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ABSTRACT. Suppose that a sequence of data points follows a distribu-
tion of a certain parametric form, but that one or more of the underlying
parameters may change over time. This paper addresses various natu-
ral questions in such a framework. We construct canonical monitoring
processes which under the hypothesis of no change converge in distribu-
tion to independent Brownian bridges, and use these to construct natural
goodness-of-fit statistics. Weighted versions of these are also studied, and
optimal weight functions are derived to give maximum local power against
alternatives of interest. We also discuss how our results can be used to
pinpoint where and what type of changes have occurred, in the event that
initial screening tests indicate that such exist. Our unified large-sample
methodology is quite general and applies to all regular parametric models,
including regression, Markov chain and time series situations.
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1. Introduction and summary

Do the parameters of a statistical model stay constant, or do they experience changes
over time? What are the best goodness-of-fit tests for the ‘no change’ hypothesis?
What is necessary in order to claim that changes have occurred? If there are level
shifts or other types of discontinuity, how can one spot them, or best describe their
nature, or pinpoint their locations?

This paper is concerned with these general questions, and aims at devising
generally applicable principles and methods. The basic theory is developed first in
Sections 2—4, for the structurally and conceptually simplest general case, namely
that of independent data with no extra covariate information. Here Y7,Y5,... are
independent with densities of common form f(y, #), but the parameter 6 is not nec-
essarily constant as time goes by. In Section 2 a certain p-dimensional monitoring
process is constructed, p being the dimension of the # parameter, behaving in the
large-sample limit as p independent Brownian bridges. This makes it easy to con-
struct various overall tests for the hypothesis of no change in the s, having in mind
as interesting alternatives those where the parameter changes over time. In Section
3 weighted versions of these processes are constructed. Section 4 provides results
about local detection power, against various discontinuity alternatives of interest,
and about optimal weight functions. To some extent we also learn about how to
detect where changes have occurred, if indeed the screening tests indicate that such

are present.



There would often be situations where covariate information is available for
each Y;, and where questions related to parameter constancy or change would be
important. As an example, suppose Y; is Poisson with mean parameter exp(a +
byx;1+byx; 2), reflecting dependence on factors x1 and 2. Then perhaps b, changes
over time, reflecting say increased dependence on factor x5. The general regression
framework is discussed in Section 5. Section 6 provides illustrations of our methods.

The scope of our methodology is broader than models with independence. Tests
for parameter constancy, and results about these, may be derived also in more
complex situations, like in Markov chain models, where the transition probabilities
may have changed over time, and in time series regimes, where for example serial
dependence parameters may not have been constant over time. This is explained in
Section 7, along with other remarks and pointers to problems for further work.

There are several areas of applied statistics where questions and problems arise
for which the methods of this paper would be applicable. One quite general such
area is that of prediction. This is of central importance in econometrics, for ex-
ample; see e.g. Ploberger and Kramer (1992). Ongoing debates and controversies
concerning climate changes also involve prediction issues. Predictions rely heavily
on the assumption that the future behaves in much the same way as in the past.
Structural breaks may destroy the reliability of predictions. The investigation of
the Dutch Ombudsman, described in section 6, and where our methods do discover
a structural break in underlying parameters, was in fact initiated because of the
poor prediction of capacity needed for so-called TBS-treatments.

Another general such area is statistical process control. Statistical process
control methods aim at detecting non-constancy of parameters in the context of
industrial statistics. Our methods are of relevance for analysing historical data
(corresponding to what is sometimes referred to as ‘stage I statistical process control’
problems), see Sullivan and Woodall (1996) and Koning and Does (1997); and also
to some extent for monitoring real-time data.

And a third general area of application would be that of stochastic simulation
via processes that supposedly converge towards equilibrium distributions. Some
simulation systems need a ‘warming-up’ period to reach stationarity. Some special
cases of tests presented in this paper are in fact already used to investigate whether
the system has warmed up sufficiently; see e.g. Schruben (1982, 1983) and Ripley
(1987, Ch. 6).

It is worth remarking that the clear majority of articles dealing with goodness
of fit problems for parametric models is concerned with a more ‘static’ problem
formulation; one believes that a sample comes from a definite distribution and
tests whether this distribution is of a specified type. The present formulation is
‘dynamic’ and focusses specifically on discontinuities over time. This helps explain

why our large-sample theory leads to results that are both more unified and more
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simple than those obtained in the ‘static’ framework. Thus an infamous comment
of Pollard (1984, p. 118), stating that “The interest aroused when Durbin (1973)
applied weak convergence methods to get limit distributions for statistics analogous
to those of Kolmogorov and Smirnov, but with estimated parameters, died down

when the intractable limit processes asserted themselves,” does not concern us.

2. Canonical monitoring processes

The framework for this section involves a sequence of independent observations Y;,
coming all from the same parametric family f(y, ), where however the underlying
parameters 6;, all belonging to some open p-dimensional parameter region, may have
changed over time. After having observed Yy,...,Y,, we take particular interest in

the hypothesis
H0:91 ::9n, (21)

which is to be tested against ‘discontinuity alternatives’. We assume standard
regularity conditions hold for the f(y,#) family, sufficient to make the traditional

maximum likelihood apparatus work.

