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Abstract. In this paper we consider the generalized gamma distribution

as introduced in G̊asemyr and Natvig (1998). This distribution enters nat-

urally in Bayesian inference in exponential survival models with left cen-

soring. In the paper mentioned above it is shown that the weighted sum of

products of generalized gamma distributions is a conjugate prior for the pa-

rameters of component lifetimes, having autopsy data in a Marshall-Olkin

shock model. A corresponding result is shown in G̊asemyr and Natvig (1999)

for independent, exponentially distributed component lifetimes in a model

with partial monitoring of components with applications to preventive sys-

tem maintenance. A discussion in the present paper strongly indicates that

expressing the posterior distribution in terms of the generalized gamma

distribution is computationally efficient compared to using the ordinary

gamma distribution in such models. Furthermore, we present two types

of sequential Metropolis-Hastings algorithms that may be used in Bayesian

inference in situations where exact methods are intractable. Finally these

types of algorithms are compared with standard simulation techniques and
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analytical results in arriving at the posterior distribution of the parameters

of component lifetimes in special cases of the mentioned models. It seems

that one of these types of algorithms may be very favourable when prior

assessments are updated by several data sets and when there are significant

discrepancies between the prior assessments and the data.

Key words: Exponential survival models, left censoring, autopsy data,

Marshall-Olkin shock model, preventive system maintenance.

1 Bayesian inference in reliability models in-

volving the generalized gamma distribu-

tion

In this paper we consider the generalized gamma distribution, as introduced

in G̊asemyr and Natvig (1998), given by the following definition.

Definition 1.1 For positive real numbers a, b, t1, . . . , tm, m ≥ 0, define the

functions

h(θ; a, b, t) = θa−1 exp(−bθ)
m∏

i=1

(1 − exp(−θti)) , θ ≥ 0 , (1.1)

h(θ; a, b) = θa−1exp(−bθ), θ ≥ 0,

where t = (t1, . . . , tm). Define the normalizing constant γ(a, b, t) by

(γ(a, b, t))−1 = Γ(a)
∑

d∈{0,1}m

(−1)|d|(b + d · t)−a , (1.2)

where |d| = d1 + · · ·+ dm. The generalized gamma distribution with param-

eters a, b and t is then defined as the probability distribution on [0,∞) with

density function given by

g(θ; a, b, t) = γ(a, b, t)h(θ; a, b, t) , θ ≥ 0 (1.3)

The ordinary gamma distribution, g(θ; a, b), is the special case corresponding

to m = 0.

This distribution enters naturally as the posterior distributions for failure

rates in exponential survival models with left censoring as seen in the fol-

lowing.
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Example 1.1 Suppose r identical components are put on test in separate

test chambers under identical conditions. Under the experimental condi-

tions, the components have independent exponential life distributions with

failure rate θ. The ith component is inspected at a deterministic inspection

time ti, and it is observed whether the component has failed before ti. The

inspection interfers with the experimental conditions, so further testing of

the component cannot be done. The inspection may itself for instance be

destructive to the component, or its failure rate may be increased due to

stress related to the inspection. À priori θ is assumed to be gamma dis-

tributed with parameters a, b. Let Ti be the lifetime of the ith component,

interpreted as the potential lifetime that would have resulted if the exper-

iment had not been interrupted. Define Di = I(Ti > ti). The likelihood

function for the data Di = di, i = 1, . . . , r, is then

L(θ|d1, . . . , dr) =
r∏

i=1

P (Di = di|θ) =
r∏

i=1

(exp(−θti))
di(1 − exp(−θti))

1−di

If di = 0 for i = i1, . . . , im, di = 1 otherwise, we obtain by Bayes theorem

the posterior distribution

π(θ|d1, . . . , dr) = g(θ; a, b + d · t, ti1 , . . . , tim)

In order to compute the normalizing constant of this density analytically,

we see from (1.2) and (1.3) that we must add up 2m terms. If m, the

number of left censored lifetimes, is large, the computational complexity

can be an obstacle and simulation is the only alternative. Furthermore, this

density function can be approximated arbitrarily well if we can generate

a sufficiently large sample from the posterior distribution. To derive the

density function, the sample is used as input in a standard density estimate.

It is easy to extend the results above to a situation where the ith component

is continuously monitored in the interval (si, ti), i = 1, . . . , n.

We now consider a binary, monotone system (E, φ), where E ={1, . . . , n}
is the set of components and φ is the structure function describing the state

of the system in terms of the binary states of the components. Denote the

lifetime of the system by T and the lifetime of the ith component by Ti.

The state of the ith component at time t is denoted Xi(t) and we have

Xi(t) = I(Ti > t), i ∈ E. Let X(t) = (X1(t), . . . , Xn(t)). We then have

φ(X(t)) = I(T > t). The autopsy data of the system is the pair (T, D),

where D = {i|Ti ≤ T}, the set of failed components by the time of system

failure, see Meilijson (1981).
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Following G̊asemyr and Natvig (1998) consider a set of shocks S =

{1, 2, . . . , n + p}. Here, 1, 2, . . . , n represent individual shocks destroying

the corresponding components of E, whereas n + 1, . . . , n + p represent

common shocks; the lth shock destroying the components in Dl ⊂ E. Let

Vl be the time until the lth shock occurs. Thus, Ti = min{Vl|i ∈ Dl},
i = 1, . . . , n. Now assume that V1, . . . , Vn+p are independent, exponentially

distributed with failure rates θ1, . . . , θn+p; i.e. we have a Marshall-Olkin

shock model, see Marshall and Olkin (1967). A subset A ⊂ E satisfies

P (D = A) > 0 iff A is a cut set, i.e. the system has failed if all components

in A have failed, and there exists a shock l ∈ S such that Dl ⊂ A and

A−Dl is not a cut set. Such a shock l is called a critical shock and such a

subset A a fatal set. Denote the set of critical shocks for A by CA and let

A = {A1, . . . , Am} be the set of fatal sets. Define GA(t) = P (T ≤ t, D = A)

with density function gA(t) = d
dtGA(t). G̊asemyr and Natvig (1998) gives a

computationally efficient procedure for deriving this likelihood, leading to

the following lemma.

