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Abstract

The Resource Constrained Project Scheduling Problem (RCPSP) is an NP-hard
job scheduling problem. This thesis finds and compares mixed integer linear
programming formulations for an extension to the standard RCPSP with the
weighted tardiness objective. We experiment computationally on test instances
inspired by real data to find a formulation that gives good and stable solver
performance. A new Big-M formulation for disjunctive constraints is introduced.
This ”permutation formulation” has limited purpose and needs further study,
but nevertheless outperforms a time-indexed formulation on some large instances.
We deduce cutting planes from the set of disjunctive, resource, precedence and
tardiness constraints and inspect how adding them to a formulation impacts
solver performance. A family of strong cutting planes is deduced from the
precedence constraints, and for these we describe a separation algorithm and
a separation heuristic. Furthermore, we prove that these inequalities along
with general constraints suffice to describe the convex hull of a specific integral
set. A Block Decomposition Heuristic is designed to find feasible solutions to
RCPSP instances where the precedence relations give rise to chains. Overall,
we find that a classic full time-indexed binary formulation is suitable for solving
RCPSP instances of various sizes and constraint characteristics. This result
also holds when our RCPSP is formulated as a rescheduling problem.
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CHAPTER 1

Introduction

Pick up your phone and look at your calendar. What do you see? Dense or
spacious, detailed or vague; your calendar shows a schedule of your planned
activities the upcoming days or weeks, and you probably aim to follow it in
order to accomplish all tasks which lie ahead. Schedules plan, organize and
visualize our time. For large companies and production facilities it is vital to
find some way of coordinating the large set of operations that must be executed
in order to meet deadlines and maintain overall productivity. Finding such a
schedule grows in complexity when considerations like personnel utilization,
safety regulations, economic costs etc. are taken into account.

A scheduling problem deals with allocating tasks to a time slot in a way
that satisfies all constraints, and if such a schedule exists, finding one which
minimizes or maximizes some objective. The study of deterministic sequencing
and scheduling problems in the industrial engineering and operations research
literature ranges back several decades. Since the sixties one major topic in this
field has been to formulate and solve these optimization problems by means
of mixed integer linear programming (MILP) methods [Pin22]. Scheduling
is one of many practical applications of MILP. The desire to solve hard
scheduling problems efficiently motivates both theoretical research as well
as the development of exact or heuristic MILP based algorithms.

The standard Resource Constrained Project Scheduling Problem (RCPSP)
is an NP-hard scheduling problem for which there exist many variants in
the literature [HB10; Węg+11]. In this thesis we study an extension to
the standard RCPSP motivated by a real-life problem in the industry. For
simplicity we refer to our problem as the RCPSP. Many RCPS problems are
hard optimization problems for which a natural mathematical programming
formulation of the set of feasible schedules may be either too large or weak for
an exact branch-and-bound based solver to perform well. Clever techniques
like reformulations, cutting planes or decompositions may improve the solver’s
ability to tackle a great variety of problem instances. However, there is a
trade-off here; customizing and tweaking the formulation and solution algorithm
too much may lead to poor performance when real data does not fit one’s
assumptions, while a very general algorithm may have unused potential with
exploiting characteristics common for real instances of the problem. Through
computational experiments this border can be analyzed to gain more knowledge
on how a problem suitable algorithm and formulation should look.
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Practical Applications at SINTEF

This thesis is written as a contribution to the ongoing OptiPlan project in the
Optimization Group at SINTEF. The project aims at improving an existing
decision support tool for preventive and corrective maintenance planners by
including optimization. SINTEF presented us with an initial idea for a problem
statement and a few classic MILP formulations for the different constraints.
From here we decided by ourselves where to put in effort in order to contribute
as much as possible with relevant results to the project.

Goal for the Thesis

We set the following as the goal for this thesis:

Find and compare MILP formulations for the set of feasible schedules
to the RCPSP theoretically and computationally and inspect how they
can be strengthened. Conclude on which formulation that ensures
stable high solver performance on test instances for the RCPSP.

Our emphasis will be on the modelling side as we find mathematical formulations
of personal and theoretical interest. Some algorithmic aspects will be discussed,
but this amount is limited as we will frequently be using the Gurobi Optimizer
[Gur22] as MILP solver, as this will be used in the OptiPlan project.

Our work with this thesis has involved acquiring knowledge on scheduling
and integer programming approaches for this. We contributed in defining the
scheduling problem and its rescheduling version, for which we created test
instances and implemented and tested different formulations. It was not until
the last quarter of our work that we discovered our problem is actually an
extension of the standard RCPSP. Had this been known at a previous stage we
could to a larger extent have benefited from results in the RCPSP literature.

We wish to emphasize some work that we consider to be fully our own and
possibly of interest in the RCPSP literature:

• To our knowledge this exact RCPSP is not studied in the literature.

• The adaption of all classic scheduling constraints to suit our problem.

• The permutation formulation in Section 5.2.

• The proof of Theorem 5.3.3, which expands a proposition given by Wolsey
[Wol90] in some specific cases.

• The search for valid inequalities in Chapter 5 and all proofs in this chapter.

• The separation heuristic in Section 6.3.

• The Block Decomposition Heuristic in Appendix B.
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Outline of Thesis

Chapter 2 explains preliminary mathematical theory.

Chapter 3 gives a brief introduction to scheduling and explains necessary
terminology.

Chapter 4 introduces the RCPSP. We present different mathematical formula-
tions for the set of feasible schedules and also introduce the rescheduling
version of the RCPSP. Information is given on why our RCPSP is modeled
as it is and how it relates to the standard RCPCP.

Chapter 5 inspects the different constraints in the RCPSP and deduces new
valid inequalities which may work as cutting planes.

Chapter 6 explains how the valid inequalities found in the previous chapter
can be examined computationally. A separation algorithm and separation
heuristic is made for a set of precedence cuts.

Chapter 7 defines what we mean by solver performance and reports, compares
and discusses how the solver performance is affected when different
formulations for the RCPSP are used, as well as how cutting planes
affect this performance.

Chapter 8 contains concluding remarks and highlights further work.

Appendix A gives relevant information on the models for the RCPSP and the
test data instances.

Appendix B describes the Block Decomposition Heuristic which we designed
to solve the RCPSP heuristically. We include this in an appendix as it is
a side-track from the main focus in this thesis.
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CHAPTER 2

Mathematical Background

In order to formulate and do computations on a real-world job scheduling
problem we shall rely on the use of a mathematical framework. This chapter
presents mathematical and computational theory which will lie as a foundation
for the work done throughout this thesis. Some background material is assumed
to be known by the reader, e.g., the basic notation for graphs, but for the
sake of clarity and completeness we have tried to limit this amount. The
chapter is structured as follows: Section 2.1 introduces central definitions and
notation from convexity and polyhedral theory. Section 2.2 gives an overview
of linear and integer programming, emphasizing formulations of integral sets.
The presentation in these sections is based on the notes from Dahl [Dah10],
Dahl and Mannino [DM12] and Pulleybank [Pul89]. Section 2.3 introduces the
idea of cutting planes and presents known families of cutting planes for sets like
the knapsack polytope. This presentation is based on the papers of Gabrel and
Minoux [GM02], Kaparis and Letchford [KL08], Kardos et al. [Kar+21] and
Wolsey [Wol90]. Finally, Section 2.4 gives a brief overview of computational
complexity and relates this to linear and integer programming. Throughout the
whole chapter the books on integer optimization from Nemhauser and Wolsey
[WN88] and Schrijver [Sch86] have been of great inspiration.

2.1 Convexity and Polyhedral Theory

The theory of convexity is a necessary starting point for understanding poly-
hedra and linear programming. We try to narrow this huge field down to giving
some core definitions. Throughout this section and the whole chapter we let Rn

denote the set of real vectors of dimension n, where n is a natural number. We
will use italic letters both for real column vectors x ∈ Rn and scalar values t ∈ R.

Convexity

A subset S of Rn is called a convex set if for all x1, x2 ∈ S and λ ∈ [0, 1] the
point z = (1 − λ)x1 + λx2 also lies in S. Let x1, . . . , xt be a finite number
of vectors in Rn and let λ1, . . . , λt ≥ 0 be such that

∑t
j=1 λj = 1. The point

z =
∑t

j=1 λjxj is called a convex combination of x1, . . . , xt. For t = 2 the set
of convex combinations of two points equals the line segment between them.
It may be shown that S ⊆ Rn is a convex set if and only if it contains all
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2.1. Convexity and Polyhedral Theory

convex combinations of its points. From this it follows that a convex set is
closed under taking convex combinations. Not all sets that we will encounter
are convex, so we will need some way of relating a non-convex set S to a convex
set. For any set S ⊆ Rn we define the convex hull of S, denoted conv(S), as
the set of all convex combinations of points in S. This set is always convex,
and it may be viewed as the smallest convex set containing S. If S is convex
conv(S) = S, otherwise S ⊆ conv(S). In general a complete description of
conv(S) may be hard or practically impossible to find even though S is known.
Large parts of this thesis will be dedicated to the quest of finding better and
better descriptions of precisely conv(S). To see why, we need to define some
more concepts.

Polytopes and polyhedra

We define a polyhedron P ⊆ Rn as the set of solutions to a linear system of
inequalities in Rn. The notation used is P = {x ∈ Rn : Ax ≤ b} for some real
matrix A ∈ Rm×n where m is finite and b ∈ Rm. Any polyhedron is closed and
convex. An inequality of the form aT x ≤ α is valid for P if aT x ≤ α holds
for all x ∈ P . The inequality supports P if it is valid for P and there exists
some x′ ∈ P such that aT x′ = α. The set of points that satisfy such a valid,
supporting inequality is called a face of P . By the term proper face we mean
all faces F of P which are not empty or equal to P itself. Using duality (see
Section 2.2) it can be shown that F is a face of P if and only if there exists
some subsystem A0x ≤ b0 of Ax ≤ b such that F = {x ∈ P : A0x = b0}. If F
has dimension zero it is called an extreme point or a vertex of P , two definitions
that coincide for polyhedra. The set of extreme points of P is denoted ext(P ).
A face of dimension one is called an edge, and a face of dimension dim(P )− 1
is called a facet.

Knowing the edges and vertices of the polyhedron P we can find another
equivalent description of P which describes the inner points in P . Any edge
of P must be either a line segment, a halfline or a line. If the edge is a
halfline it is called an extreme halfline. Any extreme halfline may be written as
F = x0 + cone({z}) where x0 ∈ P and z is the direction vector of F . Let S be
some closed convex set in Rn. By cone(S) we mean the set of all non-negative
combinations of points in S. Thus, cone({z}) is the ray from the origin with
direction vector z. If P does not contain any (infinite) lines we say that P is
pointed. We now state the famous representation theorem for polyhedra proved
in 1936 by T.S. Motzkin. It is also known as the main theorem for polyhedra.
A proof may be found in [Dah10].

Theorem 2.1.1 (Motzkin’s representation theorem). Any polyhedron P ⊆ Rn

may be written as
P = conv(V ) + cone(Z)

for finite sets V, Z ⊆ Rn. In particular, if P is pointed we may let V = ext(P )
and Z be the direction vectors of extreme halflines of P .

Conversely, if V and Z are finite sets in Rn the set P = conv(V ) + cone(Z)
is a polyhedron, i.e., there exists a matrix A ∈ Rm×n and a vector b ∈ Rm such
that

P = {x ∈ Rn : Ax ≤ b}.

5



2.2. Linear and Integer Programming

This important theorem gives another way of representing a polyhedron
that uses extreme points and edges instead of linear inequalities. From the
theorem we also see that if Z is empty then P is a bounded polyhedron, also
called a polytope. A polytope in Rn is the convex combination of some finite set
of points. As it is bounded there exist some finite l, u ∈ Rn such that the box
constraints l ≤ x ≤ u hold. Polytopes will be of special interest in this thesis as
the inclusion of any box constraints makes P a polytope, e.g., 0 ≤ x ≤ 1.

Lastly, we consider polyhedra and polytopes with integral vertices. A
polyhedron P = {x ∈ Rn : Ax ≤ b} is rational if all elements of A and b are
rational numbers. The integer hull of a nonempty polyhedron P ⊆ Rn is defined
as PI = conv(P ∩Zn), that is, the convex hull of the integer points in P . It can
be shown that if P is a rational polyhedron then PI is also a polyhedron, see
[Sch86]. If P is a polytope then P contains a finite number of integral points,
so PI is also a polytope. If P = PI we say that P is an integral polyhedron.
All the vertices of an integral polyhedron are integral. When the vertices of P
are not explicitly known it may be difficult to answer the question of whether
P is an integral polyhedron or not. We shall later list some well-established
techniques used for answering this question, as working with integral polyhedra
is of special interest in many practical applications of linear programming.

2.2 Linear and Integer Programming

By linear programming, or simply LP, we mean the problem of minimizing
or maximizing some linear function over a polyhedron. For this part we will
consider maximization problems, so we write an LP problem on the form

max cT x
subject to Ax ≤ b

x ≥ 0,
(LP)

or equivalently max{cT x : x ∈ P} over the polyhedron P = {x ∈ Rn : Ax ≤
b, x ≥ 0}. Here, c ∈ Rn is the coefficient vector, A ∈ Rm×n is the coefficient
matrix, x ∈ Rn is the vector of decision variables whose values are to be
determined and the function x 7→ cT x is the objective function. Each inequality
in P is called a constraint. The optimal value of (LP) is denoted zLP . If zLP

is unbounded from above we define zLP =∞ and say that the maximization
problem is unbounded. If P = ∅ the problem is infeasible and we set zLP = −∞.
Note that if P is a nonempty polytope zLP must be finite, but if P is not a
polytope (LP) may be unbounded.

Some optimization problems may require x to be an integral vector. An
integer linear programming problem is similar to an LP problem, but with the
additional constraint that x should be an integral vector. When discussing such
problems we will for convenience only use the wider term integer programming
(IP), and we use the notation

max cT x
subject to Ax ≤ b

x ≥ 0
x integer.

(IP)

6



2.2. Linear and Integer Programming

IP problems arise in different forms. If we demand x ∈ {0, 1}n the problem
is a binary programming problem (BP). If x = (y, z) where y ∈ Zn1 , z ∈ Rn2

and n1 + n2 = n, the problem includes both real and integer variables and is
called a mixed integer programming problem (MIP). In general, IP problems are
much harder to solve than LP problems, and different algorithms are used. For
a walk-through of the Simplex method used for solving LP problems and the
branch-and-bound method used for solving IP problems we refer to [WN88].

Duality

If we let the above (LP) denote a primal problem, the dual problem is

min bT y
subject to yT A ≥ c

y ≥ 0,
(D)

where y ∈ Rm. This is an LP problem that is connected to the primal problem
by the concept of duality. The idea is that every constraint in the primal
problem corresponds to a variable in the dual problem, and vice versa. By the
famous weak duality theorem any feasible solution to (D) gives a dual value
which is an upper bound for the value of any primal feasible solution, i.e.,
bT y∗ ≥ cT x∗ for any primal feasible x∗ and dual feasible y∗. From this result
we can observe that if one of the problems is unbounded, the other problem
must be infeasible. When both problems are feasible we may ask: How large is
the gap between their optimal values? The next theorem, which is fundamental
in duality theory, states that if this is the case the optimal values will coincide.

Theorem 2.2.1 (Strong duality). If x∗ ∈ Rn is a primal optimal solution, then
the dual problem has an optimal solution y∗ ∈ Rm such that

bT y∗ = cT x∗.

For a proof of this theorem using Farkas Lemma see [Sch86], or for a proof
using the primal and dual Simplex algorithms see [WN88].

Formulations and relaxations

Let X ⊆ Zn be the feasible region for the integer programming problem
(IP). A formulation of X is a polyhedron P ⊆ Rn such that X = P ∩ Zn.
The integer points of P are then precisely X, and as X ⊆ P it follows
that max{cT x : x ∈ X} ≤ max{cT x : x ∈ P}. Usually one wishes to
find some P which makes the gap between these values as small as possible,
ideally zero. Let P1 and P2 be formulations of X. We say that P1 is a
stronger or tighter formulation than P2 if P1 ⊆ P2, which is equivalent to
max{cT x : x ∈ P1} ≤ max{cT x : x ∈ P2} for all c ∈ Rn. Informally, we will
say that a formulation P of X is strong if it is stronger than most other known
valid formulations of X, or in the opposite case that P is weak. The strongest
possible formulation of X is obtained when P is an integral formulation, i.e.,
P = conv(X). See Figure 2.1. Here, the solid black dots are the feasible region
X, while the white circles are infeasible integer points. The light grey area shows

7



2.2. Linear and Integer Programming

x1

x2

Figure 2.1: Formulations for an integer program

conv(X). Two other valid formulations are given by the solid black polytopes,
but the dashed polytope is not a formulation as it contains an infeasible point.

Let Q be a polyhedron in Rp for some p > n. We say that Q is an extended
formulation of X if its projection onto Rn is a formulation of X. That is, if
the polyhedron projx(Q) = {x ∈ Rn : ∃ z ∈ Rp−n such that (x, z) ∈ Q} is such
that projx(Q) ∩ Zn = X. In some cases an extended formulation may have
constraints on a familiar form or be polynomial in its number of constraints
while the original formulation is exponential. In such cases it may be beneficial
to work with the extended formulation of X.

A relaxation of (IP) is any problem (R) on the from max{wT x : x ∈ T}
where X ⊆ T and cT x ≤ wT x for all x ∈ X. We will further on consider
relaxations with w ≡ c, so by a relaxation of (IP) we simply mean solving the
same problem over a larger set. Relaxations come in many forms. The LP
relaxation of an IP problem is obtained by removing the integrality constraints
on x and possibly adding the corresponding linear constraints. Thus, the
LP relaxation of (IP) is simply (LP). For (0, 1)-programming the constraint
xj ∈ {0, 1} is relaxed to 0 ≤ xj ≤ 1 for each j = 1, . . . , n.

When solving IP problems we lean on the use of clever relaxations and
strong formulations. In the next section we shall see how formulations can be
strengthened by adding so-called cutting planes. But first, let us consider the
problem of deciding whether a given formulation P of X is integral or not.

Total unimodularity and integral polyhedra

Some polyhedra P ⊆ Rn are known to be integral. Let P = {x ∈ Rn : Ax ≤
b, x ≥ 0} be a polyhedron where A ∈ Rm×n, b ∈ Rm. The matrix A is totally
unimodular (TU) if every subdeterminant of A is -1, 0 or 1.

Proposition 2.2.2. Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} be a nonempty
polyhedron. If A is TU then P is integral for all b ∈ Zm.

We omit the proof here, which may be found in most books on integer
programming. The proposition can actually be formulated as an ”if and only
if” statement, see [WN88]. The result also holds if constraints on the form
l ≤ x ≤ u are added to P for l, h ∈ Zn. Even though most coefficient matrices
for IP problems are not TU there exist several types of matrices which are
known to be TU, like the incidence matrices for bipartite graphs and directed
graphs.

8



2.3. Cutting Planes

Assume that P is a formulation of some integral set X ⊆ Zn. Knowing
whether P is integral can be of great interest when solving an IP problem, see
Section 2.4. If P is integral any optimal solution to the LP relaxation of (IP)
will be integral. We therefore list some ways of showing that P is an integral
polyhedron, i.e., P = conv(X). If this is the case we say that P gives a complete
linear description of conv(X). The list is taken from [PW06].

Proposition 2.2.3. Let X ⊂ Zn be non-empty and let P = {x ∈ Rn : Ax ≤
b, x ≥ 0} be a formulation for X. If one of the following holds P = conv(X).

• All extreme points of P are integral.

• All points in P with x ̸∈ Zn are not extreme points of P .

• The primal problem max{cT x : x ∈ P} has an optimal solution x∗ ∈ X
for all c ∈ Rn.

• For all c ∈ Rn the dual problem min{bT y : yT A ≥ c, y ≥ 0} has a feasible
solution y∗ such that bT y∗ = cT x∗ for some x∗ ∈ X.

• There exists some extended formulation Q of X such that projx(Q) = P
and Q is integral.

• A is TU and b ∈ Zm.

2.3 Cutting Planes

When solving IP problems we work under the theoretical and computational
assumption that optimizing over a strong formulation P of the set X ⊆ Zn is
better than using a weak formulation. We thus seek to find constraints that lie
as close to the perfect formulation conv(X) as possible. Recall that if aT x ≤ α
is satisfied by every x ∈ conv(X) this inequality is valid for conv(X). Informally,
we will say that a valid inequality for conv(X) is strong if adding it to P makes
P a strong formulation of X. Given two valid inequalities for conv(X) we
say that aT

1 x ≤ α1 is stronger than aT
2 x ≤ α2 if P ∩ {x ∈ Rn : aT

1 x ≤ α1} is
a stronger formulation than P ∩ {x ∈ Rn : aT

2 x ≤ α2}. The strongest valid
inequalities for conv(X) are the ones that define facets of conv(X). For well-
studied linear programs families of strong valid inequalities for conv(X) may
already be known. However, the number of such inequalities can be exponential.
Adding all of them to the formulation a priori to solving the problem is usually
inefficient as it may make it very time-consuming to solve the LP relaxation.
As an alternative, strong valid inequalities may be added as so-called cutting
planes during the solution process.

Let x∗ ∈ P be a point in a formulation P of X such that x∗ ̸∈ conv(X).
Any valid inequality aT x ≤ α for conv(X) that has aT x∗ > α separates or cuts
off x∗ from conv(X). Given x∗ ∈ P the problem of finding such a separating
inequality or deciding that no such exists is called the separation problem. A
separation algorithm is some algorithm that solves the separation problem and
returns one or more violated inequalities if some are found. Adding one violated
inequality, also called a cutting plane, to the formulation P will strengthen the
formulation, see Figure 2.2 for an illustration. If we have an inequality aT x ≤ α
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x∗

x1

x2

Figure 2.2: Cutting planes

valid for X and we want to show it is a cutting plane, it suffices to find some
fractional point x∗ ∈ P which is violated by the inequality.

We shall now look into some well-established families of cutting planes for
constraints on a general form. A knapsack constraint is any constraint of the
form ∑

j∈N

ajxj ≤ b,

where N = {1, . . . , n}, b ∈ R and aj ≥ 0, j ∈ N . This makes knapsack
constraints a special case of normal linear programming constraints where the
coefficients are all non-negative. Let P = {x ∈ Rn :

∑
j∈N ajxj ≤ b, 0 ≤ x ≤

1}, X = P ∩ {0, 1}n. Then conv(X) is called the 0-1 single knapsack polytope.

Cover inequalities and lifted inequalities

Any subset C ⊆ N such that
∑

j∈C ajxj > b is called a cover. If C is a cover
then the cover inequality (CI) ∑

j∈C

xj ≤ |C| − 1

is valid for conv(X). A cover C is minimal if the set C \ {j} is not a cover
for all j ∈ C. The strongest CIs arise when C is minimal, in fact, the CI is
facet-defining for conv(X) ∩ {x ∈ Rn : xj = 0, j ∈ N \ C} if and only if C is a
minimal cover, see e.g., [CCZ14]. In general, we must include variables from
N \ C in the inequality for the CI to be facet-defining for conv(X). One way
to strengthen the CI is to consider its extension. Define the extension of C as
E(C) = {j ∈ N \ C : aj ≥ maxi∈C ai}. The extended cover inequality (ECI)∑

j∈E(C)

xj ≤ |C| − 1

is then valid for conv(X). If E(C) \ C ̸= ∅ the ECI is stronger than the
corresponding CI as the left side includes more variables. Extending the CI is
a special case of a more general procedure called lifting. In general, the lifted
cover inequalities (LCIs) take the form∑

j∈C

xj +
∑

j∈N\C

αjxj ≤ |C| − 1,

10
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where 0 ≤ αj ≤ |C| − 1, j ∈ N \ C. The αj coefficients are called the
lifting coefficients. There exist several approaches and algorithms for finding
these lifting coefficients, and LCIs can also be expressed in more general
forms. We refer to [KL08] for more reading on this. The perhaps most known
procedure finds the αj coefficients sequentially by so-called up-lifting. Assume
dim(X) = n, let C be a minimal cover and choose some ordering j1, . . . , jl

of the indices in N \ C. Let C0 = C, Ch = Ch−1 ∪ {jh} for h = 1, . . . , l.
To find αjh

we ask: Given xjh
= 1 and xjk

= 0 for all k > h, what is the
largest value

∑
j∈Ch−1

αjxj can have such that all valid inequalities for X still
hold? More formally, if

∑
j∈C αjxj ≤ β is facet-defining for conv(X) ∩ {x ∈

Rn : xj = 0, j ∈ N \ C}, then
∑

j∈N αjxj ≤ β is facet-defining for conv(X)
where αjh

= β − max{
∑

j∈Ch−1
αjxj : x ∈ X, xjh

= 1, xjk
= 0, k > h} for

h = 1, . . . , l. We note that sequential lifting may produce different LCIs for
different orderings of the variables in N \ C, and that other procedures not
depending on solving several small knapsack problems do exist.

GUB inequalities

A generalized upper bound (GUB) inequality is of the form∑
j∈J

xj ≤ U

for some subset J ⊆ N and upper bound U ∈ R. Constraints on this form limit
the number of variables xj for j ∈ J that can be equal to one. We will also use
this term for inequalities of the form

∑
j∈J xj = U for some U ∈ N.

