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SUMMARY. Hjort and Glad (1995) present a method for semiparametric density estima-
tion. Relative to the ordinary kernel density estimator, this technique performs much better
when a parametric vehicle distribution fits the data, and otherwise performs at broadly the
same level. Jones, Linton and Nielsen (1995) present a somewhat similar method for density
estimation which has higher order bias for all sufficiently smooth densities. In this paper, we
combine the two methods. We show that, theoretically, the desired properties of general higher
order bias allied with even better performance for an appropriate vehicle model are achieved.
Simulations suggest that the new estimator realises only a little of its theoretical potential in

practice for small to moderately large sample sizes.
1. Introduction

Two promising recent proposals for ‘improved’ kernel density estimation
share a common form but exhibit rather different types of performance. In this
paper, we investigate combining the two approaches in an attempt to obtain the
best of both worlds.

The common formulation is as follows. Introduce a kernel function K which
we will take to be a symmetric probability density function, and its associated
smoothing parameter, or bandwidth, h, writing K, (u) = h='K(h~'u). Let g
be a function to be specified. Then, for a random sample X1, ..., X,,, of size n,
consider estimators of the density f of the form

f(@) =g(e)n™' 3 g(X) ™ Ki(e = Xi) (L)
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and also its renormalisation to achieve unit integral

fa) 9@ i, g(X) " Kale - X))
[ f(z)dz Y oim1 9(X) UK * 9)(X5)
where * denotes convolution.

The simplest special case is when g(z) = 1, in which case we get the basic
kernel density estimator (KDE)

.(1.2)

f(x):n_lzl(h(x—)(i) . (1.3)

(which automatically integrates to one). Theoretical properties of this estimator
are well known (e.g. Scott, 1992, Wand and Jones, 1995). In particular, provided
that f has two continuous derivatives, as n — oo and h = h(n) — 0, the bias of
f is of order h? and its variance is O((nh)™") (provided also that nh — o).

If ¢ is taken to be an initial, or ‘pilot’, estimator of f, then f becomes a
two-stage multiplicatively corrected density estimator. In particular, such an
estimator acts as a multiplicative bias correction: the two appearances of ¢ in
(1.1) are such that the leading bias in g as an estimator of f occurs with opposite
signs and cancels out.

Tf we take g(z) = f(a:), we obtain the estimator of Jones, Linton and Nielsen

(1995) i.e.
I () :f(x)n_lzf(Xi)_lKh(x—Xi) .(1.4)

or in renormalised form

() Yiny f(Xi)_lKh(fﬁ - Xi)
Soimy (X))~ (K + £)(X3)

The subscript N stands for (fully) Nonparametric and the superscript R, when
present, denotes Renormalisation.

The bias cancellation here works to afford a bias of order A%, provided we now
assume that f has four continuous derivatives. We thus refer to fN as a higher
order bias kernel density estimator or HOBKDE. Asymptotic variance of fN
remains of order (nh)~! although there is an increase in the constant coefficient.
The achievement of decreased bias at the expense, in finite samples, of increased
variance is thus somewhat disguised. A great many HOBKDE proposals have
been made; for a review and comparison see Jones and Signorini (1997). The
evidence is that this idea, at least in its fﬁ form, is amongst the best HOBKDEs.

On the other hand, let f(x,é) be one of the usual parametric fits of the
parametric family f(z;0) to the data. Hjort and Glad (1995) proposed (1.1)

) = ! . (1.5)
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using g(z) = f(x;0) i.e.

Fs(@) = fa: 0™ > F(Xi:0)7 Ki(z — X)), ..(1.6)

i=1
Its renormalised form is, of course,

_ S 0) 3 F(X 07 K = Xi)
iy F(Xi )7 (K £(:10))(X5)

fE () (1T

In general, the bias in using f(x; é) is O(1), being so unless f happens to
belong to the parametric class f(-;#). The bias correction works to cancel the
O(1) biases with the end result that the bias in using fs (or f?) is of order h2.
However, if the parametric model does encompass f, the O(h?) bias term also
vanishes; in fact, the multiplier of A% depends on (f/fo)"(x) where fo(z) is that
version of f(z;8) which is closest to the true density f in a sense appropriate
to the particular parametric method being used. (Moreover, the bias is greatly
reduced in this case, all that remains being any bias due to estimating 6 by é)
The asymptotic variance of fs and f? remains precisely the same, constants
included, as that of f

