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ABSTRACT

Context. The solar atmosphere is highly dynamic, and observing the small-scale features is valuable for interpretations of the underly-
ing physical processes. The contrasts and magnitude of the observable signatures of small-scale features degrade as angular resolution
decreases.
Aims. The estimates of the degradation associated with the observational angular resolution allows a more accurate analysis of the
data.
Methods. High-cadence time-series of synthetic observable maps at λ = 1.25 mm were produced from three-dimensional magneto-
hydrodynamic Bifrost simulations of the solar atmosphere and degraded to the angular resolution corresponding to observational data
with the Atacama Large Millimeter/sub-millimeter Array (ALMA). The deep solar ALMA neural network estimator (Deep-SANNE)
is an artificial neural network trained to improve the resolution and contrast of solar observations. This is done by recognizing dynamic
patterns in both the spatial and temporal domains of small-scale features at an angular resolution corresponding to observational data
and correlated them to highly resolved nondegraded data from the magnetohydrodynamic simulations. A second simulation, previ-
ously never seen by Deep-SANNE, was used to validate the performance.
Results. Deep-SANNE provides maps of the estimated degradation of the brightness temperature across the field of view, which can
be used to filter for locations that most probably show a high accuracy and as correction factors in order to construct refined images
that show higher contrast and more accurate brightness temperatures than at the observational resolution. Deep-SANNE reveals more
small-scale features in the data and achieves a good performance in estimating the excess temperature of brightening events with an
average of 94.0% relative to the highly resolved data, compared to 43.7% at the observational resolution. By using the additional
information of the temporal domain, Deep-SANNE can restore high contrasts better than a standard two-dimensional deconvolver
technique. In addition, Deep-SANNE is applied on observational solar ALMA data, for which it also reveals eventual artifacts that
were introduced during the image reconstruction process, in addition to improving the contrast. It is important to account for eventual
artifacts in the analysis.
Conclusions. The Deep-SANNE estimates and refined images are useful for an analysis of small-scale and dynamic features. They
can identify locations in the data with high accuracy for an in-depth analysis and allow a more meaningful interpretation of solar
observations.

Key words. techniques: image processing – Sun: chromosphere – Sun: radio radiation – methods: observational –
methods: statistical – techniques: high angular resolution

1. Introduction

The solar chromosphere is highly dynamic. Its structures show a
large variety of temporal and spatial scales. Observing the small-
scale dynamics can often be imperative for understanding the
underlying physical processes that take place in the atmosphere.
However, the ability to detect small-scale features is heavily
dependent on the angular resolution of the observations. The
angular resolution increases with the size of the aperture and
with decreasing wavelength of the radiation. At millimeter (mm)
wavelengths, the Atacama Large Millimeter/sub-millimeter
Array (ALMA) provides large advances in terms of sensitiv-
ity and angular resolution, and solar observations are currently
offered down to approximately 0.62 arcsec at 1.25 mm (receiver
band 6; Privon et al. 2022) and to e.g., a resolution ∼0.92 arcsec
at 3.0 mm (receiver band 3).

The mm wavelength radiation is formed from free-free emis-
sion under local thermal equilibrium, so the measured intensities
depend linearly on the local plasma temperature at the sampled
heights (see, e.g., Wedemeyer et al. 2016, and references therein)
and can be expressed as the brightness temperature, which is
valuable for studying the transport of energy and heating at
different layers of the solar atmosphere. Dynamic small-scale
features and brightening events, such as excited by propagat-
ing shocks (Eklund et al. 2021a), have been studied in ALMA
observations (Eklund et al. 2020). However, the contrast of the
features is severely degraded because of the large size of the
point spread function (PSF; see, e.g., Loukitcheva et al. 2015;
Eklund et al. 2020), which makes the interpretation of the data
and estimation of possible energy dissipation from the shocks
challenging.
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The angular resolution affects the detection and identification
of small-scale features in the spatial domain, but it also affects
variations and oscillations in the temporal domain of the data
(Jess et al. 2021; Eklund et al. 2021b; Jafarzadeh et al. 2021).
The degree of the degradation of a particular feature is dependent
on the angular resolution, but also the distribution and spatial
scales of the surrounding intensities.

A statistical approach detecting brightening events in syn-
thetic observables from a three-dimensional magnetohydrody-
namic (MHD) simulation from the code Bifrost (Carlsson et al.
2016; Gudiksen et al. 2011) was deployed by Eklund et al.
(2021b) to derive correction factors of the degradation of their
brightness temperature amplitude at each ALMA receiver band
at different angular resolutions. However, these correction fac-
tors come with significant uncertainties, which means that dif-
ferent events are differently well resolved. For instance, bright,
unresolved features smaller than the PSF and less bright, and
better resolved extended features larger than the PSF appear with
similar brightness temperature in observation data.

This motivated the development the deep solar ALMA neu-
ral network estimator (Deep-SANNE), a deep neural network
trained to recognize dynamic spatio-temporal patterns. It esti-
mates the accuracy of the brightness temperatures across the
field of view and produces refined images that are corrected
for the resolution degradation. Deep-SANNE can be applied to
science-ready high-cadence time-series of solar ALMA data. It
serves as a complementary tool for analysis and can aid in the
choice of locations with the highest accuracy of the brightness
temperatures for an in-depth analysis of events in the data.

This paper is structured as follows. In Sect. 2 the architecture
of the artificial neural network and the simulations used to train it
and to validate the estimates are presented. In Sect. 3 the result-
ing estimates of the validation data that were performed by the
neural network are presented, together with a few applications of
the estimates for analysis. The application of Deep-SANNE on
an observational solar ALMA data set is also shown. In Sects. 4
and 5 we conclude and describe future developments.