In real-life binary programs GUB constraints may arise together with
knapsack constraints. We shall consider such a problem introduced in [Wol90].
In this variant of the knapsack problem the variables are split into two groups,
i = 1, 2. Let x ∈ Rn

+ where n = |N |, N = N1 ∪ N2, N1 ∩ N2 = ∅. Let the
coefficients be aj > 0 for j ∈ N . For each i = 1, 2 we partition Ni into |Ii|
non-overlapping sets Ss, s ∈ Ii such that

⋃
s∈Ii

Ss = Ni and I1 ∩ I2 = ∅. Let
X = P ∩ {0, 1}n where P ⊆ Rn

+ is the following polytope:

∑
j∈N1

ajxj −
∑

j∈N2

ajxj ≤ b,

∑
j∈Ss

xj ≤ 1 s ∈ I1 ∪ I2,

x ∈ Rn
+.

We note that, although there is a negative sign on the left side, the first above
inequality remains a knapsack constraint as we can set b = b′−

∑
j∈N2

aj in the
knapsack constraint

∑
j∈N1

ajxj +
∑

j∈N2
ajyj ≤ b′ where yj = 1− xj . Wolsey

[Wol90] defines a GUB cover for X as the set C = C1 ∪ C2 where

(i) Ci ⊆ Ni for i = 1, 2,
(ii) |Ci ∩ Ss| ≤ 1 for i = 1, 2, s ∈ Ii,
(iii)

∑
j∈C1

aj −
∑

j∈C2
aj > b.

11
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Given a cover C, define the set I+
i = {s ∈ Ii : Ci ∩ Ss ≠ ∅} for i = 1, 2, and the

set

S+
s =

{
{j ∈ Ss : aj ≥ al for l ∈ C1 ∩ Ss} for s ∈ I+

1 ,

{j ∈ Ss : aj ≤ al for l ∈ C2 ∩ Ss} for s ∈ I+
2 .

Using these sets we can find new valid inequalities for conv(X).

Proposition 2.3.1 ([Wol90]). The inequality∑
s∈I+

1

∑
j∈S+

s

xj ≤ |C1| − 1 +
∑

s∈I+
2

∑
j ̸∈S+

s

xj +
∑

s∈I2\I+
2

∑
j∈Ss

xj

is valid for X.

The proof may be found in [Wol90]. Knowing that these inequalities are valid for
X we may use them in concrete cases where the set X is more specified in hope
to obtain a stronger formulation of X. For some polyhedra these inequalities
are known to define facets, and in some cases they may even give a complete
linear description of conv(X). In Section 5.3 we shall look at such a specific job
scheduling problem and prove that the inequalities suffice to describe conv(X)
in that case.

Clique inequalities and CG-cuts

The final type of constraints we shall consider are strongly related to graph
theory, and we shall introduce their relevance with a well-studied example.
Let G = (V, E) be a simple undirected graph where V is a finite set of
vertices with |V | = n and E is the set of edges of G. A set U ⊆ V in
which no pair of vertices are connected by an edge is called a stable set. Let
P = {x ∈ Rn : 0 ≤ x ≤ 1, xi +xj ≤ 1 for all {i, j} ∈ E} and X = P ∩Zn. Then
conv(X) is called the stable set polytope. It can be shown that P = conv(X) if
and only if G is bipartite. For other graphs P can be strengthened by adding
cutting planes. Any subset ∆ ⊆ V such that all pairs of vertices in ∆ are
connected by an edge is called a clique. The clique is maximal if ∆ ∪ {v} is not
a clique for any v ∈ V \∆. If ∆ has k elements we say that ∆ is a k-clique or
that it has size k. A clique constraint is of the form∑

j∈∆

xj ≤ 1,

for some clique ∆ ⊆ V . We shall show that these inequalities are cutting planes
for P . The inequalities of the form xi + xj ≤ 1 in P are called edge constraints.
Consider a clique ∆ = {i, j, k} in G. If we add the three edge constraints for
the pairs in ∆ together this gives 2(xi + xj + xk) ≤ 3, which when divided by 2
gives xi + xj + xk ≤ 3

2 . As x is a binary vector this inequality is strengthened
by xi + xj + xk ≤ 1, which is a valid cutting plane as it, e.g., cuts of fractional
points where xi = xj = xk = 1

2 . This procedure of summation, division and
rounding can be repeated when ∆ is of larger size. The inequalities returned
will be of increasing strength.

The above procedure is an example of the use of the Chvátal-Gomory
procedure (CG). Consider the general IP program (IP) and let X denote the
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feasible region. Let λ ∈ [0, 1]m. As

Ax ≤ b

is valid for X, also
λT Ax ≤ λT b

is valid. For x ≥ 0 the left side may be rounded down, so

⌊λT A⌋x ≤ λT b

holds. Finally, as x is integral, the stronger inequality

⌊λT A⌋x ≤ ⌊λT b⌋

must also be valid. This cut is called a Chvátal-Gomory cut. Applying this
procedure once gives an inequality in the rank 1 Chvátal closure of the edge
constraints [Chv73]. Another round gives rank 2, and the final clique inequality∑

j∈∆ xj ≤ 1 has Chvátal rank (k− 2) where k = |∆|. For a clique ∆ this gives
the strongest clique cut.

2.4 Computational Complexity Theory

When working with an optimization problem, or any type of computational
problem, a central question is: How hard is this problem to solve? The theory of
computational complexity builds an extensive framework for answering questions
like this, and we shall give a very brief overview of some important concepts and
results. We mainly follow the presentation given in [Ner19]. Our overview will
have an applied algorithmic point of view practical for our study. For formal
and precise definitions related to Turing machines, languages and decidability
we refer to [Mar11; Vit12].

Time complexity

A decision problem P is any problem where the answer is either YES or NO.
As an example the decision version of LP is: Given A, b, c and U , does there
exist some x such that Ax ≤ b and cT x ≥ U? When these variables have
been assigned values we get an instance of the problem. An algorithm A for
P is some sequence of operations on a machine which given an instance of P
as input solves the problem in finite time, i.e., A returns YES for instances
of P that should return YES and NO for instances that should return NO.
Usually one knows more than one algorithm for solving a problem, but their
performance may vary. To determine some measure of an algorithm’s efficiency
we will consider the so-called time complexity of the algorithm. By this term
we mean the number of elementary operations (summation, assigning values to
variables etc.) required by the algorithm in order to return the correct answer.
Actually, the exact such number of operations is not of great interest as it makes
comparison troublesome. We instead measure the time complexity t(n) as a
function of the size n of the input.

The size of the input to an algorithm can be measured in different ways.
When using a graph algorithm for G = (V, E) we are interested in the number
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of nodes |V | and edges |E|, while for a sorting algorithm we are interested in the
number k of elements in the array. For LP- and IP problems with rational data
we will refer to the size of the input as the number of bits needed to represent
the input data A, b, c on a computer.

Let now A be an algorithm for some decision problem P . Some instances of
P of size n may be solved by A in very few steps, while harder instances of the
same size may require a larger number of operations to be solved. An example
is the problem of deciding whether the character ’B’ is included in some word.
If A reads the input word from left to right the instance ”BANANA” is solved
at once while ”ADVERB” is a worst-case example. When defining t(n) for an
algorithm A we will always consider worst-case input of size n, so that t(n)
measures the maximum number of operations needed by A among all the input
of size n. Another approach is to look at the average number of steps which is
done in average-case analysis. The Simplex method for solving LP problems is
an example of an algorithm that needs an exponential number of operations in
worst-case, but runs very fast in average-case [Sch86].

Closely related to time complexity is the concept of big-O notation. We
say that a function t(n) is O(g(n)) if there exist some constants C and N such
that t(n) ≤ Cg(n) for all n ≥ N . For example, if t(n) = n3 + 2n2 + log(n)
then t(n) = O(nk) for k ≥ 3. Strictly speaking O(g(n)) is a set of functions,
but we use the notation t(n) = O(g(n)) as is done in most literature. We are
interested in the ”lowest possible” g(n), so in the example we prefer O(n3). Some
advantages of using big-O notation are the focus on the dominating term in t(n),
the ignorance of the remaining ones and that we get an upper bound for how
fast t(n) grows. When an algorithm has time complexity t(n) = O(g(n)) we say
that it has running time O(g(n)) or simply that the algorithm is O(g(n)). Some
examples are constant algorithms O(1), linear algorithms O(n) and exponential
algorithms O(2n).

The classes P and N P
When a decision problem has an algorithm which is O(nk) for some k ∈ N we
say that the problem is solvable in polynomial time. The class of problems
that have a polynomial algorithm is denoted P. In 1979 Khachiyan [Kha79]
developed the polynomial Ellipsoid algorithm for solving LP problems, thereby
showing that LP is a problem in P. We refer to problems in P as simple or
tractable problems, even though n and k in theory may be very big.

The complexity class NP consists of all problems whose solution can be
verified in polynomial time. That is, if we know x is a solution to the problem,
a verifying algorithm should be able to check this in at most polynomial time.
Several famous problems are known to be in NP , like the Vertex Cover problem
and 3-SAT. We do not know whether there may exist polynomial algorithms
for solving these problems as it remains an open question whether P = NP
or not. The letters NP stand for ”nondeterministic polynomial”, a definition
related to Turing machines that must not be confused with ”nonpolynomial”.

A problem is NP-hard if it is at least as hard to solve as the hardest
problems in NP. A problem is NP-complete if it is NP-hard and lies in
NP . We know that NP-complete problems exist due to SAT and the Bounded
Halting problem; two problems shown to be NP-complete from the formal
definition. The decision version of IP is in general NP-complete as problems
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that are known to be NP-complete can be formulated as an integer program.
The optimization version of integer programming, (IP), is in general NP-hard,
although some special cases are known to be solvable in polynomial time. This
is the case when the feasible region is known to be an integral polyhedron, since
then one can solve the LP relaxation (LP) which we know is a problem in P.
For large real-life optimization problems this may result in a huge reduction in
the running time needed to solve the problem.
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CHAPTER 3

Scheduling Problems

This thesis is devoted to finding and comparing mathematical formulations
to the set of feasible solutions to a Resource Constrained Project Scheduling
Problem (RCPSP). The core challenge in RCPSP is, precisely, scheduling. In
one of the classical books on the topic the following definition of scheduling is
given [Pin22]:

Scheduling is a decision-making process that is used on a regular
basis in many manufacturing and services industries. It deals with
the allocation of resources to tasks over given time periods and its
goal is to optimize one or more objectives. (Michael L. Pinedo)

From scheduling preventive maintenance in a production facility to assigning
arriving planes gateways at an airport, via on-line train dispatching and
classroom timetabling – scheduling problems cover a wide range of problems.
This thesis only considers scheduling problems on an operational level, assuming
that all strategic and tactical planning has been made on a higher level in the
industry. This eases the decision-making process and problem modelling by, e.g.,
removing the need of choosing which operations that should be scheduled. In
the industry loads of information will flow between the scheduling and planning
levels, making the processes heavily dependent and increasing the need for day-
to-day decision-making. The flow chart in Figure 3.1 from [Pin22] illustrates
this for a manufacturing system. Our emphasis will lie on the decisions made
within the dashed rectangle.

The purpose of this chapter is to give information on scheduling problems
in general and to introduce necessary definitions. The outline of the chapter is
as follows: In Section 3.1 we present the classic scheduling problem. Central
definitions and constraints will be presented that are needed to understand the
RCPSP introduced in Chapter 4. Section 3.2 gives an introduction to different
formulations and variables used when modelling scheduling problems, like time-
indexed formulations and Big-M variables. We will use these formulations when
modelling the main problem in Chapter 4.

3.1 The World of Job Scheduling Problems

The classic job scheduling problem deals with allocating a set of n jobs to
m machines, where a machine is something that can process one job at a
time. From this simple starting point there grows a whole world of scheduling
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Figure 3.1: Flow diagram in a manufacturing system [Pin22]

problems that differ from another in machine environment (α) processing
characteristics and constraints (β) and objective (γ). With this notation a
scheduling problem is described by a triplet α | β | γ. The perhaps most
intuitive scheduling problem 1 || Cmax consists of one single machine with the
objective of minimizing the completion time of the job that finishes last, the
makespan. Other problems may consider machines that run in parallel with
different speeds, introduce constraints on the feasible orderings of the jobs or
consider more complicated objectives. Some problems seem very similar, but
have different complexity. On a single machine the problem of minimizing
total weighted completion times 1 ||

∑
wjCj is easily solved by comparing the

ratios between the operations’ weight and duration [Smi56], while the problem
of minimizing the total weighted tardiness 1 ||

∑
wjTj is NP-hard [Law77].

Overall, the great variety in scheduling problems alongside their practical value
and varying complexity makes scheduling a field of comprehensive study through
many years. For an overview of well-studied variants of the scheduling problem
and their mathematical notation we refer to [Pin22, Chapter 2].

There are variants of scheduling problems that are not fully covered by the
simple above framework, such as personnel scheduling, production planning or
resource constrained scheduling [Pin22]. The RCPSP studied in this thesis is
strongly related to the latter one. Below we will introduce definitions, objectives
and constraints relevant for both the RCPSP and scheduling problems in general.
Our source of inspiration is a survey on the standard RCPSP and its extensions
by Węglarz et.al. [Węg+11].
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Definitions

The majority of scheduling problems gives rise to many definitions. The following
ones will be necessary to understand the RCPSP introduced in Chapter 4.

Operations: The individual activities that are to be scheduled are called
operations or tasks. A collection of operations is called a work order.

Schedule: A schedule contains start times for the processing of each operation.
Each schedule is assumed to be finite in time, e.g. one week or two months ahead.
This time is called the planning horizon. The schedule may be discretized into
time steps of one hour or one day. A scheduling problem is the problem of
finding a schedule that is feasible, i.e., it satisfies all constraints, and which
maximizes or minimizes a given objective function.

Duration and due date: Each operation has a predetermined duration. This
denotes the operation’s processing time from start to finish. Some problems
allow for preemption, i.e., temporarily interrupting the performance of a task.
Operations may have a due date. An operation’s lateness measures the time
between its completion time and due date. The tardiness or delay is zero if the
operation finishes before its due date, otherwise it equals the lateness. Usually,
delay is penalized with a high cost. If an operation has a strict due date this is
called a deadline. Some operations may have a release date, which is a specified
earliest start date for the operation.

Resources: We use this term almost equivalent to a machine in the above
sense. A resource is something that is required by an operation in order to be
processed. Examples are human resources, a railway segment, a manufacturing
machine or gasoline. A resource unit is one amount of a resource, a resource
type is a set of resource units that can perform the same tasks and a resource
category is a set of resource types that share the same characteristics. The
three basic resource categories are renewable resources with constant capacity,
nonrenewable resources with limitations on the total consumption and doubly
constrained resources which have both limited capacity and consumption. Newer
categories have been introduced and studied over the last years. One of these
is partially renewable resources where the capacity varies over different time
periods. Operations have specified resource demands for each available resource
type, given as integers if the resources come in discrete amounts. An operation’s
duration may be resource-dependent, leading to a shorter duration if more
resource units process the operation. We then say that en operation has
different modes, and one mode must be chosen for each operation.

Objectives

The common approach for optimizing schedules is to solve a minimization
problem. Some classic single objectives are to minimize the makespan, the total
weighted lateness, the total weighted tardiness, the total weighted completion
times, the maximum lateness or the number of tardy jobs. The weights give some
measure of an operation’s priority or importance compared to other operations.
As mentioned above, the choice of objective may affect the computational
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complexity of the problem and thereby the state-of-the-art methods used to
solve it.

All the objectives mentioned above are time-based. Other common objectives
concern the resources. The usage of each resource unit may be associated with
a cost, and the objective could be to minimize the resource costs needed to
obtain a feasible schedule. These two objective types are usually in conflict:
In order to process many operations simultaneously one needs a high amount
of resource units at each time, but with a low resource usage the operations’
resource demand causes late completion times.

Practical applications of scheduling will lead to objectives that also consider
other aspects than resources and time, like financial or environmental objectives.
When problems are multi-modal or include decision making on a strategic or
tactical level this can lead to a complicated objective function defined in a
high-dimensional space. When selecting an objective a choice must be made
by weighing the generality and simplicity of the model on one side against the
level of detail in the objective on the other side.

Constraints

Constraints limit the set of feasible schedules to a scheduling problem. In
addition to general constraints that, e.g., ensure each operation starts exactly
once, other classes of constraints may be needed to remove infeasible solutions.

Precedence constraints An operation may have prerequisite operations. In
the work order of changing exterior windows on a building the operation of
building the scaffold must be completed before the operation of removing the
current windows can begin. Precedence relations are one of the most common
constraint types, frequently appearing in RCPS problems.

A minimal (maximal) time-lag specifies the minimal (maximal) time that
should be between the processing of two operations. Time-lags can be expressed
as start-to-start, start-to-finish, finish-to-start or finish-to-finish relations. The
classic precedence constraint is a finish-to-start relation with zero minimal
time-lag or, equivalently, a start-to-start relation with minimal time-lag of
the predecessor’s duration. With such constraints between consecutive pairs
of operations, the operations can easily be represented as a simple directed
activity-to-node graph with an arc between the predecessor and successor in
every precedence relation. See Figure 3.2 for an illustration. This graph is
called an open chain. On the right we show a Gantt chart representation of a
schedule satisfying these constraints. An operation is visualized by a rectangle
which starts at the operation’s starting time and ends when the operation is
completed. The y-axis is needed to illustrate overlapping operations.

t = 0 H

Figure 3.2: Precedence constraints
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Scheduling problems with precedence constraints have varying computational
complexity. For a further description of the different precedence relations that
exist and a list of the complexity of different machine scheduling problems with
precedence constraints we refer to the survey of Bellenguez-Morineau and Prot
[PB18]. One classic result was shown by Lawler in 1978 [Law78]. He showed
that when the precedence relations give rise to a series parallel activity-to-node
graph the problem 1 | sp − graph |

∑
wjCj is polynomially solvable. Chains

are a simple type of series parallel graphs. In Section 5.3 we inspect if we can
find a complete linear description of the convex hull of the feasible region for a
problem with chained precedence constraints.

Non-simultaneous operations constraints There may be circumstances
limiting a pair of operations from being processed at the same time, like safety
restrictions or necessary production. In a factory with two backup power supply
units operations involving maintenance on the first unit cannot be in progress
when operating on the other unit, as at least one power supply unit has to
be functioning. For a pair of non-simultaneous operations (nonops) A and B,
either A has to proceed B or B has to proceed A. Either one is allowed.

Constraints of this form arise in single-machine scheduling problems. There,
the nature of the machine limits any pair of operations to be processed at
the same time. The constraints are called disjunctive constraints. For RCPS
problems two operations demanding the same resource may be processed at the
same time as long as there are enough resource units available. The nonops
constraints then arise from the nature of the operations themselves, not from
the resource capacities. See Figure 3.3 for an illustration.

The disjunctive constraints for machine scheduling problems have been
widely studied. Fowler et. al [KKF09] give a brief and clear introduction to
different formulations of the disjunctive constraints for single-machine scheduling
problems, as well as some computational results. We shall mention some in
Section 3.2 and Chapter 4. In Section 5.2 we introduce a formulation which to
our knowledge is uncommon in the scheduling literature.

t = 0 H t = 0 H

Figure 3.3: Non-simultaneous operations

Windows of opportunity constraints There may be constraints on which
points in time an operation can be processed. Outside work may rely on good
weather conditions like the wind being below a certain threshold, and some
operations may need to start at the beginning of a work day in order to be
completed by the end of the same day. Such windows of opportunity depend
only on the suitable starting times for the operation, not on the status of other
operations. See Figure 3.4 for an illustration where the operation has to start
somewhere in the pink intervals.
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t = 0 H8 16 24

Figure 3.4: Windows of opportunity

3.2 Formulations for Scheduling

The problem of finding a feasible solution to a job scheduling problem can
sometimes be very easy. A harder problem, on the other hand, is finding a
good schedule. One way of accomplishing this is by designing problem specific
heuristics that exploit the structure of the unique problem in order to obtain a
good solution. In general this does not guarantee optimality. If the scheduling
problem can be formulated as a combinatorial optimization problem there exists
a great variety of algorithms which can solve the problem to optimality. This
also holds within the framework of (mixed) integer linear programming. When
working with a branch-and-bound/branch-and-cut solver a field of study is to
find tight formulations of the feasible region to the problem. To do so there
exist different variable types and formulation techniques used to model the
problem. The models differ in the quality of the bound returned from solving
the LP relaxation as well as the solution time spent by the solver. We shall
mention some common formulations for scheduling problems here.

Time-indexed formulations

If the schedule is discretized into smaller units of time and the formulation
includes variables for each such point in time we say that the formulation is
time-indexed. If H denotes the planning horizon then a point in time is referred
to as t ∈ {0, 1, . . . , H}. For an operation i that should be scheduled we let
the binary variable yt

i be equal to one if i starts at time t and zero otherwise.
From these decision variables one can express many constraints and let the
parameter values vary with the time t. This enables the possibility of being
precise. Time-indexed formulations are known for producing tight bounds. One
of the major drawbacks of using time-indexed formulations, however, is that the
number of necessary variables and constraints increases when H is large. Large
scheduling problems may become computationally intractable due to this.

Continuous formulations

If the schedule is not discretized we will call the formulations continuous. In a
continuous formulation the starting time of an operation can take any real value
as long as all constraints are satisfied. A strength of continuous formulations is
that the worst-case number of constraints is normally reduced from time-indexed
formulations. Some drawbacks, however, are the fact that some constraints are
more difficult to formulate and that there is often need for additional helping
variables. For complicated scheduling problems the cost of adding all this extra
machinery may be higher than the reward of using a continuous formulation.
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Big-M formulations

When formulating an IP problem we may encounter disjunctive constraints of
the form ”either this happens, or this must happen”. A great example is two
non-simultaneous operations A and B. Let tA, tB ≥ 0 denote their starting time
and α ∈ R some minimum time gap between them. In a continuous formulation
we must then have

tA ≥ tB + α or tB ≥ tA + α.

We can linearize this or-equation by including a big constant M in a smart
way. First, let zAB be a binary linear ordering variable that is equal to one if A
precedes B and zero otherwise. The or-equation can then be stated as

tA ≥ tB + α if zBA = 1,

tB ≥ tA + α if zAB = 1,

where only one of zAB and zBA can be equal to one. We can remove the if
conditions by using the Big-M variable:

tA ≥ tB + α−MzAB ,

tB ≥ tA + α−MzBA.

If zBA = 1 then the first inequality will be tA ≥ tB + α. For M large enough
the second one will be redundant as tB ≥ 0. The Big-M thus activates one of
the constraints and leaves the other redundant.

The value of the Big-M must be chosen appropriately. If it is set too small
the constraints may cut off feasible solutions. This could happen in the above
case if M < tA + α. On the other side, M should not be set too big as this
will lead to a weak formulation. Weak formulations may lead to poor bounds
returned from solving the LP relaxation, which makes it harder to prune nodes
in the branching tree of the branch-and-bound algorithm. The strength of the
Big-M formulation, however, is that it reduces the number of constraints from
time-indexed formulations.

Big-M constraints can be used when the variables have lower bounds implied
by the rest of the formulation. Many also use the term Big-M constraints for
variable upper bounds constraints of the form x1 ≤ Mx2. We also note that
Big-M can refer to a method used to find an initial feasible solution in the
Simplex algorithm, see [Sch86].
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CHAPTER 4

The Main Problem: RCPSP

In this chapter we present the Resource Constrained Project Scheduling Problem
(RCPSP) that will be studied in this thesis. This problem can be modelled
in different ways, e.g., as an IP or MIP problem. We will introduce different
formulations for the set of feasible solutions, and these will be further improved
and compared in Chapter 5 and Chapter 7. The chapter is structured as follows:
Section 4.1 gives an example of a simple instance of the RCPSP and works as
an introduction before explaining the problem more generally in the upcoming
sections. In Section 4.2 we explain the RCPSP with words and give some basic
assumptions needed for the problem formulation. Section 4.3 introduces the
different formulations of the constraints in the problem. We separate the time-
indexed formulations from the continuous formulations. Section 4.4 introduces
the weighted delay objective mathematically. In Section 4.5 we explain how
the different models for the RCPSP will be named, and we give an example of
a valid formulation of the set of feasible schedules. In Section 4.6 we explain
how the RCPSP can be formulated as a rescheduling problem. The problem of
rescheduling an already existing timetable in an optimal way was presented as
one of the main challenges by our industry partners. We introduce new time-
indexed variables and constraints in order to present a rescheduling approach
strongly connected to the original scheduling problem. Our modelling decisions
and assumptions made have been heavily influenced by the needs and current
practices of our industry partners. A short discussion on these decisions will be
given in Section 4.7. Finally, we relate our RCPSP to the standard RCPSP in
Section 4.8. An overview of the symbols, model names and test data instances
for the RCPSP is given in Appendix A.

