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ABSTRACT. We consider a sequence of pseudo-posterior distributions 1 

and establish simple conditions under which the sequence is Hellinger 
consistent. It is shown how investigations into these pseudo-posteriors 
assist with the understanding of some true posteriors, including P6lya­
trees, infinite-dimensional exponential family and mixture models. 
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1. Introduction 
Asymptotics play an i~ortant role in statistics. In classical density esti­
mation this role is crucial,· providing results which justify a wide range of 
nonparametric estimators such as kernel based estimators and sieve maxi­
mum likelihood estimators (Shen and Wong, 1994; Wong and Shen, 1995) 
and other nonparametric estimators (see, for example, van de Geer, 1993). 
Establishing consistency and rates of convergence with respect to a suitable 
metric, often the Hellinger distance, are key points to this area of research 
(see, for example, Shen and Wasserman, 2000). 

On the other hand, Bayesian nonparametric methods have only recently 
started to undergo asymptotic studies. Early work was done by Schwartz 
(1965) who established that a prior which puts positive mass on all Kullback­
Leibler neighbourhoods of the true density is weakly consistent. However, 
Diaconis and Freedman (1985) demonstrated that priors which put positive 
mass on all weak neighbourhoods of the true distribution function are not 
necessarily weakly consistent. Recent attention has switched to studying and 
finding sufficient conditions for strong (Hellinger) consistency. 

Suppose II is a prior distribution on the set of all probability densities 
over an interval or region of interest. As data x1, x 2 , •.• accumulate from 
some unknown underlying density fa, will the Bayesian posterior distribu­
tion IIn(-) = II(· I x1 , ... , xn) concentrate around this fa? The paper of Bar­
ron, Schervish and Wasserman (1999), from now on BSW, presents one such 

1 We refer to a posterior based on a data dependent prior as being a pseudo-posterior 
and a posterior based on a non data dependent prior as being a true posterior. 
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Bayesian nonparametric consistency theorem; the corresponding theorem of 
Ghosal, Ghosh and Ramamoorthi (1999) is of a similar nature. BSW make 
two assumptions to prove consistency in the Hellinger metric. The first is 
that the prior puts positive mass on all Kullback-Leibler neighbourhoods of 
the true density and the second is a combined smoothness and tail condition 
involving a sieve and a set of upper brackets. Specifically, for each positive 8 
a sequence :Fn( 8) of sets of densities is required to exist such that the prior 
mass for the complement set :F~ ( 8) is exponentially small and if f E :Fn( 8) 
then there exists Nn upper brackets {ff, ... , ffr } such that f JJ! < 1 + 8 for 
all k and f :=:;: JJ! for some k. One of the assu~ptions required by BSW is 
that the number Nn of brackets for :Fn( 8) does not increase at a rate greater 
than exp(nc) for all but finitely many n, for some c > 0. Wasserman (1998) 
provides a review of Hellinger consistency and Shen and Wasserman (2000) 
provide rates of convergence. 

Thus, given a nonparametric prior II, after having ascertained that it 
satisfies the rather strict requirements of the BSW type, we can generate 
{lin} knowing that the sequence is, with probability one, Hellinger consis­
tent. Suppose, with the same prior II, it is possible to generate another 
sequence of probability distributions, say {Qn}, which is also Hellinger con­
sistent. Moreover, suppose the conditions on II for the {Qn} sequence to 
be consistent are significantly less restrictive than those needed on II for 
the {lin} sequence to be consistent. If the extra conditions needed for the 
{lin} sequence to be consistent are hard to verify or not established, then 
it is preferable to use { Qn} for inference. This is particularly appropriate 
in the nonparametric context where construction of II to incorporate real 
qualitative information is typically difficult. Hence an objective procedure is 
preferable in such contexts. 

In this paper it is shown that if II puts positive mass on all Kullback­
Leibler neighbourhoods of fo then there exists a Hellinger-consistent sequence 
of pseudo-posterior distributions { Qn} related to II. 

