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ABSTRACT. The performance of kernel density estimators is usually stud­
ied via Taylor expansions and asymptotic approximation arguments, in 
which the bandwidth parameter tends to zero with increasing sample 
size. In contrast, this paper focusses directly on the finite-sample situa­
tion. Informative upper bounds are derived both for the integrated and 
the maximal mean squared error function. Results are reached for the 
traditional case, where the kernel is a probability density function, under 
various sets of assumptions on the underlying density to be estimated. 
Results are also derived for the important non-conventional case of the 
sine kernel, which is not integrable and also takes negative values. We 
pin-point ways in which the sine-based estimator performs better than 
the conventional kernel estimators. When proving our results we rely on 
methods related to characteristic and empirical characteristic functions. 
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1. Introduction 

In this article we derive some rigorous upper bounds for the estimation error 
of kernel density estimators for finite values of the sample size n, in terms of 
choices of the kernel function K and the bandwidth h = hn. These bounds are by 
construction non-asymptotic, and are useful when one needs to secure a certain 
precision of an estimate for a given (finite) value of n, for broad classes of densities. 
We study both smooth cases (where the density to be estimated is one or more 
times differentiable) and non-smooth cases (the underlying density function is not 
supposed to be differentiable or even continuous). The machinery of characteristic 
and empirical characteristic functions is used, and relevant general results are 
established in Section 2. 

In Section 3 conventional kernel estimators will be considered, i.e. estimators 
whose kernels are probability density functions. These estimators always produce 
estimates which are densities. We term a kernel density estimator non-conventional 
if its kernel function is not a probability density, i.e. it may take negative values 
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or I and does not integrate to one (or even is not integrable). Such non-conventional 
estimators are studied in Section 4, with particular attention to the sine kernel; 
see also Glad, Hjort and Ushakov (1999a). Such estimators, based on higher order 
kernels, superkernels or the sine kernel, often provide better estimation precision, 
but have an essential disadvantage: they produce estimates which are not prob­
ability density functions, i.e. may take negative values or I and do not integrate 
to one. However, this defect can be corrected afterwards without loss of their 
performance properties (see Glad, Hjort and Ushakov, 1999b). 

A discussion of our results, with a view towards their use in density estimation 
problems, is given in the final Section 5. Topics there include new strategies for 
bandwidth selection. 

2. Auxiliary results, via characteristic functions 

In this paper we use the characteristic function approach to studying performance 
of density estimators, rather than the traditional Taylor expansions and asymp­
totic approximations. Therefore we first express some basic concepts of kernel 
density estimators in terms of characteristic functions. 

Let X 1, ... , Xn be independent and identically distributed random variables 
with absolutely continuous distribution function F(x), density function p(x), and 
characteristic function f(t). The kernel density estimator associated with the 
sample X 1, ... , Xn is defined as 

(2.1) 

where K(x) is the kernel function with scaled version Kh(x) = h-1 K(h- 1x) and 
h = hn is a positive number (depending on n) called the bandwidth or the smooth­
ing parameter. We do not necessarily demand that K is integrable (sometimes the 
best estimators correspond to nonintegrable kernels). However, we suppose that 
K is square integrable, and in addition that it is integrable in the sense of the 
Cauchy principal value with v.p. f~oo K(x) dx = 1, in which 

100 1-E 1T v.p. = lim lim [ + J. 
_ 00 T-->oo E-->0 -T E 

Under these assumptions the Fourier transform of K can be defined as 

rp(t) = v.p. /_: eitx K(x) dx 

(see Chapter 4 of Titchmarsh, 1937). In the following we will omit integration 
limits when the integral is to be taken over the full real line. 
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Let Pn be an estimator (not necessarily a kernel estimator) of p associated 
with the sample X 1 , ... , Xn. The bias, the mean squared error (MSE) and the 
mean integrated squared error (MISE) of Pn are defined, respectively, as 

and 

Bn(Pn(x)) = Efin(x)- p(x), 

MSE(fin(x)) = E{fin(x)- p(x)} 2 , 

MISE(fin) = J MSE(fin(x)) dx = E J {Pn(x)- p(x)}2 dx. (2.2) 

In case of the kernel estimator Pn, defined by (2.1), the bias may be expressed via 
the convolution as 

Bn(Pn(x)) = (Kh *P)(x)- p(x) = J Kh(x- y)p(y) dy- p(x). 

Since convolution is a kind of smoothing, the bias of the kernel estimator is the 
difference between a smoothed density and the density itself. The mean squared 
error admits a well-known decomposition into variance and squared bias, with 
consequent MISE representation 

MISE(fin) = J B;(Pn(x)) dx + J Var(fin(x)) dx. 