4.1 An Example Problem

We start this chapter by giving a numerical example of an instance of the RCPSP
in order to establish some notation. Let I = {1, 2, 3} be a set of operations that
should be scheduled. The planning horizon H is one day consisting of eight
work hours. Every operation needs some amount of the renewable resource r
to be processed. The availability of r is Ct

r = 3 for every hour t ∈ {0, . . . , 8}.
Operation 2 has one predecessor which is operation 1. We summarize the
parameter values in Table 4.1. Here, i is an operation, Li is the duration of i
measured in hours, Rir is the amount i needs of resource r and Pi is the set of
predecessors to operation i.

23



4.2. Modelling Assumptions

i Li Rir Pi

1 3 2 ∅
2 4 1 {1}
3 2 1 ∅

Table 4.1: Example data for a small instance of the RCPSP

A schedule contains starting times for each operation. The objective in
this example is to find a feasible schedule that minimizes the makespan. The
schedule has to satisfy the resource capacity constraint saying that, for each
hour, the demand for r of the operations in progress can not be greater than
the availability. The schedule must also satisfy the precedence constraint saying
that operation 1 must precede operation 2. An optimal solution to this problem
is illustrated in Figure 4.1.

t = 0 H

1
23

Figure 4.1: An optimal schedule for the example problem

4.2 Modelling Assumptions

In general, we are given a finite set I = {1, . . . , |I|} of operations that should
be scheduled. One operation is usually denoted i ∈ I. For two operations we
will write i and j, and when considering a subset of k operations we will for
simplicity choose {1, 2, . . . , k} ⊆ I. Every operation in I has to be scheduled in
a way that satisfies all constraints (Section 4.3), or else the scheduling problem
is considered infeasible. We are seeking to find the starting time ti for each
i ∈ I.

The schedule is discretized into units of hours. The planning horizon H
denotes the hour all operations must finish within and is an input parameter to
the problem. Every operation must be scheduled within the horizon. A point in
the schedule t ∈ {0, . . . , H} corresponds to an hour between, and only between
07:00-15:00 from Monday to Friday. In this way {0, . . . , 7} could refer to a
Monday, and the next time index t = 8 then corresponds to 07:00 the following
Tuesday. In the same way a Friday afternoon is followed by Monday morning.
This time division is a simplification that ignores evenings, nights, weekends
and other holidays. It is assumed that operations may be paused at the end of
a work day and picked up at the beginning of the next work day without any
added duration. If an operation is uninterruptible we assume that the duration
is less than eight hours and model this by using windows of opportunity as
illustrated in Figure 3.4. We will by t ∈ [a, b] denote an integral time point in
the closed interval from a to b.
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4.3. Constraints

Each operation i has a due date Ti and an associated cost of overrunning it,
but no operations are given a strict deadline other than the planning horizon
H. For every operation i the duration Li is assumed to be positive and integer
valued, and all relevant set-up and cleaning times are included in this duration.
We also assume Li ≤ Ti. If some real-life operations have a duration of less
than one hour these can, e.g., be merged as one operation i with Li = 1. Every
operation i ∈ I belongs to exactly one work order w ∈ WO. The due date is
similar for every operation within the same work order. Each operation i has
a criticality that influences the cost Bi of delaying it. The problem does not
consider release dates, and preemption is not allowed.

4.3 Constraints

We now present mathematical formulations of the RCPSP. A list of all the
symbols that are used is given in Appendix A.1. In the following we assume
that every sum limit is positive and within the relevant range. If, for instance,
t ∈ H is the sum variable, terms where t < 0 and t > H are defined to be zero.
This is easily coded by using the limits max(0, t) and min(t, H), respectively.
Sums with a lower bound strictly greater than the upper bound are defined to
be zero.

General constraints

At first, it must be ensured that all operations are scheduled within the horizon.
Using a time-indexed formulation we demand

H∑
t=0

yt
i = 1 i ∈ I. (4.1)

Here, yt
i is equal to one if operation i starts at time t and zero otherwise. As

every operation must finish before the planning horizon we additionally fix
yt

i = 0 for t ∈ [H−Li +1, H] for each i ∈ I. From the binary yt
i variables we can

express all the needed constraints and the objective. An extended formulation
can be obtained by introducing start time variables ti ≥ 0 for each operation i.
These can be linked to the time-indexed variables by using (4.2).

ti =
H∑

t=0
tyt

i i ∈ I (4.2)

Extending time-indexed formulations with ti variables will make the modelling
of some other constraints easier, however, it is uncertain at this point how it
will affect the running time of the solver used to solve the problem. Continuous
formulations will only use the ti variables and demand 0 ≤ ti ≤ H − Li.

Resource constraints

Each operation is assumed to require some amount of one or more partially
renewable resources in order to be processed. The integer valued amount of
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4.3. Constraints

resource type r required by operation i is denoted Rir ≥ 0. For each t ∈ H the
availability for resource r is given by Ct

r ≥ 0. At all times it must be ensured
that the resource demand of the operations in progress does not exceed the
capacity. This can be expressed by a time-indexed constraint [PWW69]:

∑
i∈I

t∑
s=t−Li+1

Rirys
i ≤ Ct

r t ∈ H, r ∈ R (4.3)

This constraint ensures that no operation can be started unless there are enough
qualified resources available to handle the task during its whole duration. For
each operation i and each resource r we assume that there exists at least one t
such that Cs

r ≥ Rir for all s ∈ [t− Li + 1, t].
For this problem we will only consider human workers as resources. A

resource type will refer to a craft, e.g., mechanics or plumbers, and a resource
unit refers to one physical worker. We assume that each worker is fully
interchangeable with other workers of the same type, and switching such
resource units during an operation’s performance is allowed. This allows an
electrician to be replaced by another one while he is on a break, for instance.
All resources of the same type are equally efficient, so we do not consider
apprentices or injured workers. All resources are non-consumable in the sense
that no injuries or reductions are inflicted on the resource after it has been used.
Finally, each operation is only assumed to have one mode. This removes the
possibility of assigning more workers to an operation to reduce its duration.

Interval flow formulation If the capacity of some craft is somewhat constant
over time we can exploit this to get a formulation of the resource constraint
which is not time-indexed in order to reduce the number of constraints when
H is large. There exist a few approaches in the literature for finding non-time-
indexed formulations of the resource capacity constraint, see e.g. [Kon+11] for
RCPS problems. We will consider two approaches using multi-commodity flow
constraints. For theory on flows in networks we refer to any book on integer
programming and graph theory, e.g., [WN88]. We skip an introduction to this
theory as it will only be relevant in this section.

Let r ∈ R be a resource type, e.g., electricians. As we consider eight-
hour work days and a five-day work week it is possible that the availability
is constant over some time period, e.g., five electricians available each work
hour for the next month. Let Tr = {t : Ct−1

r ̸= Ct
r} ∪ {0, H} be the set of

time points at which the availability of resource r changes. Let it be of the
form Tr = {T 0

r = 0, T 1
r , T 2

r , . . . , T Kr
r = H} and let Kr = {0, . . . , Kr − 1}.

Given a k ∈ Kr we call the interval [T k
r , T k+1

r − 1] for interval k. Let C
[k]
r

be the availability of resource r in time interval k ∈ Kr. In the case Kr = 1
the availability of r is constant in the whole schedule, while for Kr = H the
availability changes for each hour. Let Cr = maxk∈Kr C

[k]
r .

Example 4.3.1. Consider a schedule with a horizon of four weeks. The
availability of electricians is five every work hour each week except for the
second week where only three are available each hour due to some holiday. Then
H = {0, . . . , 160}, Tr = {0, 40, 80, 160}, Cr = C

[0]
r = C

[2]
r = 5, C

[1]
r = 3.
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4.3. Constraints

We can model the resource constraints using multi-commodity flow equations
where we model the flow of units of each resource type. A formulation for a
problem with renewable resources with constant capacity is given by Artigues
et al. in their book on the standard RCPSP [ADN08]. Our formulation with
time intervals is inspired by Mannino and Riise [RM12]. Choose some r ∈ R
and let Ir = {i ∈ I : Rir > 0} be the set of operations that have a positive
demand for resource r. Consider the activity-to-node graph Gr = (Vr, Er)
where Vr = Ir ∪ Sr and Sr is a set of sources sk

r and sinks ek
r for the resource

units flowing into and out from interval k ∈ Kr. For each i, j ∈ Ir, i ≠ j let
fr

ij ≥ 0 be the amount of resource r that moves from processing operation i to
processing operation j when i is finished. We let fr

ij represent the flow going
along the arc between node i and j in Gr. See Figure 4.2 for an illustration.
Here, the labels along the arcs represent the flow. It may happen that an
operation starts in one time interval, but ends in another interval. In the figure
we represent this by using arcs with either no source or no sink.

sk−1
r ek−1

r sk
r

i

j

l

ek
r

Rir

fr
ij

fr
iek

r

Figure 4.2: Flow of resource units

We allow two operations to run in parallel as long as their total resource
demand for r does not exceed the capacity and as long as the operations are not
non-simultaneous. Let zij be the linear ordering variable that is equal to one if
i finishes before j starts and zero otherwise. Clearly, if zij = 1 then zji = 0 and
vice versa, but we allow for both zij and zji to be zero if they run in parallel.
Using a slightly extended Big-M approach from the one explained in Section 3.2
we can link the zij variables to the starting times of each operation. Along with
non-negativity constraints a valid formulation for the resource constraints is as
follows:

zij + zji ≤ 1 r ∈ R, i < j ∈ Ir (4.4)
H∑

t=0
tyt

j ≥
H∑

t=0
tyt

i + (Li + H)zij −H r ∈ R, i ̸= j ∈ Ir (4.5)

fr
ij ≤ Crzij r ∈ R, i ̸= j ∈ Ir (4.6)
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∑
j∈Ir

fr
ji +

∑
k∈Kr

fr
sk

r i = Rir r ∈ R, i ∈ Ir (4.7)

∑
j∈Ir

fr
ij +

∑
k∈Kr

fr
iek

r
= Rir r ∈ R, i ∈ Ir (4.8)

∑
i∈Ir

fr
sk

r i + fsk
r ek

r
= C [k]

r r ∈ R, k ∈ Kr (4.9)

∑
i∈Ir

fr
iek

r
+ fsk

r ek
r

= C [k]
r r ∈ R, k ∈ Kr (4.10)

fsk
r i ≤ C [k]

r

T k+1−1∑
t=T k

yt
i r ∈ R, k ∈ Kr, i ∈ Ir (4.11)

fiek
r
≤ C [k]

r

T k+1−Li−1∑
t=T k−Li

yt
i r ∈ R, k ∈ Kr, i ∈ Ir (4.12)

Equation set 4.1: Interval flow formulation of the resource constraints

Here, (4.4) expresses that either i is scheduled before j, j is scheduled before
i or they run in parallel. Equation (4.5) links the linear ordering variables to
the starting times, where we have used the planning horizon H as the Big-M
constant. Equation (4.6) is a variable linking constraint that forces the flow
fr

ij to be zero if i is not scheduled before j, and it forces i to be scheduled
before j if fr

ij is greater than zero. Equations (4.7)-(4.8) are flow balance
equations that ensure demand satisfaction for every operation that requires
resource r. Resource capacities are given in (4.9)-(4.10) for the sources and
sinks, respectively. Finally, equations (4.11)-(4.12) ensure that there is no flow
from sk

r (i) to i (ek
r ) if i does not start (end) in time interval k.

The number of constraints in this interval flow formulation is O(H|R||I|)
in the worst case when Kr = H and the availabilities change for every time
step. The time-indexed formulation with size O(H|R|) is then preferred. In the
best case the resources are renewable with Kr = 1 for each r ∈ R and the size
of the interval flow formulation reduces to O(|R||I|). In general this is not the
case. In order to reach this we shall introduce another flow formulation that is
not interval-dependent or in need of the binary yt

i variables.

Continuous flow formulation Resources with capacities that vary over time
can be converted into renewable resources with constant capacity by using an
approach inspired by Bartusch et al. [BMR88]. For each resource r ∈ R and
time interval k ∈ Kr we introduce a ”dummy operation” irk and schedule it to
be processed in interval k, i.e., we fix tirk

= T k
r and Lirk

= T k+1
r − T k

r . The
operation should have a demand of the gap between the maximum capacity
of r and the capacity of r in that interval, so we set Rirkr = Cr − C

[k]
r and

add irk to Ir. In Example 4.3.1 a dummy operation with the demand for two
electricians would be introduced and set to be processed the second week. After
introducing every dummy operation and fixing their staring times we can for
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4.3. Constraints

each r ∈ R set Ct
r = Cr for all t ∈ H, which ensures that every resource r has

Kr = 1. Bartusch et al. prove that such an updated problem is polynomially
equivalent to the original one.

In the new interval-free flow formulation we only need one source sr and
sink er for each resource r ∈ R. This also removes the need for constraints
(4.11)-(4.12), and thereby the need for the binary yt

i variables as ti can be used
in (4.5) by (4.2). Recall then the bounds 0 ≤ ti ≤ H − Li.

(4.4), (4.6)

tj ≥ ti + (Li + H)zij −H r ∈ R, i ̸= j ∈ Ir (4.13)

∑
j∈Ir

fr
ji + fr

sri = Rir r ∈ R, i ∈ Ir (4.14)

∑
j∈Ir

fr
ij + fr

ier
= Rir r ∈ R, i ∈ Ir (4.15)

∑
i∈Ir

fr
sri + fsrer = Cr r ∈ R, k ∈ Kr (4.16)

∑
i∈Ir

fr
ier

+ fsrer
= Cr r ∈ R, k ∈ Kr (4.17)

Equation set 4.2: Continuous flow formulation of the resource constraints

We still need (4.4) and (4.6) from the interval flow formulation, but (4.13)
replaces (4.5). Equations (4.14)-(4.15) are flow balance constraints for the
operations that demand r. Equations (4.16)-(4.17) ensure that every resource
unit flows through the network.

Precedence constraints

We will formulate precedence constraints between pairs of operations. Using
start time variables the constraint

ti ≥ tj + Lj i ∈ I, j ∈ Pi (4.18)

expresses that, if j is a predecessor to i, j has to finish before or at the same time
point as i starts [PWW69]. This finish-to-start relation is the only precedence
relation relevant to our RCPSP. Maximal time-lags are not considered. By
inserting (4.2) we obtain a time-indexed constraint

H∑
t=0

tyt
i ≥

H∑
t=0

tyt
j + Lj i ∈ I, j ∈ Pi, (4.19)
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where we must additionally fix yt
i = 0 for t < Lj .

The above constraints can express precedence relations between any pairs of
operations i, j ∈ I, regardless of which work order they are contained in. This
is necessary as no general assumptions will be made on which operations that
have predecessors or successors, besides that the constraints should not give rise
to cycles. Some structures are common for the real-life problems studied in the
industry, like having a fixed ordering on some or all of the operations within a
work order [Ind22]. Structures like these will be assumed common in the test
instances used in Chapter 7. The heuristic that we make in Appendix B will
assume that each work order has a predefined ordering of its operations. In
Section 5.3 we inspect how the above formulation of the precedence constraints
can be strengthened by finding valid cutting planes.

Non-simultaneous operations constraints

Given two nonops i and j we must either have that ti ≥ tj + Lj or that
tj ≥ ti + Li to prevent them from being active at the same time. One way to
ensure this is by using a Big-M constraint and linear ordering variables. Then

zij + zji = 1 {i, j} ∈ X (4.20)

is a logical constraint that must be valid as the operations can not overlap.
Recall that H is the planning horizon. A valid Big-M formulation with M = H
for the nonops constraints is obtained by using (4.20) and the two constraints

ti ≥ tj + Lj −Hzij {i, j} ∈ X , (4.21)
tj ≥ ti + Li −Hzji {i, j} ∈ X , (4.22)

or, with the time-indexed variables

H∑
t=0

tyt
i ≥

H∑
t=0

tyt
j + Lj −Hzij {i, j} ∈ X , (4.23)

H∑
t=0

tyt
j ≥

H∑
t=0

tyt
i + Li −Hzji {i, j} ∈ X . (4.24)

The constraint for a pair of nonops can also be formulated using a time-
indexed formulation without the Big-M. There are different ways of doing so.
One is, loosely speaking, to look forward in time and express that from t and
onwards the two operations i and j cannot be active at the same time:

t+Lj−1∑
s=t

ys
i +

t+Li−1∑
s=t

ys
j ≤ 1 {i, j} ∈ X , t ∈ H (4.25)

For a pair {i, j} ∈ X of nonops this constraint must be generated for every
t ∈ H. This is a drawback of the time-indexed formulation compared to the
Big-M formulation, as there only two constraints are needed. Instead of looking
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4.3. Constraints

only forward, one can look forward and backward from t finding the times j
cannot be in progress if i starts at t. That is,

yt
i +

t+Li−1∑
s=t−Lj+1

ys
j ≤ 1 {i, j} ∈ X , t ∈ H. (4.26)

Note that to have a valid formulation it suffices to add the constraints in this
form. Switching the roles of i and j and adding those constraints as well is
redundant. One last possibility is to look only backward from t and say that
both operations cannot start so that they are active in t:

t∑
s=t−Li+1

ys
i +

t∑
s=t−Lj+1

ys
j ≤ 1 {i, j} ∈ X , t ∈ H (4.27)

We will not make any assumptions about which operations that are non-
simultaneous. In some situations we may encounter sets of more than two
nonops or observe that the nonops require the same resources. We shall exploit
this to find valid cutting planes in Chapter 5.

For RCPS problems non-simultaneous operations constraints are not
common. If they are, the standard approach is to view the nonops as operations
that have a demand of one for some renewable resource with a constant capacity
of one, and to model these constraints together with the resource constraints.
Such resources are called dedicated resources. We have not found any RCPS
problem with another approach.

Windows of opportunity

Using a time-indexed formulation we can restrict the intervals in which an
operation can start by demanding

∑
t∈Wi

yt
i = 1 i ∈ I, (4.28)

where Wi is the set of feasible start times for operation i. If Wi = H we avoid
adding this inequality as it will be redundant. This constraint is therefore only
necessary for operations with a window of opportunity that is a strict subset of
the set of all time points. An alternative approach to introducing (4.28) is to
fix yt

i = 0 for all t ∈ H \Wi.
Windows of opportunity are not included in most RCPS problems. Drexl

et al. [Dre+00] are some of the few who include a variant of these constraints.
With each operation i they associate one time window [EFi, LFi] denoting the
earliest and latest finish time of operation i, as well as a set Ni of forbidden
time periods. This approach is inspired by classroom timetabling problems.
Together with job-subset restrictions and mode selection they formulate a GUB
inequality which ensures each job finishes in a non-forbidden time period.

We propose a new approach for modelling the windows of opportunity by
considering them as time intervals with availability for some resource. For every
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4.4. Objective

operation i we create a fictive resource ri which is only available within the
windows of opportunity for operation i. Since Wi includes the valid starting
times for operation i we let Cs

ri
= 1 for all s ∈ [t, t + Li − 1] if t ∈ Wi. From

these time-indexed availabilities we can create the interval availabilities C
[k]
ri

as explained earlier in this section. Likewise we set Riri
= 1, Iri

= {i} and
add ri to R. In this way the windows of opportunity constraints can be viewed
as resource capacity constraints. We will consider this approach when using
the interval flow formulation (4.4)-(4.12) and the continuous flow formulation
(4.4),(4.6),(4.13)-(4.17) for the resource capacity constraints.

4.4 Objective

We will consider the single objective of minimizing weighted tardiness, also
called weighted delay. The delay of operation i is the number of hours i finishes
after the due date Ti. The cost of delaying i with one time unit is denoted
Bi and will be used as the weights in the objective. Thus, we can write the
objective as

min
∑
i∈I

H∑
t=Ti+1

Bi(t− Ti)yt−Li
i . (4.29)

Continuous delay variable An alternative to the above objective is to
introduce a continuous delay variable di ≥ 0 measuring how delayed i is.
The objective is then

min
∑
i∈I

Bidi, (4.30)

where we additionally must add one of the following constraints to the
formulation:

di ≥ ti + Li − Ti i ∈ I (4.31)

di ≥
H∑

t=0
tyt

i + Li − Ti i ∈ I (4.32)

Binary delay variables We propose another approach, which is to binarize
the delay variable di. This can be done when all the parameter values, and
thereby di, are integral. Let wt

i be equal to one if i is delayed t hours and zero
otherwise. As every operation must finish within H we fix wt

i to zero for all
t ∈ [H − Ti + 1, H]. By adding the two constraints

H∑
t=0

wt
i = 1 i ∈ I (4.33)

H∑
t=0

twt
i ≥

H∑
t=0

tyt
i + Li − Ti i ∈ I (4.34)
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to the formulation, the objective can be written as

min
∑
i∈I

Bi

(
H∑

t=0
twt

i

)
. (4.35)

We will inspect how these three objectives affect the running time of the
optimization solver in Chapter 7. In Chapter 5 we will search for cutting planes
for the delay constraints (4.31) and (4.34).

4.5 Naming the Models

In the RCPSP our goal is to find a feasible schedule that minimizes the weighted
tardiness objective. Given the constraints introduced above the RCPSP can be
stated in the following general optimization form:

min weighted tardiness

subject to general constraints
resource constraints (r)
precedence constraints (p)
nonops constraints (n)
delay constraints (d)
windows of opportunity (w)
variable bounds
some variables binary

(RCPSP)

We will denote the set of feasible schedules to the RCPSP by X. Mathematically
this will be a set whose dimension depends on which variables that are used to
model the problem. For simplicity we will always refer to the feasible region as
X independent of which formulation that is used.

When choosing a formulation of X it is possible to ”mix and match” different
constraint types, e.g., using the time-indexed resource constraint, but the
continuous Big-M formulation of the nonops constraints. Our wish is to compare
different formulations with respect to running time and quality of lower bounds
in order to get a clearer picture of which formulations that are well suited to use
for real-life instances of the RCPSP. In order to separate different formulations
for X from each other we will introduce a rule for naming the different polyhedra.
A formulation of X will be named in the following way:

Pr()p()n()d()w()

Here, r() refers to the resource constraint that is used. A reference to the
constraint will be given inside the parenthesis. In the same way p() refers to
the precedence constraint, n() to the nonops constraint(s), d() to the delay
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4.5. Naming the Models

constraint(s) and w() to the windows of opportunity constraint. We write two
letters next to each other if the contents inside the parenthesis are equal, e.g., we
then write rw() instead of r()w(). We start the name with a P to specify that
it is a formulation for X and that it is a polyhedron (all constraints are linear).
An objective is denoted by o() with a reference to the objective in parenthesis.
By a model for the RCPSP we mean the choice of an objective and a formulation
for X. A model for the RCPSP is denoted (o(), P r()p()n()d()w()). We assume
that all relevant variables, general constraints, variable bounds constraints and
binary variable constraints are added to the model as well. In Table A.1 in
Appendix A we give abbreviations that will be used instead of referring to the
equations by numbers. There, TI stands for time-indexed, BM for Big-M and
C for continuous. As an example, when using the time-indexed formulation (4.3)
for the resource constraint we will write r(TI) instead of r(4.3) to emphasize
that we use a time-indexed constraint.

Example 4.5.1 (A time-indexed model with Big-M and delay variable). The MIP
model for the RCPSP using objective (4.30), the time-indexed resource constraint
(4.3), time-indexed precedence constraint (4.19), time-indexed Big-M constraints
for non-simultaneous operations (4.20), (4.23)-(4.24), delay constraint (4.32)
and time-indexed window of opportunity constraint (4.28) is named

(o(C), P rpw(TI)n(BMTI)d(CTI)).

The full model is written

min
∑

i∈I Bidi

subject to
∑H

t=0 yt
i = 1 i ∈ I∑

i∈I
∑t

s=t−Li+1 Rirys
i ≤ Ct

r r ∈ R, t ∈ H∑H
t=0 tyt

i ≥
∑H

t=0 tyt
j + Lj i ∈ I, j ∈ Pi

zij + zji = 1 {i, j} ∈ X∑H
t=0 tyt

i ≥
∑H

t=0 tyt
j + Lj −Hzij {i, j} ∈ X∑H

t=0 tyt
j ≥

∑H
t=0 tyt

i + Li −Hzji {i, j} ∈ X

di ≥
∑H

t=0 tyt
i + Li − Ti i ∈ I∑

t∈Wi
yt

i = 1 i ∈ I

di ≥ 0 i ∈ I
yt

i ∈ {0, 1} i ∈ I, t ∈ H
zij , zji ∈ {0, 1} {i, j} ∈ X .
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4.6 A Rescheduling Model

In the above sections we have introduced models for the RCPSP. The RCPSP
is a scheduling problem with the goal of finding feasible starting times for every
operation in a way that minimizes the weighted delay. The planning horizon
can vary from days, weeks or even months ahead. During the operational
phase when work orders are processed the chances of encountering unexpected
interruptions that affect the schedule are high. Such unplanned events could be
missing crew, a critical machine failure or new incoming work orders. When
such interruptions arise a rescheduling of the already existing schedule must
be done such that, e.g., the updated resource capacities are not exceeded or
the incoming work order is assigned a starting time. In Figure 4.3 we have
illustrated this for the case when a fire breaks out. The red line shows the
upcoming point in time t = t′ and the new operation of ”putting out the fire”
has due date Ti = t′ with an extremely high cost of overrunning it. In this case
the operation planners will send a crew to put out the fire immediately and
perform rescheduling from t = t′ to H. When rescheduling from t′ we allow
operations that are in progress at t′ to be paused and picked up again at a later
point in time.

t = 0 Ht′ Fire!

t = 0 Ht′

Fire!

