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Abstract

This thesis concerns the application of physics-informed machine learning
to dynamical systems that can be represented as first-order ordinary
differential equations. Current system identification models struggle to
learn energy-preserving dynamical systems where damping and external
forces affect the training data. We will tackle this problem by letting
our model assume a pseudo-Hamiltonian structure, meaning we learn
the inner and outer dynamics separately. We use system identification
to learn the inner dynamics, while a neural network will generally be
employed to learn the external forces. But, we also explore the possibility
of learning the external forces through system identification. Furthermore,
we introduce an integration scheme for training the model that attempts
to handle noisy data.
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CHAPTER 1

Introduction

Part of the work in this master’s thesis is found in a paper also named Pseudo-
Hamiltonian System Identification [HER23] written by the author along with
supervisors. The code used in this thesis is available on the author’s GitHub
page1.

One of the goals of the natural sciences is to accurately describe real-life
physical phenomena. Differential equations, invented along with calculus,
are well suited to describe systems that change over time, and they have
near-endless applications. The problem of describing physical systems through
differential equations has historically been tackled in two ways: qualitative
analysis, i.e. through physical knowledge or intuition, and quantitative analysis,
i.e. analyzing physical data gathered from experiments. Physics-informed
machine learning is the combination of these two approaches. We guide a
machine learning model using prior physical knowledge so that this knowledge
does not need to be relearned [Kar+21; RPK19; Wil+22]. This approach is
especially relevant for learning dynamical systems. Given a first-order ordinary
differential equation (ODE) of dimension n

ẋ = g(x, t), x ∈ Rn, t ∈ [0,∞), (1.1)

we can approximate the right-hand side by learning from collected data in com-
bination with assumptions from physics. Recently, several works have imposed
the physical law of energy conservation in isolated systems on machine-learning
models. Hamiltonian and Lagrangian mechanics are convenient frameworks for
doing this [Che+20; Cra+20; GDY19]. More recently, [DA21] and [Eid+23]
have made this approach more applicable to real-world data using the pseudo-
Hamiltonian framework: a generalization of the Hamiltonian formulation that
adds damping and external forces. In other words, the framework allows for
a relaxation of the law of energy conservation. [Eid+23] learn these systems
using pseudo-Hamiltonian neural networks (PHNNs), and the key innovation
is their ability to learn the pure Hamiltonian dynamics, damping effects, and
external forces using separate models. The example used to demonstrate this
is a system of tanks connected by pipes where there is a leak in one of the
tanks. Even if the PHNN model is trained on the leaky system, the PHNN
model can predict future states after the leak is fixed. In other words, a model
trained under suboptimal conditions is able to model the system under optimal

1https://github.com/sigurho/PHSI
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conditions.

Although PHNNs can successfully produce accurate predictions, they are
black-box models that do not reveal the true governing equations of the system.
The field of system identification copes with this issue. The goal of this field is
to extract information about a system’s true governing equations from data. In
the case of differential equations, the goal becomes to learn the true function g
in Equation 1.1. Learning the analytical terms of the system holds two clear
advantages over black-box models: First, analytic terms can give insight into
the dynamical system that may enhance interpretation and stimulate further
developments. Second, accurate analytical models are more resistant to the
limited extrapolation capabilities that render many machine learning models
unusable beyond the domain of the training data. System identification has
been applied to learning both general dynamical systems [BL07; BPK16; SL09]
and Hamiltonian systems [DXZ20], but not to pseudo-Hamiltonian systems.

In this thesis, we attempt to answer the following questions:

• Is it possible to learn an energy-preserving dynamical system using system
identification when damping and external forces affect the training data?

• Is it also possible to learn the energy-preserving system, the damping,
and the external forces all at once using separate system identification
models?

To tackle these questions, we introduce a novel system identification model
that assumes a pseudo-Hamiltonian structure. We call it pseudo-Hamiltonian
system identification (PHSI). It models the pure Hamiltonian and damping
components using system identification and generally models the external forces
using a neural network without prior knowledge of how these components are
separated. In some cases, system identification can also be applied to learning
the external forces. In other words, the PHSI model combines the general
pseudo-Hamiltonian structure that allows for the imposing of physical knowledge
with the white-box system identification approach that gives insight and inter-
pretability. Thus, a major limitation of system identification will be addressed:
many frameworks encounter difficulty in learning a dynamical system from
sampled data that is suboptimal, such as when an external disturbance affects
the dynamics. We also gain a deeper insight into pseudo-Hamiltonian systems
than what is possible with the black-box PHNNs of [Eid+23]. Furthermore, we
address the problem of learning a system described by differential equations
when data on the derivatives are unavailable by proposing a training scheme
inspired by numerical integration. This has been discussed for neural network
models by [Jin+20; MIY20; Zhu+22], but less so for system identification
models. In this integration scheme, we elaborate on why symmetric integrators
are the best choice for handling noisy data.

In summary, the goal of this thesis is to advance the use of system iden-
tification by applying it to realistic dynamical systems where the dynamics are
disturbed by external forces. If we are successful, we will have an advantage
over black-box learning models when it comes to interpretability and predictive
capability.
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PART I

Background
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CHAPTER 2

Hamiltonian mechanics

Hamiltonian mechanics provides a convenient framework for imposing the
physical law of energy conservation on the machine-learning models that will
be introduced later in chapters 3 and 4. Hamiltonian mechanics was introduced
in the early 1800s by William Rowan Hamilton and is a reformulation of
classical mechanics. It describes the evolution of a physical system in terms of
the total energy of the system, rather than using the Lagrangian formulation
that describes the system in terms of the action. It provides a convenient
framework for analyzing systems with constraints. To understand the derivation
of Hamiltonian mechanics, we briefly introduce Lagrangian mechanics and how
it relates to the Hamiltonian framework.

2.1 Lagrangian mechanics

Lagrangian mechanics is a formulation of classical mechanics that describes the
motion of a system using a scalar function called the Lagrangian. The following
description will follow along the lines of [MR99] (pg. 1-5). Assume we want to
study a physical system of d dimensions where the coordinates of the system
are described as a function of time:

q(t) = (q1(t), ..., qd(t)), q : [0,∞)→ Rd (2.1)

where t > 0 is the time variable. We denote the system velocity as the system
coordinates differentiated with respect to time:

q̇(t) = (q̇1(t), ..., q̇d(t)) =
(

dq1(t)
dt

, ...,
dqd(t)

dt

)
. (2.2)

For simplicity, we notate the system coordinates as q = (q1, ..., qd), q̇ =
(q̇1, ..., q̇d) where q, q̇ ∈ Rd. We let the Lagrangian be a smooth function
L : Rd × Rd → R

L(q, q̇) = L(q1, ..., qd, q̇1, ..., q̇d), (2.3)

which often represents the kinetic minus the potential energy in the system.
Now fix two points A, B ∈ Rd and two time points b > a > 0. We introduce
the functional known as the action integral

S(q) =
∫ b

a

L(q, q̇)dt, (2.4)

4



2.1. Lagrangian mechanics

defined for functions q = (q1, ..., qd) belonging to the following class:

A := {q ∈ C2([a, b] : Rd)|q(a) = A, q(b) = B}. (2.5)

Hamilton’s principle states that the true evolution of the system minimizes the
action integral. That means we are interested in finding x ∈ A such that

S(x) = min
q∈A
S(q). (2.6)

We assume that this x exists. A good candidate for x is stationary points of
S, and it turns out that these stationary points can be found by solving a set
of equations called the Euler-Lagrange equations. These will be derived in the
following subsection.

The Euler-Lagrange equations

Assume we have a Lagrangian L : Rd × Rd → R, two fixed points A, B ∈ Rd,
two time-points b > a > 0 and an action integral S(·) given by Equation 2.4
and defined for functions q ∈ A. We are interested in the function x ∈ A that
minimizes the action integral, i.e. that satisfies Equation 2.6. A good candidate
for this x is a stationary point of S. Assume such a stationary point y ∈ A
exists (the properties of a stationary point will be defined below) and note that
y is not necessarily the minimizer x in Equation 2.6. Consider the perturbation
gε ∈ A of y

gε(t) := (y1(t) + ε1η1(t), ..., yd(t) + εdηd(t)) (2.7)

where ηi(·) ∈ C2([a, b] : R) is an arbitrary differentiable function and 0 < εi ≪ 1
for i = 1, ..., d. We also impose the boundary condition ηi(a) = ηi(b) = 0 for
i = 1, ..., d which implies that gε(a) = A, gε(b) = B is fulfilled. Then, we define

ġε(t) := (ẏ1(t) + εiη̇1(t), ..., ẏd(t) + εdη̇d(t)). (2.8)

Using gε, ġε, we can calculate the derivative of S with respect to a change in yi,
i.e.

dS(gε)
dεi

= d

dεi

∫ b

a

L(y1 + ε1η1, ..., yd + εdηd, ẏ1 + ε1η̇1, ..., ẏd + εdη̇d) dt. (2.9)

Since y is a stationary point of S, we know that by definition that the derivative
evaluated at εi = 0 is zero for all i, i.e.

dS(gε)
dεi

∣∣∣∣
εi=0

= 0, i = 1, ..., d. (2.10)

5



2.1. Lagrangian mechanics

Using the chain rule, we calculate the left-hand side further for i = 1, ..., d:

d

dεi

∣∣∣∣
εi=0

∫ b

a

L(gε, ġε) dt = 0 (2.11)∫ b

a

d

dεi

∣∣∣∣
εi=0

L(y1 + ε1η1, ..., yd + εdηd, ẏ1 + ε1η̇1, ..., ẏd + εdη̇d) dt = 0 (2.12)∫ b

a

[
dL

d(yi + εiηi)
d(yi + εiηi)

dεi
+ dL

d(ẏi + εiη̇i)
d(ẏi + εiη̇i)

dεi

]∣∣∣∣
εi=0

dt = 0 (2.13)∫ b

a

[
dL

d(yi + εiηi)
ηi + dL

d(ẏi + εiη̇i)
η̇i

]∣∣∣∣
εi=0

dt = 0 (2.14)∫ b

a

[
dL

dyi
ηi + dL

dẏi
η̇i

]
dt = 0. (2.15)

Using integration by parts, we get the following∫ b

a

[
∂L

∂yi
− d

dt

∂L

∂ẏi

]
ηi dt +

[
ηi

∂L

∂ẏi

]b

a

= 0, (2.16)

and then we insert the boundary conditions ηi(a) = ηi(b) = 0 to get∫ b

a

[
∂L

∂yi
− d

dt

∂L

∂ẏi

]
ηi dt = 0. (2.17)

Here, we apply the fundamental lemma of calculus of variations [JJL98]. The
lemma states that if this equation is to hold for all compactly supported smooth
functions ηi, then ∂L

∂yi
− d

dt
∂L
∂ẏi

is identically zero. Note that ηi is compactly
supported: since supp(ηi) ∈ [a, b], the closure of supp(ηi) is both closed and
bounded meaning it is compact. Hence we get the desired Euler-Lagrange
equations

∂L

∂yi
− d

dt

∂L

∂ẏi
= 0, i = 1, ..., d. (2.18)

Since ηi, i = 1, ..., d, is arbitrary (apart from being zero at the endpoints),
Equation 2.10 and the Euler-Lagrange equations (Equation 2.18) are equivalent.

Note that if any y ∈ A satisfies the Euler-Lagrange equations, it only implies
that it is a stationary point of the action integral S, not that it is the minimizer
of S. However, since a minimizer is a stationary point, any minimizer x ∈ A
will solve the Euler-Lagrange equations, as proved in [Eva22], page 116.

Example

We regard a system of N particles moving in Euclidian 3-space. The state of
the system is described by (q1, ..., qN ) where qi : [0,∞) → R3, i = 1, ..., N . L
is the total kinetic minus potential energy in the system

L(q, q̇) = 1
2

N∑
i=1

mi∥q̇i∥2
2 − V (qi)

6



2.2. Hamilton’s equations

where mi and V (qi) are the mass and potential energy of particle qi, respectively.
In this case, the Euler-Lagrange equations (Equation 2.18) reduce to Newton’s
second law

d

dt
(miq̇i) = −∂V

∂qi
; i = 1, ..., N

i.e. force equals mass times acceleration for moving particles in a potential field.

2.2 Hamilton’s equations

Keeping the definition of the Lagrangian in mind, we move on to the Hamiltonian
formalism. We will transform the Euler-Lagrange equations, a system of d
second-order ODEs, into Hamilton’s equations, a system of 2d first-order ODEs.
In this section, we assume that q ∈ A satisfies Euler-Lagrange equations
(Equation 2.18). First, introduce generalized momentum

p(t) = (p1(t), ..., pd(t)) :=
(

∂L(q(t), q̇(t))
∂q̇1

, ...,
∂L(q(t), q̇(t))

∂q̇d

)
, (2.19)

and we make the change of variables (q, q̇) 7→ (q, p). Then, we introduce the
Hamiltonian

H(q, p) =
d∑

i=1
piq̇j − L(q, p). (2.20)

Using the chain rule, we make the following computations:

∂H

∂pi
= q̇i +

d∑
j=1

(
pj

∂q̇j

∂pi
− ∂L

∂q̇j

∂q̇j

∂pi

)
= q̇i +

d∑
j=1

∂q̇j

∂pi

(
pj −

∂L

∂q̇j

)
= q̇i (2.21)

and
∂H

∂qi
=

d∑
j=1

pj
∂q̇j

∂qi
− ∂L

∂qi
−

d∑
j=1

∂L

∂q̇j

∂q̇j

∂qi
= − ∂L

∂qi
, (2.22)

where Equation 2.19 has been used twice. Using the equations 2.18 and 2.19,
we can rewrite Equation 2.22 as

∂H

∂qi
= − d

dt
pi (2.23)

Thus, we have used the Euler-Lagrange equations to arrive at Hamilton’s
equations

∂H

∂qi
= −ṗi ,

∂H

∂pi
= q̇i (2.24)

for i = 1, ..., d.