The subscript S attached to the Hjort and Glad (1995) estimator stands for
Semiparametric, and fs and f? are examples of semiparametric KDEs (SKDEs).
SKDEs attempt to obtain the best aspects of both parametric and nonparametric
density estimation: when one has a good parametric model for the data, the aim
is to achieve the greater efficiency of parametric model fitting; if one’s parametric
proposal proves not to be a good one, the method ‘becomes nonparametric’
and should still perform well — around the level of f — whatever is f. The
bandwidth plays a major role here: large h corresponds essentially (provided we
renormalise) to fitting the parametric model, but when h is small, the kernel
smoothing side takes over.

Also, fs and f? are part of a plethora of SKDE proposals, currently being
reviewed and compared by Hjort, Jones and Storvik (paper in preparation).
Early indications are that fg and f? are among the best such methods.

Can we obtain both semiparametric performance, in particular leading bias
zeroed for a parametric family, and HOBKDE performance, that is, bias at
arbitrary f of O(h*) (sufficient smoothness of f permitting)? The answer is
affirmative, and we exhibit one way of accomplishing this by combining the two
methods described above. The new method is basically to set ¢ = fs in (1.1);
see (2.1).

We explore the asymptotic bias and variance properties of our proposal, and
of variations thereon incorporating renormalisation, in Section 2. Simulations
comparing the new methods with the ordinary KDE and with the Jones, Lin-
ton and Nielsen and Hjort and Glad estimators are made in Section 3. In the
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simulations, a normal parametric model only is used along with a practically
unavailable optimal bandwidth selection. The end result, from the practical
viewpoint, is a little disappointing in this case. For n = 100, it is fﬁ that dom-
inates, and not the new higher order bias semiparametric density estimator; for
n = 500, the two have similar performance. We make our brief conclusions in
Section 4.

2.  Method and Theoretical Results

The novel higher order bias semiparametric kernel density estimator (HOB-
SKDE) proposed in this paper results from combining the Jones, Linton and
Nielsen (1995) higher order bias and Hjort and Glad (1995) semiparametric
density estimators in the following way. Define

fsn(x) _121’5 )T K (2 — X)) ~(20)

and its renormalised form

fs(@)Sor s (Xi)~ 1Ah(l‘—X).
Sy fs(Xa) N (K * f5)(Xi)

(Note that renormalisation of fg(x) makes no difference because the renormali-
sation constant cancels out.)
For the general form (1.1), the mean is easily seen to be

(o) { (D) e+ 2 (2 4 o () <x>}

)+ o) (L) 01+ Bseato (i)(w) (@)...(23)

) )

fEn(z) = .(2.2)

9(@){Kn + (f/g9)}(x)

1

as h — 0. Here, s, = [ u’ K (u)du. Tgnoring the difference between 6 and 0 which
is negligible for these asymptotlc purposes (using a variation of arguments used
in Hjort and Glad, 1995, Section 3), a special case of this is that

2

B{fs(@)) ~ 1) = oo o) (1 10) (). L (24)

Another special case arises by replacing g(z) in (2.3) by the expansion for
E{f(x)} to give the bias expression for (1.4) given by Jones, Linton and Nielsen
(1995). There are slightly different expressions for renormalised forms which will
not be given here.
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Inserting (2.4) in (2.3) — which turns out to give the same answer as a more
rigorous calculation — yields

Blisw(@) — o) = "supio) {1 (B (L) <x>}

1

Notice that the properties of a HOBSKDE pertain to fgyN by (2.5): it has
O(h*) bias whatever is f (sufficient smoothness permitting), and the leading
bias is zeroed when the ‘right’ parametric family is chosen i.e. fy = f.