2.1. Cumulative score processes. Let u(y,6) and i(y,0) be first and second
derivatives of log f(y, ) w.r.t. 8. To learn about possible evidence against Hg, start
out considering cumulative sums of u(Y;,60y), where 6y is the common parameter
value under Hy. These have mean zero and variance matrix J = —Ei(Y,6p), the
information matrix of the model. By the Donsker theorem, see e.g. Billingsley
(1968), combined with the Cramér—Wold device, it is not difficult to derive the
result

W (t,00) = \F > u(Yi,60) —a Zo(t) in D,[0,1], (2.2)
i<[nt]
where Zg is zero-mean Gaufiian with covariance function min(¢y,t3).J. The con-
vergence takes place w.r.t. the Skorohod topology in the space D,[0,1] of right-
continuous functions x: [0, 1] — IR? with left-hand limits. Note that Zy is a linear
transformation of p independent Brownian motions.

Our main concern will be with the case of unknown parameters in the model.
But it is worth pointing out that in the fully specified case, where Hy states that
all §;s are equal to a specified €y, the component processes of J_1/2¢n(t, o) tend
to p independent Brownian motions under Hy. This makes it particularly easy to

construct and analyse test statistics.

2.2. Estimated cumulative score processes. When 6y is unknown, let 8 be
the maximum likelihood estimator, and consider the estimated cumulative score

process:

¢n(t,§):7 Y u(¥if) for0<t<1.
i<[nt]



Notice that this process both starts and ends at zero. We now use Taylor expan-
sion in conjunction with well-known results about the sampling behaviour of (/9\,
e.g. \/ﬁ(é\— 00) = J "4, (1,60), where A, = B, means that A, — B, tends to zero
in probability. With u(Y;, (/9\) = u(Y;, 00) + (Y5, 90)((9\— fo) this leads to

Un(t,0) i;/;n(t,t%)—l—% > i(Yi,60) v/n(8 — 6)

i<[nt]
= b (t,00) — tJ[nt]J_1¢n(1,90) —a Z(t) = Zo(t) — tZo(1),

where J, = —n~' 30 i(Y;,600) is consistent for J. The limit process Z is a p-
dimensional process with covariance function ¢y (1 —t3).J for t1 < t9, in other words
a linear transformation of p independent Brownian bridges.

These results lead naturally to the construction of the canonical monitoring

process,

My(t) = J 24, (4,0) = T~ Y u(¥i8) for0<t<1,  (23)
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where J is any reasonable estimate of .J (in this connection, see also Remark 7.1).

The immediate and quite powerful result is then that
My —a M =J"1272=(WP,...,W9)" under Ho, (2.4)

a vector with p independent Brownian bridges as component processes.

The inverse square root matrix is calculated as usual, via eigen-analysis; there
is an orthonormal P and a diagonal D such that PJPt = D, containing eigenvalues
of J in decreasing order, and one puts J=Y/2 = ptD=1/2P. Another option is the
so-called LU-root.

2.3. Omnibus tests for constancy of parameters over time. Result (2.4) can
easily be utilised for testing purposes, as we demonstrate below. It is also quite
useful to monitor the component processes M,, ;(t) graphically, particularly in cases
where constancy has been rejected; such plots would help in trying to pinpoint in

which way or ways Hg does not hold. See Section 4.3 and the examples of Section 6.

TEST 1: Classes of chi squared type tests can be developed as follows. Divide

[0,1] into m windows Iy, ..., I,,. For component j, consider increments

1 o N
AMn,j(fk)Zﬁ (TG u(Yi,6).

These tend to (AW?(Il ) P AW?(Im))t. Inverting the covariance matrix one finds
that

4 Y2, under Hy,

2  {AM, (1)}
AL = Z |]Z|
k=1



where |I;| is the length of interval Ij,. These are component test statistics of separate

use and interest. They may also be combined to form one overall test, via

p
= ZA’Z%J —5d X]%(m_l) under Hy.

J=1

TEST 2: A p-dimensional Kolmogorov—Smirnov type test would be U, =

maxo<i<1 || My (t)]|?, which can be written

g Vol DT 0n0.8) = e (5 u0018) T (w0 )

Its limit distribution under Hg is that of

max ||[WO(#)||* = max {Z W2t }

0<t<1 0<t<1

Let us also point to a sum-of-Kolmogorov—Smirnov type tests option:

[
Un = max [Mp1(t)] + - + max [Mn(?)

Z 1/2 (J) u(yi, o)),

<1

1
= — max
2 /1 1<I<n—1
]:

with limiting null distribution E§:1 maxo<i<1i |Wf(t)| The upper 0.05 quantile of
the distribution of any one these components is 1.358, for example; the distribution
of a sum of two or more such components can be found via simulation.

We also mention the natural option of weighing by inverse standard deviation.
The point is that

; M (1) o)

= S ik LY A A — der H,
K agr?galx—a {t(l — t)}l/Z —rd agr?galx—a {t(l — t)}l/z mnder Ho,

for each component j. This distribution can be simulated or approximated, cf. Miller
and Siegmund (1982). Upper 0.10 and 0.05 quantiles are approximately 2.89 and
3.15, for instance, for the case of ¢ = 0.05. The T}, ; would be calculated as the
maximum over all right- and left-hand limits at points t = k/n for which e < k/n <
1—e.

TEST 3: As a final example of a general construction, consider this p-dimen-

sional Cramér—von Mises type test:

c2 = /01 1Mo (1)) dt = nl—2 i(zu(mﬁ))tf—l (> u(vd).



Under Hy,

p 1 00
1
2 0(4)2 2
C. —a ;:1 /0 W(t)" dt = kg_l —572 Ve

Similarly, an Anderson—Darling type weighted version of this can easily be put up.