2. Methods

Among the available techniques, neural networks have shown a
very good performance in terms of accuracy and speed in dif-
ferent applications such as pattern detection, radiative transfer
calculations, and image reconstruction (see, e.g., Illarionov &
Tlatov 2018; Díaz Baso et al. 2019; Dos Santos et al. 2021).
In a previous study of Eklund et al. (2021b), it was concluded
that dynamical small-scale signatures have a important imprint
in the spatial and temporal domains. The motivation therefore is
to use a neural network that combines spatial and temporal anal-
ysis modules to improve the determination of the degradation.

2.1. Neural networks

When two-dimensional (2D) data such as images are studied,
convolutional neural networks (CNN; see e.g., Dumoulin &
Visin 2016) are very useful. The convolutional operations cap-
ture information in the spatial domain. There are a numerous
types of convolutional neural networks that have benefits for
different applications. They have already been used in solar
physics to improve the spatial resolution of solar observations
(Díaz Baso & Asensio Ramos 2018; Armstrong & Fletcher
2021), but the temporal information of these observations was
not considered.

Recurrent neural networks (RNN; Rumelhart et al. 1986) are
the type of neural networks that are used to handle information
in the temporal domain and process sequences of data, where the
output is dependent on the previous elements in the data stream.
These types of neural networks, usually trained by a backprop-
agation method (see, e.g., Hecht-Nielsen 1992) to calculate the
gradient of the loss function (see, e.g., Goodfellow et al. 2016),
may be affected by what is referred to as a vanishing gradient
(Hochreiter et al. 2001) and long-term memory loss, which pre-
vents them from learning over longer sequences of data.

Long-short-term memory (LSTM; Hochreiter &
Schmidhuber 1997) is a form of a recurrent neural network
where a mechanism of different gates is used to regulate the
passage and flow of information through the network, which
effectively takes care of the vanishing gradient problem. This
ability makes an LSTM architecture suitable for handling long
sequences of data and recognizing patterns at short scales of the
sequence. It also preserves the context from the beginning of the
data stream, hence the name long-short-term memory. LSTM
neural networks have been shown to excel in several fields of
applications, such as speech recognition and handwriting recog-
nition (Graves & Schmidhuber 2008), where information about
the context needs to be preserved through the data sequence.

Basic LSTM architectures are used to study one-dimensional
sequences of data, while CNNs are used for images at a given
time. In the following, we explain how they can be combined in
a single architecture.

2.2. Deep-SANNE architecture

In the current work, we use an artificial deep neural network
with an architecture based on convolutional LSTM cells, where
convolutional operations are performed at the gates within the
LSTM cell, instead of at the regular matrix multiplications. The
main advantage of the convolutional LSTM is that the state of a
certain cell is determined by the past states of the neighboring
cells (image pixels) that are within reach of the convolutional
kernel, which allows capturing spatial features and studying their
dynamics and evolution in time. Each LSTM cell consists of a
number of gates, input, forget, cell, output, and hidden, which
each have a different task to dynamically update the different
weights that regulate the flow of information through the neural
network1 (Shi et al. 2015).

The architecture of Deep-SANNE is illustrated in Fig. 1.
The input layer has ti = 24 time steps, each of dimensions
n × m = 30 × 30, which is followed by a densely connected
layer with a linear activation function and an increased num-
ber of channels, with a series of ti = 24 batches of dimensions
n × m × l1 = 30× 30× 64. A densely connected layer connects
each of its nodes to each of the nodes in the adjacent layers.
The convolutional LSTM layer follows, with a series of ti = 24
LSTM cells performing the temporal-convolutional operations
at even more channels with dimensions n × m × l2 = 30 ×
30 × 128. The convolution kernel is 2D with 4 × 4 cells, moving
in the spatial n,m-plane. The rectified linear unit (ReLU; Nair &
Hinton 2010) is used as activation function in the LSTM layer.
Only the output of the last LSTM cell is considered, which is fed
to another densely connected layer with a linear activation func-
tion and dimensions n × m × l3 = 30 × 30 × 128. Last, there is a
final densely connected layer that samples down the dimensions
to n × m = 30 × 30, which constitutes the output of the artificial

1 Keras, https://keras.io/
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Fig. 1. Schematic view of the artificial neural net-
work architecture. Give the input of a time-series
of length ti of 2D maps, passing it through a com-
bination of densely connected layers and a layer
with a series of LSTM cells including 2D con-
volutional operations, Deep-SANNE provides 2D
output at the last time-step, ti.

neural network. Further details on Deep-SANNE can be found
at the git repository2.

2.3. 3D MHD simulations for training and validation data

Two dedicated numerical three-dimensional MHD Bifrost
(Gudiksen et al. 2011) simulations of the solar atmosphere were
used, one to train the neural network, and one to validate the esti-
mates. These simulations were used as they take nonlocal ther-
modynamic equilibrium (non-LTE) and nonequilibrium for the
hydrogen ionization into account, which is important for studies
at millimeter wavelengths, where the majority of the radiation
comes from the free-free emission.

The training data were created from a re-run of a pub-
licly available enhanced network (EN) simulation featuring the
quiet-Sun with two magnetic field regions of opposite polarity
(Carlsson et al. 2016). The re-run simulation has a cadence of
1 s, instead of the 10 s of the publicly available simulation, which
matches the highest cadence offered so far for solar ALMA
observations, and a total duration of approximately one hour.
The simulation has 504, 504 and 496 cells in the x-, y- and
z-direction, respectively. The cell size is uniformly 48 km, cor-
responding to 0.066 arcsec in the horizontal (x, y) directions and
varying between 19 km and 100 km in the vertical (z) direction,
with 20 km at the heights of the chromosphere and transition
region, which are most relevant for the study of radiation at mil-
limeter wavelengths. This Bifrost simulation show intensities,
scales, and oscillatory behavior at millimeter wavelengths that
generally agree with observational data (Loukitcheva et al. 2015;
Wedemeyer et al. 2020; Eklund et al. 2021b; Jafarzadeh et al.
2021), which makes it suitable for use as a model for training
the neural network.