Note that together with MSE and MISE other measures of deviation may be 
used. Among them, the mean absolute error Elfin(x)- p(x)l and its integral are 
especially important (see Devroye and Gyorfi, 1985). In the present article we 
restrict attention to MSE and MISE, however. 

For a real valued function g we will use the following notation, provided the 
integrals exist: 

If the kernel K is a probability density function, and the density to be estimated 
is twice differentiable and with square integrable second order derivative, then 
it is well known that the best order of estimation accuracy in terms of MISE is 
O(n-415 ); see also Section 5.1. However, if we permit the kernel not to be a 
density, then the order can be improved. For example, if p is the normal density 

and K is the sine kernel, i.e. K(x) = sinx/(rrx), then 

( vlogn) min MISE (Pn) = 0 
h>O n 

asn-+oo; 

see Section 4 below and Glad, Hjort and Ushakov (1999a). 
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We now express basic characteristics of density estimators in terms of Fourier 
transforms and establish some auxiliary results. 

Let f n denote the Fourier transform of an estimator Pn. Making use of the in­
version formula for densities and the Parseval-Plancherel identity we easily obtain 
the following formulae: 

Bn(Pn(x)) = __!__ j e-itx{E]n(t)- f(t)} dt, 
271" 

MSE(fin(x)) = E{ 2~ j e-itx[Jn(t)- j(t)J dt} 2 

(2.3) 

= ( 2~) 2 j j e-i(u+v)xE{(]n(u)- f(u))(in(v)- f(v))} dudv, 

(2.4) 
and 

MISE(fJn) = 2~ J El]n(t)- j(t)l 2 dt. (2.5) 

In the remainder of this section, we will consider only kernel estimators and 
suppose that the kernel K is a probability density function, i.e. it is nonnegative 
and integrates to one. Study the empirical characteristic function associated with 

The characteristic function of the estimator Pn,h(x) is fn(t)tp(ht), where tp(t) = 

J eitu K ( u) du is the characteristic function of the kernel. And the kernel estimator 
(2.1) can be expressed in terms of fn as 

Pn h(x) = __!__ j e-itx fn(t)tp(ht) dt. 
' 271" 

Now, taking into account that 

Efn(u)fn(v) = (1-1/n)f(u)f(v) + (1/n)f(u + v) 

and 

Elfn(t)l 2 = (1-1/n)lf(t)l 2 + 1/n, 

we can write (2.3)-(2.5) in the form 

Bn(Pn(x)) = 2~ j e-itx f(t){tp(ht)- 1} dt, 

MSE(pn(x)) = ( 2~) 2 j j e-i(u+v)x [~tp(hu)tp(hv)f(u + v) 

+ { (1- ~)tp(hu)tp(hv)- 2tp(hu) + 1 }f(u)f(v)J dudv 
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and 

From (2.6) we immediately obtain 

IBn(Pn(x))l :S 2~ j IJ(t)ll1- <p(ht)i dt. (2.9) 

Lemma 1. For eacb x, 

MSE(pn(x)) :S { 2~ J lf(t)ll1- cp(ht)i dt} 2 + :~~ J lcp(t)l dt, (2.10) 

wbere a(x) = (Kh *P)(x). Ifp is bounded by a, tben 

s~pMSE(pn(x)) :S { 2~ j lf(t)ll1- cp(ht)i dt} 2 + 1r~h j lcp(t)l dt. 

Proof. It suffices to prove the first statement, since a(x) = J p(x-y)Kh(Y) dy 
:Sa for all x. Making use of relation (2.7), we obtain 

MSE(pn(x)) = [ 2~ j e-itx f(t){1- cp(ht)} dt] 2 

+ _!_ - 1- j j e-i(u+v)x<p(hu)cp(hv)f( u + v) du dv 
n (27r )2 

- _!_ - 1- j j e-i(u+v)x<p(hu)cp(hv)f( u)f( v) du dv. 
n (27r )2 

The first term on the right hand side is dominated by the first term of the right 
hand side of (2.10). Let us then estimate the absolute value of the second (denoted 
by T2 ) and third (denoted by T3 ) terms. We have 

T2 = _!_~ j cp(hu){~ j e-i(u+v)x<p(hv)f(u + v) dv} du. 
n 21r 21r 

The term in brackets, being transformed to the form 

~ j e-itx<p(h(t- u))f(t) dt, 
27r 

is equal to J p(x- y)Kh(y)e-iuy dy (since cp(h(t- u))f(t) is the Fourier transform 
of the convolution of functions p(x) and Kh(x)e-iux), and clearly 

If p(x- y)Kh(y)e-iuy dyl :S a(x). 
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Hence 

[T2 [ ::; a(x) ~ f [<p(ht)[ dt. 
n 21r 

Furthermore, 

[T3[ =- - e-mx<p(hu)f(u) du- e-wx f(v)<p(hv) dv 1
1

1 f . 1 f . I 

n 21r 21r 

::; _!_(Kh * p)(x)~ f lf(v)[[<p(hv)[ dv::; a(x) f [<p(hv)[ dv. 
n 21r n 21r 

Thus we finally obtain (2.10). • 

Lemma 2. 

