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Abstract

The three-dimensional organization of chromatin plays a crucial role in gene regulation and cellular processes like deoxyribonucleic
acid (DNA) transcription, replication and repair. Hi-C and related techniques provide detailed views of spatial proximities within the
nucleus. However, data analysis is challenging partially due to a lack of well-defined, underpinning mathematical frameworks. Recently,
recognizing and analyzing geometric patterns in Hi-C data has emerged as a powerful approach. This review provides a summary
of algorithms for automatic recognition and analysis of geometric patterns in Hi-C data and their correspondence with chromatin
structure. We classify existing algorithms on the basis of the data representation and pattern recognition paradigm they make use of.
Finally, we outline some of the challenges ahead and promising future directions.
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INTRODUCTION
Eukaryotic genomes must be compactly folded and highly orga-
nized within the nucleus to maintain cell homeostasis. Spatial
proximity of specific genomic loci has been increasingly investi-
gated over the last decades, in particular due to the development
of chromosome conformation capture (3C) techniques. Since its
inception, the 3C paradigm has been generalized and extended
in multiple directions, giving rise to the rapidly-expanding family
that is eponymously referred to as 3C-based. The family includes
one-versus-many (e.g. 4C [1]), many-versus-many (e.g. 5C [2]),
Capture-C [3], Capture Hi-C [4]) and all-versus-all (e.g. Hi-C [5] and
Micro-C [6]) assays. While imaging techniques can spatially local-
ize chromatin loci and thus directly apply geometric analyzes,
3C-based experiments disclose complementary information as
spatial proximity frequencies between loci. 3C-based methods
are generally based on common experimental steps that include
cross-linking with a fixative agent (e.g. formaldehyde), digestion
(e.g. by restriction enzymes (REs) or micrococcal nuclease), in-situ
proximity ligation, reverse cross-linking and deep sequencing.

Hi-C DATA IN A NUTSHELL
Hi-C data provide information about the 3D organization of chro-
matin by measuring the frequency of interactions between prox-
imal pairs of genomic regions, which are typically represented as
bins or segments of equal size along the genome. The choice of
resolution (i.e. bin size) impacts massively downstream Hi-C data

analysis and involves a balancing between sensitivity/sparsity
and specificity in the data [7]. In principle, the resolution is only
limited by the REs used in the assay, and fragment sizes range
averagely from 434 bp (for a four-cutter such as MboI) to 3.7 kb (for
a six-cutter such as HindIII). However, high resolution demands
sufficient sequencing depth, as it increases by the square of the
number of bins [8, 9]. Due to the computational burden of the
intrinsic high-dimensionality of the problem, efficient formats
have been developed to handle the increased scale of the data at
stake [10].

Mathematically speaking, Hi-C data can be represented and
interpreted in terms of:

(i) Matrices, i.e. rectangular arrays of numbers endowed with a
number of mathematical operations. Hi-C data can be stored
in a fixed-size symmetrical square table which — at least
before further processing — is integer and nonnegative. The
adoption of the usual matrix sum and scalar multiplication
gives rise to the algebraic structure called vector (or linear)
space. Notably, this algebraic interpretation is crucial to
exploit methodologies such as Singular Value Decomposi-
tion (SVD) and spectral analysis.

(ii) Images are scalar functions which, when a resolution is spec-
ified, can be sampled over regular 2D grid and stored into a
specific matrix; note that the same image can be sampled at
different resolutions, resulting in visually distinct outcomes.
Although the terms ‘image’ and ‘matrix’ are sometimes
used interchangeably, the processing applied to images aims
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to emphasize visual patterns rather than solely numerical
properties: mathematically, geometry is emphasized at the
expense of the algebraic structure. In this regard, edges of an
image are significantly large local changes in the applicate,
i.e. the intensity. On the contrary, objects in images have gen-
erally a lower variability in the intensity. When representing
Hi-C data as images, a pixel represents a pair of genomic
loci and its intensity is, up to a range scaling, the interaction
count of such a pair.

(iii) Weighted graphs, i.e. a structure amounting to a set of vertices
(here: genomic segments) in which some pairs (e.g. those
having nonzero interaction frequencies) are connected by
edges associated with a scalar (the aforementioned interac-
tion frequencies). As Hi-C matrices are symmetric, the corre-
sponding graph can be considered undirected. Probabilistic
graphical models are, theoretically speaking, an extension
of graphs that assumes nodes to be random variables, thus
allowing to express conditional dependence structures.

Like all experimental techniques, chromosome conformation
capture technologies have experimental noise and bias limita-
tions which need to be taken into account in the analysis. Sub-
stantial bioinformatics efforts are required to extract reliable con-
tact information. A main source of noise is the presence of mis-
cellaneous undesired linear-type DNAs during proximity-ligation
resulting in dangling ends, internal fragments or re-ligation DNA
fragments. Random ligations are generally not informative as they
can link regions independently of the underlying 3D organization.
Noise is potentially further worsened by PCR amplification [11].
Another factor to take into account is related to the genomic
distance effect, namely the tendency of higher prevalence of
crosslinks between genomic loci close together along the genome
even in the absence of any specific higher-order structure [12]. To
mitigate the various biases that might be present while possibly
enhancing patterns, Hi-C data are often pre-processed with pro-
cedures that depend on the data representation used (e.g. via the
Iterative Correction and Eigenvector decomposition, ICE, for Hi-C
matrices); as a result, the resulting transformed Hi-C data are not
necessarily integer or positive [10].

