermore, {Zk}k∈N is a Cauchy sequence in L2(P × dt),

∥Znt − Zmt ∥L2(P×dt) =
∥∥∥ n−1∑
k=m

Zk+1
t − Zkt

∥∥∥
L2(P×dt)

≤
n−1∑
k=m

∥Zk+1
t − Zkt ∥L2(P×dt) ≤

n−1∑
k=m

(
E

[ ∫ T

0
|Zk+1
t − Zkt |2dt

])1/2

≤
n−1∑
k=m

(∫ T

0
C
T kDk

k! tkdt

)1/2

=
n−1∑
k=m

(
T kDk

(k + 1)!T
k+1

)1/2

→ 0, n,m → ∞.

Therefore {Zkt }∞
n=0 is a Cauchy sequence in the complete space L2(P × dt).

We define the limit in L2(P × dt) to be Xt = limk→∞ Zkt . Lastly, Xt satisfies
(7.8) since

E

[(∫ t

0
(b(s,Xs) − b(s, Zks ))ds

)2
]

≤ TE

[ ∫ t

0
(Xs − Zks )2ds

]
→ 0, k → ∞.

For the uniqueness, assume that U and V are two solutions with the same
initial condition X0, then, as above, we get

α(t) := E
[
|Ut − Vt|2

]
≤ TD

∫ t

0
E
[
|Ut − Vt|2

]
dt.

Hence, by Grönwall’s inequality 5.1.1, we conclude that α(t) = 0 for all t ≥ 0.
This implies that U and V are modifications of each other and therefore that
we have uniqueness up to modification.

■

Remark 7.2.5. The last theorem proves that the Picard iteration forms a
sequence in L2(P × dt), but we actually have an even stronger sense of
convergence since by the assumptions of 7.2.4 we get

E
[

sup
0≤s≤t

|Zk+1
s − Zks |2

]
≤ E

[
sup

0≤s≤t

(
s

∫ s

0
|b(u, Zk+1

u ) − b(u, Zku)|2du
)]

≤ tE

[ ∫ t

0
|b(u, Zk+1

u ) − b(u, Zku)|2du
)]

which is on the same form as in the proof of 7.2.4. In addition

E
[

sup
0≤s≤t

|Z1
s − Z0

s |2
]
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7.2. Equations with nonlinear drift

≤ 2E
[

sup
0≤s≤t

∣∣∣ ∫ s

0
b(u,X0)du

∣∣∣2]+ 2E
[

sup
0≤s≤t

∣∣∣ ∫ s

0
c(u)dY (u)

∣∣∣2]
≤ 2tE

[ ∫ t

0
|b(u,X0)|2du

]
+ 2E

[
sup

0≤s≤t

∣∣∣ ∫ s

0
c(u)dY (u)

∣∣∣2]
where the first term is again in the same form as in the proof above and the
last term is bounded by assumption. This means that we get

E
[

sup
0≤s≤T

|Xs − Zks |
]

→ 0, n → ∞.

The purpose of this remark is to show that we can employ Theorem 5.1.11 later
on to prove that the solution to 7.2.4 is Malliavin differentiable.

Theorem 7.2.4 gives rise to a series of corollaries that follow, more or less,
immediately by the above theorem.

Corollary 7.2.6. Let Y in (7.8) be an VMBV process and assume that c is
L([0, t])-integrable for all t ∈ [0, T ]. On b and X0 assume 7.2.2 and 7.2.3. Then
(7.8) has a solution which is unique up to modification.

Proof. Follows by the same procedure as for the proof of theorem 7.2.4. ■

Corollary 7.2.7. Let Y in (7.8) be an LSS process or an BSS process and assume
Assumption 7.2.2 on b and Assumption 7.2.3 on X0. Then (7.8) has a solution
which is unique up to modification.

Proof. Follows immediately by (7.2.4) in the LSS case, and by (7.2.6) in the
BSS case. ■

If we want adapted and predictable solutions, we will have to restrict
ourselves to the case where c is a random variable. Then we get

∫ t
0 cdY (s) =

cY (t), both when Y is an VMLV process and when Y is an VMBV process, see
the integration by parts formulas 6.2.7 and 6.2.6 respectively.

Corollary 7.2.8. Let Y in (7.8) be an VMLV process or an VMBV process
with predictable or adapted σ respectively, and let c be a random variable. Also
assume Assumption 7.2.2 on b and 7.2.3 on X0. Then (7.8) has a solution which
is unique up to modification. In this case, the solution will also be adapted.

Proof. Existence and uniqueness follow immediately by Theorem 7.2.4 and
Theorem 7.2.6 respectively. The adaptedness is a result of the adaptedness of
each Zk, which again follows from the fact that cY (t) is adapted by Theorem
63 in [Pro10]. ■

Obviously, Corollary 7.2.8 holds also in the special case where the VMLV
process is a LSS process and the VMBV process is a BSS process.

Corollary 7.2.9. Let Y in (7.8) be an LSS process or an BSS process with
predictable or adapted σ respectively, and let c be a random variable. Also
assume Assumption 7.2.2 on b and 7.2.3 on X0. Then (7.8) has a solution
which is unique up to modification. In this case, the solution will also be adapted.

Proof. Follows immediately by Corollary 7.2.8. ■
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Banach fixed point

We can also use the Banach fixed point theorem to prove existence and
uniqueness for certain choices of c. The Theorem 5.1.5 shows uniqueness
in a space of predictable processes. Hence, the process c = {ct}t∈[0,T ] cannot be
as general as in Theorem 7.2.4 if we want predictable solutions. In this case, we
will actually be forced to limit ourselves to the case where c is a random variable
and impose certain restrictions on Y depending of whether it is a VMLV or a
VMBV process. However, if we consider the spaces in [BK81] and remove the
requirement of predictability, we can allow for a more general c.

Recall the notation from chapter 5. Throughout this subsection we assume
that b : R+ × R → R satisfies

|b(t, x) − b(t, y)| ≤ β(t)|x− y|

where β ∈ L2
loc(R+), and that

sup
t≥0

E

[(∫ t

0
c(s)dY (s)

)2
]
< ∞. (7.10)

Note that, unlike in other parts of this chapter, we do not require that t is in
some compact interval [0, T ]. Furthermore, we define S : H2

loc → H2
loc by

SX(t) = X0 +
∫ t

0
b(s,X(s))ds+

∫ t

0
c(s)dY (s)

we then get

E[|SXt − SYt|2] = E

[∣∣∣∣ ∫ t

0

(
b(s,Xs) − b(s, Ys)

)
ds

∣∣∣∣2]. (7.11)

This allows us to apply Theorem 5.1.5.
We start off with considering the case where we can directly employ the

notation of [BK81], see section 5.1.

Theorem 7.2.10 (Existence and uniqueness via Banach’s fixed point theorem).
Let c in (7.8) be a random variable and let Y be a LSS process with predictable
σ, such that Y has a continuous modification. That is, we assume the conditions
of 6.1.10. Then there exists a unique solution of (7.8), up to modification, in
the space H2

loc.

Proof. Since the integrand in Y (t) =
∫ t

0 g(t − s)σ(s)dL(s) is predictable, the
integral is adapted by Theorem 63 in [Pro10], and by assumption Y is continuous,
hence Y is predictable. The integral is also contained in H2

loc by 7.10. Using
7.11 we can conclude by the proof of 5.1.5. ■

If we assume that Y is a VMBV process we can skip the continuity
assumption.

Theorem 7.2.11. Let c in (7.8) be a random variable and let Y be a VMBV
process with predictable σ. Then there exist a unique solution, up to modification,
in the space H2

loc.
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Proof. Since the integrand in Y (t) =
∫ t

0 G(t, s)σ(s)dB(s) is predictable, the
integral is predictable. The integral is also contained in H2

loc by 7.10. Using
7.11 we can conclude by the proof of 5.1.5. ■

Of course, we also get the same corollary as before.

Corollary 7.2.12. Let c in (7.8) be a random variable and let Y be a BSS process
with predictable σ. Then there exist a unique solution, up to modification, in
the space H2

loc.

Proof. Follows immediately by Theorem 7.2.11. ■

As mentioned, we can generalize σ and Y if we allow non-predictable
solutions. In this case, we must modify the situation of [BS16] in section 5.1
a little bit. We denote by M2 = M2(R+ × Ω,B(R+) ⊗ F , dt× P ) and G2 the
spaces of processes satisfying(

E
[ ∫ ∞

0
|Xt|2dt

])1/2
< ∞(

sup
t≥0

E
[
|Xt|2

])1/2
< ∞

respectively. Furthermore, F 2
loc and G2

loc denotes the spaces of processes such
that there is an increasing sequence of {Ft}t≥0-stopping times {Tn}n∈N → ∞
P -a.s. such that Xχ[0,Tn] belongs to F 2 and G2 respectively, for all n ∈ N.
Note that in [BK81] they use XT∗

n := XTnχ{Tn≥0} instead of Xχ[0,Tn] in the
definition of H2

loc, this is done to allow for a more general initial condition (see
remark 3 in [BK81]), we do not consider such general initial conditions and
have therefore left it out.

With the above considerations we can look at a more general solution to
(7.8).

Theorem 7.2.13. Let Y be a VMLV process and let c be a, not necessarily
predictable, stochastic process that is L̃([0, t])-integrable for all t ∈ [0, T ] such
that (7.10) holds. Then there exists a unique solution, up to modification, of
(7.8) in G2

loc.

Proof. Applying (7.11), the result follows word for word by 5.1.5 if we consider
the spaces M2, M2

loc, G2, and G2
loc instead of the spaces L2, L2

loc, H2, and H2
loc

respectively. ■

And the following obvious corollary follows.

Corollary 7.2.14. Let c be a, not necessarily predictable, stochastic process such
that (7.10) holds, and let Y be a LSS/VMBV/BSS process. Then there exists a
unique solution, up to modification, of (7.8) in G2

loc.

Proof. Follows immediately by 7.2.13. ■
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Existence and uniqueness through continuous modifications

The last approach for proving existence and uniqueness only works for
LSS processes and BSS processes as it employs their respective continuous
modifications found in Chapter 6. The proof relies on Theorem 5.1.12.

Theorem 7.2.15 (Existence and uniqueness through continuous modification).
Assume b satisfies 7.2.2, c is a random variable, and let Y be a BSS process or
an LSS processes where the kernel function g and the volatility σ satisfies the
assumptions of 6.1.9 and 6.1.10 respectively. Then (7.8) has a unique solution
up to indistinguishability.

Proof. This follows directly by 5.1.12, since cY with the assumption in the
theorem has continuous sample paths for almost all ω ∈ Ω. ■

There are probably various ways in which we could alter the assumptions of
the results in this section, recall some of the discussion in chapter 5.

The solutions found to (7.8) are Malliavin differentiable under suitable
assumptions. We only state the result for the most general result, that is, for
Theorem 7.2.4.

Malliavin differentiability of solutions

Theorem 7.2.16. Consider the SDE (7.8) and let Y be a VMLV process. Assume
the conditions of Assumption 7.2.2 and Assumption 7.2.3 on b and X0. Also
assume that c is L̃([0, T ]) integrable, and that for all r ∈ [0, T ], y ∈ R, Dr,y{c(·)}
is L̃([0, T ])-integrable. Further, we assume that

E
[
|Dr,yX0|2

]
≤ C1 < ∞

E

[(
Dr,y

∫ s

0
c(u)dY (u)

)2
]

≤ C2 < ∞

for all r, s ∈ [0, T ], y ∈ R and that

∂b(t, x)
∂x

≤ M, t ∈ [0, T ], x ∈ R.

Then the solution X to (7.8) found in Theorem (7.2.4) is Malliavin differentiable.
If we also assume that σ = 1, then Dr,yXt satisfies

Dr,yXt = Dr,yX0 +
∫ t

0

∂b(s,Xs)
∂x

Dr,yXsds+
∫ T

0
Dr,yc(s)dY (s)

+ y
(
KG(c)(t, r) +Dr,y{KG(c)(t, r)}

)
.

Proof. Taking the Malliavin derivative of Zk+1 in the Picard iteration of the
proof of 7.2.4 we have

Dr,yZ
k+1(t) = Dr,y

(
X0 +

∫ t

0
b(t, Zks )dt+

∫ t

0
c(s)dY (s)

)
= Dr,yX0 +

∫ t

0
Dr,yb(s, Zks )ds+Dr,y

(∫ t

0
c(s)dY (s)

)
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By assumption, we have that X0 is Malliavin differentiable, and by Theorem
6.4.7 we have that

∫ t
0 c(s)dY (s) is Malliavin differentiable. Hence we get,

E
[

sup
0≤s≤t

(Dr,yZ
k+1
s )2] ≤ 3E

[
(Dr,yX0)2]+ 3E

[
sup

0≤s≤t

(∫ s

0
Dr,yb(s, Zku)du

)2
]

+ 3E
[

sup
0≤s≤t

(
Dr,y

∫ s

0
c(u)dY (u)

)2
]

≤ 3E
[

sup
0≤s≤t

s

∫ s

0

(∂b(u, Zku)
∂z

Dr,yZ
k
udu

)2
]

+ C1 + C2

≤ 3TM2E

[ ∫ t

0

(
Dr,yZ

k
u

)2
du

]
+ C3,

where C3 := C1 + C2. This is the form of (5.8) in Theorem 5.1.11, taking
remark 7.2.5 into account we can conclude that Xt ∈ D1,2 for all t ∈ [0, T ] by
the proof of 5.1.11. Finally, the equality follows by Proposition 6.4.7

Dr,yXt = Dr,y

(
X0 +

∫ t

0
b(t,Xs)dt+

∫ t

0
c(s)dY (s)

)
= Dr,yX0 +

∫ t

0

∂b(s,Xs)
∂x

Dr,yXsds

+
∫ T

0
Dr,yc(s)dY (s) + y

(
KG(c)(t, r) +Dr,y{KG(c)(t, r)}

)
■

7.3 Nonlinear equations

This section we will study equations of the form

X(t) = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
c(s,Xs)dY (s), (7.12)

and we will mainly focus on the case where Y is a BSS process or a LSS process.
We will limit ourselves to the case where the volatility σ = 1. As one might
imagine, this is a significantly more difficult task than the semilinear type of
equations considered in the last section. The difficulty stems from the fact that
we now have to deal with the Malliavin derivative and Skorohod integral of the
function c, which is no longer just time-dependent but also dependent on the
solution process X. We will see that heavy assumptions on c are needed for a
solution to exist.

The proof of the main theorem of this section is very long, but we have tried
to shorten is as much as possible with the aid of a couple lemmas. One of the
issues one must deal with is showing that the term∫ t

0
c(s,Xs)dY (s)

is even defined, this is in itself quite a daunting task, and I have been unsuccessful
in finding any "clever" solutions to this problem in the literature. The solution
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7.3. Nonlinear equations

we consider is to simply assume that c is such that the term is defined. See, e.g.,
section 5 in [EPQ97] for the assumption that the noise coefficient is Malliavin
differentiable, and sections 3 and 4 in [Buc92] for assumptions on the Skorohod
integral of the noise coefficient.

We will use the following lemma numerous times.