Let xn = (x1, ... , xn) denote the data of sample size n, i.e. x1, Xz, ... "'iid 
fo, where fo is the true density, with corresponding probability distribution 
F0 . Also, write 
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for the Hellinger distance and 

D(f) = j fo log(fo/ f) 

for the Kullback-Leibler divergence from fo to f, and let 

AE = {f: H(f) > c:}, J{T} = {f: D(f):::; ry} 

and 
n 

Rn(f) =IT f(xi)/ fa( xi)· 
i=l 

We take integrals to be with respect to the Lebesgue measure over the interval 
over which the densities are defined, for concreteness, although generalisa­
tions are easily covered. 

In Section 2 we introduce a sequence of pseudo-posteriors which gives rise 
to a Hellinger consistent sequence of estimators for f. Section 3 considers a 
number of illustrations where the aim is to show how the pseudo-posteriors 
assist with the understanding of consistency for true posteriors. The result 
of BSW is general, covering all priors, and hence might for several special 
classes of priors be requiring more than is actually necessary for consistency. 

2. A consistent sequence of distributions 

Given a prior II on a space of probability densities, the true Bayesian poste­
rior distribution is given by 

IIn(df) = Rn(f) II(df) 
f Rn(f) II( df). 

Consistency for the sequence {IIn} is not guaranteed under the condition, 
which we now refer to as condition (A), that II puts positive mass on all 
Kullback-Leibler neighbourhoods of f 0 . BSW present a counter-example in 
their paper. 

Define the pseudo-posterior distribution based on II as 
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We can view this in one of two ways: we are using the pseudo-likelihood 
function 

n 

Ln(f) ex IT jll2 (xi), 

which is the usual likelihood square-rooted; alternatively (our preferred in­
terpretation), we are using the -data-dependent prim 

Wasserman (2000) used a different pseudo-likelihood function/data-depen­
dent prior to establish statisfactory asymptotic properties for mixture mod­
els. As with the data-dependent prior of Wasserman (2000), it is the asymp­
totic properties of the posteriors which justify its use. 

It can be shown that Qn is proper, i.e. 

{ }
1/2 j R;12 (f)IT( df) < j Rn(f)IT( df) < oo 

a consequence of Lemma 1 of BSW, which can also be used to show that 
f R;l2(!)1r( df) =f o. 

We now prove that if IT satisfies condition (A), then {Qn} is, with prob­
ability one, Hellinger consistent. The reason this modified prior works from 
an intuitive point of view is that we can write the data-dependent prior as 

Tin( df) ex exp { ~nDn(f)} II( df), 

where Dn(f) = n-1 L::i=1 log{fo(xi)/ f(xi)}. The problems of consistency 
with rrn can be traced to densities for which Dn(f) < 0 having too much 
weight. Such densities are being assigned low, and sufficiently low, weight in 
the data-dependent prior that they do not cause a problem in the posterior. 
In this respect, the prior can be viewed as a Bayesian sieve which downweights 
sufficiently, rather than removes altogether as in a sieve maximum likelihood 
estimator, the troublesome densities which make Rn(f) too large; not because 
they are good densities but rather because they track the data too closely. 
Our approach is to use the data to downweight the prior. BSW impose 
stronger restrictions on IT to achieve the same effect. 

THEOREM 1. With F0 probability one, Qn(A,o) --+ 0 with exponential rate, as 
n --+ oo for all sets Ae with c > 0. 
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PROOF. We can write Qn(A,) as 

The denominator can be written as 

Ln = J exp{ -~nDn(f)}IT(df). 

Thus, for any ry > 0, 

exp(nry)Ln > f_ exp [~n{2ry- Dn(J)}] II(df). 
}K21J 

Arguments laid out by BSW (Lemmas 3 and 4), based on Fatou's lemma and 
condition (A), establish that Ln > exp( -nry) a.s. for large n for all ry > 0. 

For the numerator, Un =fA, R~/2(J)II( elf), 

prxn {fA, R~/2(J)II(df) > exp(-nc)} < exp(nc)JA, {I JTTorii(clf) 

< exp(nc) fA, {1- ~H(J) 2 }nii(clf) 

Thus, choosing c < ~c; 2 , the Borel-Cantelli theorem gives that Un < exp( -nc) 
a.s. for large n for any c < ~c; 2 . Consequently, we can choose ry < c and thus 
Qn(Ac:) < exp( -nS) a.s. for large n for any 5 < ~c;2 , completing the proof. 