GEOMETRY ENTERS IN Hi-C
Recently, geometry has established itself as an integral part of Hi-
C data analysis as more and more geometric shapes (including
points, segments, squares, etc.) are being discovered. In Hi-C
data, identifying geometric structures is assumed to correspond
to inferring chromosome structural features from a biological
perspective, which is one of the major goals in Hi-C data analysis
[13]. Despite the progress made through the years, the recognition
of patterns in contact maps remains challenging for multiple
reasons. First and foremost, formal definitions of such families of
patterns are missing: patterns are (usually) not defined explicitly,
but rather as the output of methods that are often intended for
other uses (e.g. the search for checkerboard-like patterns via prin-
cipal component analysis PCA), despite their blatant geometric
nature. Secondly, contact maps exhibit more than one pattern
at a time: these can have different shapes and are potentially
overlapping, making it necessary to find ways to decompose them
into primitive elements. Due to the aforementioned lack of formal
definitions for these patterns, distinguishing between different
types of interactions can be difficult. Current approaches often
analyze each pattern separately, by assuming that either the
effect of other patterns is negligible or that the other patterns

Table 1. Biological processes and corresponding geometric
patterns found in Hi-C maps. A graphical illustration can be
found in Figure 1

Biological structures Geometric patterns

A/B compartments, subcompartments Squares and rectangles
TADs, meta-TADs, sub-TADs,
Structural variations
Chromatin loops Points
SMC stalled on one side Segments
Rabl configurations Arcs
Chromatin jets Cassinian ovals
SMC interactions Astroids

can be normalized out of the data. Lastly, Hi-C data are drawn
from a population of cells, meaning that patterns in it will not be
necessarily present in individual cells or subpopulations; to this
end, recent efforts have focused on the estimation of cell type
composition from Hi-C data, e.g. by using statistical deconvolution
methods [14].

The remaining of this section is organized as follows. We
start by focusing on three families of geometric shapes typically
recognized in Hi-C data, reporting their average size in mam-
mals: squares and rectangles, points and segments. We then
briefly discuss more complex patterns that have been observed
in contact maps, but for which no recognition algorithm has been
proposed yet. For each geometric pattern, the biological processes
known to be among its causes are discussed, thus outlining a
correspondence between biology and geometry (see also Table 1
and Figure 1).

Squares and rectangles
They are the most common patterns found in Hi-C data, having
been observed first in [5] as ‘large blocks of enriched and depleted
interactions, generating a plaid pattern’.

The highest organization level in the interphase nucleus cor-
responds to that of chromosome territories (CTs), discrete regions
with distinct nuclear positions and different gene densities. While
their existence was first suggested in 1885 by Carl Rabl [15] for
animal cell nuclei, it was only in the 1980s that the concept was
ultimately confirmed by the development of the fluorescence
in situ hybridization (FISH) technique. In Hi-C data, CTs appear
as non-overlapping squares (corresponding to each chromosome)
placed along the diagonal.

At megabase resolution, chromosomes appear to be segregated
into two major compartments, A and B. Compartments A appear
to be more accessible to DNase I, more gene-rich and contain
chromatin that is more open and active than their counterparts —
compartments B. Geometrically, a plaid or checkerboard pattern
— which consists of a partition into rectangles with no internal T-
junction — can be observed for both intra- and interchromosomal
Hi-C contact maps; in geometric modeling, such split comes under
the name of tensor-product mesh. It was later discovered that
A/B compartments divide into subcompartments, each bearing
a distinctive pattern of genomic and epigenetic features such
as gene expression, active and repressive histone marks, DNA
replication timing and specific subnuclear structures [16].

Descending in size, topologically associating domains (TADs)
take the form of diagonally-placed squares with sides between
hundreds of kilobases to a few megabases. TADs are charac-
terized by preferential intra-domain interactions compared to
inter-domain interactions with neighboring domains. Sequences
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Figure 1. Biological structures and their geometric counterparts in Hi-C data. This graphical representation was adapted from similar ones found in
[34, 35]. A tabular representation can be found in Table 1.

within a TAD harbour distinct histone chromatin signatures,
expression levels, DNA replication timing, lamina association
and chromocenter association [17]. The silencing of repressed
developmental genes was linked to long-range TAD-TAD interac-
tions that form constitutive and variable TAD cliques [18]. Unlike
the larger-scale A and B compartments, TADs do not necessarily
produce checkerboard patterns in 2D contact matrices. It was
suggested the existence of higher- and lower-order structures
named meta-TADs and sub-TADs, with the former being
aggregates of proximal TADs in a genomic neighborhood while
the latter being split into regions that display more localized
contacts [19].

Genomes can also harbor structural variations (SVs), including
translocations or copy number alterations. In Hi-C data, such
alterations typically give rise to single- or paired- rectangles with
strong chromatin interaction signal at one of the vertices [20].
Although these patterns are (in theory) geometrically simple, their
detection is further complicated by two main challenges: the
local variation in signal and the fact that basic shapes can be
combined or overlaid to form more intricate patterns, such as
paired-rectangles.

Points
Another organization level that was recently described is that of
chromatin loops — pairs of genomic loci lying on the same chro-
mosome, despite lying linearly far apart [21]. However, this simple
definition does not incorporate the required genomic length of
such stretches or the degree of proximity. In eukaryotic cells,
chromatin loops are known to link elements such as enhancers
or transcription factor-binding sites (TFBS), spatially close to their
target genes. Most chromatin loops are located within the bound-
aries of tissue-invariant TADs [22], and are formed by a process
called loop extrusion [23, 24, 25]. In Hi-C contact maps, chro-
matin loops manifest as points, somewhat-circular (blob-shaped)
objects with their own specific scale [26].

Segments
The term architectural stripe is commonly used to indicate inter-
actions between a single locus and a contiguous genomic interval
which, biologically, points to structural maintenance of chromo-
somes (SMC) complexes stalled on one side. Such a structure
started catching the attention of researchers only recently [27].
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Geometrically, they resemble segments, but are usually referred
to as lines, flames or simply stripes by the bioinformatics commu-
nity. Being the stripe architecture a relatively new observation, a
formal closed definition is still missing. Despite having been orig-
inally linked to asymmetric loop extrusions at TAD boundaries
[25, 28], it was later noted that segments can also appear without
a TAD being clearly observed [29].

Complex patterns
In addition to the geometrically simple patterns discussed in
the previous sections, more complex shapes have recently been
identified in Hi-C data thanks to the continuous progress in 3C-
based technologies.

