
.

Master’s thesis

Financial Markets with Delay

Léandre Jean Jules Clemen Hansen

Mathematics
60 ECTS study points

Department of Mathematics
Faculty of Mathematics and Natural Sciences

Spring 2023



Financial Markets with Delay

by Léandre Jean Jules Clemen Hansen

Supervisors:

Giulia Di Nunno, Bernt Øksendal

and Andreas Erik Petersson



Abstract
This thesis focuses on the study of financial markets with delay and in a broader sense, the

study of stochastic differential equations with delay. We describe a continuous model, argue
the existence, uniqueness and positivity of a solution to the stochastic differential equation
chosen. We then prove non-arbitrage property as well as the completeness of the market.
Numerical approaches are developed: the classic Euler-Maruyama scheme for delay equations
and a so-called logarithmic Euler-Maruyama scheme.

A pure jump model is then considered. Existence, uniqueness and positivity of the solution
to the stochastic differential equation describing the stock price dynamics are proven. We
prove the non-arbitrage property and the incompleteness of the market. An extension of the
classic Euler-Maruyama scheme with jumps is developed and an approach to hedging in such
cases is then discussed.
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Introduction

The classical Black-Scholes model (1973) came as a revolution with its elegant option pric-
ing formula. It is, however, not without faults. The assumption of constant volatility has
been questioned and turns out to be quite far from reality. Stochastic volatility models such
as the Heston or GARCH model tried to correct the model to fit the "skew" visible in the
data. Another critique of the model is that there is no account of the past in the model. It
is assumed that the current price of a stock gives us all the information that we could ever
want. This critique (and hence all subsequent improvements on this front) is the main drive
behind this (draft) thesis. It is natural to want to add such dependence into the model, say to
represent the decisions of buyers and sellers basing their decision on previous prices or other
phenomenon.

We will very briefly give a bit of background on the original model discovered by Black,
Scholes and Merton in 1973 and then move onto models with memory in the dynamics of the
price of the risky asset.
This will first be done in the continuous case. We will need to go back to mathematical fun-
damentals such as the existence of a solution to the functional differential equation modeling
the dynamics of the risky asset as well as the conditions for its positivity. This will be followed
by a study of the financial market where the risky asset follows these dynamics, such as the
lack of arbitrage opportunities and the completeness of the market as a whole.

A numerical approach will be developed, a classic Euler-Maruyama type method as well
as a different logarithmic Euler-Maruyama method. The latter guarantees positivity of each
of the approximations, which is certainly a desirable trait. However, we have found that this
kind of approximation is too restrictive. The growth rate of the coefficients of the functional
differential equation need to be of the order log log x, among other things. This is by nature of
the approximation and sadly we have not found a way to lower this requirement any further.
Rate and order of convergence are also discussed and compared.

Jumps will then be added to the model. More specifically, we will then focus on a pure
jump model. We will see that under this setting, the market loses its completeness property.
This follows from the general theory and is not unique to markets where delay is introduced
in the dynamics of the risky asset. We will once again first study the existence of a solution,
and the conditions for its positivity. This will naturally lead into a market analysis where we
will see exactly why the completeness is lost. Some claims are no longer replicable.
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A numerical approach will also be developed for this case, but the logarithmic model was
not adaptable to this setting. The hypotheses on the coefficients are too strong to get anything
out of it in the jump case. A regular Euler-Maruyama method is preferred and developed.
Rate and order of convergence are also discussed and compared.

Our last chapter will focus on the natural continuation of the market analysis. While
harder, there are alternatives to the pricing and hedging issues encountered. We discuss the
basics of pricing in a jump driven market and then discuss minimal variance hedging. If a
perfect hedge cannot be constructed, we may try to get as close as possible (in L2). The
practical meaning of this is to focus on minimalizing the risk of the hedge. We will find this
possible and discuss the shape of said hedge portfolio.



Notations

• (Ω,F,P) denotes a probability space. These will be assumed to be complete, P-augmented.
Moreover, they will usually be equipped with a filtration F = (Ft )t≥0.
• B denotes a Brownian motion.

• a and b both denote time delays. R denotes the maximum delay, i.e max(a, b).
• 1 denotes the indicator function.

• ξ denotes the price of the riskless asset.

• S denotes the price of the risky asset.

• T denotes the time horizon.

• π often denotes a portfolio.

• Q often denotes an equivalent measure.

• V (t) denotes the wealth process.

• Φ denotes the distribution of a N(0, 1) random variable.

• Z denotes a Lévy process.

• D1,2 denotes the subspace of L2 of FT -measurable random variable possessing a chaos ex-
pansion (of finite norm).

• DF denotes the non-anticipative derivative of F .

• Dt,zF denotes the Malliavin derivative of F .
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Some Preliminaries and Definitions

In the more classical case, we consider a market made up of a risk-free asset of price ξ (t) at
time t and a risky asset (or assets) of price S(t) at time t. We demand that the market is
fair in the sense that we cannot see into the future, i.e that (ξ, S) is adapted with regards to
a filtration F, representing the information available to us. We consider derivatives based on
those assets, namely call and put options, and are interested in a pricing formula for those.
The problem, however, comes in the inherent risky nature of such derivatives and how the
potential payoff is based on information we do not have: the price of the assets at the time
horizon T .
This is where the Black-Scholes formula comes into play, it gives us a pricing formula at time
t = 0 of both calls and puts. Let S = (S(T ) − K )+ (resp. (K − S(T ))+) denote the payoff of the
call option of exercise price K (resp. put). Suppose that both ξ and S are regulated by the
SDEs {

dξ (t) = rξ (t)dt, t ∈ [0, T ]
ξ (0) = 1{

dS(t) = µdt + σdB(t), t ∈ [0, T ]
S(0) = x, x > 0

where r, µ, σ ̸= 0 are constants. Then the price of a call (resp. put) at time t is given by

V (t) = S(t)Φ(α2) − Ke−r(T−t)Φ(α1)
(resp.)

V (t) = Ke−r(T−t)Φ(−α1) − S(t)Φ(−α2)
where Φ is the cumulative distribution function of a centered normal random variable of
variance 1,

α1 = 1
σ

√(T − t)( log xK + (
r + σ 22 )(T − t))

and
α2 = α1 − σ

√(T − t)
8



Note that a more general SDE can be considered for the dynamics of the risky asset.
One can also go a step further and consider the hedging of these claims (lower bounded FT -
measurable random variables), that is finding the portfolio replicating the claim. As we will
see, in complete markets such as this one, the existence of such a portfolio is guaranteed,
however its shape isn’t necessarily easy to find. Before we go on, let us give definitions for
the terms we have just used. We first need to define a self-financing and an admissible portfolio

• We say that a portfolio π = (πξ , πS ) is self-financing if
∫ t0 π(u)dS(u) exists for all t ∈ [0, T ]

and if
Vπ (t) := (πξ , πS (t)) · (ξ (t), S(t))T = V0 + ∫ t

0 πξ (u)dξ (u) ∫ t

0 πS (u)dS(u)
i.e that the changes in the portfolio depend only on the changes in the asset prices themselves
and not on external factors. This means that once the initial wealth of the portfolio V0 is
chosen, we are not able to withdraw or put in more money in the wealth process. It is however,
possible, given the amount πS invested in the risky asset, possible to choose V0 and πξ such
that π is self-financing. We can now define an admissible portfolio.

• A portfolio is called admissible if it is self-financing and if there exists a constant Cπ such
that

Vπ (t) > −Cπ
for all t ∈ [0, T ], i.e there is a threshold of debt that the one can take.

• Finally, we say that a claim F is replicable if there exists an admissible portfolio π and
an initial value V0 such that

F = Vπ (T ) = V0 + ∫ t

0 πξ (u)dξ (u) ∫ t

0 πS (u)dS(u)
The replicability and hedging of a claim are important and at the heart of many studies in
stochastic calculus.
An arbitrage opportunity is the existence of a portfolio π such that V0 = 0, Vπ (T ) ≥ 0 and
P(Vπ (T ) > 0) > 0. If there are no such π, then we say that the market does not allow for
arbitrage. Moreover, if every claim is replicable, the market is called complete.

This paper has for goal to study these concepts in different financial markets with delay,
i.e in various delay settings. We will for the most part not re-explain these concepts as they
remain the same and we will assume that the reader is fairly familiar with them.



Chapter I
A Delayed Black-Scholes Model

I.1. Overview of the model
Throughout this chapter, we present models first developed by Arriojas et al. (see [AHMP07]
and [AHMP06]).

1.1. General Framework
Consider the probability space equipped with a filtration (Ω,F,F,P) where F is the natural
filtration of a one-dimensional Brownian motion B. The integration with respect to B will be
done in the classical Ito sense. Let T , R, b be positive constants with the only condition that
R ≥ b and equip C = C ([−R, 0],R) with the supremum norm. Let η ∈ C be an F0-measurable
process and define the stochastic memory St by St (s) := S(t + s), s ∈ [−R, 0]. We consider an
SFDE of the form below{

dS(t) = f (t, St )S(t)dt + g(S(t − b))S(t)dB(t), t ∈ [0, T ]
S(t) = η(t), t ∈ [−R, 0] (1.1)

Remark. When writing f (t, St ), since S(t) = St (0), this does not exclude a drift depending
on S(t). Technically, if we defined the stochastic memory for s ∈ [−R, 0), then the drift would
be written as f (t, S(t), St ). For readability’s sake, we choose not to here.

Remark. Notice that the drift coefficient is taken to be quite general. One can imag-
ine that potentially multiple delays of the form S(t − a1) . . . S(t − an) can be considered and
even delays in the form of integrals of St . For this chapter however, we assume a general drift
f (t, St ) as the following results are not exclusive to particular types of drift delays and the
drift does not in fact play a big role in the main results of this chapter. In particular cases
where a specific drift is chosen we will consider delays of the form f (S(t − a)), a drift with a
single delay a > 0.

Remark. Also note that while our volatility coefficient may also be generalized some-
what, since it plays a much bigger role in the computations, we have chosen for readability’s
sake a drift with a single discrete delay. The results we present however are also valid for
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Chapter I : A Delayed Black-Scholes Model

delays of the form S(t − b1) . . . S(t − bn) or extendable for different forms of delays.

To ensure that our model for the stock price exists, it is necessary to determine under
what hypotheses (if any) a solution to (1.1) exists. Moreover, for it to have any meaning, it
is also necessary that said solution is not only unique but positive at all times as stock prices
cannot be negative. Let us first list a familiar set of assumptions under which we will see that
(1.1) is well-posed.

Hypotheses (H)

(i) (Global Linear Growth in the drift coefficient) ∃L > 0 s.th ∀(t, φ) ∈ [0, T ] × C,

||f (t, φ)|| ≤ L(1 + ||φ||)
(ii) (Local Lipschitzianity of the drift coefficient) ∀n ≥ 1, ∃Ln > 0 s.th ∀(t, φi) ∈ [0, T ] × C, i =1, 2 ,

||f (t, φ1) − f (t, φ2)|| ≤ Ln||φ1 − φ2||
(iii) (Continuity and Boundedness of the volatility coefficient) The function g : R → R is
continuous, bounded and g ̸= 0.

Theorem 1.1.1. (Existence and uniqueness theorem) Under the hypotheses (H), the SFDE
(1.1) has a pathwise unique solution.

Proof. Begin by limiting the range of t to [0,min(a, b)] where a > 0 is the delay in the
stochastic coefficient. The reason for this is to replace the stochastic, troublesome f (t, St )
and g(S(t − b)) by the much easier to work with f (t, η(t)) and g(η(t − b)) since they coincide
on the interval [0,min(a, b)]. Define the martingale

M(t) := ∫ t

0 f (t, η(t))dt + ∫ t

0 g(η(t − b))dB(t)
then

dS(t) = S(t)dM(t) (1.2)

and we recognize a well known stochastic exponential, of which a unique solution exists.
Thus, we know the shape of the solution, that is

S(t) = η(0)exp( ∫ t

0 f (t, η(t)) − 12g2(η(t − b))dt + ∫ t

0 g(η(t − b))dB(t)) (1.3)

We repeat this process for time steps of length min(a, b) and the proof is complete.

Remark. To emphasize the dependence on the initial condition η, we sometimes use an
anticipated super index ηS(t).

Remark. As is reviewed in Appendix A, one might apply theorem I.1 of [Moh98] to
(1.1). However, obtaining the uniqueness via this theorem does not offer any insight on what
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Chapter I : A Delayed Black-Scholes Model

sufficient conditions to add to ensure positivity of the solution. The shape of the solution is
key and necessary. As we will see in the next result, this proof allows us to glean a sufficient
positivity condition.

Corollary 1.1.1. (A Sufficient Condition for Positivity) Consider the SFDE (1.1). If η(0) > 0,
then the unique solution S(t) is strictly positive for all t ≥ 0.

Proof. We use the form of the solution we showed in (1.3). Clearly, if η(0) > 0, then S(t) > 0.

Remark. We are treating a very special case of drift in this paper, mainly that of f (t, St )S(t).
While unnecessary for the scope of this paper, one might imagine that the solution is not of
exponential shape and that the drift is simply f (t, St ). In this case, how then do we proceed?
Once again, it is necessary to construct the solution in proving its existence and uniqueness,
so as to prove a sufficient condition for positivity. The way to construct the solution is a bit
trickier. In this case, one would consider the martingale{

dψ(t) = ψ(t)dM(t), t ∈ [0, T ]
ψ(t) = 1, t ∈ [−R, 0]

and then the SFDE {
dy(t) = ψ(t)−1f (t, ψtyt )dt
y(t) = η, t ∈ [−R, 0]

We need not know what the shape of y is, only that it exists. Hence, we use theorem I.1
of [Moh98] to prove existence and uniqueness of y. Then, we define S(t) := ψ(t)y(t) and in
fact, by construction, we have that S(t) is indeed a solution of our original SFDE. Moreover,
by uniqueness of ψ and y, then S(t) is also unique. Finally, we see that if f > 0, then y is
increasing. Because ψ(t) > 0 for all t ≥ 0, it is easy to see that then η(0) > 0 implies S(t) > 0.
Hence, we keep positivity of the solution but under an additional sufficient condition, mainly
that f is strictly positive.

1.2. A complete Market
A natural question following our inquiry about whether or not (I.1) is a well-posed model for
the stock price is to verify whether or not arbitrage is allowed in our modeled market and
whether or not that market is complete. In this section, we aim to those questions as well in
a somewhat classical way, that is by applying Girsanov’s theorem.
As mentioned before, we will here restrict ourselves to one case of drift, namely f (t, St )S(t).
Hence, we suppose that the market is regulated by the SFDE (1.1), i.e{

dS(t) = f (t, St )S(t)dt + g(S(t − b))S(t)dB(t), t ∈ [0, T ]
S(t) = η, t ∈ [−R, 0]

where S(t) represents the price of the risky assets and ξ represents the price of the riskless
asset, of constant interest rate r > 0.

12



Chapter I : A Delayed Black-Scholes Model

Theorem 1.1.2. The model does not allow for arbitrage. Moreover, the market is complete.

Proof. • Let

S̃(t) := e−rt S(t)
denote the discounted stock price. Applying Ito’s formula to the function g(t, x) = e−rtx,
we find that

dS̃(t) = e−rt dS(t) + S(t)d(e−rt ) = e−rt(f (t, St )S(t)dt + g(S(t − b))S(t)dB(t)) − re−rt S(t)dt= e−rt S(t)︸ ︷︷ ︸=S̃(t)
((f (t, St ) − r)dt + g(S(t − b))dB(t))

= S̃(t)((f (t, St ) − r)dt + g(S(t − b))dB(t)) (1.6)

This beckons us to define the process

Ŝ(t) = ∫ t

0 f (t, Su) − r dt + ∫ t

0 g(S(u− b))dB(u) (1.6)

Then

dS̃(t) = S̃(t)dŜ(t) (1.7)

i.e

S̃(t) = φ(0) + ∫ t

0 S̃(t)dŜ(t) (1.8)

Now define

φ(t) = − f (t, St ) − r
g(S(t − b))

and

Z (t) = ∫ t

0 φ(u)dB(u) − 12
∫ t

0 φ2(u)du
Note that to ensure that those two are well defined, we must impose conditions so that the
denominator of φ(t) does not vanish. Since S(t) > 0 by theorem 1.1, it suffices to impose the
condition that g(x) ̸= 0 if x > 0. The aim is to apply Girsanov’s theorem to dQ := Z (T )dP.
It is however necessary to first verify that the conditions for the theorem are met, i.e that
φ ∈ M2

loc([0, T ]) and that Z is a P-martingale.

The process φ is progressively measurable, as φ(t) is F-adapted (even predictable if
the drift coefficient doesn’t include the present price) and right-continuous. The square
integrability of φ comes from pathwise continuity, which implies that it is almost surely
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Chapter I : A Delayed Black-Scholes Model

bounded on the finite interval [0, T ]. Moreover, the fact that g is non-zero on the given
interval ensures that 1

g also stays bounded on finite intervals, hence φ belongs to L2([0, T ]),
as [0, T ] is obviously finite.
It remains to show that Z is a P-martingale, which requires a bit more work. If once again
the delay in the drift coefficient is a > 0, one can use the predictability of the process with
respect to the filtration Ft−l where l = min (a, b). We condition on the past with time steps
l, using that

∫ T
T−l φ(u)dB(u) is centered and normally distributed of variance

∫ T
T−l φ

2(u)du.
Then, it is possible to prove that E[Z (t)] = 1 i.e the Novikov condition is satisfied and Z is
indeed a P-martingale. We refer to [AHMP07].

With the conditions for Girsanov’s theorem being verified, it follows that the process

B̃(t) = B(t) + ∫ t

0 φ(u)du
is a standard Brownian motion w.r.t Q. Finally, thanks to the way we have defined φ, we
have

dB(t) = dB̃(t) − f (t, St ) − r
g(S(t − b))dt

and hence, (1.7) can be rewritten as

Ŝ(t) = ∫ t

0 f (u, Su)−r du−
∫ t

0 ������g(S(u− b)) f (t, Su) − r

������g(S(u− b)) dt+
∫ t

0 g(S(u−b))dB̃(u) = ∫ t

0 g(S(u−b))dB̃(u)
i.e Ŝ(t) can be expressed as an Ito integral w.r.t a standard Brownian motion under the
measure Q. It is thus a Q-local martingale (and even a Q-martingale). By (1.7), it follows
that S̃ is also a Q-local martingale. By the fundamental theorem of asset pricing, we can
thus deduce that the market does not allow for arbitrage.