The simulation that was used to create the validation data
exhibit the quiet-Sun without any large-scale magnetic fields
with an average signed magnetic field strength of 5 G. It also

2 https://github.com/henrikeklund/Deep-SANNE/

represents the conditions of a coronal hole (CH). The simula-
tion box has 1024 cells with a cell size of 12 km (correspond-
ing to 0.0165 arcsec) in the two horizontal directions (x, y) and
768 cells with a cell size varying between 12 and 82 km in the
vertical direction (z). This simulation has a 2 s cadence and a
total length of 240 s.

2.4. Preparation of observables

The observables were calculated from the models using the
radiative transfer code ART3 (de la Cruz Rodríguez et al. 2021),
which solves the equation of radiative transfer along the verti-
cal direction of the models for each column of cells across the
field of view seen from the top. The code assumes formation of
the radiation in LTE, but includes relevant sources of opacity in
detail. While the method presented in the current work is general
and could be applied to handling observations at any wavelength,
we focus here on calculations at wavelengths between 1.2 mm
and 1.3 mm (229−249 GHz), corresponding to ALMA receiver
band 6. The intensities were calculated at ten frequencies across
band 6 (see Eklund et al. 2021b, for details). The intensities (Iλ)
were transformed to brightness temperatures (Tb) through the
Rayleigh–Jeans approximation at millimeter wavelengths (see,
e.g., Wilson et al. 2013). The final maps of observables are rep-
resented by averages of the brightness temperature maps at the
ten frequencies. A snapshot of the observables from the training
simulation is shown in Fig. 2a.

Deep-SANNE is currently trained to perform on science-
ready data where possible effects of the sidelobes of the point
spread function (PSF) have been taken care of. The brightness
temperature maps are also downgraded to the angular resolution
corresponding to observational data by convolution with a 2D
kernel in the shape of the clean beam of the observations. The
clean beam is a Gaussian fit to the central lobe of the PSF. The
size and shape of the clean beam is calculated by doing synthetic

3 https://github.com/SolarAlma/ART
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Fig. 2. Illustration of simulation data used for training Deep-SANNE. (a) Synthetic brightness temperature map at λ = 1.25 mm at the original
high resolution, at 1800 s from the start of the training simulation. (b) The same brightness temperature map degraded to the angular resolution
corresponding to ALMA observations. The clean beam with an FWHM of 0.69 × 0.82 arcsec is marked in the lower left corner. (c) Difference
between the degraded and the original map with absolute differences of up to 3200 K.

ALMA observations with the simobserve task in the Common
Astronomy Software Applications (CASA) for different receiver
bands, interferometric array configurations, and positions of the
target on the sky (see Eklund et al. 2021b, for details). The clean
beam that is applied represents typical observations (the Sun
standing high on the sky) with the highest resolution that is cur-
rently offered for solar observations at ALMA band 6, with the
full width at half maximum (FWHM) along the minor and major
axes is 0.69 arcsec and 0.82 arcsec, respectively (and a position
angle of 80◦).

In order to avoid oversampling the image, it is common con-
vention to chose an image cell size (pixel size) no smaller than
approximately 3−5 times smaller than the FWHM of the clean
beam when images are constructed from observations. For this
reason, we regridded the brightness temperature maps with a
cell size corresponding to 0.14 arcsec to facilitate applications
on already existing data sets.

2.5. Training and validation of the neural network

For the training of the neural network, about 31 000 input
sequences were sampled from the about one-hour time-series
of brightness temperature maps at degraded angular resolution
from the EN simulation (Fig. 2b). Each input sample sequence
consisted of 24 frames in total, with equidistant spacing every
10 s between t = 0 s and t = 60 s and every 2 s between t = 68 s
and t = 100 s, and with a spatial extent of 30× 30 cells. A spac-
ing between the first frames of each input sample of 60 s in the
temporal domain and 20 cells along each horizontal direction
was used. Each sample was also rotated by 90◦ to further sample
the data because the neural network is not rotational invariant.
Some of the input data were randomly excluded from the LSTM
layer, with a dropout factor of 0.1. The neural network was
trained to estimate the map of differences between the bright-
ness temperatures at original and degraded resolution, relative to
the degraded resolution (Fig. 2c) following

Tb, difference =
Tb, observational resolution − Tb, original high resolution

Tb, observational resolution
· (1)

To train the neural network, the optimization scheme Adam
(Kingma & Ba 2014) was used together with a mean-squared
error loss function and a learning rate of 1×10−4. The neural net-
work was allowed to learn for 15 epochs, and showed a smooth
asymptotically declining loss function. The accuracy of the esti-

mates from the neural network was determined by feeding the
neural network with the unseen brightness temperature maps
from the CH simulation at degraded resolution. As the neural
network performs estimations in a small region at the time, the
estimations need to be iterated across a larger field of view. Con-
sequently, the neural network only needs to be applied to the spa-
tial and temporal parts of the observations that is to be analyzed,
which saves storage and computational costs in comparison to
handling whole data sets. The results of the validation are pre-
sented in Sect. 3.