Proposition 2.2.1. Let H : Rd×Rd → R be a Hamiltonian that is not explicitly
time-dependent and that satisfies Hamilton’s equations (Equation 2.24). Then,
the Hamiltonian does not vary with time, i.e. dH

dt = 0.

7



2.3. Hamiltonian systems

Proof :

dH

dt
=

d∑
i=1

∂H

∂pi

dpi

dt
+

d∑
i=1

∂H

∂qi

dqi

dt

=
d∑

i=1

∂H

∂pi

(
−∂H

∂qi

)
+

d∑
i=1

∂H

∂qi

∂H

∂pi
= 0

2.3 Hamiltonian systems

A Hamiltonian system is an ODE that can be expressed through gradients
of a Hamiltonian function that is preserved over time. In Section 2.2, the
Hamiltonian was described as a function H taking the variables q, p ∈ Rd

as input (see Equation 2.20), and it was shown that this function satisfies
Hamilton’s equations (see Equation 2.24). This Hamiltonian can be used to
express the ODE (

q̇
ṗ

)
=
(

0 Id

−Id 0

)(
∂H/∂q
∂H/∂p

)
, (2.25)

where Id is the identity matrix and H is preserved in time as shown in Proposition
2.2.1. Notice that since the system in Equation 2.25 is of 2d dimensions, it
can only describe ODEs that have an even number of dimensions. We define a
more general class of Hamiltonian systems that describe ODEs of n dimensions
where n can be either even or odd. Given a system described by the coordinates
x ∈ Rn, a Hamiltonian system can be most generally described as

ẋ = S(x)∇H(x), (2.26)

where x ∈ C2([0,∞) : Rn) denotes the coordinates of the system as function
of time t > 0, the structure matrix S : Rn → Rn×n is such that S(x) is an
antisymmetric matrix for any x, and H : Rn → R is the Hamiltonian. Equation
2.26 can be considered a generalization of Equation 2.25, and notice that n
can be either even or odd. In this more general definition, H will still be
preserved in time following the anti-symmetry of S similar to what was shown
in Proposition 2.2.1:

Ḣ = ∇HT

(
q̇
ṗ

)
= ∇HT S∇H = 0. (2.27)

A Hamiltonian system on the form in Equation 2.25 is a special case of Equation
2.26 where x = (q, p) and S =

(
0 Id

−Id 0

)
. This special case is known as the

canonical formulation of a Hamiltonian system. If a system can be expressed
by Equation 2.26 and not Equation 2.25, it is known as a Hamiltonian system
of non-canonical formulation. An ODE system can be expressed as in Equation
(2.26) by several non-unique pairs of H’s and S’s [MQR99]. This is explored
further in Section 2.5.

8



2.4. Existence of the Hamiltonian formulation

2.4 Existence of the Hamiltonian formulation

Equation 2.27 shows that the Hamiltonian structure guarantees the preservation
of a Hamiltonian H in the Hamiltonian formulation (see Equation 2.26).
[MQR99] prove the reverse: given that a function H is preserved for the
solution of an ODE ẋ = g(x), there will always exist a structure matrix S
ensuring that a Hamiltonian formulation can be made. A simplified version of
the proof is given:

Proposition 2.4.1. Assume we have an ODE ẋ = g(x) of where x ∈ C2([0,∞) :
Rn), and that there exists a function H : Rn → R such that H(x) = H(x0) for
all {x|ẋ = g(x)} given the initial condition x0 = x(0), meaning the Hamiltonian
value is preserved for all solutions of the system. Then, there exists a matrix
S : Rn → Rn×n such that the ODE can be rewritten in the Hamiltonian
formulation:

ẋ = S(x)∇H(x).

Proof : To prove that the system can be written in the Hamiltonian form,
we have to prove the existence of the structure matrix S. S has two properties
that must be fulfilled: anti-symmetry and that it maps ∇H to g. Thus, we seek
to construct a matrix that meets these two requirements expressed in terms of
g and H. Assume that ∇H is non-vanishing. The matrix 1

|∇H|2 g(∇H)T maps
∇H to g because 1

|∇H|2 g(∇H)T (∇H) = g. Since H is conserved in time (see
Equation 2.27),

0 = Ḣ = ẋT∇H = gT∇H = 0. (2.28)

In other words, the term ∇HfT maps ∇H to 0. We construct:

S = 1
|∇H|2

(
g(∇H)T − (∇H)gT

)
(2.29)

which both maps ∇H to g and is antisymmetric because

S = 1
|∇H|2

(
g(∇H)T − (∇H)gT

)
= − 1
|∇H|2

(
g(∇H)T − (∇H)gT

)T = −ST

Hence, using the constructed, anti-symmetric S, we can express the ODE as

ẋ = S(x)∇H(x). ■

The constructed matrix S may or may not be dependent on the input x, and may
or may not be of canonical structure (see Equation 2.25). [MQR99] also prove
that S is bounded in the neighborhood of any non-degenerate stationary point
of H. It is also important to notice that this is just one particular matrix that
meets the requirements of S in Equation 2.26 and that other such matrices may
exist given the same ODE and Hamiltonian. In other words, the Hamiltonian
formulation is generally not unique.

9



2.5. Non-uniqueness of the Hamiltonian formulation

Example

As an example of the construction of the matrix S, we look at the mass-spring
system. The motion of the system is described through the following ODE:

g(x) =
(

q̇
ṗ

)
=
(

p/m
−kq

)
=
(

p
−q

)
(2.30)

where x = (q, p)T , and we set the mass m = 1 and the spring’s force coefficient
k = 1. The system has a related Hamiltonian function

H(q, p) = 1
2
(
q2 + p2) (2.31)

and the following gradient
∇H =

(
q
p

)
.

that represents the energy in the system. From this, we can construct the
matrix S using Equation 2.29:

S(q, p) = 1
q2 + p2

((
p
−q

)
(q, p)−

(
q
p

)
(p,−q)

)
= 1

q2 + p2

((
qp p2

−q2 −qp

)
−
(

qp −q2

p2 −qp

))
= 1

q2 + p2

(
0 q2 + p2

−q2 − p2 0

)
=
(

0 1
−1 0

)
.

In this case, the matrix S computed using Equation 2.29 turned out to
give the canonical formulation. However, there is in general no guarantee
of computing the canonical formulation using Equation 2.29, even if such a
formulation exists for a given ODE.

2.5 Non-uniqueness of the Hamiltonian formulation

The Hamiltonian formulation of an ODE as ẋ = S(x)∇H(x) is in general not
unique. To show this, we create a more general way of constructing the S matrix
in Equation 2.29. Assume we have an ODE ẋ = g(x) where x ∈ C2([0,∞) : Rn)
which has a related Hamiltonian function H such that H(x) = H(x0) for all
{x|ẋ = g(x)} given the initial condition x0 = x(0). For any non-vanishing
function y, we can construct an n× n matrix

Sy(x) = 1
y(x)T∇H(x) (g(x)y(x)T )− y(x)g(x)T ) (2.32)

that is anti-symmetric. Since gT∇H = ẋT∇H = dx
dt

∂H
∂x = dH

dt = 0, we get

Sy(x)∇H(x) = 1
y(x)T∇H(x) (g(x)y(x)T∇H(x))− y(x)g(x)T∇H(x)) (2.33)

= 1
y(x)T∇H(x) (g(x)y(x)T )∇H(x)) = g(x), (2.34)
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2.5. Non-uniqueness of the Hamiltonian formulation

meaning Sy is both antisymmetric and maps ∇H to g, and thus the constructed
Sy has the required properties in the canonical Hamiltonian formulation (see
Equation 2.26). Now, since the choice of y is non-unique, the constructed matrix
Sy and followingly the Hamiltonian formulation is non-unique.

Example

To further illustrate the non-uniqueness of the Hamiltonian formulation, we
study the Kepler problem as described in [DOY11]. The system is given by the
four-dimensional ODE

ẋ1 = x3, ẋ2 = x4, ẋ3 = − x1

(x2
1 + x2

2)3/2 , ẋ4 = − x2

(x2
1 + x2

2)3/2 . (2.35)

This system preserves multiple Hamiltonians: the canonical Hamiltonian

H1(x) = 1
2(x2

3 + x2
4)− 1√

x2
1 + x2

2
, (2.36)

the angular momentum
H2(x) = y1y4 − y2y3, (2.37)

and the Runge-Lenz vector

H3(x) = x2x2
3 − x1x3x4 −

x2√
x2

1 + x2
2

, (2.38)

H4(x) = x1x2
4 − x2x3x4 −

x1√
x2

1 + x2
2

. (2.39)

By Equation 2.29, every Hamiltonian H1, H2, H3, and H4 has a corresponding
antisymmetric matrix S1, S2, S3, and S4 that can be used to write the ODE
in the form of Equation 2.26, i.e. the ODE can be expressed by each of the
Hamiltonians as ẋ = Si(x)∇Hi(x), i = 1, 2, 3, 4. This shows that some systems
can preserve multiple Hamiltonian functions, resulting in multiple distinct
formulations.

This system can also exemplify the non-uniqueness of the structure mat-
rix for a fixed Hamiltonian. We formulate a Hamiltonian formulation using H1
in Equation 2.36. Firstly, H1 can be used to express the canonical formulation:

ẋ =
(

0 I2
−I2 0

)
∇H1(x)

If we now insert H1 and g into Equation 2.29, we get the following matrix:

S1(x) = 1
1

(x2
1+x2

2)2 + x2
3 + x2

4
·


0 x2x3−x1x4

(x2
1+x2

2)3/2 x2
3 + x2

1
(x2

1+x2
2)3 x3x4 + x1x2

(x2
1+x2

2)3

x1x4−x2x3
(x2

1+x2
2)3/2 0 x3x4 + x1x4

(x2
1+x2

2)3 x2
4 + x2

2
(x2

1+x2
2)3

−x2
3 −

x2
1

(x2
1+x2

2)3 −x3x4 − x1x2
(x2

1+x2
2)3 0 x2x3−x1x4

(x2
1+x2

2)3/2

−x3x4 − x1x2
(x2

1+x2
2)3 −x2

4 −
x2

2
(x2

1+x2
2)3

x1x4−x2x3
(x2

1+x2
2)3/2 0

 .

11



2.6. Separable Hamiltonians

This matrix can also describe the exact same ODE using the exact same
Hamiltonian H1, i.e.

ẋ = S1(x)∇H1(x). (2.40)

Thus, there is no guarantee of uniqueness in the Hamiltonian formulation, even
when the Hamiltonian function is fixed. Notice that the canonical formulation is
always unique in that there only exists one combination of structure matrix and
Hamiltonian that can express a Hamiltonian system in a canonical formulation.

2.6 Separable Hamiltonians

In general, the Hamiltonian function is regarded as the total energy of the
system. For some systems, the Hamiltonian can be split into two separate
functions that can be interpreted as kinetic and potential energy, respectively.
For this to be possible, the Hamiltonian has to be separable.

Definition 2.6.1. Assume a Hamiltonian system of canonical form (see Equation
2.25) with a Hamiltonian H : R2d : R. H is separable if there exist functions
V, T : Rd → R such that

H(q, p) = V (q) + T (p) for all q, p ∈ Rd. (2.41)

If it is not possible to separate a Hamiltonian, it is simply called nonseparable.

2.7 Pseudo-Hamiltonian Systems

One of the strengths of the Hamiltonian formulation is the conservation of
energy. However, in a more realistic real-world setting, there are no guarantees
that a dynamical system conserves energy over time as it may not be completely
isolated. We seek a generalization of the Hamiltonian formulation that loosens
this constraint. Thus, introduce damping that allows for energy dissipation
and external forces that describe disturbances in the system. We consider
pseudo-Hamiltonian systems as described in [Eid+23]:

ẋ = (S(x)−R(x))∇H(x) + F (x, t), (2.42)

where R : Rn → Rn×n is such that R(x) is a positive semi-definite matrix
describing the dissipation of x, and F : Rn × R → Rn denotes the external
forces. We do not impose any restraints on the external forces F to make the
formulation as general as possible. If we imposed certain conditions on F , this
would be equivalent to the port-Hamiltonian formulation from control theory
[Van06; VJ14]. The formulation is completely general and non-unique; any
ODE can be represented and there are generally many equivalent formulations.
As an example, for an ODE: ẋ = g(x, t), we can set S = R = 0, and F = g, and
the ODE is recovered. In other words, although we wish to have no restraints
on F to make the model as general as possible, this allows for a large number
of equivalent descriptions of the same system.

Because of its ability to describe damping and external forces, the pseudo-
Hamiltonian formulation can describe more general and realistic models than
a pure Hamiltonian formulation can. Even if a system is completely isolated,
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2.7. Pseudo-Hamiltonian Systems

we may want to study a subsystem for which energy is no longer preserved,
and the exchange of energy within the system can be described as the external
forces F .
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CHAPTER 3

Supervised learning and neural
networks

Machine learning, the idea that a machine can learn an algorithm or model
from data, has existed for over half a century. The goal of machine learning
can be general and broad, but typically, the goal is to convert experience into
knowledge by feeding data into a learning algorithm. During the past decades,
much progress has been made in applying machine learning models to fields
including image analysis and speech recognition. In more recent times, machine
learning has been applied to analyzing and learning physical systems from data.
In this section, we review the basis of supervised learning and neural networks.
We also discuss physics-informed machine learning.