• It remains to show that the market is complete under the measure Q. Take a con-
tingent claim (i.e an option) of payoff function X , that is a Ft-measurable random variable,
and define

U (t) := EQ[e−rtX |Ft ]
Thus, U is a Q-martingale and hence we can apply the martingale representation theorem.
There exists a (Ft-)predictable, L2 process H such that

U (t) = EQ[e−rtX ] + ∫ t

0 H(u)dB̃(u) (1.9)

Next, define the strategy for the risky assets like so:

πS (t) := H(t)
S̃(t)g(S(t − b)) (1.10)

14



Chapter I : A Delayed Black-Scholes Model

and compensate the portfolio with the riskless asset as usual:

πξ (t) := U (t) − πS (t)S̃(t) (1.11)

If V (t) now denotes the value of the portfolio at time t, then

V (t) = πξ (t)ert + πS (t)S(t) = ertU (t) − πSert S̃(t)︸ ︷︷ ︸=S(t)
+ πSS(t) = ertU (t) (1.12)

Taking t = T , it is clear that

V (T ) = ertEQ[e−rtX |FT ] = EQ[X |FT ] = XEQ[1|FT ] = X

where we used that X is FT -measurable. Moreover, by the Ito product rule applied to (1.12),

dV (t) = U (t)dert + ertdU (t)
Taking it one term at a time, we have by definition

U (t)dert = πξ (t)dert + πS (t)S̃(t)dert = πξ (t)dert + rπS (t)S(t)dt
As for the second term, things get slightly more complicated. By (1.9), we have

ertdU (t) = ertH(t)dB̃(t) = ertH(t)dB(t) + ertH(t) f (t, St ) − r
g(S(t − b))dt

By (1.11), we have H(t) = πS (t)S̃(t)g(S(t − b)) and hence

ertdU (t) = ertπS (t)S̃(t)g(S(t − b))dB(t) + ertπS (t)S̃(t)f (t, St )dt − rertπS (t)S̃(t)dt
Grouping up the terms, using that S(t) = ert S̃(t), we find that

ertdU (t) = πS (t)(f (t, St )S(t)dt + g(S(t − b))S(t)dB(t))︸ ︷︷ ︸=dS(t)
− rπS (t)S(t)dt

Hence, both leftover terms from A and B cancel out and we get

dV (t) = πξ (t) dert︸︷︷︸=dξ (t) + πS (t)dS(t)
i.e, the change in the value of the portfolio only depends on the changes in price of the risky
and riskless assets: the portfolio is self-financing. Hence the market is complete.

Remark. The measure Q = ηQ is, by construction, dependent on the initial condition. A
legitimate question to have would be to study exactly how strong the dependence truly is.
For this study of the sensitivity of the initial condition, we will refer to [BDNHP16].

Remark. The choice of interest rate for the riskfree asset can be extended to a determin-
istic r(t). With a stochastic delay, one loses the Markov property however. This is discussed
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in [Moh84].

Remark. We remind the reader that to satisfy the no-arbitrage property, contingent claims
of payoff X must necessarily have a unique price at time t given by

X0 = EQ[e−r(T−t)X |Ft ]
One way to verify this is to run the numbers and observe that in the case that the price
is higher than that, a broker has an arbitrage opportunity on the riskfree asset. A similar
computation can be run for an investor if the price is lower than the above one. This not only
ties in with the proof of the previous theorem giving us a hedging strategy for the contingent
claim, but it will also be very important for our next theorem as this is the starting point
from which we derive a Black-Scholes formula for European options in our model.

1.3. A Pricing Formula for the European Call and Put options, Hedging

Theorem 1.1.3. (A Pricing Formula for the European Call Option) Assume that f = f1.
Let X represent the payoff of a European call option of exercise price K with maturity T ,
that is X = (S(T ) − K )+. Then the value (fair price) of that option at time t is given by

V (t) =
ertEQ

[Σ(
S̃(T − b),− 12

∫ T

T−b
g2(S(u− b))du, ∫ T

t−b
g2(S(u− b))du)∣∣Ft] , t ∈ [0, T − b)

S(t)Φ(β+(t)) − Ke−r(T−t)Φ(β−(t)) , t ∈ [T − b, T ]
where Φ is the distribution of a N(0, 1) random variable, where

β±(t) := logS(t)
K + r(T − t) ± 12 ∫ T

t g
2(S(u− b))du( ∫ T

t g2(S(u− b)))du) 12
and where

Σ(x, m, σ 2) := EQ
[(xem+σN − Ke−rT )+]

, σ , x > 0, m ∈ R

Note that this pricing formula is only really explicit for the last delay segment [T − b, T ]
(note as well that this is not dependent on the drift delay!) which is certainly useful, but
not quite perfect. Indeed, before this period, it is very hard to compute analytically and it
is usually approximated using Monte Carlo methods for example. For examples of numerical
approximations, we refer to the next section.
Before we prove the theorem, let us get rid of the most tedious computational details first in
the form of the following lemma.

Lemma 1.1.1. Let ξ N(0, 1) and define the map Σ by

Σ(x, m, σ 2) := EQ
[(xem+σξ − Ke−rT )+]
16
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then Σ(x, m, σ 2) = xm+ σ22 Φ(α2) − xKe−rTΦ(α1)
where

α1 = α1(x, m, σ ) := 1
σ

( log xK +m+ rT
)

and

α2 = α2(x, m, σ ) = α1 + σ

Proof. The positivity condition in the expression of Σ is equivalent to

log xK +m+ σξ + rT ≥ 0
which can be written as

α1 + ξ ≥ 0
where

α1 = α1(x, m, σ ) := 1
σ

( log xK +m+ rT
)

Thus, we have

Σ(x, m, σ 2) = EQ[(xem+σξ − Ke−rT )1{α1+ξ≥0}] = ∫ ∞

−α1
(
xem+σy − Ke−rT ) e−y22

√2π dy
= ∫ α1

−∞

(
xem−σy − Ke−rT ) e−y22

√2π dy (1.14)

where we have used that ξ ∼ N(0, 1). Now, separating (1.14) integral as the difference of
two integrals, we have

Σ(x, m, σ 2) = x
∫ α1

−∞
em+σy e− y22

√2π dy− xKe−rT
∫ α1

−∞

e− y22
√2π dy = I1 + I2

From a first glance, we see that

I2 = xKe−rTΦ(α1)
where Φ is the cumulative distribution function of a centered normal variable with variance1. As for I1, executing the change of variable z = y+ σ , we find

I1 = x
∫ α1

−∞
em+ σ22 e− z22

√2π dz = xem+ σ22 Φ(α2)
where α2 = α2(x, m, σ ) := α1 + σ . Thus,

17
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Σ(x, m, σ 2) = xem+ σ22 Φ(α2) − xKe−rTΦ(α1)
With this out of the way, we now proceed to prove the pricing formula for European

options.

Proof of theorem 1.1.4. We will only detail the case X = (S(T ) − K )+ as the other case is
analogous. We start this proof from the previous remark, i.e that

V (t) = EQ[e−r(T−t)(S(T ) − K )+|Ft ] = ertEQ[(S̃(T ) − e−rTK )+|Ft ]
Because of the stochastic exponential shape of S̃(t) in (1.6), we have

S̃(t) = φ(0)exp( ∫ T

t
g(S(u− b))dB̃(u) − 12

∫ T

t
g(S(u− b))2 du)

First of all, S(t) is Ft-measurable by definition and so is S̃(t). Suppose now that t ∈ [T−b, T ].
The same then follows for the delayed S(t − b) and thus

∫ T
t g(S(u − b))2 du. Let us now

study the remaining term. Given the information at time t, i.e when conditioning w.r.t Ft ,
for t ∈ [T − b, T ], the function g(S(t − b)) becomes "deterministic" and hence

∫ T
t g(S(u −

b))dB̃(u) follows a centered normal distribution with σ 2 = ∫ T
t g(S(u−b))2 du. This allows the

computation of the conditional expectation (which can be expressed analytically!). Thus,
we conclude that

V (t) = ertΣ(
S̃(t),−12

∫ T

t
g(S(u− b))2 du,∫ T

t
g(S(u− b))2 du)

where

Σ(x, m, σ 2) := EQ[(xem+σξ − Ke−rT )+]
and where ξ ∼ N(0, 1). A few computational tricks similar to the original Black-Scholes
proof are required to transform this expression into what we originally promised. With our
original values for m and σ , we have m+ σ 22 = 0 and so, plugging back in the original values
for each of these in the expression for V (t) as well as using the above lemma, we have

α1(S̃(t),−12
∫ T

t
g(S(u− b))2 du,∫ T

t
g(S(u− b))2 du) = log S̃(t)

K + rT − 12 ∫ T
t g(S(u− b))2 du√∫ T

t g(S(u− b))2 du
= log S(t)

K + r(T − t) − 12 ∫ T
t g(S(u− b))2 du√∫ T

t g(S(u− b))2 du
Similarly,

18
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α2(S̃(t),−12
∫ T

t
g(S(u−b))2 du, ∫ T

t
g(S(u−b))2 du) = log S(t)

K + r(T − t) + 12 ∫ T
t g(S(u− b))2 du√∫ T

t g(S(u− b))2 du
Hence

V (t) = ert S̃(t)︸ ︷︷ ︸=S(t)
Φ(β+) − Ke−r(T−t)Φ(β−) = S(t)Φ(β+) − Ke−r(T−t)Φ(β−) (1.14)

where

β± = log S(t)
K + r(T − t) ± 12 ∫ T

t g(S(u− b))2 du√∫ T
t g(S(u− b))2 du

which finishes the first part of our proof. It now remains to consider what happens if
t < T − b. In which case, one can similarly deduce that

V (t) = ertEQ
[Σ(

S̃(T − b),−12
∫ T

T−b
g2(S(u− b))du,∫ T

t−b
g2(S(u− b))du)∣∣Ft]

using the representation of S̃(T ) as below

S̃(T ) = S̃(T − b)exp( ∫ T

T−b
g(S(u− b))dB̃(u) − 12

∫ T

T−b
g(S(u− b))2 du)

which concludes the proof for the call option. A similar proof can be constructed for a put
option.

Remark. We quickly make use of the put-call parity to alternatively determine the price
of the put option for t ∈ [T − b, T ] without having to go through the above proof all over
again. We reminder the reader that if VC (t) and VP (t) are respectively the prices of the call
and put option, then

VP (t) = VC (t) + Ke−r(T−t) − S(t)
Using the above theorem for t ∈ [T − b, T ]. We see that

VP (t) = S(t)(Φ(β+(t)) − 1) + Ke−r(T−t)(1 − Φ(β−(t)))
Using the symmetry of the Φ function we have

Φ(β+(t)) − 1 = − 1√2π
∫ ∞

β+(t) = − 1√2π
∫ −β+(t)

−∞
= −Φ(−β+(t))

Likewise, 1 − Φ(β−(t)) = Φ(−β−(t)). Hence,

VP (t) = Ker(T−t)Φ(−β−(t)) − S(t)Φ(−β+(t)) (1.15)
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Theorem 1.1.4. The hedging strategy for a European call (resp. put) option, for t ∈ [T −
b, T ], is given by

πS (t) = Φ(β+(t)), πξ (t) = −Ke−rTΦ(β−(t))
(resp.)

πS (t) = Φ(−β+(t)), πξ (t) = −Ke−rTΦ(−β−(t))
Proof. The proof follows from (1.14) and (1.15). Indeed, we can rewrite (1.14) into

V (t) = S(t)Φ(β+) − Ke−rTΦ(β−) ert︸︷︷︸=ξ
and the same holds in an analog manner for (1.15). We then repeat an exact analog of the
latter part of the proof of theorem 1.1.2 using the Ito product rule exactly as in theorem
1.1.2. We then see that

dV (t) = Φ(β+)dS(t) − Ke−rTΦ(β−)dert
and the proof is complete. The same can be done for the case of the put option.
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I.2. Numerical Approximations
As we have seen in the previous section, when proving the existence and uniqueness of our
model, constructing a solution of a given SFDE is quite tricky. One proceeds by steps of
length equal to the delay to make use of the initial condition. Moreover, the pricing formula
we obtained after much hard work is not perfect as the price before the time T − b, where
T is the time horizon and b the volatility delay, is in the form of a conditional expectation.
This motivates us to develop a numerical scheme for SFDEs which one can approximate the
true solution.

Because of the positivity condition in financial markets, we propose to approximate the stock
price via a logarithmic Euler-Maruyama scheme tailored to our model. The logarithmic Euler-
Maruyama scheme, as the name suggests, is an adaptation of the Euler-Maruyama method
for SFDEs. Essentially, we use the Ito formula to write the process as an exponential, and we
approximate the process by approximating the exponential argument.
This raises questions of Lp integrability (to ensure the solution and its approximation do not
blow up even when taken as exponential arguments!). This is of course assuming that the
classic Euler-Maruyama approximations do indeed converge even for SFDEs, which is not a
given and we will need to be proven.

As this paper is not focused on numerical results, we will only briefly give the main re-
sults and more often than not sketches of proofs. Some computational details may be skipped
and in those cases, we will refer to the original works.
We will see that we are able to ensure exponential integrability if we add a new assumption
on the coefficients of our SFDE and how, under this new assumption, the convergence of the
logarithmic scheme is tied to the convergence of the classical Euler-Maruyama scheme for
SFDEs. Said convergence will be proven under global and local Lipschitz hypotheses both for
a general class of SFDEs. We will then apply this convergence result and discuss the order of
convergence.

2.1. Convergence of the Euler-Maruyama method for SFDEs
Let us begin by defining the classic Euler-Maruyama approximation scheme and its conver-
gence. For generality’s sake, consider a more general form of SFDE. We remind the reader
that as we have said before, the plan is not to apply this scheme directly to our model, but
rather to its logarithm.{

dS(t) = F (t, St )dt + G(St )dB(t), t ∈ [0, T ]
S(t) = η(t), t ∈ [−R, 0] (2.1)

Assume the following hypotheses

Hypotheses (H)

(i) (Global Lipschitzianity of the drift and volatility coefficients) The functions F and G
are jointly continuous and uniformly (i.e globally) Lipschitz in the space (second) coordinate,
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in the sense that there exists a deterministic, left-continuous and non-decreasing function
µ : [−R, 0] → R+ such that for all t ∈ [0, T ] and φ1, φ2 ∈ Lp(Ω,C),

||F (t, φ1) − F (t, φ2)||Lp(Ω,Rd) + ||G(φ1) − G(φ2)||Lp(Ω,Rd×m) ≤
∫ 0

−R
|φ1(u) − φ2(u)|p dµ(u)

(ii) (F-Adaptedness of the coefficients) If φ is adapted, so are F (t, φ(t)) and G(φ(t)).
(iii) (Continuity requirement on the initial condition) We have η ∈ C and F0-measurable.
Moreover, η ∈ Lp([−R, 0];Rn) for p > 2 and there exists a constant α > 0 such that

E
[
|η(t) − η(s)|p] ≤ α|t − s|

for all t, s ∈ [−R, 0].
Remark. Let L := µ(0) − µ(−R ). Then (H)(i) turns into the "usual" Lipschitz condi-

tion. That is, note that this is a slightly stricter condition than the usual Lipschitz condition.

Define the (discrete) Euler-Maruyama approximation of (2.1) to be{
S(tk+1) = S(tk ) + F (tk , S tk )∆t + G(S tk )∆Bt , tk ≥ 0
S(tk ) = η(tk ), tk ∈ [−R, 0] (2.2)

for a given partition π of the time axis [−R, T ], of step ∆t = T
N , N being the number of steps

and tk := k∆t. Meanwhile, ∆Bt represents the increments the increments of the Brownian
motion and

S tk (θ) := ti+1 − θ∆t S(tk+i) − ti − θ∆t S(tk+i+1) (2.3)

for ti ≤ θ ≤ ti+1. This last equality is simply a linear interpolation. If the delay does not
correspond to a time step, i.e tj − θ does not correspond to some other ti, i < j , then a linear
approximation of the stochastic memory on the two closest gridpoints is taken.

Remark. We have only defined the process and its stochastic memory on the gridpoints
but we can easily extend the processes to all [0, T ]. That is, for any t ∈ [0, T ], we define

S(t) := N∑
j=0 S(tj )1tj ,tj+1 (t)

and

S t (θ) := N∑
j=0 S tj (θ)1tj ,tj+1 (t)

Finally, define {
dζ (t) = F (t, S t )dt + G(S t )dB(t), t ∈ [0, T ]
ζ (t) = η(t), t ∈ [−R, 0] (2.4)

The latter process will be referred to as the continuous Euler-Maruyama approximation of
S. Notice that the continuous approximation we have defined coincides with the discrete
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approximation on all of the tk . Before we prove the convergence of the scheme, let us prove
a few lemmas from [Mao03].
Lemma 1.2.2. We have

E
[ sup
t∈[−R,T ] |ζ (t)|p] ≤ C

where C = Cη,p,T is independent of ∆t.
Proof. See [Mao03], lemma 3.2, for a detailed proof. From the definition of ζ (t), one has
that

|ζ (t)|p ≤ 3p−1(|η(0)|p + ∣∣∣ ∫ t

0 F (u, Su)du∣∣∣p + ∣∣∣ ∫ t

0 G(Su)dB(u)∣∣∣p)
Now, by the Hölder inequality, we have∣∣∣ ∫ t

0 F (u, Su)du∣∣∣p ≤ tp−1 ∫ t

0 |F (u, Su)|p du
which, using global linear growth of f , one can bound by∣∣∣ ∫ t

0 F (u, Su)du∣∣∣p ≤ C1
∫ t

0 E
[ sup
s∈[−R,u] |ζ (t)|p]du

Likewise, using the Burkholder-Davis-Gundy inequality, one can obtain∣∣∣ ∫ t

0 G(Su)dB(u)∣∣∣p ≤ E
[ sup
s∈[0,t ]

∣∣∣ ∫ s

0 G(Su)dB(u)∣∣∣p] ≤ C2
∫ t

0 E
[ sup
s∈[−R,u] |ζ (t)|p]du

Hence,

E
[ sup
u∈[0,t ] |ζ (t)|p] ≤ C3 + (C1 + C2) ∫ t

0 E
[ sup
s∈[−R,u] |ζ (t)|p]du

and an application of the Grönwall inequality gives the desired result.

We require one more lemma before we go on to prove the convergence of the method. This
lemma is unique to SFDEs, as we are estimating the Lp norm difference of the memory of the
continuous approximation and of the discrete approximation.

Lemma 1.2.3. There is β > 0 independent of ∆t such that

E[|ζt (θ) − S t (θ)|p] ≤ β∆t p2
for θ ∈ [−R, 0] and where ζt (s) = ζ (t + s) for s ∈ [−R, 0].

Proof. See [Mao03], lemma 3.3, for a detailed proof of the case p = 2. The result is technical
and long, and hence we will only cover it heuristically. Although the proofs do not differ
much and jumps are included, one might also want to check the proof of lemma 3.2 in
[BBMY11] where the case of a general p > 2 is treated. Let t ∈ [0, T ] and let θ ∈ [−R, 0].

23



Chapter I : A Delayed Black-Scholes Model

Let kt and kθ be integers such that t ∈ [tkt , tkt+1] and θ ∈ [tkθ , tkθ+1]. Using (2.3), one can
rewrite S t like such

S t (θ) := S tk (θ) = S(tkt+kθ ) + θ − tkθ∆t (
S(tkt+kθ+1) − S(tkt+kθ ))

We can then bound our desired norm difference by

E[|ζt (θ) − S t (θ)|p] ≤ C1E[
|ζt (θ) − S(tkt+kθ )|p] + C2E[

|S(tkt+kθ+1) − S(tkt+kθ )|p] = E1 + E2
• Let us focus on the second term first, that is E2. Then, one must consider two cases. the
case where ks + kθ ≥ 0 and the the case where ks + kθ < 0.