Lemma 1.2 For the Marshall-Olkin shock model with failure rates

θ1, . . . , θn+p the likelihood function can be written in the form:

L(θ) =
K∑

k=1

∏

l∈Bk

h(θl; 1, 0, t)
∏

l∈Ck

h(θl; 1, t)h(θjk
; 2, t), (1.4)

where Bk, Ck, {jk} are disjoint subsets of S for each k = 1, . . . , K.

This leads almost immediately to the following main result in G̊asemyr

and Natvig (1998) on Bayesian inference based on autopsy data.

Theorem 1.3 a) Suppose that the failure rates θl, l = 1, . . . , n + p for the

Marshall-Olkin shock model for a binary, monotone system (E, φ) have a

joint prior distribution of the form

π0(θ) ∝
J∑

j=1

n+p∏

l=1

h(θl; aj,l, bj,l, tj,l)

=
J∑

j=1

n+p∏

l=1

γ(aj,l, bj,l, tj,l)
−1g(θl; aj,l, bj,l, tj,l) (1.5)

Then the posterior distribution of θ given the autopsy data (T = t, D = A)

with likelihood function given by (1.4) is of the form

π(θ|t, A) ∝
J∑

j=1

K∑

k=1

{
∏

l∈Bk

h(θl; aj,l, bj,l, tj,l, t)
∏

l∈Ck

h(θl; aj,l, bj,l + t, tj,l)}

×h(θjk
; aj,jk

+ 1, bj,jk
+ t, tj,jk

)
∏

l∈S−(Bk∪Ck∪jk)

h(θl; aj,l, bj,l, tj,l) (1.6)
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b) The class of distributions of the form (1.5) is a conjugate class of prior

distributions for the exponential autopsy shock model.

c) Suppose the prior distribution for θ is given by:

π0(θ) =
n+p∏

l=1

g(θl; al, bl) (1.7)

and that it is updated with autopsy data from r independent systems, of

the type (T1 = t1, D1 = Ai1 , . . . , Tr = tr, Dr = Air). Then the posterior

distribution is of the form (1.5) with tj,l a subvector of t = (t1, t2, . . . , tr)

for all j = 1, . . . , J , l = 1, . . . , n + p.

Theorem 1.3 b) states that the weighted sum of products of generalized

gamma distributions is a conjugate prior for θ in the Marshall-Olkin shock

model.

In G̊asemyr and Natvig (1999) a monitoring scheme is considered in

which a subset M = {1, . . . , p} of components with independent lifetimes

is monitored from time 0 onwards, while the components in another subset

C = {p+1, . . . , p+q}, where 1 ≤ p < p+q ≤ n, are conditionally monitored,

i.e. they are monitored from certain time points τi onwards, i ∈ C. These

time points are called inspection times and are determined by the observed

history of the system according to a specific strategy determined in advance.

For any component i for which Ti ≤ T , the failure time is recorded if it is

subject to monitoring at that time. In addition to data arising from this

monitoring scheme, autopsy data are observed, if not censored.

For this model G̊asemyr and Natvig (1999) arrives at the following

lemma, being very similar to Lemma 1.2.

Lemma 1.4 For the case of exponentially distributed component lifetimes

with failure rates θ1, . . . , θn the likelihood function of Theorem 2.1 of G̊asemyr

and Natvig (1999) can be written in the form

L(θ) =
K∑

k=1

∏

l∈Bk

h(θl; 1, 0, tk,l)
∏

l∈Ck

h(θl; 1, tk,l)
∏

l∈Dk

h(θl; 2, tk,l) , (1.8)

where Bk, Ck, Dk are disjoint subsets of E for each k = 1, . . . , K.

This leads to Theorem 5.3 of G̊asemyr and Natvig (1999) being an obvious

modification of Theorem 1.3 above.

A wider class of priors is obtained if one allows for a positive weight wj

for the jth summand in (1.5). An even wider class of conjugate priors is
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the class of distributions of the form

π0(θ) =
J∑

j=1

wj

n+p∏

l=1

g(θl; aj,l, bj,l) , (1.9)

where in this case, we have to allow for negative weights wj. The require-

ment is that
∑J

j=1 wj = 1, and that π0(θ) ≥ 0 for all vectors θ with

positive entries. Posterior densities of the form (1.9) arise, if the factors

(1 − exp(−θlt)), l ∈ Bk, k = 1, . . . , K appearing in (1.4) (and correspond-

ingly in (1.8)) are multiplied out. However, as the discussion in Appendix 1

strongly indicates, expressing the posterior distribution in terms of the gen-

eralized gamma distribution as in (1.5) is computationally efficient com-

pared to using the ordinary gamma distribution as in (1.9).

In any case the form (1.5) has considerable conceptual advantages. It

expresses the density in terms of functions, all of whose parameters are easily

interpretable; i.e. aj,l, bj,l and tj,l represent respectively the number of failed

components whose exact failure times are known, the total time on test for

the components that are not left censored, and the censoring times for the

components that are left censored. In the form (1.9), interpretation of the

parameters is much more difficult (see (A1.2) of Appendix 1) especially since

the sum contains both positive and negative terms.