3.1 Supervised learning

This summary follows along the lines of [Fou22]. In the supervised learning
setting, we have access to data of the form

yi = f(xi) + εi, i ∈ [1 : n] (3.1)

where the instances or input data xi ∈ X and targets or output data yi ∈ Y
are known. X ⊆ Rd is made up of vectors containing d different features. In
the learning scenario known as regression, Y = Rk, and elements of Y are
called labels. For i = 1, ..., n, the instance xi is mapped to the target yi by an
unknown function f : X → Y with the addition of normally distributed noise
εi, i.e. εi ∼ N(0, σ2). S = {(xi, yi)}n

i=1 is known as the training data. Using
the training data, the objective is to produce or train a function f̂S : X → Y
called a model or predictor that approximates f . Given the input data x ∈ X ,
we call f̂S(x) a prediction.

We evaluate a model f̂ by how large the risk or generalization error is.
This is defined as the expected loss

Riskf (f̂) = E[Loss(f̂(x), f(x))], (3.2)

where the expectation is taken over the random variable x ∈ X whose
distribution is unknown. The loss function Loss : Y × Y → R is, in general, a
function that returns small values for pairs of output y and prediction ŷ that

14



3.2. Neural networks

are close, and large values for pairs that are far apart. For regression problems,
a common loss function is the square error:

SE(ŷ, y) = ∥ŷ − y∥2
2. (3.3)

Since we do not have access to the distribution of data sampled from X , we
cannot compute Equation 3.2. Therefore we approximate it by using the
available data and the mean square error function

MSES(f̂) = 1
n

n∑
i=1
∥f̂(xi)− yi∥2

2. (3.4)

Since this thesis tackles regression problems, the risk will always be approximated
by this function. When we refer to training a model, it means empirical risk
minimization. Given a class of functions, or a hypothesis class H ⊆ {f |f : X →
Y}, the empirical risk minimization means finding the function f̂ that minimizes
the empirical risk

∆erm
H : S 7→ argmin

f̂∈H
MSES(f̂). (3.5)

We have to be careful when evaluating a trained model; a model with a low MSE
score can still have high risk. This happens if the empirical risk minimization
∆erm

H (S) learns the local noise in the dataset it is trained on (S) and does
not perform well on unseen data x ∈ {X \ {x1, ..., xn}}. This is known as
overfitting, and can happen if the hypothesis class H is too large. On the other
hand, if H is too small, ∆erm

H (S) is not flexible enough to achieve low empirical
risk, something known as underfitting. Since ∆erm

H (S) is designed to minimize
empirical risk, the mean square error is not a reliable evaluation of the true
risk of the model. To better estimate the true risk and evade overfitting, we
split our dataset S into a training set T used to train the model ŷ = ∆erm

H (T )
and a validation set V used to calculate the empirical risk MSEV(ŷ). Usually,
T contains the majority of the dataset, e.g. 80%.

3.2 Neural networks

Neural networks are a vastly popular class of machine learning models that are
inspired by the biology of an animal brain. One of its strengths is its ability to
fit a wide variety of mathematical functions. There are many types of neural
networks, so giving a precise definition that fits them all is difficult. In this
thesis, we only consider a subclass of neural networks called dense feedforward
neural networks. Before we go over the structure of the neural network, also
called the architecture, we briefly explain some terminology:

• Neuron: a mathematical function that receives input vector {xi}d
i=1 and

computes

z(x) = g

(
d∑

i=1
xiwi + b

)
where wi ∈ R, i = 1, ..., d and b ∈ R are weight and bias, respectively,
and g : R → R is an activation function. The weights and the bias are
trainable.
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3.2. Neural networks

• Activation function: a non-linear, differentiable function that serves the
purpose of reducing weak signals (in neurons), as well as introducing
non-linearity.

• Hidden layer: a function z(x) : Rd → RJ consisting of J neurons {zj}J
j=1

which all take the same input x ∈ Rd. Every neuron has its own trainable
weights and biases.

A feedforward neural network can be defined as:

Definition 3.2.1. Let {zl}L
l=1 be L hidden layers such that zl : RNl−1 → RNl

for l = 1, ..., L, where Nl is the number of neurons for hidden layer l. Let the
input x ∈ RN0 . The map NN : RN0 → RNL given as

NN(x) = zL(zL−1(...z1(x))) (3.6)

is called a feedforward neural network.

x1

x2

x3

z(1,1)

z(1,1)

z(1,3)

z(1,4)

z(2,1)

z(2,2)

z(2,3)

z(2,4)

z(3,1)

z(3,2)

Input layer

Hidden layer 1 Hidden layer 2

Output layer

Figure 3.1: Illustration of feedforward neural network.

Figure 3.1 illustrates an example of how a neural network can be struc-
tured. Each node receives all outputs of the previous layer represented by the
connecting lines, and the vertical stacks of nodes make up the hidden layers.
The third hidden layer can be called the output layer since it is the final layer
producing the output. The input is x ∈ R3, and the hidden layers are the
following functions: z1 : R3 → R4, z2 : R4 → R4, z3 : R4 → R2.

The choice of activation function can affect both the training and performance
of a neural network. As a rule, the same activation function is picked for every
neuron in the network. As mentioned, activation functions must be non-linear
and differentiable. Some common choices for such functions are:

• σ(x) = 1
1+e−x
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3.2. Neural networks

• ReLU(x) =
{

x if x > 0
0 if x ≤ 0

• tanh(x) = e2x−1
e2x+1

As mentioned above, the goal when training is to decrease training loss given
training data {(xi, yi)}n

i=1. The loss function is defined as

Loss(θ|x, y) =
n∑

i=1
∥NNθ(xi)− yi∥2

2. (3.7)

Here, θ are the trainable parameters in the neural network, i.e. the weights and
biases. In this case, the loss is squared l2-distance, but other loss functions
could have been chosen. The training of a neural network is commonly done
through the stochastic gradient descent algorithm. The goal of this algorithm is
to identify the minimum value of the loss function, or more precisely to find the
weights and biases θ that give the lowest training loss Loss(NNθ|x, y). Another
way of putting it is it finds the neural network which produces output values
that are as close as possible to the real output values. A simple version of the
algorithm is given:

Algorithm 1 Stochastic gradient descent algorithm (SGD) [GBC16] Algorithm
8.1

• Input values: Training data {(xi, yi)}n
i=1, number of epochs E, batch size

b, learning rate or step size η
for epoch = {1, ..., E} do

• Create a new permutation {p1, ..., pn} of {1, ..., n}
for i = (1, ..., ⌈n/b⌉) do

• Select b pairs from the shuffled dataset Xbatch = {(xpj , ypj )}(i+1)b
j=ib

• Compute gradient of the loss with respect to θ: G =
∇Loss(NNθ|Xbatch)
• Update parameters θ ← θ − ηG

end for
end for

Given certain assumptions for the neural network, the SGD algorithm
converges to zero loss on the training data [Du+19]. The step where the
gradients are computed with respect to the parameters θ, i.e. the weights and
biases, is done using backpropagation. Essentially, backpropagation uses the
chain rule to compute the gradient of the loss function with respect to every
weight and bias. There exist more advanced versions of the SGD algorithms
which use the momentum of the previous iterative steps in deciding the step
size. The Adam optimizer [KB14], a name derived from adaptive moment
estimation, updates the step size in the stochastic gradient descent algorithm
every iteration instead of using a fixed step size as described in Algorithm
3.2. The learning rate is cleverly updated based on gradients in previous steps,
leading to a more efficient search for the minimum of the loss function. The
Adam optimizer is used later in this thesis.
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One of the advantages of neural networks is their ability to approximate
any continuous function well. It has long been known that a neural network
with a single hidden layer is able to approximate any continuous function
arbitrarily well [Hor91]. It has also been shown that multilayer feedforward
networks with a non-polynomial activation function can approximate any
function [Les+93]. Neural networks have been proven as an effective model for
analyzing dynamical systems [Eid+23; GDY19].

3.3 Physics-informed machine learning

If we want to train a machine-learning model to learn a physical system from
data, we may achieve a higher performance by letting the model assume the
laws of physics before training, as opposed to training the model without any
prior knowledge. This idea is called physics-informed machine learning and has
in recent times been used to learn complex physical systems such as partial
differential equations [Kar+21; RPK19]. A setback of complex machine learning
methods such as deep neural networks (Section 3.2) is the large amount of data
required to train the models. Because of the high cost of data acquisition for
physical systems, it is of interest to learn such systems with a small amount of
data available. Learning non-linear functions is especially challenging when the
dataset is small and high-dimensional. Luckily, we often have prior knowledge
of well-studied systems in physics and biology which we can use. By letting the
model assume certain physical properties, the learning of a complex system can
be simplified.

An example of such a physical assumption which is further explored later in
this thesis is the conservation of energy in an isolated system. Assume we
want to learn an ODE ẋ = f(x) representing an isolated physical system from
restricted data. If the machine-learning model f̂ does not assume the law of
energy conservation, it may make future predictions that exhibit a decreasing
or increasing trend in energy over time. If we instead assume a Hamiltonian
structure ẋ = S(x)∇H(x) (see Section 2), we are guaranteed energy conser-
vation as Ḣ = 0. We can either learn both S and H as ˆ̇x = Ŝ(x)∇Ĥ(x),
or we could just approximate one function if we know the other. This is an
example of how we leverage physical knowledge in learning. By enforcing the
Hamiltonian structure in the learning, we have excluded all solutions which
do not conserve energy, all of which are incorrect. This sparsity in the search
space may help the machine-learning model arrive at the correct solution more
quickly, especially on small datasets.
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CHAPTER 4

System identification

In the field of system identification, the main idea is to extract patterns and
knowledge about a mathematical system from data generated by the system.
The topic has an extensive history and literature [Lju87] and has focused both
on analyzing known systems and attempting to discover previously unknown
systems from data. In this thesis, system identification means discovering the
governing equations of an ODE, i.e. identifying the governing equations of
dynamical systems of the form ẋ = g(x). Given data on x and ẋ, the goal is
to train a model ĝ that not only makes accurate predictions but identifies the
terms of g. Several breakthroughs have been made in applying machine learning
techniques to system identification. Symbolic regression has been used [BL07;
SL09], and in more recent times, a new approach called sparse regression of
nonlinear dynamics (SINDy) has become popular [BPK16]. In this chapter, we
go through these approaches as well as a gradient descent approach is the basis
for the PHSI model.

4.1 Symbolic regression

Symbolic regression is a form of system identification that randomly combines
mathematical building blocks such as analytical functions, operators, and
constants to best fit the true solution to an ODE. Finding the terms that best
fit g is a combinatorial problem, and search algorithms inspired by combinatorial
optimization are used to search for the correct terms. [BL07; SL09] employ
a version of the genetic algorithm. Algorithm 2 describes how the genetic
algorithm can be applied to symbolic regression.
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4.2. Sparse regression

Algorithm 2 Genetic algorithm for symbolic regression
Input: Population size N , number of iterations MAX, measured data {xj}m

j=1
and {ẋj}m

j=1
• Generate an initial population of candidate functions ĝi, i = {1, ..., N}
• Compute losses Li =

∑m
j=1 ∥ẋj − ĝi(xj)∥2, i = 1, ..., N

• Set t = 1
while t < MAX do

• Select a pair from the population with probability related to loss
• Perform crossover operation on selected pair
• Perform mutation on offspring with mutation probability
• Replace the previous generation with the newly generated population
• Compute losses Li =

∑m
j=1 ∥ẋj − ĝi(xj)∥2, i = 1, ..., N

• t = t + 1
end while
• Return the candidate function with the lowest loss mini=1,...,N Li

Each initial member of the initial population is a random combination of
functions, constants, and operations from the functions space. The crossover
operation is a random combination of the two parent functions, and the mutation
is a random alteration of the terms of the offspring function [Koz94]. After the
algorithm has been run, the function in the population that best fits the data
is returned.

4.2 Sparse regression

Another method for discovering dynamical systems is sparse regression, as
done by [BPK16] who name their method Sparse Identification of Nonlinear
Dynamical Systems (SINDy). The idea is to search for the governing equations
in a high-dimensional predetermined non-linear function dictionary with the
assumption that the governing equations are sparse in the function dictionary.
This is done as a regression problem as opposed to a combinatorial optimization
problem. Although there is no limit to the size or scope of the function dictionary,
in practical cases, the number of terms that describe an ODE is relatively few,
meaning we can rely on a relatively small function dictionary. Given the ODE

ẋ(t) = g(x(t)) (4.1)

where x : [0,∞) → Rn is a function of time t > 0, we measure data at
time-points t1, ..., tm to form the data-matrix

X =

x1(t1) . . . xn(t1)
... . . . ...

x1(tm) . . . xn(tm)

 ∈ Rm×n. (4.2)

We also have data on the data differentiated with respect to time

Ẋ =

 ẋ1(t1) . . . ẋn(t1)
... . . . ...