Suppose the first case for now. The term E2 can be handled by using the linear growth
condition and a previous lemma to bound the second moment of our approximation. Indeed,
by the triangular inequality and lemma 1.2.2

E2 ≤ C2(E[
|F (tkt+kθ − Skt+kθ )∆t|p] + E[

|G(S(tkt+kθ ))∆Bt |p])
where we have used that E[∆t∆Bt ] = 0 to separate the terms into their own square. Then,
using the quadratic variation of the Brownian motion, i.e that E

[(∆Bt )2] = ∆t and taking
out the ∆ terms, we get that

E2 ≤ C2∆t p2 (∆t p2E[
|F (tkt+kθ − Skt+kθ )|p] + E[

|G(S(tkt+kθ ))|p])
and

E2 ≤ C2K∆t p2 (1 + E[||Skt+kθ ||2]) ≤ C2K∆t p2
by global linear growth and lemma 1.2.2.

Suppose now that ks+kθ < 0. Then we conclude directly with an application of lemma 1.2.3.

•. The term E1 is handled with more care: we need to even more carefully consider the
cases ks + kθ ≥ 0, ks + kθ ≤ 2 and ks + kθ = 1. The latter case is trickiest. We refer to
lemma 3.3 in [Mao03] for the computational details. The idea of the proof is to use that
in that range, one identifies the memory to the initial condition, which enables us to use
(H)(iii) and the same techniques as in our analysis of E2 which in turn gives us the estimate
we need.

Remark. Notice that the convergence rate depends on the Brownian motion and the
volatility part. We have used here the quadratic variation of the Brownian motion to show
that instead of ∆tp, we end up with ∆t p2 . However, in the jump case, we will see that we
need to consider yet another variation, the jump variation. As we will see, this lowers the
order of convergence by nature of the increments of the Poisson process, which is bound by ∆t.
We now state the convergence result.
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Theorem 1.2.5 (Convergence of the Euler-Maruyama method under Global Lipschitz hy-
potheses). Under the earlier hypotheses (H), we have

lim∆t→0E
[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = 0

Moreover, we have
E

[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = O(∆t p2 )

i.e, the order of convergence of the method is exactly 12 .

Proof. Once again, since this is not the main topic of the thesis, we will not be giving all
the details of the proof. The standard proof we are following can be found in [BBMY11],
theorem 3.1. The idea of the proof is to once again write

E
[ sup
u∈[0,t ] |S(u) − ζ (u)|p] ≤3p−1(E[ sup

u∈[0,t ]
∣∣∣ ∫ u

0 F (s, Ss) − F (s, Ss)ds∣∣∣p]
+ E[ sup

u∈[0,t ]
∣∣∣ ∫ u

0 G(Ss) − G(Ss)dB(s)∣∣∣p])
(2.5)

Now, let us treat each integral term separately. On one hand,(
E

[ sup
u∈[0,t ]

∣∣∣ ∫ u

0 F (s, Ss) − F (s, Ss)ds∣∣∣p] ≤ C p,T1
∫ t

0 E[|F (s, Ss) − F (s, Ss)|p]ds
We add and substract ζ in the integrand to split it like so

C 1
p,T

∫ t

0 E[|F (s, Ss) − F (s, Ss)|p]ds ≤ C 1
p,T

( ∫ t

0 E[|F (s, Ss) − F (s, ζs)|p]ds+ ∫ t

0 E[|F (s, ζs) − F (s, Ss)|p]ds)= I1 + I2
The goal here is to exploit lemma 1.2.3 on the second integral I2 of the right-hand side
using the global Lipschitz condition. As for the first integral I1, one might apply Hölder’s
inequality to make the following bound appear∫ t

0 E[|F (s, Ss) − F (s, ζs)|p]ds ≤ C 2
p,T ,L

∫ t

0 E
[ sup
u∈[0,s] |S(u) − ζ (u)|p]ds

To summarize,(
E

[ sup
u∈[0,t ]

∣∣∣ ∫ u

0 F (s, Ss) − F (s, Ss)ds∣∣∣p] ≤ C 3
p,T∆t p2 + C 2

p,T

∫ t

0 E
[ sup
u∈[0,s] |S(u) − ζ (u)|p]ds

We now turn our attention to the second integral in (2.5). Using the same idea and process,
although we supplement the use of Hölder’s inequality with the Burkholder-Davis-Gundy
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inequality, we have likewise

E
[ sup
u∈[0,t ]

∣∣∣ ∫ u

0 G(Ss) − G(Ss)dB(s)∣∣∣p] ≤ C 5
p,T∆t p2 + C 4

p,T

∫ t

0 E
[ sup
u∈[0,s] |S(u) − ζ (u)|p]ds

Hence, put together, one has

E
[ sup
u∈[0,t ] |S(u) − ζ (u)|p] ≤ C 7

p,T∆t p2 + C 6
p,T

∫ t

0 E
[ sup
u∈[0,s] |S(u) − ζ (u)|p]ds

Finally, we once again conclude with Grönwall’s inequality, which gives us the desired
convergence result and order of convergence both.

As promised, with the result proven for global Lipschitz hypotheses, we will now weaken it
to local hypotheses supplemented by linear growth conditions. Replace (H)(i) by the following
hypotheses

Hypotheses (H’)

(i) (Local Lipschitzianity of the drift and volatility coefficients) The coefficients F and G
are locally Lipschitz in the second variable, i.e for all n ≥ 1 there exists a determinstic, left-
continuous and non-decreasing function µn : [−R, 0] → R+ such that for all φ1, φ2 ∈ Cn :=
{φ ∈ C, ||φ||C < n}, we have

||F (t, φ1) − F (t, φ2)||Lp(Ω,Rd) + ||G(φ1) − G(φ2)||Lp(Ω,Rd×m) ≤
∫ 0

−R
|φ1(u) − φ2(u)|p dµn(u)

(ii) (Global Linear Growth of the drift and volatility coefficients) There exists a constant
K > 0 such that for all φ ∈ C, we have

||F (t, φ)||Lp(Ω,Rd) + ||G(φ)||Lp(Ω,Rd×m) ≤ K (1 + ||φ||C)
(iii) (Bound on the Local Lipschitz coefficients) Let Ln := µn(0) − µn(−R ) where µn refers to
the function in (H’)(i). Then there exists a constant α > 0 and ε > 0 such that L1+ε

n ≤ α log(n).
Remark. Note that (H’)(i), just like (H)(i) is stricter than the "usual" Lipschitz con-

dition. Indeed, if we pick Ln := µn(0) − µn(−R ) then we readily see that Ln are local Lipschitz
constants for the coefficients.

Theorem 1.2.6 (Convergence of the Euler-Maruyama method under Local Lipschitz Hy-
potheses). Under the hypotheses (H’), (H’)(ii), (H’)(iii) and (H)(iii), we have

lim∆t→0E
[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = 0

Moreover, we have
E

[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = O(∆t p2 −ε)
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where ε > 0 is an arbitrary small number, i.e the order of convergence of the method is12 − ε.

Proof. We will proceed similarly to the extension of the general existence and uniqueness
theorem found in Appendix A, i.e using a truncating procedure. Consider the truncated
coefficients outside some open ball Cn, i.e define

Fn(t, x) = {
F (t, x) if ||x|| < n
F (t, x

||x||n) if ||x|| ≥ n

and

Gn(x) = {
F (x) if ||x|| < n
G( x

||x||n) if ||x|| ≥ n

In some open ball Cn, by the local Lipschitz hypothesis, these coefficients verify a global
Lipschitz hypothesis. Hence, in Cn, the SFDE with coefficients fn and gn has a unique
solution Sn approximated via Sn,k . Moreover, by the definition of the truncation, for two
open balls Ci and Cj , the coefficients Fi, Fj and Gi, Gj agree on their intersection Ci ∩Cj , the
smallest of the two balls. Hence, the same goes for the processes S i and S j .
Likewise, since the coefficients in Cn verify a global Lipschitz hypothesis, there exists a
Euler-Maruyama approximation ζn of Sn, which exists and converges in Cn with order of
convergence 12 .
Consider the stopping times τn = T ∧ inf{t ∈ [0, T ], |Sn(t)| ∨ |ζn(t)| > n}. By the previous
remark, we easily see that τn → T when n → ∞. Moreover, we have

|S(t) − ζ (t)|p = ∞∑
j=0 |S j (t) − ζ j (t)|p1[τj−1,τj ](t) (2.6)

and thus,

E
[ sup
t∈[0,T ] |S(t) − ζ (t)|p] ≤

∞∑
j=0 E

[ sup
t∈[0,T ] |S j (t) − ζ j (t)|p1[τj−1,τj ](t)] (2.7)

We now wish to isolate the norm difference of S j and ζ j . Let ε > 0. Then applying Hölder’s
inequality with p′ = p+ε

p and q′ = p+ε
ε , we get

E
[ sup
t∈[0,T ] |S j (t) − ζ j (t)|p1[τj−1,τj ](t)] ≤ E

[ sup
t∈[0,T ] |S j (t) − ζ j (t)|p+ε] p

p+εE[
1[τj−1,τj ](t)] ε

p+ε (2.8)

On one side, we can estimate

E
[
1[τj−1,τj ](t)] ε

p+ε = P(sup[0,T ] |S j (t)| ∨ sup[0,T ] |ζ j (t)| ≥ j − 1) ε
p+ε ≤ Cq

( j
p

) −qε
p+ε
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for some q ≥ 2 using lemma 1.2.2 and lemma 1.2.3 (see also [BBMY11], theorem 4.1). Now,
on the side, we know from before theorem 1.2.5 that

E
[ sup
t∈[0,T ] |S j (t) − ζ j (t)|p+ε] p

p+ε = Cj∆t p2 −ε

Moreover, as is detailed in [BBMY11], the shape of Cj is in fact exponential because of Grön-
wall’s inequality. Indeed, if we consider an ε, δ approach to the limit, for some sufficiently
small ε there exists δ1, δ2 such that we have

Cj = e(δ1+δ2)L1+ ε2
j

By (H’)(iii) there exists α such that L1+ε
j ≤ α log j for all j , we can bound the above Cj by

jα(δ1+δ2). Hence, we indeed have that

E
[ sup
t∈[0,T ] |S j (t) − ζ j (t)|p+ε] p

p+ε = O(∆t p2 −ε)
even with a local lipschitz condition and not a global one.
Combining both of these estimates, we deduce that the order of convergence is the same
even under a local Lipschitz hypothesis. That is, the approximations converge and with
order 12 − ε and the proof is complete.

Remark. We will see that the condition L1+ε
n ≤ α log(n) is indeed a strong condition. In

the next subsection, we will try to apply this local method to prove convergence of the log-
arithmic method, which involves using the convergence under local Lipschitz hypotheses for
certain exponentially shaped coefficients which do not, by nature, verify the condition. Hence,
only a specific kind of these coefficients will be admissible which is rather restrictive.

2.2. A Logarithmic Euler-Maruyama method
Now that the convergence for classical scheme is proven, we are now ready to detail and
prove the logarithmic Euler-Maruyama method. For a detailed look at general logarithmic
numerical approximations of this type, we refer to [YHZ21].

We model the stock price by the SFDE per the model presented in the previous section.
That is, {

dS(t) = f (t, St )S(t)dt + g(S(t − b))S(t)dB(t), t ∈ [0, T ]
S(t) = η(t), t ∈ [−R, 0] (2.9)

The hypotheses on the coefficients are the same as previously, i.e global linear growth and
local Lipschitzianity of the drift coefficient f as well as continuity and boundedness of g. For
a given partition of the time axis π of [−R, 0], of step ∆t = T

N , N being the number of steps,
let tk := k∆t (here, k can take negative values!). Then we can approximate the solution to
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this SFDE by a discrete scheme of the sort{
δ (tk+1) = δ (tk )exp((

f (tk , δtk ) − 12g2(δtk (b)))∆t + g(δ (tk − b))∆Bk), tk ≥ 0
δ (tk ) = η(tk ), tk ∈ [−R, 0] (2.10)

where ∆Bk = B(tk+1) − B(tk ) and where

δtk (θ) := ti+1 − θ∆t δ (tk+i) − ti − θ∆t S(tk+i+1)
for ti ≤ θ ≤ ti+1 represents the memory part. All this last random variable ensures is that if
the delay chosen does not have to be a multiple of the chosen time step. For example, if the
memory in the SFDE requires the value of δ in between ti and tj , which is only calculated at
ti and tj , then we will take the linear approximation between the (consecutive) times ti and tj
to be that value we need.

Remark. Just like before, note that we have so far only been approximating at the grid
points, i.e at discrete points. This is easily extendable though. Indeed, define

δ (t) := ∞∑
j=0 δ (tj )1tj ,tj+1 (t)

and

δt (θ) := ∞∑
j=0 δtj (θ)1tj ,tj+1 (t)

Remark. Note that to ensure F-adaptedness of the approximation, while we take the
liberty to implement linear approximations of the memory of the process, we cannot directly
use linear approximations of δ (tk ) and δ (tk+1) and instead must give to the interval [tk , tk+1]
the left-hand most value S(tk ).

While the convergence of the Euler-Maruyama method is well known even for SFDEs,
and we will prove its convergence and order of convergence later, assume convergence of said
method for now. As we are essentially approximating the logarithm of the solution, it is not
given that this approximation holds through the passage to the exponential function. For
this, it is enough to invoke the mean-value theorem. Indeed, we use the fact that

|ex − ey| ≤ (ex + ey)|x − y|

Applying Cauchy-Schwarz’s inequality, we then have, for any t > 0,

E[|S(t) − δ (t)|p] = E[|elogS(t) − elog δ (t)|p] ≤ CpE[| logS(t) − log δ (t)|2p] 12 →
k→∞

0
where

Cp = E
[
ep| logS(t)|] + E[

ep| log δ (t)|]
Given an exponential integrability condition, i.e if both E

[
ep| logS(t)|] < ∞ and E

[
ep| log δ (t)|] <

∞, then Cp is clearly a finite constant depending only on p. This proves convergence in a
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regular Lp space (of course, given that the solution and approximation both belong to that
space). We refer to theorem 4.3 of [YHZ21] which we refer to for a detailed proof. We will
however state the result and quickly give the general idea of the proof shortly after having
defined some new notations.
If we write Y (t) = logS(t), then the Ito formula applied to the logarithm tells us that

dY (t) = (
f
(
t, eYt

)
− 12g2(eY (t−b)))

dt + g
(
eY (t−b))dB(t)

To make things slightly easier for the reader, we shall henceforth denote the drift and volatility
coefficients of the above by flog(t, Yt ) and glog(Yt ) respectively, i.e

flog(t, Yt ) := f
(
t, eYt

)
− 12g2(eY (t−b)) = F (t, Yt )

and
glog(Yt ) := g(eY (t−b)) = G(Yt )

We have indicated F and G so as to be clear what we shall apply the results of the previous
section to. Here, these are the coefficients we will be working with. We now proceed to give
integrability results justifying the earlier claim that Cp is in fact a finite constant. Let us first
show that Y (t) = logS(t) has an exponential p-th moment.

Lemma 1.2.4. Suppose that, for all t ∈ [0, T ] and for any m ∈ [1, 2),
xflog(t, x) + p− 12 g2log(x) ≤ Kpm (2.11)

then the random variable logS(t) has an exponential p-th moment, i.e if E
[
ep| logS(t)|] < ∞,

for all p > 1.

Proof. We will only give a general idea of the proof here. Applying the Ito formula to the
function x 7→ xq, q > 1, we have

dY q(t) = qY q−2(t)(Y (t)flog(t, Yt ) + q− 12 g2log(Yt ))dt + qY q−1(t)glog(Yt )dB(t)
Define the stopping time τ := inf{t ∈ [0, T ] : |Y (t)| ≥ L} for some L > 0. Moreover, from
(2.11), it is possible to prove that

E
[
Y 2q(t ∧ τ)] = log η2q(0) + E[ ∫ t∧τ

0 2qY 2q−2(u)(Y (u)flog(u, Yu) + 2q− 12 g2log(Yu))du]
≤ log η2q(0) + 2KqE[ ∫ t∧τ

0 (2q)mY 2q−2(u)du]
≤ log η2q(0) + 2t(2q)mp + Cq

∫ t∧τ

0 E
[
Y (u ∧ τ)2q]du

for a constant C . Applying the Grönwall inequality with α(t) = log η2q(0) + 2t(2q)mp and
β(t) = CqE

[
Y (u ∧ τ)2q], one can deduce that

E
[
Y 2q(t ∧ τ)] ≤ Cq,t (2q)mp
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and using the definition it is also possible to prove that

P(τ ≤ t) ≤
Cq,t (2p)mq

L2q
where Cq,t are the same constants depending on q and t in the last two equations. Hence,
as L → ∞, we see that P(τ > t) = 1. Thus, using Fatou’s lemma, it is possible to extend
this bound of E

[
Y (t ∧ τ)2q] to E

[
Y 2q(t)] with a constant Cq,T . Then, Jensen’s inequality

says that
E[|Y (t)|q] ≤ E[Y (t)2q] 12 ≤ Cq,Tq

mp2
Now, writing the exponential as a series, we know that for any p > 0

E
[
ep|Y (t)|] = ∞∑

j=0
pj |Y (t)|j

j ! = ∞∑
j=0

pjE[|Y (t)|j]
j !

On one hand, we know that the numerator grows roughly at the speed of j
mj2 while, by

Stirling’s approximation formula, j ! acts as j j+ 12 . Since m < 2, the general terms grows at
most at the speed of 1

j2 and hence the series converges, i.e E
[
ep|Y (t)|] < ∞ and logS(t) has

a p-th moment which completes the proof.

We now proceed to state a similar estimate for the approximation log δ (t), i.e that δ (t) has an
exponential p-th moment.

Lemma 1.2.5. Suppose once again that, for all t ∈ [0, T ] and for any m ∈ [1, 2),
xflog(t, x) + p− 12 g2log(x) ≤ Kpm (2.12)

then the random variable log δ (t) has an exponential p-th moment, i.e if E
[
ep| log δ (t)|] < ∞, for

all p > 1.

Proof. For a fixed time step δ , using the assumption (2.12), we can bound exponential p-th
moment by that of a N(0,√δ ). Then, using lemma 4.6 from [YHZ21], which we refer to for
computational details, this estimate is proven to be finite.

Theorem 1.2.7 (Convergence of the Logarithmic Euler-Maruyama method under Local
Lipschitz hypotheses). Under the hypotheses (H’), (H)(ii) and (H)(iii) for flog and glog, we
have lim∆t→0E

[ sup
t∈[0,T ] |S(t) − δ (t)|p] = 0

Moreover, we have
E

[ sup
t∈[0,T ] |S(t) − δ (t)|p] = O(∆t p2 −ε)

i.e, the order of convergence of the method is exactly 12ε.
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Proof. As was explained at the beginning of this subsection, we use the fact that

|ex − ey| ≤ (ex + ey)|x − y|

and we apply Cauchy-Schwarz’s inequality. Then for any t > 0,

E[|S(t) − δ (t)|p] = E[|elogS(t) − elog δ (t)|p] ≤ CpE[| logS(t) − log δ (t)|2p] 12
where Cp = E

[
ep| logS(t)|] + E

[
ep| log δ (t)|] < ∞ by lemma 1.2.4 and lemma 1.2.5. The con-

vergence of the method hence hinges on the convergence of the classic Euler-Maruyama
method and the proof is complete.