2.4. Examples. The apparatus above, with monitoring processes and test

criteria built on these, can be routinely applied to any regular parametric model.

EXAMPLE 1: Assume the Yjs come from a normal (p,0?) distribution, where
one at the outset could be interested in monitoring both parameters for possible
changes. Here u(y,8) = 07 '(2,2% — 1), where z = (y — p1) /o, and one quickly finds
J = o0~ ?diag(1,2). This leads to

M, (t) WZ< 12z _1)>, where Z; = (Y; — i) /5.

i<[nt]

Tests for the constancy of p or of ¢ or both can be constructed based on the two
component processes, as per the methods above. See also Remark 7.1.

The first component process coincides with the standardised time series used
in Schruben (1982, 1983), and is also a special case of the least squares cumulative

sum method in Ploberger and Kramer (1992).

EXAMPLE 2: Let the Y;s come from a Gamma distribution with parameters
(a,b), i.e. with density {b%/T(a)}y* ' exp(—by). Here one finds

o= (U SE) G (),

i<[nt]

in terms of maximum likelihood estimators (a,/b\). The two component processes are
again approximately independent, and contribute combined information about the
mean level of logY; and the mean level of Y;. One may also construct monitoring
processes focussing on a separately or b separately, see the Remark below.

EXAMPLE 3: Now take the Y;s to be Poisson with parameters p;. The natural
process to monitor these becomes M, (t) = n™'/? Eig[nt] (Y;=Y)/Y'/2. In the limit
this is a Brownian bridge.

EXAMPLE 4: Suppose a die is thrown many times. Assume that its face proba-
bilities (p1, ..., ps) are unknown, and imagine that they somehow may have changed
over time. To monitor this, let the data be registered via Y; = (Y;1,...,Y;¢), with

a 1 for the face showing and 0 for the others. The recipe above gives

Yi1/p1 — Yie/Pe

i 1 .
Mu(t) = T2 3 ; :

<M\ Y;5/ps — Yie/Pe



where p; = n7' Y7 |V, ; and where the 5 x 5 matrix J~! has p;(1 — p;) along
its diagonal and —p;ps outside. The five component processes are approximately
independent Brownian bridges, in the case that the probabilities have been constant.
Again various test statistics can be written down as per Section 2.3.

Note that this example is relevant for the problem of checking whether a proba-
bility density has changed over time, via the monitoring of histograms. More sophis-
ticated methods for nonparametric monitoring for changes of probability densities

are given in Hjort and Koning (1999a).
EXAMPLE 5: Let pairs (X;,Y;) be independent and binormally distributed,

with parameters say (1,01, 2,02, p. One may now construct a five-dimensional
monitoring process M, (t) whose limit distribution, under the hypothesis of no
change in the parameters, corresponds to five independent Brownian bridges; we
omit the algebraic details here. One may then single out for example the fifth of

these, to look for possible changes in the p parameter.

REMARK: So far we have discussed monitoring processes in the context of
parametric models. One may also construct similar methods to monitor statistical
parameters more generally, for example, nonparametrically checking the constancy
of the skewness parameter for an observed sequence. Suppose «; is such a parameter
of interest, connected to the distribution of Y;, and that the hypothesis oy = --- =
ap is to be checked. Assume there is an estimator &; for the common o value,
depending on the first 7 of Y; data, satisfying the standard requirement that a,—a =
n' 3" I(Yi)+ Ry, where I(y) is the influence function with variance say 7%, and
where n'/2R,, —, 0. This ensures that A, (t) = [nt]l/z(&[nt] —a) goes to a N(0,72)
for each positive ¢, and more generally, under mild extra regularity, that the process
A, is asymptotically zero-mean Gauflian with covariance structure (3/t)1/27'2 for
s < t. It follows that

Bo(t) = n 2 [nt] (@ — @n) = 02 [0t] /2 A () — 07 ] An (1)

tends to TWO(¢) in D[0,1]. Hence M,(t) = B,(t)/7 is a Brownian bridge in the
large-sample limit, employing any reasonable estimator 7 of 7. This makes previous
techniques apply for testing the constancy hypothesis.

This apparatus may be used in the parametric models above when there is a
sub-parameter to be concentrated on, like for example the shape parameter o in
the Gamma model. As another example, suppose pairs (X;,Y;) are independent
and that one is interested in monitoring their correlation coeflicients p;. Let p; be
the usual estimator based on the first j pairs of data. Then n_l/z[nt](ﬁ[nt] — Pn)/T
tends to a Brownian bridge under the hypothesis of no change, for an appropriate
scale estimate 7. Tests can now be constructed as above. It should be pointed out

that the convergence to a Brownian bridge in this and similar examples, though
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of course mathematically correct, may be slower than for our (2.3) type processes,

particularly for smaller t.