The pseudo-Bayes estimator based on the sequence { Qn} is given by 

Here we establish that fn --+ fo a.s. with respect to the Hellinger distance. 

THEOREM 2. H(Jn) < c; a.s. for large n for any c; > 0 and hence H(Jn) --+ 0 
a.s. 

PROOF. Using Corollary 1 from BSW, 
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Now H(·) :::; J2 so 

completing the proof. 

Convergence rates for H (in) can be established using ideas from Shen 
and Wasserman (2000). Let tn be as in Lemma 2 of Shen and Wasserman 
(2000), i.e. I R~/2 (f)II( df) ~ exp( -6ntn)· Suppose there exists a sequence 
Cn such that ncn -+ oo, Cn -+ 0 and Cn ~ 12tn. Then 

a.s. for all large n, for all sequences {En} such that 

L:exp { -n Oc:~- en)}< oo. 
n 

This result is based on 

a.s. for large n. Hence, under simpler conditions than those of BSW, we have 
a Hellinger-consistent sequence of estimators of j 0 , and can also establish 
rates of convergence. 

Remark. The pseudo-Bayes estimator fn ( x) might be hard to compute in its 
direct form, since it requires the posterior Qn to be of suitably explicit form, 
or at least that it should be amenable to simulations. But this is typically 
difficult as it is for true Bayes estimators. A possible trick is to write the 
estimator as 

Jn(x) = I f(x)S~I2 (J) II(df) 

I s~12 (f) II ( df) ' 

where Sn(f) = 117=1 f(xi)/ J1(xi), for a suitable !1 density taken to secure 
numerical stability. The point here is that thefn( x) curve now can·be arrived 
at via simulations from the prior distribution II alone. 

3. Illustrations 

In this section we will look at a number of priors and use the consistency of Qn 
to help us establish results for IIn. The result of BSW is for all priors. Here 
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we consider specific priors, those considered by BSW and Ghosal et al. (1999), 
and using Qn establish sufficient conditions for Hellinger consistency. 

3.1 P6lya-trees. We consider P6lya-trees on [0, 1] with partition structure 
the dyadic intervals. This was an example considered by BSW. For each 
interval in the dyadic system we allocate a random variable 0 < Vjk < 1; 
k = 1, 2, ... and j = 1, ... , 2k. If j is odd then Vj+1 k = 1- Vjk and the {Vjk} 
for j odd are mutually independent. Define the random probability measure 
F by 

k 

F(Bjk) = II Vl(j)l 
1=1 

and Bjk is the jth dyadic interval (from left to right) at level k. Here Bl(j)l? 

for l = 1, ... , k, make up the unique sequence of dyadic intervals which leads 
to Bjk· 

As withBSW, we assume that Vjk rv be(ak, ak) for all odd j. Kraft (1964) 
established that if Lk aj;1 < oo then F is a random probability measure 
which has a density with respect to the Lebesgue measure on [0, 1]. If the 
Kullback-Leibler divergence between fo and the prior predictive is finite and 
Lk a"k 112 < oo, collectively known as condition (B), then the P6lya-tree prior 
puts positive mass on all Kullback-Leibler neighbourhoods of f 0 . See, for 
example, BSW, Section 3.2. Assume condition (B) holds. 

Under our data-dependent prior, for which we will use a superscript Q, 
the posterior for the Vj~ are given, for odd j, by 

Hence, 
E V.~ = ak + njk/2 2ak + njk 

3 2ak + njk/2 + nj+I k/2 4ak + njk + nj+I k 

which is clearly equal to E Vj~, where Vj~ are obtained as the true posterior 
based on a P6lya-tree prior with parameters 2ak. 