Figure 4.3: A rescheduling scenario

When rescheduling we assume that we are given a feasible schedule to the
RCPSP, ideally an optimal one. In Table 4.2 we introduce some new variables
used when modelling the rescheduling problem. We split the set of operations
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4.6. A Rescheduling Model

into two disjoint sets I = IOLD ∪ INEW . If there are no new operations to
schedule we set INEW = ∅. In this case rescheduling has to be done due to
changes in the problem constraints, e.g., updated windows of opportunity which
the current schedule violates. In either case our objective will be to find a new
schedule that schedules new operations and satisfies all updated constraints.

IOLD set of operations in the schedule
I∗

OLD set of critical operations in the schedule
INEW set of new operations that need to be scheduled

Qi scheduled start time of operation i ∈ IOLD

W +
i cost of postponing i one hour

W −
i cost of pushing i one hour forward

ti scheduled start time of operation i after rescheduling
δ+

i hours i is postponed after rescheduling
δ−

i hours i is pushed forward after rescheduling

Table 4.2: Symbols used in the rescheduling problem

The new tasks i ∈ INEW may potentially be highly critical with a due date
of ”as early as possible”, like putting out the fire in Figure 4.3. Minimizing the
delays of such operations is therefore crucial. However, this may lead to many
deviations from the old schedule, creating confusion and inefficiency among the
workers [Ind22]. To keep the new schedule as close to the old one as possible
the rescheduling models can minimize

∑
i∈IOLD

|Qi − ti|. This is a nonlinear
term that can be linearized by introducing new variables. Let δi = (δ+

i , δ−
i ) and

ensure δ ≥ |Qi − ti| by adding the constraints δ+
i ≥ ti −Qi and δ−

i ≥ Qi − ti

to the rescheduling model along with non-negativity constraints. By adding
weights Wi = (W +

i , W −
i ) one can minimize the weighted distance to the old

schedule
∑

i∈IOLD
W T

i δi.
Let I∗

OLD ⊆ IOLD denote the old operations that are critical, i.e., their
Bi value is large. We add the delay costs of these operations to the objective
function to ensure that a new schedule still prioritizes not to delay these
operations. Using an objective of the form (4.30) this results in the following
model for the rescheduling problem:

min
∑

i∈IOLD
W T

i δi +
∑

i∈INEW ∪I∗
OLD

Bidi

subject to δ+
i ≥ ti −Qi i ∈ IOLD

δ−
i ≥ Qi − ti i ∈ IOLD

updated RCPSP constraints

δ+
i , δ−

i ≥ 0 i ∈ IOLD

(4.36)

Recall that ti can be replaced by (4.2), and that the RCPSP constraints can be
formulated in different ways. We will test how different models perform on the
rescheduling problem in Chapter 7.
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4.7 From Problem to Model

The road going from a real-life practical or scientific problem to a mathematical
model is a road filled with crossroads and shortcuts. Decisions need to be
made which usually need to weigh the level of detail and similarity with the
real world against the model’s simplicity, low complexity and generality. We
claim that such decisions are of particular interest in the field of computational
science and applied mathematics. Real-world and scientific problems can be
complex, and they often need to be significantly simplified in order to be
understood, modelled and solved within a reasonable time to a satisfying level.
The computational scientist must design a framework in which to fit the data
and choose appropriate algorithms for running experiments under well suited
conditions, hoping to find that the simulated results are realistic. Once the
problem can be related to earlier well-studied problems one has expectations
and results to lean on which help validate the achieved results. Within integer
programming and job scheduling this is especially useful when choosing how to
formulate the constraints for the problem.

The RCPSP studied in this thesis springs out from a real-world maintenance
scheduling problem in the industry. When defining the optimization problem
our emphasis was to understand which constraints, rules and practices that
were important to include in our problem formulation, as well as understanding
what was meant by a ”good schedule”. Once the core problem had been defined
we made simplifications in order to get a clean mathematical model, but also
to be able to solve problems with low data quality. We mention some of these
simplifications below.

Eight hour work days The current schedules used by our industry partners
measure durations in hours and schedule operations to start at an hour. This
lead us to believe that integer programming with time-indexed formulations of
units of hours was well suited for modelling the problem. However, the division
of days into eight hours is a simplification. Our industry partner uses shifts
and has workers available each evening and night, although most operations are
performed in daytime. Introducing shift modelling would have increased the
complexity of the mathematical model by, e.g., introducing decision variables
for each resource unit. The required data quality would also be much higher,
so high, that it was early decided to ignore shifts and only model eight-hour
work days. The operation planners can manually choose to process operations
in evenings or nights if the need arises.

Human resources To process an operation one needs more resources than just
human workers. Our models can in principle support the need for any partially
renewable resource with specified availability at each hour, like safety equipment
or machines. We do not model the need for consumption of nonrenewable
resources like gasoline, duct tape or money from a budget. This is mainly due
to the need for better data quality, like an estimate of each operation’s demand
as well as refill times.

Simple objective The true measure of a ”good schedule” is complicated. It
may include different measures like robustness, worker utilization percentages,

37
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financial perspectives or connections to activities outside the schedule, e.g.,
production activities in other areas. Our choice of the simple weighted tardiness
objective ensures a feasible schedule that minimizes delay costs, ideally ensuring
that all work orders are finished within their due date. Given this optimal
schedule one can easily use the solution values to calculate other measures of
quality and use rescheduling as a what-if analysis tool.

4.8 Relation to the Standard RCPSP

After walking the road from a real-life problem to a general optimization model
and working with the models for many months, we realized that our problem is
strongly connected to the standard well-studied RCPSP. The standard RCPSP
is denoted PS | prec | Cmax and is studied in the book by Artigues et al.
[ADN08]. The problem considers the scheduling of n non-preemptive operations
in one project (work order) in a way that satisfies renewable resource constraints
and finish-to-start precedence constraints. The objective is to minimize the
makespan. This problem is NP-hard and the decision version of determining
whether there exists a schedule with makespan less than some constant M is
NP-complete. The RCPSP studied in this thesis differs from the standard
RCPSP in some areas:

• The resources are partially renewable with capacities varying in time.

• We consider multiple work orders which may require the same resources.

• Non-simultaneous operations constraints and windows of opportunity are
included.

• The objective is to minimize weighted tardiness.

Although there are some differences from the standard RCPSP we point out that
the problems are very similar. For instance there are no release dates, set-up
times or maximal time-lags, no nonrenewable resources and preemption is not
allowed except when solving the rescheduling problem. These are some of the
characteristics and constraints which are considered in other extensions of the
RCPSP. We refer to the surveys of Węglarz et al. [Węg+11] and Hartman and
Briskorn [HB10] for more information on the different variants of the RCPSP.
References to some relevant articles on variants of the RCPSP have been given
in the above sections. To the best of our knowledge the exact RCPSP studied
in this thesis has not been studied before.
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CHAPTER 5

Strengthening The Formulations

When solving job scheduling problems with integer programming approaches the
search for strong formulations of the feasible region is important. Adding valid
inequalities to a formulation may increase the quality of the bound returned
when solving the LP relaxation, however, strengthening the formulation by
adding too many cutting planes may increase the solution time used by the
solver algorithm considerably. It is of theoretical and computational interest to
study valid inequalities and cutting planes arising from scheduling problems,
and we will do this now for the RCPSP.

The chapter is structured as follows: In Section 5.1 we refer to some cut
generation software that was used as inspiration for deriving cutting planes
by hand. Then, Section 5.2 studies how the non-simultaneous operations
constraints can be reformulated and strengthened. We here introduce the
permutation formulation, which to our knowledge gives a new approach in the
literature for Big-M constraints. Section 5.3 studies the precedence constraints.
We find and give proof of the convex hull of a specific precedence constrained
polyhedron. In Section 5.4 we study cutting planes for the delay constraints.
Finally, Section 5.5 studies the time-indexed resource constraint. We study this
by itself and in combination with other constraints.

In this chapter we will let X denote the feasible region for (RCPSP), as
mentioned in Section 4.5. Recall that the symbols used in the formulations of
X are given in Appendix A.1. The RCPSP includes resource constraints (r),
precedence constraints (p), nonops constraints (n), delay constraints (d) and
windows of opportunity constraints (w), as well as relevant general constraints
and variable bounds which we assume are always included in the formulation.
When we consider problems with only precedence constraints we will denote the
feasible region by Xp. If the problem also contains resource capacity constraints
we write Xrp, and so on. This notation is needed when we study the sets
arising from only some types of constraints. We let Xrpndw = X. A formulation
for X will be denoted as P , a formulation for Xrp as Prp and so on. As we
shall consider cutting planes that separate points in P from conv(X) we will
frequently use the term P/X cutting plane.

Definition 5.0.1 (P/X cutting plane). Let P be a formulation for X. We say
that an inequality aT x ≤ α is a P/X cutting plane if it is valid for conv(X)
and there exists at least one point x∗ ∈ P such that aT x∗ > α.
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5.1 Tools for Finding Cutting Planes

Cutting planes valid for conv(X) may be deduced by general methods using
addition of inequalities and rounding procedures. Such cuts are called general
cutting planes. For the RCPSP our wish was to search for cutting planes that
arise from the structure of the problem, e.g., from combining different constraint
types. As a starting point for this search we used optimization software on
small test instances of the RCPSP to see which cuts that were generated. When
observing similar structures in several cuts we used this as inspiration to derive
cutting planes on a more general form by hand.

PORTA, which stands for POlyhedron Representation Transformation
Algorithm, is a free software for analyzing polytopes and polyhedra [CL22].
Recall Motzkin’s representation theorem, Theorem 2.1.1. When presented
with a ”small” polyhedron described either by a system of linear inequalities
or explicitly by its extreme points and extreme rays PORTA can calculate
and return the other equivalent description. For binary programs in small
dimensional spaces PORTA can take as input the constraints in a formulation
for X ⊆ {0, 1}n and return the constraints that define conv(X). This feature
helped us on the way towards finding Theorem 5.3.3.

FICO Xpress Solver is a commercial solver which can be used to solve
optimization problems like LP, IP and MIP problems [Fai22]. One of the features
Xpress supports is to return cutting planes which are generated throughout the
solution process. We used this feature to examine the cuts that were generated
at the root node of the branching tree when solving the LP relaxation of different
problem instances.

5.2 Non-simultaneous Operations Constraints

We start by studying the non-simultaneous operations. A pair of non-
simultaneous operations {i, j} ∈ X is a pair of operations that cannot overlap in
the schedule. Consider the three time-indexed formulations (4.25)-(4.27) given
in Chapter 4. We visualize the constraints in Figure 5.1 on the following page.
Here Li = 4, Lj = 3. Graph (i) corresponds to the constraint looking forward
in time (4.25), (ii) to the one looking forward and backward (4.26) and (iii) to
the one looking backward (4.27). The node in row i and column t corresponds
to the binary variable yt

i . Two variables whose nodes are adjacent cannot both
be equal to one at the same time. The graphs (i)-(iii) thus show cliques arising
from the nonops constraints for {i, j} ∈ X at time t ∈ H. One could believe
that the formulations using the cliques in (i) and (iii) may be stronger than (ii)
as the clique between all the j nodes is already generated by (4.1). We shall
test and compare how the three formulations perform in Chapter 7. For now,
we wish to inspect if some of these constraints can be strengthened.

Consider the case when there are three operations i, j, k ∈ I such that
{i, j}, {j, k}, {i, k} ∈ X . Having all these pairs in X is equivalent to saying that
none of the three operations i, j or k can be performed simultaneously. Instead
of looking at three pairs we could consider the set ∆ = {i, j, k} and demand
that within this set all operations must be non-simultaneous. This leads to
the definition of a new set; let X ∗ be a set of sets of operations such that for
each ∆ ∈ X ∗ all operations in ∆ must be non-simultaneous, i.e., {i, j} ∈ X
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j

j

j

i

i

i

t t + 1 . . .. . .

t t + 1 . . .. . .

t t + 1 . . .. . .

(i)

(ii)

(iii)

Figure 5.1: Cliques arising from non-simultaneous operations

for all i ̸= j ∈ ∆. We also demand that each ∆ is maximal, i.e., if ∆ ∈ X ∗

and s ̸∈ ∆ we must have {i, s} ̸∈ X for at least one i ∈ ∆, or else we must
have s ∈ ∆. The inspiration for working with X ∗ rather than X , as originally
intended, came from a discussion with our industry partners [Ind22]. Usually,
the nonops are stored as a set ∆ consisting of two to five operations, and the
number of such sets is small compared to the number of operations. When the
nonops are stored as such sets, which we assume are maximal, we can access
all ∆ ∈ X ∗ directly and use ∆ in the nonops constraint. Hopefully, this will
increase the size of the maximal cliques in Figure 5.1.

Consider first the forward-looking constraint (4.25) and let ∆ = {1, . . . , k}
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5.2. Non-simultaneous Operations Constraints

for some k. In the constraint for {i, j} ∈ X and t ∈ H the upper summation
bounds depend on the duration of the other operation. When combining the
cliques of type (i) for all pairs of operations in ∆ for some fixed t some nodes
will not be contained in the intersection of all the cliques. The nodes in the
intersection will together form a maximal clique. The corresponding clique
inequality is

∑
i∈∆

t+Li−1∑
s=t

ys
i ≤ 1,

where Li = minj∈∆,j ̸=i Lj .
Things are similar for the constraint (4.26) looking forward and backward.

The upper summation bound also here depends on the duration of the other
operation. The clique constraint arising from the maximal clique obtained when
combining all constraints for some t is

k−1∑
i=1

yt
i +

t+Lk−1∑
s=t−Lk+1

ys
k ≤ 1.

Both of the above clique inequalities are valid inequalities for the set Xn

of feasible solutions to the RCPSP with only nonops constraints. However, in
these inequalities some of the edges that were covered in the original constraints
are uncovered due to the upper summation bound. When combining all the
backward-looking constraints (4.27) we avoid this loss of covering as in those
constraints the lower summation bound only depends on the duration of the
relevant operation.

Proposition 5.2.1. The following constraints are valid for conv(Xn):

∑
i∈∆

t∑
s=t−Li+1

ys
i ≤ 1 ∆ ∈ X ∗, t ∈ H (5.1)

For |∆| > 2 the inequalities are stronger than (4.27).

Proof. Consider some ∆ ∈ X ∗ and t ∈ H. For each i ∈ ∆ let xi =
∑t

s=t−Li+1 ys
i .

Then xi is binary due to (4.1) and equation (5.1) reads
∑

i∈∆ xi ≤ 1. By using
the Chvátal-Gomory procedure described in Section 2.3 on (4.27) we end up
with (5.1). This inequality is then valid, and for |∆| > 2 it is stronger than
(4.27). Using the new inequality instead of (4.27) cuts of, e.g., solutions where
xi = 1

2 for each i ∈ ∆. □

This result shows that when the non-simultaneous operations are given as
maximal sets of operations rather than pairs of operations we can exploit this
and gain a stronger formulation for Xn. It follows as we then work with maximal
cliques in a graph, not just pairs of nodes. A closer look at (5.1) shows that it
is of the same form as the time-indexed resource capacity constraint (4.3). For
each ∆ ∈ X ∗ we create a new fictive resource r∆ which has a constant capacity
of one, Ct

r∆
= 1 for all t ∈ H. This new resource r∆ is added to R. Now, for

each i ∈ ∆ we create a demand of one for this resource, Rir∆ = 1. All other
operations j ̸∈ ∆ have Rjr∆ = 0. In this way we can view the non-simultaneous

42



5.2. Non-simultaneous Operations Constraints

operations constraints as resource capacity constraints. This point of view did
not become clear to us until after the three original time-indexed formulations
were investigated and compared.

A new Big-M formulation

As seen above the time-indexed formulation (4.27) of the nonops constraints
was strengthened by considering sets ∆ of nonops rather than pairs. This result
lead us to question ourselves: Can the same be done for the Big-M formulation?
The Big-M formulation of the nonops constraints (4.20)-(4.22) uses the linear
ordering variables zij and can be used for both continuous and time-indexed
formulations. In the latter case we just include (4.2) or use (4.23)-(4.24).

Let ∆ = {1, . . . , k} be a set of operations that should all be pairwise
non-simultaneous and let Π∆ be the set of all permutations of ∆. Such a
permutation is denoted π = (π(1), . . . , π(k)) ∈ Π∆. We introduce the binary
variable zπ = zπ(1)π(2)...π(k) which is equal to one if the operations in ∆ are
permuted like π, i.e., operation π(1) is performed first, then π(2) and so
on, as the operations in ∆ cannot overlap in the schedule. For each pair
i ̸= j ∈ ∆ let Πji

∆ be the set of all permutations where j precedes i, so
Πji

∆ = {π ∈ Π∆ : π(j) < π(i)}.

Proposition 5.2.2. The following constraints are valid for conv(Xn) and can
replace (4.20),(4.23)-(4.24):∑

π∈Π∆

zπ = 1 ∆ ∈ X ∗ (5.2)

H∑
t=0

tyt
i ≥

H∑
t=0

tyt
j + Lj −H(1−

∑
π∈Πji

∆

zπ) ∆ ∈ X ∗, i ̸= j ∈ ∆ (5.3)

Proof. For the case |∆| = 2 the constraints are equivalent to (4.20),(4.23)-(4.24),
so consider the case |∆| = k for some k > 2. Equation (5.2) says that exactly
one permutation of ∆ has to be chosen. This is valid for Xn. The Big-M
constraint (5.3) is active for all permutations where j precedes i and inactive
otherwise. When it is inactive the constraint for j ̸= i ∈ ∆ will be active. □

This proposition shows that (5.2)-(5.3) give an alternative formulation of
the non-simultaneous operations constraints. We will call it the permutation
formulation of the Big-M constraints to distinguish from the pairwise formulation
with zij variables. If each pair of operations i, j ∈ I appears in at most one
set of non-simultaneous operations ∆ ∈ X ∗ what we have done is simply to
introduce the mapping zij =

∑
π∈Πij

∆
zπ. Doing this comes with the cost of

introducing more variables. For |∆| = k we introduce k! permutation variables
zπ. This number grows extremely fast, but as |∆| in our applications is limited
to at most five the number of permutation variables is at most 120 for each
∆. The number of elements in X ∗ is also small compared to the number of
operations. The hope is that, even though the number of variables increases,
the permutation formulation may lead to better solver performance.

It could happen that a pair of operations i, j ∈ I is included in more than
one set of non-simultaneous operations. For instance, they could both demand
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5.2. Non-simultaneous Operations Constraints

some heavy machinery that can process only one operation at a time due to
safety regulations, and they may be processed in the same production area with
limited capacity due to little floor space. In this case we can find new valid
inequalities for conv(Xn). Let Pn be the formulation for Xn using (5.2)-(5.3).

Corollary 5.2.3. Let ∆1, ∆2 ∈ X ∗ be sets of operations that should all be pairwise
non-simultaneous and assume ∆1 ∩∆2 = {i, j}. The following constraints are
Pn/Xn cutting planes: ∑

π∈Πij
∆1

zπ =
∑

π∈Πij
∆2

zπ (5.4)

∑
π∈Πji

∆1

zπ =
∑

π∈Πji
∆2

zπ (5.5)

Example 5.2.4. Let ∆1 = {1, 2, 3}, ∆2 = {1, 2, 4}. Setting i = 1, j = 2 makes
the first above equation z123 + z132 + z312 = z124 + z142 + z412. This inequality
expresses that if i precedes j in the chosen ∆1 permutation it must also do
this in the chosen ∆2 permutation. The equality cuts off, e.g., some fractional
solutions where z213 = 1

H , z123 = H−1
H and z124 = 1 which are valid for Pn.

We can find additional valid inequalities for conv(Xn) when the number of
operations in ∆1 ∩∆2 is larger than two. Let δ = ∆1 ∩∆2 be the operations
present in both sets of non-simultaneous operations and let Πδ be the set of
all permutations of δ. For each πδ ∈ Πδ and k = 1, 2 let Ππδ

∆k
be the set of

permutations of ∆k that preserve the ordering of the operations in δ given in
πδ, i.e., Ππδ

∆k
= {π ∈ Π∆k

: π(i) > π(j) ∀ i, j ∈ δ, i ̸= j s.t. πδ(i) > πδ(j)}.
Then the following inequality is valid for conv(Xn):

∑
π∈Ππδ

∆1

zπ =
∑

π∈Ππδ
∆2

zπ

Example 5.2.5. For ∆1 = {1, 2, 3, 4}, ∆2 = {1, 2, 3, 5}, πδ = (2, 3, 1) we get
z2314 + z2341 + z2431 + z4231 = z2315 + z2351 + z2531 + z5231.

An extra set of valid inequalities for conv(Xn) can be found when the number
of sets ∆1, . . . , ∆p of non-simultaneous operations that all include δ is larger
than two. Using the above notation, let δ = ∆1 ∩ · · · ∩∆p for p ≥ 2. Then the
following inequality is valid for conv(Xn) for all 1 ≤ k < l ≤ p:

∑
π∈Ππδ

∆k

zπ =
∑

π∈Ππδ
∆l

zπ

Example 5.2.6. For ∆1 = {1, 2, 3, 4}, ∆2 = {1, 2, 3, 5}, ∆3 = {1, 2, 3, 6}, πδ =
(2, 3, 1) we get z231a + z23a1 + z2a31 + za231 = z231b + z23b1 + z2b31 + zb231 for
each a, b ∈ {4, 5, 6}, a < b.

We implement some of these cuts and test how they affect solver
performance in Chapter 7. There, we also compare how the permutation
formulation of the Big-M constraints compares to the pairwise Big-M formulation
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(4.20),(4.23)-(4.24) and the time-indexed resource formulation (5.1) for the
nonops constraints.

As mentioned, this permutation formulation for the Big-M constraints is
to our knowledge new in the literature. This holds for the world of RCPS
problems, but to the best of our knowledge also for Big-M constraints in general.
The idea of considering permutations of sets is obviously not new, consider
e.g. the Permutation Flow-shop Scheduling Problem [NR10; ZIM21] or the
Asymmetric Travelling Salesman Problem [RT12]. However, we have not found
articles creating binary variables for each possible permutation and using these
in the formulation as we have done here. This could be due to the exponential
number of possible permutations and that there, in general, is no upper bound
on the number of elements in the permutation other than some n. In our case
the bound is k = 5. We have seen very few, but some IP formulations for
permutation problems with a specified application using k = 3 indices, see
e.g. [Dup22] and the relevant papers cited there. However, we have not seen
any articles creating and using permutation variables together with Big-M
constraints of the form (5.2)-(5.3).

5.3 Precedence Constraints

Precedence constraints (p) are given as start-to-start relations with a minimal
time-lag of the predecessor’s duration. We will study cuts for the precedence
polyhedron conv(Xp) when using the time-indexed formulation (4.19) of the
precedence constraints. Recall that the general inequality (4.1) then also holds,
so we let Pp be the formulation of Xp with constraints (4.19) and (4.1).

Lemma 5.3.1. The following inequalities are Pp/Xp cutting planes:

yt
j ≤

H−Li∑
s=t+Lj

ys
i i ∈ I, j ∈ Pi, t ∈ H (5.6)

Proof. Let i ∈ I, j ∈ Pi and choose some t ∈ H. We start by showing that the
inequality is valid for conv(Xp). If yt

j = 0 then (5.6) is clearly valid. If yt
j = 1

(5.6) expresses that i must start sometime after t + Lj , which is valid by (4.19)
and (4.1). To prove that (5.6) is a cutting plane we find some fractional solution
in Pp that is violated by (5.6). Set yti

i = 1 and let y
ti−Lj−1
j = y

ti−Lj+1
j = 1

2 .
This satisfies (4.19) at equality, but violates (5.6) at the time t = ti−Lj +1. □

The above inequalities are valid for Xp and thus for the feasible region
X = Xrpndw for the RCPSP as Xrpndw ⊆ Xp. In fact, they can be lifted to be
even stronger cutting planes for time-indexed formulations for the RCPSP.

Proposition 5.3.2. The following inequalities are Pp/Xp cutting planes:

H−Lj∑
s=t

ys
j ≤

H−Li∑
s=t+Lj

ys
i i ∈ I, j ∈ Pi, t ∈ H (5.7)

These cutting planes are stronger than (5.6).
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Proof. We show this by sequentially uplifting the time-indexed variables that are
not present in the valid inequalities (5.6). Choose some i ∈ I, j ∈ Pi and t ∈ H.
Note that (5.6) can be rewritten as yt

j +
∑t+Lj−1

s=0 ys
i ≤ 1 due to (4.1), and that

(4.19) can be written as a knapsack constraint
∑H

s=0 sys
j −

∑H
s=0 sys

i ≤ −Lj .
Let (j, s) be the index for the variable ys

j = y(j,s). We order the indices for the
unlifted variables as U = ((i, t + Lj), . . . , (i, H − Li), (j, 0), . . . , (j, t− 1), (j, t +
1), . . . , (j, H − Lj)) = (u1, . . . , up). In this way we start by lifting ys

i variables
before lifting ys

j variables. When lifting yuh
for h = 1, . . . , p we iteratively solve

the following IP:

ζh = max
∑h−1

s=1 αsyus
+ yt

j +
∑t+Lj−1

s=0 ys
i

subject to
∑h−1

s=1 asyus
+ tyt

j −
∑t+Lj−1

s=0 sys
i ≤ −Lj − ah,∑H−Lk

s=0 ys
k = 1 k = i, j,

ys
k ∈ {0, 1} k = i, j, s = 0, . . . , H − Lk,

Set αh = 1− ζh.