Often one is interested in estimating θ. The standard Bayes estimate,

minimizing the expected quadratic loss, is for the Marshall-Olkin shock

model

E(θi) =

∑J
j=1

∏n+p
l=1 γ(aj,l + I(l = i), bj,l, tj,l)−1

∑J
j=1

∏n+p
l=1 γ(aj,l, bj,l, tj,l)−1

, i = 1, . . . , n + p (1.10)

Another quantity of interest is the predictive system survival probability,

which for the Marshall-Olkin shock model is given by

P (T > t) =

∑
A⊂E

∑J
j=1 δA

∏n+p
l=1 γ(aj,l, bj,l + I(l ∈ EA)t, tj,l)−1

∑J
j=1

∏n+p
l=1 γ(aj,l, bj,l, tj,l)−1

, (1.11)

where δA, A ⊂ E, is the signed domination function of (E, φ) defined

through

φ(x) =
∑

A⊂E

δA

∏

k∈A

xk

The proofs of (1.10) and (1.11) are straightforward from (1.5) and given in

G̊asemyr and Natvig (1998). For the model of G̊asemyr and Natvig (1999)

completely parallel results hold.

In Section 2 we present two types of sequential Metropolis-Hastings al-

gorithms that may be used in Bayesian inference in situations where exact
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methods are intractable. These types of algorithms are in Sections 3 and

4 compared with standard simulation techniques and analytical results in

arriving at the posterior distribution of θ in special cases of the models re-

spectively in G̊asemyr and Natvig (1999) and G̊asemyr and Natvig (1998).

In Section 5 some concluding remarks are given. It seems that one of these

types of algorithms may be very favourable when prior assessments are

updated by several data sets and when there are significant discrepancies

between the prior assessments and the data.

2 Two sequential Metropolis-Hastings algo-

rithms

As already mentioned at the end of Example 1.1 simulation may be the only

alternative to compute the generalized gamma density for large m. We now

return to the expressions for E(θi), i = 1, . . . , n + p and P (T > t) given

respectively by (1.10) and (1.11) for the Marshall-Olkin shock model. If the

right hand side of (1.5), entering in (1.10) and (1.11), results from updating

of a prior distribution π0 with independent autopsy data from r systems,

the potential number of summands involved in the computation of each

of the normalizing constants γ(aj,l, bj,l, tj,l)−1, see (A1.1), increases with a

factor of 2 for each new observation, i.e. with a factor of 2r altogether.

Furthermore, the number of summands appearing in (1.10) and (1.11) may

increase drastically as r increases, see Theorem 1.3 a). For instance, this

number increases with a factor of K = 5 for each new observation in the

simple example in Section 4. Thus the computational complexity may be

formidable. In some cases it may even be impossible to calculate the signed

domination function δ in (1.11). It may also be of interest to calculate

the marginal posterior density for each θi, i = 1, . . . , n + p. This requires

integrating out the other θi’s from the joint posterior density, an operation

which makes the computational task even more challenging. To overcome

such problems simulation can be the only alternative.

We will now present two types of sequential Metropolis-Hastings algo-

rithms. Basic papers in this area are Smith and Roberts (1993), Tierney

(1994), Besag et al. (1995) and Chib and Greenberg (1995) with correspond-

ing discussions and references. Let us begin with the ordinary Metropolis-

Hastings algorithm and assume it is easy to simulate from the prior dis-

tribution π0, which for instance can be given by (1.7). Following G̊asemyr

and Natvig (1998) we denote by L(θ|ti, Aji) the likelihood for θ given the
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autopsy data (Ti = ti, Di = Aji). The posterior distribution for θ, given

autopsy data from r independent systems, is hence

π(θ) = π(θ|t1, Aj1 , . . . , tr, Ajr) ∝ π0(θ)
r∏

i=1

L(θ|ti, Aji) (2.1)

We want to simulate a Markov chain {θk} whose stationary distribution is π.

Actually, in the terminology of Tierney (1994), we suggest simulating from

an independent chain with fixed proposal density π0. We call this algorithm

Parametric Independent Chain (PIC). We then start with an arbitrary θ,

e.g. a value drawn from π0. Given θk, draw θ′ from π0. Put θk+1 = θ′ with

acceptance probability α(θk, θ
′) = min{1, β(θk, θ

′)}, where

β(θk, θ
′) = (π(θ′)π0(θk))/(π(θk)π0(θ

′))

= (
r∏

i=1

L(θ′|ti, Aji))/(
r∏

i=1

L(θk|ti, Aji)) (2.2)

With probability 1 − α(θk, θ
′) we put θk+1 = θk. The predictive survival

probability, P (T > t), for the system may then be estimated by

N−1
N∑

k=1

P (T > t|θk) , (2.3)

where N is chosen sufficiently large to ensure convergence, possibly after a

burn-in period. If the exact reliability of the system is hard to calculate, an

approximation to (2.3) may be obtained by replacing the summands of (2.3)

by approximate values based for instance on the bounds for the reliability

of a shock system given in G̊asemyr and Natvig (1995).

If autopsy data (Tr+1 = tr+1, Dr+1 = Ajr+1) from another system is

obtained, one must in principle repeat the procedure. Note that it is rea-

sonable to expect that the Markov chain converges faster the closer π0 is to

π. One would therefore expect convergence to π(θ|t1, Aj1 , . . . , tr+1, Ajr+1) to

be faster if drawing candidate values θ′ from π0 could be replaced by draw-

ing from π(θ|t1, Aj1 , . . . , tr, Ajr). It may therefore be profitable to draw

from an easily simulated approximation, π(r)(θ), to the latter distribution.