3. Weighted monitoring processes

The tests developed above are all of ‘omnibus type’, constructed without any par-
ticular attention to the types of departures from Hy that could be deemed more
plausible than others. When specific alternatives to constancy are envisaged better
tests can be constructed. This section works with rich classes of goodness-of-fit pro-
cesses, emerging by integrating weight functions w.r.t. the basic monitoring process.
Consider
1 ~

> Kn(L)o T 2u(Yi,6),
n

Va(t) = / K, (s)odM,(s) = 7
° i<[n1)

where Ky, 1,...,K, , are suitable weight functions, and a o b for two vectors in-
dicates coordinate-wise multiplication. In the interest of concise presentation we
postpone until the remark ending this section discussing the exact regularity con-
ditions needed for the intended martingale and stochastic integration calculus to
work; these conditions at a minimum require the weight functions to tend in prob-
ability to predictable functions K;i,...,K,. Under such conditions one finds an

appropriate generalisation of (2.4),
t
Vi —a4 V, with independent components V; = / K;(s) de(s), (3.1)
0

under Hy. These are again normal processes, and calculations yield

11 Aito ty to
cov{V;(t1),V;(t2)} = / K]Z ds — / K; ds/ K; ds. (3.2)
0 0 0

Many tests can be constructed using these [ K, o dM, processes, along the
lines of Section 2.3 for the special case of constant weight functions. The difference
is that the limit processes become less tractable, but this is not a serious obstacle
in view of the practically simple option of simulating these when needed. As an

example, consider the supremum type test which for component j uses

L= ()] = —
Un,j = max [Va;(?)| N

Y K (5T gu(Yi,6)).

i<l

which goes to U; = maxg<i<i |f0t K; de| under Hy. This distribution must then
be approximated by simulation. This remark applies also to sums over some or

all components, like >_7

i=1 Un,j» and to other types of omnibus tests based on the

t .
fo K, o dM, processes.



A large class of tests which are more easily applied, in that no simulation of
limit distributions is called for, is that of the chi squared tests. Focus first on a

single component, say j. Divide again [0, 1] into m cells I, and let
AVn jik = /1 AVoi(s) = —= Y Kjn(2)(T?)u(Yi.9),
k

the increment over cell Ij,. Then the vector of these, under Hy, tends to the vector

(AVj1,...,AV; )", say, which is zero-mean normal with covariance matrix of the

form ¥; = D; — Cjc;. Here D; is diagonal with d; ; = fjk K]Z ds while vector ¢; has
k= fIk I&’]‘ ds. And

- Dj_l + D;1Cjc;D;1/(1 — c;Dj_lc]‘),

J

giving the simple y? test

‘ (AV,, ;. = E_ .G, 2
Qn.j = k; 7%; (1 ]; @1) (; df kAV ). (33

Here ¢, ; and c/l;k are natural estimates of the respective quantities, typically using
K, ; instead of K;. We have @, ; —4 \2, under Hg, unless K = K is constant,
which causes the final term to vanish and a limiting x2,_;; see Test 1 of Section 2.4.

The above is valid for each of the components of V,,. Summing over some or

all components gives a grander test,

D
Qn = Z Qn,j —a X72np under Hy. (3.4)

i=1
This holds since the individual transformed Brownian bridges are independent.

REMARK: Various sets of regularity conditions can be put up to ensure result
(3.1). References include Génnsler and Héusler (1979), Rootzén (1980) and Ja-
cod and Shiryayev (1987). The K, ; functions would either have to be predictable
(essentially, left-continuous processes with values at time s not depending on out-
comes of variables to be seen after time s), or to be well enough approximated by
predictable processes. It would often suffice to have I, ;(s) of the form K, ;(s,a),

where & is nl/?

-consistent for a certain «, and where K, ;(s,a) is predictable; see
Hjort (1990, Section 2.1). Next, I, ;(s) is required to converge in probability to a
predictable limit function K;(s), and we should have fot K,K! ds —, fot KK"ds for
each t. Finally a Lindeberg type condition is needed. We refer to Rootzén (1980)
rather than spending too many efforts discussing the details of his conditions ap-
plied to our context. We note that Rootzén’s methods and conditions also apply to

the regression framework of Section 5.



4. Local power and optimal weight functions

The previous calculations have only been under the constancy hypothesis. This
section works out limiting distribution results for various local alternatives, and
also derives the optimal form of the weight functions when specific alternatives
are being envisaged. We also learn about the expected shapes of the monitoring
processes, under various alternatives. This is useful when it comes to assessing the
type of change that has occurred, in cases where tests reveal that parameters have

not been constant.

4.1. Limiting distributions for local alternatives. Consider alternatives in the
vicinity of Ho, of the form 6; = 6y 4+do0h(- L) /n'/2 4+ O(1/n), for departure functions
h = (hi,...,hy)" of suitable shapes and degrees of departure § = (d1,...,d,)". Then

Y; comes from

F(y,0:) = f(y,00) {1+ u(y,b0)" § o h(L)//n}. (4.1)

Consider again the basic score process 1, (t,8y) = n~"/? EK[M] u(Yi, 6p). Presently

it has mean function

Bty (2, 60) = Z /f Y, 00)u(y, 6o)u(y,80) dy § o h(L )—>J/O § 0 h(s)ds.

z< nt)

The covariance function is different from what it is under Hg, but only by an O(1/n)
effect. Further details ensure ¢, (¢,6p) —4 Jfot d o h(s)ds + Zo(t), where Zg is as
with § = 0, that is, it is zero-mean GauBlian with covariance function min(ty,¢2) J.