Here, ah is the index of yuh
in the knapsack constraint. Note that this coefficient

is positive for ys
j variables and negative for ys

i variables. The IPs can be solved
by hand. When lifting yuh

for uh = (i, t + Lj), . . . , (i, H − Li) we can set
yt

j = 1. Then ζh = 1 and αh = 0. For the h values such that uh refers to
(j, 0), . . . , (j, t− 1) one can set y

t+Lj−1
j = 1 such that also these variables get

αh = 0. For the last of indices uh = (j, t + 1), . . . , (j, H − Lj) the only feasible
solutions set yu(s) = 1 for some variable with αs = 0, thereby giving an objective
value of zero leading to αh = 1. These variables are therefore lifted. Corner
cases are satisfied as only indices with 0 ≤ t ≤ H − Lj − Li are relevant. The
lifted inequality

∑H−Lj

s=t ys
j +

∑t+Lj−1
s=0 ys

i ≤ 1 is then valid, and thereby (5.7)
holds. □

We have now found strong P/X cutting planes that can be used when
solving the RCPSP. We will refer to inequalities of the form (5.7) as precedence
cuts. In Chapter 6 we describe a separation algorithm and a heuristic for
generating cutting planes of this type when given some fractional solution to
the RCPSP formulated with the precedence constraints (4.19). We implement
and run the heuristic in Chapter 7. For some specific scheduling problems the
precedence cuts along with general constraints suffice to describe the convex
hull of the feasible region to the problem. We shall look at such a problem now.

Complete description of a precedence polyhedron Consider a scheduling
problem with one work order and a planning horizon of n. Denote the operations
by I = {1, . . . , k} and a time index by j. For each operation i ∈ I we include
the choice of whether or not to schedule i, i.e., we let

∑n
j=1 yj

i ≤ 1 instead
of equal to one. Let there be precedence relations between each consecutive
pair of operations i, i + 1 ∈ I of the form

∑n
j=1 jyj

i −
∑n

j=1 jyj
i+1 ≤ bi. If

bi = −Li where Li ≥ 1 is the duration of operation i then the relation is a
finish-to-start relation, which is the type of precedence constraints contained in
our RCPSP. The constraints then give rise to a chain as illustrated in Figure 3.2.
If bi ≥ 0 then the relation is a maximal time-lag relation which expresses that
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i cannot start later than bi hours after i + 1 starts. In both cases we assume
|bi|+ |bi+1| < n for all i = 1, . . . , k − 2 in order for the problem to be feasible.

Denote the feasible region of schedules for the k operations by Xk. This
set can be expressed using the notation explained in the subsection on GUB
inequalities in Section 2.3. There we considered a knapsack problem with two
groups of variables along with GUB constraints. Consider now a case with not
only two, but k ≥ 2 groups of variables I1, . . . , Ik. Each group i = 1, . . . , k has
only one set of indices, so |Ii| = 1 and Ss = Ni for s ∈ Ii. For simplicity we set
Ni = N = {1, . . . , n} for all i, and we change the notation from x to y variables.
Define y = (y1, . . . , yk) where yi ∈ {0, 1}n for each i = 1, . . . , k. We consider
the integer coefficients aj = j, j = 1, . . . , n for all groups and we let b be an
integral vector. The set X in Section 2.3 had one knapsack constraint and two
groups of variables. With k groups we introduce k − 1 knapsack constraints, so
let

Xk = {y ∈ {0, 1}kn :
n∑

j=1
jyj

i −
n∑

j=1
jyj

i+1 ≤ bi, i = 1, . . . , k − 1,

n∑
j=1

yj
i ≤ 1, i = 1, . . . , k}.

In the set Xk there are k − 1 knapsack inequalities. By using Proposition 2.3.1
on each pair i, i+1 of groups we note that the non-trivial covers for the knapsack
constraint are of the form C = (Ci, Ci+1) = ({ji}, ∅), C = ({ji}, {ji+1}) or
C = (∅, {ji+1}). Following [Wol90] and the procedure described in the proof of
Proposition 5.4.4 the corresponding GUB cover inequalities give the polyhedron
P k.

P k = {y ∈ Rkn
+ :

∑
j>n+bi

yj
i ≤ 0 if bi < 0, i = 1, . . . , k − 1,

∑
j≥t

yj
i −

∑
j≥t−bi

yj
i+1 ≤ 0, i = 1, . . . , k − 1, t = b+

i + 1, . . . , n + b−
i ,

−
∑

j≥−bi

yj
i+1 ≤ −1, if bi < 0, i = 1, . . . , k − 1,

n∑
j=1

yj
i ≤ 1, i = 1, . . . , k}

The inequalities in P k are valid for Xk. The following proposition shows that if
all bi ≥ 0 then the polyhedron P k actually gives a complete linear description
of the convex hull of Xk.

Theorem 5.3.3. For k ≥ 2, conv(Xk) = P k when b ≥ 0.

Proof. Our goal is to show that the binary points in P k are precisely Xk and
that P k is an integral polytope. The latter case is the difficult part.

As the inequalities in P k are valid for Xk we know that Xk ⊆ P k ∩{0, 1}kn.
Let y ∈ P k ∩ {0, 1}kn and suppose for contradiction that y ̸∈ Xk. Let i be such
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that
∑n

j=1 jyj
i −
∑n

j=1 jyj
i+1 ≥ bi + 1. There are two possible cases. If group i is

chosen and group i + 1 is not chosen we must have
∑n

j=1 jyj
i ≥ bi + 1, but this

violates
∑

j≥t yj
i ≤ 0 for t = bi +1. If, on the other hand, both groups are chosen

we let t ≥ bi + 1 be such that yt
i = 1. Then

∑n
j=1 jyj

i −
∑n

j=1 jyj
i+1 ≥ bi + 1

gives
∑n

j=1 jyj
i+1 ≤ t− bi − 1. This is equivalent to

∑
j≤t−bi−1 yj

i+1 ≥ 1 which
violates the constraint

∑
j≥t yj

i −
∑

j≥t−bi
yj

i+1 ≤ 0 in P k as
∑

j≥t yj
i = 1.

We now show that P k is an integral polytope. The case when k = 2 is
proven in [Wol90]. We follow the same procedure given there to show that the
result actually holds for any integer k ≥ 2. Define the primal problem

max
∑k

i=1
∑n

j=1 cj
i yj

i

subject to ∑
j≥t+bi

yj
i −

∑
j≥t yj

i+1 ≤ 0 i = 1, . . . , k − 1, t = 1, . . . , n− bi∑n
j=1 yj

i ≤ 1 i = 1, . . . , k

yj
i ≥ 0 i = 1, . . . , k, j = 1, . . . , n,

where cj
i ∈ R for all j and i. In the first constraint we have shifted the summation

index from what is given in P k. Let zk denote the optimal primal value. If we
can find some integral y which gives the value zk and a feasible solution to the
dual problem which gives the value zk we are finished by Proposition 2.2.3.

We start by finding the expression for zk using recursion. Observe that
if k = 2 the optimal value can be found by considering two cases; one where∑n

j=1 yj
2 = 0 (group 2 is not chosen) and one where

∑n
j=1 yj

2 = 1 (group 2 is
chosen). This is due to the following: If the sum were fractional and some
cj

2 > 0 one would increase the sum to one. If all cj
2s are negative and all cj

1s
are negative the sum would be zero, and if one or more cj

1 > 0 the optimal
value can be obtained by setting the sum to either one or zero depending on
how the coefficients’ absolute values compare. The optimal value z2 is then the
maximum of the optimal values for the two cases, so we get

z2 = max
{

max
t1=1,...,b1

(ct1
1 )+, max

t2=1,...,n

(
ct2

2 + max
t1=1,...,t2+b1

(ct1
1 )+

)}
,

and at least one solution y that gives this value has to lie in X2. Increasing k
we see that as there are 2k possible choices of whether or not to choose groups
1, . . . , k, the expression for zk gets complicated. However, it can be calculated
by the following recursion

za
1 = max

t1=1,...,a
(ct1

1 )+ for a ≥ 1,

za
i = max

{
z

bi−1
i−1 , max

ti=1,...,a
f(ti, i)

}
for i = 2, . . . , k, a ≥ 1,

zk = zn
k ,

where f(j, i) = cj
i + z

bi−1+j
i−1 . We omit to prove this, but encourage the reader

to test it by hand for a small k. There exists some binary vector y giving this
value as one can set yj

i = 1 if f(j, i) was a part of the ”path” to zk. We now
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show that there exists a feasible dual solution with value zk. The dual of the
primal problem is

min
∑k

i=1 αi

subject to
(i) α1 ≥ cj

1 j = 1, . . . , b1
(ii) α1 +

∑j−b1
s=1 us

1 ≥ cj
1 j = b1 + 1, . . . , n

(iii) αi −
∑j

s=1 us
i−1 ≥ cj

i i = 2, . . . , k − 1, j = 1, . . . , bi

(iv) αi −
∑j

s=1 us
i−1 +

∑j−bi

s=1 us
i ≥ cj

i i = 2, . . . , k − 1, j = bi + 1, . . . , n

(v) αk −
∑j

s=1 us
k−1 ≥ cj

k j = 1, . . . , n

αk, αi, us
i ≥ 0 i = 1, . . . , k − 1, s = 1, . . . , n− bi,

where we for all i define us
i = 0 for s > n− bi. The dual problem can be found

by writing out the coefficient matrix of the primal problem, marking relevant
column and row indices and transposing the matrix. Consider the following
non-negative solution for all i = 2, . . . , k − 1, s = 1, . . . , n− bi:

α1 = max
t1=1,...,b1

(ct1
1 )+,

us
1 = max

t1=1,...,b1+s
(ct1

1 )+ − max
t1=1,...,b1+s−1

(ct1
1 )+,

αi = max
ti=1,...,bi

f(ti, i)−
i−1∑
s=1

αs,

us
i = max

ti=1,...,bi+s
f(ti, i)− max

ti=1,...,bi+s−1
f(ti, i),

αk = zk −
k−1∑
s=1

αs.

From the value of αk we see that this solution gives value zk. We show
the validity of the dual constraints by fixing an i = 2, . . . , k − 1 and a j
within the relevant range for each constraint. Constraint (i) is valid by
construction. For the remaining constraints we will frequently observe the
telescoping sum

∑j
s=1 us

i = maxti=1,...,bi+j f(ti, i) − maxti=1,...,bi
f(ti, i), and

that
∑i−1

s=1 αs = maxti−1=1,...,bi−1 f(ti−1, i− 1).

(ii): α1 +
j−b1∑
s=1

us
1 = α1 + max

t1=1,...,j
(ct1

1 )+ − α1 ≥ cj
1,

(iii): αi −
j∑

s=1
us

i−1 = max
ti=1,...,bi

f(ti, i)−
i−1∑
s=1

αs − max
ti−1=1,...,bi−1+j

f(ti−1, i− 1)

+ max
ti−1=1,...,bi−1

f(ti−1, i− 1)

≥ cj
i + z

bi−1+j
i−1 − max

ti−1=1,...,bi−1+j
f(ti−1, i− 1)

≥ cj
i ,
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(iv): αi −
j∑

s=1
us

i−1 +
j−bi∑
s=1

us
i = max

ti=1,...,bi

f(ti, i)−
i−1∑
s=1

αs − max
ti−1=1,...,bi−1+j

f(ti−1, i− 1)

+ max
ti−1=1,...,bi−1

f(ti−1, i− 1)

+ max
ti=1,...,j

f(ti, i)− max
ti=1,...,bi

f(ti, i)

≥ cj
i + z

bi−1+j
i−1 − max

ti−1=1,...,bi−1+j
f(ti−1, i− 1)

≥ cj
i ,

(v): αk −
j∑

s=1
us

k−1 = zk −
k−1∑
s=1

αs − max
tk−1=1,...,bk−1+j

f(tk−1, k − 1)

+ max
tk−1=1,...,bk−1

f(tk−1, k − 1)

= zk − max
tk−1=1,...,bk−1+j

f(tk−1, k − 1)

≥ max
tk=1,...,n

f(tk, k)− max
tk−1=1,...,bk−1+j

f(tk−1, k − 1)

≥ cj
k + z

bk−1+j
k−1 − max

tk−1=1,...,bk−1+j
f(tk−1, k − 1)

≥ cj
k.

Since all dual constraints are satisfied we have found a feasible dual solution
with the same value as the primal value obtained by an integral primal feasible
solution. As this holds for any objective coefficients cj

i ∈ R we must have a
complete linear description of conv(Xk).

□

Remark 1 (What about b < 0?). The above theorem is shown for the case b ≥ 0.
Without being able to formally prove it we believe that the theorem also holds for
the case when b < 0. When trying to prove this case we followed the procedure
in the above proof. If we let Li = −bi > 0 a primal problem is given by

max
∑k

i=1
∑n

j=1 cj
i yj

i

subject to ∑
j≥t yj

i −
∑

j≥t+Li
yj

i+1 ≤ 0 i = 1, . . . , k − 1, t = 1, . . . , n− Li∑
j≥n−Li+1 yj

i ≤ 0 i = 1, . . . , k − 1
−
∑

j≥Li
yj

i+1 ≤ −1 i = 1, . . . , k − 1∑n
j=1 yj

i ≤ 1 i = 1, . . . , k

yj
i ≥ 0 i = 1, . . . , k, j = 1, . . . , n,

where cj
i ∈ R for all j and i. Let Lb

a =
∑b

i=a Li if a ≤ b and let Lb
a = 0

otherwise. If we for feasibility assume that Li ≤ n− Lk−1
i+1 for all i = 2, . . . , k,

the optimal primal value ζk ∈ R is given by the formula
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ζa

k+1,k = 0 for a ≥ 1,

ζa
i,k = max

ti=a,...,n−Lk−1
i

g(ti, i) for i = 1, . . . , k, a ≥ 1,

ζk = max
{

ζL1
2,k, ζ1

1,k

}
,

where g(j, i) = cj
i + ζj+Li

i+1,k. The dual problem is given by

min
∑k

i=1 αi −
∑k

i=2 γi

subject to
(i) α1 +

∑j
s=1 us

1 ≥ cj
1 j = 1, . . . , n− L1,

(ii) α1 + β1 +
∑j

s=1 us
1 ≥ cj

1 j = n− L1 + 1, . . . , n,

(iii) αi +
∑j

s=1 us
i ≥ cj

i i = 2, . . . , k − 1, j = 1, . . . , Li−1 − 1,

(iv) αi − γi −
∑j−Li−1

s=1 us
i−1 +

∑j
s=1 us

i ≥ cj
i i = 2, . . . , k − 1, j = Li−1, . . . , n− Li,

(v) αi + βi − γi −
∑j−Li−1

s=1 us
i−1 +

∑j
s=1 us

i ≥ cj
i i = 2, . . . , k − 1, j = n− Li + 1, . . . , n

(vi) αk ≥ cj
k j = 1, . . . , Lk−1 − 1

(vii) αk − γk −
∑j−Lk−1

s=1 us
k−1 ≥ cj

k j = Lk−1, . . . , n

α1, αi, γi ≥ 0 i = 2, . . . , k
βi, us

i ≥ 0 i = 1, . . . , k − 1, s = 1, . . . , n− bi,

where we for all i define us
i = 0 for s > n − Li. Unfortunately, we were not

able to find a non-negative dual feasible solution that gives the value ζk within
the time we anticipated to spend on this issue. The quest of finding some valid
solution with this value, or to conclude that no such exists remains at the top
of our list of further work. We have not tried to give a proof of the theorem for
the general case when b ∈ Zk and remain curious about whether the theorem
also holds in this case.

The above precedence polyhedron arose from a time-indexed formulation. In a
continuous formulation with the start time variables ti for each i = 1, . . . , k the
precedence constraints are of the form ti − ti+1 ≤ bi for i = 1, . . . , k − 1. The
coefficient matrix of these constraints is the transpose of the node-arc incidence
matrix for a directed acyclic graph. Such matrices are totally unimodular, see
e.g. [Sch86]. Integral box constraints for each ti preserve this property, and the
corresponding polyhedron is therefore integral.

We now return to the general RCPSP and finish this section by observing
that several binary yt

i variables may be fixed to zero when using a time-indexed
formulation of the precedence constraints. Consider first a case with chained
precedence relations between some (not necessarily all) operations.

Lemma 5.3.4. Let {1, . . . , k} ⊆ I where k ≥ 2 be a set of operations
with precedence relations between each consecutive pair of operations. Let
Lb

a =
∑b

i=a Li and assume Lk
1 ≤ H. The following constraints are valid for

conv(Xp):

H−Lk
i∑

t=Li−1
1

yt
i = 1 i = 1, . . . , k (5.8)
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Proof. Let i ∈ {1, . . . , k}. Validity of the lower summation bound is seen by
inserting (4.19) recursively for j = i− 1 down to j = 1 and fixing

∑H
t=0 tyt

1 = 0.
For the upper bound, insert (4.19) recursively from j = i up to j = k − 1 and
fix
∑H

t=0 yt
k = H − Lk. □

The valid inequality (5.8) is stronger than the general inequality (4.1) as it
contains fewer variables on the left side. For this reason it can be used a priori
to solving the problem to fix the ys

i variables with s < Li−1
1 or s > H − Lk

i to
zero. This may speed up the solution process.

Lemma 5.3.4 can be generalized to find valid inequalities when the precedence
relations do not give rise to chains. In general an operation i may have more
than one predecessor. The earliest start of i must then be after the maximum of
the earliest finish times of the predecessors. If i has many successors the latest
finish of i must be before the minimum of the latest starts of the successors.

Proposition 5.3.5. Let i ∈ I. Define tMIN (i) = maxj∈Pi
(tMIN (j) + Lj) if

|Pi| > 0 and tMIN (i) = 0 otherwise. Define also tMAX(i) = minj∈Si
(tMAX(j)−

Li) if |Si| > 0 and tMAX(i) = H − Li otherwise. The following constraint is
valid for conv(Xp) :

tMAX (i)∑
t=tMIN (i)

yt
i = 1 (5.9)

Proof. Follows from the same reasoning as in the proof of Lemma 5.3.4. □

We note that results similar to the above corollary can be obtained in a
continuous formulation with the start time variables. In this case we get
tMIN (i) ≤ ti ≤ tMAX(i) where the lower bound is obtained by finding the
longest path from a dummy start node to i in a directed acyclic activity-to-node
graph, and the upper bound by the longest path from i to a dummy end node.
See Application 1.4 in [Sch17] for a further explanation of this procedure.

5.4 Delay Constraints

This section describes valid inequalities and cutting planes for the feasible
region for the RCPSP with only delay constraints Xd. We start by considering
the time-indexed formulation Pd for Xd consisting of the general constraint
(4.1) and the constraint (4.32) for the continuous delay variable along with
non-negativity constraints. Recall the assumption that for all operations i the
integer valued due date is at least as late as the integer valued duration, i.e.,
Ti ≥ Li.

Proposition 5.4.1. The following inequalities are valid for conv(Xd) :

di ≥
H−Ti∑

t=0
tyTi−Li+t

i i ∈ I (5.10)

Let i ∈ I. If Ti > Li the inequality is a Pd/Xd cutting plane.

52



5.4. Delay Constraints

Proof. Let i ∈ I. For validity, observe that as (4.32) is valid the weaker
inequality di ≥

∑H−Li

t=Ti−Li
tyt

i + Li − Ti is also valid. By shifting the summation
index this gives di ≥

∑H−Ti

t=0 (Ti − Li + t)yTi−Li+t
i + Li − Ti. Combining this

with di ≥ 0 gives (5.10). To show that the inequality is a cutting plane fix
di = 0 and consider the fractional solution yTi−Li+1

i = yTi−Li−1
i = 1

2 . This is
valid for Pd as di = 0 ≥ 0, but violates (5.10) as 0 < 1

2 . □

The di variables are continuous and the yt
i variables are binary. The delay

constraint di ≥
∑H

t=0 tyt
i + Li − Ti is called a mixed knapsack inequality. For

such inequalities there exist a known family of cutting planes called mixed
integer rounding (MIR) inequalities. As these general cutting planes often are
generated by MIP solvers in the presolve phase they will not be inspected
further here. We refer to [Wol06] for more information on such cutting planes.

Delay constraints and nonops Valid inequalities for the set of feasible
solutions to the RCPSP may be generated when we combine the delay constraints
(4.32) with other constraints. Consider the set Xnd of feasible schedules
satisfying the delay constraints and non-simultaneous operations constraints.
We let Pnd be the time-indexed formulation consisting of (4.1), (4.32) and (5.1).

Lemma 5.4.2. Let ∆ = {1, . . . , k} ⊆ I be a set of operations that should all be
pairwise non-simultaneous, and assume Li = L and Ti = T for all i ∈ ∆. The
following inequality is valid for conv(Xnd):

∑
i∈∆

di ≥ kL− T. (5.11)

Assume kL ≤ H. If k+1
2 L ≤ T < kL the inequality is a Pnd/Xnd cutting plane.

Proof. For validity, observe that as the operations in ∆ must be spread in the
schedule the earliest makespan for the processing of these operations is kL. For
T < kL some operations must then be delayed, causing the minimum total delay
to be kL− T . To observe that the inequality is a cut we find some fractional
solution in Pnd which is violated by (5.11). For every i ∈ ∆ fix di = 0 and set
yt

i = 1
k for each t ∈ {0, L, . . . , (k − 1)L}. If 0 < kL − T this solution violates

(5.11). To show that the solution is valid for Pnd observe that the general
constraints (4.1) and nonops constraint (5.1) are satisfied. The delay constraint
(4.32) gives 0 = di ≥

∑k−1
s=0

sL
k + L− T = L

k
k(k−1)

2 + L− T = k+1
2 L− T which

is valid when T ≥ k+1
2 L. □

As the non-simultaneous operations must be spread in the schedule this will
lead to lower bounds on the (weighted) sum of the di variables. The above cut
concerned the simple case when all nonops had the same duration and due date.
We inspect how the result can be generalized when this is not the case.

Proposition 5.4.3. Let ∆ = {1, . . . , k} ⊆ I be a set of operations that should
all be pairwise non-simultaneous, and let TMAX = maxi∈∆ Ti. The following
inequality is valid for conv(Xnd) :
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5.4. Delay Constraints

∑
i∈∆

di ≥
∑
i∈∆

Li − TMAX . (5.12)

Assume kLMAX ≤ H. If k+1
2 LMIN ≤ TMAX <

∑
i∈∆ Li the inequality is a

Pnd/Xnd cutting plane.

Proof. For validity, observe that if TMAX ≥
∑

i∈∆ Li the inequality holds as
every di ≥ 0. Otherwise, assume for simplicity that the operations in ∆ are
ordered as (1, . . . , k). Operation k is then delayed by di ≥

∑
i∈∆ Li − Tk ≥∑

i∈∆ Li − TMAX , so (5.12) must hold. To observe that the inequality is a cut,
follow the same procedure as in the proof of Lemma 5.4.2 by fixing di = 0 and
setting yt

i = 1
k for each t ∈ {0, Li, . . . , (k − 1)Li} for each i ∈ ∆.

□

The above results show that cuts can be found when the delay constraints
are combined with nonops constraints. However, we have only found fractional
solutions which are cut off for some restricted values of Li and Ti and the
planning horizon H. Trying to generalize the results to hold for any parameter
values became hard. The same was the case when trying to find valid inequalities
for a weighted sum of delay variables

∑
i∈S widi ≥ LB of some subset S ⊆ I

and generalized or variable lower bound LB. Cuts of this form were returned
by cut generation software as strong cutting planes. We believe that such cuts
arise from finding infeasible solutions to small sub-problems of the original
problem, i.e., we only have some subset of the operations I ′ ⊂ I, time points
H′ ⊂ H and constraints. As all problem instances differ in constraints and
parameter values it can be hard to write such constraints on a general form. In
the future we hope to investigate relevant sub-problems further to find more
valid inequalities and cutting planes for conv(Xd).

Binarizing the delay variable We now consider the formulation Pd for Xd

using the binary time-indexed variables wt
i and constraints (4.33)-(4.34), as usual

along with the general constraint (4.1) and relevant non-negativity constraints.
Let n = (H + 1)|I|. We then get Xd = Pd ∩ ({0, 1}n × {0, 1}n) where

Pd = {(y, w) ∈ Rn
+ × Rn

+ :
H∑

t=0
twt

i ≥
H∑

t=0
tyt

i + Li − Ti i ∈ I,

H∑
i=0

yt
i = 1,

H∑
t=0

wt
i = 1 i ∈ I,

yt
i = 0 i ∈ I, H − Li < t ≤ H,

wt
i = 0 i ∈ I, H − Ti < t ≤ H}.