This is the idea which the two following types of sequential Metropolis-

Hastings algorithms are based on. Furthermore, for both algorithms the

proposal distribution, π(r)(θ), is assumed to be a product of its marginal

distributions.

In the first type of algorithm π(r)(θ) is a product of gamma distributions

with the correct marginal expectations and correct variances. We call this

algorithm Parametric Sequential Independent Chain (PSIC). This seems to
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be an original suggestion of an “adaptive sampler”, the design of which

is a legitimate goal according to Besag et al. (1995), see page 61. Note

that E(θl|t1, Aj1 , . . . , tr, Ajr) and E(θ2
l |t1, Aj1 , . . . , tr, Ajr), l = 1, . . . , n + p,

may be estimated by replacing P (T > t|θk) with θk,l and θ2
k,l respectively

in (2.3). The original simulation procedure would then be modified by

changing β(θk, θ
′) to

β(θk, θ
′)

= (π0(θ
′)

r+1∏

i=1

L(θ′|ti, Aji)π
(r)(θk))/(π0(θk)

r+1∏

i=1

L(θk|ti, Aji)π
(r)(θ′)) (2.4)

The effect on the convergence rate of choosing a prior and a distribu-

tion for candidate values θ′ as close as possible to the distribution that

we want to simulate, may justify choosing more complicated distributions

than products of gamma distributions; for example products of generalized

gamma distributions or even convex combinations of such. Thus, general-

ized gamma distributions may play a role even when we have to resort to

simulation.

The second type of sequential Metropolis-Hastings algorithm is based

on a smoothing technique given in Bølviken, Christophersen and Storvik

(1998), see page 128. We then draw S samples from π(θ|t1, Aj1 , . . . , tr, Ajr)

and let π(r)(θ) be a joint density which is the product of the smoothed

marginal histograms. We call this algorithm Non Parametric Sequential In-

dependent Chain (NPSIC). Denote the S samples by θ∗(r)(s), s = 1, . . . , S.

We first derive a set of corrected samples each assigned a probability 1/S.

θ∗∗(r)i (s) = θ
∗(r)
i + [(1−λ2)S/(S−1)]1/2[θ∗(r)i (s)− θ

∗(r)
i ] , s = 1, . . . , S

Here θ
∗(r)
i is the mean of {θ∗(r)i (s)}S

s=1. Let σ2∗(r)
i be the corresponding

sample variance. λ ∈ [0, 1] is a user selected parameter. It is straightforward

to verify that the distribution has mean θ
∗(r)
i and variance (1 − λ2)σ2∗(r)

i .

Now take the corrected sample θ∗∗(r)i (s) and add an independent Gaussian

variable ε∗∗(r)i (s) with mean zero and variance λ2σ2∗(r)
i . Clearly the resulting

distribution has a mean and variance equal to θ
∗(r)
i and σ2∗(r)

i respectively.

This distribution is a continuous one and thus represents a smoothed version

of the marginal histogram.

As presented above, the proposal distribution is updated once for each

data set, the starting point being the arrival of additional data. However,

this distribution can in addition be updated successively for the same data

set, as has also been pointed out to us by Arnoldo Frigessi. We call these

9



versions of the algorithm Parametric and Non Parametric Sequential Adap-

tive Independent Chain (PSAIC and NPSAIC). Note that since now θ′, and

hence α(θk, θ
′), depends on all previous iterations on the same data set, the

Markov property is destroyed. Nevertheless, one would intuitively expect

the algorithm to converge. This seems to be confirmed at least for the im-

plementation of the PSAIC algorithm in Section 4. A proof of convergence

for a modified version of this algorithm is given in Appendix 2. It is also

possible to update the proposal distribution successively for the complete

data set only. We have chosen to do this when a sequence of a fixed number

of samples is completed. We call these versions of the algorithm Parametric

and Non Parametric Adaptive Independent Chain (PAIC and NPAIC).

When running the PSIC, PSAIC and PAIC we use a simple diagnostic

test of convergence. For each l we choose threshold values εal
, εbl

> 0 corre-

sponding to (al, bl) the shape and scale parameter of the gamma marginal

proposal distribution of θl. Considering PAIC, when the difference between

the parameter estimates based on two consecutive sequences becomes less

than these thresholds for both scale and shape parameter and for each l,

the burn-in is terminated and the proposal distribution is kept fixed at the

last updated value for the rest of the iterations. For the PSAIC we follow

the same procedure, using the same criterion to determine when to take in

a new data point. The latter is done also for PSIC. The test does of course

not ensure that stationarity is reached, but at any rate it normally ensures

that the proposal distribution has stabilized, and our numerical examples

indicate that the test works well in practice.

In Sections 3 and 4 we will compare the various types of sequential

Metropolis-Hastings algorithms with standard simulation techniques such

as Rejection Sampling, ordinary Metropolis-Hastings and the Sampling Im-

portance Resampling (SIR) algorithm. For the latter algorithm see Smith

and Gelfand (1992) where it is called Weighted Bootstrap. To apply re-

jection sampling in the Marshall-Olkin shock model we must find an upper

bound on L(θ) given by (1.4), again see Smith and Gelfand (1992). Remem-

bering that CA is the set of critical shocks for A, we establish the following

upper bound

L(θ) = lim
dt→0

P (t < T ≤ t + dt, D = A)/dt

=
∑

l∈CA

θl exp(−θlt) lim
dt→0

P (t < T ≤ t + dt, D = A | t ≤ Vl < t + dt)

≤
∑

l∈CA

θlexp(−θlt) ≤ |CA|/(te)

This general upper bound can be improved in specific applications.
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3 An application to preventive system main-

tenance

In this section, following G̊asemyr and Natvig (1999), we consider preventive

system maintenance where components are replaced according to a specific

strategy. We have to take into account that it is costly to intervene in

system operation. Hence, it is desirable to postpone replacement of failed

components as long as possible in order to replace several components at

a time. On the other hand, it is obviously important to avoid a system

failure. As a compromise we assume that components are replaced as soon

as system weakening has reached a certain level; i.e. when ψ(X(t)) jumps to

zero, where ψ is a binary, monotone structure function such that ψ(X(t)) ≤
φ((X(t)). At this time a total inspection of the components is carried

through and all failed components are replaced, while the others are not

affected. We assume this procedure takes zero operational time. Afterwards,

the replaced components are assumed to have the same lifetime distributions

as the initial ones. It is natural to choose ψ such that when ψ(X(t)) jumps

to zero, at least one additional component must fail for φ(X(t)) to jump to

zero.