Lemma 7.3.1. ∫ t

0

∫ t−s

0
f(u+ s)g(du)ds =

∫ t

0

∫ t

u

f(s)dsg(du)

Proof. By Fubini we have∫ t

0

∫ t−s

0
f(u+ s)g(du)ds =

∫ t

0

∫ t

0
χ[0,t−s](u)f(u+ s)g(du)ds

=
∫ t

0

∫ t

0
χ[0,t−u](s)f(u+ s)dsg(du) =

∫ t

0

∫ t−u

0
f(u+ s)dsg(du)

=
∫ t

0

∫ t

u

f(s)dsg(du)

■

Furthermore, we will use the Skorohod isometry several times, recall its
form

E

[(∫ T

0
u(s)δB(s)

)2
]

= E

[∫ T

0
u2(t)dt+

∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

]
.

We will need to estimate the second term of this isometry. This estimate is also
used several times, so we make it a lemma.

Lemma 7.3.2.

E
[ ∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

]
≤ E

[ ∫ T

0

∫ T

0

(
Dtu(s)

)2
dsdt

]
Proof. This follows by repeated use of the Cauchy-Schwarz inequality.

E
[ ∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

]
≤
∣∣∣E[ ∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

]∣∣∣
≤ E

[∣∣∣ ∫ T

0

∫ T

0
Dtu(s)Dsu(t)dsdt

∣∣∣] ≤ E

[ ∫ T

0

∣∣∣ ∫ T

0
Dtu(s)Dsu(t)ds

∣∣∣dt]
≤ E

[ ∫ T

0

(∫ T

0

(
Dtu(s)

)2
ds
)1/2(∫ T

0

(
Dsu(t)

)2
ds
)1/2

dt

]
≤ E

[(∫ T

0

∫ T

0

(
Dtu(s)

)2
dsdt

)1/2(∫ T

0

∫ T

0

(
Dsu(t)

)2
dsdt

)1/2
]

= E

[ ∫ T

0

∫ T

0

(
Dtu(s)

)2
dsdt

]
■
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Note that the above lemma also holds in the pure jump Lévy setting, from
3.2.17 we can see that we must also integrate with respect to the Lévy measure in
this case, but this just means that we would have to apply the Cauchy-Schwarz
inequality two times more.

In the remaining part of this section we will need the following inequality
for signed measures.

Lemma 7.3.3 ([Jun18]). Let a ∈ L1(|µ|), then∣∣∣ ∫ t

0
a(s)dµ(s)

∣∣∣ ≤
∫ t

0
|a(s)|d|µ|(s),

where µ is a signed measure and |µ| := µ+ + µ− is the total variation measure
of µ.

Specifically, the above lemma holds when µ is a Lebesgue-Stieltjes measure.
We denote the total variation of g(du) by |vg|(du).

Theorem 7.3.4 (Existence and uniqueness of nonlinear SDE driven by a
BSS process). Assume Y is a BSS process with σ = 1. Let T > 0 and
b : [0, T ] × R → R, c : [0, T ] × R → R be measurable functions such that,
for all s, t ∈ [0, T ], x, y ∈ R,

i) |b(t, x)|2 + |c(t, x)|2 ≤ C(1 + |x|2), C > 0.

ii) |b(t, x) − b(t, y)| + |c(t, x) − c(t, y)| ≤ Λ|x− y|, Λ > 0.

iii) |Ds(c(t, x)) −Ds(c(t, y))| ≤ F |x− y|, F > 0.

iv) c(t, x) ∈ D1,2.

v) c is differentiable in its second variable and∣∣∣ ∂
∂x
c(t, x)

∣∣∣ ≤ W < ∞.

Let the initial condition X0 satisfy

vi) E[|X0|2] < ∞

vii)
∫ T

0 E[|Ds(X0)|2]ds < ∞

We also assume that the kernel function g and the total variation measure
|vg|(du) of g(du) satisfy

viii) |g(t)| + |vg|(T ) ≤ M for all t ∈ [0, T ].

Then (7.12) has a solution, unique up to modification.

Proof. This is a long proof, but the idea is the same as in Theorem 5.1.2. We
use Picard iteration and the assumptions above to show that

E[(Zk+1
t − Zkt )2] ≤ AE

[ ∫ t

0
(Zks − Zk−1

s )2
]
, (7.13)
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for some constant A > 0, then the existence part of the proof follows by showing
that {Zkt }∞

k=0 is a Cauchy sequence in L2(P × dt). The uniqueness part uses
the same estimate (7.13), and is finished in the same way as in 7.2.4.

Define Z0
t = X0 and Zkt inductively as follows

Zk+1
t = X0 +

∫ t

0
b(s, Zks )ds+

∫ t

0
c(s, Zks )dYs.

Then we get

E[|Zk+1(t) − Zk(t)|2]

= E

[∣∣∣∣ ∫ t

0

(
b(s, Zks ) − b(s, Zk−1

s )
)
ds+

∫ t

0

(
c(s, Zks ) − c(s, Zk−1

s )
)
dY (s)

∣∣∣∣2
]

= E

[∣∣∣∣ ∫ t

0

(
b(s, Zks ) − b(s, Zk−1

s )
)
ds+

∫ t

0
Kg(c(s, Zks ) − c(s, Zk−1

s )(t, s)δB(s)

+
∫ t

0
Ds[Kg(c(s, Zks ) − c(s, Zk−1

s )(t, s)]ds
∣∣∣∣2
]

= E

[∣∣∣∣ ∫ t

0

(
b(s, Zks ) − b(s, Zk−1

s )
)
ds+

∫ t

0
g(t− s)(c(s, Zks ) − c(s, Zk−1

s ))δBs

+
∫ t

0

(∫ t−s

0

(
c(u+ s, Zku+s) − c(s, Zks )

)
g(du)

−
∫ t−s

0

(
c(u+ s, Zk−1

u+s ) − c(s, Zk−1
s )

)
g(du)

)
δB(s)

+
∫ t

0
g(t− s)

(
Ds[c(s, Zks )] −Ds[c(s, Zk−1

s )]
)
ds

+
∫ t

0

(
Ds

[ ∫ t−s

0

(
c(u+ s, Zku+s) − c(s, Zks )

)
g(du)

]
−Ds

[ ∫ t−s

0

(
c(u+ s, Zk−1

u+s ) − c(s, Zk−1
s )

)
g(du)

])
ds

∣∣∣∣2
]

Now, we rearrange the terms in the last equality and use 3.1.22 to move the
Malliavin derivative inside the Lebesgue-Stieltjes integral. By also using the
linearity of the Malliavin derivative, the product rule 3.1.12, and the fact that
Ds(g(t− s)) = 0 we get

E

[∣∣∣∣ ∫ t

0

(
b(s, Zks ) − b(s, Zk−1

s )
)
ds (7.14)

+
∫ t

0
g(t− s)

(
c(s, Zks ) − c(s, Zk−1

s )
)
δB(s) (7.15)

+
∫ t

0

(∫ t−s

0

(
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
)
g(du)

)
δB(s) (7.16)

+
∫ t

0

(∫ t−s

0

(
c(s, Zk−1

s ) − c(s, Zks )
)
g(du)

)
δB(s) (7.17)
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+
∫ t

0
g(t− s)

(
Ds[c(s, Zks ) − c(s, Zk−1

s )]
)
ds (7.18)

+
∫ t

0

(∫ t−s

0
Ds

[
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
]
g(du)

)
ds (7.19)

+
∫ t

0

(∫ t−s

0
Ds

[
c(s, Zk−1

s ) − c(s, Zks ))
]
g(du)

)
ds

∣∣∣∣2
]

(7.20)

Applying inequality 2.3.1 enables us to consider each term separately. For term
(7.14) we use the Lipschitz assumption on b, and the Cauchy-Schwarz inequality,

E

[∣∣∣∣ ∫ t

0

(
b(s, Zks ) − b(s, Zk−1

s )
)
ds

∣∣∣∣2
]

≤ Λ2TE

[∫ t

0

(
Zk(s) − Zk−1(s)

)2
ds

]
.

For term (7.15) we use the Skorohod isometry 3.1.21 coupled with lemma 7.3.2,
the boundedness assumption on g and the Lipschitz assumptions on c and its
Malliavin derivative,

E

[∣∣∣∣ ∫ t

0
g(t− s)

(
c(s, Zks ) − c(s, Zk−1

s )
)
δB(s)

∣∣∣∣2
]

≤ E

[∫ t

0
g2(t− s)

(
c(s, Zks ) − c(s, Zk−1

s )
)2
ds

]

+ E

[∫ t

0

∫ t

0

(
Dr{g(t− s)

(
c(s, Zks ) − c(s, Zk−1

s )
)
}
)2
dsdr

]

≤ M2Λ2E

[∫ t

0

(
Zks − Zk−1

s

)2
ds

]

+M2F 2TE

[∫ t

0
(Zks − Zk−1

s )2ds

]

For term (7.16) we use the Skorohod isometry together with inequality 7.3.2
and define

ϕ(t, s) :=
∫ t−s

0

(
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
)
g(du)

to get

E

[∣∣∣∣ ∫ t

0
ϕ(t, s)δB(s)

∣∣∣∣2
]

≤ E

[∫ t

0
ϕ2(t, s)ds+

∫ t

0

∫ t

0

(
Dv{ϕ(t, s)}

)2
dsdv

]
.

For the first term we appeal to Cauchy-Schwarz, the Lipschitz condition on c,
and Lemma 7.3.1 to get
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E

[∫ t

0

(∫ t−s

0

(
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
)
g(du)

)2
ds

]

≤ E

[∫ t

0
|vg|((t− s) − 0)

∫ t−s

0

(
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
)2|vg|(du)ds

]

≤ MΛ2E

[∫ t

0

∫ t−s

0

(
Zku+s − Zk−1

u+s
)2|vg|(du)ds

]

= MΛ2E

[∫ t

0

∫ t

u

(
Zks − Zk−1

s (s)
)2
ds|vg|(du)

]

≤ M2Λ2E

[∫ t

0

(
Zks − Zk−1

s

)2
ds

]
Applying 3.1.22, Cauchy-Schwarz, the Lipschitz assumption on the Malliavin
derivative of c, and Lemma 7.3.1 to the second term gives

E

[∫ t

0

∫ t

0

(
Dv

{∫ t−s

0

(
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
)
g(du)

})2
dsdv

]

≤ ME

[∫ t

0

∫ t

0

∫ t−s

0

(
Dv{c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )}
)2|vg|(du)}dsdv

]

≤ MF 2E

[∫ t

0

∫ t

0

∫ t−s

0
(Zku+s − Zk−1

u+s )2|vg|(du)dsdv
]

≤ MF 2TE

[∫ t

0

∫ t

u

(Zks − Zk−1
s )2ds|vg|(du)

]

≤ M2F 2TE

[∫ t

0
(Zks − Zk−1

s )2ds

]
.

For term (7.17), we once again employ the Skorohod isometry coupled with
Lemma 7.3.2,

E

[∣∣∣∣ ∫ t

0

(∫ t−s

0

(
c(s, Zk−1

s ) − c(s, Zks )
)
g(du)

)
δB(s)

∣∣∣∣2
]

= E

[∣∣∣∣ ∫ t

0
(g(t− s) − g(0))

(
c(s, Zk−1

s ) − c(s, Zks )
)
δB(s)

∣∣∣∣2
]

≤ E

[∫ t

0

(
g(t− s) − g(0)

)2(
c(s, Zk−1

s ) − c(s, Zks )
)2
ds

]

+ E

[∫ t

0

∫ t

0

(
Dv

{[
g(t− s) − g(0)

][
c(s, Zk−1

s ) − c(s, Zks )
]})2

dsdv

]

≤ 2M2Λ2E

[∫ t

0
(Zk−1

s − Zks )2ds

]
+ 2M2F 2TE

[∫ t

0
(Zk−1

s − Zks )2ds

]
,
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where the last inequality follows by the boundedness assumption on g, the
Lipschitz continuity on c, the product rule 3.1.12 together with the fact that
Dv{g(t−s)−g(0)} = 0, and the Lipschitz continuity of the Malliavin derivative
of c.

Term (7.18) is dealt with by applying the boundedness of g, the Lipschitz
assumption on the Malliavin derivative of c, and the Cauchy-Schwarz inequality,

E

[∣∣∣∣ ∫ t

0
g(t− s)Ds{c(s, Zks ) − c(Zk−1

s }ds
∣∣∣∣2
]

≤ tE

[∫ t

0
g2(t− s)

(
Ds{c(s, Zks ) − c(Zk−1

s }
)2
ds

]

≤ M2F 2TE

[∫ t

0
(Zks − Zk−1

s )2ds

]
.

For term (7.19), we apply the Cauchy-Schwarz inequality twice, the boundedness
assumption on g, and Lemma 7.3.1,

E

[∣∣∣∣ ∫ t

0

(∫ t−s

0
Ds

{
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
}
g(du)

)
ds

∣∣∣∣2
]

≤ MTE

[∫ t

0

∫ t−s

0

(
Ds

{
c(u+ s, Zku+s) − c(u+ s, Zk−1

u+s )
})2

|vg|(du)ds
]

≤ MF 2TE

[∫ t

0

∫ t−s

0
(Zku+s − Zk−1

u+s )2|vg|(du)ds
]

= MF 2TE

[∫ t

0

∫ t

u

(Zks − Zk−1
s )2ds|vg|(du)

]

≤ M2F 2TE

[∫ t

0
(Zks − Zk−1

s )2ds

]
.

Finally, term (7.20) is handled with an appeal to Cauchy-Schwarz, the
boundedness assumption on g, and the Lipschitz assumption on the Malliavin
derivative of c,

E

[∣∣∣∣ ∫ t

0

(∫ t−s

0
Ds

{
c(s, Zk−1

s ) − c(s, Zks ))
}
g(du)

)
ds

∣∣∣∣2
]

≤ TE

[∫ t

0

(
g(t− s) − g(0)

)2(
Ds

{
c(s, Zk−1

s ) − c(s, Zks ))
})2

ds

]

≤ 2M2F 2TE

[∫ t

0
(Zk−1(s) − Zk(s))2ds

]
.