ẋ1(tm) . . . ẋn(tm)

 ∈ Rm×n. (4.3)
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4.2. Sparse regression

We then define a dictionary function Θ : Rm×n → Rm×p taking a data matrix
X as input and producing a dictionary of p non-linear functions. For example,
Θ(X) can be constants, trigonometric terms, and polynomial terms:

Θ(X) =

 | | | | | |
1 X P2(X) P3(X) . . . sin(X) cos(X)
| | | | | |

 (4.4)

where higher polynomials are denoted as P2(X), P3(X)... and include all cross-
terms between elements of x. For instance,

P2(X) =


x2

1(t1) x1(t1)x2(t1) ... xn(t1)2

x2
1(t2) x1(t2)x2(t2) ... xn(t2)2

...
... . . . ...

x2
1(tm) x1(tm)x2(tm) ... xn(tm)2

 ,

and notation sin(X) is short for sin (x1(t1)) . . . sin (xn(t1))
... . . . ...

sin (x1(tm)) . . . sin (xn(tm))

 (4.5)

and so forth. Each entry of Θ(X) represents a candidate function for the true
g. Then, the coefficient matrix Ξ = [ξ1 ξ2 ... ξn] determines which terms in the
function dictionary are to be active to recreate g in Equation 4.1:

Ẋ = Θ(X)Ξ. (4.6)

Note that in practical cases, Ẋ is not always available, and will have to be
estimated numerically from X. The goal is to solve the set of parameters Ξ
from data. We can split the problem of solving the matrix Ξ into solving each
column ξ1, ..., ξn separately. Then, for i = 1, ..., n, our goal is to solve the vector
ξi so that

ẋi = Θ(X)ξi (4.7)
where ẋi = [xi(t1), ..., xi(tm)]T . In sparse regression, we want to utilize the prior
knowledge that the true solution is sparse in the search space Θ(X), thus, we
want most of the entries of Ξ to be zero. SINDy proposes two sparse regression
algorithms: the least absolute shrinkage and selection operator (LASSO) [Tib96]
and the sequential thresholded least-squares algorithm [BPK16].

Lasso

LASSO is an l1-regularized regression that minimizes the square error plus a
penalty term:

ξi = argmin
ξ

∥ẋi −Θ(X)ξ∥2
2 + λ∥ξ∥1 (4.8)

where λ > 0 is the weight of the penalty. This l1-regularization promotes sparsity
in the solution as explored in Section 4.4. There are no analytical solutions
to solving this minimization problem, but a solution can be approximated
in several ways, for instance through the iteratively reweighted least squares
algorithm [Dau+10].
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Sequentially thresholded least-squares

The sequential thresholded least-squares algorithm uses Ridge-regression
iteratively. Instead of solving the minimization problem in Equation 4.8, Ridge
regression solves

ξi = argmin
ξ

∥ẋi −Θ(X)ξ∥2
2 + λ∥ξ∥2

2 (4.9)

where the penalizing term has a l2-norm instead of a l1-norm. The Ridge
regression problem has an analytical solution, which will be shown.

Theorem 4.2.1. Assume we have the matrix A ∈ Rm×p, the vector y ∈ Rm and
the constant λ > 0. Then, the following is true for the vector β ∈ Rp:

argmin
β

∥y −Aβ∥2
2 + λ∥β∥2

2 = (AT A + λI)−1AT y (4.10)

Proof: We start by rewriting the left-hand side expression to matrix form
and calculating:

J(β) := ∥y −Aβ∥2
2 + λ∥β∥2

2 = (Aβ − y)T (Aβ − y) + λβT β (4.11)
= (Aβ)T (Aβ)− (Aβ)T y − yT (Aβ) + yT y + λβT β (4.12)

= βT AT Aβ − 2(Aβ)T y + yT y + λβT β (4.13)

We perform matrix calculus to find the β that minimizes this expression. Keep
in mind the following differentiation rules:

• Rule 1: for vectors a, b,

∂aT b

∂a
= ∂bT a

∂a
= b

• Rule 2: for vector b and matrix B,

∂bT Bb

∂b
= (B + BT )b

We now differentiate J with respect to β using rule 1 and 2

∂J

∂β
= ∂

∂β

[
βT AT Aβ − 2(Aβ)T y + yT y + λβT β

]
= 2AT Aβ − 2AT y + 2λβ

(4.14)

We compute the second derivative:

∂2J

∂β2 = ∂

∂β

[
2AT Aβ − 2AT y + 2λβ

]
= 2(AT A + λI) (4.15)

Since AT A + λI is positive definite (AT A is positive semi-definite and λI is
positive definite because λ > 0), any stationary point of J must be a minimum.
We find this minimum:
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∂J

∂β
= 0 (4.16)

2AT Aβ − 2AT y + 2λβ = 0 (4.17)
(AT A + λI)β = AT y (4.18)

β = (AT A + λI)−1AT y (4.19)

Since AT A + λI is positive definite, it is invertible, meaning the analytical
solution (AT A + λI)−1AT y always exists. ■

If we apply Theorem 4.2.1 to the problem of Ridge regression (Equation
4.9) by letting y = ẋi and A = Θ(X), we arrive at the analytical solution for
Ξ = [ξ1 ξ2 ... ξn] in Equation 4.6:

ξi =
(
Θ(X)T Θ(X) + λI

)−1 ΘT ẋi, i = 1, ..., n, (4.20)

We are now ready to describe the sequentially thresholded least-squares
algorithm which solves Ridge regression iteratively.

Algorithm 3 Sequentially thresholded least-squares algorithm [BPK16]
• Input values: regularization constant λ, data X = [x1, ..., xn] and
Ẋ = [ẋ1, ..., ẋn], initial function dictionaries [Θ0

1, ..., Θ0
n], number of runs

MAX
• Find initial guesses ξ0

i by inserting ẋi and Θ0
i into Equation 4.20 for

i = 1, ..., n
for k = (1, ..., MAX) do

for i = (1, ..., n) do
• Find indices whose absolute value in ξk−1

i is less than λ
• Update the function dictionary Θk

i by removing these indices from
Θk−1

i

• Compute ξk
i by inserting ẋi and Θk

i into Equation 4.20
end for

end for
• Return ΞMAX = [ξMAX

1 , ..., ξMAX
n ]

The sequential thresholded least-squares algorithm (Algorithm 3) begins by
finding the solution to Ξ0 = [ξ0

1 , ..., ξ0
n] using Equation 4.20, and then thresholds

all coefficients smaller than the cutoff value λ. Then, we remove the cutoff
indices from the function dictionary before we find the least squares solution
Ξ1 using the updated function dictionary, and so on. The algorithm causes
sparsity by repeatedly removing candidate functions from the search dictionary.
This is a computationally inexpensive algorithm that rapidly converges to a
sparse solution [BPK16].
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4.3 Gradient descent

A third way of performing system identification is through stochastic gradient
descent, i.e. the same algorithm used for training neural networks (see Algorithm
3.2 in Section 3.2). Again, we are trying to approximate an ODE

ẋ = g(x), x ∈ Rn (4.21)

from time-series data. The goal of the gradient descent is to minimize the
difference between g and a system identification model ĝ. Given data on x,
we would ideally like to do this by measuring the loss between g(x) and ˆg(x).
However, data on g(x) (i.e. data on ẋ) is not available in practical cases, and
we do not assume it to be known here. Instead, we define a loss function based
on numerical integration. This requires some basic theory.

Numerical integration for solving ODEs

Consider an ODE ẋ = g(x). Given x(a) measured at time point a > 0, we can
estimate the x(b) where b > a ≥ 0 using the integration scheme

xb = x(a) + (b− a)Ψ(g, x(a), xb, a, b) (4.22)

where xb ≈ x(b) and Ψ is a numerical integrator. This equation is equivalent to
solving

xb − x(a)
b− a

= Ψ(g, x(a), xb, a, b) (4.23)

for xb. If Ψ does not depend on xb and can be directly computed from x(a), a,
and b, we call it an explicit integrator. If, on the other hand, Ψ depends on
xb, we say it is an implicit integrator. In this case, xb has to be solved from
either an equation or a system of equations. A simple example of an explicit
integrator is the forward Euler method:

Ψ(g, x(a), xb, a, b) = g(x(a), a), (4.24)

and a simple example of an implicit method is the backward Euler method:

Ψ(g, x(a), xb, a, b) = g(xb, b), (4.25)

where xb has to be solved. When using implicit integrators for solving xb,
we often use root-finding algorithms like Newton’s method. We say that
Euler’s methods are of order 1. In general, an arbitrary numerical integrator
Ψ(g, x(a), x(b), a, b) is of order p if

x(b)− [x(a) + (h)Ψ(g, x(a), x(b), a, b)] = O(hp+1).

for any b > a ≥ 0 where h is defined as b− a.

Now, consider that we have both the point x(a) and x(b) available and
we have a function ĝ approximating g. Then, given a numerical integrator Ψ,
the right-hand side of the following equation should approximate the left-hand
side

x(b)− x(a)
b− a

≈ Ψ(ĝ, x(a), x(b), a, b) (4.26)
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Note that since x(b) is known, we can compute Ψ(ĝ, x(a), x(b), a, b) explicitly
for a large subclass of implicit integrators, but not those that depend on
intermediate steps that will have to be found implicitly. Equation 4.26 gives
motivation for a loss function for a learning model ĝ: the better ĝ approximates
g, the better the right-hand side of Equation 4.26 approximates the left-hand
side.

Loss function

We now define a loss function for the gradient descent. Assume that we have the
data X = [[x(a1), x(b1)], ..., [x(am), x(bm)]] measured at m pairs of time points
{aj , bj}m

j=1 where bj > aj ≥ 0, j = 1, ..., m. Given the system identification
model ĝ, the data X and a numerical integrator Ψ, the following loss function
is proposed:

Loss(ĝH ; X, Ψ) =
m∑

j=1

∥∥∥∥x(bj)− x(aj)
bj − aj

−Ψ(ĝH , x(aj), x(bj))
∥∥∥∥2

2
. (4.27)

The motivation for the loss function is Equation 4.26 from the previous section.
Similar integration schemes have been done for training dynamical system
models in [Eid+23; Jin+20; MIY20].

System identification setup

Thanks to the gradient descent algorithm and backpropagation, we can impose
any structure we would like on ĝ. Thus, we are not bound by the linear regression
structure of SINDy, i.e. models that have the form of Equation 4.6. If we do
not impose a specific structure on ĝ, we learn the terms of g directly, similarly
to the SINDy approach (Section 4.2). We then define a function dictionary
Θg : Rn → Rp that takes the system coordinates x ∈ Rn as input, and outputs
p non-linear candidate functions for g, which gives the learning model

ĝ(x) = (Θg(x)Ξg)T , (4.28)

where the parameters Ξg ∈ Rp×n are trained so that ĝ best fits g.

Alternatively, we can impose a chosen structure on ĝ based on our prior
physical beliefs about the system. E.g. we can assume that the system is
Hamiltonian (see Section 2), giving the ODE

ẋ = S(x)∇H(x). (4.29)

If the structure matrix S is known, the system identification problem becomes
learning the governing equations of the Hamiltonian, H. We denote this model
as

ĝH(x) = S∇Ĥ(x), (4.30)

where Ĥ is the system identification model

Ĥ(x) = ΘH(x)ΞH , (4.31)

25
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ΘH : Rn → Rp being p candidate functions for H, and ΞH ∈ Rp being the
coefficients that are to be trained so that Ĥ best fits H. For instance, ΘH can
contain trigonometric terms and polynomial terms:

ΘH(x) =
[
x P2(x) P3(x) . . . sin(x) cos(x)

]
(4.32)

where for example
P2(x) =

[
x2

1 x1x2 . . . x2
n

]
(4.33)

and
sin(x) =

[
sin(x1) . . . sin(xn)

]
. (4.34)

The goal is to train the model coefficients ΞH through gradient descent so that
Ĥ best represents H, or rather that ∇Ĥ best represents ∇H. Though we do
not give more examples here, any structure could be imposed on ĝ.

Training

We are then ready to train our model using stochastic gradient descent. As an
illustration, we describe this algorithm for training a model with a Hamiltonian
structure. However, the algorithm can be applied to any chosen structure of
the model. Given the model ĝH , the stochastic gradient descent is given in
Algorithm 4. The structure and training of ĝH are actually similar to that
of a single-layer feed-forward neural network (see Section 3.2 and Algorithm
3.2). But, it is important to note that neural networks are in general not
system identification models. To avoid confusion, we will not call this system
identification approach a neural network.

Algorithm 4 Learning a Hamiltonian system using stochastic gradient descent
• Input variables: input data X = [[x(a1), x(b1)], ..., [x(am), x(bm)]], number
of epochs E, batch size b, integrator Ψ, initial model parameters ΞH , learning
rate η
for e = (1, ..., E) do

• Create new permutation p = {p1, ..., pm} of {1, ..., m}
for i = (1, ..., ⌈m/b⌉) do

• Select b pairs from shuffled dataset Xbatch = {[x(apj
), x(bpj

)]}(i+1)b
j=ib

• Compute the gradient of the loss with respect to the model parameters
G = dLoss(ĝΞH

;Xbatch,Ψ)
dΞH

through back-propagation
• Update model parameters ΞH ← ΞH − ηGΞH

end for
end for

The clear advantage of this system identification model is the freedom of
imposing any structure based on physical knowledge and prior beliefs. The
approach was used by [DXZ20] in their method called Sparse Symplectically
Integrated Neural Networks (SSINN). In Chapter 5, we define the PHSI model
based on this approach.
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4.4 Regularization and pruning

As discussed in Section 4.2, the true governing equations of a dynamical system
are generally sparse in a defined function dictionary. Thus, sparse solutions of
a system identification model should be desirable. Two tools that are known to
promote sparsity are l1-regularization and pruning. We discuss these further.

l1-regularization

Given a system identification model ĝ where Ξ = [ξ1, ..., ξN ] are the model
parameters, lp-regularization means penalizing the size of the model parameters
with the lp-norm, e.g. by adding λ∥Ξ∥p to the loss function for ĝ where λ
is the weight of the penalty. The LASSO and Ridge regression techniques
introduced in Section 4.2 are examples of this where p is 1 and 2, respectively. In
addition to helping learning models avoid overfitting, regularization can promote
sparsity in the model parameters. Perhaps the most intuitive form of sparse
regularization is l0-regularization where the penalty term is λ

∑N
i=1 1θi ̸=0, i.e.

counting the number of non-zero elements. However, minimizing this penalty is a
combinatorial problem which usually is NP-hard [Nat95]. The most commonly
used alternative is the l1-regularization which is convex and can be solved
easily. The penalty term becomes λ

∑N
i=1|θi|. In addition to being used in

LASSO as mentioned above, it has been used in the field of compressed sensing
where the goal is to acquire and reconstruct signals that are sparse in some
domain [FR13]. It has also been used to successfully promote sparsity in neural
networks [Ma+19], which gives a motivation to introduce l1-regularization in
the gradient-descent-based system identification model described in Section 4.3.