Consider the network system of seven components given in Figure 1.

1

6

4

2

3

S T
5

7

Figure 1: Network system of seven components

The system is working iff there is at least one connection between S(ource)

and T(erminal). In G̊asemyr and Natvig (1999) it is shown that a natural

choice for ψ(x) is:

ψ(x) = x2x4[x1x3 + (1 − x3)x1x6x7 + (1 − x1)x3x5x6]

We have simulated 20 exponentially distributed lifetimes for each of the

components 1, . . . , 7 with expectations θ−1
l , l = 1, . . . , 7 measured in hours

respectively equal to 1000, 2000, 1800, 1500, 600, 800, 700. In G̊asemyr and

Natvig (1999) the following likelihood function, L(θ), is established, based

on data from observing the system components according to a specifically

described scheme on the interval [0, 10000]:
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L(θ) = θ11
1 e−9395θ1θ3

2e
−10000θ2θ5

3e
−9128θ3θ5

4e
−10000θ4

×θ2
5e

−4497θ5(1−e−449θ5)(1−e−273θ5)(1−e−447θ5)(1−e−337θ5)(1−e−1614θ5)

×(1−e−860θ5)(1−e−1223θ5)(1−e−295θ5)

×θ6e
−2904θ6(1−e−866θ6)(1−e−346θ6)(1−e−253θ6)(1−e−499θ6)(1−e−449θ6)(1−e−115θ6)

×(1−e−337θ6)(1−e−1614θ6)(1−e−1223θ6)(1−e−284θ6)(1−e−810θ6)(1−e−295θ6)

×θ7e
−3682θ7(1−e−866θ7)(1−e−346θ7)(1−e−499θ7)(1−e−449θ7)(1−e−337θ7)

×(1−e−1614θ7)(1−e−1223θ7)(1−e−284θ7)(1−e−299θ7)(1−e−396θ7) (3.1)

Assume that we choose the failure rates θ1, . . . , θ7 to be independent à

priori each having an ordinary gamma distribution g(θ; 1, 1000) with expec-

tation and standard deviation equal to 0.001. From (3.1) θ1, . . . , θ7 are in-

dependent à posteriori as well. The posterior distribution of θl is g(θl; al, bl),

l=1, 2, 3, 4 with (al, bl) respectively equal to (12, 10395), (4, 11000), (6, 10128)

and (6, 11000). For l = 5, 6, 7 the posterior distribution is g(θl; al, bl, tl) with

(al, bl, tl) respectively equal to

(3, 5497, 449, 273, 447, 337, 1614, 860, 1223, 295) ,

(2, 3904, 866, 346, 253, 499, 449, 115, 337, 1614, 1223, 284, 810, 295)

(2, 4682, 866, 346, 499, 449, 337, 1614, 1223, 284, 299, 396)

To go through all 2m addends in (1.2) the following algorithm is used.

Let

A(1) =
(

0

1

)
A(i) =

(
0

1

A(i − 1)

A(i − 1)

)

, i = 2, . . . , m

Here 0 and 1 are column vectors with dimension 2i−1. A(i) is a 2i×i matrix.

Hence A(m) gives all 2m desired combinations as row vectors.

In the same figures we have plotted (full lines) the corresponding simu-

lated posterior distributions. These are based on Rejection Sampling (RS),

Parametric Independent Chain (PIC), an ordinary random walk Metropolis-

Hastings algorithm which we call Parametric Dependent Chain (PDC) us-

ing a truncated normal proposal density, Sampling Importance Resampling

(SIR) and finally the Parametric and Non Parametric Adaptive Independent

Chain (PAIC and NPAIC). Since we consider the data given in this appli-

cation as one data set, sequential versions of the two latter algorithms have

not been considered. Inspecting the figures, especially Figure 3 covering θ6,

the RS algorithm works poorly. It is way out for 1.5 ·10−3 < θ6 < 2.5 ·10−3.
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All the rest do rather well. It should be noted that θ6 has the largest num-

ber of left censored lifetimes entering into the posterior (m = 12). Hence

this posterior is the most difficult to calculate.
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Figure 2: The densities for θ5 for the analytical posterior (dashed) and

simulated posteriors (full lines) for all simulation algorithms.
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Figure 3: The densities for θ6 for the analytical posterior (dashed) and

simulated posteriors (full lines) for all simulation algorithms.

In Table 1 we have given the execution times (in seconds) for all algo-

rithms to make a proper comparison.

For the RS algorithm that works poorly execution time is very long.

Obviously, a much longer execution time would have been needed to make

it work. The PAIC algorithm is the fastest, closely followed by PIC. SIR is

a clear number three. Then follows PDC, whereas NPAIC is definitely the

slowest among the best five.