Putting everything together gives
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E[|Zk+1(t) − Zk(t)|2]
≤ 7(Λ2T + (M2Λ2 +M2F 2T ) + (M2Λ2 +M2F 2T ) + (2M2Λ2

+ 2M2F 2T ) +M2F 2T +M2F 2T + 2M2F 2T )
∫ t

0
E
[∣∣Zk(s) − Zk−1(s)

∣∣2]ds
Set A1 = 7(Λ2T + 4M2Λ2 + 8M2F 2T ). For k = 0, note that

E[|Z1(t) − Z0(t)|2] = E

[∣∣∣∣ ∫ t

0
b(s,X0)ds+

∫ t

0
g(t− s)c(s,X0)dB(s)

+
∫ t

0

(∫ t−s

0

(
c(u+ s,X0) − c(s,X0)

)
g(du)

)
dB(s)

+
∫ t

0
g(t− s)Ds[c(s,X0)]ds

+
∫ t

0

(
Ds

[ ∫ t−s

0

(
c(u+ s,X0) − c(s,X0)

)
g(du)

]∣∣∣∣2
]

Applying inequality 2.3.1, so that we can consider each term separately, and
then using the Lipschitz assumption on c and its Malliavin derivative gives∫ t−s

0

(
|c(u+ s,X0) − c(s,X0)|

)
|vg|(du) ≤ 0∫ t−s

0

(
|Dsc(u+ s,X0) −Dsc(s,X0)|

)
|vg|(du) ≤ 0

which leaves three terms. These can be dealt with using Cauchy-Schwarz,
the linear growth assumptions on b and c, the Itô isometry, the boundedness
assumption on g, and the product rule 3.1.12,

5E
[∣∣∣∣ ∫ t

0
b(s,X0)ds

∣∣∣∣2 + 5E
[∣∣∣∣ ∫ t

0
g(t− s)c(s,X0)dB(s)

∣∣∣∣2
]

+ 5E
[∣∣∣∣ ∫ t

0
g(t− s)Ds{c(s,X0)}ds

∣∣∣∣2
]

≤ 5CTE
[ ∫ t

0
(1 + |X0|2)ds

]
+ 5M2CE

[ ∫ t

0
(1 + |X0|2)ds

]
+ 5M2TE

[ ∫ t

0

∂

∂x
c2(s,X0)

(
Ds{X0}

)2
ds

]
≤ 5CTt(1 + E[|X0|2]) + 5M2Ct(1 + E[|X0|2])

+ 5M2W 2Tt

∫ t

0
E[(Ds{X0})2]ds ≤ A2t

Where A2 is a constant depending on C, M , W , T , E[|X0|2] and∫ t
0 E
[∣∣Ds{X0}

∣∣2]ds. Setting A3 = max{A1, A2} and using induction we get

E[|Zk+1(t) − Zk(t)|2] ≤ A3

∫ t

0
E[|Zk(s) − Zk−1(s)|2]ds
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≤ A3

∫ t

0

Ak3s
k

k! ds = Ak+1
3 tk+1

(k + 1)! , k ≥ 0, t ∈ [0, T ].

Furthermore, {Zkt }∞
n=0 is Cauchy in L2(P × dt),

∥Znt − Zmt ∥L2(P×dt) =
∥∥∥ n−1∑
k=m

Zk+1
t − Zkt

∥∥∥
L2(P×dt)

≤
n−1∑
k=m

∥Zk+1
t − Zkt ∥L2(P×dt) ≤

n−1∑
k=m

(
E

[ ∫ T

0
|Zk+1
t − Zkt |2dt

])1/2

≤
n−1∑
k=m

(∫ T

0

Ak+1
3 tk+1

(k + 1)! dt
)1/2

=
n−1∑
k=m

(
Ak+1

3 T k+2

(k + 2)! dt

)1/2

→ 0, n,m → ∞

Define
Xt := L2(P × dt) − lim

n→∞
Znt .

The last step of the existence part is to check that Xt actually satisfies the SDE.
That is, we want

E

[∣∣∣∣ ∫ t

0

(
b(X(s)) − b(Zn(s))

)
ds

+
∫ t

0

(
c(s,Xs) − c(s, Zns

)
dY (s)

∣∣∣∣2
]

→ 0, n → ∞ (7.21)

Splitting this expression up in seven terms as above and using that Znt → Xt

in L2(P × dt) shows that (7.21) holds.
The uniqueness part follows in the same way as in 7.2.4 ■

Remark 7.3.5. Note that unlike in Remark 7.2.5, we cannot achieve the stronger
convergence of E

[
|Xt − Zkt |2

]
→ 0 as k → ∞ because we would need Doob’s

Lp inequality (see Theorem 1.7 in chapter 2 of [RY99]). This requires the noise
term to be a positive submartingale or a right-continuous martingale, our noise
term is neither, hence Doob’s Lp inequality is out of bounds.

Under one extra assumption, the same result holds for VMBV process with
σ = 1.

Theorem 7.3.6 (Existence and uniqueness of nonlinear SDE driven by a
VMBV process). Assume Y is a VMBV process with σ = 1. Let T > 0
and b : [0, T ] × R → R, c : [0, T ] × R → R be measurable functions satisfying
i)-vii) from Theorem 7.3.4. Assume the kernel function G satisfy

ix) t 7→ G(t, s) is absolutely continuous with respect to the Lebesgue measure
and the Radon-Nikodym derivative ∂G(t, s)/∂t ≤ M ′, for all 0 ≤ s ≤ t ≤
T .

Then (7.12) has a solution, unique up to modification.
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Proof. Note that by assumption (ix) we have

KG(h)(t, s) = h(s)G(t, s) +
∫ t

s

(h(u) − h(s))∂G(u, s)
∂u

du.

The proof is finished in a very similar manner to the proof of Theorem 7.3.4. ■

The reason for assumption ix) in the above theorem is that we can no longer
use Lemma 6.2.2, and therefore, neither Lemma 7.3.1. Hence, assumption ix)
enables us to get rid of the Lebesgue-Stieltjes integral, recall that we want to
obtain the following equality

E
[
|Zk+1
t − Zkt |2

]
≤ C

∫ t

0
|Zks − Zk−1

s |2ds

for some constant C > 0.
The assumptions on the noise coefficient c are strong but not unparalleled.

For example in Proposition 5.3 in [EPQ97] the assumption of a Lipschitz
Malliavin derivative was made. Admittedly, they consider a weaker assumption
where the Lipschitz "constant" is not a constant but instead a predictable process
with an appropriate integrability condition. However, as they also remark, this
is a trade-off since they could relax other assumptions if they instead considered
a constant as we have done here.

Since the solution of (7.12) found in the theorems above is not itself
necessarily Malliavin differentiable, it is interesting to know under what
conditions it would be.

Proposition 7.3.7 (Malliavin differentiability of solution). Under the assump-
tions of Theorem 7.3.4, plus the following assumption

i) |Dtb(s, x)|2 ≤ (1 + |x|2) for all t, s ∈ [0, T ], x ∈ R,

ii) |Dtc(s, x)|2 ≤ (1 + |x|2) for all t, s ∈ [0, T ], x ∈ R

iii) |DrDtc(s, x)|2 ≤ (1 + |x|2) for all r, t, s ∈ [0, T ], x ∈ R

we have that the solution X(t) of (7.12) is in D1,2 for all t ∈ [0, T ].

Proof. Assume Zkr ∈ D1,2 for all r ∈ [0, T ], we want to show that Zk+1
r ∈ D1,2

for all r ∈ [0, T ]. We get

DtZ
k+1
r = DtX0 +

∫ r

0
Dt{b(s, Zks )}ds+Dt

∫ r

0
c(s, Zks )dY (s).

Using assumption vii) from Theorem 7.3.4 we have

E

[ ∫ T

0
(DtX0)2dt

]
< ∞.

The second term gives∫ T

0
E

[(
Dt

{∫ r

0
b(s, Zks )ds

})2]
dt ≤ T

∫ T

0
E

[ ∫ r

0

(
Dt{b(s, Zks )}

)2
ds

]
dt
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≤ T

∫ T

0
E

[ ∫ T

0
(1 + |Zks |2)ds

]
dt ≤ T 2(T +

∫ T

0
E[|Zks |2]ds) < ∞.

Now, by Proposition 6.4.5 we get

Dt

∫ r

0
c(s, Zks )dY (s) =

∫ r

0
Dt{c(s, Zks )}dY (s) +Kg(c(·, Zk· ))(r, t)

=
∫ r

0
g(r − s)Dt{c(s, Zks )}δB(s) (7.22)

+
∫ r

0

∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)δB(s) (7.23)

−
∫ r

0

∫ r−s

0
Dt{c(s, Zks )}g(du)δB(s) (7.24)

+
∫ r

0
g(t− s)DtDs{c(s, Zks )}ds (7.25)

+
∫ r

0

∫ r−s

0
DtDs{c(u+ s, Zku+s)}g(du)ds (7.26)

−
∫ r

0

∫ r−s

0
DtDs{c(s, Zks )}g(du)ds (7.27)

+Kg(c(·, Zk· ))(r, t) (7.28)

Using the inequality 2.3.1, we can consider each term separately in L2(P×dt).
Recalling the boundedness assumption on g, and using the Skorohod isometry
together with Lemma 7.3.2 and finally the linear growth assumptions on the
first and second Malliavin derivatives of c, term (7.22) gives∫ T

0
E

[(∫ r

0
g(r − s)Dt{c(s, Zks )}δB(s)

)2]
dt

≤
∫ T

0
E

[ ∫ r

0

(
g(r − s)Dt{c(s, Zks )}

)2
ds

+
∫ r

0

∫ r

0

(
Dv

[
g(r − s)Dt{c(s, Zks )}

])2
dsdv

]
dt

≤
∫ T

0
E

[
M2

∫ T

0
(1 + |Zks |2)ds+M2

∫ T

0

∫ T

0
(1 + |Zks |2)

]
dsdv

]
dt

≤ (M2T +M2T 2)(T +
∫ T

0
E[|Zks |2]ds) < ∞

For (7.23) we use the same tools as for term (7.22) plus Lemma 7.3.1,∫ T

0
E

[(∫ r

0

∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)δB(s)

)2
]
dt

≤
∫ T

0
E

[ ∫ r

0

(∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)

)2
ds

+
∫ r

0

∫ r

0

(
Dv

[ ∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)

])2
dsdv

]
dt.
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The first term gives∫ T

0
E

[ ∫ r

0

(∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)ds

})2
]
dt

≤ M

∫ T

0
E

[ ∫ r

0

∫ r−s

0

(
Dt{c(u+ s, Zku+s)}

)2|vg|(du)ds
]
dt

≤ M

∫ T

0
E

[ ∫ r

0

∫ r−u

0
(1 + |Zks |2)ds|vg|(du)

]
dt

≤ M2T (T +
∫ T

0
E[|Zks |]ds) < ∞,

and the second term gives∫ T

0
E

[ ∫ r

0

∫ r

0

(
Dv

[ ∫ r−s

0
Dt{c(u+ s, Zku+s)}g(du)

])2
dsdv

]
dt

≤ M

∫ T

0
E

[ ∫ r

0

∫ r

0

[ ∫ r−s

0

(
DvDt{c(u+ s, Zku+s)}

)2
|vg|(du)

]
dsdv

]
dt

≤ M

∫ T

0
E

[ ∫ r

0

∫ r

0

∫ r−u

0
(1 + |Zks |2)ds|vg|(du)dv

]
dt

≤ M2T 2(T +
∫ T

0
E[|Zks |]ds) < ∞.

Since the remaining terms are all very similar to the above terms, we just list
the calculations. Term (7.24):∫ T

0
E

[(∫ r

0

∫ r−s

0
Dt{c(s, Zks )}g(du)δB(s)

)2
]
dt

≤
∫ T

0
E

[ ∫ r

0

(∫ r−s

0
Dt{c(s, Zks )}g(du)

)2
ds

+
∫ r

0

∫ r

0

(
Dv

[ ∫ r−s

0
Dt{c(s, Zks )}g(du)

])2
dsdv

]
dt

≤
∫ T

0
E

[ ∫ r

0
(g(r − u) − g(0))2[Dt{c(s, Zks )}]2ds

+
∫ r

0

∫ r

0
(g(r − u) − g(0))2[DvDt{c(s, Zks )}]2

)2
dsdv

]
dt

≤ 4M2T (T +
∫ T

0
E[|Zks |]ds) + 4M2T 2(T +

∫ T

0
E[|Zks |]ds) < ∞.

Term (7.25): ∫ T

0
E

[(∫ r

0
g(t− s)DtDs{c(s, Zks )}ds

)2
]
dt

≤ M2T (T +
∫ T

0
E[|Zks |2]) < ∞.

Term (7.26):∫ T

0
E

[(∫ r

0

∫ r−s

0
DtDs{c(u+ s, Zku+s)}g(du)ds

)2
]
dt
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≤ MT

∫ T

0
E

[ ∫ r

0

∫ r−s

0
(1 + |Zku+s)|2)|vg|(du)ds

]
dt

≤ M2T 2(T +
∫ T

0
E[|Zks |2]) < ∞.

Term (7.27):∫ T

0
E

[(∫ r

0

∫ r−s

0
DtDs{c(s, Zks )}g(du)ds

)2
]
dt

≤ T

∫ T

0
E

[ ∫ r

0
(g(r − s) − g(0))2[DtDs{c(s, Zks )}]2ds

]
dt

≤ 4M2T 2(T +
∫ T

0
E[|Zks |2]) < ∞.

Lastly, term (7.28) gives∫ T

0
E

[(
Kg(c(·, Zk· ))(r, t)

)2
]
dt

≤
∫ T

0
E

[
3(g(r − t)c(t, Zkt ))2 + 3

(∫ r−t

0
c(u+ t, Zku+t)g(du)

)2

+ 3
(∫ r−t

0
c(t, Zkt )g(du)

)2
]
dt.

Where the first and third term results in∫ T

0
E

[
3(g(r − t)c(t, Zkt ))2

]
dt ≤ 3M2(T +

∫ T

0
E[|Zkt |2]) < ∞

and∫ T

0
E

[
3
(∫ r−t

0
c(t, Zkt )g(du)

)2
]
dt ≤ 3 · 2M2(T +

∫ T

0
E[|Zkt |2]dt) < ∞

respectively. Finally, the second term gives

∫ T

0
E

[
3
(∫ r−t

0
c(u+ t, Zku+t)g(du)

)2
]
dt

≤ 3M
∫ T

0
E

[ ∫ T−t

0
(c(u+ t, Zku+t))2|vg|(du)

]
dt

≤ 3ME

[ ∫ T

0

∫ T

u

(1 + |Zkt |2)dtg(du)
]

≤ 3M2(T +
∫ T

0
E[|Zkt |2]dt) < ∞.

This shows that Zks ∈ D1,2, for all k ≥ 0, since we know that
∫ T

0 E[|Zkt |2]dt <
∞ for all k ≥ 0. Hence, supn≥1

∫ T
0 E

[
(DtZ

k
s )
]
dt < ∞. By the Picard iteration

in Theorem 7.3.4, we have∫ T

0
E
[
|Zt − Zkt |2

]
→ 0, k → ∞,

which is stronger than L2(P ) convergence. Hence, we can conclude that the
solution X is Malliavin differentiable by Lemma 5.1.10. ■
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The last theorem is, in a way, less satisfying than Theorem 5.1.11 since we
do not get the same kind of iteration procedure on the Malliavin derivative of
Zk.

Furthermore, compared to Theorem 5.1.11, we are forced to assume extra
conditions on top of an already long list of assumptions, whereas in 5.1.11 they
are able to prove Malliavin differentiability of the solution under the typical
assumptions of linear growth and Lipschitz continuity. The reason for this
is that we have a Malliavin derivative as part of the equation (7.12) we are
studying. This is also the cause for assumption iv) in Theorem 7.3.4, as without
it one must deal with the problem of showing that the following term from the
iteration procedure ∫ t

0
Ds{Kg(c(·, Zk· )(t, s)}ds

is even defined. The same issue arises for the Skorohod term. Further, note
that without assumption iv), using induction to show that Zks is Malliavin
differentiable does not work as one then gets

DrZ
k+1
t = Dr

(
X0 +

∫ t

0
b(s, Zks )ds+

∫ t

0
c(s, ZKs )dY (s)

)
,

where the last term involves a Malliavin derivative, and hence we get the double
Malliavin derivative of Zks and then the third Malliavin derivative of Zks and so
on in an infinite loop.