MISE(Pn,h)::; 2~ {f [f(t)[ 2 [1- <p(ht)[ 2 dt + n1h f [<p(t)[ 2 dt }· 

This lemma immediately follows from relation (2.8). 
We conclude this section with some inequalities for characteristic functions 

and which will be used below. 

Lemma 3. Let F be a distribution function with characteristic function f. 
If the first order absolute moment /31 = J [x[ dF(x) is finite, then 

[1- f(t)[::; f31[t[ for all real t. 

IfF has null expectation and finite variance a 2 , then 

[1- f(t)l::; ~a2 t2 for all real t. 

Proof. Observe that for any positive integer n and any x > 0, 

I ix ix (ix)n- 1 I Xn 
e - 1- I - ... - ( _ )' ::; - 1 1. n 1 . n. 

(2.11) 

(see for example Feller, 1971, Chapter 15). The first inequality of the lemma 
follows quickly via 

[1- f(t)[::; f [1- eitxl dF(x)::; f [tx[ dF(x) = f31[t[. 

To prove the second inequality, we obtain, again making use of (2.11), 

[1- f(t)[ =If {eitx -1} dF(x)l =If (eitx -1- itx) dF(x)l 

::; f [eitx- 1- itx[ dF(x) ::; f ~t2x2 dF(x) = ~a2 t2 . 
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Along the same lines one may prove for example that If ( t) - ( 1 - ! a 2t 2 ) I :::; 
i ltl3 J lxl3 dF(x). • 

Let g be a real-valued function defined on an interval [a, b] of the real line. 
The total variation of g on [a, b] is defined as 

n 

V~(g) =sup L lg(xi)- g(xi-1)1 
i=1 

where the supremum is taken over all n and all collections x 0 , ... , Xn such that 
a= xo < · · · < Xn =b. The total variation on the whole real line is defined as 

In the case V~00 (g) we omit limits and write V (g). A function g is said to 
be a function of bounded total variation if v (g) < 00 (or v~ (g) < 00 if it is 
considered on an interval [a, b]). Note that if g has an integrable derivative, then 

V~(g) = J: 19'1 dx. 

Lemma 4. Let p be a probability density and f the corresponding charac­
teristic function. If p is m - 1 times differentiable, and p(m-1) is a function of 
bounded variation, then 

for all real t (by definition, pC0) = p). 

A proof of this lemma is contained in Ushakov and Ushakov (1999). 

3. Density estimators with conventional kernels 

First we study the 'smooth' case, i.e. when the density to be estimated is one or 
several times differentiable. 

Theorem 1. Let p be twice differentiable, with p" a function of bounded 
variation, V(p") = V2 < oo. If the kernel K has null expectation, and hn = 
hon-115 (ho being some constant), then 

(3.1) 

Proof. Due to Lemma 4, we have 

(3.2) 
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and, due to Lemma 3, 11- <p(hnt)l :::; ~112(K)h~t2 for all t. Hence 

(3.3) 
Further, using the Parseval-Plancherel identity, we get 

-- f<p(t)l 2 dt = -n-415 K 2 (x) dx = --n-415 . 1 1 J 1 J R(K) 
nhn 27r ho ho 

(3.4) 

From (3.3), (3.4) and Lemma 2, we obtain (3.1). • 

Corollary. Let the conditions of Theorem 1 be satisfied. Then for each n, 

with minimum of the upper bound attained for 

h = { 57r R(K) } 1/5 y-:-1/3 -1/5 
n 6 p,§(K) 2 n . 

If p is only one time differentiable or/ and the expectation of K does not equal 
zero, then results are weaker. 