2.6. Observational data

When Deep-SANNE was properly trained, it was also applied
to perform estimations on observational ALMA data at
λ = 1.25 mm (receiver band 6), targeting a network region
(Jafarzadeh et al. 2021) at (X,Y) = (−246, 267) arcsec from the
disk center. The data were captured on April 22, 2017, between
15:59 UT and 16:43 UT (project ID: 2016.1.00050.S), with four
calibration gaps of approximately 2 min. A high-cadence time
series with 2 s cadence was constructed with the Solar ALMA
Pipeline (SoAP; Szydlarski et al. 2020, and in prep.), includ-
ing a multiscale CLEAN deconvolver algorithm (Cornwell 2008;
Högbom 1974), phase self-calibration, and combination of the
interferometric data with total power (TP) measurements (see
also, e.g., Wedemeyer et al. 2020; Eklund et al. 2020 for more
details). The final science-ready observational data set, addi-
tional observational details, and information on co-observations
can be found in the Solar ALMA Science Archive4 (SALSA;
Henriques et al. 2022).

3. Results

3.1. Brightness temperature correction factors, accuracy
across the field of view, and refined image

In this section, we first check the performance of Deep-SANNE
with the validation data set before applying it to real observa-
tions. A map of the brightness temperatures at 1.25 mm of the
validation simulation (CH) is shown in Fig. 3a for a snapshot at
t = 100 s, and the corresponding map degraded to the resolution
of ALMA observations is given in Fig. 3b.

4 http://sdc.uio.no/salsa/
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Fig. 3. Deep-SANNE estimates of the validation simulation. (a)–(c) Brightness temperatures across the field of view at t = 100 s of the original
model at high angular resolution, the model degraded to the angular resolution corresponding to ALMA observations, with the clean beam
resolution element marked in the lower left corner and the refined image from the Deep-SANNE estimation, respectively. The color map of the
brightness temperatures is the same in each of the three panels. (d) Differences between the maps of brightness temperature at the observational
resolution and of the high-resolution model relative to the map at the observational resolution. (e) Estimation of the difference map from Deep-
SANNE. (f) Difference map of the brightness temperatures of the Deep-SANNE refined image and the high-resolution model relative the Deep-
SANNE refined image. The same color map is given in panels (d)–(f). (g) Distributions of the brightness temperatures between t = 100 s–240 s
of the highly resolved model, the observational resolution, and the Deep-SANNE estimate. (h) and (i) Masks from Deep-SANNE showing the
locations over the field of view at t = 100 s (in black) where the accuracy of the brightness temperatures at observational resolution is least 70%
and 90%, respectively, compared to the highly resolved model.

The relative difference between these two brightness tem-
perature maps, following Eq. (1), is given in Fig. 3d. The bright-
ness temperatures of the data at the observational angular reso-
lution deviate from those of the highly resolved map by an abso-
lute relative factor of ∼0.5 or ∼4750 K. The Deep-SANNE esti-
mate of the difference map over the FOV of the same snapshot
(t = 100 s) is shown in Fig. 3e. This estimate captures many of
the small-scale features, also at scales smaller than the full width

at half maximum of the clean beam (Sect. 2.4). It also reveals
the locations across the FOV that show under- or overestimated
brightness temperatures at the observational resolution. These
locations are indicated in Fig. 3e in blue and red, and the magni-
tude of the deviation is indicated by the intensity of the color.

The estimated difference map can be multiplied with the
observational data in order to produce a refined image of the
brightness temperatures. The resulting Deep-SANNE refined
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image (at t = 100 s) is shown in Fig. 3c. The figure clearly shows
that Deep-SANNE can bring out accurate brightness tempera-
tures and small-scale features that are not directly apparent in
the map at the observational resolution.

The median for the whole 140 s time series of the absolute
differences between the brightness temperatures of the observa-
tional data (Fig. 3b) and the highly resolved data (Fig. 3a) is
584 K. The difference between the Deep-SANNE refined images
(Fig. 3c) and the highly resolved data (Fig. 3a) alone is 290 K.

Some features show a similar brightness temperature in the
map at the observational resolution, which differs significantly at
high resolution. Deep-SANNE distinguishes whether a feature
at observational angular resolution corresponds to an extended
event with a similar brightness temperature or to a combination
of small brighter and small colder features, at high resolution. A
few illustrating examples of this are described below.

(i) The bright feature at (x, y) = (−0.5,−6.0) arcsec, with a
size of about 1.5 × 1.5 arcsec, shows a similar brightness tem-
perature and size at the observational resolution (Fig. 3b) as at
the high resolution (Fig. 3a). This is also reflected in the Deep-
SANNE refined image (Fig. 3c).

(ii) The bright feature visible at (x, y) = (4.5,−6.5) arcsec at
the observational resolution originates from a combination of a
much brighter but small feature in the direct vicinity of the dark
features at high resolution. The small bright features are indi-
cated in the Deep-SANNE refined image.

(iii) The bright feature at (x, y) = (−4.0, 1.5) arcsec shows
a roughly uniform brightness temperature at the observational
resolution, which originates from the combination of a small
(∼0.5 arcsec) relatively dark region surrounded by a ring of
brighter features at high resolution. This complex structure is
captured in the Deep-SANNE refined image. When performing
an in-depth analysis of such a bright feature in observational
data, it might be tempting to sample the brightness temperature
in the center of the feature, which in this particular case is the
least accurate position.

We also calculated the differences of the brightness tempera-
tures of the refined image (Fig. 3c) from the image at high angular
resolution (Fig. 3a) relative to the refined image, which results in
the map that is shown in Fig. 3f. In this figure, the uncertainty of the
Deep-SANNE refined image is indicated, the uncertainties with
about arcsecond scales visible in Fig. 3d are removed, and only
structures of a small spatial size of about some pixels are visi-
ble. Uncertainties on scales much smaller than the clean beam are
expected, and this indicates that the neural network is not overfit.
However, there might be small potential improvements on this in
the image gridding, which is discussed in Sect. 4.2. The average
absolute value of the relative differences is 0.07 (both at t = 100 s,
Fig. 3f, and for the whole time series), and the estimated bright-
ness temperatures of the Deep-SANNE refined image 3c are thus
accurate at 93% on average.