In plants, the so-called Rabl configuration of interphase nuclei
appears like an anti-diagonal pattern which approximates the
border of an arc (i.e. a portion of the circumference of a circle).
The Rabl configuration is characterized by the attachment of cen-
tromeres and telomeres to opposite sides of the nuclear envelope
[30]: it is crucial to ensure the orientation of chromosomes in
nuclei with the purpose of maintaining chromosomal integrity
and aiding the alignment of homologs during meiosis [31].

Another example is that of cohesin-propelled chromatin jets in
quiescent mammalian lymphocytes [32], characterized by figure-
eight shape patterns that loosely recall flattened lemniscates or
Cassinian ovals. Jets propagate symmetrically for 1–2 Mb unless
constrained by CTCF, which can convert bi- to unidirectional
extrusion or deflect the angle of the jet propagation.

Non-trivial interactions occur between SMC complexes
translocating from opposing sites in the Bacillus subtilis chromo-
some, resulting in a complex shape pattern that is mathematically
known under the name of astroid [33].

GEOMETRIC PATTERN RECOGNITION
FROM AFAR
The automatic recognition of patterns and regularities is of
paramount importance in applied fields, as it facilitates the
description, analysis and comparison of data. The subfield of
pattern recognition we are interested in, called geometric pattern
recognition, focuses unsurprisingly on the detection and of
geometric patterns in input data. Following the classification
proposed in various publications of the field (see, for example,
[36–38]), the methodologies adopted in Hi-C data analysis can also
be divided into four major groups: template-based, structural,
statistical and learning-based.

Template-based pattern recognition is one of the earliest approaches
to pattern recognition, first successfully used in speech recog-
nition and optical character recognition (OCR). It consists in
matching (part of) the input data with one or more members of a
template while enforcing invariance to classes of transformations.
However, it was not the first strategy used in the geometric
analysis of Hi-C data. An example of application is the recognition
of chromatin loops in terms of a template of dot-like shapes, as
we will see for the software MUSTACHE in Section Points. The use
of rigid templates allows to re-apply the same method to new
data without tedious training, fine-tuning or redesign.

In structural or syntactic pattern recognition, semantic primitives
written in some description language are used to represent some
input data, together with a set of rules (the grammar) that defines
possible composition relations. This paradigm has been exten-
sively applied in Hi-C data analysis: to give an example, TADs
are often defined by first recognizing horizontal and vertical
segments, which are then aggregated into squares — and possibly
hierarchies of rectangles — on the basis of some criteria (see

Section TADs). Syntactic algorithms can result in a combinatorial
explosion of possibilities to be investigated.

Statistical pattern recognition interprets each pattern in terms
of d features, while input data are translated into points of a
d-dimensional (usually Euclidean) space; such points are then
analysed through statistical decision and estimation theories (e.g.,
kernel methods or Bayesian analysis). Statistical methods place a
strong emphasis on inference by constructing and fitting proba-
bility models that are specifically customized for the given task.
This enables the computation of quantitative measures of confi-
dence such as P-values, providing valuable insights into the relia-
bility of the results. Here, the choice of the feature representation
and the assumptions on the underlying distributions strongly
influence the result. A use case is domainClassifyR’s recognition
of segments via Z−statistics, see Section Segments.

Learning-based pattern recognition assigns existing (supervised
learning) or novel categories (unsupervised learning) to input
elements with minimal assumptions about the data-generating
system. Avoiding model assumptions can be effective for generat-
ing predictions dealing with data collected without a meticulously
controlled experimental design and in the presence of complex
nonlinear interactions; on the other hand, these solutions may
lack direct connection to existing biological knowledge despite
strong predictions [39]. The identification of A/B compartments is
mostly based on PCA — a well-known technique in (unsupervised)
dimensionality reduction, see Section Compartments.

In practice, pattern recognition often defies neat categoriza-
tion, as methods commonly incorporate multiple theoretical
paradigms instead of adhering strictly to a single category.

We now discuss existing methods that have been used to detect
geometric patterns in Hi-C data, following the same organiza-
tion of Section Geometry enters in Hi-C. We here classify such
approaches based on the representation of Hi-C data (matrix-
based, image-based, or graph-based) and the class of pattern
recognition methodology (template-based, structural, statistical
and learning-based) they make use of.

SQUARES AND RECTANGLES
Compartments
The discovery of a plaid pattern that decomposes Hi-C maps into
two types of loci (the A and B compartments) was first presented
in [5]. In the paper, each chromosome in a genome-wide Hi-
C contact map from a karyotypically-normal human GM06990
lymphoblastoid cell line is partitioned by using PCA, a popular
learning-based technique for the analysis of data in matrix form.
The authors conclude that, for all but two chromosomes, the first
principal component can unveil the plaid pattern; for the remain-
ing two chromosomes, the first principal component corresponds
to the two chromosome arms, but the second principal compo-
nent delineates the plaid pattern. Since then, PCA has become one
of the de facto standard ingredients to identify compartments,
giving rise to the large family of PCA-based (i.e. unsupervised-
learning-based) methods. PCA has been implemented in a large
number of tools, both in its classical (e.g. Juicer’s eigenvector [40],
HOMER’s runHiCpca [41] and HiCdat [42]) and memory-efficient
(e.g., POSSUMM [43] and dcHiC [44]) formulations. More precisely,
POSSUMM [43] accelerates the computation of the eigenvector
decomposition via the power method. On the other hand, dcHiC
[44] implements a parallelized partial SVD, thanks to which it is
possible to compute just the first few singular vectors (i.e. the
eigenvectors) needed for compartment analysis.

Recently, alternative solutions that do not use PCA have been
proposed: CscoreTool [45] — which infers compartments via
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statistical-based modeling of Hi-C matrices — and Calder [46]
— that identifies compartment domains by segmenting each
chromosome into regions having high intra-region similarity and
low inter-region similarity (here, by clustering contact similarities
defined in terms of Fisher’s z-transformed correlations – thus
combining the statistical and learning-based paradigms).

The main characteristics of these compartment callers are
reported in Table 2. Interestingly enough, methods are typically
matrix-based and do not rely on template-based or structural
pattern recognition.