Theorem 2. Let p be differentiable with p' a function of bounded variation, 
V(p') = Vi < oo. If hn = hon-113, then 

(3.5) 

Proof. Due to Lemmas 3 and 4, 

and 11- <p(hnt)l:::; J11(K)hnltl for all t. Hence (see the proof of Theorem 1), 

j lf(t)l 2 11- <t?(hnt)l 2 dt:::; (8/3)p,I(K)V1312 h5n-213. (3.6) 

And, as in the proof of Theorem 1, 

1 1 jt ( )f2d- R(K) -2/3 --- <pt t---n . 
27r nhn ho 

(3.7) 

From (3.6), (3.7) and Lemma 2, we obtain (3.5). • 
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Corollary. Let the conditions of Theorem 2 be satisfied. Then for each n, 

Theorems 1 and 2 give bounds for the integral deviation of the mean squared 
error of a kernel estimator from zero. Now we obtain bounds for the sup deviation, 
in terms of 

A(K) = __!__ J Jcp(t) I dt. 
27r 

Theorem 3. Let p be three times differentiable with p"' a function of bounded 
variation, V(p'") = V3 < oo, and let p be bounded by a. If hn = hon-115 , then 

Proof. Due to Lemma 4, 

and, due to Lemma 3, Jl- cp(hnt)J :s; ~M2 (K)h;.J2 for all t. Hence 

To get the result it suffices now to apply Lemma 1. • 

Corollary. Let the conditions of Theorem 3 be satisfied. Then for each n, 

with minimum of the upper bound being attained for 

h - { 97r2 A(K) } 115 1/5y:-3/10 -1/5 
n - 8 f.l,~ ( K) a 3 n . 

Theorem 4. Let p be twice differentiable with p" a function of bounded 
variation, and let p be bounded by a. If hn = h0 n - 113 , then 

9 



Proof. Using (3.2) and the second inequality of Lemma 3, we have 11 -
cp(hnt)l:::; J.L1(K)hnltl. This leads to 

Using this estimate and Lemma 1, we get (3.8). • 

Corollary. Let the conditions of Theorem 4 be satisfied. Then for each n, 

( 9 ) 113 213 419 1 1 minsupMSE(pn(x)):::; 3 - 1-L (K)v; B 2 3 (K)a 213n-2 3 . 
h>O X 41f2 1 2 

Next we consider the so-called non-smooth case. This means that the underly­
ing density function is not supposed to be differentiable or even continuous. Some 
minimum regularity conditions must be introduced, however (otherwise nothing 
substantial can be derived). Here this minimum condition will be the bounded­
ness of the total variation of the underlying density. Note that this condition is 
a little less restrictive than those usually assumed when authors work with the 
non-smooth case (see for example van Eeden, 1985 and vanEs, 1997). 

Theorem 5. Let the underlying density p be a function of bounded variation, 

V = V (p) < oo. If hn = ho / ( fo log n), then 

(3.9) 

for all n ;::: 16. 

Proof. Let us use Lemma 2. For the second term in the square brackets, due 
to the Parseval-Plancherel identity, we have 

(3.10) 

Let us estimate the first term. First we establish the following inequality: for any 

0 <a< 1, 
(3.11) 

for all real t. Indeed, due to Lemma 3, 

(3.12) 
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For ltl::; 2/~-t 1 (K), the right hand side of (3.11) majorises the right hand side of 
(3.12), therefore (3.11) holds for these t. If ltl > 2/~-t1 (K), then (3.11) is evident 
because its right hand side exceeds 2. 

Let a be arbitrary inside (0, ~ ). Making use of (3.11) and Lemma 4, we get 

J lf(t)l 211- <p(hnt)1 2 dt = 21V lf(t)l 211- <p(hnt)l 2 dt 

+ 2 ioo IJ(t)l 211- <p(hnt)l 2 dt 

::; 2~-tia(K)22(1-a)h;a(1v t2adt+ V2 fvoo t2a-2dt) 

24-2a 
= II. (K)2av2a+1 h2a 

1- 4a2 ,_.,1 n . 

From this estimate and (3.10), using Lemma 1, we obtain 

MISE(p ) < 23-2a //2a(K)V2a+1h2a + R(K) 
n,h - 1r(1 - 4a2) ~""' 1 n nhn 

= 23-2a M2a(K)V2a+1h2a ( 1 )2a + R(K) logn 
1r(1- 4a2) 1 0 y'nlog n ho y'n 

(3.13) 

for any a E (0, ~). Put 
logn 

a--------
- 2(logn + 2loglogn) · 

Then i < a< ~ (provided that n?: ee, which translates into n?: 16), and hence 

V2a+1 ::; max{V3/2, V2}, h2a < { fh h } 0 _ max y no, o . 