Note that with this formulation the RCPSP is a fully binary programming
problem. The next proposition shows that with this formulation we can find
cutting planes similar to the precedence cuts (5.7).
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Proposition 5.4.4. The following inequalities are Pd/Xd cutting planes:

H−Li∑
s=t

ys
i ≤

H−Ti∑
s=t+Li−Ti

ws
i i ∈ I, t ∈ H (5.13)

Proof. Let i ∈ I. We will use Proposition 2.3.1, though another approach would
be to lift inequalities like in the proof of Proposition 5.3.2. We start by showing
that the delay constraint (4.34) can be written as the knapsack constraint in
the set X in Proposition 2.3.1. Let group 1 refer to the ys

i variables and group
2 to the wt

i variables. So, we set xj = yj
i for j ∈ N1, xj = wj

i for j ∈ N2, and
then fix N1 = N2 = {0, . . . , H}. This gives |I1| = |I2| = 1. Setting aj = j for
all j for both groups and b = Ti − Li ≥ 0 then leads to the knapsack constraint
in X. We note that including the variables with coefficient aj = 0 does not
change this. Nor does changing the GUB inequalities from upper bounds to
equalities, i.e., from ≤ 1 to = 1.

We look for GUB covers of the knapsack constraint (4.34). The covers
C = (C1, C2) are

({α}, ∅) α = Ti − Li + 1, . . . , H,

({Ti − Li + β}, {γ}) β = 1, . . . , H − Ti + Li, γ = 0, . . . , β − 1,

(∅, {δ}) δ = 0, . . . , Li − Ti − 1.

Due to the fact that some variables are fixed to zero and that Ti−Li ≥ 0 the only
non-redundant, non-dominated valid inequalities arising from Proposition 2.3.1
with these covers are

∑H
s=t ys

i ≤
∑H

s=t+Li−Ti
ws

i , t ∈ [Ti − Li + 1, H], which
equals (5.13) when we fix variables to zero like in Pd.

As Proposition 2.3.1 only shows validity and we have not considered any
unlifted weaker cutting planes it remains to show that the inequalities (5.13)
actually are cutting planes. This can be done by observing that solutions with
ws

i = 1 for s ≥ 1 and the fractional values ys−Li+Ti−1
i = ys−Li+Ti+1

i = 1
2 are

cut off by (5.13) at t = s− Li + Ti + 1.
□

5.5 Resource Constraints

We finish this chapter by investigating the resource capacity constraints. Recall
the time-indexed constraint (4.3):

∑
i∈I

t∑
s=t−Li+1

Rirys
i ≤ Ct

r t ∈ H, r ∈ R

In the following we look at one such constraint, so fix r ∈ R and t ∈ H. Let
|I| = n, N = {1, . . . , n}, xj =

∑t
s=t−Lj+1 ys

j ∈ {0, 1} and aj = Rjr ∈ N+ for
j ∈ N . Let also b = Ct

r ∈ N+. Then (4.3) is of the form

∑
j∈N

ajxj ≤ b,
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5.5. Resource Constraints

which is a knapsack constraint. In our case many of the aj coefficients will
be zero when considering resources that few operations demand. It could also
happen that aj > b as the resource availability may be low some times in the
schedule. We ignore the latter case and consider knapsack constraints where
0 ≤ aj ≤ b for all j ∈ N .

It is beyond the scope of this thesis to try to find new valid inequalities for
special single 0-1 knapsack polytopes P relevant to our RCPSP. Without any
further discussion of the content we refer to some results from the literature
that can be of relevance:

• If aj = 1 or aj ∈ [⌊ b
3⌋+ 1, ⌊ b

2⌋] for all j ∈ N a complete linear description
of P is known. The same holds when aj = 1 or aj ∈ [⌊ b

2⌋+ 1, ⌊b⌋] for all
j ∈ N [Wei96].

• If aj ∈ {1, p} for all j ∈ N a complete linear description of P is known
[DF03].

For more results see the survey of Hojny et al. [Hoj+20]. We note also the
important result that when given a minimal cover C, any lifted cover inequality∑

j∈C xj +
∑

j∈N\C αjxj ≤ |C| − 1 that defines a facet of P can be obtained
by sequential lifting if and only if the coefficients of the unlifted variables are
integral valued [Zem89]. Integrality of all aj is the case for our RCPSP.

We observed that several cutting planes returned from Xpress were clique
inequalities involving variables for operations with demand for the same resource.
By using simple integer rounding we can obtain a CG cut arising from one
knapsack constraint only. Let P = {x ∈ {0, 1}n :

∑
j∈N ajxj ≤ b}.

Proposition 5.5.1. Let λ = ⌊ b
2⌋ + 1. Assume that λ ≤ maxj∈N (aj) and that

|{j : aj ≥ λ}| > 1. The following inequality is valid for P :

∑
j∈N

⌊aj

λ

⌋
xj ≤ 1 (5.14)

Example 5.5.2. Consider the knapsack constraint

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 5x6 ≤ 7.

Then λ = 4 and x4 + x5 + x6 ≤ 1 is valid for P .

We note that the above clique cut is an extended cover inequality for a cover
C with |C| = 2. However, not all ECIs for a cover of size two can be generated
this way. In the example the ECI x3 + x5 + x6 ≤ 1 arising from C = {3, 5} is
not generated. However, when b is not too big compared to the coefficients,
(5.14) finds one valid (unlifted) ECI quickly by simply dividing and rounding
coefficients.

Resource constraints and nonops We inspect valid inequalities that arise
when the resource capacity constraints are combined with non-simultaneous
operations constraints. Let Prn be a formulation of the set Xrn of feasible
schedules satisfying the general constraint (4.1), time-indexed resource constraint
(4.3) and nonops constraint (5.1), along with relevant variable bounds.
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5.5. Resource Constraints

Let ∆ ⊆ I be a set of non-simultaneous operations. It could happen
that all these operations have demand for the same (non-fictive) resource,
e.g., workers who are qualified to handle the machines which due to safety
regulations only can process one operation at a time. In this case we can
find some Prn/Xrn cutting planes. Let r ∈ R, t ∈ H and express the
corresponding resource capacity constraint on knapsack form as above. Let
J = {j ∈ N : 0 < aj ≤ b}, Jp = {j ∈ J : aj ≥ p}.

Lemma 5.5.3. Let ∆ ⊆ J be a set of operations that should all be pairwise
non-simultaneous. The following inequality is a Prn/Xrn cutting plane:

∑
j∈Jb∪∆

xj ≤ 1 (5.15)

Proof. Each pair i, j ∈ Jb, i ̸= j is a minimal cover for the resource capacity
constraint by the definition of the set Jb. So, for C = {i, j} we must have∑

j∈C xj ≤ 1. The extended cover inequality
∑

j∈E(C) xj ≤ 1 is then valid for
E(C) = Jb. By lifting a variable k ∈ ∆ \ Jb we obtain

∑
j∈Jb

xj + xk ≤ 1.
Non-simultaneity of the operations in ∆ gives

∑
j∈∆ xj ≤ 1, which causes the

lifting coefficient of any unlifted k ∈ ∆ to be one regardless of the lifting order.
The proposition then holds. □

Example 5.5.4. Let r ∈ R and consider the knapsack inequality

x1 + 2x2 + 3x3 + 4x4 + 4x5 + a6x6 + a7x7 + a8x8 ≤ 4,

which is one of the resource capacity constraints for this resource. Let
∆ = {6, 7, 8} be non-simultaneous operations. Then (5.15) gives

x4 + x5 + x6 + x7 + x8 ≤ 1.

The next proposition shows that (5.15) in some cases can be strengthened.
Let a∆ = mini∈∆ ai ≥ 1, and define b = max

{
⌊ b

2⌋+ 1, b− a∆ + 1
}

.

Proposition 5.5.5. Let ∆ ⊆ J be a set of operations that should all be pairwise
non-simultaneous. The following inequality is a Prn/Xrn cutting plane:

∑
j∈J

b
∪∆

xj ≤ 1 (5.16)

Proof. Assume for contradiction that the inequality is not valid for conv(Xrn).
Let i, j ∈ Jb ∪∆ be such that xi = xj = 1. We consider three possible cases
which all will lead to a contradiction. If i, j ∈ ∆ this violates the nonops
constraint (5.1). If i ∈ ∆, j /∈ ∆ then ai + aj ≥ a∆ + (b− a∆ + 1) > b, which
violates the knapsack constraint. Finally, if i, j /∈ ∆ then ai+aj ≥ 2(

⌊
b
2
⌋
+1) > b,

which again violates the knapsack constraint. The inequality (5.16) must then
be valid for conv(Xrn), and as it contains at least as many elements on the left
side as (5.15) it is a cutting plane. □

Example 5.5.4 (Continued). Let a6 = a7 = 2, a8 = 3. Then b = max{3, 3} and
(5.16) gives

x3 + x4 + x5 + x6 + x7 + x8 ≤ 1.
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5.5. Resource Constraints

We will implement the cutting planes (5.16) and test how they perform
in Chapter 7. It can already be observed that, for these cuts to be strong,
the values of the coefficients and b need to be restricted. Adding (5.16) to a
formulation will probably not improve solver performance much when b is large
compared to the coefficients or when a∆ = 1. We believe the cuts will be more
efficient when ∆ is large, in bottlenecks when b is low or when the demands aj

are high.
As in the above section we experienced that cut generation software generated

more cuts which probably arise from a combination of resource constraints and
other constraints in smaller subproblems. Although we tried, we found it hard
to derive these cuts on a general form by hand.
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CHAPTER 6

Separation Algorithms

Many real-life instances of hard combinatorial optimization problems are too
large to be solved using exact methods with natural IP or MIP formulations
of the set of feasible solutions to the problem. One way to tackle this is to
search for stronger formulations of the set of feasible solutions in hope that
this may reduce the time needed by the solver algorithm to find an optimal
solution. Adding cutting planes to the initial formulation is one way of obtaining
a stronger formulation, but to do this one needs a suitable separation algorithm
to see if any inequalities are violated by the current fractional solution, and if
so, decide which of these to add to the formulation. In this chapter we shall
inspect how we can study a set of inequalities that we believe may work as
cutting planes for formulations for the RCPSP. We will explain how the cutting
planes found in Chapter 5 can be analyzed computationally and how separation
algorithms for these may look.

The chapter is structured as follows: In Section 6.1 we explain a naive
separation algorithm that can be used for checking if a set Z of valid inequalities
for a set X contains any cutting planes that can be added to a current
formulation P of X. This algorithm is based on full enumeration. We explain
why we will need such an algorithm for testing the cutting planes found in
Chapter 5. In Section 6.2 we find an exact separation algorithm for a subset of
the precedence cuts found in Section 5.3. Then, in Section 6.3 we introduce an
empirically based separation heuristic for the full set of these precedence cuts.
This algorithm is not guaranteed to find a violated inequality, and if it finds
one it does not necessarily find the most violated inequality. For this reason we
call it a separation heuristic. When using the term separation in this chapter
we are only interested in separating fractional points in P from conv(X) using
inequalities in the given set Z.

6.1 Naive General Separation Algorithm

Consider some polyhedron P = {x ∈ Rn
+ : Ax ≤ b} which is a formulation for

the set X = P ∩ Zn of integral solutions to the general IP problem (IP). Let Z
be a set in which the elements (a, α) ∈ Z refer to inequalities aT x ≤ α that are
valid for conv(X). We assume all inequalities in Z are of the same form, e.g.,
deduced from the same set of constraints. Let x∗ be an optimal solution to the
LP relaxation (LP) of (IP). Given Z we can ask ourselves:
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6.1. Naive General Separation Algorithm

1. Are any inequalities (a, α) ∈ Z violated by x∗?

2. If so, how does adding these cutting planes to P affect the performance
of the optimization solver when solving (IP)?

3. Should a separation algorithm be made for the inequalities in Z?

These three questions are precisely the questions that we ask ourselves about
the cutting planes we found in Chapter 5. Could they actually be useful when
solving RCPSP instances, or are they just nice theoretical results? In order to
answer question 1. we will use a naive separation algorithm which we describe
in this section. We implement and use this in Chapter 7 to answer questions 2.
and 3.

Definition 6.1.1 (Full enumeration). Solving a separation problem by full
enumeration means looping over every (a, α) ∈ Z and checking if the fractional
solution x∗ violates (a, α).

Solving a separation problem by full enumeration is what we call a naive
separation algorithm. It is naive as the number of inequalities in Z can be large,
maybe exponentially many. Using full enumeration on the set of all possible
cutting planes is in general not a good idea, however, it can be used to obtain
knowledge about the set Z of inequalities, and full enumeration on a small
set of inequalities may be done fast. As our wish is to obtain more knowledge
about the cuts found in Chapter 5 we will use this naive separation algorithm
to generate a set F ⊆ Z of cutting planes which are violated by one or more
fractional solutions x∗ to (LP). We do this with a cut-and-branch approach
with respect to the inequalities in Z: First, we solve the LP problem (LP) over
the initial formulation P . Let x∗ denote the optimal solution returned by the
solver and let F be the set of all inequalities in Z that are violated by x∗. We
add the inequalities in F to P and solve (LP) again over the new formulation.
We continue to add cutting planes and solve (LP) iteratively until a solution
x∗ which violates no inequalities in Z is found. Then, we solve (IP) with the
final formulation P . The algorithm is summarized in Algorithm 1. We call it a
Z cut-and-branch algorithm as the cutting planes in Z are only added to the
root node of the branching tree.

With the Z cut-and-branch algorithm we generate the set F and can inspect
how adding the inequalities in F to P affects the solver when solving (IP) over
P . If the solver time is reduced or bounds are improved when the cuts are
added this could indicate that it would be smart to make a non-naive separation
algorithm for the set Z. This algorithm, which either heuristically or exactly
should return an inequality in Z which is violated by the fractional solution x∗,
can be used to add cutting planes from Z to the root node or at nodes as the
branching tree grows. With the Gurobi Optimizer the latter can be achieved by
using the separation algorithm in a callback. In this way Gurobi will solve the
separation problem and add some violated inequality (a, α) ∈ Z to P if and
when the solver finds it necessary during the branching process. We believe this
possibility can be beneficial to use when solving real-life instances of the RCPSP
that are influenced by special types of constraints for which we know cutting
planes exist. The precedence constraints are one such type of constraints.
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6.2. Exact Separation Algorithm for Precedence Cuts

Algorithm 1 Z Cut-and-Branch Algorithm
Require:

(IP), (LP) = An IP and its LP relaxation
P = formulation of the set of feasible solutions X to (IP)
Z = set of inequalities valid for conv(X)

Ensure:
F = set of P/X cutting planes
x∗ = optimal solution to (IP)

F ← ∅
cuts← TRUE
while cuts do

x∗ ← optimal solution to (LP) over P
cuts← FALSE
for all (a, α) ∈ Z do ▷ Naive separation algorithm

if aT x∗ > α then
add (a, α) to F
cuts← TRUE

end if
end for
P ← P intersected with halfspaces in F

end while
Use a branching based solver to solve (IP) over P
x∗ ← optimal solution to (IP)

6.2 Exact Separation Algorithm for Precedence Cuts

In the following sections we consider the RCPSP with precedence constraints.
Let X be the feasible region of (RCPSP) and let P be some formulation of X
using the time-indexed formulation (4.19) for the precedence constraints. We
ignore the formulation for the rest of the constraint types and simply denote
a formulation for their set of feasible solutions by P ′. For simplicity we use
dimension n and assume that X is a binary set, and for convenience we now
change the notation and denote a feasible solution by y instead of x. Thus,
X = P ∩ {0, 1}n where

P = {y ∈ Rn
+ :

H∑
t=0

tyt
i ≥

H∑
t=0

tyt
j + Lj i ∈ I, j ∈ Pi,

H∑
i=0

yt
i = 1, i ∈ I,

yt
i = 0 i ∈ I, H − Li < t ≤ H,

y ∈ P ′}.

By Proposition 5.3.2 the inequalities (5.7) are valid for conv(X) and cut of
fractional points valid for (4.19). Let Z be a set where the elements are triplets
referring to these inequalities. By (j, i, t) ∈ Z we refer to the inequality
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6.2. Exact Separation Algorithm for Precedence Cuts

H−Lj∑
s=t

ys
j ≤

H−Li∑
s=t+Lj

ys
i .

We shall see in Chapter 7 that the number of such precedence cuts (j, i, t)
generated by the naive separation algorithm often was large, and that the
solver time could increase considerably when adding all violated inequalities
to the initial formulation. Therefore, an alternative approach is to only add
one violated inequality (j, i, t) ∈ Z to P . In general it is a classic approach to
find and add the most violated inequality to the formulation, if any are violated.
This problem can be formulated and solved as an integer programming problem.

Let P be the set of all precedence relations in the RCPSP, i.e., for each
operation i ∈ I we let (j, i) ∈ P if j is a predecessor to i. Given this pair and
a fractional solution y∗ to the LP relaxation of the RCPSP we can find the
inequality (j, i, t) ∈ Z which is most violated by y∗ or conclude that no such
inequality exists. Consider the following IP:

max ζ =
∑H

t=0

(∑H
s=t ys

j
∗
)

zt
j +

∑H
t=0

(∑t
s=0 ys

i
∗
)

zt
i

subject to
∑H

t=0 tzt
j −

∑H
t=0 tzt

i ≥ −Lj + 1∑H
t=0 zt

j ≤ 1,
∑H

t=0 zt
i ≤ 1

z ∈ {0, 1}n

Recall that the (j, i, t) inequalities are a special type of the inequalities in
Proposition 2.3.1. By this proposition they can be derived from a GUB cover
C = (C1, C2) which covers the knapsack inequality (4.19). In the above IP the
variable zt

j is equal to one if t ∈ C1 and zero otherwise, and zt
i = 1 if t ∈ C2

and zero otherwise.

Proposition 6.2.1. Let (j, i) ∈ P and y∗ be a fractional point in P . If
ζ >

∑H
t=0 ys

i
∗ and z(C) is optimal, then the GUB cover associated with z(C)

gives the most violated (j, i, t) inequality. If ζ ≤
∑H

t=0 ys
i

∗ then no (j, i, t)
inequality is violated by y∗.

Proof. Consider the inequality (j, i, t) arising from the GUB cover C =
({t}, {t + Lj − 1}). As

∑H−Li

s=t+Lj
ys

i
∗ =

∑H
s=0 ys

i
∗ −

∑t+Lj−1
s=0 ys

i
∗ when some

variables are fixed to zero in P , the inequality (j, i, t) is equivalent to

t+Lj−1∑
s=0

ys
i

∗ ≤
H∑

s=0
ys

i
∗ −

H∑
s=t

ys
j

∗.

Let z(C) be the vector associated with C. As C is a cover it must hold
that

∑H
t=0 tzt

j(C) −
∑H

t=0 tzt
i(C) > −Lj . For (j, i, t) the cover gives zt

j(C) =
z

t+Lj−1
i (C) = 1. Using this vector the above inequality is equivalent to

H∑
t=0

(
t∑

s=0
ys

i
∗

)
zt

i(C) ≤
H∑

s=0
ys

i
∗ −

H∑
t=0

(
H∑

s=t

ys
j

∗

)
zt

j(C).
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From this inequality we see that y∗ violates (j, i, t) if
∑H

t=0

(∑H
s=t ys

j
∗
)

zt
j(C) +∑H

t=0

(∑t
s=0 ys

i
∗
)

zt
i(C) >

∑H
s=0 ys

i
∗. Maximizing the left side over all possible

covers C then returns the most violated inequality. □

The above separation problem and the proof are deeply inspired by the
separation problem for the general GUB cover inequalities in Proposition 2.3.1
described in Proposition 2.2 in [Wol90]. Given a pair (j, i) ∈ P of operations
with a precedence relation between them the above separation problem finds the
inequality (j, i, t) which is most violated by a fractional solution y∗. However,
in our case we are also interested in finding the pair (j, i) ∈ P which ensures
the largest violation. The maximization problem must then be expanded so
that it also includes the choice of such a pair, if not, the IP must be solved for
every (j, i) ∈ P, which could be time-consuming. We have not expanded the
separation problem to include the choice of (j, i) here, but note it as further
work. Instead, we designed our own separation heuristic to find cuts (j, i, t) ∈ Z
that can be added to P .

6.3 Separation Heuristic for Precedence Cuts

Consider again the set Z of all precedence cuts (5.7) valid for conv(X) as
described above. In order to gain knowledge about the characteristics of the
cuts (j, i, t) ∈ Z that were normally violated by fractional solutions y∗ to
LP relaxations of RCPSP instances we ran the Z cut-and-branch algorithm
described in Section 6.1. We used several of the test instances from Appendix A.3.
The number of violated inequalities was, as mentioned, normally very large, so
to find the most violated ones we increased the threshold for violation. Through
some trying and failing to set this threshold for the different instances we
began to see a pattern in the most violated cuts (j, i, t) ∈ Z. Several instances
contained chained precedence relations between the operations 1, . . . , k in some
of the work orders w ∈ WO in the problem. In this case operation i is followed
by i + 1 and we can denote the relevant precedence cuts by (i, i + 1, t) for t ∈ H.
We observed that several of the most violated inequalities were of this form and
that they had

• operation i or i + 1 included in some non-simultaneous operations
constraint,

• a small gap between operation i’s relative position in the work order, i
k ,

and t’s relative position in the horizon, t
H .

These frequent observations lead to the idea of a simple separation heuristic; a
heuristic that uses the above observations and the naive separation algorithm
in hope of quickly finding a violated precedence cut (j, i, t) ∈ Z which should
be added to the formulation P . This heuristic is not guaranteed to find any
violated inequality even if one exists, and the returned inequalities are not
guaranteed to be the most violated ones. The heuristic is also limited as it is
inspired by results on instances where the precedence relations are chained and
within one work order. Although or models for the RCPSP support precedence
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6.3. Separation Heuristic for Precedence Cuts

relations between any pair of operations, the chained precedence relations within
the same work order were presented as the ones that frequently will appear in
real-life instances of the RCPSP [Ind22]. For this reason we found it suitable to
use this information when designing the test instances and the heuristic.

Let v(j, i, t, y∗) be the violation of (j, i, t) in the current solution y∗, so

v(j, i, t, y∗) =
H−Lj∑

s=t

ys
j

∗ −
H−Li∑

s=t+Lj

ys
i

∗.

If v(j, i, t, y∗) > 0 then (j, i, t) ∈ Z is an inequality which is violated by y∗.
Based on this and the observations above we design the separation heuristic given
in Algorithm 2. The heuristic only considers precedence relations where the
predecessor or successor is included in a non-simultaneous operations constraint.
If there are no non-simultaneous operations constraints in the problem we ignore
this criterion. For each precedence relation (j, i) ∈ P we let k be the number
of operations in the work order that j belongs to. We add to the set G all
inequalities (j, i, t) such that t’s relative position in the horizon t

H is no more
than 10 % different from j’s position in the work order, denoted j

k for simplicity.
We let v∗ be the maximum violation obtained by the inequalities in G. If v∗ > 0
then some inequalities are violated and we add to the set F all inequalities
(j, i, t) ∈ G that are violated by the amount v∗. To cope with numerical round-
off errors we frequently use a tolerance of 10−6, which is the default feasibility
tolerance used by the Gurobi Optimizer. We will implement this separation
heuristic and test how it affects the solver performance in Chapter 7.

Algorithm 2 Separation Heuristic for Precedence Cuts
Require:

P = formulation of the set of feasible solutions X to (RCPSP)
y∗ = solution to current LP relaxation
Z = set of precedence inequalities (j, i, t)

Ensure:
F = set of some inequalities (j, i, t) violated by y∗

F , G ← ∅
for (j, i) ∈ P do

if neither j or i have non-simultaneous operations then continue
end if
k ← number of operations in j’s work order
T ← {max(0, ⌈H( j

k − 0.1)⌉), . . . , min(H, ⌊H( j
k + 0.1)⌋)}

for t ∈ T do
add (j, i, t) to G

end for
end for
v∗ ← max(j,i,t)∈G(v(j, i, t, y∗))
if v∗ > 0 then

Add (j, i, t) to F for all (j, i, t) ∈ G with v(j, i, t, y∗) = v∗

end if
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CHAPTER 7

Computational Results

In the previous chapters we have introduced the RCPSP and different IP
and MIP formulations for the set of feasible schedules given different types
of constraints. In Chapter 5 we looked at how these formulations can be
strengthened by adding valid cutting planes, and in Chapter 6 we found relevant
separation algorithms that can be used when solving the RCPSP. This work has
led up to the main goal of this thesis, which is to inspect and compare how the
choice of formulation affects the performance of the Gurobi optimization solver.
Our aim is to find the formulation that overall ensures stability, high quality on
lower bounds and low running time when used to solve real-life instances of the
RCPSP for scheduling and rescheduling purposes.

The chapter is structured as follows: In Section 7.1 we give information
on the test instances that are designed for testing and comparing the different
formulations with respect to computational performance. The results are
presented and discussed in Section 7.2. In Section 7.3 we present the results
when solving the rescheduling problem from Section 4.6. We inspect how cutting
planes affect the solver performance in Section 7.4 and discuss the results.