Finally, in this section, we look at the case where Y in equation (7.12) is an
LSS process. That is, we look at the equation where the noise term is given by∫ t

0
c(s,Xs)dY (s) =

∫ t

0

∫
R0

zKG(c(·, X·))(t, s)Ñ(δz, δs)

+
∫ t

0

∫
R0

zDs,z{KG(c(·, X·))(t, s)}Ñ(δz, δs) (7.29)

+
∫ t

0

∫
R0

zDs,z{KG(c(·, X·))(t, s)}ν(dz)ds.

Theorem 7.3.8 (Existence and uniqueness of SDE driven by LSS process with
only small jumps). Let Y be a LSS process with σ = 1. We also keep the same
assumptions as in Theorem 7.3.4 but adapt them to the jump case. In addition,
assume that for all s, r, t ∈ [0, T ], z, y ∈ R0,

(ix) |Ds,z

[
Dr,y(c(t, x1))

]
− Ds,z

[
Dr,y(c(t, x2)

]
| ≤ K|x1 − x2|, x1, x2 ∈ R,

K > 0

(x) E

[ ∫ t
0
∫
R0

(
Ds,z[X0]

)4
ν(dz)ds

]
< ∞

(xi)
∫
R0
z4ν(dz) ≤ E4 < ∞.

We also set
∫
R0
ν(dz) ≤ E0 and

∫
R0
z2ν(dz) ≤ E2 for some positive constants

E0 and E2. For simplicity, let K be the Lipschitz constant also for the first
Malliavin derivative of c and c itself. Then, (7.12) has a solution, unique up to
modification.
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Proof. We can use the same procedure as in the BSS case. Define Z0
t = X0 and

Zkt inductively as follows:

Zk+1
t = X0 +

∫ t

0
b(s, Zkt )ds+

∫ t

0
σ(s, Zkt )dYs.

For the purpose of avoiding unnecessary repetition, we will only look at the
extra term (7.29) caused by the difference in the definition of VMLV integrals
6.2.3 versus VMBV integrals 6.2.1. That is not to say that this will be a short
proof, however.

Define
φ(t, s) = Kg(c(·, Zk· ) − c(·, Zk−1

· ))(t, s)

We get, by the Skorohod isometry 3.2.17 and 7.3.2

E

[∣∣∣∣ ∫ t

0

∫
R0

zDs,z{φ(t, s)}Ñ(δz, δs)
∣∣∣∣2
]

≤ E

[ ∫ t

0

∫
R0

(
zDs,z{φ(t, s)}

)2
ν(dz)ds

]
(7.30)

+ E

[ ∫ t

0

∫
R0

∫ t

0

∫
R0

(
Dr,y

[
zDs,z{φ(t, s)}

]])2
ν(dy)drν(dz)ds

]
(7.31)

First consider (7.31). By using linearity of the Malliavin derivative and 3.2.18
to move the Malliavin derivative inside the integral, we have∣∣Dr,y

[
Ds,z{φ(t, s)}

]∣∣ =
∣∣Dr,y

[
Ds,z{Kg(c(·, Zk(·)) − c(·, Zk−1(·)))(t, s)}

]∣∣
=
∣∣∣∣Dr,y

(
Ds,z

[
g(t− s)(c(s, Zk(s)) − c(s, Zk−1(s)))

+
∫ t−s

0

(
c(u+ s, Zk(u+ s)) − c(u+ s, Zk−1(u+ s))

− (c(s, Zk(s)) − c(s, Zk−1(s)))
)
g(du)

])∣∣∣∣
≤
∣∣(g(t− s))Dr,y

[
Ds,z(c(s, Zk(s)) − c(s, Zk−1(s)))

]∣∣
+
∣∣∣∣ ∫ t−s

0

(
Dr,y

[
Ds,zc(u+ s, Zk(u+ s)) − c(u+ s, Zk−1(u+ s))

]
+Dr,y

[
Ds,z(c(s, Zk−1(s)) − c(s, Zk(s))

])
g(du)

∣∣∣∣
The boundedness condition on g and the Lipschitz assumption on the double
Malliavin derivative gives

∣∣(g(t− s))Dr,y

[
Ds,z(c(s, Zk(s)) − c(s, Zk−1(s)))

]∣∣
+
∣∣∣∣ ∫ t−s

0

(
Dr,y

[
Ds,zc(u+ s, Zk(u+ s)) − c(u+ s, Zk−1(u+ s))

]
+Dr,y

[
Ds,z(c(s, Zk−1(s)) − c(s, Zk(s))

])
g(du)

∣∣∣∣
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≤ M |Zk(s) − Zk−1(s)|

+
∫ t−s

0

∣∣Dr,y

[
Ds,zc(u+ s, Zk(u+ s)) − c(u+ s, Zk−1(u+ s))

]∣∣|vg|(du)

+ |g(t− s) − g(0)|
∣∣Dr,y

[
Ds,z(c(s, Zk−1(s)) − c(s, Zk(s))

]∣∣
≤ MK|Zk(s) − Zk−1(s)| +

∫ t−s

0
K
∣∣Zk(u+ s) − Zk−1(u+ s)

]∣∣|vg|(du)

+ 2MK
∣∣Zk−1(s) − Zk(s)

∣∣
Inserting this into (7.31) gives

∫ t

0

∫
R0

∫ t

0

∫
R0

z2
[
3MK|Zk(s) − Zk−1(s)|

+K

∫ t−s

0
|Zk(u+ s) − Zk−1(u+ s)||vg|(du)

]2
ν(dy)drν(dz)ds

≤ 2TE0E2 · 32M2K2
∫ t

0

[
|Zk(s) − Zk−1(s)|

]2
ds

+ 2TE0E2K
2
∫ t

0

[ ∫ t−s

0
|Zk(u+ s) − Zk−1(u+ s)||vg|(du)

]2
ds

Applying Cauchy-Schwarz and Lemma 7.3.1 to the second term grants

∫ t

0

[ ∫ t−s

0
|Zk(u+ s) − Zk−1(u+ s)||vg|(du)

]2
ds

≤
∫ t

0

∫ t−s

0
|Zk(u+ s) − Zk−1(u+ s)|2|vg|(du)|vg|((t− s) − 0)ds

= M

∫ t

0

∫ t

u

|Zk(s) − Zk−1(s)|2ds|vg|(du)

≤ M

∫ t

0

∫ t

0
|Zk(s) − Zk−1(s)|2ds|vg|(du)

≤ M2
∫ t

0
|Zk(s) − Zk−1(s)|2ds

So for the second term, we end up with

E

[ ∫ t

0

∫
R0

∫ t

0

∫
R0

(
Dr,y

[
zDs,z{φ(t, s)}

]])2
ν(dy)drν(dz)ds

]
18TE0E2M

2K2
∫ t

0
E
[
|Zk(s) − Zk−1(s)|

]2
ds

+ 2TE0E2K
2
∫ t

0
E

[ ∫ t−s

0
|Zk(u+ s) − Zk−1(u+ s)||vg|(du)

]2
ds

≤ 20TE0E2M
2K2

∫ t

0
E[|Zk(s) − Zk−1(s)|2]ds
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The first term can be estimated in a similar fashion and the details will therefore
be skipped.

E

[ ∫ t

0

∫
R0

(
zDs,z{φ(t, s)}

)2
ν(dz)ds

]
= E

[ ∫ t

0

∫
R0

(
zDs,z{Kg(c(·, Zk(·)) − c(·, Zk−1(·)))(t, s)}

)2
ν(dz)ds

]
= E

[ ∫ t

0

∫
R0

z2
(
Ds,z{g(t− s)(c(s, Zk(s)) − c(s, Zk−1(s)))}

+Ds,z

{∫ t−s

0

(
c(u+ s, Zk(u+ s)) − c(u+ s, Zk−1(u+ s))

− (c(s, Zk−1(s)) − c(s, Zk(s)))
)
g(du)

})2
ν(dz)ds

]
≤ (3E2K

2M2 + 3E2K
2M2 + 3E2K

2 · 4M2)
∫ t

0
E[|Zk(s) − Zk−1(s)|2]

= 18E2K
2M2

∫ t

0
E[|Zk(s) − Zk−1(s)|2]

Furthermore, by the Lipschitz condition on c and its Malliavin derivative,

∫ t−s

0
|c(u+ s,X0) − c(s,X0)||vg|(du) ≤ 0∫ t−s

0
|Ds,zc(u+ s,X0) −Ds,zc(s,X0)||vg|(du) ≤ 0,

so for k = 0 we get

E[|Z1(t) − Z0(t)|2]

= E

[∣∣∣∣ ∫ t

0
b(s,X0)ds+

∫ t

0

∫
R0

zg(t− s)c(s,X0)Ñ(ds, dz)

+
∫ t

0

∫
R0

zg(t− s)Ds,z[c(s,X0)]Ñ(ds, dz)

+
∫ t

0

∫
R0

zg(t− s)Ds,z[c(s,X0)]ν(dz)ds
∣∣∣∣2
]

≤ 4E
[∣∣∣∣ ∫ t

0
b(s,X0)ds

∣∣∣∣2]+ 4E
[∣∣∣∣ ∫ t

0

∫
R0

zg(t− s)c(s,X0)Ñ(ds, dz)
∣∣∣∣2]

+ 4E
[∣∣∣∣ ∫ t

0

∫
R0

zg(t− s)Ds,z[c(s,X0)]Ñ(ds, dz)
∣∣∣∣2]

+ 4E
[∣∣∣∣ ∫ t

0

∫
R0

zg(t− s)Ds,z[c(s,X0)]ν(dz)ds
∣∣∣∣2
]
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The first term is as before,

E

[∣∣∣∣ ∫ t

0
b(s,X0)ds

∣∣∣∣2
]

≤ C2T 2(1 + E[|X0|2])

By applying the Itô isometry on the second term, we have

E

[∣∣∣∣ ∫ t

0

∫
R0

zg(t− s)c(s,X0)Ñ(ds, dz)
∣∣∣∣2

= E

[ ∫ t

0

∫
R0

(
zg(t− s)c(s,X0)

)2
ν(dz)ds

]
≤ M2E2E

[ ∫ t

0

(
c(s,X0)

)2
ds

]
≤ M2C2E2T (1 + E[|X0|)2].

For the third term, we use the chain rule 3.2.13, the Itô isometry and Cauchy-
Schwarz to get

E

[∣∣∣∣ ∫ t

0

∫
R0

zg(t − s)Ds,z[c(s, X0)]Ñ(ds, dz)
∣∣∣∣2]

= E

[∫ t

0

∫
R0

(
zg(t − s)Ds,z[c(s, X0)]

)2
ν(dz)ds

]
M2E

[∫ t

0

(∫
R0

z4ν(dz)
)1/2(∫

R0

(
c
(
s, X0 − Ds,z[X0]

)
− c(s, X0)

)4
ν(dz)

)1/2
ds

]
≤ T 1/2M2K4(E4)1/2E

[∫ t

0

∫
R0

(
Ds,z[X0]

)4
ν(dz)ds

]
.

For the fourth term, we apply Cauchy-Schwarz twice and the chain rule to get

E

[∣∣∣∣ ∫ t

0

∫
R0

zg(t− s)Ds,z[c(s,X0)]ν(dz)ds
∣∣∣∣2
]

≤ tE

[ ∫ t

0

∣∣∣∣ ∫
R0

zg(t− s)Ds,z[c(s,X0)]ν(dz)
∣∣∣∣2ds

]

≤ T

∫
R0

z2ν(dz)E
[ ∫ t

0

∫
R0

(
g(t− s)Ds,z[c(s,X0)]

)2
ν(dz)ds

]

≤ TM2K2E2E

[ ∫ t

0

∫
R0

(
Ds,z[X0]

)2
ν(dz)ds

]
.

Summing up, we have

E[|Z1(t) − Z0(t)|2]
≤ 4
(
1 + E[|X0|2

)(
T 2C2 + TM2C2E2

)
+ 4E

[ ∫ t

0

∫
R0

(
Ds,z[X0]

)2
ν(dz)ds

]
TM2K2E2
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+ 4E
[ ∫ t

0

∫
R0

(
Ds,z[X0]

)4
ν(dz)ds

]
T 1/2M2K4(E4)1/2.

We can now finish the proof in the same way as in the BSS case (Theorem
7.3.4). ■

Similarly to the BSS/VMBV case we can generalize Theorem 7.3.8 to VMLV
processes.

Corollary 7.3.9. Let Y be a VMLV process with σ = 1. Assume the conditions
of Theorem 7.3.8 and Theorem 7.3.6. Then (7.12) has a solution, unique up to
modification.

Proof. Combining the proof of Theorem 7.3.8 and Theorem 7.3.6 gives the
result. ■

Lastly, in this section, we remark that it is possible to prove that the solution
of 7.3.8 and the above corollary is Malliavin differentiable under appropriate
conditions similar to those of Theorem 7.3.7.

7.4 SPDEs driven by ambit fields

Where the last sections have focused on real-valued SDEs, this section will focus
on Hilbert-valued SPDEs. Let H1, H2 and H3 be separable Hilbert spaces.

Let F : H2 → H2 and consider the equation

dXt = AX(t)dt+ F (X(t))dt+ dY (t), X(0) = X0 (7.32)

where A is a possibly unbounded operator on H2 and Y is an ambit field on
H2, see Definition 6.3.1.

The existence of a solution is proved through the use of Banach’s fixed point
theorem, and for that we, need an appropriate space for the solution to exist in.
In chapter 5, we had predictable solutions, but this is not as easy to achieve for
the equations we consider in this chapter, therefore, we modify the situation in
chapter 5 a little bit.

Define the space YT of processes X : [0, T ] × Ω → H3 such that

∥X∥T :=
(

sup
t∈[0,T ]

E[∥Xt∥2
H3

]
)1/2

< ∞

YT with the norm ∥ · ∥T is a Banach space. For γ ∈ R and X ∈ YT , we also
define the equivalent norms

∥X∥T,γ :=
(

sup
t∈[0,T ]

e−γtE[∥X(t)∥2
H3

]
)1/2

.

Since we will look at non-predictable solutions, in this chapter, we skip the
predictability condition in the definition of a mild solution, see 5.2.4, but retain
the other conditions. We wish to solve the following integral equation

X(t) = S(t)X0 +
∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)dY (s), (7.33)
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7.4. SPDEs driven by ambit fields

where S is the C0-semigroup generated by A. For now, also assume that σ is
predictable.

Since S is deterministic we get∫ t

0
S(t− s)dY (s) =

∫ t

0
KG(S(t− ·))(t, s)σ(s)δW̃ (s) (7.34)

+ TrH1

∫ t

0
Ds{(KG(S(t− ·))(t, s)}σ(s)ds

=
∫ t

0
KG(S(t− ·))(t, s)σ(s)dW̃ (s) (7.35)

Where the last equality follows since Kg(S)(t, s) is deterministic and hence
Ds{Kg(S)(t, s)} = 0, and the Skorohod integral and the cylindrical Itô integral
coincide. Motivated by 7.35 we will consider two cases: one where W is a
cylindrical Wiener process as in (7.35) and one where W is a square integrable
martingale with trace class covariance operator. To separate these two cases and
align ourselves with the notation of chapter 5, we denote, from now on, by M
the square integrable martingale and define H := Q1/2(H1). First, we consider
the martingale case. Let |vG|(du, ·) denote the total variation of G(du, ·).