Therefore from (3.13) we obtain 

4-!2 rL 
MISE(Pn,h) ::;-max{ J M1(K), M1(K)} max{V312, V2} max{ v ho, ho} 

1l" 

Putting now 

1 ( 1 )2a R(K) logn 
X +----

1- 4a2 y'nlogn ho y'n · 

log n - 2 log log n 
ao = 

2(logn + 2loglogn)' 

then a> ao (if n?: ee), hence 

( 1 ) 2a ( 1 ) 2ao log n 
y'nlogn < y'nlogn = y'n · 
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It remains to assess the size of 1/(1- 4a2 ). We have 

1 (logn + 2loglogn) 2 (log n + 2log log n) 2 

1- 4a2 (logn + 2loglogn) 2 - (logn) 2 (2logn + 2loglogn)2loglogn 
1 loglogn 

< - log n + 1 + < log n 
- 4 logn + loglogn -

(3.16) 
if n ~ ee. 

From (3.14), (3.15) and (3.16) we finally obtain (3.9). • 

Corollary. Let p be a unimodal density function, and bounded by a. If 
hn = ho/( ylnlogn), then 

4. The sine kernel density estimator 

The sine kernel is the function 

K(x) = sinx 
1rX 

with the Fourier transform (defined as the principal value of the corresponding 
integral) 

(t) = { 1 for ltl ::; 1, 
cp 0 for ltl > 1. 

(Sometimes the sine kernel is defined as K(x) = sin(1rx)j(1rx) with the Fourier 
transform cp(t) = I{!t!::; 1r}. Both functions sinxj(1rx) and sin(1rx)j(1rx) integrate 
to one in the sense of the principal value, and the difference is only in the scale 
parameter.) 

From now on we focus on the kernel estimator Pn(x) of (2.1) with K being 
the sine kernel. It often leads to better performance, and some of its properties 
are in fact easier to study than for other kernel estimators; see Glad, Hjort and 
Ushakov (1999a). Its defects - possible negativeness and nonintegrability- can 
easily be corrected by a certain modification procedure (Glad, Hjort and Ushakov, 
1999b). It consists in setting 

where the random ~ is chosen so that the integral is 1. After this correction 
procedure, estimation precision of the estimator is guaranteed to improve. 
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In terms of the empirical characteristic function f n ( t) the sine estimator can 
be expressed as 

1 11/hn 
Pn(x) = - e-itx fn(t) dt. 

21l" -1/hn 
(4.1) 

Suppose that the characteristic function f of the underlying density pis integrable. 
First we obtain relations for the sine estimator, analogous to those of Lemmas 1 
and 2 (these cannot be applied directly since now K is not integrable). 

Lemma 5. For the sine kernel estimator, 

supMSE(pn(x)):::; {_.!._ f if(t)i dt} 2 + ~h 21 J if(t)i dt (4.2) 
x 27r Jltl?_1/hn 1l"n n 1l" 

and 

MISE(pn):::; _.!._{ f lf(t)l 2 dt + h2 }· 
27r lltl?_1/hn n n 

(4.3) 

Proof. We first prove the first inequality. We have 

1 J 11/hn 2 MSE(pn(x)) =E[27r { e-itxj(t)dt- _
1
/hn e-itxfn(t)dt}] 

1 1 1 11/hn 2 = E [- e-itx j(t) dt +- e-itx{j(t)- fn(t)} dt] 
27r ltl?_1/hn 21l" -1/hn 

1 1 2 1 11/hn 2 = {- e-itx j(t) dt} + E [- e-itx {j(t) - fn(t)} dt] . 
21l" ltl?_1/hn 21l" -1/hn 

Let us estimate the second term on the right hand side. Denote it by T2. Taking 
into account that 

Efn(u)fn(v) = (1- 1/n)f(u)f(v) + (1/n)f(u + v), 

we obtain 

1 1 11/hn 11/hn . 
T2 = --( )2 e-2(u+v)x{f(u+v)- f(u)f(v)}dudv 

n 21l" -1/hn -1/hn 

1 11/hn 1 11/hn . 
=- {- e-2 (u+v)x j(u + v) du} dv 

27rn -1/hn 27r -1/hn 

1 1 11/hn 2 
- -{- e-itxf(t)dt} 

n 21l" -1/hn 

1 11/hn 1 11/hn+v 1 1 11/hn 2 = - {- e-itx f(t) dt} dv- - {- e-itx j(t) dt} . 
27rn -1/hn 21l" -1/hn+v n 27r -1/hn 
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Therefore 

1 11/hn 1 J 1 1 J 1 11/hn T2::;- dv- [f(t)[ dt + -- [f(t)[ dt- ds 
21Tn -1/hn 21T n 21T 21T -1/hn 

2 1 J = -h - [f(t)[dt. 
1rn n 21T 

Thus we obtain (4.2). 
Next we prove ( 4.3). Observe that we may use relation (2.5) with 

Jn(x) = { fn(x) if [t[ ::; _1/hn, 
0 otherwise. 