The distributions of the brightness temperatures for the
whole time series at high resolution, observational resolution,
and of the Deep-SANNE refined images are given in Fig. 3g. The
shape of the distribution of brightness temperatures varies with
the magnetic field strength and topology of the region, and there-
fore gives valuable information for the interpretation of the data.
There is a bimodal distribution at high resolution (Fig. 3g), with
one peak around 4 kK and one around 7 kK, which is expected
for a quiet-Sun region (Eklund et al. 2021b). At observational
angular resolution, the double-peak feature is not visible, and
the distribution instead shows a single more narrow peak cen-
tered around the average value of 5590 K. This value agrees

well with the average of the synthetic observables at 1.25 mm
over the quiet-Sun region in the EN simulation (training simula-
tion; Fig. 2) of 5254 K (Eklund et al. 2021b), but is lower than
what is reported for observational quiet-Sun data at 1.25 mm,
for instance, 5957 K (Jafarzadeh et al. 2021) and 6150 K (White
et al. 2017). The observations most likely show higher aver-
age temperatures because they also partly include components
of overlying magnetic fields (Jafarzadeh et al. 2021), which is
not present in this coronal hole simulation (Fig. 3) or in the
corners of the EN simulation. The refined images from Deep-
SANNE restore the signature of the bimodal distribution of the
brightness temperatures, even though the distribution is weaker
than at the original high resolution. The estimates are conser-
vative, with a brightness temperature span within that of the
highly resolved model. The kurtosis of the distribution of the
brightness temperatures at the high-resolution model is −1.00,
and at the observational resolution, it is only −0.66, while
at the Deep-SANNE estimate, it is −0.97. There is thus an
improvement of the deviation from the highly resolved kurto-
sis from 34% at the observational resolution to only 3% using
Deep-SANNE.

Because the accuracy of the brightness temperatures at
observational resolution varies much at small scales across the
FOV, the choice of locations when performing in-depth analyses
of features is important. Masks that indicate where in the field
of view the brightness temperatures are probably most accurate
can be created from the Deep-SANNE output. Locations with a
brightness temperature that is 70% and 90% accurate at least in
the observational resolution are indicated, in Figs. 3h and i, to an
accuracy of the positions of 90% at least. The temperatures of
the most reliable locations span a wide range. There is no simple
relation between the temperature and the reliability in the case of
the complex structures of the highly dynamic solar atmosphere,
and there are locations with both low and high temperatures with
high accuracy.

3.2. Estimations of dynamic brightening events

Eklund et al. (2021b) showed that brightening events showing an
excess of temperature are degraded as a result of the limited spa-
tial resolution of the observations, which limits the interpretation
and analysis of these events. The Deep-SANNE refined images
can be used to acquire more accurate data on the brightness tem-
perature excess and the size and shape of the brightening events.

The validation data set was searched for brightening events
by searching for peaks in the temporal evolution of the bright-
ness temperature at each position in the field of view. The peaks
that were found were grouped into individual brightening events
by a k-means clustering technique (Everitt 1972). The event-
detection algorithm is described by Eklund et al. (2020), where
the specific details can be found. In total, 53 separate brightening
events were detected.

An example of the temporal evolution of a brightening event
is shown in Fig. 4a at a degraded resolution, at the original high
resolution, and at the Deep-SANNE estimate. When the tem-
poral domain is used by adding the RNN module to the CNN
(Sect. 2.2), a smooth continuous behavior of the Deep-SANNE
estimate of the brightening event is obtained that closely fol-
lows the main profile of the high-resolution model. This specific
event shows an excess brightness temperature of about 5.52 kK
at high resolution, but only 3.25 kK at observational resolution,
corresponding to only 58.9% to that of the high resolution. How-
ever, in the refined images of Deep-SANNE, the event shows an
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(a) (c)(b)

Fig. 4. Degradation of brightening events in the simulation. (a) Example of a brightening event with the temporal evolution of the brightness
temperature at the degraded angular resolution corresponding to observations (dashed red), of the original high-resolution model (solid black), and
of the Deep-SANNE refined images (dot-dashed blue). The apparent magnitude of the temperature excess is in each case marked by the vertical
dotted lines. (b) Density plot of the magnitudes of brightening events at high resolution against the observational resolution. (c) Density plot of the
magnitudes of brightening events at high resolution against the estimate from the neural network. All events are indicated by circular markers on
top of the density plots, with the example from panel a given in blue for reference.
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excess brightness temperature of 5.39 kK, amounting to 97.6%
of the high-resolution value.

The excess brightness temperatures of each event at high res-
olution compared to that at observational resolution are given in
Fig. 4b. Most of the events are underestimated, showing lower
brightness temperature excess at the observational resolution
than at high resolution. There are also a few weaker events
that are overestimated. They lie below the one-to-one ratio. This
might be because they are in the close vicinity to a bright event.
However, some events are better resolved and more accurately
represented at the observational resolution than others, and even
though the distribution is fairly linear and could be roughly
described by a linear function as in Eklund et al. (2021b), the
distribution shows a wide spread and gives rise to significant
uncertainties.

The equivalent plot comparing the excess brightness tem-
peratures of the events at high resolution to the Deep-SANNE
images is given in Fig. 4c. Deep-SANNE efficiently identifies
how well resolved the individual events are, which is indicated
by the alignment of the events along the one-to-one ratio in
Fig. 4c. The neural network corrects well for the degradation
of the events, regardless of whether they are under- or overes-
timated. The brightening events show magnitudes with an aver-
age accuracy of only 43.7% at the observational resolution com-
pared to at high resolution, while Deep-SANNE estimates the
magnitudes of the brightening events to an average accuracy
of 94.0%.