Consequently, the pseudo-predictive density 

k 

fn( X) = limk-+oo 2k II E { Vz~) 1} 
1=1 
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I.e. 

f n( ) _ 1. 2k Ilk 2al + nl(x)l 
X - lmk-+oo 

1= 1 4al + n1-1(x) 1-1 

based on the data-dependent P6lya-tree prior with parameterts ak is equiva­
lent to the true predictive density based on a P6lya-tree prior with parameters 
2ak. This indicates that while the posterior distribution of a P6lya-tree prior 
may not be consistent under condition (B), BSW establish ak = 8k as being 
sufficient for this, the predictive density is consistent under condition (B). 
Note that this requires much less than the ak = 8k condition. 

3.2 Infinite-dimensional exponential family. Here we discuss an appli­
cation involving the infinite-dimensional exponential family on [0, 1]. BSW 
also consider this example in Section 3.3 of their paper. Original work on 
these families was done by Leonard (1978), Thorburn (1986) and Lenk (1988, 
1991). Let \ll = { ?j! j }~1 be a set of independent normal random variables 
with zero means and variances { r}} and {<Pi }~1 a set of orthogonal polyno­
mials on [0, 1]. Then a random density chosen from the prior Il(\ll) is given 
by 

f( x) = exp {t, 1/J;</>;(x) - c(ljl)} 

where 

exp { c(ljl)} = j exp {t, 1/JA>;(x)} dx. 

BSW establish the conditions I:j ajTj < oo and I:j bjTj < oo, where aj = 
supxi<Pi(x)l and bj = supxi<Pj(x)l, as being sufficient for the consistency of 
rrn( \ll). 

Here we consider the more general version of the prior considered by 
Lenk (1988, 1991). Let f"' LNS(t-t,a,e), so f(x) ex We(x) where We(·) is a 
generalised lognormal process with distribution Ae characterised by 

Ae(A) ex L {j vV(x)dx} e dA(W) 

and A represents a lognormal process, i.e. if W "' A then W ( x) = exp{ Z ( x)} 
and Z ( ·) is a Gau:Bian process with mean t-t( x) and a( x, y) is the covariance of 
Z(x) and Z(y). See Lenk (1988) for further details. Then the true posterior 
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for f is given by LNS(J-tn,an,~n) where f-tn(x) = J-t(x) + Lia(x,xi), an= a 
and ~n = ~ - n. The posterior for Q, denoted by AQ, is characterised via 

J {! }e-n/2 
AQ(A) ex: A ij W(xi) 1/ 2 W(x)dx dA(W) 

- t 

and hence it is seen that AQ is the true posterior based on the sample size 
dependent prior f rv LN S(J-t, a /2, ~ + n/2).. This result follows from Theo­
rems 1 and 2 of Lenk (1988). By putting ~ = -n/2 we obtain the prior of 
BSW, i.e. f rv LNS(J-t,a/2,0). See Lenk (1991) for this connection. Con­
sequently, provided LNS(J-t,a/2,0) satisfies condition (A), the sequence of 
posterior distributions are Hellinger consistent. 

3.3 Parametric families. Let :F = {f(x; B); BE 8} be a family of densities 
with respect to Lebesgue measure~ and suppose x 1 , ... , Xn are iid from f(x; B0 ) 

with B0 E 8. We assume that f = j 0, the maximum likelihood estimator 
exists. Let IT be a prior probability on 8 and define 

THEOREM 3. If IT(K,J > 0 for all ry > 0 then 

rrn(Ac:) ::; exp( -nc) L~/2 (if) 

a.s. for all large n for any E > 0 and c < ~c2 . 

PROOF. We define Qn(B) ex: L~I2 (B)IT(B) and from results established in Sec­
tion 2 we know that Qn(Ac:) < exp( -no) a.s. for large n for o < ~c2 . It is 
easy to see that rrn(B) ex: L~I2 (B) Qn(B) and more precisely, 

rrn(B) = Llf2(B)Qn(B)J L~f2(B)IT(dB) 
n fLn(B)IT(dB). 

Now 
f L~l2 ( B) IT( dB) < { 1 } 1

/
2 

f Ln(B)IT(dB) - J Ln(B)IT(dB) 

and the denominator is bounded below a.s. for large n by exp( -nry) for any 
ry > 0. Thus, using the consistency result for Qn, we have 

rrn(Ac:) < exp(~nry) exp( -no)L~I2 (0) 
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and hence the result. 