Therefore 

MISE(pn) = ~{11/hn E[fn(t)- f(t)[ 2 dt + { [f(t)[ 2 dt}, 
21T -1/hn liti?l/hn 

and it suffices to show that 

1
1/hn 2 

E[fn(t)- f(t)[ 2 dt::; -h · 
-1/hn n n 

Taking now into account that E[fn(t)[ 2 = (1-1/n)[f(t)[ 2 + 1/n, we obtain 

1
1/hn 1 11/hn 1 11/hn 2 

E[fn(t)- j(t)[ 2 dt = - (1- [j(t) 2 [) dt::; - dt = -. 
-1/hn n -1/hn n -1/hn nhn 

This proves the claim. • 

Now we derive some estimates for MISE and MSE of the sine estimator in 
terms of the degree of smoothness of the underlying density. First we consider the 
non-smooth case, when a density to be estimated is not supposed to be differen­
tiable or even continuous. 

Theorem 6. Let p have bounded variation, V(p) = V < oo, and let Pn be 
the sine estimator. If hn = h0 / ..fii, then 

1 ( 2 1 ) MISE(Pn) ::; 1r..fii V ho + ho . 

Proof. Making use of relation ( 4.3) of Lemma 5 and Lemma 4, we obtain 

MISE(pn)::; ~{ { [f(t)f 2 dt + -h2 } 
21T litl?_1/hn n n 

1 ( 2 ],
00 dt 2 ) 1 ( 2 1 ) < - 2V - + - = -- V ho + -

- 21T 1/hn t2 nhn 1TVn ho ' 

as required. • 
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Corollary 1. Let the conditions of Theorem 6 be satisfied. Then for each n, 

2V 
minMISE(pn) ~ ~· 
h>O Kyn 

Corollary 2. Let p be a unimodal density function, and let Pn be the sine 
estimator. If pis bounded by a, and hn = ho/ yin, then 

1 ( 2 1 ) MISE(pn) ~ Kyln 4a ho + ho , 

and 
. 4a 

mmMISE(pn) ~ ~-
h>O Kyn 

Now consider the case when the density to be estimated is m times differen­
tiable, m 2: 1. It will be shown that in this case the upper bound for MISE of 
the sine estimator has order n-2m/(2m+l) that in principal cannot be achieved (for 
m > 2) for kernel estimators with kernels being density functions. 

Theorem 7. Let p be m times differentiable with p(m) a function of bounded 
variation, V(p(m)) = Vm < oo. Ifpn is the sine estimator, and hn = hon-l/(2m+l), 
then 

MISE(p) < 2_{4(m+1)V(2m+l)/(m+l)h2m+~}n-2m/(2m+l)_ (4.4) 
n - 2K 2m + 1 m 0 ho 

Proof. We have 

(4.5) 

Let us estimate the integral on the right hand side, making use of Lemma 4. We 
have 

therefore 

(4.6) 

Thus, from inequality (4.3) of Lemma 5, and relations (4.5) and (4.6), we obtain 
(4.4) .• 
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Corollary. Let the conditions of Theorem 7 be satisEed. Then for each n, 

minMISE(pn) :S: _2-_{4(m+1)}1/(2m+1) (2m+ 1)2m/(2m+1)V1/(m+1)n-2m/(2m+1). 
h>O 271' m m 

Theorem 8. Let p be m times differentiable, with p(m) a function of bounded 
variation, V(p(m)) = Vm < oo. Ifpn is the sine estimator, and hn = hon-11(2m-1), 
then 

sup MSE(pn(x)) :S:~ { (m +21)2 V~m/(m+1) h~(m-1) 
x 7l' m 

+ 2 (v1/(m+1) + _!__ vm/(m+1)) __!__ }n -2(m-1)/(2m-1). 
m m m ho 

The proof of this theorem is analogous to that of Theorem 7, one just needs 
to use relation ( 4.2) of Lemma 5 instead of relation ( 4.3) and take into account 
that due to Lemma 4, 

1 J 1 lv,;/(m+l) 1 1 Vm dt 
A(p) = - lf(t)l dt < - dt +-

271' - 271' -v,;!C=+ll 271' lti>V,;;c=+ll ltim+1 

:s: ~{ v~/(m+1) + ~ vr:/(m+1) }· 

Corollary. Let the conditions of Theorem 8 be satisEed. Then for each n, 

2m -1 (m + 1)2/(2m-1) 
min sup MSE(Pn (x)) :S: 2 
h>O x 7l' m 

TT(m-1)/(m+1) 2m-2 

{ m + Vm } 2m-1 v2/(m+1) -2(m-1)/(2m-1) 
X ( ) m n . m m-1 

Now we proceed to the 'supersmooth' case which we define in terms of char­
acteristic functions (although this class of distribution can be defined in terms 
of density functions as well, a description in terms of characteristic functions is 
simpler, more natural and more convenient for our purposes). A distribution F 
with characteristic function f(t) is said to be supersmooth if for some a > 0 and 

"! > 0, 

B(p; a,"!)= J e-rltl"' lf(t)l dt < oo. 