Remark. Note here that it is not given that flog and glog verify the given hypotheses!. Both
are certainly locally Lipschitz if f and g are, since g is bounded. Hence g2 is too and locally
Lipschitzianity is certainly maintained. The problem lies in the linear growth condition which
is not guaranteed because of the exponential term which needs to be balanced, as well as the
fact both g(ex ) and g2(ex ) require to have a linear growth which is a tough ask, even given the
assumption in both lemma 1.2.4 and lemma 1.2.5. Moreover, as explained before, because
of the exponential term of the argument in flog and glog, condition (H’)(iii) is hard to verify.
While possible, and while certainly positivity of all the approximations is desired and is an
improvement over the regular method, the drawbacks are too great to use in a general setting.
In such cases, our conclusion is that the classical Euler-Maruyama is preferable.

2.3. Simulating Stock Prices using the Logarithmic Euler-Maruyama method
To summarize, we have proven the convergence of the Euler-Maruyama method under global
Lipschitz hypotheses as well as under local Lipschitz hypotheses (and linear growth condi-
tions). We have seen that the speed of convergence is in fact the same. We have then
developed a logarithmic Euler-Maruyama method based on previous results by Hu, Zao and
Yi (see [YHZ21]). This method proves to have flaws in that the choice of coefficients is very
restrictive. However, we gain positivity of all the approximation and we do this without al-
tering the order of convergence, which is still 12 − ε.

In this subsection, we will run Monte-Carlo approximations using the logarithmic Euler-
Maruyama method and proceed to price options based on these approximations. Note that
a regular Euler-Maruyama numerical approximation can be done very similarly and because
much work has been done on the latter, we will not proceed to do both.

For test purposes only, we shall imagine a stock with stock price 100 at time t = 0. Let
f = 0, g(x) = 16 + 0.25 log log(x) cos(log x) and

η(x) = 99 + sin ( x24) + cos( x42)
Note that here that the drift is constant for simplicity’s sake. This is not necessary however,
and any f can be taken so long as the SFDE and its solution is well defined and so long as
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the above approximation assumptions hold!
Please also note that these functions are C 1 and hence locally Lipschitz. Moreover, linear

growth is trivially verified since we have also asked for growth closer to log log x (see the above
remark regarding the fact that the logarithmic Euler-Maruyama method requires such slow
growth).
We verify the condition regarding the Lipschitz constants (condition (H’)(iii)). Let φ1, φ2 ∈
Cn := {φ : ||φ||C ≤ n}. Then

|glog(φ1) − glog(φ2)| ≤ 14 | log log eφ1(−b)| · |cos(log eφ1(−b)) − log log eφ2(−b)| · |cos(log eφ2(−b))|
≤ 14 | logφ1(−b) cos(φ1(−b)) + logφ2(−b) cos(φ2(−b))| · |φ1(−b) − φ2(−b)|
≤ 12 log n · |φ1(−b) − φ2(−b)|

i.e Ln = 12 log n which satisfies (H’)(iii).

Finally, we do note a few more things. Our Lipschitz condition required in (H’)(i) is
slightly stronger than the classical Lipschitz condition. We conjecture that g verifies (H’)(i)
on the basis that it is C 1. Moreover, while g is not bounded, its growth rate being relative tolog log x, we conjecture that this does not pose an issue. We also mention that we do indeed
have g(x) = 0 for three values of x being roughly x = 1.6, x = 11.28 and x = 68.8, at least
for reasonable values of x, however we also conjecture this not to be an issue in the following
computations as these are the only problem points.

We will be doing 1000 approximations of 10 000 steps each, using b = 0.05 as delay.
Below is the result of those simulations.

Figure I.1: Stock price simulation using the logarithmic Euler-Maruyama Method over a one
year period

We are once again aware of the how restrictive the condition (H’)(iii) is. This restrictive-
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ness of our hypotheses is amplified by the fact it needs to be satisfied by glog, the coefficient
in the SDE describing the dynamics of Y (t) = logS(t). While other, more usual coefficients
do not satisfy the hypotheses, we conjecture the convergence of the model for f (x) = 0.1 and
g(x) = 0.1 + 0.01 cos(x). In an effort to showcase the model, and while we have not proven
convergence of the model for such coefficients, we have still made some simulations with this
different coefficient.

Figure I.2: Stock price simulation using the logarithmic Euler-Maruyama Method over a one
year period with a different volatility coefficient

Remark. In an effort to showcase the problem, we mention that using the same method
as above, that is, using the mean-value theorem, we find that with this new coeffcient, we
have

|glog(φ1) − glog(φ2)| ≤ 0.02en|φ1(−b) − φ2(−b)|
i.e we have a bound of the order Ln < en. This is very far from the desired bound, which
explains our earlier choice of coefficients.
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2.4. Call Option Price comparisons
Using the Monte Carlo approach, we shall now price some options of different strike prices
using our delay model approximated with a logarithmic Euler-Maruyama method and the
regular Black-Scholes model, using the well-known formula (since the volatility is constant in
the classical model and our function g(x) = 0.1 + 1.5 log log(x) cos(log x) hovers around a mean
of roughly 0.1, we take σ = 0.1 in the case of the classical model). Let r = 0.05 and let the
numbers of simulated paths be i = 1000.
Do however not that to properly price the Europen call option, one needs to first express dS(t)
under the measure Q, the risk neutral measure from 2.1.11. Since it was obtained through the
Girsanov theorem, the volatility does not change. However, the new drift is

fQ :=����f (t, St ) −
���������g(S(t − b))f (t, St )

g(S(t − b) + r = r

Proceeding with this change, we have

Strike Price Price of a European Call Option Price of a European Call Option
of the using the using the

Call Option delayed Black-Scholes model classic Black-Scholes formula
$100 $8.08 $6.80
$105 $4.20 $4.04
$110 $1.87 $2.17
$115 $1.64 $1.05
$120 $1.29 $0.46
$125 $1.00 $0.18
$130 $0.72 $0.067
$135 $0.46 $0.022
$140 $0.37 $0.007

We can see that generally speaking, the pricing using the delayed Black-Scholes model is
higher to that of the original Black-Scholes price. This may be an effect of the coefficients
chosen, however, as they are not carefully chosen. Moreover, we remind the reader that the
coefficients chosen technically do not verify all hypotheses for existence, unicity and positivity
of the solution as well as the convergence of the logarithmic Euler-Maruyama model. More
suitable choices for coefficients are always possible, however the restrictiveness of those con-
ditions makes the model hard to use in practice.

2.5. Code & Algorithms
Below is the code used for the initial stock price simulation and call option comparison using
the delayed Black-Scholes model

1 import numpy as np
2 import pandas as pd
3 import matplotlib . pyplot as plt
4

5 # Setting up the variables
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6 K = 100 # Strike price
7 r = 0.05 # Risk -free interest rate
8 T = 1 # Time in years
9 N = 10000 # Number of steps

10 b = 0.05*T # Delay
11 deltat = (T-b)/N # Time step
12 i = 15 # Number of simulations
13

14 S = np.zeros ([i, N]) # Stock price
15 t = np. linspace (-b, T, N) # Time
16

17 # Defining the coefficients and initial data
18 def f(x):
19 return 0
20

21 def g(x):
22 return 1/6 + 0.25* np.log(np.log(x))*np.cos(np.log(x))
23

24 def eta(x):
25 return 99 + np.sin(x/24) + np.cos(x/42)
26

27 def LinInterS (S,j,k,ib ,b):
28 return ((( ib +1)* deltat - b)/ deltat )*S[j, k-ib] - ((ib* deltat - b)/ deltat )*

S[j, k-ib +1]
29

30 # Define the call option payoff function
31 def call_payoff (S, K):
32 return np. maximum (S-K, 0)
33

34 # Approximation Algorithm
35 option_prices = []
36 for j in range(i):
37 S[j, 0] = eta(-b)
38 for k in range(N - 1):
39 if k* deltat > b:
40 if b % deltat == 0:
41 S[j,k+1] = S[j,k]*np.exp ((f(S[j,k-int(b/ deltat )])- (0.5*g(S[j,

k-int(b/ deltat )]))**2)* deltat + g(S[j,k-int(b/ deltat )])*np
. random . normal (0,np.sqrt( deltat )))

42 else:
43 ib = int(np.floor(b/ deltat ))
44 S[j,k+1] = S[j,k]*np.exp ((f( LinInterS (S,j,k,ib ,b))- (0.5*g(

LinInterS (S,j,k,ib ,b))**2))* deltat + g( LinInterS (S,j,k,ib ,
b))*np. random . normal (0,np.sqrt( deltat )))

45 else:
46 S[j, k + 1] = eta(k + 1)
47

48 # Calculate the call option payoff at expiration time T
49 call_payoffs = call_payoff (S[j, -1], K)
50

51 # Print the stock price at the maturity date
52 print(f"Stock price at maturity for simulation {j+1}: {S[j , -1]}")
53

54 # Discount the call option payoff to the present time
55 discounted_payoffs = np.exp(-r * T) * call_payoffs
56
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57 # Calculate the Monte Carlo estimate of the call option price
58 option_price = np.mean( discounted_payoffs )
59 option_prices . append ( option_price )
60

61 # Plot the simulated price path
62 plt.plot(t, S[j])
63

64 # Plotting all the resulting paths
65

66 plt.title(’%d Simulated Price Paths with %d steps ’ % (i,N), fontsize =20)
67 plt. xlabel (’Time (in years)’, fontsize =15, labelpad =20)
68 plt. ylabel (’Stock Price ’, fontsize =15, labelpad =20)
69 plt. yticks ( fontsize =12)
70 plt.show ()
71

72 # Print the mean call option price
73 mean_option_price = np.mean( option_prices )
74 print("Mean call option price: %f" % mean_option_price )
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Chapter II
Adding jumps into the model

II.1. Overview of the model
We will primarily use [AH20] which has already developed the theory in the case g = 0, i.e
a pure jump model. They argue that it is sometimes preferred, and a similar model where
g ̸= 0 has already been studied by Zaheer Imdad and Tusheng Zhang.
Thankfully, the theory of SFDEs with jumps has already been researched in [BCDN+19]
(see Appendix B) and we see that for suitable linear growth and Lipschitz conditions on
the coefficients f and h, one can quite readily guarantee a solution and uniqueness of a
solution. Moreover, one could very much develop this model in different ways, adding a
suitable Brownian component of coefficient g ̸= 0 for example, and one would still have
existence and uniqueness of a solution as long as suitable conditions are enforced on g. The
plan for this chapter is, however, to follow in the footsteps of [AH20]. Before we head off, note
that errors were found in [AH20], namely in chapter 3 & 4, and thus while we do endeavor to
follow in their footsteps, we do not take the same path.

1.1. A first look at the model: Existence and uniqueness of a solution
Consider two assets as before, a non-risky asset of price ξ (t) at time t of interest rate r > 0
and a risky asset of price S(t) at time t. The authors propose the following dynamics for the
price of the underlying risky asset{

dS(t) = f (S(t − b))S(t)dt + h(S(t − b))S(t−)dZ (t), t ∈ [0, T ](S0, S(0)) = (η, x), t ∈ [−R, 0] (3.1)

where f and h are two real bounded measurable functions, R denotes the maximal delay as
before, η : [−R, 0] 7→ Rd is a measurable function and Z is a Lévy process (which we will
assume bounded from below). We define the image set of Z (t), i.e the possible size of the
jumps of Z , to be the interval J = [−K ,+∞) for some constant K > 0. More specifically, we
will later choose Z to be the hyper-exponential jump process. We denote the Poisson random
measure associated to the process Z by N and the centered or compensated Poisson measure
by Ñ. Then, by definition of N and Ñ, we have that

dZ (t) = ∫
J

z Ñ(dt, dz) := ∫
J

zN(dt, dz) −
∫
J

zν(dz)dt (3.2)
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Note that the SFDE is specifically chosen to be pure jump as the authors have found that it
is sometimes preferable. Also note that we specifically chose Z (t) to be defined as a stochastic
integral with respect to the compensated Poisson measure Ñ and not N. This is to ensure
that Z (t) is a martingale, which we will use and need in chapter 3, which builds upon the
ideas of this chapter. Using the above notation, we can rewrite (3.1) asdS(t) = f (η(t − b))S(t)dt + ∫

J

zh(η(t − b))S(t−)Ñ(dt, dz), t ∈ [0,min(a, b)](S0, S(0)) = (η, x), t ∈ [−R, 0] (3.3)

As before, the first question that arises when considering this model is the existence and
uniqueness of a solution. However, we need to be careful for we also want to guarantee the
positivity of the solution. Luckily, the price of the underlying risky asset has quite rigid shape
and it is possible to extract the form of the solution as well, which is what we shall explore
in our first theorem.

Theorem 2.1.8. Suppose that h(x) ≤ 1
K for all x ∈ R. Then (3.1) has a pathwise unique

solution S. Moreover, S(t) > 0 a.s for all times t > 0 if η(0) > 0.

Proof. We only prove the result for d = 1, as the proof for a general d is analog. The details
can be found in [AH20] p.5 − 6. First consider t ∈ [0, b]. This reduces our problem to the
followingdS(t) = f (η(t − b))S(t)dt + ∫

J

zh(η(t − b))S(t−)Ñ(dt, dz), t ∈ [0, b](S0, S(0)) = (η, x), t ∈ [−R, 0] (3.4)

which is a classical SDE driven by the Lévy process Z and has no delay. This is an
exponential SDE which has a pathwise unique solution. Note that the stochastic exponential
form of the coefficients and their non-dependence on S here ensures that both coefficients
are Lipschitz in the second variable, hence the existence and uniqueness of the solution
is guaranteed (see for example [Pro05] theorem 6 on p.255). Thanks to Ito’s formula for
pure-jump Lévy processes we moreover have that, for t ∈ [0,min(a, b)],

S(t) = η(0)exp
( ∫ t

0 f (η(u− b))du+ ∫ t

0
∫
R0 log (1 + zh(η(u− b))))Ñ(du, dz)

+ ∫ t

0
∫
R0 log (1 + zh(η(u− b))) − zh(η(u− b)))duν(dz)

For this to be well defined, because of the logarithmic terms, it is necessary that zh(x) > −1.
This is ensured by the condition that h(x) ≤ 1

K .

By the nature of the solution, we see that η(0) > 0 is a necessary positivity condition
of the solution for all times t > 0. The condition that Z is bounded from below is also
necessary for the positivity condition here. Both together are a sufficient condition.

Repeating this process recursively for all time intervals of size b, one gets the result for
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all t ∈ [0, T ].
1.2. An Incomplete Market
Now that we have established that our model holds at the most basic level, we will now study
the possibility of arbitrage as well as the completeness of the market. We will see that while a
change of measure is possible, and thus the market does not allow for arbitrage. However, not
every claim is replicable. The market is incomplete and hence while we may be able to price
simpler claims like call options, the hedging in incomplete markets will prove to be tough.

Consider the market model from before, that is (3.2). While it is possible to consider a
general Lévy process, we shall mainly be interested in hyper or double exponential processes
(see [CK12] or [LV17] for example). Hence, we will take Z to be a compensated compound
process defined by

Z (t) = A(t)∑
j=1 Yj − λt

∫
J

fY (z)dz
where A(t) is a poisson process of intensity λ > 0 and where the Yj are i.i.d random variables
of density fY . For completeness’ sake, we briefly mention what we mean by a hyper or double
exponential process. We say that the process Z is hyper-exponential if

fY (x) := n∑
i=1 piγie

−γix1x≥0 + m∑
j=1 qjβje

θj x1x≤0
where γi, βj > 0, pi, qj ≥ 0 for i = 1, 2, . . . , n and j = 1, 2, . . . , m and

n∑
i=1 pi +

m∑
j=1 qj = 1

The double exponential process is the case of n = m = 1. Moreover, in our case, since we want
to ensure that Z is lower bounded, we can for example ensure that qj = 0 for all j = 1, . . . , n
or by truncating each of the exponentials with qj = q′

j1−e−βj Kj 1{−Kj<x<0}. In latter case, we have
K = maxj Kj . Note that we will in practice consider a simple double exponential.

Remark. In this case, we have ∫
J

ν(dz) = ∫
J

fY (z)dz
Remark. The reason for the compensation of the compound Poisson process is to make it

so that (3.1) is rewritten in the form (3.2), i.e that Z can be represented a stochastic integral
with respect to Ñ, which implies that Z is a martingale.
Before we present the main results of this section, we will make a few further assumptions.
They are as follows:

Hypotheses (H)
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(i) (Continuity on the initial condition) η is Hölder-continuous with constants γ ∈
[ 12 , 1]

and ρ > 0. Moreover, η(0) > 0 so as to later guarantee positivity.

(ii) (Global Lipschitzianity of the coefficients) f and h are globally Lipschitz (not locally!).
Moreover, f is bounded.

(iii)(Conditions for a well defined model and positivity conditions of the model We have

qj = 0 for all j = 1, . . . , n or qj = q′
j1 − e−βjKj

1{−Kj<x<0}. Moreover, we have h(x) ≤ 1
K .

(iv) (Bound Condition) For all t ∈ [0, T ],∣∣∣ f (t) − r
h(t) ∣∣∣ ≤ 1

i.e h is bounded from below and f (t) is at most h(t) + r.

Remark. These are fairly standard hypotheses, except for (H)(iv ), which we are aware
is quite restrictive. We have however not been able to lower this hypothesis. This is to ensure
the possibility to apply Girsanov’s theorem, which is essential to find the risk neutral measure.

For what follows, as we have mentioned we shall utilize Girsanov’s theorem for Lévy
processes, which for completeness’ sake we shall also state. As this result has been studied in
previous courses, we will not prove this result. For a detailed study of the result, see [NØP08],
p.199, for example or also [ØS05], section 1.4.

Theorem 2.1.9 (Girsanov’s Theorem for Lévy Processes). Let J be the set of possible sizes
of jumps as above. Let θ(t, z) be an F-predictable process such that θ(t, z) ≤ 1 for all
t ∈ [0, T ] and z ∈ R0 and∫ T

0
∫
J

| log(1 + θ(t, z))| + θ2(t, z)ν(dz)dt < ∞ P- a.e

Let x(t) also be a square integrable F-predictable process. Now consider the process

X θ (t) = exp
(

−
∫ t

0 x(u)dB(u) −
∫ t

0 x2(u)du+ ∫ t

0
∫
J

log(1 − θ(t, z)) + θ(t, z)ν(dz)du
+ ∫ t

0
∫
J

log(1 − θ(u, z))Ñ(du, dz))
and define the measure Q := Qθ by dQ := X θ (T )dP. Assume that X θ verifies the Novikov
condition, i.e that

E
[
exp

(12
∫ T

0 x(t)dt + ∫ T

0
∫
R0 (1 − θ(t, z)) log(1 − θ(t, z)) + θ(t, z)ν(dz)dt)]

< ∞
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Then E[X θ (T )] = 1 and Q is a well-defined probability measure on (Ω,FT ). Moreover, if we
define

ÑQ(dt, dz) = θ(t, z)ν(dz)dt + Ñ(dt, dz)
and

dBQ(t) = x(t)dt + dB(t)
then these two are respectively compensated Poissons random measure of N and Brownian
motion under the new measure Q.