Theorem 7.4.1 (Mild solution of ambit field driven SPDE, martingale case).
Assume on the coefficient F the assumptions of Assumption 5.2.5. Also assume
that G(du, s) has bounded total variation on [u, v] for all 0 ≤ s ≤ u ≤ v ≤ t,
and that ∫ t

0
E
[
∥σ(s)∥2

L2(H,H2)
]2
ds < ∞.

Then there exists a mild solution of (7.32), unique up to modification.

Proof. Inspecting the proof of Theorem 5.2.6 we can see that the proof holds
in this case as well as long as the stochastic integral∫ t

0
KG(S(t− ·))(t, s)σ(s)dM(s) (7.36)

is well defined and predictable.
By Corollary 4.4.6, we can see that (7.39) is well defined if the integrand is

predictable and

E

[∫ t

0
∥KG(S(t− ·))(t, s)σ(s)∥2

L2(H,H2)ds

]
< ∞.

The predictability of the integrand is clear since KG(S)(t, s) is deterministic
and σ is predictable by assumption.

Now by (i) in Theorem 5.2.3 we have

∥S(t)∥L(H2) = sup
∥h2∥H2 ≤1

∥S(t)h2∥H2 ≤ sup
∥h2∥H2 ≤1

eβtM∥h2∥H2 = eβtM.

And by the elementary inequality 2.3.1 we have
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∥KG(S(t− ·))(t, s)σ(s)∥2
L2(H,H2)

=
∥∥∥∥(S(t− s)G(t, s) +

∫ t

s

(S(t− u) − S(t− s))G(du, s)
)
σ(s)

∥∥∥∥2

L2(H,H2)

≤ 3∥S(t− s)G(t, s)σ(s)∥2
L2(H,H2) + 3

∥∥∥∫ t

s

S(t− u)G(du, s)σ(s)
∥∥∥2

L2(H,H2)

+ 3
∥∥∥∫ t

s

S(t− s)G(du, s)σ(s)
∥∥∥2

L2(H,H2)

As usual, we consider these three terms separately, beginning with the first. For
all three terms we apply the inequalities of Proposition 4.1.3.

∥S(t− s)G(t, s)σ(s)∥2
L2(H,H2) ≤ M2e2β(t−s)∥G(t, s)∥2

L(H2)∥σ(s)∥2
L2(H,H2)

≤ M2e2βt∥G(t, s)∥2
L(H2)∥σ(s)∥2

L(H,H2).

For the second term we use the inequality on page 209 of [Din00] to get

∥∥∥ ∫ t

s

S(t− u)G(du, s)σ(s)
∥∥∥2

L2(H,H2)

≤
∥∥∥∫ t

s

S(t− u)G(du, s)
∥∥∥2

L(H2)
∥σ(s)∥2

L2(H,H2)

≤
(∫ t

s

∥S(t− u)∥L(H2)|vG|(du, s)
)2

∥σ(s)∥2
L(H,H2)

≤
(∫ t

s

Meβt|vG|(du, s)
)2

∥σ(s)∥2
L(H,H2)

≤ M2e2βt(|vG|(t− s, s))2∥σ(s)∥2
L(H,H2).

The last term follows in a similar way

∥∥∥∫ t

s

S(t− s)|vG|(du, s)σ(s)
∥∥∥2

L2(H,H2)

≤ M2e2βt(|vG|(t− s, s))2∥σ(s)∥2
L(H,H2)

Then

E

[∫ t

0
∥KG(S(t− ·))(t, s)σ(s)∥2

L2(H,H2)ds

]

≤ 3M2e2βt
∫ t

0
E
[
∥σ(s)∥2

L(H,H2)
](

∥G(t, s)∥L(H2) + 2
[
|vG|(t− s, s)

]2)
ds

≤ 3M2e2βt
∫ t

0
E
[
∥σ(s)∥2

L(H,H2)
]
ds
(

sup
0≤s<t≤T

∥G(t, s)∥L(H2)

+ 2
(

sup
0≤s≤t≤T

|vG|(t, s)
)2
)
< ∞,
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where sup0≤s≤t≤T ∥G(t, s)∥L(H2) < ∞ by Definition 6.3.1, and
sup0≤s≤t≤T |vG|(t, s) < ∞ by assumption.

Hence, we conclude that the integral 7.36 is well defined, and by 5.2.6, there
exists a mild solution to (7.32), which is unique up to modification. ■

The case where the noise term is driven by a cylindrical Wiener process
is very similar, but we can let the drift coefficient be time-dependent, that is,
F : [0, T ] ×H2 → H2.

Theorem 7.4.2 (Mild solution of ambit field driven SPDE, cBm case). Assume
on the coefficient F the assumptions of Assumption 5.2.11. Also assume that
G(du, s) has bounded variation on [u, v] for all 0 ≤ s ≤ u ≤ v ≤ t, and that∫ t

0
E
[
∥σ(s)∥2

L2(H1,H2)
]2
ds < ∞.

Then there exist a mild solution of (7.32), unique up to modification.

Proof. An inspection of the proof of Theorem 5.2.12 reveals that we only need
to show that the stochastic integral with respect to a cylindrical Wiener process
is well-defined. This follows by the exact same estimation as for Theorem 7.4.1,
but this time Q = I and H = H1. ■

As before, I have, for simplicity, chosen to follow the assumptions of the
referenced results, but it is probably possible to work under slightly different
assumptions.

Nonlinear noise coefficient

Now we generalize the above results to account for the case of a nonlinear noise
coefficient, as in the real-valued case this comes at a cost.

Let H1, H2, H3 denote separable Hilbert spaces, and let b : H3 → H3 and
c : H3 → L(H2, H3). The equation under consideration is the following

dXt = AX(t)dt+ b(X(t))dt+ c(X(t))dY (t), (7.37)

where A is a possibly unbounded operator on H3, and σ is no longer assumed
to be predictable.

We will again look at mild solutions, and in this case that means we must
solve the integral equation

X(t) = S(t)X0 +
∫ t

0
S(t− s)b(X(s)) +

∫ t

0
S(t− s)c(Xs)dY (s). (7.38)

Note that by Definition 6.3.1, we have

sup
0≤s≤t

∥σ(s)∥L(H1,H2) ≤ Mσ < ∞

sup
0≤s≤u≤T

∥G(u, s)∥L(H2) ≤ MG < ∞,

where Mσ and MG are constants. This will be of use to us in the proof of the
next theorem.
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Theorem 7.4.3 (Mild solution of nonlinear ambit field driven SPDE). Consider
the equation (7.37). On the coefficients assume the following

i) There is a function β : (0,∞) → (0,∞) satisfying
∫ T

0 β(s)ds < ∞ for all
T < ∞, such that for all T ≥ t > 0, x, y ∈ H3

|S(t)b(x)|H3 ≤ β(t)(1 + |x|H3),
|S(t)(b(x) − b(y))|H3 ≤ β(t)|x− y|H3

ii) There is a function ζ : (0,∞) → (0,∞) satisfying
∫ T

0 ζ2(s)ds < ∞ for all
T < ∞, such that, for all T ≥ t > 0 and x, y ∈ H3,

∥S(t)c(x)∥L2(H2,H3) ≤ ζ(t)(1 + |x|H3),
∥S(t)(c(x) − c(y))∥L2(H2,H3) ≤ ζ(t)|x− y|H3

iii) There is a function α : (0,∞) → (0,∞) satisfying
∫ T

0 α2(s)ds < ∞ for all
T < ∞, such that, for all T ≥ s, t > 0 and x, y ∈ L2(H2, H3),

∥S(t)Ds{c(x)}∥L2(H1,L2(H2,H3)) ≤ α(t)(1 + |x|H3),
∥S(t)Ds{c(x) − c(y)}∥L2(H1,L2(H2,H3)) ≤ α(t)∥x− y∥H3 .

Furthermore, we assume that the kernel function G is Fréchet differentiable
in the first variable with derivative denoted by dG(u,s)

du for any 0 ≤ s < u ≤ T .
Lastly, we assume the norm conditions

sup
0≤s≤t

∥Drσ(s)∥L2(H1,L2(H1,H2) ≤ M ′
σ < ∞, r ∈ [0, T ]

sup
0≤s≤u≤T

∥∂G(u, s)
∂u

∥L(H2) ≤ M ′
G < ∞,

where M ′
σ and M ′

G are constants. Then there exists a solution in the space YT
which is unique up to modification.

Proof. Firstly, by equation (3.7) in [BS16] we get

E

[∥∥∥∥ ∫ t

0
S(t− s)c(X(s))dY (s)

∥∥∥∥2

H3

]
≤ 2E

[∥∥∥∥KG(S(t− ·)c(X(·)))(t, s)σ(s)δW̃ (s)
∥∥∥∥2

H3

]
+ 2TE

[ ∫ t

0
∥TrH1Ds

{
KG(S(t− ·)c(X(·)))(t, s)

}
σ(s)∥2

H3
ds

]
≤ CT

∥∥KG(S(t− ·)c(X(·)))(t, ·)σ(·)
∥∥
L1,2(L2(H1,H3))

= CT

∫ t

0
E
[∥∥KG(S(t− ·)c(X(·)))(t, s)σ(s)

∥∥2
L2(H1,H3)

]
ds

+ CT

∫ t

0

∫ t

0
E
[∥∥Dr

{
KG(S(t− ·)c(X(·)))(t, s)σ(s)

}∥∥2
L2(H1,L2(H1,H3))

]
drds.
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We now consider the second term above. By the product rule 4.5.5 we have

Dr

{
KG(S(t− ·)c(X(·))(t, s)σ(s)

}
= Dr{KG(S(t− ·)c(X(·)))(t, s)}σ(s) +KG(S(t− ·)c(X(·)))(t, s)Dr{σ(s)}.

This gives∥∥Dr

{
KG(S(t− ·)c(X(·)))(t, s)σ(s)

}∥∥
L2(H1,L2(H1,H3))

≤
∥∥Dr

{
KG(S(t− ·)c(X(·)))(t, s)

}
σ(s)

∥∥
L2(H1,L2(H1,H3))

+
∥∥KG(S(t− ·)c(X(·)))(t, s)Dr{σ(s)}

∥∥
L2(H1,L2(H1,H3)).

And by using the inequalities in 4.1.3 we have∥∥KG(S(t− ·)c(X(·)))(t, s)Dr{σ(s)}
∥∥
L2(H1,L2(H1,H3))

≤ ∥KG(S(t− ·)c(X(·)))(t, s)∥L(H2,H3)∥Drσ(s)
∥∥
L2(H1,L2(H1,H2))

≤ ∥KG(S(t− ·)c(X(·)))(t, s)∥L2(H2,H3)M
′
σ.

Similarly, ∥∥Dr{KG(S(t− ·)c(·, X(·)))(t, s)}σ(s)
∥∥
L2(H1,L2(H1,H3))

≤ ∥DrKG(S(t− ·)c(·, X(·)))(t, s)∥L2(H1,L2(H2,H3))Mσ.

This will simplify our estimations, as we shall soon see.
To save space, we occasionally write L2,3

HS := L2(H1, L2(H2, H3)). Applying
the above inequalities results in

CT

∫ t

0
E
[∥∥KG(S(t− ·)c(X(·)))(t, s)σ(s)

∥∥2
L2(H1,H3)

]
ds

+ CT

∫ t

0

∫ t

0
E
[∥∥Dr

{
KG(S(t− ·)c(X(·)))(t, s)σ(s)

}∥∥2
L2(H1,L2(H1,H3))

]
drds

≤ CTMσ

∫ t

0
E
[∥∥KG(S(t− ·)c(X(·)))(t, s)∥2

L2(H2,H3)

]
ds

+ 2CTMσ

∫ t

0

∫ t

0
E
[∥∥DrKG(S(t− ·)c(X(·)))(t, s)∥2

L2,3
HS

]
drds

+ 2CT tM ′
σ

∫ t

0
E
[∥∥KG(S(t− ·)c(X(·)))(t, s)∥2

L(H2,H3)

]
ds.

≤ (CTMσ + 2CTTM ′
σ)
∫ t

0
E
[∥∥KG(S(t− ·)c(X(·)))(t, s)∥2

L2(H2,H3)

]
ds

+ 2CTMσ

∫ t

0

∫ t

0
E
[∥∥DrKG(S(t− ·)c(X(·)))(t, s)∥2

L2,3
HS

]
drds

We wish to apply the Banach fixed point theorem to find a solution, that is,
for some U, V ∈ YT , we want

sup
t∈[0,T ]

e−γtE

[∥∥∥∥∫ t

0
S(t− s)b(U(s))ds+

∫ t

0
S(t− s)c(U(s))dY (s)ds
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−
∫ t

0
S(t− s)b(V (s)) −

∫ t

0
S(t− s)c(V (s))dY (s)

∥∥∥∥2

H3

]
≤ C sup

t∈[0,T ]
e−γtE

[
∥U(t) − V (t)∥2

H3

]
for some 0 < C < 1.
Expanding the operator KG coupled with the above estimates gives

sup
t∈[0,T ]

e−γtE

[∥∥∥∥∫ t

0
S(t− s)

(
b(U(s)) − b(V (s))

)
ds

+
∫ t

0
S(t− s)

(
c(U(s)) − c(V (s))

)
dY (s)

∥∥∥∥2

H3

]

≤ sup
t∈[0,T ]

e−γt

(
2E
[∥∥∥ ∫ t

0
S(t− s)

(
b(U(s)) − b(V (s))

)
ds
∥∥∥2

H3

]
(7.39)

+ 2(CTMσ + 2CTTM ′
σ)
∫ t

0
E

[∥∥∥S(t− s)(c(U(s)) − c(V (s)))G(t, s) (7.40)

+
∫ t

s

(
S(t− u)

{
c(U(u)) − c(V (u))

}
(7.41)

+ S(t− s){c(V (s)) − c(U(s))}
)
G(du, s)

∥∥∥2

L2(H2,H3)

]
ds (7.42)

+ 4CTMσ

∫ t

0

∫ t

0
E

[∥∥∥∥Dr

{
S(t− s)

(
c(U(s)) − c(V (s))

)
G(t, s)

}
ds (7.43)

+Dr

{∫ t

s

(
S(t− u)

{
c(U(u)) − c(V (u))

}
(7.44)

+ S(t− s){c(V (s)) − c(U(s))}
)
G(du, s)

}∥∥∥∥2

L2(H1,L2(H2,H3))

]
drds

)
(7.45)

As before, we will now consider each term separately.
In the following, the inequalities of Proposition 4.1.3 will be used repeatedly.