Pruning

Pruning algorithms have been used to promote sparsity in dynamical system
models by [LTS22]. The idea of pruning a system identification model is
to gradually shrink the function dictionary during training by iteratively
eliminating candidate functions. The sequential thresholded least-squares
approach [BPK16] can be considered a pruning algorithm. Given a system
identification model ĝ, we sketch a simple magnitude-based algorithm in
Algorithm 5 inspired by [LTS22].

Algorithm 5 Pruning algorithm [LTS22]
• Input: pruning interval P , pruning threshold ε, number of epochs E,
system identification model ĝ with model parameters Ξ
for e in {1, ..., E} do

• Tune parameters of ĝ
if e//P = 0 then

for ξ in Ξ do
if |ξ|< ϵ then

• ξ = 0 for the rest of training
end if

end for
end if

end for
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The reason that the pruning only happens every P epochs of training is that
we want the model parameters to converge between every pruning. In this way,
we greatly reduce the risk of eliminating potentially correct candidate functions.

4.5 Advantages of the system identification approach

The system identification approach holds a distinct advantage over neural
network techniques in terms of interpretability. While neural networks can
achieve high accuracy in prediction given a sufficient amount of data and a
sufficiently large network architecture [Cyb89; Hor91; Les+93], they do not
provide a clear understanding of the underlying governing equations of the
system being analyzed. In contrast, the system identification approach allows
for discovering these governing equations, providing a deeper understanding of
the system and better generalization. This can be especially beneficial when
making predictions on new, unseen data as the model is able to leverage its
understanding of the underlying equations to inform its predictions. This can
lead to improved accuracy and more robust predictions compared to models
that rely solely on pattern recognition. System identification models generally
predict well on data that is sampled from outside of the domain of training
data [BPK16].

28



PART II

Methodology and results
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CHAPTER 5

Methodology

In this section, we briefly discuss how the theory of chapters 2 and 3 is combined
to define the pseudo-Hamiltonian system identification model (PHSI). We discuss
what assumptions will have to be made about a system before learning it using
a PHSI model as well as the details of the training.

5.1 Pseudo-Hamiltonian System Identification

The core idea of our method is to learn pseudo-Hamiltonian systems using system
identification. We introduce the pseudo-Hamiltonian system identification
model (PHSI) which is a modification of the gradient descent-based system
identification model described in Section 4.3. The goal of the PHSI model is to
learn an ODE

ẋ = g(x, t), x ∈ Rn (5.1)
where we assume that the ODE has a pseudo-Hamiltonian structure

ẋ = (S(x)−R(x))∇H(x) + F (x, t), x ∈ Rn.

The PHSI model learns every component of the system S, R, H, F separately and
simultaneously from data. In this way, we do not only learn an approximation
to the solution of the ODE, but we learn the structure of the system. We call
(S(x)−R(x))∇H(x) the inner dynamics of the system, while we may refer to
the external forces F (x, t) as the outer dynamics. We define the most general
PHSI model as

ĝPHSI(x, t) := (Ŝ(x)− R̂(x))∇Ĥ(x) + F̂ (x, t). (5.2)

where Ŝ, R̂, Ĥ and F̂ model the corresponding term in Equation (5.1). We
want full insight into the inner dynamics of the system, thus Ŝ, R̂ and Ĥ are all
learned through system identification models. Since we make no assumptions
about the external forces, F̂ will generally be a neural network due to its
approximation ability. However, in cases where F is assumed to have a simple
structure, it allows for learning it through system identification models as well.
The main advantage of pseudo-Hamiltonian system identification is its ability
to learn the inner dynamics of a system despite it being disturbed by damping
and external forces. Since Ĥ, R̂, and F̂ are learned separately, we can use Ĥ to
study the behavior of the system without the presence of damping and external
forces. For the numerical experiments in this thesis, we assume to know S
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5.1. Pseudo-Hamiltonian System Identification

exactly, and R(x) are assumed to be damping coefficients independent of x.
Thus, Equation 5.2 is reduced to:

ĝPHSI(x, t) = (S − R̂)∇Ĥ(x) + F̂ (x, t), (5.3)

where

R̂ =

r̂1 . . . 0
... . . . ...
0 . . . r̂n

 (5.4)

is the matrix with the trainable elements of R̂ on the diagonal. Since the
learning model ĝPHSI has a complex structure with several components to be
trained, the gradient descent approach to system identification (see Section 4.3)
is well suited due to its structural flexibility.

Learning Hamiltonian systems using system identification has been done
before by [DXZ20] in their Sparse Symplectically Integrated Neural Networks
(SSINN). The SSINN model, like the PHSI model, trains using gradient descent.
However, SSINN assumes that the Hamiltonian is of canonical structure (see
Equation 2.25) and that it is separable, meaning it can be split into kinetic
and potential energy, (see Section 2.6). The PHSI model does not assume this
separability and can learn Hamiltonian systems in the most general formulation
(see Equation 2.26) in addition to learning damping and external forces. Thus,
it allows for system identification on more general Hamiltonian systems than
what has been done previously. [Eid+23] have also trained learning models of
the pseudo-Hamiltonian structure, but they used multi-layer neural networks
instead of system identification models.

System identification on the external forces and hybrid models

In the PHSI model, the approximation of the external forces F̂ can be learned
either by system identification or by a neural network. If the external forces are
a complicated function with no simple analytical representation, they are best
modeled by a neural network due to their approximation abilities, as discussed
in Section 3.2. However, if the external forces have a simple analytic form, it is
possible to learn these through system identification as well. In this case where
Ĥ is modeled by system identification and F̂ is modeled by a neural network,
we call the PHSI model a hybrid model. One also has to assume whether F̂ is
state-dependent, time-dependent, or both. When F̂ is a system identification
model, the function dictionary can be chosen to be polynomial, trigonometric,
or a combination of the two. The trigonometric function dictionary contains
parameters for both the amplitude and period of the terms. For example, if
we assume that the external port is strictly time-dependent and consists of
a combination of trigonometric terms and a second-degree polynomial, the
function dictionary is:

F̂ (t) = ξ1t + ξ2t2 + ξ3sin(ξ4t) + ξ5cos(ξ6t) (5.5)

where ξ1, ..., ξ6 are the trainable parameters of F̂ .
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Regularization and pruning for promoting sparsity

Since we assume that the true governing equations are sparse in the search space,
we employ the regularization and pruning techniques discussed in Section 4.4
and a pruning scheme based on Algorithm 5. The details of the implementation
can be found in the training algorithm described in the next section. We also
add l1-regularization to Ĥ. Since the Hamiltonian formulation is generally not
unique (as discussed in Section 2.5), promoting sparsity in the learning of Ĥ
favors the formulation that is most natural and interpretable.

Since ĝPHSI learns the inner dynamics Ĥ, the outer dynamics F̂ and the
damping effects R̂ simultaneously, we apply regularization on F̂ as well to guide
the separation. As discussed in Section 2.7, there is generally not uniqueness
in the separation of the pseudo-Hamiltonian system into internal and external
dynamics. Thus, the PHSI model does not have prior knowledge about what
part of the dynamics in the data should be attributed to H and F , respectively,
unless assumptions about this are imposed. The goal is to learn the most
natural representation of the system, where only the dynamics that do not fit
Ĥ are attributed to the external forces. To achieve this, the regularization of
Ĥ and F̂ have to be well chosen as we discuss later in Section 5.2.

Training the PHSI model

In the PHSI model, we make the realistic assumption that we only have
data on x, not ẋ. As explained in Section 4.3, we instead train on an
integration scheme using a numerical integrator Ψ. Given time-series data
X = [[x(a1), x(b1)], ..., [x(am), x(bm)]] measured at the pairs of time-points
{(aj , bj)}m

j=1, the loss is defined as

Loss(ĝPHSI; X, Ψ) =
m∑

j=1

∥∥∥∥x(bj)− x(aj)
bj − aj

−Ψ(ĝPHSI, x(aj), x(bj))
∥∥∥∥2

2

+λH∥ΞH∥1 + λF ∥ΞF ∥1.

(5.6)

where ΞH and ΞF are the model parameters for Ĥ and F̂ , respectively. We add
l1 regularization to Ĥ with weight λH and to F̂ with weight λF . The choice of
Ψ will be discussed below.

The training algorithm for PHSI is shown in Algorithm 6. It is similar
to Algorithm 4 in that it is a stochastic gradient descent algorithm, but it is
different in that it trains Ĥ, F̂ and R̂ all at once.
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5.1. Pseudo-Hamiltonian System Identification

Algorithm 6 Training algorithm for the PHSI model
• Input variables: input data X = [[x(a1), x(b1)], ..., [x(am), x(bm)]], number
of epochs E, initial model parameters ΞH , ΞF , R̂, learning rate η, integrator
Ψ, batch size b, pruning interval P , pruning threshold ε
for e in (1, ..., E) do

• Create a new permutation of p = {p1, ..., pm} of {1, ..., m}
for i in (1, ..., ⌈m/b⌉) do

• Select b samples from the shuffled dataset Xbatch =
{[x(apj

), x(bpj
)]}(i+1)b

j=ib

• Compute gradients of the loss with respect to the model parameters
through backpropagation:

• GΞH
= dL(ĝPHSI;Xbatch,Ψ)

dΞH

• GΞF
= dL(ĝPHSI;Xbatch,Ψ)

dΞF

• GR̂ = dL(ĝPHSI;Xbatch,Ψ)
dR̂

• Update model parameters: ΞH , ΞF , R̂ ← (ΞH , ΞF , R̂) −
η(GΞH

, GΞF
, GR̂)

end for
if e//P = 0 then

for ξ in {ΞH , ΞF , R̂} do
if |ξ| < ε then

• ξ = 0 for the rest of the training
end if

end for
end if

end for

Initialization of trainable parameters

In Algorithm 6, the trainable parameters in the model, represented by ΞH , ΞF

and R̂ (where ΞH and ΞF are the model parameters of Ĥ and F̂ ) are given
initial values before they are tuned. The choice of how these parameters are
initialized can have an effect on training. In the PHSI model, the parameters
are initialized randomly. More precisely, all initial values of ΞH , ΞF , and R̂ are
i.i.d. from the Gaussian distribution N(0, 0.52).

Choice of numerical integrator

As discussed in Section 4.3, a numerical integrator must be chosen when
computing the loss for a PHSI model (see Equation 5.6). Given a PHSI model ĝ
and two data points x(a), x(b) measured at time-points b > a > 0, the integrator
is denoted as

Ψ(ĝ, x(a), x(b), a, b).
Perhaps the simplest example of such an integrator is the forward Euler
integrator

Ψ(ĝ, x(a), x(b), a, b) = ĝ(x(a), a), (5.7)
but this method only uses the observation x(a). We instead seek a method
that is dependent on and explicitly given by both x(a) and x(b) so that
we use all the data available. Also, since we assume the dataset can be
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contaminated with noise, we choose an integrator that is symmetric, i.e.
Ψ(ĝ, x(a), x(b), a, b) = Ψ(ĝ, x(b), x(a), b, a), meaning it depends equally on the
two data points. An example of a symmetric integrator is the implicit midpoint
Euler method:

Ψ(ĝ, x(a), x(b), a, b) = ĝ

(
x(a) + x(b)

2 , a + b− a

2

)
. (5.8)

Since we assume both x(a) and x(b) have independent noise with standard
deviation σ, the standard deviation of (x(a) + x(b))/2 in Equation 5.8 is σ/

√
2.

In other words, we average out the noise from the two observations. Although
the implicit midpoint method has the desired symmetry, it is only of order
2. Integrators of higher order tend to be more accurate but are generally
computationally more expensive. An example of an integrator of order 4 is the
RK4 -method (also known as the classic Runge-Kutta method), which is given
as

Ψ(ĝ, x(a), a, b) = 1
6(k1 + 2k2 + 2k3 + k4) (5.9)

where

k1 = g(x(a), a)

k2 = g

(
x(a) + (b− a)k1

2 ,
a + b

2

)
k3 = g

(
x(a) + (b− a)k2

2 ,
a + b

2

)
k4 = g(x(a) + (b− a)k3, b)

(5.10)

However, the RK4 integrator does not have the symmetry that we seek. [Eid+23]
propose an integrator that is both symmetric and of fourth order:

Ψ(ĝ, x(a), x(b), a, b) =
1
2 ĝ

(
x(a) + x(b)

2 −
√

3
6 (b− a) ĝ(c1x(a) + c2x(b), a + c2(b− a)), a + c1(b− a)

)
+1

2 ĝ

(
x(a) + x(b)

2 +
√

3
6 (b− a) ĝ(c2x(a) + c1x(b), a + c1(b− a)), a + c2(b− a)

)
,

(5.11)

for c1 = 1
2 −

√
3

6 and c2 = 1
2 +

√
3

6 . This is the chosen integrator for the
integration scheme in the PHSI model in all the numerical experiments.