Proof. See [NØP08], p.199.

With this out of the way, we can now state and prove the first major result of this section.
The first step is to prove the non-arbitrage property of the market.

Theorem 2.1.10. The market does not allow for arbitrage.

Proof. The aim, always, is to find an ELMM, which, as promised, we will accomplish with
a well-chosen use of Girsanov’s theorem for Lévy-type processes. By definition, we need to
find an equivalent probability Q such S̃(t) := e−rtS(t) is a martingale under Q. The way
we want to define Q is so that S̃(t) can be expressed as a stochastic integral (which under
suitable integrability conditions is a martingale). To do so, we want to apply Girsanov’s
theorem and hence some hypotheses need to be checked.
First, by Ito’s formula for Lévy processes, we have

dS̃(t) = S̃(t−)h(S(t − b)) f (S(t − b)) − r
h(S(t − b)) dt + S̃(t−)h(S(t − b)) ∫

J

zÑ(dt, dz) (3.5)

Now let θ(t, z) = f (S(t − b)) − r

h(S(t − b)) ∫
J

zθ∗(z)ν(dz)θ∗(z) where θ∗ is chosen such that

∫
J

zθ∗(z)ν(dz) < ∞

and ∣∣∣ θ∗(z)∫
J
zθ∗(z)ν(dz) ∣∣∣ ≤ 1

For example, we can take θ∗(z) = 1A where A ⊂ J is a set such that this integral is finite.
We would like to apply Girsanov’s theorem, hence we need to verify that θ(t, z) ≤ 1. This
is clear by H(v) and by definition of θ∗, as we have

|θ(t, z)| ≤
∣∣∣ f (S(t − b)) − r
h(S(t − b)) ∣∣∣ ·

∣∣∣ θ∗(z)∫
J
zθ∗(z)ν(dz) ∣∣∣ ≤ 1

Moreover the process θ(t, z) is also predictable since f and g both are. Indeed, for the same
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reason, by definition of θ, we have∫ T

0
∫
J

| log(1 + θ(u, z))| + θ2(u, z)ν(dz)du < ∞, P-a.e

where we have used the definition of θ and the nature of the measure ν to justify that the
quantity is finite (it is in fact even bounded!). Now define

Sθ (t) := exp
( ∫ t

0 log(1 − θ(u))Ñ(du, dz) + ∫ t

0 log(1 − θ(u)) + θ(u)ν(dz)du)
For us to be able to apply Girsanov’s theorem, it only remains to justify that the Novikov
condition is verified for Sθ . This is once again a consequence of (H)(v), since for the same
reasons, ∫ T

0
∫
J

(1 − θ(u)) log(1 − θ(u)) + θ(u)ν(dz)du < ∞

where the bound is effectively done on the integral over [0, T ] since θ(t) does not have a
space parameter. Hence,

E
[
exp

(12
∫ T

0
∫
J

(1 − θ(u)) log(1 − θ(u)) + θ(u)ν(dz)du)]
< ∞

Then, by Girsanov’s theorem, E[Sθ (T )] = 1 and we can define a new measure

dQ := Sθ (t)dP
where we also define a new (compensated Poisson) random measure ÑQ on the new proba-
bility space, under Q, defined by

ÑQ(du, dz) = θ(t)ν(dz)du+ Ñ(du, dz) (3.6)

Hence, going back to (3.5), we end up with

dS̃(t) = ∫
J

z S(t−)h(S(t − b))ÑQ(dt, dz)
which is, by definition of the stochastic integral, a martingale under Q since it is L2(Q).
Since ˜S(t) represents the discounted price at time t, we have that Q is indeed an ELMM
and hence the market has no-arbitrage.

Remark. The process θ verifies that the new drift fQ of S(t) has the form

fQ(St ) =f (S(t − b)) − f (S(t − b)) − r
������h(S(t − b))(((((((∫

J
zθ∗(z)ν(dz)�����h(S(t − b)

�������
∫
J

zθ∗(z)ν(dz)
=�����f (S(t − b)) −�����f (S(t − b)) + r = r

More generally speaking, any such process θ, no necessarily one of the form we have chosen,
must verify this condition for Q to be an equivalent martingale measure.
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Remark. If Z was a general Lévy process, and not assumed to be a compound Poisson
process, one could change H(iv) to ensure θ(t, z) ≤ 1. The way we have achieved this is by
assuming we can separate θ(t, z) into a product of functions of t and z respectively. Hence,
this result, under a different but suitable (although still restrictive, if not more restrictive)
assumption H(v), would still hold.

Remark. The measure Q is in no way unique, that would imply that the market is
complete, which as we will see is not the case. There exists an infinity of measures, for exam-
ple we could consider a θ which cannot be factorized.

The completeness of the market as we have just stated is trickier. The market happens to
be incomplete, as often markets driven by Lévy processes with jumps are. The intuition for
this, as we will show, is that there must be as many risky assets as there are jumps. Let us
proceed to show just that.

Theorem 2.1.11. The market is incomplete

Proof. We know from the proof of the non-arbitrage property that

dS̃(t) = ∫
J

zS(t−)h(S(t − b))ÑQ(dt, dz) = S(t−) ∫
J

zh(S(t − b))ÑQ(dt, dz) (3.7)

Define Y (t) = log(S̃(t)). Then by Ito’s formula for Lévy processes,

dY (t) = ∫
J

log(S̃(t−)) + zh(S(t − b))S̃(t−) − log(S(t−)) − S̃−1(t)zh(S(t − b))S̃(t−)νQ(dz)dt
+ ∫

J

log(S(t−)) + zh(S(t − b))S(t−) − log(S(t−))ÑQ(dt, dz)
= ∫

J

log(1 + zh(S(t − b))) − zh(S(t − b))νQ(dz)dt + ∫
J

log(1 + zh(S(t − b)))ÑQ(dt, dz)
i.e

Y (t) = ∫ t

0
∫
J

log(1+ zh(S(t−b))) − zh(S(t−b))νQ(dz)dt+ ∫ t

0
∫
J

log(1+ zh(S(t−b)))ÑQ(dt, dz)
and hence,

S̃(t) = S̃(0)exp( ∫ t

0
∫
J

log(1+zh(S(t−b)))−zh(S(t−b))νQ(dz)dt+∫ t

0
∫
J

log(1+zh(S(t−b))ÑQ(dt, dz))
By theorem 2.10 of [ØS05], we see that we must have

log(1 + zh(S(t − b))) = e−rTπ(t)zS(t−)h(S(t − b))
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which means that the replicating portfolio has the form

π(t) = log(1 + zh(S(t − b)))
zS̃(t−)h(S(t − b)) (3.8)

There is only one way in which this is possible. The clear dependence on z of φ(t) means
that νQ must have for support {z0}, z0 ∈ J, i.e that there is only one jump size. This is
however impossible from our definition of Z . Hence the claim X = log(S̃(t)) is not replicable
and the market can’t be complete.

This does not directly imply that none of the claims are replicable however, but it is
possible to deduce a guess that the call option is not replicable either in this market. Going
back to the expression for dS̃(t) in (3.7), we can deduce that S̃(T ) is L2(Q). Indeed, we present
part of the argument present in [AH20] and where it fails to give an intuition for this result.
Their choice of measure for Q is θ∗(z) = 1, with a slightly stronger assumption than (H)(iv ).
Moreover, the compound Poisson process Z is not taken to be compensated. Their argument
begins by stating that

S̃2(T ) = exp
( ∫ T

0
∫
J

log(1+zh(S(t−b)))2−2zh(S(t−b))νQ(dz)dt+∫ T

0
∫
J

log(1+zh(S(t−b)))2ÑQ(dt, dz))
Let h̃(t) = (1+zh(S(t−b))4−1

z . We then want to "replace" h(S(t − b)) by h̃(t). This will help us
separate S(T ) into a product of two terms, one which has mean zero. Since

log(1 + zh̃(t)) = 2 log(1 + zh(S(t − b)))
and by adding and subtracting 12zh̃(t), we get

S̃2(T ) =exp(12
∫ T

0
∫
J

log(1 + zh̃(t) − zh̃(t))νQ(dz)dt + 12
∫ T

0
∫
J

log(1 + zh̃(t))ÑQ(dt, dz))
· exp

( ∫ T

0
∫
J

zh̃(t)2 − zh(S(t − b))νQ(dz)dt)
We have now separated the part of S(T ) with mean zero from the rest. To not only find
an upper bound, but to also make use of that fact, we use Hölder’s inequality (p = 2). In
practice, we have

EQ[S2(T )] ≤EQ

[
exp

( ∫ T

0
∫
J

log(1 + zh̃(t) − zh̃(t))νQ(dz)dt + ∫ T

0
∫
J

log(1 + zh̃(t))ÑQ(dt, dz))] 12

· EQ

[
exp

( ∫ T

0
∫
J

zh̃(t) − 2zh(S(t − b))νQ(dz)dt)] 12

=EQ

[
exp

( ∫ T

0
∫
J

zh̃(t) − 2zh(S(t − b))νQ(dz)dt)] 12

Developing the expression of the integrand, we get

zh̃(t) − 2zh(S(t − b)) = z4h4(S(t − b)) + 4z3h3(S(t − b)) + 6z2h2(S(t − b)) + 2zh(S(t − b))
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With some assumptions, we can go a bit further. Suppose that∫
J

zpνQ(dz) < ∞ (3.9)

and ∫
J

hp(t)νQ(dz) < ∞ (3.10)

forp = 1, 2, 3, 4. Under the assumptions (3.9) and (3.10), the integrand, when integrated over[0, T ]xJ, is finite. Hence, E[S2(T )] < ∞. Then, define U (t) := EQ
[
e−rT (S(T ) − K )+|Ft

]
. Since

S̃(T ) ∈ L2(Q), we have U (t) is square integrable. Therefore, by the martingale representation
theorem, there exists a square integrable predictable ψ(t, z) such that

U (t) = EQ
[
e−rT (S(T ) − K )+] + ∫ t

0
∫
J

ψ(u, z)Ñ(du, dz)
This is where the original paper by [AH20] fails, as they fail to consider that ψ(u, z) is not
necessarily factorized into ψ1(u)ψ2(z), which is required in their proposed portfolio for the risky
asset, we quote,

πS (t) := ∫
J
ψ(t, z)ÑQ(t, dz)
S̃(t)h(S(t − b))

Since this is quite a strong requirement, this is why we can guess as much that the call option
is probably not replicable! In which case the pricing and hedging is tougher than it would
originally appear. This is the topic of the third chapter, namely a pricing for the call option in
an incomplete market (studying the buyer’s and seller’s prices) as well the minimal variance
hedging for the claim.
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II.2. Numerical Approximations
2.1. Addition of jumps to the Classical Euler-Maruyama method
Unlike in the first chapter, we will not be discussing a logarithmic Euler-Maruyama method.
One was proposed by [AH20], and evoked in [YHZ21], to approximate the stock price. How-
ever, this approximation is faulty and the convergence rate is wrong. Hence, we shall only
discuss a classical approximation. Luckily [BBMY11] have treated this very topic and hence
we shall follow in their footsteps. We refer to their paper for details. Moreover, we have used a
similar path to prove the convergence of the continuous case. Hence, only slight modifications
to the proofs are needed.

For generality’s sake, we will prove the result for a larger class of SFDEs. To ensure the exis-
tence and uniqueness of the solution, we shall assume global Lipschitzianity of the coefficients
F, H (see appendix B) and ask for adaptedness of the coefficients as well as Hölder-continuity
of the initial data. We sum it up by the following hypotheses:

Hypotheses (H)

(i) (Global Lipschitzianity of the drift and volatility coefficients) The functions F and G
are jointly continuous and uniformly (i.e globally) Lipschitz in the space (second) coordinate,
i.e for all t ∈ [0, T ] and φ1, φ2 ∈ Lp(Ω,C), there exists a deterministic, left-continuous and
non-decreasing function µ : [−R, 0] → R+ such that

||F (φ1) − F (φ2)||Lp(Ω,Rd) + ||H(φ1) − H(φ2)||Lp(Ω,Rd×m) ≤
∫ 0

−R
|φ1(u) − φ2(u)|p dµ(u)

(ii) (F-Adaptedness of the coefficients) If φ is adapted, so are F (φ(t)) and H(φ(t)).
(iii) (Continuity requirement on the initial condition) There exists a constant K and γ ∈ [ 12 , 1],
such that for all t, s ∈ [−b, 0] we have

|η(t) − η(s)| ≤ K |t − s|γ

If we model the stock price by the SFDE per the model presented in the previous section,
i.e by approximating its logarithm using a classic Euler-Maruyama model, then for a given
partition of the time axis π of step ∆t = T

N and tk = k∆t, we can approximate the solution to
this SFDE by a scheme of the sort{

S(tk+1) = S(tk ) + F (S(tk )∆t + H(S(tk ))∆Zk , tk ≥ 0
S(tk ) = η(tk ), tk ∈ [−R, 0] (4.1)

where ∆Zk = Z (tk+1) − Z (tk ) and where

S tk (θ) := ti+1 − θ∆t S(tk+i) − ti − θ∆t S(tk+i+1)
for ti ≤ θ ≤ ti+1, i = ⌊−R⌋, . . . ,−1, represents the memory part. Just like in chapter 1, section
2, this is to ensure as much freedom on the delay, which does not need to coincide with the

47



Chapter II : Adding jumps into the model

gridpoints.

Remark. We have only defined the process and its stochastic memory on the gridpoints
but we can easily extend the processes to all [0, T ]. That is, for any t ∈ [0, T ], we define

S(t) := N∑
j=0 S(tj )1tj ,tj+1 (t)

and

S t (θ) := N∑
j=0 S tj (θ)1tj ,tj+1 (t)

Finally, define {
dζ (t) = F (t, S t )dt + H(S t )dZ (t), t ∈ [0, T ]
ζ (t) = η(t), t ∈ [−R, 0] (4.2)

Lemma 2.2.6. For any p ≥ 1, there exists Kp depending only on p such that

E
[ sup0≤t≤T

|S(t)|p] ∨ E
[ sup0≤t≤T

|S(t)|p] ≤ Kp

Proof. We refer to [BBMY11], lemma 3.1, for the proof of this result. The process is almost
identical to that of lemma 1.2.2, for both the approximation bound and the solution bound.
The difference, there is one more term to estimate. For example, if we want to bound the
solution S(t), we need to show (via the use of stopping times!) that

E
[ sup
t∈[0,T ]

∣∣ ∫ t

0 H(S(u−))N(du, dz)∣∣p] ≤ C1 + C2
∫ t

0 E
[ sup
t∈[0,T ] |S(u−)|p]du

and we conclude via Grönwall’s inequality.

We proceed with the proof of the next analogous lemma from chapter 1, i.e the norm of the
difference between the memory process, discrete and continuous.

Lemma 2.2.7. There is β > 0 independent of ∆t such that

E[|ζt (θ) − S t (θ)|p] ≤ β∆t
for θ ∈ [−R, 0] and where ζt is the stochastic memory of ζ.

Proof. We once again refer to [BBMY11], lemma 3.2, for details. The crux of the change
is, again, to estimate an extra term. Here, we use characteristic functions to prove that,
for a fixed ∆t, then

E
[
|∆Zk |p] ≤ C∆t

for some constant C . and the proof is complete.

Finally, we are ready to state the convergence result for jumps.
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Theorem 2.2.12 (Convergence of the classical Euler-Maruyama method under Global Lip-
schitz Hypothesis). Under the earlier hypotheses (H), we have

lim∆t→0E
[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = 0

Moreover, we have
E

[ sup
t∈[0,T ] |S(t) − ζ (t)|p] = O(∆t 1

p )
i.e, the order of convergence of the method is exactly 1

p .

Proof. See [BBMY11] for the computational details. Remember that in the proof of theorem
1.2.6 (see equation (2.5)) we have broken down the proof into two inegral estimates: one
for the drift coefficient and one for the volatility coefficient. Here, we have a third integral,
which we estimate much like the volatility coefficient from theorem 1.2.6. The Burkholder-
Davis-Gundy inequality is used followed by Hölder’s estimates. This nets us an estimate of
the same shape as the first and second of (2.5), and then we can proceed as before using
Grönwall’s inequality. The problem, however, is that the estimate is not as sharp, hence
why the order of convergence is not 12 but instead 1

p . This completes the proof.

Remark. Note that this result is different from that of [AH20] as they determine the order
of convergence to be 12 for all p ≥ 2, not just p = 2. This cannot be, however, as is pointed
out by [BBMY11] in remark 3.1. Indeed, if we remind the reader that A is the poisson process
in the compound Poisson jump process Z , we have

E
[
|A(k + 1) − A(k )|p] ≤ C∆t

where C > 0. This differs from the Brownian motion increments where we would find ∆t p2
instead. This leads us to conclude that the order of convergence found in [AH20] is wrong.