Term (7.39) gives∥∥∥∥ ∫ t

0
S(t− s)

(
b(U(s)) − b(V (s))

)
ds

∥∥∥∥2

H3

≤
(∫ t

0
β(t− s)∥U(s)) − V (s)∥H3ds

)2

≤
∫ t

0
β(t− s)ds

∫ t

0
β(t− s)∥U(s) − V (s)∥2

H3
ds

By putting c1 :=
∫ T

0 β(s)ds ≥
∫ t

0 β(t− s)ds we get
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sup
t∈[0,T ]

e−γtE

[∥∥∥∥ ∫ t

0
S(t− s)

(
b(U(s)) − b(U(s))

)
ds

∥∥∥∥2

H3

]
≤ c1 sup

t∈[0,T ]
e−γt

∫ t

0
β(t− s)E[∥U(s) − V (s)∥2

H3
]ds

≤ c1 sup
t∈[0,T ]

e−γt
∫ t

0
β(t− s)eγse−γsE[∥U(s) − V (s)∥2

H3
]ds

≤ c1∥U − V ∥2
T,γ sup

t∈[0,T ]

∫ t

0
β(t− s)e−γ(t−s)ds

≤ c1∥U − V ∥2
T,γ

∫ T

0
β(s)e−γsds

Term (7.40) gives

∫ t

0

∥∥S(t− s)
(
c(U(s)) − c(V (s))

)
G(t, s))

∥∥2
L2(H2,H3)ds

≤
∫ t

0
∥G(t, s)∥2

L(H2)
∥∥S(t− s)

(
c(U(s)) − c(V (s))

)∥∥2
L2(H2,H3)ds

≤ M2
G

∫ t

0
ζ2(t− s)∥U(s) − V (s)∥2

H3
ds

Applying the same technique as for term (7.39) we end up with

sup
t∈[0,T ]

e−γt
∫ t

0
E

[∥∥S(t− s)
(
c(U(s)) − c(V (s))G(t, s)

)∥∥2
L2(H2,H3)

]
ds

≤ ∥U − V ∥2
T,γM

2
G

∫ T

0
ζ2(s)e−γsds

For the third term (7.41)∫ t

0

∥∥∥∥∫ t

s

S(t− u){c(U(u)) − c(V (u))}G(du, s)
∥∥∥∥2

L2(H2,H3)
ds

=
∫ t

0

∥∥∥∥∫ t

s

S(t− u){c(U(u)) − c(V (u))}dG(u, s)
du

du

∥∥∥∥2

L2(H2,H3)
ds

≤
∫ t

0

(∫ t

s

∥∥∥S(t− u)
{
c(U(u)) − c(V (u))

}dG(u, s)
du

∥∥∥
L2(H2,H3)

du

)2
ds

≤ T

∫ t

0

∫ t

s

∥∥∥dG(u, s)
du

∥∥∥2

L(H2)
∥S(t− u){c(U(u)) − c(V (u))}∥2

L2(H2,H3)duds

≤ T 2(M ′
G)2

∫ t

0
ζ2(t− u)∥U(u) − V (u)}∥2

H3
du

So we have

sup
t∈[0,T ]

e−γt
∫ t

0
E

[∥∥∥∥ ∫ t

s

S(t− u){c(U(u)) − c(V (u))}G(du, s)
∥∥∥∥2

L2(H2,H3)

]
ds
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≤ ∥U − V ∥2
T,γT

2(M ′
G)2

∫ T

0
ζ2(s)e−γsds

The fourth term (7.42) is a simpler case of (7.41), we get∫ t

0

∥∥∥∥∫ t

s

S(t− s){c(V (s)) − c(U(s))}G(du, s)
∥∥∥∥2

L2(H2,H3)
ds

≤ T

∫ t

0

∫ t

s

∥∥S(t− s)
(
c(U(s)) − c(V (s))

)dG(u, s)
du

∥∥2
L2(H2,H3)duds

≤ T (M ′
G)2

∫ t

0
ζ2(t− s)∥U(s) − V (s)∥2

H3
ds

And as before this results in

sup
t∈[0,T ]

e−γt
∫ t

0
E

[∥∥∥∥∫ t−s

0
S(t− s){c(V (s)) − c(U(s))}G(du, s)

∥∥∥∥2

L2(H2,H3)

]
ds

≤ ∥U − V ∥2
T,γ(M ′

G)2
∫ T

0
ζ2(s)e−γsds

The fifth term (7.43) follows in a similar way after using the product rule 4.5.5
and assumption iv),∫ t

0

∫ t

0

∥∥∥∥Dr

{
S(t− s)

(
c(U(s)) − c(V (s))

)
G(t, s)

}∥∥∥∥2

L2,3
HS

dsdr

≤
∫ t

0

∫ t

0
∥G(t, s)∥2

L(H2)

∥∥∥∥Dr

{
S(t− s)

(
c(U(s)) − c(V (s))

)}∥∥∥∥2

L2,3
HS

dsdr

≤ M2
G

∫ t

0

∫ t

0
α2(t− s)

∥∥U(s) − V (s)
∥∥2
H3
dsdr

≤ TM2
G

∫ t

0
α2(t− s)

∥∥U(s) − V (s)
∥∥2
H3
ds.

So we get

sup
t∈[0,T ]

e−γt
∫ t

0

∫ t

0
E

[∥∥∥∥Dr

{
S(t− s)

(
c(U(s)) − c(V (s))

)
G(t, s)

}∥∥∥∥2

L2,3
HS

]
dsdr

≤ ∥U − V ∥2
T,γTM

2
G

∫ T

0
α2(s)e−γsds.

For the sixth term (7.44) we move the Malliavin derivative inside the integral
which gives
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∫ t

0

∫ t

0

∥∥∥∥Dr

[ ∫ t

s

S(t− u)
{
c(U(u)) − c(V (u))

}
G(du, s)

]∥∥∥∥2

L2,3
HS

dsdr

=
∫ t

0

∫ t

0

∥∥∥∥∫ t

s

Dr

(
S(t− u)

{
c(U(u)) − c(V (u))

})dG(u, s)
du

du

∥∥∥∥2

L2,3
HS

dsdr

≤ T

∫ t

0

∫ t

0

∫ t

s

∥∥∥∥Dr

(
S(t− u)

{
c(U(u)) − c(V (u))

})dG(u, s)
du

∥∥∥∥2

L2,3
HS

dudsdr

≤ T

∫ t

0

∫ t

0

∫ t

s

∥∥∥dG(u, s)
du

∥∥∥2

L(H2)
α2(t− u)

∥∥U(u) − V (u)
∥∥2
H3
dudsdr

≤ T 2(M ′
G)2

∫ t

0

∫ t

0
α2(t− u)

∥∥U(u) − V (u)
∥∥2
H3
duds

≤ T 3(M ′
G)2

∫ t

0
α2(t− u)

∥∥U(u) − V (u)
∥∥2
H3
du.

So we have

sup
t∈[0,T ]

e−γt
∫ t

0

∫ t

0
E

[∥∥∥∥Dr

[ ∫ t

s

S(t− u)
{
c(U(u))

− c(V (u))
}
G(du, s)

]∥∥∥∥2

L2,3
HS

]
dsdr

≤ ∥U − V ∥2
T,γT

3(M ′
G)2

∫ T

0
α2(s)e−γsds.

The seventh term (7.45) is a simpler version of (7.44)

∫ t

0

∫ t

0

∥∥∥∥Dr

[ ∫ t

s

S(t− s)
{
c(U(s)) − c(V (s))

}
G(du, s)

]∥∥∥∥2

L2,3
HS

dsdr

≤ T

∫ t

0

∫ t

0

∫ t

s

∥∥∥∥Dr

[
S(t− s)

{
c(U(s)) − c(V (s))

}]dG(u, s)
du

∥∥∥∥2

L2,3
HS

dudsdr

≤ T 2(M ′
G)2

∫ t

0

∫ t

0
α2(t− s)

∥∥U(s) − V (s)
∥∥2
H3
duds

≤ T 3(M ′
G)2

∫ t

0
α2(t− s)

∥∥U(s) − V (s)
∥∥2
H3
ds.

So we have

sup
t∈[0,T ]

e−γt
∫ t

0

∫ t

0
E

[∥∥∥∥Dr

[ ∫ t

s

S(t− s)
(
c(V (s))

− c(U(s))
)
G(du, s)

]∥∥∥∥2

L2,3
HS

]
dsdr

≤ ∥U − V ∥2
T,γT

3(M ′
G)2

∫ T

0
α2(s)e−γsds.
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Putting everything together gives

sup
t∈[0,T ]

e−γtE

[∥∥∥∥∫ t

0
S(t− s)

(
b(U(s)) − b(V (s))

)
ds

+
∫ t

0
S(t− s)

(
c(U(s)) − c(V (s))

)
dY (s)

∥∥∥∥2

H3

]
≤ Cγ∥U − V ∥T,γ

To conclude the proof, it suffices, by the Banach fixed point theorem, to choose
a γ large enough so that the constant Cγ is strictly smaller than 1. Then there
exists a solution, unique up to modification.

Lastly, by almost the exact same approach as above, but instead using the
linear growth assumption on c and the Malliavin derivative of c, we can show
that the stochastic integral in (7.38) is well-defined. ■

Note that in Theorem 5.2.6 they assume that the domain of the coefficients
is merely dense in the Hilbert space. I have chosen to skip this generalization
for the sake of simplicity and instead assume that the domain equals the Hilbert
space H3.
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CHAPTER 8

Fractional BSS processes

Where the previous chapters have focused on Lévy processes, which are
semimartingales and satisfy the property of independent increments, this chapter
will instead look at a type of processes called fractional Brownian motions
(fBm). These processes are not semimartingales, nor do they have independent
increments. This leads to complications not seen previously in this thesis. As
before, we are concerned with SDEs, but since fractional Brownian motions are
not semimartingales, even defining an integral of the form∫ t

0
a(s)dBH(s), (8.1)

where BH denotes a fractional Brownian motion, is not so easy, the very general
theory developed in [Pro10] will, for instance, not work. Therefore, there are
many ways of defining integrals of the form (8.1). We will limit ourselves to
three of these different ways and refer to [Mis08] or [Bia+08] for a treatment
of more of these alternatives. As usual, and whenever relevant, we work in a
complete probability space (Ω,F , P ). The fBm is defined as follows.

Definition 8.0.1 (fractional Brownian motion, [Bia+08]). Let H be a constant in
(0, 1). A fractional Brownian motion {BHt }t≥0 of Hurst index H is a continuous
and centered Gaussian process with covariance function

E[BHt BHs ] = 1
2(t2H + s2H − |t− s|2H).

For H = 1/2, the fBm is then a standard Brownian motion. By the above
properties, the following properties can be deduced

1. BH0 = 0 and E[BHt ] = 0 for all t ≥ 0.

2. BH has stationary increments, i.e., BHt+s −BHs has the same law as BHt
for s, t ≥ 0.

3. BH is a Gaussian process and E
[
(BHt )2] = t2H , t ≥ 0.

4. BH has continuous trajectories (by Kolmogorov’s theorem).

Since Brownian motions are also fractional Brownian motions with H = 1/2
it makes sense that fBms with H ∈ (0, 1/2) and fBms with H ∈ (1/2, 1) are,
in a sense, two different types of processes, that need to be treated separately.
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This turns out to be the case rather often, our focus is therefore targeted on
fBms with Hurst parameter H ∈ (1/2, 1), as these are the more well behaved
of the two. From a visual point of view, one could say that the trajectories of
fBms with H ∈ (1/2, 1) are less "spiky" than those of fBms with H ∈ (0, 1/2).

In this chapter we will consider the following SDE

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
g(t− s)σ(s)dBH(s), (8.2)

where X0 is a random variable with values in R. Before we can consider existence
and uniqueness of a solution to (8.2) we must define the stochastic integral

Yt :=
∫ t

0
g(t− s)σ(s)dBH(s),

where g and σ are defined as in 6.1.5. As we shall see, depending on the
definition we must impose further restrictions on g and σ. We will call {Yt}t
a fractional Brownian semistationary (fBSS) process. The ways in which we
define this process is, to my knowledge, new, the closest thing I have found is a
PhD thesis [Ori15], but their definition is different.

In all three of the following sections we will need what is known as Riemann-
Liouville integrals, they are closely connected with fractional Brownian motions
as we shall see below. When considering the pathwise case we also need
Riemann-Liouville derivatives and we therefore end this "zeroth" section with
these definitions.

Definition 8.0.2 (Riemann-Liouville integral, [NR02], [Bia+08], [Mis08]). Let f
be a deterministic real-valued function that belongs to L1(a, b), where (a, b) is
a finite interval of R. The fractional Riemann Liouville integrals of order α > 0
are determined at almost every x ∈ (a, b) and defined as the

1. Left-sided version:

(Iαa+f)(x) := 1
Γ(α)

∫ x

a

(x− y)α−1f(y)dy.

2. Right-sided version:

(Iαb−f)(x) := 1
Γ(α)

∫ b

x

(y − x)α−1f(y)dy.

Where Γ(α) =
∫∞

0 sα−1e−sds denotes the Gamma (or Euler) function. The
Riemann–Liouville fractional integrals on R are defined as

(Iα+f)(x) := 1
Γ(α)

∫ x

−∞
(x− y)α−1f(y)dy

and

(Iα−f)(x) := 1
Γ(α)

∫ ∞

x

(y − x)α−1f(y)dy

respectively.
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8.1. Wiener integrals

The Riemann-Liouville derivative is now defined, and rather naturally
considering the name, it is closely linked to the Riemann-Liouville integral.

Definition 8.0.3 (Riemann-Liouville derivative, [NR02], [Bia+08]). Consider
α < 1. We define the fractional Liouville derivatives as

Dα
a+f := d

dx
I1−α
a+ f

and
Dα
b−f := d

dx
I1−α
b− f

These definitions imply that for any f ∈ L1(a, b)

Dα
a+I

α
a+f = f, Dα

b−I
α
b−f = f.

The opposite order of operations gives the same result for a slightly smaller
class of functions.

Definition 8.0.4 (Weyl representation, [NR02], [Bia+08]). We denote by
Iαa+(Lp(a, b)) [respectively, Iαb−(Lp(a, b))] the family of functions f that can
be represented as an Iαa+-integral (respectively, Iαb−-integral) of some function
ϕ ∈ Lp(a, b), p ≥ 1. Such ϕ is unique (in Lp sense) and coincides with Dα

a+f
(respectively, with Dα

b−f). In particular we denote by Iαa+ (respectively, Iαb−) the
map from Lp(a, b) into Iαa+(Lp(a, b)) [respectively, Iαb−(Lp(a, b))]. This means
that if f ∈ Iαa+(Lp(a, b)), we have

Iαa+D
α
a+f = f,

and if f ∈ Iαb−(Lp(a, b)), we have

Iαb−D
α
b−f = f.

Moreover, given f ∈ Lp(a, b) the following Weyl representation holds:

Dα
a+f(x) = 1

Γ(1 − α)

[
f(x)

(x− a)α + α

∫ x

a

f(x) − f(y)
(x− y)α−1 dy

]
,

and
Dα
b−f(x) = 1

Γ(1 − α)

[
f(x)

(b− x)α + α

∫ x

a

f(x) − f(y)
(y − x)α−1 dy

]
for almost every x ∈ (a, b). The convergence of the integrals at the singularity
y = x holds pointwise for almost every x ∈ (a, b) and moreover in Lp sense if
1 < p < ∞.

8.1 Wiener integrals

The first definition of (8.1) that will be looked at is the definition through
Wiener integrals. This is the simplest definition we consider, but it only allows
for deterministic integrands, hence we set σ = 1.

In [Mis08] they consider a two-sided fBm, that is, a process {B̄Ht }t∈R with
the same properties as in 8.0.1. Furthermore, for α = H − 1/2, they define the
operator

MH
± f :=

{
CHI

α
±f, H ∈ (0, 1/2) ∪ (1/2, 1),

f, H = 1/2,
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8.1. Wiener integrals

where,

CH := Γ(H + 1)(2H sin(πH)Γ(2H))1/2

Γ(H + 1/2) .