Convergence of the estimated cumulative score process can now be assessed
outside the null hypothesis. Some analysis, appropriately generalising arguments

used in Section 2, leads to
Ua(t,0) = Yalt,b0) — thn(1,60) + 0p(1)
t 1
4 J</ 5ohd3—t/ 5ohd3> + Zo(t) —tZo(1).
0 0

It follows that

t
M, (t) = T Y2%,(,8) =4 J1/2/ §o(h—h)ds+ WO(t), (4.2)
0
under §; = 0y +80h(L)/\/n circumstances. Here h = fo s)ds, and W0 is a vector
of p independent Brownian bridges Wf. The above generahses result (2.4), which
corresponds to the case of h being constant.
Without going too much into the technical details we note that the methods

and results of Rootzén and others, as explained in the remark ending the previous
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section, yield results for the weighted processes fot K, ;dM, ;(s) studied in Section
3, in the present local alternatives framework. Thus for each V), ; we have, under

(4.1) circumstances,

/0 I&’n7j(8)dMn7j(S) —>d/0 I&’]‘(8)(J1/2)(j)50(h(8)—h)dS—I—/O I&’j(s)de(s) (43)

modulo regularity assumptions discussed before. Result (4.3) generalises that of

(3.1).

4.2. Weight functions and optimal local power. Using results above one may
calculate approximate power for various tests based on M, and [ K, dM,, against
various alternatives of interest. Given departure functions hy, ..., h,, results (4.2)-
(4.3) lead to expressions for limiting power, depending on the degrees of departure
01,...,0p. This approach is rather complicated but nevertheless quite useful when
it comes to exploring the performance of several of the supremum and integration
based tests portrayed in Section 2.3. It lends itself most easily to the chi square
type tests, however.

Consider the local power of the chi squared tests constructed in Section 3.
Focus on a single component j first. Now study the y? tests based on quadratic
forms in AV, ;r = fjk K, i(s)dM, ;(s). The vector of such increments tends to

t
</ I&’]‘H]‘dS—FAVj,l,---,/ I(jdeS‘l‘AVj,m) s
I Iy

where H;(s) = (Jl/z)(j)é o (h(s) — iL) For the test of (3.3) one therefore finds a

noncentral chi squared limit,

Qn,j —da X12n(/\j)7 where \; = a;(Dj — Cjc;)_laj, (4.4)

with a; = fjk K;H;ds. The excentre parameter A; can also be written
K;H;ds)? K;ds)? K;ds 2
$o ULt (o3 ) (S B | )
P fjk K7 ds fI K7 ds fI Ix ds

The bigger A\; = X\;(I;), the greater power of the tests. The optimal choice of K;

can be proved to be

Kj(s) = Hj(s) = (J'7)( {8 0 (h(s) — )} (4.5)

(or proportional to this choice) see Appendix I. It attains the maximum possible
value \;(H;) = maxp;, fo )2 ds, and the corresponding optimal local

power in (4.4).
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The above is valid for each component of the vector V,,(¢) = fot K, odM,. For
combined y? tests the optimal weight function is to make K, proportional to a
consistent estimate of

K(s) = JY2{8 o (h(s) — B},
where hy, ..., h, are the departure functions of interest. This gives X12np tests of the
form (3.4), with limiting maximal power determined by the excentre parameter for

the X12np distribution, namely

V=3 [ 0hs(0) =it} s = [0 (b= W) T30 (=) as

For comparison, the simpler test statistic using constant K; functions, correspond-

ing to A2 of Section 2.3, has a X%m—l)p(lu) limit distribution with excentre parameter
?:1 Ekm:1(f[k H; ds)? /[T

4.3. Shape of M,, and V,, plots. Result (4.2) also provides useful information
about the expected shape of M,, plots under different circumstances. Take the ;s
to be equal, for simplicity. We see then that the expected M, ; plot is proportional
to (Jl/z)(j) times the vector of fot(h — h)ds. If hj is a change point departure
function, say zero on [0, a) and then equal to b on [a, 1], this integral is proportional
to the triangular function with value —(1—a)t and a(t — 1) on respectively [0, a] and
[a,1]. If on the other hand h; describes a linear trend of change, as in hj(s) = ¢s,
then the expected shape of the appropriate monitoring component is —%ct(l — 1),
a symmetric parabola. Illustrations 1 and 2 of Section 6 give examples of such
behaviour.

It is also possible to estimate the position of break points, for any of the param-
eters, in cases where initial tests indicate that the (2.1) hypothesis does not hold.
Suppose for simplicity of discussion that there is only one parameter to consider,
and that this parameter has a jump at an unknown position a. Then M, can be
represented as a triangular function plus noise, as explained above. An estimate of
a emerges by fitting the M, to a triangular shape and looking for its top point.

If the alternative to Hg of (2.1) is that of a linear trend, say 6; = 6y + (i/n)ec,
then the optimal weight function to use, by result (4.5), is K(s) = s — % Thus
Va(t) = fot(s — %) dM,,(s) is most readily detecting the existence of such a trend.
The limiting null distribution of max; |V, (¢)| is that of max; | fot(s — 3)dWO(s)],
for example. Simulations showed that this distribution has median about 0.32 and
upper 0.05 quantile point about 0.64, for example. In brief simulations for the
situation examined in Illustration 2 of Section 6 below, the max, |V, (¢)| test was
indeed consistently better than the max; |M,(¢)| test. This also suggests additional
plots to be constructed for special tasks, like plotting V,,(¢)/7(¢) in the mentioned
situation, where ()% = 2(t — £)* + 57 — ${(t — 3)* — {}? is the limiting variance,
as per (3.2).
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5. Regression models

There are many situations where observations Y; have relevant covariate information
x;, and where interest would focus on whether the precise form in which the distri-
bution of Y; depends on x; somehow could have changed over time. Under suitable
assumptions the previous no-covariate methodology can be readily extended to the
regression framework.

We take the Y;s to be conditionally independent given the sequence of x;s,
and will analyse sampling behaviour in such a conditional framework, considering
x1,...,T, as given. We shall however assume that the z;s arrive as an exchangeable
or ergodic sequence, where averages stabilise in probability; they could for example
themselves be 1.i.d. outcomes from some random mechanism.