As this thesis is a contribution to a real project we used the optimization
solver which eventually will be used by our industry partners. This is the
Gurobi Optimizer version 9.5.2 [Gur22]. Some observations were also made
using version 9.1.1. The solver ran a cloud license and all tests were done on an
Intel Xeon Gold 6240 CPU with 2.60 GHz and 7 Cores on a Microsoft Windows
Server with 20 GB RAM. All code is implemented in C# version 10.0. using the
.NET 6.0 framework in Visual Studio 2022. Unless otherwise specified Gurobi
used one thread and default solver settings, and the maximum solution time
was set to 900 seconds.

7.1 Test Instances

From the beginning our emphasis has been on testing the different MIP models
on real data from our industry partners in order to find formulations that are
suitable to be implemented and used in scheduling software for consumers. From
a research perspective we could have studied other, more specified instances.
These could be extremely large instances that are relevant for worst-case studies,
or small instances where finding an initial feasible schedule is computationally
hard. We could also have tested our models on benchmark instances for
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Type |I| |R| H # Instances
S 0–100 1–6 0–200 12
M 100–500 23 200-400 5
L 500–1000 23 400-600 8

XL 1000–1500 23 600-800 3

Table 7.1: Information on the test instances for the RCPSP

scheduling problems and the standard RCPSP. This has not been done in this
thesis, but is noted as further work which will be done in the OptiPlan project.

When starting the work with this thesis we were given the impression
that several real-life instances were to be handed to us for testing purposes.
Unfortunately, this did not happen due to delays in the OptiPlan project.
However, we were given a pseudo-random instance inspired by real data from
our relevant partners. With some alterations to ensure feasibility this is the
base test instance denoted as L1. From this instance we generated a total
of 28 feasible scheduling problem instances with different sizes and constraint
characteristics. See Table 7.1 for information on these instances. Recall that
the symbols are explained in Appendix A.1. The test instances are categorized
as either small (S), medium (M), large (L) or extra large (XL) instances.
This choice is affected by the number of operations |I|, resource types |R| and
planning horizon H in hours. The smallest instances have a horizon of some
days, while the largest instances have a horizon of up to five months. For more
information on the data and constraints in each problem instance please see
Table A.2 in Appendix A. There we also mention why small instances can be
harder to solve than large instances.

In our applications each operation is categorized as either a general operation,
production critical operation or safety critical operation. In every test instance
we set the delay cost Bi of operation i to 1 if it was a general operation, Bi = 100
if it was production critical and Bi = 1000 if it was safety critical.

7.2 Comparing Formulations for the RCPSP

We start by comparing different models for (RCPSP) introduced in Chapter 4.
Recall that by a model for the RCPSP we mean the choice of how to state
the weighted delay objective and formulation of the set of feasible solutions.
When comparing models there exist several ways of measuring performance. We
measured the performance and quality of a model by analyzing the following
four measures in prioritized order:

1. Solution time: What is the solution time spent by the Gurobi Optimizer?
Or, if the maximum solver time is reached, what is the current duality
gap? We search for a model which overall shows the tendency of ensuring
low running times for the optimization software when used on real-life
instances of the RCPSP.

2. Stability: Does the formulation perform well and as expected on all test
instances, or does the solver behavior seem alternating and random when
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7.2. Comparing Formulations for the RCPSP

this formulation is used? We search for a model which can be trusted to
have a stable high performance on all problem instances, and which can
tackle a variety of problem sizes and constraint characteristics.

3. Lower bounds and incumbent solutions: We search for a model
which leads to a high lower bound when solving the LP relaxation of the
problem. We inspect how fast an incumbent solution is found by the
solver and how the gap between this upper bound and the lower bound
reduces.

4. Size of the formulation: Should the above measures give approximately
the same results for different models we prefer the one with the least
number of variables and constraints as some problem instances may be
very large.

Our emphasis has been on comparing time-indexed formulations for the
RCPSP. When comparing different formulations for one constraint type, e.g.,
the non-simultaneous operations constraints, we needed default formulations
for the rest of the constraints. These are given in the base model.

Definition 7.2.1 (Base model). The base model is the default model used in our
test runs. The base model in this thesis is

(o(C), P rpnw(TI)d(CTI)).

The above model was chosen as base model as it turned out to perform well
on initial test runs. The model is a time-indexed model extended with the
continuous delay variable di for each operation i ∈ I. See Table A.1 for a
reference to the mathematical constraints. In the tables in this chapter we
will under the columns named ”Model” only state the formulation for the
constraint(s) of interest, and use the base model for the rest of the formulation
and the objective.

Including the start time variables

Every time-indexed formulation for the set X of feasible schedules to the RCPSP
will include the binary yt

i variables, where yt
i is equal to one if operation i ∈ I

starts at time t ∈ H and zero otherwise. The starting time of i is given by∑H
t=0 tyt

i . Using (4.2) we can extend the formulations with the starting time
variables ti. This makes the formulations more intuitive and easier to implement,
but comes with the cost of introducing new variables. The general effect this
extension has on model performance is not clear, so we started by comparing
how the base model performed with and without the ti variables included. The
formulations are then Prpnw(TI)d(CTI) and Prnw(TI)pd(C), respectively.

We ran these models on the test instances S1–S4, M1–M3 and L1–L3. Both
models found an optimal solution within the time limit on all but one instance.
The lower bounds were equal for both models, as well as the behavior of the
solver with respect to the presolve and branching phase. The only differences we
experienced were with the solution times. The base model was always fastest,
and on average it was 94.2 % faster than the extended base model, causing
the solver time to be cut in half. This result was and is unexpected as we
initially believed that including the ti variables would be beneficial for the solver.
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Model % Win
o() 67
o(C) 25
o(T I) 8

Table 7.2: Comparing formulations for the weighted delay objective

Changing the ti variables from Gurobi continuous to Gurobi integer did not
change the results. The extended base model also had more unstable behavior
with respect to running time than the base model. At this stage we are not able
to dive deeper into the reasons for this poor performance as that would require
knowledge about the Gurobi solver which is unavailable to us. We note that
the results may very well be opposite for other scheduling problem instances,
and for this reason we do not wish to conclude something on a general level.
However, due to the results in our tests we find it better not to include the ti

variables in our time-indexed RCPSP formulations.

Result 1. The base model should not be extended with start time variables.

Later in this section we extend other time-indexed models besides the base
model with the start time variables. As we shall see, this did on average not
improve the performance of these models either.

Objective and delay constraints

For the RCPSP we consider the weighted delay objective, also called weighted
tardiness. See Section 4.4. We compare how the choice of objective formulation
affects the performance of the base model. Thus, we let the formulation for
X be as in the base model, and consider the objectives o(C), o(TI) and o().
This choice also affects the delay constraints, which are either d(CTI) or d(TI)
along with non-negativity constraints, or none d(), respectively.

We ran the three models on the instances S1–S4, M1–M3, L1–L3 and
XL1–XL2. The results are given in Table 7.2. Here, ”% Win” is the number of
test instances given in percent in which the models performed best with respect
to running time or gap returned within the time limit. Here we see that o() was
fastest in 67% of the test runs. When the o() model was faster than o(C) the
differences in running time were larger than the times where o(C) was faster
than o(). The o() objective reduces the number of variables and constraints as
no delay variables are included. All models performed equally on the quality of
lower bounds. The o(TI) model was slowest in all except one instance, and the
number of constraints and variables increased by a factor of O(H|I|) compared
to the o() model. Without adding cutting planes of the form (5.13) we do not
recommend binarizing the delay variables and using o(TI). And, as long as the
di variables are not needed for other purposes or cutting planes we recommend
using the o() objective and to not introduce delay variables or constraints.

Result 2. Time-indexed models should use the o() objective and not include
delay variables or constraints.

Early on in the testing process we tried including the schedule makespan
m ≥ 0 in the objective by adding the fraction m

H+1 which is strictly between zero
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Model % BLB % Win
n(forward) 100 0
n(middle) 87.5 12.5
n(backward) 100 50
n(BMT I) 75 37.5

Table 7.3: Comparing pairwise formulations for the nonops constraints

and one. In this way the solver would prioritize the schedule with the earliest
makespan among the solutions with optimal integer valued weighted delay.
Adding this fraction to the objective increased the running times considerably,
and as an early makespan was not important for our industry partners we
decided to not include makespan as a part of the objective.

Non-simultaneous operations constraints

The non-simultaneous operations constraints express that two given operations
i, j ∈ I cannot overlap in the schedule. As we have seen in Chapter 4 and
Chapter 5 these constraints can be formulated in different ways. See these
formulations in Table A.1.

We started by comparing the formulations when the nonops are given as
sets of pairs {i, j} ∈ X . We ran the formulations n(forward), n(middle),
n(backward) and n(BMTI) on the 15 instances S1–S4, S8n–S10n, S12r, M1–
M3, M4n and L1–L3. The results are given in Table 7.3. Here ”% BLB” is
the number of test instances given in percent where the models returned the
highest value of the LP relaxations among all the models, and ”% Win” is as
above. Overall we experienced little difference between the first three models.
The n(middle) model returned a poorer lower bound than n(forward) and
n(backward) on one instance, causing the formulation to be weaker, and the
model was on average a bit slower than the other models. This confirmed
our belief in Section 5.2. With respect to running time the Big-M model
n(BMTI) and the n(backward) model alternated at being best. As we know
that formulations using n(backward) can be strengthened using (5.1) we will
test how this formulation compares to n(BMTI) next. When it is the case
that the nonops are given as pairs {i, j} ∈ X rather than as larger sets ∆, we
recommend using the Big-M formulation as this overall performed well. In
real-life schedules it may be a small probability that i and j actually do overlap.
Delayed row and column generation may then be used to create the zij variables
and to add the Big-M constraints to the formulation only if they are violated.
We did not try this, but note it as further work.

We now consider the case when we know the nonops are given as maximal
sets ∆ ∈ X ∗ with sizes between two and five. We ran the pairwise Big-M
formulation n(BMTI), our permutation formulation n(BMP ) and the strongest
time-indexed formulation n(TI) where the nonops are represented as operations
demanding some dedicated resource. We ran the instances S3, S8n–S9n, M3,
M4n, L3, L5, L6n-L7n and XL2. The results are given in Table 7.4. Here we
state the problem instance ”Instance”, the model ”Model”, and we give the
number of constraints and variables in the formulations. We report the number
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Instance Model Cons Vars Nodes Sol
n(BMT I) 569 1100 1 0.07s
n(BMP ) 513 1100 1 0.19sS3
n(T I) 1238 950 1 0.05s

n(BMT I) 569 1100 5976 6s
n(BMP ) 513 1226 153015 157sS8n
n(T I) 1238 950 1 0.80s

n(BMT I) 389 992 13 0.17s
n(BMP ) 373 1016 1 0.20sS9n
n(T I) 566 950 1 0.06s

n(BMT I) 9580 181200 1 9s
n(BMP ) 9499 181444 1 6sM3
n(T I) 16120 181000 1 7s

n(BMT I) 9591 177330 1 39s
n(BMP ) 9449 178362 1 52sM4n
n(T I) 17192 177000 1 64s

n(BMT I) 16140 720388 1 44s
n(BMP ) 16059 720632 1 65sL3
n(T I) 26784 720188 1 38s

n(BMT I) 12333 434198 18 -
n(BMP ) 12253 434518 26 4.6%L5
n(T I) 22267 434000 20 6.9%

n(BMT I) 12450 434276 22 6.3%
n(BMP ) 12344 434596 22 4.0%L6n
n(T I) 25860 434000 31 4.2%

n(BMT I) 12450 434276 98 14%
n(BMP ) 12344 434596 11 8.8%L7n
n(T I) 25860 434000 105 9.6%

n(BMT I) 20928 1167196 1 98s
n(BMP ) 20852 1167340 1 100sXL2
n(T I) 37706 1167000 1 116s

Table 7.4: Comparing the resource formulation of nonops constraints with the
Big-M formulations

of nodes visited in the branching tree, and in the column ”Sol” the time spent
to obtain an optimal solution is given. Very minor differences in running times
are considered irrelevant. If no optimal solution was found within 900 seconds
we report the duality gap, i.e., the gap between the incumbent solution and the
best lower bound obtained so far. A dash is written if no solution was found.

In the table we see that the time-indexed formulation overall performs well.
The solution times and gaps returned are satisfactory despite the large number
of constraints on large instances. We experienced a very stable performance
with this formulation. In the branching phase an incumbent solution was
found quickly and the duality gap decreased evenly. For our new permutation
formulation, however, it took a long time to find an incumbent solution and
it was through ”lucky heuristics” that the gap decreased by large amounts
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Model % Opt % Inc % BLB % Win
Base 98 100 100 100
rnw(F )pd(C) 33 66 66 0
rnw(IF )pd(C) 8 25 42 0

Table 7.5: Comparing formulations for the resource constraints

at a time. This lead to unstable performance. We are pleasantly surprised
by the permutation formulation’s good performance in the column ”Sol” as it
outperformed the time-indexed formulation on some instances. But, we believe
the permutation formulation has to be further investigated and tested before
being used for non-research purposes. Suitable algorithmic and decomposition
aspects should be investigated, and it is noted as further work to study how the
performance is affected if the permutation constraints are added in a delayed
fashion, as mentioned above. In Section 7.4 we test how the permutation
performance changes when the cutting planes found in Chapter 5 are added.
This improves the performance, but not enough for us to recommend using
the permutation formulation for industrial purposes (yet). In general, as the
non-simultaneous operations may appear in sets of cardinality larger than
two, we will recommend using the time-indexed resource formulation for these
constraints.

Result 3. Non-simultaneous operations should be represented as operations
demanding some dedicated resource.

Resource constraints

The resource constraints for our RCPSP express that at any point in the
schedule the resource demands of the operations in progress cannot exceed
the availability. We modeled these constraints in three ways; the time-indexed
knapsack constraints r(TI), the interval flow formulation r(IF ) and the
continuous flow formulation r(F ) as explained in Chapter 4. We test how
these formulations compare when used on the base model on the instances
S1–S4, S11r–S12r, M1–M3 and L1–L3. By Result 3 we modeled the non-
simultaneous operations constraints as resource constraints. In the continuous
formulations we did this also for the windows of opportunity constraints, whereas
in the time-indexed model we used (4.28) for these constraints. The results
are given in Table 7.5. Here ”% Opt” (”% Inc”) is the number of instances in
percent where an optimal (incumbent) solution was found, and ”% BLB” and
”% Win” are as they were above.

The results show that the base model with r(TI) clearly outperformed both
flow models. This model found an optimal solution in all but one instance and
was best with respect to stability and quality of lower bounds. The interval
flow model was the model which led to poorest performance. With this model
the solver used much time in the presolve phase and thereby long time to find
a lower bound. Both the flow models had very poor lower bounds; the LP
relaxation value was often zero even though the optimal value was much larger.
The interval-free flow model led the solver to spend much time on heuristics to
improve the poor lower bound, not the incumbent solution. We ran the flow
models on the extra large instances XL1–XL3, but no incumbent solutions

71



7.3. Rescheduling Results

were found here. This was unexpected, as we believed the flow models would
perform at least somewhat satisfactorily on these instances. We believe one
reason for the poor performance of the flow models is the large number of
constraints and variables. Recall that the number of constraints is O(|I||R|) in
r(F ) models and O(H|R|) in r(TI) models. In all our test instances, inspired
by real data, the number of operations |I| was larger than the planning horizon
H in hours. For L instances the number of constraints in the flow model was
up to 25 times the number of constraints in the time-indexed model. This
number reduced as the size of the instances reduced. On average the number of
variables in the time-indexed model was roughly twice the number of variables
in the flow model. Nevertheless, the time-indexed model performed best on
instances of all sizes, S–XL. For this reason we cannot recommend using the
continuous flow models unless they are improved.

Result 4. Time-indexed models should be used for solving real-life instances of
the RCPSP that compare to the test instances in size.

7.3 Rescheduling Results

We now report how different models performed when solving the rescheduling
problem (4.36) introduced in Section 4.6. Information on the rescheduling test
instances is given in Table 7.6. For each scheduling problem instance S2, S3, L1
and XL3 we give the schedule start ”Start” and schedule end ”End” with dates,
and we make two rescheduling problem instances denoted with an extra A or B.
The difference between these instances is the date ”ResStart” which is the date
from which we reschedule. Let t′ ∈ H be the time index of this point in time,
referring to 07:00 the given date if no hour is given. The rescheduling problem
is solved as follows:

1. Let the current schedule be an optimal solution to the corresponding
scheduling problem.

2. Remove operations that are finished before t′ from the set I and reduce
the duration of the operations that are in progress at t′ to their remaining
processing time. Remove constraints for t < t′ and for the operations that
are removed, and do potential updates on parameter values.

3. Set the MIP Start value for the start time of i to be i’s start time in the
current schedule. This value will help guide Gurobi’s search for a feasible
schedule.

4. Set ”Start” to ”ResStart” and update the time indices. Add the set INEW

to I and introduce new variables.

5. Solve (4.36).

For each of the instances in Table 7.6 we let INEW be a set of five safety
critical operations. These operations have resource demands, but do not
introduce any other new constraints. The parameter values for the constraints in
the original scheduling problem remain unchanged. For the weights (W +

i , W −
i )
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Instance Start ResStart End
S2A 02.05.22
S2B

28.04.22 16.05.22 27.05.22

S3A 06.05.22 11.05.22 16.05.22

L1A 07.04.22
L1B

03.04.22 01.06.22 12.07.22

XL3A 05.05.22
XL3B

01.04.22 05.06.22 15.08.22

Table 7.6: Information about test instances for the rescheduling problem

of moving operation i backward or forward in time we make it three times
more expensive to move it forward in time compared to postponing it, so
W −

i = 3W +
i . The costs are set to (3, 9) if the operation was originally scheduled

to be processed on the ”ResStart” date, (2, 6) if scheduled the next day and
(1, 3) if scheduled some day later.

We tested and compared how different time-indexed models performed on
the rescheduling instances. We do not report the results from the flow models
due to their poor performance here and in the above section. As a measure of
performance we only report the time spent to find an optimal solution. The
reason for this is that quick rescheduling is the major desire from our industry
partners. The solution times are listed in Table 7.7. Here we give the objective
formulation in ”Obj”, and in ”Formulation” we only state the formulations that
are different from the formulation in the base model (o(C), P rpnw(TI)d(CTI)).
Overall, the results show that there is little difference in running time between
the different models that are not extended with the starting time variables.
Even for the instances that include nonops constraints the differences in running
times are insignificantly small. The tendencies in the results remained the same
also when we changed parameter values like durations and resource demands for
the operations in INEW in order to make some instances harder to solve. Note
especially that weekly rescheduling like in S3A is done incredibly fast. As before,
the objective o() gives the best result. We recommend using a non-extended
time-indexed model for rescheduling purposes. Until we are given real test data

Obj Formulation Instance

S2A S2B S3A L1A L1B XL3A XL3B

Base 21s 2.2s
n(BMT I) 20s 2.3s
n(BMP )

0.73s 52s 1.3s
19s 2.1s

pd(C) 67s 3s
o(C)

pd(C)n(BMC) 0.76s

0.75s

208s 1.7s 64s 2.8s

o(T I) d(T I) 0.80s 0.88s 47s 1.6s 21s 2.4s
o() d() 0.76s 0.68s

< 50ms

37s 1.2s 16s 1.8s

Table 7.7: Comparing formulations for the rescheduling problem
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which gives a clearer picture of how hard the rescheduling problems are to solve
we do not wish to point out one formulation as strictly better than the other
ones.

Result 5. Time-indexed models are well suited for rescheduling problems.

7.4 Effectiveness of Cutting Planes

In this section we report how the solver performance is affected when different
cutting planes from Chapter 5 are added to the formulations in different models
for the RCPSP. We inspect how the values of the LP relaxations to different
instances increase when cuts are added and how the overall solution time of
the solver potentially changes. We will also observe and report if the cutting
planes are actually generated or if they are usually satisfied by the fractional
solutions to the LP relaxations and thereby seem redundant. If a cut performs
well on these measures we will say that the cut is effective, i.e., adding it
to the formulation improves the solver performance. We therefore study the
effectiveness of cutting planes.

We consider the resource cuts (5.14), resource and nonops cuts (5.16), the
Big-M permutation cuts (5.4)-(5.5), continuous delay cuts (5.10), nonops and
delay cuts (5.12), binary delay cuts (5.13) and the precedence cuts (5.7). For
each of these sets Z of valid inequalities we ran the Z cut-and-branch algorithm
described in Section 6.1. That is, for each family of cuts Z we used full
enumeration to add all inequalities (a, α) ∈ Z violated by the fractional solution
y∗ to the LP relaxations of RCPSP instances to the initial formulations P , and
we did this iteratively until a fractional solution was found which violated no
inequalities in Z. We only tested other ways of separation for the precedence
cuts and based our methods here on the heuristic in Section 6.3. Unless otherwise
specified we used the base model for all test runs and default solver settings for
Gurobi. In the tables in this section we will add a star * behind the model to
indicate that cuts have been added using the Z cut-and-branch algorithm. For
such models the reported solution time is the time spent to solve the RCPSP
when using the final formulation where all the generated cuts are added, i.e.,
the time spent after the while-loop in Algorithm 1.

Resource cuts

We start by running the Z cut-and-branch algorithm on the resource cuts (5.14)
from Section 5.5. Recall that these cuts are extended cover inequalities when
the resource constraints are formulated as time-indexed knapsack constraints.
The results comparing the base model with and without these cuts added by
the Z cut-and-branch algorithm are given in Table 7.8. In this table we report
the time spent to find the optimal solution in the row ”Time”, or we write
the duality gap if no solution was found within the time limit. In the row
”LP/Cutval” we give the value of the LP relaxation to the left and the best lower
bound found by Gurobi at the root node before the branching starts to the
right. If these values were equal we only write it once. The optimal objective
value is given in ”ObjVal”. Finally, we report the number of cuts generated
by the Z cut-and-branch algorithm in each iteration in the row ”Cuts”. Each
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Measure Model Instance
S2 S11r S12r L1 L4 XL2

Base 1.5s 0.16s 30ms 141s 99% 117sTime Base∗ 0.44s 0.12s 37ms 98s 76% 213s
Base 100 533/600LP/CutVal Base∗ 219/700 1113/1800 600 0 4104 4091

ObjVal 700 1800 600 0 4091

(20,4,3) (9) (15,6) (131,40,5) (157,33, (151,61,Cuts Base∗
16,11,1) 29,11,5)

Table 7.8: Base model performance with and without the resource cuts (5.14)
added by the Z cut-and-branch algorithm

column corresponds to a test instance. We tested seven instances, but give
results only for the six in which cuts were generated.

The table shows that adding the resource cuts increased the LP value in
some instances. The solution time was reduced in most cases, but not for
the extra large instance, which we believe is due to the large number of cuts
added to the formulation in this case. The Gurobi Optimizer does generate
cover cuts as a part of the solution process, but we can not say if and how
it generates lifted or unlifted extended cover inequalities. We wish to inspect
further how our resource cuts can be generalized to other or stronger clique cuts
or extended cover inequalities and believe a separation algorithm or heuristic
should be made for such cuts. By our measures described above we do consider
the resource cuts (5.14) as effective.

In the same matter as above we tested the effectiveness of the resource and
nonops cuts (5.16) from the same subsection. As mentioned there, these cuts are
only generated for specific values of the resource demands and availabilities. We
ran the Z cut-and-branch algorithm for these cuts on several instances, among
them the instances S11r, M5rn and L8rn which were designed specifically
with these cuts in mind. We experienced that the cuts were generated, but that
they did not improve the lower bounds or the running time on any instance.
This was unexpected, as cuts of this form were often returned by the Xpress
solver. The cuts did improve the solution time when added to the base model
extended with start time variables, but it could not compare to the base model
without cuts added. We do not wish to stamp these cuts as ineffective based
on our limited test runs. If it is the case for real-life instances of the RCPSP
that nonops often do demand the same resources we believe these cuts should
be further investigated and tested.

Permutation formulation cuts

We now consider our permutation formulation (5.2)-(5.3) denoted n(BMP ) of
the non-simultaneous operations constraints. We consider this with and without
the permutation cuts (5.4)-(5.5) added by the Z cut-and-branch algorithm,
and compare these models to the base model. We only searched for sets
overlapping non-simultaneous operations of size two, i.e., δ = {i, j} for some
pair of operations i, j included in at least two sets ∆1, . . . , ∆p of nonops. We
compared the models n(BMP ), n(BMP )∗ and Base on a total of four instances
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7.4. Effectiveness of Cutting Planes

Measure Model Instance

S3 S8n

n(BMP ) 192ms 157s
n(BMP )∗ 84ms 73sTime
Base 57ms 0.81s

n(BMP )
n(BMP )∗ 0LP/CutVal
Base

500
600/700

ObjVal 500 700

Cuts n(BMP )∗ (6,2) (7,1)

Table 7.9: Comparing formulations when the permutation cuts (5.4)-(5.5) are
added to the permutation formulation of the nonops constraints

in which we knew sets of overlapping nonops existed, but we only report the
two in which cuts were generated. The results are given in Table 7.9.

As only four instances included overlapping sets of nonops it is hard to
conclude on the effectiveness of these cuts at this stage. However, we see that
the solution time needed by the permutation model decreased considerably
when the cuts were added, which is pleasantly surprising for us. The cuts did
not affect the LP value. We have already established that the permutation
model does not outperform the base model on small instances, and we see that
this remains the case also after the cuts are added. We believe a separation
algorithm should be made for the permutation cuts or their generalizations
(Section 5.2), and that this should be implemented when sets of overlapping
nonops are contained in large and extra large instances of the RCPSP.