They also define the space L2
H(R) := {f : MH

− f ∈ L2(R)} equipped with the
norm ∥f∥L2

H
(R) = ∥MH

− f∥L2(R). As mentioned, the fBm is closely linked with
Riemann-Louiville integrals and we have the following explicit relationship for
any two-sided fBm B̄H (see [Mis08])

B̄Ht =
∫
R
(MH

− χD(0,t))(s)dB̄(s) (8.3)

where {B̄s}s∈R denotes a two-sided standard Brownian motion, and

χD(a,b)(t) =


1, a ≤ t < b

−1, b ≤ t < a

0, otherwise.

The general definition of Wiener integrals w.r.t. fBms now follow.

Definition 8.1.1 (Wiener integral w.r.t. fBm, [Mis08]). Let f ∈ L2
H(R). Then

the Wiener integral w.r.t. fBm is defined as∫
R
f(s)dB̄H(s) :=

∫
R
(MH

− f)(s)dB̄(s),

where B̄H and B̄ are connected as in (8.3)

This integral is, of course, linear, it is also a centered Gaussian random
variable, see Lemma 3.1.3 in [Bia+08].

With the above definition at hand we can define the fractional Brownian
"semistationary" process via Wiener integrals. The quotation marks are used
to indicate that the term semistationary is not really appropriate when the
stochastic volatility σ is deterministic, see Remark 5 on page 23 in [BBV18].
Note also that∫

R
(MH

− fχ(0,t))(s)dB̄(s) =
∫
R

∫ ∞

s

(r − s)α−1f(r)χ(0,t)(r)drdB̄(s)∫ t

0

∫ t

s

(r − s)α−1f(r)drdB̄(s),

where we have omitted writing the constant CH from the definition MH
− , and

1/Γ(α) from the definition of the Riemann-Liouville integral.

Definition 8.1.2 (fBSS process via Wiener integrals). Let g ∈ L2
H(R). Then we

define the fractional Brownian "semistationary" process {Yt}t by

Yt =
∫ t

0
g(t− s)dBH(s) =

∫
R
(MH

− g(t− ·)χ[0,t))(s)dB̄(s),

where we only care about the case where H ∈ (1/2, 1).
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8.1. Wiener integrals

For H ∈ (1/2, 1), denote by L2
H2

([0, T ]) the space of functions ϕ satisfying∫ T

0

∫ T

0
ϕ(s)ϕ(t)|s− t|2H−2dsdt < ∞.

Using the following equality of [MMV01]

E

[ ∫ T

0
f(s)dBH(s)

∫ T

0
g(s)dBH(s)

]
= H(2H − 1)

∫ T

0

∫ T

0
f(s)g(t)|s− t|2H−2dsdt, f, g ∈ L2

H2
([0, T ]) (8.4)

we can compute the autocovariance of an fBSS process.

Proposition 8.1.3 (Autocovariance of fBSS processes). Let g(t−·) ∈ L2
H2

([0, T ]),
and let X be an fBSS process. Then the autocovariance of X is given by

Cov(X(t+ s), X(t))

= H(2H − 1)
∫ t

0

∫ t+h

0
g(t+ h− s)g(t− u)|h− s+ u|2H−2dsdu

Proof. By equality (8.4) we have

Cov(X(t + s), X(t)) = E[X(t + s)X(t)] − E[X(t + s)]E[X(t)]

= E

[∫ t+h

0
g(t + h − s)dBH(s)

∫ t

0
g(t − u)dBH(u)

]
= E

[∫ t+h

0
g(t + h − s)dBH(s)

∫ t+h

0
χ[0,t](u)g(t − u)dBH(u)

]
= H(2H − 1)

∫ t+h

0

∫ t+h

0
g(t + h − s)χ[0,t](u)g(t − u)|t + h − s − (t − u)|2H−2duds

= H(2H − 1)
∫ t+h

0

∫ t

0
g(t + h − s)g(t − u)|h − s + u)|2H−2duds,

where the second equality follows by the fact that the expectation of fBSS
processes are 0. ■

The process defined above admits a continuous modification under suitable
conditions on g, but first we need a moment estimate on the Wiener integrals.

Theorem 8.1.4 (Moment estimate for Wiener integrals, [Mis08]). Let f ∈
L1/H [a, b] and f = 0 outside (a, b), for 0 ≤ a < b < ∞. Then we obtain the
following estimates: for any r > 0, there exists a constant c(H, r), such that
for H ∈ (1/2, 1), it holds that

E

[∣∣∣ ∫ b

a

f(s)dBHs
∣∣∣r] ≤ c(H, r)∥f∥rL1/H [a,b]

With the help of this estimate we can prove the existence of a continuous
modification of an fBSS process.
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8.1. Wiener integrals

Theorem 8.1.5 (Continuous modification of fBSS process). Let Y (t) =
∫ t

0 g(t−
s)dBH(s) be defined as above. Assume that∫ t

0
|g(t− s)|rds < ∞ (8.5)

and that g is Hölder continuous with exponent α = H − 1/r, where r > 4 is
even.

Proof. First, we apply inequality 2.3.1 in a similar way as in Theorem 6.1.9 to
get

|Y (t) − Y (s)|r
]

=
∣∣∣ ∫ t

0
g(t− s)dBHs +

∫ u

0
g(u− s)dBHs

∣∣∣r
≤ C

∣∣∣ ∫ u

0
g(t− s) − g(u− s)dBHs

∣∣∣r + C
∣∣∣ ∫ t

u

g(t− s)dBHs
∣∣∣r.

Note that the assumption that r is even is necessary for the application of 2.3.1.
Now, (8.5) implies that g(t− ·) ∈ L1/H [u, t] since r > 1/H, so we can apply

Theorem 8.1.4 and Hölder’s inequality on the second term to get

E

[∣∣∣ ∫ t

u

g(t− s)dBHs
∣∣∣r] ≤ c(H, r)∥g(t− ·)∥rL1/H (u,t)

= c(H, r)
(∫ t

u

|g(t− s)|1/Hds
)r·H

≤

((∫ t

u

|g(t− s)|1/H·rHds
) 1

rH
(∫ t

u

1
1

1− 1
rH ds

)1− 1
rH

)rH

= c(H, r)
(∫ t

u

|g(t− s)|rds
)(∫ t

u

ds
)rH−1

= (t− u)rH−1c(H, r)
∫ t

u

|g(t− s)|rds

Estimating the first term with α = H − 1/r gives

E

[∣∣∣ ∫ u

0
(g(t− s) − g(u− s))dBHs

∣∣∣r] ≤ c(H, r)∥g(t− ·) − g(u− ·)∥rL1/H (0,u)

= c(H, r)
(∫ u

0
|g(t− s) − g(u− s)|1/Hds

)r·H

≤ c(H, r)
(∫ u

0
|(t− s) − (u− s)|α/Hds

)r·H

= (t− u)rαE
[∣∣∣ ∫ u

0
ds
∣∣∣rH] = (t− u)rH−1 · urH ≤ (t− u)rH−1 · THr

Where C depends on H and r. Putting everything together gives
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8.2. Pathwise integrals

E[|Y (t) − Y (u)|r] ≤ (t− u)rH−1
(
CTHr + c(H, r)

∫ t

u

|g(t− s)|rds
)
.

Since r > 4, we have that rH−1 > 1, which allows us to apply Kolmogorov’s
theorem 2.3.3 and conclude that Y does have a continuous modification.

Note also that the above application of Hölder’s inequality is legitimate with
the assumption that r > 4, since that ensures rH > 1, which again implies
1/rH < 1, 1 − 1/rH > 0 and 1/(1 − 1/rH) > 1. ■

Applying the above theorem we can proceed in the same fashion as in 7.2.15
to find a solution to (8.2).

Theorem 8.1.6. Let Y be a fBSS process as defined in 8.1.2 and assume
the conditions of Theorem 8.1.5. Then there exists a unique solution, up
to indistinguishability, to equation (8.2) (with σ = 1).

Proof. The existence follows immediately by Theorem 5.1.12 since Y has
continuous sample paths under the conditions of Theorem 8.1.5, and the
uniqueness follows by Theorem 5.1.2 ■

8.2 Pathwise integrals

In this section we will look at the same SDE, but this time the noise term is
defined as a pathwise integral instead of a Wiener integral. The goal is hence
to define the integral

∫ t
0 g(t− s)σ(s)dBHs pathwise. The construction follows

[NR02] and it begins by defining a generalized fractional Lebesgue-Stieltjes
integral. But first we need the preliminary definition of what [Bia+08] terms
"corrected" functions.

Definition 8.2.1 (Corrected functions, [Bia+08]).

fa+(x) := χ(a,b)(f(x) − f(a+)),
fb−(x) := χ(a,b)(f(x) − f(b−)),

provided that f(a+) := limx→a+ f(x) and f(b−) := limx→b− f(x) exist.

fa+(x) := χ(a,b)(f(x) − f(a+)),
fb−(x) := χ(a,b)(f(x) − f(b−)),

Then we can define the generalized Lebesgue-Stieltjes integral.

Definition 8.2.2 (Generalized Lebesgue-Stieltjes integral, [NR02]). Suppose that
f and g are functions such that f(a+), g(a+) and g(b−) exist, fa+ ∈ Iaα+(Lp)
and gb− ∈ I1−α

b− (Lq) for some p, q ≥ 1, 1/p + 1/q ≤ 1, 0 < α < 1. Then the
generalized Lebesgue-Stieltjes integral of f with respect to g is defined by∫ b

a

fdg =
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x)dx+ f(a+)(g(b−) − g(a+)). (8.6)
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8.2. Pathwise integrals

Remark 8.2.3 ([NR02]). If αp < 1, under the assumptions of the preceding
definition we have f ∈ Iαa+(Lp), and (8.6) can be rewritten as∫ b

a

fdg =
∫ b

a

Dα
a+f(x)D1−α

b− gb−(x)dx

which is determined for general functions f ∈ Iαa+(Lp) and gb− ∈ I1−α
b− (Lq).

The following is gathered from appendix D.2 in [Bia+08]. In the following
let 1/2 < H < 1, 1 − H < α < 1/2. Denote by Wα,∞

0 (0, T ) the space of
measurable functions f : [0, T ] → R such that

∥f∥α,∞ := sup
t∈[0,T ]

(
|f(t)| +

∫ t

0

|f(t) − f(s)|
(t− s)α+1 ds

)
< ∞.

For any 0 < λ ≤ 1, denote by Cλ(0, T ) the space of λ-Hölder continuous
functions f : [0, T ] → R, equipped with the norm

∥f∥λ := ∥f∥∞ + sup
0≤s<t≤T

|f(t) − f(s)|
(t− s)λ < ∞

where ∥f∥∞ := supt∈[0,T ] |f(t)|. We have, for all 0 < ϵ < α

Cα+ϵ(0, T ) ⊂ Wα,∞
0 (0, T ) ⊂ Cα−ϵ(0, T ).

Moreover, let W 1−α,∞
T (0, T ) be the space of measurable functions g : [0, T ] → R

satisfying

∥g∥1−α,∞ := sup
0<s<t<T

(
|g(t) − g(s)|
(t− s)1−α +

∫ t

s

|g(y) − g(s)|
(y − s)2−α dy

)
< ∞.

Then, for all 0 < ϵ < α,

C1−α+ϵ(0, T ) ⊂ W 1−α,∞
T (0, T ) ⊂ C1−α(0, T ).

Finally, we define the space Wα,1
0 (0, T ) of measurable functions h : [0, T ] → R

such that

∥h∥α,1 :=
∫ T

0

|h(t)|
tα

dt+
∫ T

0

∫ t

0

|h(y) − h(t)|
(t− y)α+1 dydt < ∞.

If g ∈ W 1−α,∞
T (0, T ) and h ∈ Wα,1

0 (0, T ), then the generalized Stieltjes integral∫ t
0 hdg exists for all t ∈ [0, T ]. We can now define the pathwise stochastic

integral.

Definition 8.2.4 (Pathwise stochastic integral, [NR02]). Let u = {ut}t∈[0,T ] be
a stochastic process whose trajectories belong to the space Wα,1

0 (0, T ), with
1 −H < α < 1/2, then the pathwise integral∫ t

0
u(s)dBHs

exists in the sense of 8.2.2
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In light of the preceding definitions and discussions on fractional Lebesgue-
Stieltjes integration we can define the fractional Brownian semistationary process
through pathwise integration.

Definition 8.2.5 (Pathwise fractional Brownian semistationary process). Fix
t ∈ [0, T ] and assume the trajectories of s 7→ g(t − s)σ(s) is in Wα,1

0 (0, T ),
with 1 −H < α < 1/2. Then we can define the pathwise fractional Brownian
semistationary integral as ∫ t

0
g(t− s)σ(s)dBHs ,

in the sense of Definition 8.2.2

Now that we know that the stochastic integral in (8.2) is well-defined, with
typical assumptions on the drift coefficient we can find a unique solution to
(8.2).

Theorem 8.2.6 (Existence and uniqueness of pathwise integral driven fBSS
process). Consider the SDE with fBm BHt , H ∈ (1/2, 1):

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
g(t− s)σ(s)dBHs , t ∈ [0, T ],

where the stochastic integral is defined as in Definition 8.2.5. Furthermore, we
assume that the coefficient b satisfies the following local Lipschitz property and
growth assumption,

i) for every N ≥ 0 there exists LN > 0 such that

|b(t, x) − b(t, y)| ≤ LN |x− y|, ∀|x|, |y| ≤ N, ∀t ∈ [0, T ],

ii) there exists b0 ∈ Lp(0, T ), where p ≥ 1/α and α ∈ (1 −H, 1/2), such that

|b(t, x)| ≤ L0|x| + b0(t), ∀x ∈ R,∀t ∈ [0, T ].

Then there exists a unique solution, up to modification, of (8.2) belonging to
the space L0(Ω,F , P ;Wα,∞(0, T )).

Proof. Define A : Wα,∞
0 (0, T ) → C1−α(0, T ) ⊂ Wα,∞

0 (0, T ) by

AXt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
g(t− s)σ(s)dBHs .

We then get

AXt −AYt =
∫ t

0

(
b(s,Xs) − b(s, Ys)

)
ds

and we can apply Theorem 2.1 in [NR02] to conclude that a solution, unique
up to modification, exists. ■
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8.3. Skorohod integrals

8.3 Skorohod integrals

Finally, in this chapter we introduce fBSS processes defined through the
Skorohod integral, this is an extension of the Wiener integral in section 8.1,
as the two integrals will coincide whenever the integrand is deterministic.
Using this definition we also attempt to define integrals with respect to fBSS
processes. This is meant as a fluid transition into the final chapter where we
make suggestions to further work. Before we get to these considerations we
need the definition of a Skorohod integral with respect to a fBm.

Recall the notation of section 8.1, in particular, that B̄H denotes a two-sided
fBm.

Definition 8.3.1 (Skorohod integral w.r.t. fBm, [Mis08]). Let the stochastic
process X = {Xt}t be such that (MH

− X) exists and belongs to Dom(δ). Then
we define the Skorohod integral with respect to the fBm B̄H as∫

R
XtδB̄

H(t) :=
∫
R
(MH

− X)(t)δB̄(t)

for the underlying two-sided Brownian motion B̄.

As in section 8.1, we are only interested in the definition on R+, so from
now on we can let B be the one-sided Brownian motion derived from B̄.