Assume that Y; given z; comes from a density of the form f(y; |z;,6;). Let
u(y|x,8) and i(y|x,0) be the first and second derivatives of log f(y | z,0) with
respect to the parameters. Under model conditions and the hypothesis Hy that the

parameters 6; do not change, there is process convergence

nltb0) = <= 3 (Vi |2i.60) >a Zo(t) in DI0.1] (5.1)
i<[nt]

under mild regularity conditions. Here 6 is the common true parameter value. The

variance matrix of ¢, (t,0) is n='[nt]J},,, where

Jp=n"1 Z V(zi,00) —p J asn — oo, (5.2)

=1

writing V(x;,00) for Varu(Y;|z;,6p) (assumed to be finite). That .J, stabilises
follows from our ergodicity assumption about the x; sequence. It follows from this,
and the Lindeberg-extended Donsker theorem, that the Zp limit has independent
increments with covariance structure min(ty,ts).J.

Likewise other arguments of Section 2 can be utilised and generalised to the

present framework, showing that if 8 is the maximum likelihood estimator, then

wtﬁ):% Z u(Y; |2:,8)

Un(t, 90) Jingd " on(1,600) —a Z(t) = Zo(t) — tZo(1).

Again, this process is GauBlian with zero mean and covariance structure ¢1(1 —t2).J

for t; < t3. And a canonical monitoring process emerges, of the form
M, (t) = J Y2, (t,0) for0<t<1. (5.3)

Here J is any reasonable estimator of .J,, and required to be consistent for the

limiting matrix J as n grows; a natural choice is n™* Y " V(:z;i,é\). The limiting
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process J /2

Z is that of p independent Brownian bridges, where p is the number
of parameters in 6.

We note that the constructions and results of weighted monitoring processes,
discussed in Sections 3 and 4, can be extended to the regression case, partly in view

of the methodology of Rootzén (1980) and Géannsler and Héusler (1979).

EXAMPLE 1: Let Y; given x; be normal (z!3,0%), where x; is p-dimensional

and (3,...,3,,0 are unknown parameters. Then
J. =g 2 n”! E?:l le’f 0
n 0 2 b

and the monitoring vector process takes the form
) Z 7 here Z; = (Vi — 1)/

This appropriately generalises the process of Example 1, Section 2.4. The last
component process of M, can be used to look for changes in the o parameter, for

example; see the second illustration of Section 6.

EXAMPLE 2: Let Y; be Poisson with mean parameter exp(z!/3), and let 23\ be

the maximum likelihood estimator. The monitoring process takes the form

M,(t) = {n_l Zexp(mﬁ@) :1;1:1;2}_ Z {Y: — exp(x )}l‘l for 0 <t <1.

=1 z< nt)

REMARK: There are situations where ergodicity of the ;s cannot be assumed,
for instance in the case where one of the covariates in question is the running time
1 itself. Without ergodicity one is faced with additional problems with no clear-
cut general-purpose solution. The variance function of the score process ¢, (t, 6p)
may not factorise into a scalar function of ¢ and the information matrix .J, which
precludes a global standardisation (that is, premultiplying by J_l/z) of the score
increments u(Y; | z;,6). Instead, a local standardisation should be used. However,
the obvious candidate for such a standardisation, premultiplying by V' (z;, 90)_1/2,
is not applicable if V(x;,8p) is not of full rank. Further work is needed to solve such
problems in a satisfactory manner. Note however that if 6 is scalar, these problems

do not emerge since the variance function of the score process trivially factorises.

6. Illustrations and applications

It is easy to illustrate the behaviour of our canonical and weighted monitoring
processes, under the hypothesis of no change as well as under various discontinuity

alternatives, via simulations from models of interest. We briefly provide some such
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as Illustrations 1 and 2 below. In addition an application is described using data

from the Dutch Ombudsman, looking for changes in Poisson model parameters.

ILLUSTRATION 1: Suppose data Y; come from a Gamma (ay,b;) for i =
1,...,100 and from another Gamma (az2,by) for 7 = 101,...,200. We take here
the mean levels aq /by and as /by to be the same, but scale up the standard devia-
tion a;/z/bg to be 1.25 times that of a}/z/bl. It is not easy to spot from just a plot
of the 200 data points that anything has happened to the underlying parameters.
However, the first component of the monitoring process M,(t), see Example 2 of
Section 2.4, signals by its triangular shape and maximum size that something has
happened around t = %, that is, around data point 100 of the 200. The upper 0.05
quantile of the distribution of maxo<;<1 [WO(#)| is 1.358, so M, 1 clearly does not
agree with the Brownian bridge behaviour it should have had under the hypothesis

of no change.

— Figure 1 around here, see page 21 —

ILLUSTRATION 2: Consider a regression situation where data Y; are normal
(a + bx;,c?), where the regression coefficients do not change, but where o; slowly
increases with time. Specifically, we simulate 200 points around the regression line
1.1142.22 z, with zs being uniform on the unit interval, and with o; = 1+0.54/200,
increasing linearly from 1 to 1.5. It is quite difficult to spot from scatterplots
or residuals that the standard deviation has been increasing linearly over time.
But a look at the three monitoring plots quickly shows that the third component
reaches outside £1.358, the 0.95-probability band, and that the two first compo-
nents, corresponding to the a + bz part, stay nicely within. This time the third
monitoring process approximately forms a parabola departure from zero, indicating
as per the theory of Section 4.3 that the non-constancy of the o parameter might
be in the form of a linear trend. As explained there alternative plots involving
Vias(t) = fot(s — %) dM, 5(s), not shown in our article, are even better at detecting

linear trends in the o parameter.