The execution times listed in Table 1 are the results of a single run for

each algorithm, and hence do not represent a thorough numerical experi-

ment. Nevertheless, the results for the three different parameters show a

fairly consistent pattern, and provide a reasonable indication of the speed
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Figure 4: The densities for θ7 for the analytical posterior (dashed) and

simulated posteriors (full lines) for all simulation algorithms.

Table 1. Execution times in seconds for all algorithms for θl, l = 5, 6, 7.

RS PIC PDC SIR PAIC NPAIC

θ5 1077 20 298 37 15 899

θ6 1214 24 302 185 16 1351

θ7 1147 22 301 78 19 1110

of the algorithms. The tuning of the algorithms was done after some trial

runs and was done with the intention to obtain similar quality for the den-

sity approximations for all algorithms. The quality was assessed by visual

inspection; no formal distance measure for densities was used. A rule of

thumb emerging from our trials was that a total number of somewhere be-

tween 2000 and 3000 different values in the final sample, which means after

burn-in for the MCMC algorithms, were needed in order for the density

estimate to produce acceptable results. Hence the total number of itera-

tions in the MCMC algorithms after burn-in had to be roughly inversely

proportional to the acceptance rate.

In Table 2 we have listed some key figures from the computations for all

simulation algorithms. Due to the very long execution times, we did not

wait for the RS to produce reasonable values for the number of accepted

proposals.

For RS, PIC, SIR and PAIC the prior gamma, g(θ; 1, 1000), is used as

proposal distribution. For PDC and the first sequence of NPAIC a normal

density, restricted to [0, 0.01], with expectation equal to the previous sample

and variance equal to 10−4 is used as proposal distribution. For PAIC a

sequence length of 100 is applied, and we choose εal
=0.2, εbl

=5, l=5, 6, 7.
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Table 2. Key figures from the computations for all algorithms for θl,

l = 5, 6, 7.

Length of Total number of itera- Total number of accepted pro-
burn-in tions after burn-in posals after burn-in/resamples*

θ5 – 1200000 194
RS θ6 – 1200000 13

θ7 – 1200000 29
θ5 3000 17000 5661

PIC θ6 3000 17000 3708
θ7 3000 17000 4873
θ5 2000 18000 2847

PDC θ6 2000 18000 3661
θ7 2000 18000 3093
θ5 – 40000 2000*

SIR θ6 – 180000 2000*
θ7 – 80000 2000*
θ5 2300 3000 2944

PAIC θ6 2200 3000 2888
θ7 3200 3000 2946
θ5 2000 3000 2687

NPAIC θ6 3000 3000 2816
θ7 2500 3000 2766

4 An application to a simple shock model

In this section, following G̊asemyr and Natvig (1998), we consider a simple

parallel system of two components subjected to a common shock. This

is a special case of the general shock model presented in Section 1 with

E = {1, 2} and S = {1, 2, 3}. The only fatal set is A = {1, 2}. Suppose

the prior distribution for θ is given by (1.7), where (al, bl), l = 1, 2, 3 are

respectively given by (4,1), (6,3) and (6,2). The likelihood function (1.4)

now obviously reduces to:

L(θ) = θ1(1 − exp(−θ2t)) exp(−(θ1 + θ3)t)

+θ2(1 − exp(−θ1t)) exp(−(θ2 + θ3)t) + θ3(1 − exp(−θ2t)) exp(−(θ1 + θ3)t)

+θ3(1 − exp(−θ1t)) exp(−(θ2 + θ3)t) + θ3 exp(−(θ1 + θ2 + θ3)t) (4.1)

In G̊asemyr and Natvig (1998) an explicit expression for the posterior

distribution π(θ|t, A) is given whereas π(θ|t1, A, t2, A) is given in Sørensen
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(1999). For autopsy data from more than two independent systems no

explicit analytical posterior has been calculated. The analytical prior and

posterior distributions for θl, l = 1, 2, 3 are plotted respectively in Figures 5,

6, 7 for t = (1.5, 1.5) and in Figures 8, 9, 10 for t = (3, 3).

In the same figures we have as in Section 3 plotted the correspond-

ing simulated posterior distributions. These are based on RS, except for

t = (3, 3), two ordinary Metropolis-Hastings algorithms, PIC and PDC,

SIR, and finally PAIC and three sequential Metropolis-Hastings algorithms

PSAIC, PSIC and NPSIC. For t = (1.5, 1.5, 0.4, 0.8, 0.5) the simulated pos-

terior distributions for θl, l = 1, 2, 3, based on the same algorithms, are

plotted in Figures 11, 12, 13.
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Figure 5: The densities for θ1 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms, with t =

(1.5, 1.5).
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Figure 6: The densities for θ2 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms, with t =

(1.5, 1.5).

16



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

!3

Figure 7: The densities for θ3 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms, with t =

(1.5, 1.5).
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Figure 8: The densities for θ1 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms except RS,

with t = (3, 3).
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Figure 9: The densities for θ2 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms except RS,

with t = (3, 3).

17



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

!3

Figure 10: The densities for θ3 for the prior (−·), analytical posterior (− −)

and simulated posteriors (full lines) for all simulation algorithms except RS,

with t = (3, 3).
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Figure 11: The densities for θ1 for the simulated posteriors (full line) for all

simulation algorithms, with t = (1.5, 1.5, 0.4, 0.8, 0.5).
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Figure 12: The densities for θ2 for the simulated posteriors (full line) for all

simulation algorithms, with t = (1.5, 1.5, 0.4, 0.8, 0.5).
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Inspecting Figures 5, 6, 7, comparing with the analytical posterior, we

see that all algorithms do rather well for θl, l = 1, 2, 3 when t = (1.5, 1.5).