2.2. Simulating Stock Prices
Now that we have proven the convergence of the classical Euler-Maruyama method for SFDEs,
we will run Monte-Carlo approximations using the Euler-Maruyama method and proceed to
price options based on these approximations. Imagine a stock with stock price 100 at time
t = 0 and take r = 0.05 with T = 1, h(x) = 0.01 + 0.005 cos(x) and f (x) = r + h(x). Moreover,
take

η(x) = 100 + log(1 + x) + sin ( x50)
These coefficients certainly verify the hypotheses: they are globally Lipschitz, f is strictly
positive and g is certainly bounded. Lastly, we have taken p = 1, q = 0, γ = 0.5, θ = 0 and
λ = 0.3. We will be doing 1000 approximations of 1000 steps each, using b = 0.05 as delay.
Most importantly, as stated before, these coefficients verify hypothesis (H)(iv ) by construction.
Below is the result of these approximations

49



Chapter II : Adding jumps into the model

Figure II.1: Stock Price Simulation using the delayed model with jumps over the period of a
year

2.3. Call Option Price Comparisons
For test purposes only, we will choose an equivalent martingale measure denoted by Q defined
with

θ(t, z) := θ(t) = f (S(t − b)) − r
h(S(t − b)) ∫

J
zν(dz)

By (3.6), we are able to rewrite the dynamic of S(t) under the measure Q. As always,
because the measure was obtained via Girsanov’s theorem, the jump dynamics are unchanged.
However, very much like in the continuous case, we have a different drift. Indeed, by definition
of θ, we have

fQ(St ) =f (S(t − b)) − f (S(t − b)) − r
������h(S(t − b))�����∫

J
zν(dz)�����h(S(t − b)

�
����

∫
J

zν(dz)
=�����f (S(t − b)) −�����f (S(t − b)) + r = r

where r is once again the interest rate. Just like f , by being constant, fQ verifies all the
hypotheses listed previously. Proceeding with this change, i.e replacing f by fQ, we price mock
options and compare them to the classical Black-Scholes formula. We have used σ = 0.04 for
the classical model. Below are the results:
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Strike Price Price of a European Call Option Price of a European Call Option
of the using the delayed using the

Call Option Black-Scholes model with jumps classic Black-Scholes formula
$100 $7.63 $8.59
$105 $5.46 $6.03
$110 $3.23 $4.07
$115 $2.01 $2.64
$120 $1.26 $9.49
$125 $0.73 $1.00
$130 $0.43 $0.58
$135 $0.11 $0.33
$140 $0.06 $0.18

2.4. Code & Algorithms
Below is the code used for the delayed model with jumps.

1 import pandas as pd
2 import numpy as np
3 import matplotlib . pyplot as plt
4

5 # Setting up the variables
6

7 K = 100 # strike price
8 r = 0.05 #risk -free interest rate
9 T = 1 #time in years

10 N = 1000
11 deltat = T/N #time step
12 b = 0.05*T #delay
13 i = 1000 # number of simulations
14 m = 1 # Number of positive exponential paremeter
15 n = 1 # Number of negative exponential parameter
16 p = 1 # probability of positive exponential paremeter
17 q = 0 # probability of negative exponential paremeter
18 LowerBound = 0 #Lower bound of the Levy process
19 Gamma = 0.5 # positive exponential coefficient
20 Beta = 0 # negative exponential coefficient
21 Lambda = 0.3 # Poisson Coefficient
22

23 S = np.zeros ([i,N]) #Stock price
24 t = np. linspace (-b, T, N) # Time
25

26 # Defining the coefficients and initial data
27 def f(x):
28 return r
29

30 def h(x):
31 return 0.01 + 0.005* np.cos(x)
32

33 def eta(x):
34 return 99 + np.sin(x/24) + np.cos(x/42)
35

36 def LinInterS (S,j,k,ib ,b):
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37 return ((( ib +1)* deltat - b)/ deltat )*S[j, k-ib] - ((ib* deltat - b)/ deltat )*
S[j, k-ib +1]

38

39 # Define the call option payoff function
40 def call_payoff (S, K):
41 return np. maximum (S-K, 0)
42

43 # Inverse transform sampling part
44

45 def Yinv(x):
46 if x > q:
47 return -np.log (1-(x-q)/p)/Gamma
48 elif x <= q:
49 return 1/ Theta*np.log(x/q)
50

51 # Definition of the double - exponential Levy process
52

53 def Z(u):
54 Npoisson = np. random . poisson ( Lambda *u)
55 if Npoisson != 0:
56 Y = np.empty( Npoisson )
57 for j in range( Npoisson ):
58 Y[j] = Yinv(np. random .rand ())
59 Z = np.sum(Y) - Lambda *u*(p*Gamma + q*Beta *(1-np.exp(-Beta* LowerBound )

)) #hyper exponential process
60 else:
61 Z = 0
62 return Z
63

64 def deltaZ (u):
65 return Z(u+1) - Z(u)
66

67 # Approximation Algorithm
68 option_prices = []
69 for j in range (0,i -1):
70 S[j ,0] = eta (0)
71 for k in range (0,N -1):
72 if k* deltat > b:
73 if b % deltat == 0:
74 S[j,k+1] = S[j,k] + f(S[j,k-int(b/ deltat )])* deltat + h(S[j,k-(

b/ deltat )])* deltaZ (k)
75 else:
76 ib = int(np.floor(b/ deltat ))
77 S[j,k+1] = S[j,k] + f( LinInterS (S,j,k,ib ,b))* deltat + h(

LinInterS (S,j,k,ib ,b))* deltaZ (k)
78 else:
79 S[j,k+1] = eta(k+1)
80

81 # Calculate the call option payoff at expiration time T
82 call_payoffs = call_payoff (S[j, -1], K)
83

84 # Print the stock price at the maturity date
85 print(f"Stock price at maturity for simulation {j+1}: {S[j , -1]}")
86

87 # Discount the call option payoff to the present time
88 discounted_payoffs = np.exp(-r * T) * call_payoffs
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89

90 # Calculate the Monte Carlo estimate of the call option price
91 option_price = np.mean( discounted_payoffs )
92 option_prices . append ( option_price )
93

94 plt.plot(t,S[j])
95

96 # Plotting
97

98 plt.title(’%d Simulated Price Paths with %d steps ’ % (i,N), fontsize =20)
99 plt. xlabel (’Time ’, fontsize =15, labelpad =20)

100 plt. ylabel (’Stock Price ’, fontsize =15, labelpad =20)
101 plt. yticks ( fontsize =12)
102 plt.show ()
103

104 # Print the mean call option price
105 mean_option_price = np.mean( option_prices )
106 print("Mean call option price: %f" % mean_option_price )
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Chapter III
Pricing and Hedging in an Incomplete Delay
Market

III.1. Buyer’s and Seller’s prices: an Estimation for the Pricing of a
Call and Put option

We have seen previously in chapter 1 that, in a complete market, a claim has a unique price.
However we have also seen in the previous chapter that a market with jumps is only complete
if there are as many assets as there are jump sizes and hence the market is incomplete. To
be exact, while the non-arbitrage property is guaranteed, the replicability of claims is not.
Thus, a question arises: what is a correct price for a claim in an incomplete market? We will
answer this question in the case of a European call option, but the same can be done with a
European put option. We will follow [ØS05].

Going back to the definition and if need be to simpler discrete models like the Cox-Ross-
Rubinstein model, it is easy to see that both parties (the buyer and the seller) each have
an idea for a fair price. If F denotes the call option and A denotes the set of all admissible
portfolios, to the buyer, a fair price is

pb(F ) = sup{x ∈ R, ∃φ ∈ A s.th x −
∫ T

0 φ(u)dS(u) ≤ −F a.s.} (5.1)

ps(F ) = inf{x ∈ R, ∃φ ∈ A s.th x + ∫ T

0 φ(u)dS(u) ≥ F a.s.} (5.2)

Theorem 3.1.13 (Pricing and Hedging in Incomplete Markets). We have

pb(F ) ≤ EQ
[
e−rTF

]
≤ ps(F ) (5.3)

Moreover, if F is replicable, then

pb(F ) = EQ
[
e−rTF

] = ps(F ) (5.4)
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where Q is an equivalent martingale measure as before.

Proof. We follow the proof of [ØS05], theorem 2.14. Let us start by proving the first claim
5.3. Suppose x ∈ R and φ ∈ A s.th

x −
∫ T

0 φ(u)dS(u) ≤ F (5.5)

Discounting both sides,

x −
∫ T

0 φ(u)dS̃(u) ≤ e−rTF

Since φ is admissible, it is lower bounded and hence the left-handside is lower bounded.
Moreover, since S̃(t) is a martingale under Q, then the stochastic integral w.r.t S̃(u) of
φ(u) is a local martingale under Q. Since a local martingale bounded from below is a
supermartingale (see [BB17] p.205 for details on local martingales) then we have that

x ≤ EQ

[
x −

∫ T

0 φ(u)dS̃(u)] ≤ EQ
[
e−rTF

]
Since this is true for all choices of x, φ satisfying (5.4), we conclude that pb(F ) ≤ EQ

[
e−rTF

]
.

In an analog fashion, we can do the same for the seller’s price to show that

ps(F ) ≥ EQ
[
e−rTF

]
which finishes the first part of the proof and proves (5.3). We now turn our attention to
(5.4). Suppose F is replicable. Then there exists x ∈ R and φ ∈ A s.th

x −
∫ T

0 φ(u)dS̃(u) = e−rTF

Taking the expectation on both sides and using the fact that S̃(u) is a Q-martingale, we get
that x = EQ

[
e−rTF

]
. Thus, EQ

[
e−rTF

]
≤ pb(F ) and we (??.3) to conclude that

pb(F ) = EQ
[
e−rTF

]
An exact analog can be done for ps(F ) which proves (5.4).

This tells us that although we can indeed not directly give a fair price for the Call (resp.
Put) option, as it is not replicable. It is possible, however, to determine what an unfair price
would be. Rather, we have a range of prices where there is neither arbitrage for either the
seller or the buyer. Rather than having a single, unique price, the matter becomes more
complicated when jumps are involved.
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III.2. A Risk-Minimizing Approach to Hedging
2.1. A Short Reminder on Malliavin Calculus
We briefly present a few definitions results from [DN01] without proofs, results which will be
necessary for the upcoming section. The reason for the lack of proofs is because these results
were already studied and hence the author assumes that the reader will be familiar with these
concepts.
Start by defining L̃2((λ× ν)j ) to be the space of symmetric functions of L2((λ× ν)j ) in the sense
of permutation of the arguments. Then we define D1,2 ⊂ L2(P) to be the space of all FT -
measurable random variables of L2(P) such that there exists functions fj ∈ L̃2((dt × ν)j ) such
that

F = ∞∑
j=0 Ij (fj )

where Ij are j iterated stochastic integrals. We call this expansion a chaos expansion. More-
over, for F to be in D1,2, we require that

||F ||2D1,2 = ∞∑
j=1 j j !||fj ||2L2((dt×ν)j ) < ∞

Then, for F ∈ D1,2, define the Malliavin derivative of F as

Dt,zF = ∞∑
j=1 j Ij−1(fj (t, z))

We can finally state the most important result and the one we will rely on for the next
section.

Theorem 3.2.14 (Clark-Ocone Formula for pure jump Lévy processes). Let F ∈ D1,2. Then

F = E[F ] + ∫ T

0
∫
J

E
[
Dt,zF |Ft

]
Ñ(dt, dz)

where the conditional expectation is chosen to be a predictable version.

Proof. See [NØP08], theorem 12.16.

2.2. Minimal Variance Hedging with Delay
We have seen at the end of the last chapter that an application of the Martingale repre-
sentation theorem would not work and would not yield a portfolio replicating a call option.
Moreover, in the previous section, we have seen that this non-replicability yields a range of
prices and not a single, unique price for the option. How, then, would one hedge against the
call option if it is not replicable?
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Just like result (5.3), we will instead choose to see how close we can get instead of trying to
get the exact hedging portfolio which does not exist. How "close" we are will be decided by
the Lp(Q) norm difference where Q denotes an equivalent martingale measure (chosen, as there
are many). If p = 2, the name "minimal variance hedging" takes full meaning. In fact, we will
only work in the p = 2 case, as we will make use of the Hilbert structure of the L2(Q) space.
We will make full use of Malliavin Calculus although we do not need to extend it to the realm
of stochastic functional equations as it will only be used on our claim, per the Clark-Ocone
formula (see the previous subsection for a reminder). We will rely on section 12.6 of [NØP08]
adapted to our problem as well as [DN01].

Remark. Note that in [DN01], it is specified that the chosen Lévy process must be a
martingale under the chosen measure Q, which is the case from the previous chapter since we
will be considering S̃. This is the main reason for the change from [AH20] where the Lévy
process is not compensated.

Before all else, let us mention that the following result, general though it may be, has
the assumption that f = 0. While this is important, as we will be considering the Lévy pro-
cess S̃ under the measure Q, which, by (3.8) has no drift, this shall not be of concern.

As mentioned previously, we state a result on the geometry of L2(Q), namely on the or-
thogonality of a certain family of subsets. Let H0 ⊂ L2(Q) be the space of all F such that
DF = 0. Denote by HS̃ ⊂ L2(Q) the subspace of all stochastic integrals with respect to the
to the Lévy process S̃, i.e all processes of the form

∫ T0 φ(t)dS̃(t). Finally, denote by D the
non-anticipating derivative. Then we have the following

Lemma 3.2.8. Let F ∈ L2(Q). Then there exists a unique F0 ∈ H0 such that

F = F0 + ∫ T

0 DF (t)dS̃(t)
More generally, we have

H = H0 ⊕ HS̃

Proof. The result and proof can be found in [DN01], p.5. The main idea is to partition HZ
into a direct sum of the spaces H∆S̃ , which are defined as the spaces of random variables
of the form F∆S̃ where ∆S̃ denotes the increments of the Lévy process S̃ on the intervals(t, t + h] for a time step ∆t. If we denote by φh the simple functions from the definition of
the stochastic integral of a process φ, i.e∫ T

0 φ(t)dS̃(t) = lim
h→0

∫ T

0 φh(t)dS̃(t)
then, for F = ∫ T0 φ(t)dS̃(t) ∈ HS̃ , the projection of F on H∆S̃ is by construction φh∆S̃. Now,
for some fixed h > 0, consider

Hh := ∑
⊕H∆S̃
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Given F ∈ L2(Q), then for some ψ∆S̃ we have

E
[(F − φh∆S̃)(ψ∆S̃)] = 0 (5.1)

where the equality is proved by condition with respect to Ft and using the properties of the
Lévy process S̃. That is, the projection of F ∈ L2(Q) onto Hh is∫ T

0 φh(t)dS̃(t)
Letting h → 0, we see that, by construction, we indeed have Hh → HS̃ . Now once again
consider an arbitrary F ∈ L2(Q). Take φ = DF , we have

φh = E
[
F ∆S̃
E[|∆S̃|2|Ft ] ∣∣Ft]

Then
F0 := F −

∫ T

0 φ(t)dS̃(t)
is indeed in H0 by construction and is orthogonal to any element of HS̃ by (5.1). Uniqueness
is ensured by uniquess of DF , which concludes the proof.

Remark. This proof is valid for any martingale Lévy process Z in general. Not that this
may not be the Z we have have been working with so far. This is a general result which will
be of help for the next result, key of this chapter.

Theorem 3.2.15 (Minimal Variance Hedging of a clain in a pure jump Lévy process driven
market). Let F ∈ D1,2 ⊂ L2(Q) be a claim. Then there exists F ∗ and π∗(t) defined by

F ∗ := E[F ] + ∫ T

0 π∗(t)dS̃(t)
such that π∗ is the minimal variance hedging portfolio, i.e that

||F − F ∗||L2(Q) = min
π
E

[
|
∣∣F − E[F ] − ∫ T

0 π(t)dS̃(t)∣∣2]
Moreover, we have

π∗(t) =
∫
J

E
[
Dt,zF |Ft

]
zh(S(t − b)) ν(dz)∫

J

h2(S(t − b)) νQ(dz)
Proof. We adapt a proof similar to [NØP08], theorem 12.24. The result can also be found
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in [BDNL+03], theorem 4.1. Suppose such a π∗ and let us define the claim F ∗ by

F ∗ := E[F ] + ∫ T

0 π∗(t)dS̃(t) = E[F ] + ∫ T

0
∫
J

π∗(t)zh(S(t − b)) ÑQ(dt, dz)
Under these notations, we make use of the Hilbert structure of L2(Q). We know from lemma
3.2.8 that E

[(F − F ∗)G] = E
[
F0G] = 0 for all FT -measurable G ∈ L2(Q) such that

G := ∫ T

0 ψ(t)dS̃(t) = ∫ T

0
∫
J

ψ(t)zh(S(t − b)) ÑQ(dt, dz)
where ψ denotes an admissible portfolio and F0 ∈ H0 is the orthogonal remainder. Using
this Hilbert structure, we will be able to confirm the existence of π∗ as well as categorize
it. Let us first rewrite F using the Clark-Ocone formula for Lévy processes (see theorem
3.2.14).

F = E[F ] + ∫ T

0
∫
J

E
[
Dt,zF |Ft

]
ÑQ(dt, dz)

Thus,

E
[
F0G] = E

[( ∫ T

0
∫
J

E
[
Dt,zF |Ft

]
−π∗(t)zh(S(t−b)) ÑQ(dt, dz))·

( ∫ T

0
∫
J

ψ(t)h(S(t−b)) ÑQ(dt, dz))]
Developing this expression using the Ito isometry, we get

E
[
F0G] = E

[ ∫ T

0 ψ(t)( ∫
J

E
[
Dt,zF |Ft

]
zh(S(t − b)) − π∗(t)zh2(S(t − b))) νQ(dz)dt] = 0

Which in turn implies∫
J

E
[
Dt,zF |Ft

]
zh(S(t − b)) − π∗(t)zh2(S(t − b))νQ(dz) = 0

i.e

π∗(t) =
∫
J

E
[
Dt,zF |Ft

]
zh(S(t − b)) νQ(dz)∫

J

h2(S(t − b)) νQ(dz)
Hence, such a π∗ verifying this sufficient condition does indeed exist and it is indeed the
one we sought to find. The proof is complete.

Remark. Using lemma 3.2.8, we can go a step further and deduce that π∗ = DF , the
non-anticipative derivative of F .
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Conclusion

In this thesis, we have developed two financial market models with delay: a continuous model
and a pure jump model. Both have been studied and the results we have proven were some-
what expected. The continuous model is complete while the jump model is incomplete. In
the continuous case, we have determined a pricing formula for the call and put options as
well as the hedging portfolio. For the study of these markets, the theory of stochastic delay
differential equations was studied and developed in the continuous and jump case both. They
can be found in the respective appendixes A and B.

In the jump case, while we have determined the lack of arbitrage opportunities, we were
not able to price the call and put options. Moreover, this was done with a very special bound
condition on the coefficients. In an incomplete market, where the equivalent martingale mea-
sure is not unique, the pricing depends on the measure chosen. Given one, we have determine
the minimal variance hedging portfolio, that is the closest portfolio (in the L2(Q) sense) which
minimizes the risk. A formula for this portfolio, depending on the measure Q chosen, was
given.

In both cases, we have studied numerical approximations of these models. In the con-
tinuous case, two approaches were developed: a classic approach and a logarithmic approach.
The latter proved to be extremely restrictive on the coefficients of the stochastic differential
equation, although its order of convergence remained unchanged from the classical method.
It is important to note that the addition of delays to the latter does not change the order of
convergence either (up to a small ε > 0 with local Lipschitz hypothesis). Its implementation
requires the classical scheme under locally Lipschitz assumptions on the coefficients, which
was therefore developed.

In the jump case, only the classical method was developed under globally Lipschitz as-
sumptions. An extension of the logarithmic scheme was considered and eventually dropped as
the hypotheses became so restrictive, more so than in the continuous case, that its usability
was in doubt. We have seen that this is a mere extension of the scheme, although the addition
of jumps changes the order of convergence from 12 to 1

p due to the increments of the Poisson
process.

Many papers were researched and used in this thesis. All of them can be found below in
the biography. We note that [AH20] was our starting point for the jump case but was found
to have many mistakes. A glaring one is the false claim that the jump market is complete.
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Moreover, the authors develop a logarithmic numerical approximation which is not clear
and of which the convergence rate is also found to be wrong. In particular, the authors claim
that the order of convergence is 12 when it can, at most, in fact, only be 1

p due to the presence
of jumps.

From here, there are many routes one could take to go further in this topic. Plenty
of questions remain, such as if it is possible to improve the already presented results or if it
is possible to lower the hypotheses we have made. As we have mentioned many times, some
hypotheses we have made are quite restrictive. We mention a machine learning approach to
portfolio optimization, inspired by [Wan19], which was shortly considered in earlier drafts of
the project. Sadly, there was not enough time to study it, develop it and include it in this
thesis.