— Figure 2 around here, see page 22 —

AN APPLICATION: The first paragraph of article 78a of the Dutch Constitution
reads as follows: “On request or on his own initiative the National Ombudsman shall
investigate the actions of administrative authorities of the national government and
of other administrative authorities designated by or pursuant to Act of Parliament.”

In the Netherlands, criminals may receive psychiatric treatment in so-called
TBS-institutions as part of their sentence. (This Dutch acronym for ‘terbeschikking-
stelling” indicates in this case ‘to be put at the disposal of’, by the authority, for
psychiatric treatment.) The psychiatric treatment precedes the actual prison sen-

tence. Criminals on a waiting list for placement in a TBS-institution are temporarily
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imprisoned under relatively poor conditions. After receiving eleven complaints be-
tween December 1995 and February 1996, the National Ombudsman decided to
investigate on his own initiative the TBS waiting lists, and especially the waiting
time involved. The investigation was reported on in National Ombudsman (1996).
In the tables presented in Appendix IT the number of TBS-sentences and the num-
ber of ended TBS-treatments are given for each month during the years 1984-1992.

Figure 3 displays the corresponding monitoring plots.
— Figure 3 about here, see page 23 —

The monitoring plot of the expected number of ended treatments exceeds the
value 1.358, indicating that the hypothesis of constancy of this parameter should
be rejected at the 5% significance level. Moreover, the plot resembles a triangu-
lar shape reaching its maximum deviation from the time axis in March 1990; as
explained in Section 4.3, this is indicative of a change point. The plot suggests
that around March 1990, there was a sudden decrease in the expected number of
ended treatments. A possible explanation could be the increased complexity of the
psychiatric problems of the clients within the TBS-system. Due to several policy
changes in Dutch psychiatric care in the late eighties, it became easier for unwill-
ing psychiatric patients to avoid admittance to psychiatric institutions. For these
patients (among them extreme psychotic patients) the TBS-system started to act

as a dust-bin.

7. Supplementing remarks

This section lists various comments pertaining to the use and further study of our
methods.

7.1. Model-robust variance matrix estimation. In the framework of Section 2,
suppose that under Hy there is indeed a common density f(y) for the Y;s, but that
this unchanged density is not a member of the parametric class f(y,6). Still the
maximum likelihood estimator is meaningful, taking aim at the least false param-
eter value 6y which minimises the Kullback—Leibler distance from the true to the
parametrised density, and there is convergence in distribution \/ﬁ(é\— o) towards
a normal (0, J7'KJ~'). Here J = —E;i(Y;,00) and K = Varyu(Y;,6); these
coincide under model conditions but not in general.

To analyse the implications of such a model-robust viewpoint for our methods,
consider first the (¢, 60y) process of Section 2.1. It is clear that its limit Zy has
covariance structure min(ty,¢2)K. The Taylor expansion and other arguments of

-~

Section 2.2 now show, mutatis mutandem, that ¢, (¢,0) is well approximated with
Y (t,00) — tJ[nt]J_1¢n(1, 6o ), with limit Z(¢t) = Zo(t) —tZo(1). This has covariance
structure t;(1—t2) K for t; < 5. It follows that the natural model-robust monitoring
process is M (t) = f(_l/2¢n(t,§), that is, just like in (2.3), but for model-robust
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safety employing K to estimate the variance matrix of the score function, rather
than J.

In the normal-model case of Example 1, Section 2.4, this leads to using

M*(t) = 1 3 (f i ) . ( Zi ) with Z; = (Y; — [i)/&
n \/ﬁi<[nt] K1 24+ Ko Ziz—l ’
instead of the simpler one given there. Here k1 and k3 are sample-based estimates
of skewness and kurtosis. Similarly, in the Poisson model Example 3 of Section 2.4,
the model-robust viewpoint leads to using M?*(t) = n™"/? Eig[nt](Yi —Y) /5, with
o ={n"' 3 (Y; = Y)2}'/2 replacing the simpler model-based Y'/2.

7.2. An innovation approach. The monitoring process M, (t) has the attractive
property of converging under parameter constancy to a vector of p independent
Brownian bridges. This property is lost by stochastic integration, and the limit
in distribution of the weighted monitoring process [ K, (s)dM,(s) becomes less
tractable. In Koning (1999) and Hjort and Koning (1999b) this problem is overcome
by transforming the monitoring process M, () into a process M, (t) which converges
under parameter constancy to a vector of p independent Brownian motions. This
involves innovation transforms in the spirit of Khmaladze (1981). Hence, under
suitable conditions on K, the process [ K,(s) dﬁn(s) also converges to a vector of
p independent Brownian motions (albeit time-transformed). This solution takes a
slight toll, in the sense that the rate of convergence of M, (t) is a factor logn less

than the rate of convergence of M, (t).

7.3. Extensions to Markov and time series models. Our methods are not limited
to the context of independence considered in earlier sections of this paper, but have
a far larger generality. In principle, they could be applied to any statistical model
in which we can define a cumulative score process ¥, (t,6y) which satisfies (2.2),
the starting point for our methodology. For this purpose martingale central limit
theorems would often suffice for verification. Presently we verify this property for
Markov models, and then comment shortly on Gauflian autoregressive type time
series models.