The spatial size and shape of a brightening event in the sim-
ulation is shown in Fig. 5. The event is elongated with a length

of about 4 arcsec and a width of about 1 arcsec at high resolu-
tion (Fig. 5a). At the observational resolution, the event only
extends about 0.8 arcsec in each direction (Fig. 5b), where the
top parts do not show a sufficiently high brightness tempera-
ture excess as a result of the spatial averaging with the sur-
rounding dark features. They are therefore overlooked by the
detection algorithm, which needs to be conservative to avoid
sampling noise in the data in the case of observations. In the
Deep-SANNE refined images (Fig. 5c), the event shows a length
of about 3.8 arcsec and a similar shape as in the high resolution.
At low resolution, features tend to show more simple shapes with
less complex structures, and it is relatively easy to define bor-
ders. However, as a result of the complex filament structure of
the brightening events, it becomes increasingly demanding with
higher resolution to set contrasts and thresholds to define the
extent of events and distinguishing interfering events from each
other. From the events detected here, there is an improvement of
the accuracy of the sizes of the brightening events from 49% at
observational resolution to at least 78% using the Deep-SANNE
refined images, compared to at the highly resolved images. The
brightening feature in Fig. 5 appears to be slightly wider, but
still comparable to the angular resolution, which resulted in the
degradation of the intensity that Deep-SANNE is able to restore
reasonably well.

Using ALMA 3.0 mm data, Shimojo et al. (2017) and
Rodger et al. (2019) reported studies of a bright plasmoid ejec-
tion event, and Brajša et al. (2021) reported an analysis of
a number of brightening events. Most of these events show
a spatial size that is comparable to the angular resolution,
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Fig. 6. Observational ALMA data at 1.25 mm from 2017-04-22. (a) Snapshot image from ALMA observations at 16:01:37. (b) Corresponding
Deep-SANNE refined image. (c) Brightness temperature distributions of the time-series of observations and the Deep-SANNE refined images.

which could indicate that their signatures could be significantly
degraded. The plasmoid ejection event shows an increase in the
brightness temperature of up to 220 K (Rodger et al. 2019),
which agrees with many of the brightening events detected in
the Deep-SANNE training data at degraded resolution (Eklund
et al. 2021b) and the events in the lower left corner of Figs. 5b
and c. The method of Deep-SANNE could thus be applied to
these type of brightening events to acquire refined temperatures
and shapes for a potentially improved scientific analysis.

3.3. Application of Deep-SANNE on observational ALMA
data

A snapshot of observational ALMA data at λ = 1.25 mm (see
Sect. 2.6) at t = 150 s from the beginning of the data set is shown
in Fig. 6a, and the Deep-SANNE refined image for the same time
step is shown in Fig. 6b. The refined image shows significantly
improved contrast and allows a more meaningful analysis of the
small-scale features.

The dot-like structure dominating the features in the refined
image originates from the techniques used to reconstruct the
observational image. The features are imprints of the clean
beam, which can be seen by comparison to the size, shape, and
orientation of the clean beam, for which the FWHM is shown
in the lower left corner of the images, which we discuss further
in Sect. 4. In this sense, Deep-SANNE performs well at also
revealing potential artifacts that may have been introduced to the
images during the reconstruction process, and can thus be used
to assist sampling the real signals in a meaningful way. From
the refined image, Fig. 6b, it becomes clear that the choice of
locations for an in-depth analysis and eventual averaging tech-
niques across a feature is important when studying the inten-
sities, shapes, evolution, and potentially oscillatory behavior of
small-scale features.

The distributions of brightness temperatures across the FOV
between t = 100−376 s for the observations and the Deep-
SANNE refined images are given in Fig. 6c. The average
brightness temperature is 7664 K in both the observational data
and the Deep-SANNE refined images. The average tempera-
ture is thus well preserved by Deep-SANNE, but the brightness
temperature distribution of the refined images represents cold
and hot features better, as expected at a less degraded resolu-
tion (Eklund et al. 2021b). This observation targets a network

region with a combination of vertical, near-vertical, and hor-
izontal magnetic fields in the FOV (Jafarzadeh et al. 2021).
The single peaked brightness temperature distribution agrees
very well with the distribution that is seen for the magneti-
cally enhanced central parts of the of the field of view of the
training data set (EN) (see, Fig. 4 of Eklund et al. 2021b).
The average brightness temperature of these observational data
(Fig. 6c) agrees with the average value of 7746 K reported by
Jafarzadeh et al. (2021) for another observation at 1.25 mm
toward a target showing similar magnetic field conditions, and
of 7417 K for the 1.25 mm synthetic observables of the network
region in the EN simulation (the training simulation) reported by
Eklund et al. (2021b).

4. Discussion

4.1. Parameter space of the MHD models used for the
training

The results presented here are based on a training of the artificial
neural network by using the radiative transfer calculations on a
simulation of approximately 3400 s and 33×33 arcsec and on the
validation of the simulation of merely 140 s and 15 × 15 arcsec.
The different simulations have different physical setups, and if
the neural network were trained at both simulations and even
more additional simulations, it might be able to work even better
to perform estimations of observational data. For reliable results,
Deep-SANNE should be applied for studying features that are
represented within the parameter space of the model(s) used for
the training. The current version of Deep-SANNE can thus be
applied to quiet-Sun or network patches, as this is what the train-
ing model features (Sect. 2.3), and the outputs could in principle
be used to study any type of feature, dynamic event, or oscilla-
tions. A higher accuracy of the spatial distribution of the bright-
ness temperatures also contributes to a more accurate analysis of
the temporal evolution of dynamic events and oscillations in the
data (Eklund et al. 2021b). Applications or analyses should be
performed with caution on events that show brightness tempera-
ture contrasts or a dynamic evolution that is very different than
what is represented in the training model.