Subcompartments
When it comes to detecting subcompartments, no standard has
been established yet. Most approaches base their pipelines on
matrix properties. The method in [16] applies a Gaussian Hidden
Markov Model clustering algorithm (GaussianHMM) to contact
maps from human lymphoblastoid cells. The analysis points to
the existence of (at least) six subcompartments (A1-2, B1-4) with
distinct patterns of histone modifications. The authors claim that
similar results are obtained when using k-mean and hierarchical
clustering. SNIPER [47] studies Hi-C matrices via neural networks.
It divides A/B compartments into the five subcompartments A1-
2, B1-3 by subsequently applying two separate neural networks:
a denoising autoencoder, which is used to extract features while
reducing the dimensionality of the input data, and a multi-layer
perceptron (MLP) classifier, used to categorizes the regions into
one of five primary subcompartment classes. In Calder [46], a
score matrix that aims at summarizing the plaid pattern is com-
puted for each compartment; the score matrix is decomposed via
PCA, and the first 10 principal components are used to partition
the compartment further through divisive hierarchical clustering.
The final step estimates the likelihood of nested subdomains via
a mixture log-normal distribution. In its second version, dcHiC
[44] finds subcompartments by using a Hidden Markov Model
segmentation on the basis of the magnitude of the first principal
component.

Recent advancements in the representation of Hi-C data
involve the utilization of graphs. One notable method, SCI [48],
has emerged, enabling the transformation of the Hi-C interaction
graph into a lower-dimensional vector space through graph
embedding. Subsequently, SCI employs k-means clustering to
predict sub-compartments within the data.

Also noteworthy is the the absence of template-based and
structural pattern recognition, with all methods relying on statis-
tical or learning-based paradigms and adopting either the matrix
or the graph representation of Hi-C data. This point is also visible
in Table 2, which summarizes the key attributes of subcompart-
ment callers.

TADs
Significant progress has been made in the field of TAD detection,
with a diverse range of algorithms now available (see Table 3),
in contrast to the relatively limited focus on compartments and
subcompartments. Initially, TAD callers looked for consecutive
diagonally-placed square regions with higher number of interac-
tions. Since the hierarchical structure in TADs was discovered,
most of the latest TAD-calling methods have been conceived to
identify hierarchies of TADs. The reader is referred to [49–53] for
existing reviews, surveys and benchmarking studies.

Matrix representation
The matrix representation of Hi-C data proved enormously popu-
lar, with more than twenty methods proposed in the last decade.

Most of the initial approaches adopted the following struc-
tural methodology: definition of a score function; extraction of
significant local extrema through optimization algorithms, which
are assumed to locate potential TAD boundaries; construction of
higher order structures (squares) from the candidate boundaries
according to some criteria aimed at filtering out false positives.
The structural family includes methods that compute: (i) the
interaction frequency of the surrounding regions at each locus,
e.g. Armatus [54], Insulation Score (IS) [55], TopDom [56] and
OnTAD [57]; (ii) the upstream or downstream interaction bias for a
genomic region, e.g. Directionality Index (DI) [58] and HiTAD [59];
(iii) other TAD features, e.g. Arrowhead [16], HOMER’s findTAD-
sAndLoops [60] and FrankenTAD [61].

Learning-based pattern recognition has proliferated through
hierarchical and partitional clustering. Hierarchical methods con-
struct dendrograms — trees that represent the relationship of
similarity among the bins under study — and then proceed by
cutting it at a certain level by using some threshold, as for Con-
strained HAC [62] and TADPole [63]; another example of interest
is that of Matryoshka [64], which builds a novel algorithm on
top of Armatus. Partitional algorithms produce a partition into
a specified number of clusters by either minimizing or maxi-
mizing some numerical criteria: in ClusterTAD [65], the criterion
is the within-cluster sum of squares for k-means clustering; in
GRiNCH [66], it is the sum of pairwise dissimilarities for k-medoids
clustering; in CHDF [67] it is the sum-of-squared error with respect
to three kind of regions (domain regions, regions between adjacent
domains and the residuals). Clustering-like approaches do not
properly make use of cluster analysis but introduce methodolo-
gies that are inspired by how clustering work. For example: IC-
Finder [68] starts by considering each column as a single cluster,
then merges adjacent clusters if a criterion based on two parame-
ters — heterogeneity and local directionality index — holds; MSTD
[69] identifies TADs by grouping points in rectangular shapes by
first identifying cluster centers as points with an anomalously
large local density, and then by associating each point to the
closest center; CaTCH [70] partitions the genome into a set of
domain seeds of fixed size, which are then progressively merged
into larger domains by thresholding a tailor-made metric called
reciprocal insulation.

Many methods in the field can be classified as statistical pat-
tern recognition techniques, such as z-scores (e.g. HiCExplorer’s
hicFindTADs [71]), BIC-penalized likelihood (e.g. TADbit [72] ),
generalized likelihood-ratio tests (e.g. HICKey [73]), Poisson dis-
tributions (e.g. chromoR [74] and Gaussian Mixture Models (e.g.
GMAP [75]). Tailor-made models were also proposed: TADTree
[76] defines a model that depends on two parameters – β, the
baseline enrichment for contacts between adjacent bins within
the TAD and δ, the rate at which contact frequency increases with
distance between bins; PSYCHIC [77] introduces a two-component
probabilistic model corresponding to the probability of intra- and
inter-TAD interactions.

Note that all methods producing overlapping or nested hier-
archical TADs can be also considered as adopting the structural
paradigm, as composition relations between square patterns are
imposed.

Image representation
Even though TAD detection might seem fully rooted in the field
of computer graphics, only a few methods interpret Hi-C data in
terms of images.