5.2 A study of regularization in the PHSI model

In the case of learning dynamical systems of complex structures, regularization
is important not only to promote sparsity but to ensure the desired structure
of the ODE. We exemplify this by learning a mass-spring system using a PHSI
model. A simple-mass spring system can be described through the following
ODE: [

q̇
ṗ

]
=
[

p
m
−kq

]
(5.12)
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Where we set weight m = 1 and spring stiffness k = 1. The system has the
related Hamiltonian function

H(q, p) = 1
2q2 + 1

2p2 (5.13)

which we can use to write the ODE as a Hamiltonian system with the canonical
formulation [

q̇
ṗ

]
=
[

0 1
−1 0

][∂H
∂q
∂H
∂p

]
. (5.14)

The PHSI model assumes the following structure:

ĝPHSI =
[

0 1
−1 0

]
∇Ĥ(x) + F̂ (x). (5.15)

As previously stated, the pseudo-Hamiltonian formulation is non-unique since a
general ODE can be equivalently represented by different combinations of Ĥ and
F̂ . Since system identification models attempt not only to accurately predict
data but identify the governing equations, we are interested in separating Ĥ
and F̂ in a natural way. In this example, since there are no external forces
present, the desired solution is Ĥ equals to Equation 5.13 and F̂ = 0.
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Figure 5.1: Phase plots of trajectories x = (q, p) obtained from systems where
ĝPHSI is given by either S(x)∇H or F or the sum of the terms. Each column
is a different combination of regularization parameters, where λH and λF are
the magnitudes of l1 regularization on H and f , respectively. Three randomly
initialized models are trained for each column.

We have trained system identification models with pseudo-Hamiltonian
structures with different combinations of regularization on H and F . Figure
5.1 shows trajectory plots of three randomly initiated models compared to the
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correct solution. Every model trained predicts ẋ accurately, but only the models
that regularize F are able to separate Ĥ and F̂ in the desired way. The models
that regularize H learn the entire ODE through F , and the models without
regularization learn difficult-to-interpret combinations between H and F that
are non-unique due to the random initialization of the model parameters. These
results show how regularization affects the structure of a trained PHSI model.
The way we set the regularization parameters of a PHSI model reflects the prior
assumptions we make about the system to be learned.

5.3 Evaluation of the PHSI models

To assess the performance of the PHSI model, we compare its performance in
numerical experiments to other dynamical system models discussed in Chapter
4. To be able to assess the advantage of the pseudo-Hamiltonian structure of
PHSI, we also compare it against a baseline system identification model with
no assumed structure.

Baseline system identification model (BSI)

We create a baseline system identification model (BSI) that has the same
training strategy as the PHSI model but does not assume a pseudo-Hamiltonian
structure. When comparing the performance of PHSI to BSI, we will be able
to directly assess whether the PHSI model’s pseudo-Hamiltonian structure has
a positive, negative, or no effect on its performance. BSI employs the same
pruning and regularization scheme as PHSI and trains on the same gradient-
descent-based integration scheme described in Algorithm 6 and Equation 5.6.
However, the baseline model does not assume a pseudo-Hamiltonian structure.
Given the ODE

ẋ = g(x),

the BSI model simply tries to estimate g through a system identification model
ĝ with a predefined search space for g. It trains using the same numerical
integrator as the PHSI model.

Comparison to other models

The PHSI model will be compared against three other system identification
models: The SINDy model [BPK16] Sparse Symplectically Integrated Neural
Networks (SSINN) of [DXZ20] introduced in Section 5.1, and finally the baseline
gradient descent system identification model described above. In addition, we
will make comparisons to the performance of the pseudo-Hamiltonian neural
networks (PHNN) of [Eid+23]. The main attributes of these models are briefly
summarized. When relevant, the public code for the models is provided.

• SINDy: Sparse Identification of Nonlinear Dynamical Systems. System
identification method that learns g directly using sparse regression.1

• BSI: Baseline system identification. System identification model that
learns g directly using a gradient descent algorithm.

1https://github.com/dynamicslab/pysindy
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5.3. Evaluation of the PHSI models

• SSINN: Sparse Symplectically Integrated Neural Networks: System
identification model that trains using gradient descent. The model assumes
a separable Hamiltonian (see Section 2.6), meaning it also implies that
the Hamiltonian system has canonical structure (see Equation 2.25).2

• PHSI: pseudo-Hamiltonian system identification. System identification
model that assumes g has a pseudo-Hamiltonian structure (see Equation
2.42). Trains using the gradient descent algorithm.

• PHNN: pseudo-Hamiltonian neural networks. Neural networks that
assume the pseudo-Hamiltonian structure.3

2https://github.com/dandip/ssinn
3https://github.com/SINTEF/pseudo-hamiltonian-neural-networks
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CHAPTER 6

Results

We now evaluate the PHSI model by training it on simulated data from four
different numerical experiments. We also compare its performance to the
four other models noted in Section 5.3. For each test, we train the relevant
models on two datasets: one noise-free X = {xi}N

i=1 and one with Gaussian
noise Xnoise = {xi + εi}N

i=1 where εi ∼ N(0, σ2), i = 1, ..., N . We evaluate
the models’ predictive performance by measuring the l2-error of simulated
trajectories. These trajectories are not in the training data, hence can consider
them to be validation data. The search space for the models consists of
polynomial terms, trigonometric terms, or a combination of the two. The exact
implementation details of each experiment can be found in Appendix B.

6.1 Experiment 1: Learning a Hamiltonian system

First, we test our methodology on data obtained from a pure Hamiltonian
system, i.e. without damping or external forces. Thus, we can benchmark
against existing methods while demonstrating the effect of the Hamiltonian
framework. The experiments are done on the Hénon–Heiles system that was
originally considered to describe the two-dimensional chaotic motion of stars
around a galactic center [HH64]. It can be written as a Hamiltonian system of
canonical form, and the Hamiltonian is separable, meaning it can be learned
using the SSINN model. The Hamiltonian is defined as

H(q, p) = 1
2(q2

1 + q2
2 + p2

1 + p2
2) + q2

1q2 −
1
3q3

2 , (6.1)

and this can be used to form the canonical Hamiltonian system
q̇1
q̇2
ṗ1
ṗ2

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

∇H. (6.2)

This is a separable system: V (q) = 1
2 (q2

1 + q2
2) + q2

1q2 − 1
3 q3

2 , T (p) = 1
2 (p2

1 + p2
2)

and H(q, p) = V (q) + T (p). To ensure a fair comparison, we train on the data
generated and used in [DXZ20], although with more noise than was used in
their experiments. The data consists of 3000 pairs of q, p at t = 0 and t = 0.1.
The noisy data has σ = 0.02, which corresponds to approximately 3% of the
maximum absolute values in the data. The system trajectory used for training
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6.1. Experiment 1: Learning a Hamiltonian system

has initial conditions such that it is stable and does not diverge, as described
in the paper [DXZ20]. The models were trained on a polynomial search space
of third degree that includes all cross–terms between the four variables. In
contrast to [DXZ20], the PHSI model does not assume a priori that the system
is separable.
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Figure 6.1: Comparison of simulated trajectories, with initial value (q, p) =
(0.1,−0.2, 0.4, 0.5), from t = 0 to t = 10.

Figure 6.1 shows example trajectories obtained from simulating the different
learned systems in time. When training on noise-free data, all models learn
the true coefficients up to 10−2, while noise affects the different methods to
different degrees. On the noisy data, PHSI outperforms SSINN by one order of
magnitude when comparing the l2-error of the trajectories, as depicted in Figure
6.2. PHSI and BSI both perform better than SSINN and SINDy, suggesting
that the fourth-order symmetric integrator handles the noise well. The superior
performance of PHSI over BSI suggests that imposing the Hamiltonian struc-
ture gives better performance yet. The SINDy and BSI models could not be
converted into Hamiltonian functions when trained on noisy data. In addition,
the solution of the SINDy model tends to become unstable over long time
periods, something that PHSI and SSINN avoid by imposing a Hamiltonian
structure.

Since the goal of system identification is not only accurate predictions but
to learn the correct equations for the system, we have compared the learned
coefficients of PHSI and SSINN in Table 6.1, where coefficients are learned from
noisy data. It is clear that the PHSI model not only predicts more accurately
as seen in Figure 6.2 but learned coefficients that are closer to representing the
true Hamiltonian function.
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6.2. Experiment 2: Learning a non-separable Hamiltonian system

Trained Parameters
Model q2

x q2
y q2

xqy q3
y p2

x p2
y qyp2

x

True Value 0.5 0.5 1 −0.333 0.5 0.5 0
PHSI 0.509 0.495 1.009 −0.338 0.501 0.477 0.124
SSINN 0.421 0.378 0.569 −0.195 0.484 0.443 N/A

qy qxqy py pxpy

True Value 0 0 0 0
PHSI 0 0 0 0
SSINN 0.004 0.002 −0.006 −0.006

Table 6.1: Table comparing learned Hamiltonian coefficients for PHSI and
SSINN to the exact values for the noisy data set with σ = 0.02.
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Figure 6.2: The average l2-error of the trajectories obtained with 10 different
random initial conditions, from the different models trained on noisy data with
σ = 0.02, compared to trajectories simulated from the exact system.

6.2 Experiment 2: Learning a non-separable Hamiltonian
system

A strength of the PHSI model is that it can learn systems with non-separable
Hamiltonians. Previous methods for performing system identification on
Hamiltonian systems (i.e. the SSINN model) assume separability of the
Hamiltonian. The PHSI model, however, does not assume this and can learn
the most general Hamiltonians. We will demonstrate this by testing its ability
to learn a finite-dimensional nonlinear Schrödinger system, as considered in
[Tao16]. This is a canonical system and has the Hamiltonian

H(q, p) =1
4

d∑
i=1

(q2
i + p2

i )2

−
d∑

i=2
(p2

i−2p2
i + q2

i−2q2
i − q2

i−1p2
i − p2

i−1q2
i + 4qi−1qipi−1pi)
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6.2. Experiment 2: Learning a non-separable Hamiltonian system

where d is the number of particles in the system. We set d = 2, and the
Hamiltonian becomes

H(q, p) =1
4(q2

1 + p2
1)2

+ 1
4(q2

2 + p2
2)2 − q2

1q2
2 − p2

1p2
2 + q2

1p2
2 + q2

2p2
1 − 4q1q2p1p2.

(6.3)

The training set consists of 30 trajectories simulated for 100 time steps with
step size 0.01. After being trained on the training set, the PHSI, SINDy, and
BSI models, will be compared on their performance. Since the SSINN model
can only learn separable Hamiltonians, it is not applicable here.
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Figure 6.3: Phase portraits showing the trained models’ trajectories next
to the ground truth trajectory. All models are trained on the two training
sets, one clean data set and one noisy with σ = 10−4. The initial values are
(q, p) = (−0.3, 0.5,−0.2,−0.4).
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6.3. Experiment 3: Learning a pseudo-Hamiltonian system
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Figure 6.4: The trained coefficient values of PHSI, BSI, and SINDy plotted
against the respective true values. A perfectly trained model only has points
along the dotted line y = x. The models are trained on the noisy data set.
Note that PHSI learns the Hamiltonian function while SINDy and BSI learn
the right-hand side g of (1.1) and hence they do not learn the same coefficients
for corresponding terms.

The PHSI and SINDy models were able to learn the true equations of the
system on the noise-free data up to a precision of 10−5, while the BSI model
was able to learn to a precision of 10−3. On the noisy data, the PHSI model was
able to learn the true equations up to a precision of 10−1. SINDy only learned
the terms up to a precision of 1, and the BSI model achieved an even lower
precision. Figure 6.3 compares the predictive abilities of the trained models.
While all the models trained on noiseless data are able to predict trajectories
accurately, the models trained on noisy data show different results. The PHSI
model is not only more accurate, but it is also more stable. While the BSI and
SINDy models seem to diverge quickly from the true trajectory, the predicted
PHSI trajectory illustrates the energy-conserving properties of the Hamiltonian
structure. Figure 6.4 confirms a more accurate representation of the true system
equations in the PHSI model than SINDy when trained on noisy data. Neither
the coefficients learned by SINDy nor BSI could be converted to a separable
Hamiltonian, meaning the Hamiltonian is only preserved in the PHSI model
due to its structure.

6.3 Experiment 3: Learning a pseudo-Hamiltonian system

We introduce a system with a pseudo-Hamiltonian structure. We consider a
simple mass-spring system with damping and external forces. Given position
q ∈ R and momentum p ∈ R, the Hamiltonian of the mass-spring system is
given by

H(q, p) = 1
2q2 + 1

2m
p2, (6.4)
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6.3. Experiment 3: Learning a pseudo-Hamiltonian system

where k and m are the stiffness constant and the mass of the spring, respectively.
When adding damping and external forces, the system can be expressed with a
pseudo-Hamiltonian formulation as[

q̇
ṗ

]
=
[

0 1
−1 −c

] [
kq
1
m p

]
+
[

0
α sin (ωt)

]
. (6.5)

The damping coefficient c and the external forces α sin(ωt) act directly on the
momentum in the system. We let k = m = 1, α = 2, ω = 0.5 and c = 0.3.
We simulate data from this system and let the data consist of 50 trajectories
from time 0 to 10 with time step 0.1. The noisy dataset has σ = 0.2. We
trained three system identification models on these datasets: PHSI, BSI, and
SINDy. In addition, we trained a PHNN model. PHSI models the Hamiltonian
with Ĥ and the external forces with F̂ (see Equation 5.2). The function
dictionary for Ĥ is third-degree polynomials and the function dictionary for F̂
is third-degree polynomials plus trigonometric functions. F̂ is assumed to be
strictly time-dependent.