The training of Deep-SANNE could be extended by includ-
ing simulations showing other properties of small-scale dynam-
ics, beyond what is represented in the current training simulation
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(Sect. 2.3). This might be applicable to sunspots, for example,
given adequate simulations of such regions.

4.2. Image gridding

The resolution of observations is determined by the diffraction
pattern of the PSF (or the clean beam) and the minimum angu-
lar scale required to distinguish two point sources. The cell size
of the image gridding (pixel size) is mostly set in relation to the
size of the clean beam, and based on studies of static relatively
targets, it is commonly set to between three to five times smaller
than the FWHM of the clean beam. However, when targets with
strong dynamic features are observed, the temporal domain pro-
vides useful information for constructing the final images, and
the classical approach of image gridding could be challenged.
Nonetheless, in the current work, Deep-SANNE performs esti-
mations on maps of mm wavelength observables (1.25 mm) with
a cell resolution corresponding to 0.14 arcsec, (Sect. 2.3). This
is 4.9−5.9 times smaller than the clean beam major and minor
axes (Sect. 2.4). While it is interesting to investigate an optimal
cell size for observations of the solar atmosphere when using
a temporal-spatial technique such as Deep-SANNE, the estima-
tions are performed on the typical grid resolution that was used
to reconstruct current observational data so far (Henriques et al.
2022). Deep-SANNE can therefore be directly applied on exist-
ing science-ready data sets.

4.3. Properties of the observational data

Deep-SANNE expects time series with a cadence of 2 s or
higher. Further studies need to be made to establish the depen-
dence on the cadence and results of applications to data sets with
lower cadence.

The currently highest angular resolution offered for solar
ALMA observations is down to 0.62 arcsec (Privon et al. 2022)
at band 6 (1.25 mm). However, achieving this resolution isotrop-
ically is limited to optimal conditions with the Sun close to
zenith. For an interferometric array such as ALMA, the loca-
tion of the target on the sky influences the shape of the PSF
and the corresponding clean beam. When the target stands lower
in the sky, the clean beam becomes more eccentric. In the cur-
rent work, applications were made with a slightly eccentric clean
beam based on simulated observations corresponding to normal
conditions similar to what is achieved in the ALMA observa-
tions. The same method can be used for data at other wave-
lengths, even at other wavelength regimes, and at other angular
resolutions. The angular resolution is dependent on the wave-
length, but also on the size of the aperture, which in the case of
an interferometric array is determined by the antenna positions.
The neural network can be trained to recognize the skewing that
a more eccentric clean beam of a specific data set inflicts on the
data and the limitations of detecting the underlying dynamical
features.

Extending the current work by applying the neural net-
work method on data at lower angular resolution, at lower
cadence, or with a very eccentric clean beam would be useful
to study how these parameters effect the observability of small-
scale features. Furthermore, the observations used here were
reconstructed over the full receiver band 6 (1.2 mm–1.3 mm;
Sect. 2.4), but Deep-SANNE might also be applied to images
constructed from the receiver sub-bands individually at 1.2 mm
and 1.3 mm (Privon et al. 2022), allowing a mapping of the
slope of the brightness temperature continuum and gaining addi-

tional information for the analysis of the small-scale features
(Eklund et al. 2023).

4.4. Identification of noise in the observational images

A significant fraction of the training data was randomly excluded
in the training process of the neural network (Sect. 2.5). This
helps it to perform well on observations with incomplete data.

As mentioned above (Sect. 3.3), to remove the impact of
the side-beams of the PSF, the CLEAN deconvolution process
(Högbom 1974) was applied to the observational data (Fig. 6a),
which is the common case for an analysis of solar ALMA data
published so far. In short, CLEAN is an iterative process sub-
tracting fractions of the PSF from the data (dirty image), deter-
mined by a gain factor and adding the corresponding clean beam
to a model image (clean image) of the target until a pre-defined
threshold is reached, resulting in a final model image com-
posed of a collection of clean beams. This method is optimal
for sparsely distributed point sources and gives rise to certain
imaging artifacts for extended targets, such as the Sun. The mag-
nitudes and contrasts of these artifacts are not only dependent on
the spatial distribution of the intensities and contrasts of the tar-
get, but also largely depend on the specific parameters used in the
iterative process. The final observational (model) image consists
of a collection of clean beams, which is more clearly revealed in
the high contrast of the Deep-SANNE refined image (Fig. 6b).

Taking the Deep-SANNE refined image (Fig. 6b) and con-
volving it with the clean beam of the observational data as a
2D kernel, results in the image shown in Fig. 7a. The small-
scale features in this convolved image are remarkably similar
to those in the observational image (Fig. 6a), but the contrast is
higher. A map of the differences between the convolved image
and the observational image is displayed in Fig. 7b. The differ-
ence map shows elongated features that appear smooth and con-
tinuous over several arcseconds and are not dominated by the
shape of the clean beam, as apparent in (Fig. 6b). This shows
that the neural network does not cause the dot-like structures
in general. Some features in the difference map (Fig. 7b) at the
shape of the clean beam correspond to the feature that the neural
network can determine. They are under-resolved, however.