Appendix A

This appendix is dedicated to SFDE’s in the Brownian setting and the general existence and
uniqueness theorem for such SFDE’s. Simply put, an SFDE is a stochastic differential equation
where the coefficients can also depend on the memory of the process. Let C = C

(([−R, 0],Rd))
and let η ∈ L2(Ω,C). We equip L2(Ω,C) with the norm

||η||L2(Ω,C ) := ( ∫
Ω ||η(ω)||2C dP(ω)) 12

Let f : [0, T ] × L2(Ω,C) → L2(Ω.Rd) and g : [0, T ] × L2(Ω,C) → L2(Ω.Rd×n) be the drift and
volatility coefficients respectively. Then an SFDE is a differential equation of the form:{

dS(t) = f (t, St )dt + g(t, St )dB(t), t ∈ [0, T ]
S(t) = η(t), t ∈ [−R, 0] (A.1)

where we define the stochastic memory St by St (s) := S(t + s), s ∈ [−R, 0]. It is important to
note that while it may not seem apparent at first, the coefficient f and g may also depend on
S(t) and not just the memory path. The reason for omitting to specify the dependence on S(t)
is, first, to simplify notations and second, that we can write S(t) as St (0). Also note here that
we are subtly using the fact that there no jumps allowed and that the paths are continuous.

Remark. If f and g are deterministic, which is usually the case, then the space L2(Ω, C )
is replaced by simply C. For example, this is the case of the earlier chapters of this thesis.
However, for generality’s sake, we proceed with L2(Ω, C ).
Let us now suppose the following:

(H)(i) The functions f and g are jointly continuous and uniformly Lipschitz in the space
(second) coordinate, i.e for all t ∈ [0, T ] and φ1, φ2 ∈ L2(Ω,C), there exists a constant L inde-
pendent of t such that

||f (t, φ1) − f (t, φ2)||L2(Ω,Rd) + ||g(t, φ1) − g(t, φ2)||L2(Ω,Rd×m) ≤ L||φ1 − φ2||L2(Ω,C)
(H)(ii) If φ : [0, T ] → L2(Ω,C) is adapted, so are f (t, φ(t)) and g(t, φ(t)).
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Theorem 3.2.16. (Existence and uniqueness) Suppose f and g both verify the hypotheses (H)
above and let η be an F0-mesurable element of L2(Ω,C). Then the SFDE has a unique solu-
tion ηx : [−r,∞) × Ω → Rd with initial condition η. Moreover, ηx ∈ L2(Ω, C([−R, T ],Rd))
for all T > 0.

Proof. We will use a Picard iteration type proof. The goal of this proof is to approximate
step by step the solution with a well-chosen sequence of successive approximations. First,
we need to establish the space in which those approximations take place. We denote by
L2
A
(Ω, C([−R, T ],Rd))

the space of all processes X ∈ L2(Ω, C([−R, T ],Rd))
such that X (t) is

F0-measurable for t ∈ [−R, 0] and Ft-measurable for t ∈ [0, T ]. We define suitable Picard
iterative processes, check that they are indeed living in this space, and that they form a
Cauchy sequence. Specifically, we will want to prove that our approximations X k will pos-
sess the following three properties:

(P)(i) X k belongs in the approximation space, i.e X k ∈ L2
A
(Ω, C([−R, T ],Rd))

(P)(ii) For a fixed time, the stochastic memory is regular enough i.e for each t ∈ [0, T ], X kt ∈
L2(Ω,Ft ;C).
(P)(iii) Two successive approximations are "close enough", i.e

||X k+1 − X k ||L2(Ω,C) ≤
((4L2)(k−1) T k−1(k − 1)!) 12 ||X 2 − X 1||L2(Ω,C)

and

||X k+1
t − X kt ||L2(Ω,C) ≤

((4L2)(k−1) tk−1(k − 1)!) 12 ||X 2 − X 1||L2(Ω,C)
where L is the (uniform) Lipschitz constant of g. First define

X 1(t, ω) = {
η(0, ω) if t ∈ [0, T ]
η(t, ω) otherwise

which corresponds to freezing the initial condition at time t = 0. We then define the
following approximations for all k > 1 by

X k+1(t, ω) =
η(0, ω) + ∫ t

0 g(u, X ku )dB(u)(ω) if t ∈ [0, T ]
η(t, ω) otherwise

To prove that our approximation is well chosen, let us proceed by induction. Since the initial
condition η is assumed to be an element of L2(Ω,C), it follows that 1X ∈ L2

A
(Ω, C([−R, T ],Rd))

by definition of 1X . Hence, the delayed 1Xt also belongs to L2(Ω, C([−R, T ],Rd))
and it is

Ft-mesurable since η is F0-measurable. Thus, P(1)(i) and P(1)(ii) are both verified. Inputting
k = 1 in P(k )(iii) trivially yields P(1)(iii).
Let us suppose that the three properties P(k ) holds for a certain k . By P(k )(ii), X kt is Ft-
mesurable and hence, by H(ii), so it g(t, X kt ). By the adaptability of the Ito integral, this
extends to X k+1(t) and its stochastic memory (k+1)Xt . The L2 property of the process and



its stochastic memory follow from the definition of g and hence, P(k + 1)(i) and P(k + 1)(ii)
are verified.
Let us now check the last remaining property. By definition of kX , we have

||X k+2−X k+1||2L2(Ω,C) ≤ E
[ sup
t∈[0,T ]

∣∣ ∫ t

0 g(u, X k+1
u )−g(u, X ku )dB(u)∣∣2] < 4E[∣∣ ∫ T

0 g(u, X k+1
u )−g(u, X ku )dB(u)∣∣2]

where we have used Doob’s martingale inequality. Using the Ito isometry and Fubini, we
obtain

4E[∣∣ ∫ T

0 g(u, X k+1
u ) − g(u, X ku )dB(u)∣∣2] = 4E[ ∫ T

0
(
g(u, X k+1

u ) − g(u, X ku ))2 du]
= 4 ∫ T

0 E
[(
g(u, X k+1

u ) − g(u, X ku ))2]︸ ︷︷ ︸=||g(u,X k+1)−g(u,X ku )||2
L2(Ω,Rd×n )

du

= 4 ∫ T

0 ||g(u, X k+1
u ) − g(u, X ku )||2L2(Ω,Rd×n) du

By H(i), i.e Lipschitzianity in the second variable, we have that

||g(u, X k+1) − g(u, X ku )||2L2(Ω,Rd×n) < L2||X k+1 − X k ||2L2(Ω,C) < L2(4L2)k−1 T k−1(k − 1)! ||X 2 − X 1||2L2(Ω,C)
and hence

4 ∫ T

0 ||g(u, X k+1) − g(u, X ku )||2L2(Ω,Rd×n) ≤ 4L2(4L)k−1 T k−1(k − 1)! ||X 2 − X 1||2L2(Ω,C)
∫ T

0 uk−1 du
= (4L2)k T kk ! ||X 2 − X 1||2L2(Ω,C)

Finally, we note that

||X k+2
t − X k+1

t ||L2(Ω,C) ≤ ||X k+2 − X k+1||L2(Ω,C)
which completes our inductory proof of the properties (P) of our approximations. It now
remains to check that those approximations indeed converge to a unique solution of our
SFDE.
Rewrite X k as

X k = X 1 + k−1∑
j=1

(jX −j−1 X)
Now, if we let k → ∞, the convergence of X k to some process X is tied to the convergence
of the series above, which luckily for us converges. Indeed, using P(k )(iii), for every k ,



∣∣∣∣∣∣ k−1∑
j=1

(jX −j−1 X)∣∣∣∣∣∣
L2(Ω,C) ≤

k−1∑
j=1

∣∣∣∣jX −j−1 X ∣∣∣∣
L2(Ω,C)

≤ ||X 2 − X 1||L2(Ω,C) k−1∑
j=1

((4L2)j−1 T j−1(j − 1)|) 12

which converges as k → ∞ (by D’Alembert’s criterion for example). Moreover, since Ft-
measurability is preserved in the limit process, the convergence happens in L2

A
(Ω, C ([−R, T ],Rn)).

We conclude by applying Doob’s inequality to u 7→ g(u, X ku ) − g(u, Xu):
E

[ sup
t∈[0,T ]

∣∣ ∫ t

0 g(u, X ku ) − g(u, Xu)dB(u)∣∣2] ≤ 4L2T ||X k − X ||2L2(Ω,C) → 0
Hence, the convergence is preserved by the volatility coefficient, which must mean that our
limit process X verifies the original SFDE. Uniqueness follows directly from H(i). □

Remark. It is possible to consider a local Lipschitz hypothesis instead of a global one. The
reason for this is that a global Lipschitz hypothesis may often be too restrictive and prevent
us from studying more complex phenomenons/models, while a local hypothesis is much less
restrictive. To prevent blow ups, we impose an additional linear growth condition, which is
not longer guaranteed by the Lipschitz condition since it is now only local. To summarize, it
is possible to switch hypothesis (H)(i) for

(H’)(i) The coefficients f and g are locally Lipschitz in the second variable, i.e for all n ≥ 1
there exists Lnsuch that for all φ1, φ2 ∈ Cn := {φ ∈ C, ||φ||C < n}, we have

||f (t, φ1) − f (t, φ2)||L2(Ω,Rd) + ||g(t, φ1) − g(t, φ2)||L2(Ω,Rd×m) ≤ Ln||φ1 − φ2||L2(Ω,C)
(H’)(ii) There exists a constant K > 0 such that for all φ ∈ C, we have

||f (t, φ)||L2(Ω,Rd) + ||g(t, φ)||L2(Ω,Rd×m) ≤ K (1 + ||φ||C)
In essence, given linear growth, it is enough to consider problems on the open balls of C.
The proof of the above theorem with this change in hypotheses follows this train of thought.
Consider the truncated coefficients outside some open ball Cn, i.e define

fn(t, x) = {
f (t, x) if ||x|| < n
f (t, x

||x||n) if ||x|| ≥ n

and

gn(t, x) = {
g(t, x) if ||x|| < n
g(t, x

||x||n) if ||x|| ≥ n

In Cn, by the local Lipschitz hypothesis, these coefficients verify a global Lipschitz hypothesis.
Hence, in Cn, the SFDE with coefficients fn and gn has a unique solution Xn approximatedvia
Xn,k . Moreover, by the definition of the truncation, for two open balls Ci and Cj , the coeffi-
cients fi, fj and gi, gj agree on their intersection Ci ∩ Cj , the smallest of the two balls. Hence,



the same goes for the processes S i and S j . It then remains to consider the stopping times
τn = T ∧ inf{t ∈ [0, T ], |Xn(t)| > n}. By the linear growth condition, we have that for some n∗,
we have τn∗ = T . Denote the process Xn∗ by X .
Letting n → ∞, we see that fn → f and gn → g. Taking the limit of the process X (t ∧ τn), we
end up with a process verifying the SFDE. Moreover, it is unique as it agrees with all Xn and
on their respective domains.

Remark. As can be found in [Mao07], one can go a step further. From theorem 4.1 of
chapter V of [Mao07] (p.160), thanks to the linear growth condition given to us by the global
Lipschitz hypothesis under the assumption of a unique global solution X , one can estimate
that, for all t ≥ 0,

E
[ sup

−R≤u≤t
|X (u)|2] ≤ 322(1 + E[

||η||2C])eCt
where C = 4√

K + 65K . In fact, if we now require that η is an element Lp(Ω,C) for a general
p ≥ 2, then

E
[ sup

−R≤u≤t
|X (u)|p] ≤ 322 p2 (1 + E[

||η||pC
])eCt

where Cp = 2p√
K + (33p2 − p)K .

This tells us something very strong, that the solution of an SFDE we obtain with the previous
theorem has a finitep-th moment if the initial condition η is an element of Lp(Ω,C)!
Theorem 3.2.17. (Markov Property) Suppose f and g are jointly continuous and (uniformly)
globally Lipschitz in the second variable with respect to the first. Let ηX t1 denote the solution
of the SFDE {

dX t1 (t) = h(t, X t1t )dt + g(t, , X t1t )dB(t) if t > t1
X t1 (t) = η(t − t1) if t1 − r ≤ t ≤ t1

Then
P(X (t2) ∈ B|Ft1 ) = P(X (t2) ∈ B|X (t1))

Proof. We will show that both sides of the equation equal P(ηX t1t2 ). Let us first show that
P(X (t2) ∈ B|Ft1 ) = P(ηX t1 (t2) ∈ B). Define the mappings

T t1t2 : L2(Ω,Ft1 ;C) → L2(Ω,Ft2 ;C)
η 7→ T t1t2 (η) := ηX t1 (t2)

Note that by the previous theorem, by uniqueness of solutions with such drift and volatility
coefficients, we have T t1t2 ◦ T 0

t1 = T 0
t2 . Then, using the definition of conditional probability,

one can rewrite the condition into∫
A
1B(ηX 0

t2 (ω))dP(ω) = ∫
A

∫
Ω 1B

(
T t1t2 (T 0

t1 (η)(ω′))(ω))dP(ω)dP(ω′) (A.2)



for all A ∈ Ft and Borel sets B ∈ B(C). In [Moh84], p.51, it is proven that this relation holds
when 1B is replace by an arbitrary uniformly continuous and bounded function f : C → R.
The argument mainly involves approximation by simple functions and the continuity of
our mappings. We now want to prove the initial relationship for all open sets B ⊂ C by
approximation 1B with uniformly continuous, bounded functions. We proceed using the
fact that C admits uniformly continuous partitions of unity. Hence, we can pick a family of
sets {Bk}∞

k=1 and associated uniformly continuous functions {fk}∞
k=1 such that

∑∞
k=1 fk = 1.

Introduce the sequence of functions {gj}j=1
gj (η) = {∑m

k=1 fk (η) if η ∈ B0 otherwise

The gj are clearly uniformly continuous as a finite sum of uniformly continuous functions
and bounded by definition, hence the previous step applies. Moreover, we have gj → 1B
as j → ∞ and thus, using dominated convergence, we have (1) for open sets B ⊂ C. The
remaining argument to generalize this to any Borel set is measure-theoretic in nature.
Set ν(B) to be the right-hand side of (1). It is in fact a (Borel) measure and in fact finite.
Moreover, it is also regular since C is metric. Hence, by regularity∫

A
1B(ηX 0(t2)(ω))dP(ω) := v∗(B) = v (B)

for any Borel set B ⊂ C and this part of the proof is over.

It remains to show that P(ηX t1 (t2) ∈ B) = P(X (t2) ∈ B|X (t1)). For this we refer to [Moh84],
p.56-58.



Appendix B

This appendix focuses on the theory of SFDEs with jumps. For this, we will mainly follow
[BCDN+19].

Consider a usual complete probability space (Ω,F,P). Let B be an m-dimensional, F-adapted
Brownian motion. Let N = (N1, . . . , Nn) be the Poisson random measures associated with n
independent F-adapated Lévy processes and let ν = (ν1, . . . , νn) denote the respective Lévy
measures of these processes. Finally, consider the compensated Poisson random measure
defined by

Ñ(dt, dz) = (N1(dt, dz) − ν1(dz)dt, . . . , Nn(dt, dz) − νn(dz)dt)
Unlike in the previous appendix and in chapter 1, it is now important to differentiate the
dependance X (t) and Xt as well as represent the initial value by a pair of a continuous function
η as before and a point x representing X (0). The reasoning for this is that there may be a jump
at 0 (or at a given point t for that matter), which it is now necessary to take into account.
Hence, define the new space Mp := Lp([−r, 0],Rd) × Rd. Also define LpF := [0, T ]xLp(Ω, Mp) the
product space of processes such that (ψ, v ) ∈ Lp(Ω,Ft , Mp) is Ft-measurable. Now consider the
following differential equation

dX (t) = f (t, X (t), Xt )dt + g(t, X (t), Xt )dB(t) + ∫
R0 h(t, Xt , X (t))(z)Ñ(dt, dz), t ∈ [0, T ]

(X0, X (0)) = (η, x) t ∈ [−R, 0]
where R is the maximum delay considered and (η, x) ∈ Lp(Ω,F0;Mp). Moreover, we ask that
the coefficients f , g, h are as follows

f : LpF → Lp(Ω,Rd)
g : LpF → Lp(Ω,Rd×m)
h : LpF → Lp(Ω, L2(ν,Rd×n))

Finally, as we want the respective integrals to be well defined, we will ask that the map(t, ω, z) 7→ h(t, Yt , Y (t))(w)(z) has a predictable version and that the two maps
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(t, ω) → f (t, X (t), Xt )(ω)(t, ω) → g(t, X (t), Xt )(ω)
have progressively measurable versions.
To extract existence of a solution and its uniqueness, we will need to impose further conditions
on the coefficients of the differential equation, as one usually does. However, before we attack
the statement and proof of said theorem, we must first prove intermediary results.
Lemma 3.2.9. (Ito’s formula for semimartingales) Let X be a semimartingale and let F ∈
C 2(Rd). Then F (X ) is also a semimartingale and

F (X (t)) = F (X0)+∫ t

0+ F
′(X (u−))dXu+12

∫ t

0+ F
′′(X(u−)d[X, X ]cu+ ∑

0≤u≤t

[
F (X (u))−F (X (u−))−F ′(X (u−))∆X (u)]

where ∆X (u) denotes the jumps of the process X and [X, X ]cu refers to the continuous part of[X, X ]u.
Proof. We refer to [Pro05], theorem 32, p. 78-81 or alternatively [Kun04], theorem 1.12,
p.12 for the proof of this result.

Lemma 3.2.10. (Kunita-Watanabe Formula) Let X be a semimartingale and let F ∈ C 2(Rd).
Suppose that X can be written component-wise like so

X i(t) := X (0) + A(t) +M i(t) + ∫ t

0
∫
R0 g(u, z)Ñ(du, dz) + ∫ t

0
∫
R0 h(u, z)N(du, dz)

such that Ai(t) is a continuous, adapted process of finite variation, M(t) is a continuous local
martingale and |g| · |h| = 0. Then

F (X (t)) = F (X (0)) + d∑
j=1

∫ t

0
∂F
∂xj

(X (u−))dAj (u) + d∑
j=1

∫ t

0
∂F
∂xj

(X (u−))dM j (u) + 12 d∑
i,j=1

∫ t

0
∂2F
∂xi∂xj

(X (u))d⟨M j , M j⟩u

+ ∫ t

0
∫
R0 F (X (u−) + g(u, z)) − F (X (u−))Ñ(du, dz) + ∫ t

0
∫
R0 F (X (u) + h(u, z)) − F (X (u−))N(du, dz)

+ ∫ t

0
∫
R0 F (X (u−) + g(u, z)) − F (X (u−)) −

d∑
j=1 g

j (u, z)∂F∂xj (X (u−))duν(dz)
Proof. We refer to [Kun04], theorem 2.5, p.20-22 for the proof of this result.