It is not difficult to see that renormalisation leads to

BB}~ @) = —2sipe) H(fT) (=) (fi)()}

1"
Jo 7\
— | flz (— 2 = z dz| .
[ e (L) @
A careful calculation parallel to that on pp. 337-8 of Jones, Linton and
Nielsen (1995) gives the asymptotic variance of fg n. It is

V{fsn(x)} ~ (nh)~ f(x) /(21{(u) — K % K(u))?du. ...(2.6)

This corresponds exactly to the asymptotic variance of fN(x) (The same applies
to V{ng(x)}) One can interpret this as fg y exhibiting a semiparametric yet
O(h*) bias while retaining the variance of the nonparametric O(h?*) bias method

In.
The mean squared error (MSE) of fgyN follows by adding the square of (2.5)
to (2.6). As with nonparametric higher order bias methods, the best achievable
rate of convergence of MSE is O(n_8/9) in general, when h ~ n=/? but with
better performance when the parametric vehicle model is correct.

We have not attempted to develop automatic bandwidth selection based on
these results, although they give a clear potential for ‘plug-in’ estimation. There
are two main reasons for this, each relegating the problem to a position down our
list of priorities. The first is that the (simpler) equivalent problem for SKDEs
has not yet been addressed in detail. The second is that the relative negativeness
of the results to come question the importance of pursuing this course. We point
out, however, that the arguments used to justify the cross validation method for
ordinary kernel density estimation also apply to the new estimator.
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3. Simulation Results

We follow Jones and Signorini (1997) in providing practical comparisons
based on simulations from a set of ten known densities. These densities are the
first ten normal mixtures in Figure 1 of Marron and Wand (1992). They are
referred to as “Gaussian”, “Skewed Unimodal”, “Strongly Skewed”, “Kurtotic
Unimodal”, “Outlier”, “Bimodal”, “Separated Bimodal”, “Skewed Bimodal”,
“Trimodal” and “Claw”, respectively. One thousand random samples of sizes
n = 100 and n = 500 were generated from each distribution.

Table 1. MEANS AND STANDARD ERRORS OF MINIMISED ISE X105,
FOR SAMPLES OF SIZE n = 100 AND n = 500 FROM EACH OF THE
FIRST TEN MARRON-WAND DENSITIES, OVER 1000 SIMULATIONS FOR
EACH OF THE FOLLOWING ESTIMATORS: f, THE BASIC KERNEL DEN-
SITY ESTIMATOR (1.3); ff\'_,?, THE RENORMALISED JONES, LINTON AND
NIELSEN ESTIMATOR (1.5); fg, THE RAW HJORT AND GLAD ESTIMA-
TOR. (1.6); fs,n, THE RAW HOBSKDE ESTIMATOR (2.1); f?N,
)
THE RENORMALISED HOBSKDE ESTIMATOR (2.2).

n =100 n = 500
Density Estimator | Mean Min. ISE | Mean Min. ISE
(S.E.) (S.E.)
I 462 (12) 154 (3)
i 219 ( 7) 58 (2)
Gaussian fs 226 ( 7) 47 (1)
fs.n 293 ( 7) 74 (2)
By 263 ( 7) 60 (1)
I 755 (17) 234 (5)
Skewed i 477 (13) 135 (4)
Unimodal fs 605 (14) 176 (4)
fsn 584 (13) 141 (3)
By 574 (13) 134 (3)
I 4227 (53) 1345 (15)
Strongly i 4470 (61) 1319 (16)
Skewed fs 4253 (55) 1343 (15)
fsn 4424 (61) 1321 (16)
By 4539 (62) 1326 (16)
I 4152 (59) 1193 (16)
Kurtotic i 3882 (55) 994 (13)
Unimodal fs 4125 (59) 1183 (16)
fsn 3860 (56) 1007 (13)
By 3882 (15) 994 (13)
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TABLE 1 CONTINUED

n =100 n = 500
Density Estimator | Mean Min. ISE | Mean Min. ISE

(S.E.) (S.E.)

I 4908 (110) 1542 (32)

i 2701 ( 71) 737 (18)

Outlier fs 4775 (102) 1464 (30)

fsn 3523 ( 77) 940 (20)

By 2926 ( 70) 749 (18)
I 717 (13) 223 (4)
i 658 (15) 171 (4)
Bimodal fs 702 (15) 209 (4)
fsn 625 (15) 162 (4)
By 639 (15) 162 (4)
I 1053 (19) 313 (5)
Separated i 711 (16) 169 (4)
Bimodal fs 1021 (19) 303 (5)
fsn 813 (15) 211 (4)
By 696 (16) 165 (3)
I 934 (15) 299 (5)
Skewed i 924 (16) 269 (5)
Bimodal fs 950 (17) 298 (5)
fsn 952 (17) 270 (5)