Thus a normal density is supersmooth with a = 2 while a Cauchy is supersmooth 
with a= 1, for example. 

Theorem 9. Let the characteristic function f of p have a Enite B(p; a,"!) 

value, for some positive a and"!· If Pn is the sine estimator, and 

. 1 
w1th ho ~ -, 

n 
{ 1 }-1/a 

hn = "1log(hon) , 

then 

MISE(pn) :S: - 1-{--i---1 (logho+logn)1/a+ B(p~a,"f)}· (4.7) 
27l'n "! a o 
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Proof. We have 

Using this estimate and inequality (4.3) of Lemma 5, we obtain (4.7). • 

Theorem 10. Let the conditions of Theorem 9 be satisfied, and let again 
A(p) = (27r)-1 J lf(t)l dt. Then 

1{2A(p) I B 2 (p;a,"f)} sup MSE(pn(x)) :::; - - 11-(log ho +log n) 1 a+ 2 h . 
x n 1r"f a 47r n 0 

The proof of the theorem is similar to that of Theorem 9 (inequality ( 4.2) is 
used instead of (4.3)). 

Theorems 9 and 10 can be improved for one subclass of supersmooth densities. 
The result is given by the next theorem and is quite curious. Note that this theorem 
corresponds to a special case of a result by Ibragimov and Khas'minskii (1982), 
and we give it here for the completeness. 

Theorem 11. Let the characteristic function f of p satisfy the condition: 
there exists T > 0 such that f(t) = 0 for ltl > T. If Pn is the sine estimator, and 
hn :::; 1/T, then 

and 

2A(p) 2T 
supMSE(pn(x)):::; -h-:::; 2 h , 

X 1rn n 7r n n 

1 
MISE(pn):::; -h-. 

1rn n 

In particular, if hn = const. = 1/T, then 

2T2 
sup MSE (Pn (X)) :::; - 2-

x 1r n 

T 
and MISE(pn) :::; -. 

1rn 

A proof of the theorem can be immediately obtained from inequalities ( 4.2) 
and ( 4.3) of Lemma 5: integrals on the right hand sides of these vanish when 
hn :::; 1/T. 

Theorem 11 implies in particular that if the characteristic function of the 
underlying distribution vanishes for large values of the argument, and one uses the 
sine estimator for approximation, then Pn converges to p as n ---+ oo even when hn 

does not converge to zero. 
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5. Discussion and applications 

This article has provided upper bounds for both the traditional MISE and also the 
less worked with max-MSE performance measures of kernel density estimators. A 
list of such upper bounds has been provided, under various sets of assumptions, for 
both the traditional kernels as well as for the sine kernel, which has particularly 
attractive features. Our finite-sample results have been reached entirely outside the 
customary framework of asymptotics, Taylor expansions and small bandwidths, 
through the extensive use of characteristic and empirical characteristic functions. 
Below we give some concluding remarks, pointing to ways in which the results can 
be applied in statistics. 

5.1. Rule-of-thumb bandwidths for MISE and max-MSE. Consider kernel 
estimators with a traditional kernel K, a symmetric density. The traditional large­
sample approximations lead to an asymptotically optimal bandwidth of size 

and with consequent minimum approximate MISE of size 

minAMISE(p ) - (5/4){J-L2 (K)R4 (K)} 115 R(p") 115 n-415 
h>O n - 2 ' 

see for example Wand and Jones (1995). When K is standard normal, and pis a 
normal density with standard deviation a, this leads to the popular 'normal rule­
of-thumb' bandwidth hn = 1.0592 a n-115 . Note that the structure of these classic 
results is very similar to that seen in Theorem 1 and its corollary; in particular, 
the well-known large-sample result about the n-415 precision rate is here reached 
entirely without asymptotics machinery or approximations. 