Lemma 3.2.11. (Kunita’s Inequality) Let p > 1 and suppose that f , g and h are predictable
processes taking values in Rd, Rd×m and Rd×n respectively. Consider the Lévy-Ito process

X (t) = X0 + ∫ t

0 f (u)du+ ∫ t

0 g(u)dB(u) + ∫ t

0
∫
R0 h(u, z)Ñ(du, dz)

Then there exists a constant C = C (q, d,m, n, T ) such that for all t ≤ T ,

E
[ sup0≤u≤t

|X (t)|p] ≤ C
[
||Y0||pLp(Ω,Rd+∫ t

0
(
||f (u)||pLp(Ω,Rd)+||g(u)||pLp(Ω,Rd×m)+||h(u)||pLp(Ω,Lp(ν))+||h(u)||pLp(Ω,L2)ν)))du]



Proof. The detailed proof of the result can be found in [Kun04]. We will, however, give an
overview of this proof. Start by proving the result for n = 1. Define the process

Y 1(t) := d∑
j=1

∫ t

0 gj (u)dBj (u)
Notice that Y (t) is in fact a continuous martingale by definition of the stochastic integral.
Hence, applying Ito’s formula for semimartingales to Y (t) and x 7→ |x|p for p > 1, the final
term vanishes and we get

|Y 1(t)|p = p
∫ t

0 |Y 1(u)|p−2Y 1(u)dY 1(u) + 12p(p− 1) ∫ t

0 |Y 1(u)|p−2g(u)2du
Parts of the proof rely on local martingales moving forward, hence we define an increasing
sequence of stopping times τk such that P(τk < T ) → 0 as k → ∞. Via Doob’s inequality,
followed by Hölder’s inequality and using the expression above, we have

E
[ sup0≤u≤t∧τk

|Y 1(u)|p] ≤ pqE[|Y 1(t ∧ τk )|p]
≤ 12pq+1(p− 1)E[ sup0≤u≤t∧τk

|Y 1(u)|p] p−2
p E

[( ∫ t∧τk

0 g(u)2) p2 ] 2
p

Now define the pure jump process

Y 2(t) := ∫ t

0
∫
R0 h(u, z)Ñ(du, dz)

Once again, applying Ito’s formula for semimartingales to Y 2(t) and x 7→ |x|p for p > 1, all
the terms but two vanish and we get

|Y 2(t)|p = ∫ t

0
∫
R0 |Y 2(u−) + h(u, z)|p − |Y 2(u−)|p|Ñ(du, dz)+∫ t

0
∫
R0 |Y 2(u−) + h(u, z)|p − |Y 2(u−)|p| − p h(u, z)|Y 2(u−)|p−2Y 2(u−)duν(dz)

where we simplified p|Y 2(u−)|p−1sign(Y 2(u−)) = p|Y 2(u−)|p−2Y 2(u−). We now aim to estimate
E[ sup0≤u≤t

|Y 2(u−)|p] and hence, one might remember that the stochastic integral with respect to

a compensated Poisson measure is a martingale and hence vanishes in our estimate. It then
remains to estimate the second term. Applying Taylor-Lagrange’s theorem to f (x) = |x|p
(with integral remainder and where we view the absolute value here as a norm to simplify
the computations) of order 1, we have

|Y 2(u−)+h(u, z)|p−|Y 2(u−)|p|−p h(u, z)|Y 2(u−)|p−2Y 2(u−) = 12p(p−1)|Y 2(u−)+θh(u, z)|p−2h2(u, z)



for some parameter |θ| < 1. Knowing this, we can bound the right-hand side like so

12p(p− 1)|Y 2(u−)| + θ|h(u, z)|p−2h2(u, z) ≤ C1|Y 2(u−)|p−2h2(u, z) + C2|g|p

where the two constants depend on θ. Hence

E [|Y 2(t)|p] ≤ C1E[ ∫ t

0
∫
R0 |Y 2(u−)|p−2h2(u, z)duν(dz)] + C2E[ ∫ t

0
∫
R0 |h(u, z)|p duν(dz)]

Let us estimate the first and most troublesome term in this expression. By Hölder’s in-
equality,

E
[ ∫ t

0
∫
R0 |Y 2(u−)|p−2h2(u, z)duν(dz)] ≤ E

[ sup0≤u≤t
|Y 2(u−)|p]1− 2

pE
[ ∫ t

0
∫
R0 h

2(u, z)duν(dz)] 2
p

Using Young’s inequality with p′ = p2 , we then find

E
[ ∫ t

0
∫
R0 |Y 2(u−)|p−2h2(u, z)duν(dz)] ≤ p

p− 2E[ sup0≤u≤t
|Y 2(u−)|p]+2

pE
[ ∫ t

0
∫
R0 h

2(u, z)duν(dz)]
Taking the supremum in our original expression, and using Doob’s inequality, one finds

E
[ sup0≤u≤t

|Y 2(u)|p] ≤q
ppC1
p− 2 E[ sup0≤u≤t

|Y 2(u−)|p] + qp2C1
p E

[ ∫ t

0
∫
R0 h

2(u, z)duν(dz)]
+ qpC2E[ ∫ t

0
∫
R0 |h(u, z)|p duν(dz)]

Choose C1 such that qppC1
p−2 < 1 and subtract the first term on both sides. Using the fact

that sup0≤u≤t |Y 2(u)|p = sup0≤u≤t |Y 2(u−)|p holds a.s for all t ∈ [0, T ], we then have

E[ sup0≤u≤t
|Y 2(u)|p ≤ C3E[ ∫ t

0
∫
R0 g

2(u, z)duν(dz)] + C4E[ ∫ t

0
∫
R0 |g(u, z)|p duν(dz)]

where C3 and C4 are lengthy constants coming simply from division by the resulting constant
from the subtraction on the left side. Combined with our original result for Y 1(t), we have
almost proven the original result we were aiming for. One last verification remains, but
since

E
[ sup0≤u≤t

∣∣∣ ∫ t

0 f (u)du∣∣∣p] ≤ E
[( ∫ t

0 |f (u)|du)p]
we indeed have the desired result.

With the notations clear, we are ready to present the existence and uniqueness result for
SFDEs with jumps. First, however, we must establish a few hypotheses on the coefficients.

(H)(i) The functions f , g and h are uniformly Lipschitz in the second and third variable,
i.e we require that there exists L > 0 such that for all t ∈ [0, T ] and for all (η1, x1), (η2, x2) ∈



Lp(Ω,Ft ;Mp), then

||f (t, η1, x1) − f (t, η2, x2)||pLp(Ω,Rd) + ||g(t, η1, x1) − g(t, η2, x2)||pLp(Ω;Rd×n)+ ||h(t, η1, x1) − h(t, η2, x2)||pLp(Ω,Lp(ν)) + ||h(t, η1, x1) − h(t, η2, x2)||pLp(Ω,L2(ν))
≤ L||(η1, x1) − (η2, x2)||pLp(Ω,Mp)

(H)(ii) The functions f , g and h have at most global linear growth, i.e there exists K > 0 such
that for all t ∈ [0, T ] and for all (η, x) ∈ Lp(Ω,Ft ;Mp), then

||f (t, η, x)||Lp(Ω,Rd) + ||g(t, η, x)||Lp(Ω;Rd×n) + ||h(t, η, x)||Lp(Ω;Lp(ν)) + ||h(t, η, x)||Lp(Ω;L2(ν))
≤ K

(1 + ||(η, x)||Lp(Ω;Mp))
Theorem 3.2.18. (Existence and uniqueness) (i) Let η, x ∈ Lp(Ω,F0;Mp) such that η is
càdlàg P-a.s. Let X ∈ LpA(Ω, Lp([−r, T ],Rd)) be a strong solution of the SFDE. Then the
process (t, ω) 7→ (Xt (ω), X (t, ω)) has a càdlàg modification.

(ii) Assuming (H)(i) and (H)(ii), there exists a strong solution X of the SFDE. More-
over, there exists K > 0 such that for all t ∈ [−r, T ],

||X ||LpA(Ω,Lp([−r,t ])) ≤ eK t (K t + ||(η, x)||Lp(Ω,Mp))
(iii) If X, Y ∈ LpA(Ω, Lp([−r, T ],Rd)) are two strong solutions of the SFDE, then X = Y P-a.s.

Proof. We use a Picard iteration type proof. The goal of this proof is to approximate
step by step the solution with a well-chosen sequence of successive approximations. First,
we need to establish the space in which those approximations take place. We denote by
LpA(Ω, Lp([−r, T ],Rd)) the space of all processes X ∈ Lp(Ω, Lp([−r, T ],Rd)) such that X (t) is F0-
measurable for t ∈ [−R, 0] and Ft-measurable for all t ∈ [0, T ]. We define suitable Picard
iterative processes, check that they are indeed living in this space, and that they form a
Cauchy sequence. Specifically, we will want to prove that our approximations X k will pos-
sess the following properties:

(P)(i) X k belongs in the approximation space, i.e X k ∈ LpA(Ω, Lp([−r, T ],Rd))
(P)(ii) Two successive approximations are "close enough", i.e

||X k+1 − X k ||LpA(Ω,Lp([−r,T ],Rd)) ≤ (LCt)k−1
k ! ||X 2 − X 1||LpA(Ω,Lp([−r,T ],Rd))

where C is a constant and L is the (uniform) Lipschitz constant of in (H)(i). We begin by
defining X 1(t) = η(0) and X 10 = η. Then, for all k > 1, define



X k+1(t) = η(0) + ∫ t

0 f (u, X k (u), X ku )du+ ∫ t

0 g(u, X k (u), X ku )dB(s) + ∫ t

0 h(u, X k (u), X ku )(z)Ñ(du, dz)
X k+1
t = η

This process is well defined by all the assumptions written above. Moreover, the process is
integrable for every k ≥ 1 by (H)(ii), as the integral over [0, T ] can for example be bounded
by KT (1+ ||(X kt , X k (t))||pLp(Ω,Mp)) which is finite. By a direct application of Kunita’s inequality,
we have a finite bound and the process belongs to LpA(Ω, Lp([−r, T ],Rd)). Hence P(i) is verified.
We now proceed to investigate P(ii). First notice that the property trivially holds for k = 1
by (H)(i). Let us now suppose that the property holds for an arbitrary k ≥ 1. Then,

||X k+2 − X k+1||pLpA(Ω,Lp([−r,T ],Rd)) ≤ E
[ sup
t∈[0,T ] |X k+2 − X k+1|p]

= E
[ sup
t∈[0,T ]

∣∣ ∫ t

0 f (u, X k+1(u), X k+1
u ) − f (u, X k (u), X ku )du

+ ∫ t

0 g(u, X k+1(u), X k+1
u ) − g(u, X k (u), X ku )dB(u)

+ ∫ t

0 h(u, X k+1(u), X k+1
u )(z) − h(u, X k (u), X ku )(z) Ñ(du, dz)∣∣p]

The process of which the supremum is taken on the right-hand side being a semi-martingale,
by definition of the stochastic integrals, we can use Kunita’s inequality which gives us a
constant C > 0 such that

||X k+2 − X k+1||pLpA(Ω,Lp([−r,T ],Rd)) ≤C
∫ t

0
(

||f (u, X k+1(u), X k+1
u ) − f (u, X k (u), X ku )||pLp(Ω,Rd)+ ||g(u, X k+1(u), X k+1

u ) − g(u, X k (u), X ku )||pLp(Ω,Rd×n)+ ||h(u, X k+1(u), X k+1
u ) − h(u, X k (u), X ku )||pLp(Ω,Lp(ν))+ ||h(u, X k+1(u), X k+1
u ) − h(u, X k (u), X ku )||pLp(Ω,L2(ν)))du

≤ LC
∫ t

0 ||X k+1
u − X ku ||pLp(Ω;Mp)︸ ︷︷ ︸

≤||X k+1−X k ||p
LpA (Ω,Lp ([−r,T ],Rd ))

du

≤ LC
∫ t

0 ||X k+1 − X k ||pLpA(Ω,Lp([−r,T ],Rd)) du
where we have used (H)(i), the global Lipschitziniaty of the coefficients. Then, using P(ii)(k ),
we finally have



||X k+2 − X k+1||pLpA(Ω,Lp([−r,T ],Rd)) ≤ LC (LC )k−1(k − 1)!
∫ t

0 uk−1 du||X 2 − X 1||pLpA(Ω,Lp([−r,T ],Rd))
= (LCt)k

k ! ||X 2 − X 1||pLpA(Ω,Lp([−r,T ],Rd))
which proves (P)(ii)(k + 1) and hence (P)(ii). Hence, by completeness of LpA(Ω, Lp([−r, T ],Rd)),
the Cauchy sequence {X k}k≥1 to some X ∈ LpA(Ω, Lp([−r, T ],Rd)). It remains to show that
the limit process X is indeed a strong solution of the SFDE.
This is can be done by showing that

E
[ sup0≤t≤T

∣∣∣X (t)−η(0)− ∫ t

0 f (u, Xu)du+∫ t

0 g(u, Xu)dB(u)+∫ t

0
∫
R0 h(u, Xu)(z) Ñ(du, dz)∣∣∣p] 1

p = 0
Denote the expression above by δ . Hence, our goal is to prove that δ = 0. Adding and
subtracting X k+1 to separate δ into two terms, and using Kunita’s inequality in the second
term, we have

δ ≤||X − X k+1||LpA(Ω,Lp([−r,T ],Rd)) + (
C

∫ T

0
(
||f (t, X k (u), X kt ) − f (t, X k (u), Xt )||pLp(Ω;Rd)+ ||g(t, X k (u), X kt ) − g(t, Xt )||Lp(Ω;Rd×n) + ||h(t, X k (u), X kt ) − h(t, X k (u), Xt )||pLp(Ω,Lp(ν))

+ ||h(t, X k (u), X kt ) − h(t, X k (u), Xt )||pLp(Ω,L2(ν)))dt) 1
p

By the Lipschitz condition, we finally have that

δ ≤ ||X − X k+1||LpA(Ω,Lp([−r,T ],Rd)) + (CTL) 1
p ||X − X k ||LpA(Ω,Lp([−r,T ],Rd)) k→∞→

which shows that delta, being independent of k , is indeed null and hence X is a solution of
the SFDE.
Suppose now that X and Y are two solutions of the same SFDE. Then, by a similar argument,
by Kunita’s inequality and the Lipschitz condition, for all t ∈ [0, T ], we have

||X − Y ||pLpA(Ω,Lp([−r,t ],Rd)) ≤ CL
∫ t

0 ||X − Y ||pLpA(Ω,Lp([−r,u],Rd)) du
Let φ(t) := ||X − Y ||pLpA(Ω,Lp([−r,t ],Rd)). Then the above expression can be rewritten as

φ(t) ≤ CL
∫ t

0 φ(u)du
which is a clear application of Grönwall’s inequality with α(t) = 0 and β(t) = CL, i.e φ(t) ≤ 0
for all t ∈ [0, T ]. By positivity of the norm, we conclude that φ(t) = 0 for all t ∈ [0, T ] which
tells us that X = Y a.s, which completes the proof. □



Bibliography

[AH20] Nishant Agrawal and Yaozhong Hu. Jump models with delay—option pricing
and logarithmic euler–maruyama scheme. Mathematics, 8(11):1932, 2020.

[AHMP06] Mercedes Arriojas, Yaozhong Hu, Salah-Eldin Mohammed, and Gyula Pap. A
delayed black and scholes formula ii. arXiv preprint math/0604641, 2006.

[AHMP07] Mercedes Arriojas, Yaozhong Hu, Salah-Eldin Mohammed, and Gyula Pap. A de-
layed black and scholes formula. Stochastic Analysis and Applications, 25(2):471–
492, 2007.

[BB17] Paolo Baldi and Paolo Baldi. Stochastic calculus. Springer, 2017.

[BBMY11] Jianhai Bao, Björn Böttcher, Xuerong Mao, and Chenggui Yuan. Convergence
rate of numerical solutions to sfdes with jumps. Journal of Computational and
Applied Mathematics, 236(2):119–131, 2011.

[BCDN+19] David R Baños, Francesco Cordoni, Giulia Di Nunno, Luca Di Persio, and
Elin Engen Røse. Stochastic systems with memory and jumps. Journal of Dif-
ferential Equations, 266(9):5772–5820, 2019.

[BDNHP16] David R Baños, Giulia Di Nunno, Hannes Hagen Haferkorn, and Frank Proske.
Stochastic functional differential equations and sensitivity to their initial path.
In The Abel Symposium, pages 37–70. Springer, 2016.

[BDNL+03] Fred Espen Benth, Giulia Di Nunno, Arne Løkka, Bernt Øksendal, and Frank
Proske. Explicit representation of the minimal variance portfolio in markets
driven by lévy processes. Mathematical Finance: An International Journal of
Mathematics, Statistics and Financial Economics, 13(1):55–72, 2003.

[CK12] Ning Cai and Steven Kou. Pricing asian options under a hyper-exponential jump
diffusion model. Operations Research, 60(1):64–77, 2012.

[DN01] Giulia Di Nunno. On stochastic derivative. Preprint series. Pure mathematics
http://urn. nb. no/URN: NBN: no-8076, 2001.

75



[Kun04] Hiroshi Kunita. Stochastic differential equations based on lévy processes and
stochastic flows of diffeomorphisms. In Real and stochastic analysis, pages 305–
373. Springer, 2004.

[LV17] Markus Leippold and Nikola Vasiljević. Pricing and disentanglement of ameri-
can puts in the hyper-exponential jump-diffusion model. Journal of Banking &
Finance, 77:78–94, 2017.

[Mao03] Xuerong Mao. Numerical solutions of stochastic functional differential equations.
LMS journal of computation and mathematics, 6:141–161, 2003.

[Mao07] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.

[Moh84] Salah-Eldin A Mohammed. Stochastic functional different equations. In Research
notes in Mathematics. Pitman Avanced Publishing Program, 1984.

[Moh98] Salah-Eldin A Mohammed. Stochastic differential systems with memory: theory,
examples and applications. In Stochastic analysis and related topics VI, pages
1–77. Springer, 1998.

[NØP08] Giulia Di Nunno, Bernt Øksendal, and Frank Proske. Malliavin calculus for Lévy
processes with applications to finance. Springer, 2008.

[ØS05] Bernt Øksendal and Agnes Sulem. Stochastic Control of jump diffusions.
Springer, 2005.

[Pro05] Philip E Protter. Stochastic differential equations. In Stochastic integration and
differential equations, pages 249–361. Springer, 2005.

[Wan19] Kewei Wang. Portfolio optimisation under rough stochastic volatility via machine
learning. Master’s thesis, 2019.

[YHZ21] Yulian Yi, Yaozhong Hu, and Jingjun Zhao. Positivity preserving logarithmic
euler-maruyama type scheme for stochastic differential equations. Communica-
tions in Nonlinear Science and Numerical Simulation, 101:105895, 2021.


	Introduction
	Notations
	Some Preliminaries and Definitions
	A Delayed Black-Scholes Model
	Overview of the model
	General Framework
	A complete Market
	A Pricing Formula for the European Call and Put options, Hedging

	Numerical Approximations
	Convergence of the Euler-Maruyama method for SFDEs
	A Logarithmic Euler-Maruyama method
	Simulating Stock Prices using the Logarithmic Euler-Maruyama method
	Call Option Price comparisons
	Code & Algorithms


	Adding jumps into the model
	Overview of the model
	A first look at the model: Existence and uniqueness of a solution
	An Incomplete Market

	Numerical Approximations
	Addition of jumps to the Classical Euler-Maruyama method
	Simulating Stock Prices
	Call Option Price Comparisons
	Code & Algorithms


	Pricing and Hedging in an Incomplete Delay Market
	Buyer's and Seller's prices: an Estimation for the Pricing of a Call and Put option
	A Risk-Minimizing Approach to Hedging
	A Short Reminder on Malliavin Calculus
	Minimal Variance Hedging with Delay


	Conclusion
	Appendix A
	Appendix B
	Bibliography