By 970 (18) 272 (5)

I 864 (13) 284 (4)

i 813 (13) 268 (4)

Trimodal fs 852 (15) 280 (4)
fsn 801 (14) 269 (4)

By 816 (15) 271 (4)

I 3652 (36) 1110 (11)

i 3754 (36) 994 (11)

Claw fs 3666 (36) 1108 (11)

fsn 3693 (37) 995 (11)

By 3782 (37) 994 (11)

“Oracle” versions of each of the estimators under consideration were com-
puted for each sample by empirical calculation of the bandwidth that minimised
the integrated squared error (ISE) between estimate and true density. As a single
global accuracy measure, we took the ISE of the resulting (optimised) estimators
averaged over simulations. These (with standard errors in brackets) are given in
Table 1. Comparisons are, therefore, made in a “best-case” scenario, separating
estimator and bandwidth selection problems. It 1s possible that when data-based
bandwidth selection 1s taken into account, varying degrees of difficulty in choice
of bandwidth could change the relative merits of the procedures (but the basic
method and bandwidth selection problems would then be conflated). One would
not expect, however, that a bandwidth selector for ng, say, would be so much
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more effective than one for fN, say, that the improvement of the former over the
latter would be greatly enhanced in that case. Indeed, results of, for example,
Jones (1992) suggest that the quality of data-based bandwidth selectors will in
fact go down with improved performance of the basic estimator.

Five estimators are compared in the table. Each of those with a parametric
component employs the normal distribution in that guise. Results for the basic
kernel density estimator (1.3) and the renormalised Jones, Linton and Nielsen
(1995) estimator are the same as in Jones and Signorini (1997). We do not bother
with the raw estimator fN because previous authors have shown the renormali-
sation to be uniformly advantageous. It turns out that although [ fg(x)dx #1,
the difference from unity i1s very small and the effect on performance of renor-
malising fs in practice is almost negligible. For this reason, we exhibit only one
version of the Hjort and Glad estimator in Table 1, and this is the raw form fS.
Renormalisation does make a noticeable difference in the case of fS,N, however.
Results for both raw and renormalised HOBSKDEs are given since, unexpect-
edly, neither fgyN nor ng dominates the other. If one of the two has to be
preferred, perhaps renormalisation wins because, while the difference between
the two is small in many cases, where there are the most substantial differences
(Outlier, Separated Bimodal) the renormalised version is the better of the two.

Consider the n = 100 results. For seven of the ten densities, the basic kernel
estimator f is improved upon by all three alternative estimators. Away from
the Gaussian distribution, the degree of improvement made by the Hjort and
Glad estimator 1s often small. Then again, when fdoes relatively well (Strongly
Skewed, Skewed Bimodal, Claw), so does fS. (More on performance of SKDEs
will be found in Hjort, Jones and Storvik.) At the Gaussian density, there
are great improvements over f from all alternative estimators, but interestingly
it is f’f\? and fs that lead the way, with neither (2.1) nor (2.2) able to take
quite as much advantage of the situation. Elsewhere, fﬁ and ng have broadly

comparable performance (generally better than that of fS) with overall a slight
preference for fﬁ

Similar relative performances can be observed for the n = 500 sample size
although (i) renormalisation of fgyN is now uniformly no worse than the raw
version, and (ii) performance of ng does generally get a little better, in line
with its asymptotic justification.

4. Conclusions

The new estimators fgyN or ng realise some of their theoretical potential in

practice. For the smaller sample size (n = 100), they perform well relative to f
and, in general, relative to fg, although they do not perform so well as the latter
at the parametric model. Performance is, however, somewhat disappointing in
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that they are unable to improve in general on fﬁ Notice, however, that the

good performance of f’f\? near the normal model would not transfer to other
parametric models which may be used as targets; the semiparametric estimators
would transfer good performance readily to alternative vehicle models. For the
larger sample size (n = 500), ng comes more into its own, although still it is

unclear whether it would be practically worthwhile to prefer ng to fﬁ in this
case. Caveats concerning automatic bandwidth selection remain in place.

The proposals of this paper are not unique in their theoretical properties,
but it 18 not clear that it is worth investigating further methods in the same
class of HOBSKDEs.
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