For a one-step memory Markov model, taking for technical expediency the
viewpoint that the value y; of the first variable Y7 simply is fixed and given, and
not informative for the Markov parameters, we may define the log-likelihood ‘at
time ¢’, that is, corresponding to the sample Y3, ..., Y},q, as EE’:% log f(Yi—1,Y::6).
Here f(y,y’;0) is the density of the transition measure (cf. Billingsley, 1961, p. 4).
Defining u(y,y’; ) as the first derivative of f(y,y’;6) with respect to 6, it can be

shown that the cumulative score process

1
¢n(t790) = ﬁ Z U(Yvi—lvyvi;GO)
i<[nt]
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is a martingale with asymptotic variance function t.J, where .J is the information
matrix (see Billingsley, 1961, p. 6). Under mild regularity conditions, application
of Rootzén’s theorem now yields (2.2).

For stationary Gauflian AR, ARMA and ARIMA time series models we may
use the so-called conditional likelihood, see e.g. equation (7.1.2) in Box, Jenkins and
Reinsel (1994), to define a cumulative score process which becomes a martingale.

This again yields result (2.2) if Rootzén’s theorem applies.
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Appendix I: optimal K choice

Here an optimality problem raised in Section 4 is solved. The result leads to the
optimal choice of weight functions K, j(s) when basing chi squared tests on in-
crements of fot K, j(s)dM, ;(s); see also Section 3. Specifically, we maximise the
Aj = Aj(K;) parameter of equation (4.4) over all K; functions. We may omit the
index j in what follows. We show that A\(A) < fol H? ds, for any nontrivial weight
function I; note that this bound is then achieved with K proportional to H.

Introduce the vector function ¢ = (K.Jy,..., K.J,;)", where Ji(t) is indicator
for t belonging to Ij, and let L = ¢ — ¢, where ¢ = fol ((s)ds. Note next that

1 1 ¢
/LHds:/ 6Hds:</ A’Hds,...,/ A’Hds).
0 0 I I

Moreover, one shows that fol LL"ds equals D — cc' (in the notation of Section 3,
but with subscript j omitted). It follows that

ME) = </01 LH ds>t</01 LLtds> - /01 LH ds.

That MK) < fol H?ds now follows from a generalised version of the Cauchy-

Schwartz inequality: the matrix
1 1
Q:(fq H?ds folLtHd3>
fo LHds fo LL'ds
is nonnegative definite, implying that €2y, — 91292_21921 is nonnegative definite too.

This proves the claim.
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Appendix II: Dutch TBS data

Number of TBS-sentences
R4 85 86 7 88 ]9 90 91 92

Jan 1 7 8 7 8 9 8 5 4
Feb 5 11 7 2 9 9 12 6 12
Mar 10 10 14 3 11 9 10 8 3
Apr 13 8 4 7 5 2 9 6 13
May 6 4 4 7 7 9 11 14 6
Jun 5 5 7 5 9 7 9 9 7
Jul 15 6 8 10 9 10 8 9 14
Aug 5 8 2 4 3 11 3 6 11
Sep 5 8 9 8 4 6 9 11 8
Oct 9 9 7 7 8 6 3 17 8
Nov 6 16 14 6 8 10 7 14 14
Dec 10 14 10 10 9 6 6 12 17
Number of ended TBS-treatments

84 85 86 87 88 89 90 91 92
Jan 10 6 5 6 10 10 2 4 4
Feb 7 9 9 10 7 8 2 4 6
Mar 4 6 7 10 5 10 6 9 6
Apr 5 11 4 9 6 5 5 8 6
May 11 7 8 3 10 8 12 8 6
Jun 3 3 8 5 4 7 8 6 6
Jul 8 11 4 8 4 7 0 12 4
Aug 6 5 5 7 3 6 4 4 7
Sep 4 3 3 5 6 6 2 13 6
Oct 2 7 4 10 4 13 9 10 2
Nov 6 5 5 5 6 6 8 6 5
Dec 10 8 8 6 12 9 5 7 6

TABLE: Data given in de Nationale Ombudsman (1996), p. 82-83. See the

discussion in Section 6.
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F1cgure 1: The first 100 and the following 100 data points have been drawn
from two different Gamma densities; these have the same mean level, but the
second has standard deviation 1.25 times bigger than that of the first. This
aspect is barely visible from the data figure, but is being brought out by the
monitoring processes; the maximum absolute value of the first of these exceeds
the null-distribution 0.95 point of 1.358, for example. The triangular shape
correctly indicates that the non-constancy is in form of a break point about
half-way through the data.
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FIGURE 2: Here n = 200 pairs are generated by letting z;s be independent (and
not sorted) uniformly on (0,1) and then using the the y; = a + bx; + ; model,
with normal errors N (0, 0?) and using ¢; = 1+0.5i/n. The monitoring process
plots pick up the aspect that ¢ is not constant, in that its maximum absolute
value exceeds the 1.358 value, for example. Also its approximately parabolic
shape helps identify the type of non-constancy of the ¢ parameters.
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FicURrE 3: Monitoring plots for checking the constancy of Poisson parameters,
for the two sets of Dutch Ombudsman data (see Appendix IT). The plot for the
expected number of TBS-sentences does not indicate any departure from the
hypothesis of constancy, whereas the plot for the expected number of ended
treatments indicates that this parameter has not been constant over the time
period studied. The triangular shape indicates a sudden decrease around March

1990.
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