EAST [78] and TADBD [79] use a template-based approach
by applying Haar-like features — a set of adjacent rectangular
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Table 3. Main characteristics of different TAD callers, sorted by publication year

Data type TAD caller Input details Parameters PR family Hierarchical? Complexity Language

Matrix DI 2D array 3 STRUCT Disjoint NA MATLAB, Perl
Armatus 2D array 1 STRUCT Overlapping O(tn2) C++
Arrowhead .hic file 1 STRUCT Overlapping O(n2) Java
chromoR 2D array 2 STAT Disjoint NA R
CHDF 2D array 1 UL Disjoint NA C++
IS 2D array 5 STRUCT Disjoint NA Perl
TADTree 2D array 6 STAT, STRUCT Overlapping O(ns5) Python
TopDom 2D array 1 STRUCT Disjoint NA R
CaTCH sparse 4-column file 1 UL, STRUCT Nested NA R
ClusterTAD 2D array 1 UL Disjoint NA MATLAB
GMAP 2D array 10 STAT, STRUCT Nested NA R, C++
HiTAD .cool file 1 STRUCT Nested NA Python
IC-Finder 2D array 2 UL Disjoint NA MATLAB
PSYCHIC 2D array 1 STAT, STRUCT Nested NA MATLAB
TADbit 2D array 1 STAT Disjoint NA Python, C
HiCExplorer h5 file 4 STAT Disjoint NA Python
HOMER BED file 5 STRUCT Disjoint NA Perl, C++
MSTD 2D array 1 UL Disjoint NA Python
OnTAD 2D array 5 STRUCT Nested O(ms2) C++
Constrained HAC 2D array 1 UL Disjoint O(n(h + log(n))) R
Matryoshka 2D array 1 UL, STRUCT Nested O(tl2) C++
TADPole 2D array 3 UL, STRUCT Nested NA R
FrankenTAD 2D array 6 STRUCT Disjoint NA Go
GRiNCH 2D array 3 UL Disjoint O(kn2) C++
HICKey 2D array 3 STAT, STRUCT Nested O(n3) C++

Image EAST 2D array 3 TMP Disjoint O(n2) Python
CHESS .hic or cool files 4 STAT, UL Disjoint NA Python
HiCseg 2D array 3 STAT, STRUCT Disjoint O(Kn2) R, C
TADBD 2D array 2 TMP Disjoint NA R

Graph Spectral 2D array 2 STRUCT Disjoint NA MATLAB
MrTADFinder Sparse 3-column file 1 STRUCT Disjoint O(n3) Julia
3DNetMod Sparse 3-column file 18 STRUCT Overlapping O(n) Python
deDoc Sparse 3-column file 0 STRUCT Nested O(n log2 n) Java
SpectralTAD 2D array 11 STRUCT Disjoint O(n) R
SuperTAD 2D array 0 STRUCT Nested O(n4L2H) C++

The following parameters appear in the column reporting the computational complexity: n is the size of the Hi-C matrix; t is the number of resolutions to be
inferred; s is the maximum size of the inferred TAD; m is the expected count of possible boundaries; h identifies the bandwidth; l refers to the interval
frequency while clustering the inferred s resolutions; k is the rank of the low-dimensional matrices; K defines the maximum number of diagonal TAD
partitions; L denotes the maximum number of leaves, while H denotes the maximum height at which the coding tree is found. The following abbreviations are
used for the families of pattern recognition (PR) algorithms: STAT = statistical, STRUCT = structural, TMP = template-based, UL = unsupervised learning.

regions, each of which has a certain weight — via the summed-
area table data structure.

CHESS [80] offers a pipeline rooted in image processing: (1)
denoise the image using a bilateral filter; (2) smooth the image
using a median filter; (3) image binarization using Otsu’s method;
(4) morphological closing of the image; (5) computation of 2D
cross-correlation between all the extracted areas, which are
grouped by k-means clustering to detect main structural features.

HiCSeg [73] turns the initial 2D segmentation problem into
a 1D one by maximum likelihood estimation of three possible
distributions: Gaussian (for normalized Hi-C data), Poisson and
Negative Binomial (for raw Hi-C data). TAD boundaries are found
by maximizing the likelihood via dynamic programming.

Graph representation
The weighted graph that originates by interpreting the Hi-C
matrix as an adjacency matrix is here decomposed into subgraphs
by minimizing or maximizing different measures.

A first case is the Fiedler number, also known as algebraic
connectivity in graph theory. Spectral [81] computes its Laplace

matrix and extracts the Fiedler number and vector to perform
a first split. The process is iterated until the Fiedler number of
all sub-matrices is larger than the threshold or the TAD size
reaches a pre-set lower bound. SpectralTAD [82] accelerates the
application of spectral graph theory used in Spectral by applying
sliding windows along the matrix diagonal.

Another measure is that of modularity, which quantifies the
strength of a split of a network into communities. MrTADFinder
[83] defines the modularity and objective function in a random-
ized null model for Hi-C maps, then optimizes the objective
function with a heuristic algorithm. 3DNetMod [84] maximizes
network modularity via a Louvain-like, locally greedy algorithm.

Finally, structural entropy was also considered. deDoc [85] par-
titions the original weighted undirected graph into subgraphs so
that the uncertainty embedded in the dynamics of the graph (i.e.
its structural information or entropy) is minimized; the algorithm
produces a tree, and TADs are extracted as the continuous leaf
nodes in it. SuperTAD [86] finds optimal coding trees from a
contact map in a polynomial-time solvable; while using the same
paradigm as deDoc, it can return hierarchical TADs with more
than two levels.
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Table 4. Main characteristics of different segment callers

Segment caller Input details Parameters PR type Description Location Language

Zebra .hic files 0 MAN Manual curation of pixels with high
interaction frequency

TAD boundaries R

domainClassifyR 2D array 1 STAT TAD recognition followed by
computation of stripe score

TAD boundaries R

CHESS .hic or cool files 4 STAT, UL Application of filters, feature
extraction and k-means

no restriction Python

Chromosight cool file 4 TMP Convolution of template patterns no restriction Python
Stripenn cool file 5 STRUCT Image preprocessing followed by

Canny edge detection and segments
recognition via a set of criteria

no restriction Python

All methods are image-based, and none reports their computational complexity. The following abbreviations are used for the families of pattern recognition
(PR) algorithms: MAN = manual, STAT = statistical, STRUCT = structural, TMP = template-based, UL = unsupervised learning.