Consequently, the consistency of rrn is guaranteed if the Ln ( 0) is well 
behaved. Conditions and special cases for this were studied by van de Geer 

(1993). If g(O) = jJ(x;O)/f(x;00 ) -1 and 

SUPelg( 0) d( Fn - Fs0 ) I -+ 0 a.s. 

where Fn is the empirical distribution function, then 

lim supn {~log L~/2 (0)} ~ 0 a.s. 

and the posterior consistency of rrn holds. van de Geer (1993), Theorem 2.4, 
provides an entropy condition as being sufficient for the above uniform law 
of large numbers result to be true. 

3.4 Mixture model. In this section we consider the case when f( x) 
f qyh( x- 0) dP( 0), where qyh is a kernel density with bandwidth h and P is a 
random probability distribution. This is the model considered by Ghosal et 
al. (1999) who considered a Dirichlet prior for P and took qyh to be the normal 
density with standard deviation h. A prior on (0, oo) is also assigned to h. 
We let II denote the prior for P and 1r the prior for h. Following Ghosal et 
al. (1999) we write fh,P to denote a random density f(x) = f qyh(x- 0) dP( 0). 
We will also use the normal density for qy. We define gh,P(x) = {f qy~/2(x-
0) dP(O)p, and note that gh,P:::; fh,P· Now let us consider, for any set A, 

The numerator can be written as 

and using the fact that qyh(z) = qy~j~(z)h- 1 12 "', where "'-1 = y'27r 1/4, we 
have 

Un ~ 1'\,nijfo(xi)-112 L R~I2 (Jh/Vz,P) h-nj21r(h)dhii(dP). 

' 
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The denominator can be written as 

Ln = h:niTfo(xit112 J R;,.l 2(gh/-/2,P) h-n/27r(h)dhii(dP). 
~ 

If we use the sample-size dependent prior 11"n(h) ex hnl27r(h), which re­
quires J he 7r(h) dh < oo for all f.> 0, we have 

If As = { (h, P) : H(fhf-/2,P) > c;} then we know from previous results that 
the new numerator Un :S; exp( -nc) a.s. for large n for any c < !s2 . In order 
to apply previous results to the denominator, i.e. to ensure that the new 
denominator Ln > exp( -n8) a.s. for large n for arbitrary 8 > 0, we require 
that 

II { D(ghf-/2,P) < 7J} > 0 

for all 77 > 0, where II(h, dP) = 7r(h) II( dP). Clearly this, combined with 
f 1r(h) he dh < oo for all e > 0, is a sufficient condition for the Hellinger 
consistency of II(h, dP). 

4. Discussion 

If the likelihood values are well behaved and maximum likelihood estimators 
exist then the posterior distributions are consistent; the additional require­
ment for the Bayesian being condition (A). The problem with models for 
which maximum likelihood estimators exist is that condition (A) can only be 
verified for a restricted class of fo; i.e. fo( ·) E {f( ·; 0); (} E 8}. Hence, satisfy­
ing condition (A) and the non-existence of a maximum likelihood estimator 
usually go together. A classical solution is the sieve maximum likelihood 
estimator. BSW ·present a Bayesian solution which places extra conditions 
on II. The solution proposed in this paper uses the data to downweight 
troublesome densities in the support of prior. 

This procedure, as we have demonstrated in Section 3, sheds much light 
on the Hellinger consistency of standard nonparametric priors, such as those 
considered by BSW and Ghosal et al. (1999). 
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A more general data-modified prior to work with would take the form 
II( df) / Tii=1 fa (Xi), where 0 < a < 1; this would also correspond to a pseudo­
likelihood Cn(f) = [Jf=1 p-a(xi)· Our choice a = ~ agrees nicely with the 
Hellinger distance and gives satisfactory results. However, suitably modified 
arguments lead to a.s. consistency of the posterior with respect to a related 
metric, say Ha, and similarlyto consistency of the pseudo-Bayes estimator 
fn(x) =I f(x)Q~(df), say. Specifically, arguments used suggest using the 
distance function H;,(f) = 1 - I jg p-a. With an a closer to zero this 
amounts to a prior and posterior in closer agreement with the real ones. 
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