Definition 8.3.2 (fBSS process via Skorohod integral). Let the the kernel
function g and the volatility σ be such that s 7→ (MH

− g(t− ·)σχ[0,t])(s) exists
and belongs to Dom(δ), for all 0 ≤ s ≤ t. Then we define the fractional
semistationary process X = {Xt}t by

X(t) =
∫ t

0
g(t− s)σ(s)δBH(s) :=

∫
R
(MH

− g(t− ·)σχ[0,t))(s)δB̄(s)

=
∫ t

0
(MH

− g(t− ·)σ)(s)δB(s).

Considering the above definition and comparing it to Definition 6.1.5, one
might wonder what happens if we try to integrate against a fBSS process. In
the following, we give one possible answer to this question, it is heavily inspired
by the heuristic derivation of the integral with respect to an VMBV process
that begins on page 118 in [BBV18], we follow in their path as far as possible.
This calculation must also be considered purely heuristic, that is, we assume
the computational steps are valid.

Let X be defined as in Definition 8.3.2, and let the process Y have
differentiable paths. Then, from page 118-119 in [BBV18] we get,∫ t

0
Y (s)dX(s) = Y (t)X(t) −

∫ t

0

∫ s

0
Y ′(s)(MH

− g(s− ·)σ)(u)δB(u)ds

−
∫ t

0

∫ s

0
Du{Y ′(s)}(MH

− g(s− ·)σ)(u)duds.

From here on, we can no longer follow [BBV18] directly, but after applying
both the regular Fubini theorem and the Fubini theorem for Skorohod integrals
we end up with something quite similar. For simplicity, we omit writing 1/Γ(α)
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8.3. Skorohod integrals

from the definition of the Riemann-Liouville integral, and CH from the definition
of MH

− , this practice is continued throughout the rest of this section whenever
we do calculations involving MH

− . Considering first the second term in the
above equality, we have∫ t

0

∫ s

0
Y ′(s)(MH

− g(s− ·)σ)(u)δB(u)ds

=
∫ t

0

∫ t

u

Y ′(s)
∫ s

u

g(s− r)σ(r)(r − u)α−1drdsδB(u)

=
∫ t

0

∫ t

u

∫ t

r

Y ′(s)g(s− r)σ(r)(r − u)α−1dsdrδB(u)

=
∫ t

0

∫ t

u

∫ t

r

Y ′(s)g(s− r)dsσ(r)(r − u)α−1drδB(u)

Similarly, ∫ t

0

∫ s

0
Du{Y ′(s)}(MH

− g(s− ·)σ)(u)duds∫ t

0

∫ t

u

∫ t

r

Du{Y ′(s)}g(s− r)dsσ(r)(r − u)α−1drdu∫ t

0

∫ t

u

Du

{∫ t

r

Y ′(s)g(s− r)ds
}
σ(r)(r − u)α−1drdu

On the first term we can apply the integration by parts formula 3.1.19, which
yields

Y (t)X(t) = Y (t)
∫ t

0
(MH

− g(t− ·)σ)(u)δB(u)

=
∫ t

0
Y (t)(MH

− g(t− ·)σ)(u)δB(u) +
∫ t

0
Du{Y (t)}(MH

− g(t− ·)σ)(u)du

=
∫ t

0

∫ t

u

Y (t)g(t− r)σ(r)(r − u)α−1drδB(u)

+
∫ t

0

∫ t

u

Du{Y (t)}g(t− r)σ(r)(r − u)α−1drdu

Summing up,∫ t

0
Y (s)dX(s)

=
∫ t

0

∫ t

u

[
Y (t)g(t− r) −

∫ t

r

Y ′(s)g(s− r)ds
]
σ(r)(r − u)α−1drδB(u)

+
∫ t

0

∫ t

u

Du

{
Y (t)g(t− r) −

∫ t

r

Y ′(s)g(s− r)ds
}
σ(r)(r − u)α−1drdu.

From page 119 in [BBV18] we have

Y (t)g(t− r) −
∫ t

r

Y ′(s)g(s− r)ds
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= Y (t)g(t− r) −
∫ t

r

(Y (s) − Y (r))∂g(s− r)
∂s

ds.

Hence, we actually end up with the same operator Kg as before,

Kg(Y )(t, s) = Y (s)g(t− s) +
∫ t

s

(Y (u) − Y (s))g(du).

Formally, we define integrals with respect to fBSS process as follows.

Definition 8.3.3 (Integral w.r.t. a fBSS process). Suppose that for s ∈ R+ the
mapping t 7→ G(t, s) is of bounded variation on [u, v] for all 0 ≤ s < u < v < ∞.
Assume that the stochastic process Y (s) on 0 ≤ s ≤ t for fixed t > 0 satisfies
the following conditions:

1. For s ∈ [0, t], the process u 7→ (Y (u) − Y (s)), s ≤ u ≤ t, is integrable
with respect to g(du) a.s.

2. The mapping

s 7→ Kg(Y )(t, s)σ(s)(s− r)α−1

is Lebesgue integrable on [0, t].

3. The mapping

r 7→
∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1ds

is Skorohod integrable.

4. KG(Y )(t, s) is Malliavin differentiable for s ∈ [0, t], with

s 7→ Dr{Kg(Y )(t, s)}σ(s)(s− r)α−1

being Lebesgue integrable on [0, t].

5. The mapping

r 7→
∫ t

r

Dr{Kg(Y )(t, s)}σ(s)(s− r)α−1ds

is Lebesgue integrable on [0, t].

Then, we define the integral with respect to a fBSS process in the following way∫ t

0
Y (s)dX(s) = CH

Γ(α)

(∫ t

0

∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1dsδB(r)

+
∫ t

0

∫ t

r

Dr{Kg(Y )(t, s)}σ(s)(s− r)α−1dsdr
)
,

and say that Y is F(0, t)-integrable.
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This integral satisfies several of the same properties as the integral in 6.2.1.
Firstly, the integral of 1 gives the intuitive result:∫ t

0
1dX(s) =

∫ t

0

∫ t

r

Kg(1)(t, s)σ(s)(s− r)α−1dsδB(r)

+
∫ t

0

∫ t

r

Dr{Kg(1)(t, s)}σ(s)(s− r)α−1dsdr

=
∫ t

0

∫ t

r

g(t− s)σ(s)(s− r)α−1dsδB(r) =
∫ t

0
(MH

− g(t− ·)σ)δB(r) = X(t).

Furthermore, the integral is linear.

Proposition 8.3.4. Let a, b ∈ R be constants and assume that the two processes
Y, Z are F-integrable, then∫ t

0
(aY (s) + bZ(s)))dX(s) = a

∫ t

0
Y (s)dX(s) + b

∫ t

0
Z(s)dX(s)

Proof. Follows by the linearity of the operator Kg, the linearity of the Malliavin
derivative, the linearity of the Skorohod integral and the linearity of the Lebesgue
integral. ■

We also have the same localization property as the integral in 6.2.1.

Proposition 8.3.5. Suppose that s 7→ Y (s) = 0 for a.e. s ≤ t, a.s. Then Y is
F(0, t)-integrable and ∫ t

0
Y (s)dX(s) = 0, a.s.

Proof. Follows in the exact same way as the proof of Proposition 23 in [BBV18],
see page 140. ■

Moreover, the integration by parts formula is analogous to 6.2.6.

Proposition 8.3.6 (Integration by parts formula for integrals w.r.t. fBSS
process). Assume that s 7→ Y (s) is F(0, t)-integrable and let Z a bounded
random variable such that s 7→ ZY (s) is F(0, t)-integrable. Then

Z

∫ t

0
Y (s)dX(s) =

∫ t

0
ZY (s)dX(s).

Proof. ∫ t

0
ZY (s)dX(s) =

∫ t

0

∫ t

r

Kg(ZY )(t, s)σ(s)(s− r)α−1dsδB(r)

+
∫ t

0

∫ t

r

Dr{Kg(ZY )(t, s)}σ(s)(s− r)α−1dsdr

The first term can be written as follows:∫ t

0

∫ t

r

Kg(ZY )(t, s)σ(s)(s− r)α−1dsδB(r)
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=
∫ t

0
Z

∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1dsδB(r)

= Z

∫ t

0

∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1dsδB(r)

−
∫ t

0
Dr{Z}

∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1dsdr,

where the first equality uses the calculation done in the start of the proof of
6.2.7, and the second equality follows by the integration by parts formula 3.1.19.
Using the product rule 3.1.12, the second term can written as∫ t

0

∫ t

r

Dr{Kg(ZY )(t, s)}σ(s)(s− r)α−1dsdr

=
∫ t

0

∫ t

r

Dr{Z}Kg(Y )(t, s)σ(s)(s− r)α−1dsdr

+
∫ t

0

∫ t

r

ZDr{Kg(Y )(t, s)}σ(s)(s− r)α−1dsdr.

Thus,∫ t

0
ZY (s)dX(s) = Z

∫ t

0

∫ t

r

Kg(Y )(t, s)σ(s)(s− r)α−1dsδB(r)

+ Z

∫ t

0

∫ t

r

Dr{Kg(Y )(t, s)}σ(s)(s− r)α−1dsdr = Z

∫ t

0
Y (s)dX(s)

■

The last properties were all heavily inspired by the analogous properties
found in section 4.3 in [BBV18]. Next, we prove similar properties to those
found in section 6.4.

Proposition 8.3.7. Let Y be a fBSS process according to definition 8.3.2 and
let u be F(0, t)-integrable. Assume the random variable F ∈ D1,2, then

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[ ∫ t

0

∫ t

r

Dr{KG(u)(t, s)F}σ(s)(s− r)α−1dsdr

]
Proof.

E

[
F

∫ t

0
u(s)dY (s)

]
= E

[
F

∫ t

0

∫ t

r

Kg(u)(t, s)σ(s)(s− r)α−1dsδB(r)

+ F

∫ t

0

∫ t

r

Dr{Kg(u)(t, s)}σ(s)(s− r)α−1dsdr

]
= E

[ ∫ t

0

∫ t

r

Dr{F}Kg(u)(t, s)σ(s)(s− r)α−1dsdr

+
∫ t

0

∫ t

r

FDr{Kg(u)(t, s)}σ(s)(s− r)α−1dsdr

]
= E

[ ∫ t

0

∫ t

r

Dr{KG(u)(t, s)F}σ(s)(s− r)α−1dsdr

]
,
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8.3. Skorohod integrals

where the second equality follows by the duality formula 3.1.18 and the third
equality follows by the product rule 3.1.12. ■

The "fundamental theorem of calculus" also takes on an analogous form to
Proposition 6.4.5.

Proposition 8.3.8 (The fundamental theorem of calculus for fBSS integrals
with constant volatility). Let Y be a fBSS process with volatility σ = 1. Assume
that for all a ∈ [0, t], Da{u(·)} is F(0, t)-integrable. Then

∫ t
0 u(s)dY (s) ∈ D1,2

and

Da

(∫ t

0
u(s)dY (s)

)
=
∫ t

0
Dau(s)dY (s) +

∫ t

a

Kg(u)(t, s)σ(s)(s− a)α−1ds

(8.7)

Proof. We first write out the case when σ is general and then set σ = 1 to get
(8.7),

Da

(∫ t

0
u(s)dY (s)

)
= Da

(∫ t

0

∫ t

r

Kg(u)(t, s)σ(s)(s− r)α−1dsδB(r)

+
∫ t

0

∫ t

r

Dr{Kg(u)(t, s)}σ(s)(s− r)α−1dsdr
)

=
∫ t

0

∫ t

r

Da{Kg(u)(t, s)σ(s)(s− r)α−1}dsδB(r)

+
∫ t

a

Kg(u)(t, s)σ(s)(s− a)α−1ds

+
∫ t

0

∫ t

r

Da

[
Dr{Kg(u)(t, s)}σ(s)(s− r)α−1]dsdr

=
∫ t

0

∫ t

r

[
Kg(Dau)(t, s)σ(s) +Kg(u)(t, s)Da{σ(s)}

]
(s− r)α−1dsδB(r)

+
∫ t

a

Kg(u)(t, s)σ(s)(s− a)α−1ds

+
∫ t

0

∫ t

r

[
Dr{Kg(Dau)(t, s)}σ(s)

+Dr{Kg(u)(t, s)}Da{σ(s)}
]
(s− r)α−1dsdr,

where the second equality use the fundamental theorem of calculus 3.1.20, and
the third equality uses Lemma 6.4.4 and the product rule 3.1.12.

If now σ = 1, then Daσ(s) = 0 and we have

Da

(∫ t

0
u(s)dY (s)

)
=
∫ t

0

∫ t

r

{Kg(Dau)(t, s)}(s− r)α−1dsδB(r)

+
∫ t

a

Kg(u)(t, s)(s− a)α−1ds+
∫ t

0

∫ t

r

Dr{KG(Dau)(t, s)}dsdr
)

=
∫ t

0
Dau(s)dY (s) +

∫ t

a

Kg(u)(t, s)σ(s)(s− a)α−1ds.

■
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8.3. Skorohod integrals

By comparing the above properties with the corresponding properties of
integrals with respect to VMBV integrals, we can see that all of them takes on
the analogous form. The fact that these integrals behave similarly is reasonable
given that their respective definitions were derived by almost the exact same
procedure.
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CHAPTER 9

Summary and suggestions for
further work

In chapter 8, we attempted to define fBSS processes and, inspired by the work
in [BBV18], we tried to define an integral with respect to fBSS processes. In
regards to this chapter there are many possible paths for further study. Most
obviously, it seems natural to study fBSS processes in more detail and look at
more properties than what is given in chapter 8. One could also define this
process through other types of integration theory. Generalizing to a volatility
modulated fractional Brownian-driven Volterra process or even to a volatility
modulated fractional Lévy-driven Volterra process is also something that could
be examined.

Moreover, the integral defined in 8.3.3 could be studied in further detail,
and there might be "better" ways of defining such an integral. The study of
SDEs driven by fBSS processes is yet another topic that could be explored
in more detail. Lastly, it would be interesting to see what applications fBSS
processes have, as of now, the research on this seems to be very limited, even on
the special case where the kernel function g(t− s) = e−λ(t−s), for λ > 0, which
could be termed a fractional Ornstein-Uhlenbeck process. One can consult
chapter 7 in [Bia+08] and references therein, for a general discussion on fBms
in finance and why its applications are limited.

In chapter 7 we studied S(P)DEs driven by VMLV processes and ambit fields,
both in the case of nonlinear noise and the simpler case of purely time-dependent
noise, or where the noise coefficient is just a constant. As we saw, the equations
driven by purely time-dependent noise were fairly easy to prove existence and
uniqueness for, and several proofs followed rather easily from results given in
chapter 5. With this in mind, further study on S(P)DEs driven by VMLV
processes and ambit fields ought to be done on the case of nonlinear, and not
purely time-dependent, noise. Particularly, one might attempt to weaken the
very strong conditions imposed on the noise coefficient, as noted, this seems to
be very difficult and it might be impossible using Picard iteration, hence, other
techniques are likely necessary to achieve this. Reducing the restrictions on the
kernel function g is maybe more feasible.

Regarding section 6.4, there are also potential improvements. "The
fundamental theorem of calculus" for integrals with respect to ambit fields is
perhaps possible to prove, see the discussion at the end of section 6.4. Moreover,
the results in the real valued-part of this section, where we assumed that the
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product rules of section 3.1 and 3.2 were applicable, might be generalized using
density arguments.
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