The result of applying a standard Richardson-Lucy 2D
deconvolver algorithm (with 350 iterations; Richardson 1972;
Lucy 1974) to the observational image (Fig. 6a) is shown in
Fig. 7c. The fringes are caused by edge effects from the deconvo-
lution process with the relatively large clean beam 2D kernel. To
be conservative with the brightness temperatures from the obser-
vational data, no edge preserving techniques were applied here,
and therefore only a rather small central part of the image is
useful for a reliable scientific analysis. The 2D convolution algo-
rithm improves the contrasts of the image, also revealing the dot-
like structures, but it is unable to distinguish how well-resolved
different features are. However, by comparing the 2D deconvo-
lution output (Fig. 7c) to that of the Deep-SANNE refined image
(Fig. 6b), the added information coming from the temporal evo-
lution that gives Deep-SANNE the ability to distinguish the fea-
tures that are under-resolved from the better resolved features
becomes clear. For example, there is the somewhat extended
bright feature in the centre FOV, (around x, y) = (2′′,−1′′), with
a nearly uniform brightness temperature in the observational
image (Fig. 6a) that in the 2D deconvolved image (Fig. 7c)
appears almost equally uniform, while Deep-SANNE manages
to recognize from the temporal dynamics that this feature is com-
posed of a combination of a less bright component and a smaller
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Fig. 7. Comparison of Deep-SANNE refined image. (a) Deep-SANNE refined image of the observational data (shown in Fig. 6b) convolved with
the clean beam corresponding to the observation. The FWHM of the clean beam is marked in the lower left corner. (b) Difference between the
convolved Deep-SANNE refined image (panel (a)) and the observational image (Fig. 6a). (c) Observational image (Fig. 6a) deconvolved with the
clean beam in the 2D spatial domain, using a standard Richardson-Lucy algorithm.

bright point in the centre, similarly to what is seen in the results
of the simulations (Sect. 3).

Deep-SANNE thus works as a deconvolver, effectively
revealing the information of the features in the observational
image with improved contrasts. Because it is based on both
temporal and spatial dynamic variations of the brightness tem-
perature, it works better than a standard 2D kernel decon-
volver in estimating contrast corrections of the small-scale
features.

The CLEAN algorithm serves as a very good first approxi-
mation to make use of these excellent solar observations at mm
wavelengths. It is very important, however, to be aware of the
limitations of the finalized science-ready data sets when they are
analyzed. If the data contain artifacts that are introduced in the
imaging process, it is important to reveal them so that they can
be taken into account as uncertainties. In this aspect, the Deep-
SANNE refined images provide valuable tools for meaningful
scientific interpretations.

5. Summary and conclusions

We presented Deep-SANNE, which performs estimations of the
differences of brightness temperatures at a high resolution and
that seen at observations with limited angular resolution.

The deep neural network was trained on high-cadence time-
series of maps of synthetic observables from a 3D MHD Bifrost
simulation that shows a significantly large span of physical
parameters for small-scale dynamics with a mixture of quiet-Sun
and magnetically enhanced conditions. Deep-SANNE learns
from a large statistical basis of the temporal evolution of small-
scale spatial features and dynamics and from the intensity con-
trast degradation that comes with limited angular resolution. In
observations at limited angular resolution, Deep-SANNE rec-
ognizes patterns of the small-scale dynamics in the data and
estimates the intensities of the underlying features at high res-
olution. Deep-SANNE functions as a deconvolver technique,
using information of dynamics in both the spatial and tempo-
ral domains to give the distribution of brightness temperatures
at increased contrast of a refined angular resolution. This helps
to identify features that otherwise might easily be overlooked.
Including the temporal domain allows distinguishing how well
resolved different features are and results in better estimates

of the contrast degradation than a standard 2D deconvolver.
The performance of Deep-SANNE was validated using another
Bifrost simulation, featuring quiet-Sun conditions with a differ-
ent magnetic field topology. This simulation was not previously
seen by the neural network.

The method shown in the current work could be applied to
observations at various wavelengths and angular resolutions, but
the applications of the current work are focused on solar ALMA
observations with the setup for the highest resolution offered
so far, at 1.25 mm (receiver band 6) with a resolution between
0.69−0.82 arcsec. The relatively high resolution for mm wave-
lengths is favorable for resolving the small-scale features in the
data, but the intensity contrast of the small-scale features are still
significantly degraded. At lower angular resolution, the degrada-
tion of contrasts would be even more significant and the method
of the current work might be more valuable. Deep-SANNE pro-
vides maps of correction factors that indicate the accuracy of
the brightness temperatures of the observations across the field
of view. These maps can be used to create masks that only
show locations of the brightness temperature with high accuracy,
which is useful for selecting locations for an in-depth analysis of
the data. The refined images from Deep-SANNE can be used for
studying all types of dynamic events, spatial sizes, and shapes
of bright and dark features, their temporal evolution, and oscil-
latory behavior in the data.

In the current work, applications on brightening events were
made to show the large improvements of using Deep-SANNE
to estimate their excess brightness temperature, size, and shape.
Deep-SANNE can recognize whether a feature in the observa-
tional data is well resolved and performs well in estimating the
spatial size, shape, and intensity of both dark and bright features.
That is, for an example, if an extended diffuse feature seen at
degraded resolution corresponds to an extended diffuse feature
or to a small point-like feature at high resolution. The Deep-
SANNE estimates were applied to correct for the degradation
of chromospheric brightening events. The average accuracy of
the magnitude of a brightening event shown at high resolution
increased from 43.7% at the observational resolution to 94% at
the Deep-SANNE refined images.

In addition to the significantly improvement of the inten-
sity contrast of small-scale features, the Deep-SANNE refined
images also help to reveal potential artifacts that were introduced
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to the data in the image reconstruction process. This is important
to include in the scientific analysis.

The estimates and refined images from Deep-SANNE allow
performing a more precise analysis on any application where the
variances and dynamic evolution of intensities, sizes, and shapes
of spatial features are important. This allows a more meaningful
interpretation of the observational data.
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