SEGMENTS
Differently from compartments, subcompartments and TADs, all
available methods introduced for the recognition of segments rely
on the image representation of Hi-C data, and borrow existing
concepts from computer vision and image processing, see Table 4.

Zebra [27] is a manual method, thus not belonging to any
specific type of pattern recognition. It searches for pixel tracks
of higher interaction frequency at the boundaries of genomic
domains, which must then be manually processed to decide which
candidates are segments and which ones are not. Zebra lacks a
quantitative assessment of segments, and its code is not publicly
available. An alternative implementation of this algorithm, made
available by an independent group, can be found on GitHub
under the name StripeCaller (https://github.com/XiaoTaoWang/
StripeCaller).

Statistical pattern recognition includes domainClassifyR [87]
and CHESS [80], being the latter described in Section TADs. The
approach named domainClassifyR starts marking TADs and then
measures their stripe score, a measure based on the Z-statistic.
Intra-TAD segments remain undetected.

Chromosight [88] works by convolving templates over the con-
tact map, as done in computer vision tasks involving images;
thus, the method is clearly template-based. Then, candidates are
analyzed and possibly discarded with respect to a set of criteria,
i.e. if they overlap too many empty pixels or are too close to
another detected pattern.

Stripenn [89] starts by converting the input Hi-C map to a
digital image, which is then pre-processed by contrast adjustment
and noise reduction. This step is followed by the application
of the Canny edge detection algorithm. Vertical lines are then
detected and possibly merged, via a set of custom criteria; in
this regard, Stripenn can be considered as based on structural
pattern recognition. Finally, two coefficients (median P-value and
stripiness) are computed to evaluate quantitatively architectural
stripes.

POINTS
The identification of strong punctate signals is a critical part of
most Hi-C analyzes, as it points to the presence of chromatin
loops. Compared to TADs, fewer callers are available and, to the
best of our knowledge, no review or survey has been published on
the topic. Table 5 summarizes the characteristics of dot callers.

Matrix representation
Most methods rely on statistical-based modeling. Several com-
putational and statistical methods orbit around the estimation

of the expected contact frequencies under the null (i.e. random
collisions). Fit-Hi-C [91] fits an initial nonparametric spline using
the observed contact counts and genomic distances between all
possible mid-range locus pairs; such a spline is used to deter-
mine a threshold to identify outliers and exclude them from
the calculation of a second spline, which is used to estimate
prior contact probabilities for each mid-range locus pair and,
subsequently, P-values from a binomial distribution. Its latest
reimplementation called FitHiC2 [92], allows the user to perform
genome-wide analysis for high-resolution Hi-C data, including all
intra-chromosomal distances and inter-chromosomal contacts.
Another approach within the same paradigm is GOTHiC [93]: it
estimates random interaction probability then applies the bino-
mial test to distinguish between random and real interactions.
To account for both the zero inflation and over-dispersion of
contact counts, HiC-DC [94] performs the estimation of a null
or background model via a GLM based on zero-truncated nega-
tive binomial regression, which is then employed to assess the
statistical significance of unexpectedly large chromatin contacts.
Another example of a statistical method using GLM is given by
HiCExplorer’s hicDetectLoop [95]: it fits a negative binomial distri-
bution to Hi-C data to filter out interaction pairs with respect to a
threshold, then uses a donut algorithm – it considers all elements
of the matrix as candidate peaks and compares the region around
them to the neighboring interactions. All these methods have the
drawback of testing each individual pair of loci independently,
ignoring the potential correlation among pairs of loci. To address
this point, HMRFBayesHiC [96] considers a hidden Markov random
field-based Bayesian method that explicitly models the spatial
dependency among adjacent loci. A pseudo-likelihood is used to
approximate the Ising distribution, which models the hidden peak
status. Due to its heavy computational costs, a modified version
of the algorithm that approximates the Ising distribution by a
set of independent random variables, allowing a more convenient
computation was introduced under the name of FastHiC [97]. An
alternative direction is taken by ZipHiC [98], which implements
a Bayesian framework to detect enriched contacts. Hi-C data
are modeled via a K-component mixture density, where the first
component is a zero-inflated Poisson (ZIP) distribution for noise,
while the other components follow Poisson distributions. Spa-
tial dependency is introduced by a hidden Markov random field
model. The posterior probability is estimated via likelihood-free
approach, the Approximate Bayesian Computation. To improve
the detection of chromatin interactions from existing methods
assuming independence, HiC-ACT [99] performs a post-processing
based on an aggregated Cauchy combination test (ACT).

Clustering-wise, cLoops [100] finds candidate loops by applying
cDBSCAN to paired-end tags/reads, an optimized version of
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Table 5. Main characteristics of different dot callers, ordered by publication year

Data type Segment caller Input details Parameters PR family Description Complexity Language

Matrix Fit-Hi-C, FitHiC2 Two 5-column
tables

4 STAT Spline fitting for initial null model,
and estimation of contact
probabilities and P-values

NA Python

HMRFBayesHiC 4-column table 2 STAT HMRF-based Bayesian method with
Ising prior for representing the
unobserved peak status

O(n2) R

GOTHiC BAM or Bowtie
file

2 STAT Cumulative binomial test to detect
loci with higher Hi-C interactions
than expected by chance

NA R

HiC-DC 3-column table 5 STAT GLM approach based on
zero-truncated negative binomial
regression

NA R

HOMER BED file 5 STRUCT Scoring of locally dense contact
regions found in relative contact
maps

NA Perl, C++

cLoops, cLoops2 BEDPE file 3 UL cDBSCAN/blockDBSCAN clustering O(n log(n)) Python
HiCExplorer cool file 8 STAT Interaction filtering using negative

binomial distribution, followed by
comparing candidates to their
neighborhoods

NA Python

Peakachu .hic or cool files 0 SL Searches the best random forest
for a two-class problem