Note that the SINDy model can only learn the amplitude of the external
force, not the frequency. This is due to the regression structure of the SINDy
model (see Chapter 4) which only allows for learning the coefficients multiplied
with each function in the function dictionary. Thus, we do not expect SINDy
to perform well in this experiment unless the frequency is already known.

Trained PHSI parameters

q2 p2 c α ω

True Value 0.5 0.5 0.3 2 0.5
Ĥ 0.473 0.484
R̂ 0.300
F̂ 0 0 0 1.984 0.505

Trained BSI and SINDy parameters

q p const. α ω

True value 0 1 0 0 0
BSI ˆ̇q 0 0.991 0 0 0
SINDy ˆ̇q 0 0.983 0 0 0

True value −1 −0.3 0 2 0.5
BSI ˆ̇p −0.980 −0.278 0 1.999 0.506
SINDy ˆ̇p −0.548 0 0.241

Table 6.2: Learned coefficients for the mass-spring problem on noiseless data. q
and p are multiplied with the trained coefficients while c, α, ω and const. are
themselves the trainable parameters. Empty entries mean that the model does
not learn that term.
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6.3. Experiment 3: Learning a pseudo-Hamiltonian system
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Figure 6.5: Comparison between the phase portraits obtained from integrating
the exact system and the learned models from time 0 to 10. The initial value is
(q, p) = (−3.4,−1.9).

Figure 6.5 shows the predictive ability of each of the trained models. The
PHSI, BSI, and PHNN models all perform well when trained on noiseless data.
As expected, SINDy is not able to learn the effect of the external forces correctly
and does not predict the trajectory with the same accuracy. When trained on
noisy data, the PHSI model outperforms both the BSI and PHNN models.
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Figure 6.6: Average l2-error of 30 simulated trajectories, with random initial
conditions. These simulated trajectories have a longer time span than the
training trajectories.

Figure 6.6 compares the average l2 error of 30 different simulated trajectories
of each of the models trained on noisy data. Since the trajectories are sampled
from time 0 to 20, and the training trajectories are only sampled from time
0 to 10, this figure shows the models’ predictive ability outside the training
domain. As expected, the SINDy model predicts poorly. Now, let us compare
the predictions of the PHSI and PHNN models. The PHSI model accurately
predicts the true trajectories from time 0 to time 20 although it has only trained
on trajectories from time 0 to 10. The PHNN model, however, only predicts
well for the first 10 seconds of the trajectories. Then, from time 10 to 20, the
predictions worsen sharply. This is an illustration of one of the advantages
system identification models have over neural network models as discussed
in Chapter 4. The neural network model approximates the patterns of the
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6.4. Experiment 4: Hybrid model combining system identification with neural
networks

true system well from time 0 to 10 but is not informed enough to predict the
system’s behavior from time 10 to 20 because it has not trained on this domain.
The PHSI model, however, accurately learns the true equations of the system
as shown in Table 6.3 which allows it to have informed predictions outside of
the domain of training data. Although the BSI model is a system identification
model, it also suffers from poor predictions between times 10 and 20, suggesting
that the BSI model did not learn a good representation of the true system.
This provides a qualitative argument in favor of using a model that assumes a
pseudo-Hamiltonian formulation.

Note the PHSI model does not only achieve accurate predictions but is
able to learn the true governing equations of both the inner dynamics, the
damping, and the external forces. Thus, we gain full insight into the dynamics
which again can enhance our physical understanding of the system. In addition,
we can accurately simulate the behavior of the system where any of the
components can be modified as we like. Alternatively, we can simulate the
system without damping and external forces altogether.

6.4 Experiment 4: Hybrid model combining system
identification with neural networks

In reality, many systems will be affected by external forces for which it can be
difficult to find analytic terms. The final system to be studied consists of N
tanks connected by M pipes, also considered by [Eid+23], with leaks that can
be viewed as external forces. The damping effect in the pipes is assumed to
depend linearly on the flow, and the total energy, i.e. the Hamiltonian is given
by

H(ϕ, µ) =
M∑
i

1
2Ji

ϕ2
i +

N∑
j

gρ

2Aj
µ2

j , (6.6)

where ϕi is the flow in pipe i scaled by a factor Ji depending on the density of
the fluid and the dimension of the pipe, µj is the volume of the fluid in tank
j, g is the gravitational constant, ρ is the density of the fluid, and Aj is the
footprint of tank j. We thus have the pseudo-Hamiltonian formulation[

ϕ̇
µ̇

]
=
[
−diag(rp) BT

B 0N×N

] [∂H
∂ϕ
∂H
∂µ

]
+
[

0M

f(ϕ, µ)

]
, (6.7)

where the incidence matrix B ∈ RM×N describes how the pipes and tanks
are connected and rp ∈ RM contains the damping coefficients relating to each
pipe. When simulating the system to generate the training data, we set ρ = 1,
Ji = 0.02 ∀i, Aj = 1 ∀j, rp = (0.03, 0.03, 0.09, 0.05, 0.05). A leak in the fourth
tank is described by f(ϕ, µ) = (0, 0, 0,−10 min (0.3, max (µ4, 0.3)))T .

Since the external forces have a form that is difficult to find analytically,
they are modeled by a neural network as opposed to a system identification
model. We still aim to find the analytical expression of the internal dynamics
through system identification. The model assumes that the external forces
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6.4. Experiment 4: Hybrid model combining system identification with neural
networks

only affect the fourth tank. The neural network modeling the external forces
consists of three hidden layers, 100 nodes per layer, and the ReLU activation
function. The PHSI model will be compared to the SINDy and BSI models. All
models were trained on a function dictionary of polynomials up to the second
degree. The training sets consist of 60 trajectories simulated between times 0
and 0.5 with time step 0.01. The noisy dataset has σ = 0.03.

Trained PHSI parameters

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x2
7

True Value 25 25 25 25 25 4.905 4.905
PHSI 24.94 24.98 24.98 24.95 24.97 4.930 4.960

x2
8 x2

9 r1 r2 r3 r4 r5

True Value 4.905 4.905 0.03 0.03 0.09 0.05 0.05
PHSI 4.890 4.930 0.031 0.029 0.086 0.051 0.041

Table 6.3: Learned coefficients for the tank problem on the noisy data. x2
1, . . . , x2

9
are multiplied with the trained coefficients while r1, . . . , r5 are themselves the
trainable parameters.
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6.4. Experiment 4: Hybrid model combining system identification with neural
networks
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Figure 6.7: Left: The volume of the fluid in the leaky fourth tank simulated
from the exact system and the different models. Right: The leak approximated
by the neural network in the hybrid PHSI model, compared to the ground
truth. The upper plots have initial conditions within the distribution of the
training data: (ϕ, µ) = (−0.4, 0, 0.5, 0, 0.2, 0− 0.6,−0.5, 0.5). The lower plots
show prediction on data outside the training data’s time and space domain;
time from 0 to 1 and initial state values (ϕ, µ) = (10, 19, 4, 19, 7, 9, 17, 9, 11).

Figure 6.7 shows the predictive performance of the PHSI, SINDy, and BSI
models. The upper plot shows that all the models predict the tank level well
when the total tank volume is within the region of training data. The lower
plots, however, show the predicted tank level on a system where the total
tank volume is larger than the systems in the training set. This means we can
evaluate the models’ performance on data outside of the training domain. The
accuracy of the BSI and SINDy models is greatly reduced, while the PHSI
model is less affected. The reason for this can be found in Table 6.4: the
PHSI model has accurately learned the true governing equations for the inner
dynamics which helps inform predictions on the large-volume tank (see lower
left plot of Fgure 6.7). The SINDy and BSI models have failed to learn the
true governing equations with the same accuracy, and thus their predictions on
the large-volume tank suffer. Figure 6.8 shows that the PHSI and BSI models
clearly outperform the SINDy model in their predictive ability for the tank
problem when trained on noisy data, suggesting that the gradient-descent based
training combined with the integration scheme suggested by [Eid+23] handles
the noise in the data better than the SINDy method. The fact that the PHSI
model also outperforms the BSI model suggests that the proposed hybrid model
outperforms a standard system identification approach.
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6.5. Study of regularization and pruning

This experiment shows the real strength of the PHSI model. When the
inner dynamics of the ODE are disturbed by an external force, trying to learn
the true governing equations of the inner dynamics is difficult. By modeling
the external forces separately through a neural network, system identification
of the inner dynamics becomes possible. We can then gain insight even in cases
where the function describing the external forces is complex. In addition to
allowing for interpretability, this approach results in more accurate predictions
of the future states of the system, especially when the system is outside of
the training data domain. We would also be able to accurately simulate the
system’s behavior without the presence of damping and external forces.
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Figure 6.8: Average l2-error of 30 simulated trajectories. The trajectories are
sampled from the same distribution as the training set. The models are trained
on the noisy dataset with σ = 0.005.

6.5 Study of regularization and pruning

In Chapter 3, it is argued that regularization and pruning help the PHSI
model promote sparsity in search of the true governing equations of a dynamical
system. It is also argued that since we know that the true governing equations are
generally sparse in the function dictionary, promoting sparsity during training
helps the PHSI model better approximate the true model for the governing
equations. To evaluate whether this claim has merit or not, we train PHSI
models where the amounts of regularization and pruning vary and the rest of
the hyperparameters are held constant. By the amount of pruning, it is meant
how often the pruning algorithm is employed during training, i.e. the value P
in Algorithm 6. The lower value P has, the more frequent the pruning. By the
amount of regularization, we specifically mean the amount of l1-regularization
on the Hamiltonian Ĥ, i.e. λH in Equation 5.6. We evaluate the predictive
performance of each trained model by comparing their predictability score,
i.e. their average error over simulated trajectories with random initialization
compared to the true trajectories, where the trajectories are not from the
training set. The tests will be done for all of the four systems introduced in
this chapter, and the PHSI model hyper-parameters can be found in Appendix
B. The tests are performed on noiseless data.
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6.5. Study of regularization and pruning

Experiment 1: Hénon–Heiles system

The Hénon–Heiles system is a purely Hamiltonian system, and this is assumed
when training the PHSI model. The models are trained on noiseless, simulated
data with λH ∈ {0, 0.05, 0.5} and P ∈ {1, 2, 4}, and the training amount is 3
epochs. The predictive performances of models with different combinations of
regularization and pruning are shown in Figure 6.9. The figure shows that for
this particular system, the PHIS model trains best without l1-regularization,
hence no regularization was used in the experiments in Section 6.1. The reason
for this may lie in that the PHSI model learns the relatively simple Hénon–Heiles
system in very few epochs of training. The pruning algorithm does not appear
to affect the average l2-error in this experiment, yet it excludes the correct
terms resulting in easier interpretability of the trained model. Figure 6.10 shows
that although the scores in Figure 6.9 differ by several orders of magnitude, all
the models achieve a relatively good predictive ability.
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Figure 6.9: Average l2-error over 30 simulated trajectories of the Hénon–Heiles
system by PHSI models trained with different combinations of regularization-
parameter λH and pruning-parameter P . The models are trained for 3 epochs,
meaning when P = 4, the pruning never occurs.
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Figure 6.10: Simulated PHSI trajectories along with the ground truth of the
nonlinear Hénon–Heiles system for three different combinations of regularization
and pruning.

Experiment 2: Nonlinear Schrödinger system

The non-linear Schrödinger is also a purely Hamiltonian system, and this
is assumed when training the PHSI model. The models are trained with
λH ∈ {0, 0.05, 0.5} and P ∈ {1, 5, 10}, and the they are trained for 10 epochs. In
Figure 6.11, we observe that the regularization improves the model’s performance
drastically. The model with P = 10 and λ = 0 has an average l2-error
approximately 5 times that of the model with P = 2 and λ = 0.5, suggesting
that the combination of regularization and pruning work well together. The
reason that these results were different than for the Hénon–Heiles system
may be that the non-linear Schrödinger system is non-separable and of a
higher polynomial order, making the true solution more sparse in the function
dictionary. Figure 6.12 illustrates the vastly superior performance of the models
with more regularization and pruning over those with less.
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Figure 6.11: Average l2-error over 30 simulated trajectories of the nonlinear
Schrödinger system by PHSI models trained with different combinations of
regularization-parameter λH and pruning-parameter P . The models are trained
for 10 epochs, meaning when P = 10, the pruning only occurs once.
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Figure 6.12: Simulated PHSI trajectories along with the ground truth of the
nonlinear Schödinger system for three different combinations of regularization
and pruning.
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6.5. Study of regularization and pruning

Experiment 3: Forced and Damped mass-spring system

The damped mass-spring system described in Section 6.3 is a pseudo-
Hamiltonian system. That means we have regularization on the Hamiltonian
and the external forces (λH , λF in Equation 5.6). Again, we choose to test
the PHSI model for different values of λH and P with λH ∈ {0, 0.1, 0.5} and
P ∈ {20, 40, 80}, and the models will train for 80 epochs. λF is set to 0.01.
Figure 6.13 indicates that promoting sparsity helps the PHSI model’s predictive
performance, especially through l1-regularization. The superior predictive
ability of the PHSI models that promote sparsity is also illustrated in the
plotted simulated trajectories in Figure 6.14.
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Figure 6.13: Average l2-error over 30 simulated trajectories of the damped
mass-spring system by PHSI models trained with different combinations of
regularization-parameter λH and pruning-parameter P . The models are trained
for 80 epochs, meaning when P = 80, the pruning only occurs once.
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Figure 6.14: Simulated PHSI trajectories along with the ground truth of the
damped mass-spring system for three different combinations of regularization
and pruning.