It is interesting to compare the above with what one finds using the upper 
bounds. For a normal density, V2 = J Jp"'l dx is found to be the scale factor a-3 

times 2(27r)-112{1 +4exp(-3/2)} = 1.5100, and this leads via Theorem 1 to the 
rule hn = 0.8204 an - 115 . This has been calculated using upper bound results 
derived under minimal assumptions, and which hence do not pretend to be very 
accurate for smooth densities like the normal. It is comforting to see that only 
a moderate amount is lost in precision, in this very smooth case, since the ratio 
of the minimised upper bound to the minimised asymptotic MISE is found to be 
1.2911. 

The max-MSE criterion is a natural venue, seemingly not travelled before. It 
is difficult to reach applicable results for this criterion based on the traditional 
approximations. However, Theorem 3 and its corollary provide ways of bounding 
the max-MSE when there is information on V3 = J JpC4) I dx. If pis normal, then 
V3 can be shown to be the scale factor a-4 times 4{ (3b- b3 )¢(b)- (3c- c3 )¢(c)} = 

2.8006, where b = (3- v6) 112 and c = (3 + v6) 112 , and¢ is the standard normal 
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density. The normal rule-of-thumb, when the normal kernel is used, becomes 
hn = 1.1883CTn-115 , which again is not far from the traditional rule-of-thumb. 

We also point out that some of these results may be sharpened under further 
assumed constraints on the underlying density. The quite crude bound (3.2) has 
for example been used for lf(t)l, which could be bounded more effectively under 
such additional restrictions. This is not pursued here, however. 

5.2. Cross-validation and normal rule-of-thumb in new light. Results reached 
in this article, about MISE and upper bounds expressed in terms of characteristic 
functions, point to new ways in which bandwidths can be selected from data. 
Expressions (2.8) and its upper bound given in Lemma 2 depend on q(t) = lf(t)l 2 , 

but not on other aspects of the underlying density p. A suitable estimate q(t) 
may now be inserted in these expressions, after which one may minimise over 
the smoothing parameter h. For the normal kernel, this could for example mean 
minimising 

over h, after having selected an estimator q(t). Interestingly it turns out that this 
scheme reproduces the well-known 'unbiased cross-validation' rule, see for example 
Wand and Jones (1995), when one employs the natural nonparametric unbiased 
estimator 

A 1 L . 2 L q(t) = ( ) exp(2t(Xj- Xk)) = ( ) 2 cos(t(Xj- Xk)). 
nn-1 nn-1 

j#k j<k 

Other methods emerge by using alternative estimators for q(t). If one above 
uses the simplest parametric estimate, namely exp( -&2t 2 ) (or a de biased version 
thereof) corresponding to a normality approximation, then minimising Qn(h) is a 
better finite-sample version of the classic rule-of-thumb 1.0592 & n-115 . Semipara­
metric versions of this argument would be worth studying; see Hjort (1999) for a 
similar enterprise. 

5.3. Minimax precision control. Another type of application would be follow­
ing. Assume that an upper bound for v2 = J IP"' I dx is established, say v2 :::; V2. 

This is a statement of the maximum envisaged wigglyness of the density; a small 
V2 would mean a density which can be approximated with a quadratic function. 
The bound v2 could be set after inspection of data or from prior grounds. - In 
such a situation the corollary of Theorem 1 can be given to find a sample size no 

guaranteed to secure a MISE-accuracy below a given threshold, for the big class 
of all densities with V2 :S: V2. 

Variations of this scenario can easily be given, for example selecting a sam­
ple size necessary to secure max-MSE below a certain precision threshold for all 
relevant densities, as constrained with bounds on V3 and the maximum value a. 
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5.4. Large-sample superiority of the sine method. Approximation of densities 
via the sine kernel can often be more accurate than with traditional kernels. This 
has been pointed out early on by Davis (1977), but the method does not seem 
popular in practice. That it takes negative values and is not (Lebesgue)-integrable 
is not a real concern, since it can be repaired for these defects in an automatic 
fashion which also guarantees precision improvement; see Glad, Hjort and Ushakov 
(1999b). And results from Section 4 above, with further analysis provided in Glad, 
Hjort and Ushakov (1999a), give clear indications of the strong performance of the 
sine method. 

Theorem 9 shows that the rate of MISE towards zero is often much better 
than the n - 415 available with traditional kernels. For any mixture of normals, 
for example, the rate is O((logn) 112 /n), while if some Cauchy type tail behaviour 
is mixed in it becomes O((logn)/n). The same remarks apply to the max-MSE 
performance criterion. 

That the sine method also can perform better than the traditional ones for 
non-smooth cases is made clear by Theorem 6, where a O(n-112 ) rate is exhibited 
for MISE under a minimal assumption on p, compared to the O(n-112 log2 n) rate 
for the ordinary methods. 
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