However, when t = (3, 3), where we see from Figures 8, 9, 10 that there

are large discrepancies between the prior assessments and the data, it turns

out that RS does not work at all. We see from Figures 9, 10 that for θ2

and θ3 the remaining algorithms do rather well. For θ1 from Figure 8 and

inspecting the individual posteriors, plotted in figures not presented here,

NPSIC works poorly, whereas the rest of the algorithms do not work that

badly.

Finally, we inspect Figures 11, 12, 13, covering t = (1.5, 1.5, 0.4, 0.8, 0.5),

where no analytical posterior has been calculated. This would have involved

55 = 3125 addends in the joint posterior distribution for θ due to 5 addends

in (4.1) and autopsy data from 5 independent systems. We see from these

figures that the different plots are reasonably close for θl, l = 1, 2, 3 indi-

cating that all algorithms do rather well in this case. This is not surprising

remembering that this was true for t = (1.5, 1.5) and noting that the rest

of the data are in accordance with prior assessments.
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Figure 13: The densities for θ3 for the simulated posteriors (full line) for all

simulation algorithms, with t = (1.5, 1.5, 0.4, 0.8, 0.5).

The tuning of the algorithms was done along the same lines as in Sec-

tion 3. In Table 3 we have given the execution times (in seconds), and

also the total number of iterations including burn-in, to arrive at the sim-

ulated posteriors for all θl, l = 1, 2, 3, for all algorithms to make a proper

comparison.
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Table 3: Execution times in seconds, and total number of iterations

including burn-in, to arrive at the simulated posteriors for all θl,

l = 1, 2, 3, for all algorithms.

Execution times Total number of iterations
t (in seconds) including burn-in

(1.5,1.5) 1361 1017234
RS (3,3) – –

(1.5,1.5,0.4,0.8,0.5) 3125 3872491
(1.5,1.5) 101 50000

PIC (3,3) 514 250000
(1.5,1.5,0.4,0.8,0.5) 153 50000

(1.5,1.5) 464 10000
PDC (3,3) 461 10000

(1.5,1.5,0.4,0.8,0.5) 237 5000
(1.5,1.5) 46 32000

SIR (3,3) 279 200000
(1.5,1.5,0.4,0.8,0.5) 46 32000

(1.5,1.5) 53 5200
PAIC (3,3) 104 8800

(1.5,1.5,0.4,0.8,0.5) 103 6400
(1.5,1.5) 49 5000

PSAIC (3,3) 93 8200
(1.5,1.5,0.4,0.8,0.5) 86 8600

(1.5,1.5) 89 8700
PSIC (3,3) 114 10200

(1.5,1.5,0.4,0.8,0.5) 141 14000
(1.5,1.5) 1892 6000

NPSIC (3,3) 1900 6000
(1.5,1.5,0.4,0.8,0.5) 1674 4900

For RS that does not work at all for t = (3, 3) and for NPSIC that works

poorly for θ1 for this data vector, execution times are extremely long. The

PSAIC algorithm is the fastest followed by PAIC. In the next group follow

PSIC and SIR, whereas the two ordinary Metropolis-Hastings algorithms

PIC and PDC are definitely the slowest among the best six.

For RS, PIC, SIR, PAIC, PSAIC, PSIC the product of prior gammas is

used as the initial proposal distribution. For PDC and for the processing

of the first data point of NPSIC a normal density, restricted to [0,∞], with

expectation equal to the previous sample and variance equal to 1 is used

as proposal distribution. For PAIC, PSAIC, PSIC a sequence length of 200

is applied, and we choose εal
= εbl

= 0.2, l = 1, 2, 3 as threshold values
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to arrive at simulated posteriors for all θl, l = 1, 2, 3. Considering t =

(1.5, 1.5, 0.4, 0.8, 0.5) for PAIC the diagnostic test concluded the iterations

after 17 sequences. The corresponding numbers of sequences were 3, 5, 7, 9

and 4, altogether 28, for PSAIC and 8, 11, 10, 16 and 10, altogether 55, for

PSIC. Hence the lengths of burn-in for this data vector were respectively

3400, 5600 and 11000 for these algorithms.

5 Concluding remarks

In this paper focus has been on computational aspects of some models in

reliability, presented in G̊asemyr and Natvig (1998, 1999), involving the

generalized gamma distribution. We have tried several simulation algo-

rithms. Among these are two new types of sequential Metropolis-Hastings

algorithms introduced here. We have used artificial data on examples taken

from G̊asemyr and Natvig (1998, 1999). By the variation in data, light is

shed on the flexibility of the algorithms. In most of the trials, exact analyti-

cal solutions were available as a basis for comparison. A quality criterion has

been the ability of the algorithms to reproduce marginal posterior densities

close to the true curves in reasonable computation time.

Among the algorithms based on sampling from a fixed distribution, SIR

seems to be the fastest and most flexible. RS has a very limited applicability,

whereas PIC works well if the prior distribution is in reasonable accordance

with the data. However, even SIR has trouble coping with large discrep-

ancies between the prior assessments and the data. The new parametric,

sequential Metropolis-Hastings algorithms, PAIC, PSAIC, PSIC generaliz-

ing PIC, are superior in coping with such discrepancies, but are also among

the faster algorithms in the less problematic cases. Anyway, they work

substantially better than the PDC.

We would guess that the parametric, sequential algorithms are even more

favourable in more complex cases. More complicated proposal distributions,

such as convex combinations of products of gamma or generalized gamma

distributions may then be useful.

The idea behind the parametric, sequential algorithms is quite general

and is potentially useful in may other situations, where other parametric

classes of proposal distributions may be more natural, e.g. normal distri-

butions or combinations of uniform distributions. We hope that this paper

might stimulate research in this direction.