Experiment 4: Tank system

The final system we study is the tank system from Section 6.4. We choose
the search-spaces λH ∈ {0, 0.05, 0.5} and P ∈ {10, 40, 80}, and the models are
trained for 80 epochs. As shown in Figure 6.15, the regularization and pruning
have a great impact on the performance of the model, and appear essential for
achieving an accurate PHSI model. The model with λH = 0 and P = 80 has a
predictive score about 60 times that of the model with λH = 0.5 and P = 10.
Figure 6.15 confirms that this assumption is true for the tank system.
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Figure 6.15: Average loss over simulated trajectories for PHSI models trained
with different combinations of regularization-parameter λH and pruning-
parameter P . The models are trained for 80 epochs, meaning when P = 80,
the pruning only happens once.
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Figure 6.16: Simulated PHSI trajectories along with the ground truth of one of
the leaking tanks in the connected tank system for three different combinations
of regularization and pruning.

In conclusion, promoting sparsity in the function dictionary generally
improves the accuracy of the PHSI model. Since promoting sparsity in the PHSI
model through regularization and pruning improved results for three of the
four models (it neither improved nor worsened the performance when learning
the Hénon–Heiles), the sparsity assumption made in Chapter 3 seems to hold
for a variety of systems. This again implies that the PHSI model is in general
well fit for finding true governing equations. Note that the regularization and
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pruning had more of an impact when learning systems of high dimensionality
and polynomial order i.e. the nonlinear Schrödinger system and the tank system.
If the PHSI model is to be applied to learning more complex and higher
dimensional systems than what has been done in this thesis, promoting sparsity
will presumably be vital for achieving accuracy.

6.6 Analysis and discussion

After studying experiments on four different systems in this chapter, we can
infer that the PHSI model is largely prosperous. In sections 6.1 and 6.2, we
see that the model works well on pure Hamiltonian systems. Figures 6.1 and
6.2 illustrate that the model predicts well on noisy data, indicating that the
integration scheme is successful. Figure 6.3 illustrates that the PHSI model’s
pseudo-Hamiltonian structure helps keep the model prediction stable as opposed
to the predictions of the BSI and SINDy models that diverge when trained on
noisy data. The PHSI model also learned the Hamiltonian equations through
system identifications more accurately than the other models. Its Hamiltonian
structure helps narrow the function dictionary in high dimensional systems, and
Figure 6.4 suggests that this enhances its system identification ability. In the
mass-spring experiment, the PHSI model was able to separately learn the inner
dynamics, damping, and external forces accurately through separate system
identification models. This allowed for full insight into the system’s behavior as
well as excellent prediction outside of the domain of training data. In the tank
experiment, the PHSI model accurately retrieved the true equations for the
inner dynamics and the damping despite the complex form of the external forces.
Since the other models mostly failed to do so, we can infer that the separation of
inner and outer dynamics is crucial for system identification in these experiments.

We also note that the PHSI model has limitations. Firstly, the model as-
sumes that the structure matrix in the Hamiltonian formulation (see Equation
2.26) is known in all the numerical experiments. This restricts the model to
learning systems where the structure matrix is prior knowledge, a restriction
that other system identification models such as SINDy [BPK16] do not have.
However, in some cases, the structure matrix can be obtained from physical
intuition and engineering knowledge (e.g. the tank problem). Secondly, since
the separation of the inner and outer dynamics in the model is non-unique,
we have no guarantee of finding the separation that most accurately reflects
the true system composition. As discussed in Section 5.2, the model user
may have to impose prior physical knowledge to achieve the most natural
separation of the inner and outer dynamics. In addition, the PHSI model
assumes that the location of the external forces is known, i.e. which dimensions
in the system the forces affect. [Eid+23] show that the performance of their
pseudo-Hamiltonian neural networks declines when the location of the external
forces is unknown. This weakness may affect the PHSI model as well, although
we have not conducted this experiment. Also, a general limitation of system
identification is that we have to guess what functions to include in the search
dictionary, and it can be hard to know these function forms beforehand. Yet,
in practical cases, many systems can be described by polynomials, meaning the
PHSI is applicable to a wide range of physical systems.
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CHAPTER 7

Conclusions

In this thesis, we have combined theory from Hamiltonian mechanics and
system identification to propose a novel way of learning dynamical systems
from data. We reviewed Lagrangian and Hamiltonian mechanics as well as
machine learning techniques including neural networks and system identification.

Using this theory, we wanted to assess the application of system identific-
ation to realistic dynamical systems affected by damping and external forces.
Our study introduced a pseudo-Hamiltonian system identification model (PHSI),
and the results of several numerical experiments demonstrated that this is
feasible. However, the PHSI model’s success relies on several prior physical
assumptions. We also wanted to investigate whether it is possible to deploy
separate system identification models to learn the inner dynamics, damping,
and external effects all at once. This was also accomplished by the PHSI model
in a numerical experiment, albeit on a simple, low-dimensional system.

The PHSI model outperformed existing system identification models on
Hamiltonian and pseudo-Hamiltonian systems. It also holds an advantage
in terms of interpretability over black-box dynamical system models. We
introduced a training algorithm based on a numerical integration scheme that
proved effective, especially on noisy data. We also addressed promoting sparsity
using regularization and pruning, and we conducted a test of hyper-parameters.
As discussed in Section 7, the method of the PHSI model has some limitations
and weaknesses. Some examples are requirements of prior physical assumptions
and non-uniqueness of the pseudo-Hamiltonian formulation. Yet, the PHSI
model provides a promising approach to system identification that can be
applied in various fields.
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APPENDIX A

Numerical comparison of
integration schemes

In Section 5.1, we discussed the choice of numerical integrator Ψ when computing
the loss for the PHSI model (Equation 5.6). In all the experiments in Chapter 6,
the choice fell on the symmetric fourth-order Runge-Kutta method introduced
by [Eid+23], and it was argued that this integrator handles noise well. In
this appendix, we will compare the performance of this integrator with other
numerical integrators. More specifically, we will experiment with training the
PHSI models with the following integrators:

• the forward Euler method (Euler), (Equation 5.7)

• the implicit midpoint method (Midpoint), (Equation 5.8)

• the classic fourth-order Runge–Kutta method (RK4), (Equation 5.9)

• the symmetric fourth-order Runge–Kutta method (SRK4), (Equation
5.11)

and their properties are summarized in Table A.1.

Table A.1: Properties of integrators.

Integrator order num. evalulations explicit symmetric

Forward Euler (Euler) 1 1 yes no
Implicit midpoint (Midpoint) 2 1 no yes
Runge–Kutta-4 (RK4) 4 4 yes no
Symmetric 4th order (SRK4) 4 4 no yes

Note that the fourth-order methods require multiple evaluations of the PHSI
model, making them more computationally expensive. Note also that although
the midpoint and SKR4 methods are implicit, they can be explicitly computed
in the integration scheme as explained in Section 4.3.
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A.1. Hamiltonian system: Hénon–Heiles

A.1 Hamiltonian system: Hénon–Heiles

We train the models on trajectories from t = 0 to t = 1 with sampling time 0.1
and

• 2000 samples, i.e. 200 trajectories, with σ = 10−5, i.e. nearly without
noise;

• 2000 samples with small noise (Gaussian noise with a standard deviation
σ = 0.001 added to the measurements of the states);

• 2000 samples with moderate noise (standard deviation σ = 0.01);

When trained on data without noise, the PHSI model performs better
using the fourth-order integrators (RK4, SRK4), as seen in Figure A.1. The
error when using the Euler method is two orders of magnitude larger than for
the SRK4 method. The same can be observed when noise is added, but the
difference becomes smaller. In general, the forward Euler method that only
relies on one data point in the evaluation of Ψ gives a lower accuracy than the
other methods that rely on two data points. The accuracy of the PHSI model
seems to be less affected by the choice of integrator when the dataset contains
a large amount of noise.

Our approach in the integration scheme is equivalent to performing one
integration step. [DXZ20] apply an integration scheme where several steps
are performed, increasing the accuracy of their results. However, performing
multiple steps will add a computational cost, and it is not proven that it will
increase the accuracy on data with noise.

Figure A.1: The mean l2 error of PHSI models trained with the different
integrators on the Hénon–Heiles problem. The error is on the predicted positions
and momenta from t = 0 to t = 1 on 20 different random initial conditions.
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Figure A.2: Prediction of the momentum and position by PHSI models trained
with different integrators on the Hénon–Heiles problem.

A.2 Pseudo-Hamiltonian system: Tanks and pipes

We also test the performance of the different integrators in the hybrid model
used to learn the tank system presented in Section 6.4. We train the models on
trajectories from t = 0 to t = 0.5 with sampling time 0.01 and

• 3000 samples, i.e. 60 trajectories, without noise;

• 3000 samples with moderate noise (Gaussian noise with a standard
deviation σ = 0.01 added to the measurements of the states);

• 3000 samples with much noise (standard deviation σ = 0.05);

Figure A.3 shows the l2 error of all the state variables from the predictions
obtained by applying the methods on a test set of 10 different initial conditions.
The forward Euler method performs significantly worse than the other methods
in all the experiments, something that is not surprising considering it is only
of first order and only depends on one data point in the evaluation of Ψ. The
fourth-order methods perform better than the lower-order methods for all the
experiments, illustrating that using higher-order integrators may be worth the
extra computational cost. We also observe that the symmetric methods perform
well on the dataset with much noise, supporting the claim that symmetry in
the integrator evens out the noise between the data points. As seen in Figure
A.4, the choice of integrator is vital to the PHSI model’s predictive abilities.
SRK4 outperforms RK4 and the midpoint methods, which again outperform
the forward Euler method.
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Figure A.3: The mean l2 error of hybrid PHSI models trained with the different
integrators on the tank system. The error is of the predicted volume and flow
in all tanks and pipes from t = 0 to t = 0.5 on 10 different random initial
conditions.
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64



APPENDIX B

Implementation details

For all experiments of this paper, the Adam optimizer is used, with a weight
decay constant of 10−4. The learning rate is chosen from the following search
space: {10−2, 3 · 10−3, 10−3}. The training data is shuffled for all experiments,
and the integrator is the fourth-order symmetric integration scheme introduced
in [Eid+23]. The batch size is 32. For the PHSI and BSI models, polynomial
coefficients have an initial value of 0.2, and trigonometric coefficients (amplitude
and frequency) have an initial value of 1.

B.1 Hénon–Heiles system

In this experiment, the learning rate was 3 · 10−3. Regularization was not used.
The PHSI and BSI models were trained for 60 epochs. The P -value and ϵ-value
in Algorithm 6 were set to 5 and 0.05, respectively. The noisy data set had
σ = 0.02. The search space for PHSI and SSINN was third-degree polynomials,
while for SINDy and BSI it was second-degree polynomials. The initial state
values in the training data are drawn uniformly between −1 and 1.

B.2 Nonlinear Schrödinger system

For the PHSI model, the learning rate was chosen to be 10−2. Regularization
was not used. The model was trained for 100 epochs. The P -value and ϵ-value
in Algorithm 6 were set to 20 and 0.05, respectively. The noisy dataset had
σ = 5 · 10−5. The search space for PHSI was fourth-degree polynomials, while
for SINDy and BSI it was third-degree polynomials. The initial state values in
the training data are drawn uniformly between −1 and 1.

B.3 Forced and damped mass-spring system

The SINDy model has a disadvantage as it can only learn autonomous systems.
To still be able to use it, we converted the system into an autonomous one by
adding time as a variable to Equation 6.5: ṫ = 1.

The PHSI, BSI, and PHNN models were run for 150 epochs, with the learning
rate 3 · 10−3. The P -value and ϵ-value in Algorithm 6 were set to 20 and 0.05,
respectively. l1-regularization was used for the PHSI model on the forces and
the Hamiltonian function: λ1 = 0.1 and λ2 = 0.01 in Equation 5.6. The port of
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B.4. System of tanks and pipes

the PHNN had a regularization parameter of 0.1. In the PHSI model, Ĥ had a
search space of polynomials of the third degree, and F̂ had a combination of
polynomial and trigonometric terms and was strictly dependant on the state
q, p. The BSI and SINDy models trained on a combination of polynomial terms
of third-degree and trigonometric terms. The initial state values in the training
data are drawn uniformly between −1 and 1.

B.4 System of tanks and pipes

The learning rate 3 · 10−2 was chosen. The PHSI and BSI models were trained
for 100 epochs. The P -value and ϵ-value in Algorithm 6 were set to 10 and 0.05,
respectively. For the PHSI model, l1 regularization was used on the external
forces and the Hamiltonian with λ1 = 0.5, λ2 = 0.001 in Equation 5.6. In
the PHSI model, the external forces were modeled by a neural network with
three hidden layers of 100 nodes. The search space for Ĥ was second-degree
polynomials. The BSI and SINDy models had a search space of first-degree
polynomials. The initial state values in the training data are drawn uniformly
between −1 and 1.
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