NA Python

HiC-ATC TXT file 3 STAT Makes use of an aggregated
Cauchy test to improve the output
of existing methods that assume
independence in neighboring
chromatin interactions

NA R

LOOPbit 3-column table 2 SL CNN that predicts loop locations NA Python
ZipHiC 7-column table 0 STAT Hidden Markov random field-based

Bayesian approach based on a
zero-inflated Poisson distribution
for noise

NA R

Image Juicer .hic file 0 STAT, UL Clusters pixels that exhibit
significantly higher number of
interactions than different
neighborhoods

NA R

CHESS [80] .hic or cool files 4 STAT, UL Application of filters, feature
extraction and clustering via
k-means clustering

NA Python

Chromosight cool file 4 TMP Convolution of template patterns NA Python
MUSTACHE .hic or cool file 0 TMP Computes the scaled

normalized-Laplacian of the
convolution between the image
and Gaussians of increasing scales,
followed by an analysis of
neighborhoods

NA Python

SIP cool file 9 STRUCT Image preprocessing, followed by a
regional maxima detection
algorithm

NA Java

LASCA .hic or cool file 10 STAT Diagonal filtering of high-intensity
pixels via corrected P-values,
followed by clustering and further
filtering

NA Python

RefHiC mcool file 2 SL Selection of high-intensity pixels
via a NN, grouping via
density-based clustering and final
filtering

NA Python

Image &
graph

GILoop [90] cool file 0 SL Dual-branch neural network that
learns from both image and
graph-representations

NA Python

The input for HiC-ATC is a txt file from a Hi-C chromatin interaction calling method, such as Fit-Hi-C/FitHiC2. The following abbreviations are used for the
families of pattern recognition (PR) algorithms: SL = supervised learning, STAT = statistical, STRUCT = structural, TMP = template-based, UL = unsupervised
learning.
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DBSCAN. A further optimization, known under the name of
blockDBSCAN, was used in the second version of the tool: cLoops2
[101]. As discussed later, these are not the only methods relying
on supervised-learning.

An example of a structural implementation is found in
HOMER’s findTADsAndLoops [60], which is capable of simulta-
neously detecting both TADs and loops. Once relative contact
maps are produced for each chromosome, HOMER analyzes them
to find locally dense regions of contacts, which are then scored
by their Hi-C interaction density normalized to the read depth.

Finally, a few methods offering supervised learning frame-
works have been recently published. Peakachu [102] applies a
hyperparameter search to find the best random forest model
separating two classes: positive (any list of interactions) and neg-
ative (randomly sampled loci). LOOPbit [103] is a Convolutional
Neural Network (CNN) trained to predict the location of loops.
The network contains the following components: flattening of the
input matrix, dense layer (with ReLu activation function), dropout,
final dense layer (with Softmax activation function) that classifies
the input into two different classes: loop and no-loop.

Image representation
Not surprisingly, most approaches make extensive use of method-
ologies from computer vision and image processing.

Similarly to Chromosight [88], MUSTACHE [26] can be consid-
ered a template-based method. It makes use of convolutions: it
normalizes the input contact map, convolves it with Gaussians
of increasing scales – thus computing its Gaussian-kernel
scale-space representation, and finally estimates the scaled
normalized-Laplacian via the difference-of-Gaussian function.
Candidate loops are found by comparing each pixel to its 3×3×3
neighborhood, where the first 2D comes from the original image
space while the last one originates with the convolution process.
Additional filtering criteria are tested to remove false positives.

SIP [104] adopts image adjustment steps: Gaussian blur, con-
trast enhancement, white top-hat; it then proceeds by analyzing
the image by sliding windows using a regional maxima detection
algorithm to produce a preliminary list of candidate loops, which
is then filtered by applying a set of criteria. Its working principles
can be considered as inspired by structural pattern recognition.

Statistical pattern recognition comprises a few algorithms.
A method using local statistics is Juicer’s HICCUPS [16] which
examines each pixel in the Hi-C image by comparing its con-
tact frequency to four kinds of local neighborhoods: (i) donut-
shaped; (ii) lower-left; (iii) vertical and (iv) horizontal neighbor-
hoods around the pixel of interest. Retrieved pixels are then
grouped via a clustering-like method. An alternative implemen-
tation is available under the name HiCPeaks (https://pypi.org/
project/hicpeaks/). Statistical modeling is performed in LASCA
[105]. It starts by the fitting a Weibull distribution-based statistical
background model to each diagonal of the input (corrected) Hi-C
matrix; for every pixel, a q-value — i.e. a corrected P-value — that
quantifies the probability of finding a corresponding model pixel
with the same or higher intensity is computed; an user-defined
threshold is used on q-values to find relevant pixels, which are
then grouped into clusters; the cluster centers are further filtered
according to their aggregate peak analysis and the surviving ones
are returned. CHESS [80], named in Section TADs, can also identify
points.

Learning-based pattern recognition includes both CHESS and
Juicer’s HICCUPS, as they also make use of concepts from unsu-
pervised learning. A neural architecture is presented under the
name RefHiC [106]. It is based on two components: (i) a neural

network — made up of an encoder, an attention module and a
task-specific head — predicts loop scores for every candidate pair;
(ii) a task-specific component selects one loop from each high-
scoring cluster, where clusters are produced by density-based
clustering.

NAVIGATING THE METHODOLOGICAL MAZE
Approaches that utilize a matrix representation of Hi-C data do
not typically introduce explicit geometric definitions of what a
pattern is. Instead, they focus on mere numerical properties. In
the case of compartments, sub-compartments, and TADs, squares
and rectangles are identified a-posteriori by recognizing slices of
matrix rows or columns with significant count variation (i.e. the
candidate boundaries). Alternatively, rows/columns are grouped
together based on some concept of similarity, often accompanied
by statistical assumptions. Similarly, dots are defined by sets of
matrix entries that are relatively close to each other in terms of
matrix coordinates and have relatively high values. While this
data representation allows to unlock a wide variety of algorithms
from matrix theory (e.g. eigenvalue and SVDs), discarding geomet-
ric information can make parameter interpretability and result
analysis challenging.