Result 6. Further studies of the permutation formulation of the Big-M
constraints should include separation with the permutation cuts (5.4)-(5.5) or
their generalizations.

Delay cuts

The base model for the RCPSP includes a continuous delay variable di ≥ 0 for
each operation i ∈ I. We compared the performance of this model to the cases
where Z was either the family of continuous delay cuts (5.10) or the nonops
delay cuts (5.12), and cuts were added by the Z cut-and-branch algorithm.
We ran the three models on the instances S2–S4, L3, M3 and M4n and only
comment the results. We experienced that the nonops delay cuts were never
generated on any instance. This was disappointing, as we believed they would
be generated for at least some instances. However, we suspected these cuts to
be weak as we only managed to prove that they were actually Pnd/Xnd cutting
planes for some restricted parameter values. We still believe that the nonops
and delay constraints can be combined to find new valid inequalities, but think
that the variables then need to be weighted, which makes the inequalities harder
to derive by hand. As of now the nonops delay cuts (5.12) are ineffective.

The continuous delay cuts (5.10) were often generated. They never increased
the LP value and had alternating effect on the running times. We believe
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7.4. Effectiveness of Cutting Planes

the inequalities should be added not as cuts, but as variable lower bounds
constraints to the variable di. It should be tested whether or not this improves
the performance of the base model.

We also tested how the fully time-indexed model with objective o(TI) and
binary delay variables wt

i was affected when the cuts (5.13) were added by the
Z cut-and-branch algorithm. We used the same instances as above. A large
number of cuts were generated at each iteration for each instance. This caused
the solver time to increase by a large amount, as expected. Surprisingly, the LP
value did not increase in any instance after the cuts were added. For this reason
we did not investigate these cuts any further, and we believe the base model
with either the o(C) or the o() objective remains the best to use for RCPSP
instances.

Precedence cuts

We finish off by discussing the effectiveness of the precedence cuts (5.7) when
these were added to the time-indexed formulation in the base model. First, we
tried replacing the precedence constraints (4.19) by all the precedence cuts. It
was quickly experienced that the number of constraints then grew very large,
and that this led to much of the solver time being spent on presolve and solving
the LP relaxation. This was as expected, and confirms that these inequalities
should only be added as cuts. Using the Z cut-and-branch algorithm also turned
out to be inefficient with respect to running time as the number of inequalities
(j, i, t) ∈ Z that were violated usually was very large. However, we experienced
that the quality of the lower bound increased considerably, which is what lead
us to derive the separation heuristic in Section 6.3.

We implemented the separation heuristic for precedence cuts as explained
in Algorithm 2. The set G ⊂ Z of possible violated inequalities was generated
when the model was initialized a priori to solving the problem. In order to add
inequalities throughout the branching tree the heuristic was implemented in a
Gurobi callback function, see Section 6.1. The separation problem solved at
different nodes in the branching tree was to calculate v∗ by full enumeration
of the set G, and if v∗ > 0 to add all elements (j, i, t) with this violation to
F . In order to use callbacks in this way we had to use an academic license
for the Gurobi Optimizer. The results reported in this subsection were made
using Gurobi Version 10 on an Intel Core i7-8650U CPU 1.90GHz with 4 cores
running on a Windows 10 Enterprise with 64GB RAM. All settings remained
the same as above, but the Gurobi PreCrush parameter was set to one when
the separation heuristic was used in order to not ignore our user-added cuts.

We compared the base model performance with and without using the
separation heuristic on the instances S1, S5p, S7p, L1, L4 and XL1. The
results are given in Table 7.10. Here, two stars ** are added behind the model
name to indicate that cuts have been added throughout the branching tree. The
row ”Time” shows total solver time or the current gap if no optimal solution
was found. The row ”SepTime” shows the amount of time devoted to the
separation heuristic in percentage of the total solver time. In the table we see
that the separation heuristic improved performance on some instances. In these
instances there were more chained precedence relations within work orders than
in the instances where the solver did not improve the performance, which is
as expected by the design of the heuristic. Unfortunately, our heuristic did
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7.4. Effectiveness of Cutting Planes

Measure Model Instance
S1 S5p S7p L1 L4 XL1

Base 22% 37s 0.69s 141s -Time Base∗∗ 28% 18s 0.85s - 99% 817s
SepTime Base∗∗ 6% 16% 7% 59% 0.1% 0.6%

Base 900/24331 2758/6032LP/CutVal Base∗∗ 900/24047 2758/5859 20786/23000 0 4104/4105 4143

ObjVal 43600 10600 23000 0 4143

Table 7.10: Base model performance with and without the precedence cuts (5.7)
added by the separation heuristic

not improve the lower bounds on any instance, which was unexpected as the
bounds increased a lot when the Z cut-and-branch algorithm was used. Further
work should therefore inspect the characteristics of the cuts (j, i, t) ∈ Z which
do improve the LP value. The number of nodes visited in the branching tree
was normally reduced when the heuristic was used. The instance L1 was solved
at the root node by the base model, but an incumbent solution was not found
when using the heuristic, which used over half of the available solver time in
this case. Further study of this heuristic should limit the maximum time the
solver can devote to it in a single node to avoid such problems. It should also
be inspected how the solver can use the precedence cuts beneficially without
affecting the generation of other solver cuts. The results from S1 can imply
that the addition of our precedence cuts was done at the cost of not including
other Gurobi cuts or using heuristics that could improve the lower bounds and
the duality gap.

We find it necessary to test this separation heuristic on real test data before
concluding whether or not it should be a part of the model that is to be used for
industrial purposes. We know that chained precedence relations are common
in such scheduling problems, which is why we remain hopeful that a suitable
separation algorithm for the precedence cuts will be beneficial to use and that
the cuts will be effective.

Result 7. Suitable separation algorithms and heuristics for the precedence cuts
(5.7) should be prioritized to be tested on time-indexed models for real-life
instances of the RCPSP.
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CHAPTER 8

Concluding Remarks

Inspired by a scheduling problem in the industry this thesis has studied a
Resource Constrained Project Scheduling Problem (RCPSP). A solution to this
NP-hard problem schedules all operations within the planning horizon in a
way that satisfies resource, precedence, non-simultaneous operations and delay
constraints and minimizes the weighted delay objective. We have found different
time-indexed and continuous formulations for the set of feasible schedules
and inspected how these can be strengthened by adding additional valid
inequalities. Separation algorithms have been developed and used to test
how these inequalities affect the solver performance. Through experimental
testing on instances inspired by real data we have tried to get a clearer picture
of which model that ensures a stable high solver performance.

Winning model: (o(), P rpnw(TI)d())

This model for the RCPSP has a binary, time-indexed formulation with
no continuous variable for the delay of each operation. Its simplicity and
generality caused it to perform stably well on a variety of test instances, also
for rescheduling. For this reason we find it well suited for real applications. Our
result is expected and aligns with the literature, but we were surprised that the
model outperformed continuous models also on extra large instances.

There are weaknesses and limitations to the winning model result and the
results mentioned in Chapter 7, and some of these are discussed in that chapter.
The amount and quality of test instances are limited, especially on the very
large and hard end. Our result’s actual transferability to real scenarios is still
unknown. Several valid inequalities from Chapter 5 had limited effect on solver
performance, and some were proven to be cutting planes only in specialized
cases believed to be realistic. Our separation heuristic for the precedence
cuts was designed for data on a particular form, and it did not perform to
the anticipated and desired extent. The permutation formulation seems only
suitable for restricted parameter values, and its performance was unstable.
Nevertheless, we claim that we have reached our goal for this thesis: A winning
model has been found, and we believe our results are of applicable interest
to the OptiPlan project. Some results are of theoretical interest for the field
of maintenance scheduling, but also for resource constrained scheduling and
scheduling in general.
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All work in this thesis is intended and believed to have been done in an
ethically justifiable way, using working procedures common for MILP and
RCPSP research. Given all that is described and commented we see no further
aspects or approaches potentially able to raise ethical discussions, nor have we
any personal interest in being untruthful. The known applications of our results
raise no immediate concerns, on the contrary; exciting possibilities.

Further Work

We list some relevant future work and research possibilities:

• It should be investigated if Theorem 5.3.3 also holds for b < 0 and for a
general b ∈ Zk.

• Our permutation formulation needs further study: Why did it perform
well on some instances? Can delayed row or column generation be
beneficial? A suitable separation algorithm for the permutation cuts
and their generalizations should be developed.

• The separation algorithm in Section 6.2 should be expanded to include
the optimal choice of operations (j, i) ∈ P. More tests should be run to
inspect how the separation heuristic in Section 6.3 can increase the value
of lower bounds and possibly avoid enumeration.

• Several cutting planes from Chapter 5 need to be generalized and
strengthened. Our test runs showed that cutting planes arising from
sub-problems with several constraint types were strong. Small instances
could be made to inspect how such inequalities can be derived by hand.

• The models for our RCPSP should be tested on benchmark instances
from PSBLIB or MIPLIB. The continuous flow models should be tested
on instances where the planning horizon is larger than the number of
operations. Do their performance increase in these cases?

• Our RCPSP can be extended to better fit reality, see Section 4.7. This
will lead to new extensions to the standard RCPSP.
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APPENDIX A

Information On Models And Test
Data

This thesis finds and compares different formulations for the set X of feasible
schedules to a Resource Constrained Project Scheduling Problem (RCPSP). In
Appendix A.1 we list all the symbols used for modelling the RCPSP. Additional
symbols used in the rescheduling problem are given in Table 4.2. Appendix A.2
gives information on how the different models for RCPSP are denoted, and in
Appendix A.3 we give information on the test instances used for comparing
these models.

A.1 List of Symbols

Sets
H set of time points {0, 1, . . . , H}
I set of operations
Kr set of interval indices for resource r

P set of precedence related pairs of operations
Pi set of predecessors to operation i ⊂ I
R set of resource types
Si set of successors to operation i ⊂ I
Tr set of availability changing times for resource r ⊆ H
Wi set of windows of opportunity for operation i ⊆ H
WO set of work orders
X set of pairs of nonops
X ∗ set of maximal sets of nonops
∆ maximal set of nonops ∈ X ∗
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A.2. Abbreviations for Model Names

Problem parameters
Bi cost per unit time delay of operation i ∈ R+

Ct
r amount of resource type r available at time t ∈ N

C
[k]
r amount of resource type r available in time interval k ∈ N

Cr maximum amount available of resource type r ∈ N

H planning horizon ∈ N

Li duration of operation i ∈ N

Rir amount of resource type r required by operation i ∈ N

Ti deadline for operation i ∈ N

Decision variables
di delay of operation i ∈ R+

fr
ij flow of units of resource r from operation i to j ∈ R+

ti start time of operation i ∈ R+

yt
i operation i starts at time t ∈ {0, 1}

wt
i operation i is delayed t time points ∈ {0, 1}

zij operation i is scheduled before operation j ∈ {0, 1}
zπ operations in π are permuted like π ∈ {0, 1}

Help variables
sk

r , ek
r source and sink nodes for resource r in time interval k

sr, er source and sink nodes for resource r

A.2 Abbreviations for Model Names

By a model for the RCPSP we mean the choice of objective and formulation of X.
In Section 4.5 we explain that such a model is denoted (o(), P r()p()n()d()w())
where o stands for objective, r for resource, p for precedence, n for non-
simultaneous operations, d for delay and w for windows off opportunity. A
reference to the formulation used for these constraints is given inside the
parenthesis. In Table A.1 we give abbreviations that are used when comparing
the formulations in Chapter 7. Here, TI stands for time-indexed, IF for interval
flow, F for flow, BM for Big-M, C for continuous and P for permutation. These
letters can be combined. As an example, by n(BMC) we mean using a Big-M
formulation of the nonops constraints with the extended continuous start time
variable. The motivation for introducing the abbreviations is to make it easier
to understand which formulations we are comparing when running tests in
Chapter 7.
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A.2. Abbreviations for Model Names

Abbreviation Formulation
r(IF ) r(4.4)-(4.12)
r(F ) r(4.4), (4.6), (4.13)-(4.17)
r(TI) r(4.3)
p(C) p(4.18)
p(TI) p(4.19)
n(forward) n(4.25)
n(middle) n(4.26)
n(backward) n(4.27)
n(BMC) n(4.20)-(4.22)
n(BMTI) n(4.20), (4.23)-(4.24)
n(BMP ) n(5.2)-(5.3)
n(IF ) n(4.4)-(4.12)
n(F ) n(4.4), (4.6), (4.13)-(4.17)
n(TI) n(5.1)
d() none
d(C) d(4.31)
d(CTI) d(4.32)
d(TI) d(4.33)-(4.34)
w(IF ) w(4.4)-(4.12)
w(F ) w(4.4), (4.6), (4.13)-(4.17)
w(TI) w(4.28)
o() o(4.29)
o(C) o(4.30)
o(TI) o(4.35)

Table A.1: Abbreviations for constraint and objective formulations
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A.3. Test Instance Data

A.3 Test Instance Data

As explained in Section 7.1 we made 28 feasible instances to the RCPSP
inspired by an instance generated by our industry partners to simulate real-life
data. Information on these tests is given in Table A.2. We have categorized
the instances into small (S), medium (M), large (L) and extra large (XL)
instances depending on the number of operations |I|, number of resources |R|
and the planning horizon H. A problem ”Prob” is named as ANc, where
A ∈ {S, M, L, XL}, B ∈ N and c ∈ { , p, r, n}. Including some character for
c indicates that the problem instance was made with a specified intention of
testing that type of constraint. As an example, the problem instance L6n
is the sixth large instance, and it was made to especially test formulations
for non-simultaneous operations. The three last columns give the number of
precedence constraints in the problem instance (#P ), nonops constraints (#N)
and number of operations which have specified windows of opportunity (#W ).
When two instances of the same size have an equal or almost equal number of
some constraint type then the variables in the constraints are different, e.g., the
precedence relations are chained in one instance and more random in the other.
In the #N column we write 0 if there were no nonops. If there were, we write
a/b where a is the number of pairs of nonops and b is the number of maximal
sets of nonops. Using the symbols in Appendix A.1 this gives a/b = |X |/|X ∗|.
The resource capacities and demands are given for each time index, giving
a total number of (H + 1)|R| constraints. We also made seven instances for
the rescheduling problem (4.36). Information on these instances is given in
Section 7.3.

In Chapter 7 it is seen that extra large instances may be easier to solve
than some small instances with respect to running time. We list some of the
characteristics that in our experience complicated the instances:

• Low resource capacities

• Long chains of precedence relations

• Narrow windows of opportunity
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Prob |I| |WO| |R| H #P #N #W

S1 100 10 6 176 90 0 0
S2 100 10 6 176 20 0 20
S3 19 2 6 48 0 84/19 0
S4 19 2 6 48 19 9/2 5
S5p 44 4 6 88 40 0 0
S6p 46 8 6 88 38 0 0
S7p 34 2 6 88 32 4/4 0
S8n 19 2 6 48 0 84/19 0
S9n 19 2 6 48 0 21/5 0
S10n 19 2 6 48 0 15/5 0
S11r 19 2 6 48 0 6/2 0
S12r 8 8 1 64 0 0 0
M1 500 322 23 360 30 21/5 30
M2 500 322 23 360 50 52/11 0
M3 500 322 23 360 0 100/19 0
M4n 500 322 23 360 0 165/23 0
M5rn 500 322 23 360 0 115/23 0
L1 1246 1068 23 576 178 0 0
L2 1246 1068 23 576 0 0 0
L3 1246 1068 23 576 0 100/19 100
L4 1000 822 23 432 50 50/13 50
L5 1000 822 23 432 100 100/19 0
L6n 1000 822 23 432 0 138/33 0
L7n 1000 822 23 432 0 138/32 0
L8rn 1246 1068 23 576 0 130/25 100
XL1 1500 1090 23 776 302 49/11 52
XL2 1500 1090 23 776 52 98/22 52
XL3 1500 1090 23 776 52 98/22 52

Table A.2: Full information on the test instances for the RCPSP
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APPENDIX B

Block Decomposition Heuristic

The literature on algorithms for solving the standard Resource Constrained
Project Scheduling Problem (RCPSP) and its extensions involves both exact
approaches and heuristics. In this thesis our emphasis has been on the modelling
side; we wanted to find formulations for the set of feasible schedules which can
be used in exact IP based algorithms. This was done as we found it of most
applicable value for the OptiPlan project, we believed exact algorithms would
perform well on real-life instances and we found the search for and comparison
of formulations of most personal and mathematical interest.

As a part of the early work with this thesis we designed a simple heuristic
for constructing a feasible solution to the RCPSP. We call it the Block
Decomposition Heuristic (BDH). This was made before we knew that our
problem is actually an extension to the standard RCPSP, and is for that reason
uninspired by classic construction heuristics for this problem, see [ADN08]. Due
to the heuristic’s various performance and limited fit to test data instances we
left the heuristic and prioritized to examine and improve the exact formulations.
For the simple sake of showing what we have done we include the description
of the BDH in this appendix. We hope to improve it further at a later stage in
the OptiPlan project when real data is received.

Motivation and assumptions

The idea for the BDH came after learning how scheduling is typically done by
our industry partners [Ind22]. The key lessons were:

• The schedules normally consist of work orders w1, . . . , wW ∈ WO in which
there often are chained precedence relations between the operations in
each work order.

• Scheduling is done weekly, and the schedule for weeks close in time is
denser than for weeks far away as new work orders arrive regularly.

• The long horizon schedule is tentative and rescheduling is done frequently.

We used these experiences to design the Block Decomposition Heuristic; a
heuristic which divides the long planning horizon H = {0, 1, . . . , H} into disjoint
blocks B1, . . . , BNB such that

⋃
j=1,...,NB Bj = H and solves a restricted RCPSP

for each block. Let us take a closer look at how this is done.
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t = 0 H

w1

w2

w3

w4

w5

w6

Figure B.1: Initial Block Decomposition schedule with uniform blocks

Dividing the horizon into blocks

Let NB ∈ N be the number of blocks which we wish to divide the horizon H
into. We considered two ways of making the blocks:

1. Uniform blocks. Let α =
⌊

H
NB

⌋
. We set Bj = {(j − 1)α, . . . , jα− 1} for

j = 1, . . . , NB − 1 and BNB = {(NB − 1)α, . . . , H}.

2. Exponential blocks. Let βj =
⌊

H
2NB−j

⌋
. We set B1 = {0, . . . , β1−1}, Bj =

{βj−1, . . . , βj − 1} for j = 2, . . . , NB − 1 and BNB = {
⌊

H
2
⌋

, . . . , H}.

Both of these block decomposition rules have their weaknesses which will be
mentioned shortly. A healthy block decomposition rule should combine the two
above rules and also take into account the number of operations in each block.
This number is determined by the initial schedule.

Creating an initial schedule

The problem (RCPSP) consists of different constraint types. As we have seen in
this thesis that windows of opportunity and non-simultaneous operations may
be represented as resource constraints, and that the delay variable constraints
may be dropped, we only consider the precedence constraints p and resource
constraints r in this appendix. We assume that the precedence relations are
chained within each work order.

A schedule is called c feasible if it satisfies all constraints of type c ∈ {p, r}.
The BDH starts by creating a precedence feasible schedule in a way that
minimizes the completion time of each work order. See Figure B.1 for a Gantt
chart illustration. Here, W = 6 and each row corresponds to a work order. The
operations in each work order are pushed to the left as much as possible in
a way that satisfies the chained precedence relations. We also illustrate the
uniform blocks for NB = 4 in the figure.
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t = 0 H
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Figure B.2: Operations divided by blocks

Solving the restricted RCPSP for each block

We let Ij be the set of all operations which are completed in block j in the
initial schedule, i.e., we let Ij = {i ∈ I : Qi + Li − 1 ∈ Bj} where Qi is the
start time of operation i in the initial schedule and Li is the duration. Define
I1:j =

⋃j
k=1 Ik and let C1:j to be a set of all constraints which include the

operations in I1:j . Those are the precedence constraints (j, i) ∈ P where both
j, i ∈ I1:j and all resource constraints, but we ignore the demands of each
operation i ̸∈ I1:j . Finally, let NB∗ = |{j : |Ij | > 0}| be the number of blocks
in which there are operations ending in the original schedule. Should it happen
that |Ij | = 0 for some j ≤ NB∗ then this block is collapsed with the following
block. In Figure B.2 we see how the operations from Figure B.1 are divided
into NB∗ = 3 sets of operations.

The BDH attempts to find a good feasible solution to the RCPSP by solving
NB∗ restricted IPs where the values in the previous solutions are fixed when
moving on to the next IP. This is done as follows: After creating the initial
schedule and finding the above-mentioned sets the BDH solves the problem
IP1. This problem contains the operations in I1, constraints in C1 and uses
the full horizon H. The objective is to minimize the unweighted sum of start
times

∑
i∈I1

ti. After solving IP1 the BDH continues to solve IP2; a problem
which contains the operations I1:2 and constraints C1:2, but where the start
times of the previously scheduled operations i ∈ I1 are fixed to their optimal
start time from IP1. This procedure continues iteratively until either IPNB∗ is
solved to optimality or some IPj is infeasible. If the latter is the case the start
times of the operations in I1:j−1 are returned and the start times for Ij:NB∗ are
ignored. This solution is not valid for the RCPSP. If IPNB∗ is solved then the
returned solution will be feasible for the RCPSP. The full BDH is summarized
in Algorithm 3 on page 91. There, pred(i) is the predecessor to operation i and
ti is the start time decision variable.

Results, challenges and improvements

The idea for the BDH seems simple and intuitive: By dividing the full RCPSP
into smaller problems the heuristic iteratively solves IPs that are small in number
of operations and fixes some solution values to the next iteration. However,
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there are several challenges with the heuristic design. We mention some of them
and point to ideas for how the BDH can be improved.

• Assumptions. The BDH assumes chained precedence relations in each
work order in order to create the initial schedule. In general, we cannot
assume that this is always the case, as there may exist work orders with
no precedence relations between any of the operations.

• Objective. In order to push operations ”to the left” so that the later
operations can fit in the schedule the objective must in some way attempt
to minimize start times or work order completion times. However, the
objective in our RCPSP is to minimize the weighted delay costs; a goal
which does not necessarily need the operations to be left-pushed.

• Operations in blocks. If H is small or NB is large it may happen for
both the block decomposition rules that there are no or few operations
finishing in the first block. This was experienced in test runs. We believe
a beneficial BD rule should ensure a suitable number of operations in each
block, as well as choosing NB appropriate to H and |I|.

• Solving many IPs. The heuristic involves solving NB∗ IPs which are as
hard as the original RCPSP in complexity, though smaller in number of
operations. Solving each to optimality can be time-consuming, so one
could consider either setting an optimality gap for the restricted IPs or
solving them heuristically. However, this will have a domino effect which
can cause the final objective value to be poor.

• Infeasible IPj . A restricted IP may be infeasible, making the heuristic
unable to return a feasible solution. An improved BDH should have a low
risk of not returning a feasible solution. However, for a large H a partial
solution for the first blocks may be enough for the operation planners
in practice. The rest of the schedule may be created by rescheduling or
solving a new scheduling problem by updating the parameter values and
increasing the horizon H.

These experiences were some of the reasons why we prioritized and still prioritize
to use exact algorithms when solving the RCPSP. To the test instances which
do include chained precedence relations the heuristic found satisfyingly good
solutions in some cases, despite an unstable behavior. These are given in
Table B.1. We compare the BDH performance with the exact base model
performance (see Chapter 7) with a time limit of 900 seconds. The ”Time”
reported for the BDH includes the full time spent running Algorithm 3. The
”BestVal” row shows the optimal value or the value of the incumbent solution at
the time limit. The results indicate that for instances with chained precedence
relations the BDH may be suitable to use for finding a MIP start value for the
exact solver. We believe the BDH should be further developed and improved
on the above-mentioned challenges before using this approach.
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Measure Solver Instance

S1 S5p

Time Base 22% 37s
BDH 123s 2.9s

BestVal Base 43600 10600
BDH 51600 11600

ObjVal 43600 10600

Rule/NB BDH Exp/4 Uniform/4

Table B.1: Best results of the Block Decomposition Heuristic

Algorithm 3 Block Decomposition Heuristic
Require: NB = Number of blocks
Ensure: Solution to IPNB∗ or partial solution to some IPj

for w ∈ WO do ▷ Make initial schedule
Ci ← 0 for first operation i in w
for i ∈ w do

Ci ← Cpred(i) + Lpred(i)
end for

end for

Partition H = {0, . . . , H} into NB blocks B1, . . . , BNB

for j ← 1, NB do
Ij ← {i ∈ I : Ci + Li − 1 ∈ Bj}

end for

NB∗ = |{j : |Ij | > 0}|
for j ← 1, NB∗ do ▷ Initialize IPj

Operations ← I1:j
Constraints ← C1:j
Objective ← min

∑
i∈I1:j

ti

for i ∈ I1:j−1 do fix ti to optimal value from IPj−1
end for
Solve IPj

if IPj infeasible then return solution from IPj−1
end if

end for
return solution from IPNB∗
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