The non parametric, sequential algorithm, NPSIC tried out in this pa-
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per, does not look too promising so far, due to the very long computation

times. This type of algorithm might be useful, however, if it is difficult to

find a parametric class that works.
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Appendix 1

A comparison of the representations (1.5) and

(1.9) with respect to computational efficiency

Starting out with (1.5), let t = (t1, t2, · · · , tr) be a vector with positive

entries such that tj,l is a subvector of t for all j = 1, · · · , J , l = 1, · · · , n + p.

For j = 1, · · · , J , l = 1, · · · , n + p define dj,l = (dj,l,1, dj,l,2, · · · , dj,l,r) by

putting dj,l,i = 1 if ti occurs as an entry in the subvector tj,l and 0 otherwise.

Note that the normalizing constant corresponding to the lth factor of the

jth summand of (1.5) can be calculated as in (1.2)

γ(aj,l, bj,l, tj,l)
−1 = (Γ(aj,l))

∑

{d∈(0,1)r|d≤dj,l}
(bj,l + d · t)−aj,l (A1.1)

Introduce dj = (dj,1,1, . . . , dj,1,r, . . . , dj,n+p,1, . . . , dj,n+p,r), i.e. the vector

made up by the subvectors dj,l, l = 1, · · · , n + p. The distribution in (1.5)

can then be written in the form (1.9) as

π(θ) ∝
J∑

j=1

n+p∏

l=1

r∏

i=1

(1 − exp(−θlti))
dj,l,ih(θl; aj,l, bj,l)

=
J∑

j=1

∑

{c∈{0,1}r(n+p)|c≤dj}
(−1)|c|

n+p∏

l=1

h(θl; aj,l, bj,l +
r∑

i=1

c(l−1)r+iti) (A1.2)

To calculate the distribution from (A1.2), one must calculate a weight for

each of the
∑J

j=1 2|dj | summands, each of which involves a product of n + p

factors of the form Γ(a)(b+d·t)−a. In contrast, (1.5) has only J summands,

and the weight corresponding to the jth summand involves
∑n+p

l=1 2|dj,l| terms

of the form Γ(a)(b + d · t)−a (see (A1.1)). Note that

n+p∑

l=1

|dj,l| =
n+p∑

l=1

r∑

i=1

dj,l,i = |dj|

Hence,
n+p∑

l=1

2|dj,l| ≤ 2|dj |

It is difficult to give a precise comparison of the computational complexity

involved in the two different forms, since this will depend on concrete imple-

mentations of computation algorithms. It may be possible to make efficient

use of the fact that different weights contain many identical factors. Nev-

ertheless, the above discussion indicates strongly that (1.5) is considerably

more efficient computationally than (1.9) in the present model, thus provid-

ing a good case for the usefulness of the generalized gamma distribution.
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Appendix 2

A proof of convergence for a modified version

of the PSAIC algorithm

The following notation is used in the proof. r denotes the total number of

data points; π is the posterior distribution based on all r data points, i.e.

the final target distribution; the length of sequences between updating of the

proposal distribution is denoted by S; (ai, bi), i = 1, 2, 3 are the parameters

of the original prior gamma distributions; (au
i , b

u
i ) are the last updates of

(ai, bi) based on estimates of E(θi) and Var(θi), i = 1, 2, 3 using the last

sequence of S iterations. Finally, gu denotes the corresponding product of

gammas proposal distribution.

The PSAIC algorithm is modified as follows. In the first place, the total

number of sequences before adding the last rth data point is bounded, either

by using a fixed number of sequences for each data point or by a combi-

nation with the diagnostic test described in Section 2. Secondly, (au
i , b

u
i ) is

restricted to the set Ai = [0, ai]× [δ, bi−δ] for some 0 < δ < bi/2, i = 1, 2, 3.

Now, let M be the number of iterations before the last rth data point is

added. M may be random, but is bounded. Let ηM be a random variable

with distribution π and let {ηk}k≥M be a stochastic process with ηM as ini-

tial value. This process moves according to a Metropolis-Hastings algorithm

with the same proposal distribution as the {θk} chain. The two chains are

linked by using the same proposed values θ′ the acceptance of which occurs

in each chain if a common uniform Uk is less than the corresponding ac-

ceptance probability. Clearly, the {ηk}k≥M chain starting in the stationary

distribution π, remains π-distributed throughout the first sequence of S it-

erations. In particular ηM+S is π-distributed. Now ηM+S can be regarded

as the initial value for a new chain with an updated proposal distribution.

Repeating the argument above we conclude that ηk is π-distributed for all

k ≥ M .

Let now K = min{k : ηk = θk} be the coupling time of the two chains.

Note that starting from (ηk, θk) and proposing θ′, due to the common

uniform Uk, coupling occurs with probability

min{1, π(θ′)gu(θk)/(π(θk)g
u(θ′)), π(θ′)gu(ηk)/(π(ηk)g

u(θ′))}
≥ π(θ′)/(gu(θ′)wu) ,

where wu is the supremum of π(θ)/gu(θ) with θ ranging over [0,∞)3. In-
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tegrating with respect to gu(θ′), we find that the coupling probability is

bounded from below by 1/wu. Now let w be a common upper bound for wu

as gu ranges over possible proposals having parameters (au
i , b

u
i ) restricted to

the set Ai, i = 1, 2, 3. Since from Section 4 the likelihood contribution to

π,
r∏

i=1
L(θ) | ti, Aji), is bounded, it then follows that the upper bound does

in fact exist. Furthermore, it follows that K − M is stochastically domi-

nated by a geometrically distributed variable with parameter 1/w. From

the coupling inequality given in Lindvall (1992) it finally follows that the

distribution of {θk} converges to π in the total variation norm.
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