Algorithms that interpret Hi-C data as images leverage
methodologies from computer vision, such as intensity trans-
formations, spatial filtering and other image transforms. Patterns
are discovered using families of templates, sliding windows, or
segmentation techniques. The main advantage, compared to
matrix-oriented approaches, is the higher interpretability and
intuitivity. However, these algorithms can be significantly slower,
and their performance is influenced by the size of the patterns
being analyzed.

Considering graphs offers the advantage of representing Hi-
C data in a higher-order form, allowing for the application of a
rich set of algorithms and techniques from graph theory. However
— similarly to matrix-based methods — visual interpretability
is limited; algorithms are also less intuitive, which can be prob-
lematic for non-experts in the field. Constructing a graph for
high-order adjacency matrices can be computationally demand-
ing. Another drawback compared to image-based approaches is
the potential loss of pixel-level information, especially when the
graph representation is based on higher-level features or abstrac-
tions. It is worth noting that, with the sole exception of two
algorithms, graph-based approaches have so far focused on TAD
recognition.

When considering the various classes of algorithms in pattern
recognition, template-based methods stand out for their high
level of interpretability. These algorithms directly match patterns
to predefined templates, making it easy to understand how the
recognition process works. Moreover, template-based methods
offer a straightforward generizability since new patterns can be
recognized by creating new templates. However, these methods
can perform poorly when patterns deviate significantly from the
available templates.

On the other hand, structural pattern recognition algorithms
provide the advantage of defining hierarchies of patterns. This
capability becomes particularly valuable when dealing with TADs.
While these algorithms offer the potential for more complex pat-
tern relationships, they may trade off some efficiency compared
to other methods.

Statistical methods naturally handle data uncertainty, account-
ing for factors such as noise, outliers and small variations in
patterns. However, these methods rely on assumptions about
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the underlying data distribution. In real-world scenarios, these
assumptions may not always hold true, leading to potential
inaccuracies in recognition.

Finally, learning-based methodologies offer the flexibility of
working without distribution assumptions. This advantage allows
these algorithms to adapt to a wide range of patterns. However,
this flexibility often comes at the expense of interpretability, as
the inner workings of the model can be complex and challenging
to understand. Neural architectures, a type of learning-based
method, typically require rich benchmarks for effective training,
which may not always be readily available.

CONCLUSIONS AND PERSPECTIVES
The Hi-C technology has revolutionized the way we study the
organization of chromatin in the nucleus, turning an inherently
3D environment into a 2D one. In this review, we have explored the
core representations (matrix, image, graph) of Hi-C data and dis-
cussed how chromatin structures geometrically appear therein.
Additionally, we have discussed the various computational meth-
ods within geometric pattern recognition (template-based, struc-
tural, statistical, learning-based) to automatically recognize such
shapes. These algorithms range from simple clustering-based
algorithms to more sophisticated techniques rooted in topological
data analysis and machine learning. Although existing algorithms
have provided valuable insights into the spatial organization of
chromatin, they still face several challenges.

At present, a comprehensive framework for automatically
identifying specific geometric shapes at various scales is lacking.
For instance, an algorithm simultaneously identifying squares
and rectangles representing TADs, compartments and SVs is
currently lacking. This computational tool should also account
for local signal variations and the combination of simple patterns,
including single- or paired-rectangles with stronger signals at
specific vertices.

Beyond the composition of simple shapes, one of the main
obstacles is the automatic recognition of complex geometric pat-
terns. Such patterns may arise from the overlapping of multiple
types of simple shapes or from newly-discovered chromatin struc-
tures.

To truly understand complex systems and phenomena, we will
need to integrate multiple data representations. A first step in
this direction was recently taken with GILoop [90], a neural archi-
tecture synergizing the information of both image- and graph-
interpretations of Hi-C data to recognize chromatin loops.

Genomic data are becoming increasingly detailed and accurate.
Nevertheless, the exponential surge in the amount of information
calls for the development of cutting-edge methods dedicated to
Hi-C data analysis. For example, with recent ultra-deep Hi-C with
resolutions at kilobase level or beyond, Hi-C matrices become
extremely large, with billions to trillions of entries. As a result,
working with such matrices using (most of) the tools mentioned
in this review becomes impractical or intractable. Moreover, signal
sparsity currently represents an almost insurmountable chal-
lenge to pattern recognition when low sequencing depths are used
at such resolution [43]. The sparseness of measured interactions
poses an analysis challenge to other C-based techniques, such
as single-cell Hi-C (scHi-C) [107]; despite presenting obstacles,
single-cell maps clearly reflect hallmarks of chromosomal orga-
nization and can therefore provide valuable insight into cell-
to-cell variability. Beyond sparseness, noise and other forms of
data perturbation continue to be a prominent topic in Hi-C data
analysis, with recent research focusing on neural architectures

[108, 109]; the use of results from the computer vision community,
e.g. [110, 111] could further improve results.

A promising research direction involves the study of geometric
patterns as dynamic entities, which provides significant infor-
mation about the evolving nature of chromatin organization
over time.

Finally, to truly advance the field, we need to establish solid
definitions of what constitutes the different patterns seen in Hi-C
data. Only then can computational methods be tuned to detect
these efficiently and robustly. As for now, recognized patterns
are validated for their biological relevance — without any gold-
standard set to benchmark or test the methods — via experi-
mental replicates to measure consistency or using synthetic data.
This is, for example, the case for TAD callers, where CTCF motif
instances and ChIP-seq signal are used [112]. As for the recently-
introduced Pore-C technology [113], the task of introducing sound
definitions that encompass interactions among more than two
genomic loci becomes even more challenging.

Key Points

• This review addresses the correspondence between
chromatin biology and geometry emerging from Hi-
C data.

• Geometric pattern recognition is a powerful toolbox for
understanding 3D genome organization.

• Existing algorithms are categorized on the basis of the
data representation and paradigms they make use of.

• Despite the progress in the automatic recognition of geo-
metric patterns, several challenges remain unresolved.
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