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Abstract

In the first part, we consider general singular control problems for random fields
given by a stochastic partial differential equation (SPDE). We show that under some
conditions the optimal singular control can be identified with the solution of a coupled
system of SPDE and a kind of reflected backward SPDE (RBSPDE).In the second
part, existence and uniqueness of solutions of RBSPDEs are established, which is of
independent interest.

Key Words: Stochastic partial differential equations (SPDEs), singular control of SPDEs,
maximum principles, comparison theorem for SPDESs, reflected SPDESs, optimal stopping of
SPDEs.

MSC(2010): Primary 60H15 Secondary 93E20, 35R60.

1 Introduction

Let By, t > 0 be an m-dimensional Brownian motion on a filtered probability space (2, F, F;, P).
Let D be a bounded smooth domain in RY. Fix T' > 0 and let ¢(w, x) be an Fpr-measurable
H = L?*(D)-valued random variable. Let

k:[0,T] x DxRxR"™ —>R
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be a given measurable mapping and L(¢,z) : [0,7] x D — R a given continuous function.
Consider the problem to find F;-adapted random fields u(t,z) € R, Z(t,z) € R™,n(t,z) €
R* left-continuous and increasing w.r.t. ¢, such that

du(t,z) = —Au(t,x)dt — k(t,z,u(t,z), Z(t,x))dt + Z(t,x)dBy, t € (0,T)

—n(dt x),t € (0,7), (1.1)
) > L(t,x),
/ / (t,z) (t,z))n(dt,z) =0,
() a.s, (1.2)

where A is a second order linear partial differential operator. This is a backward stochastic
partial differential equation (BSPDE) with reflection.

The maximum principle method for solving a stochastic control problem for stochastic
partial differential equations involves a BSPDE for the adjoint processes p(t,x), q(t, z).See
[OPZ].

The purpose of this paper is twofold: (i) We study a class of singular control problems for
SPDEs and prove a maximum principle for the solution of such problems. This maximum
principle leads to a kind of reflected backward stochastic partial differential equations. (ii)
We study backward stochastic partial differential equations (BSPDEs) with reflection. This
means that we solve the BSPDE with the constraint that the solution must stay in a pre-
described region.

2 Singular control of SPDEs

Suppose the state equation is an SPDE of the form

dY (t,x) = {AY (t,x) + b(t,z,Y (t,x)) }dt + o(t,z, Y (¢, x))dB(t)
+ At x, Y (t,x)E(dt, x) ; (t,x) € [0,T] x D (2.1)

Y(t,x) =w(tz); (t,x) € (0,T)xdD. (2.2)

Here A is a given linear second order partial differential operator.
The performance functional is given by

:EUD/OTf(t,x,Y<t,x))dtdx+/Dg(x,wT,a;))dx
+ /D /0 Th(t,x,Y(t,x)){(dt,x)], (2.3)



where f(t,z,y),g(x,y) and h(t,z,y) are bounded measurable functions which are differen-
tiable in the argument y and continuous w.r.t. t.

We want to maximize J(§) over all £ € A, where A is a given family of adapted processes
&(t, x), which are non-decreasing and left-continuous w.r.t. ¢ for all z, £(0,2) = 0. We call
A the set of admissible singular controls. Thus we want to find * € A (called an optimal
control) such that

sup J(§) = J(£7)

{eA
Define the Hamiltonian H by

H(t,z,y,p,q)(dt,&(dt, x)) = {f(t,z,y) + b(t, 2, y)p + o(t,x,y)q}dt
+ {\(t,z,y)p + h(t,z,y) }(dt, ). (2.4)

To this Hamiltonian we associate the following backward SPDE (BSPDE) in the unknown
process (p(t, 2), q(t, 2)):

dp(t,x) = — {A*p(t, x)dt + %—Zl(t,x,Y(t, x),p(t,z), q(t,x))(dt, £(dt,x))}
+q(t,x)dB(t) ; (t,x) € (0,T) x D (2.5)

with boundary/terminal values

0
p(T,2) = 50 (@Y (T,2)); v € D (2.6)
p(t,z) =0; (t,x) € (0,T) x ID. (2.7)
Here A* denotes the adjoint of the operator A.

Theorem 2.1 (Sufficient maximum principle for singular control of SPDE) Leté €
A with corresponding solutions Y (t, ), p(t,x), q(t,z). Assume that

y — h(x,y) is concave (2.8)

and

(y,€) — H(t,x,y,p(t, x), (¢, x))(dt, £(dt, x))
is concave. (2.9)

Assume that

/ / (V4L ) — V(6. 2) 2@ (1) + 5Pt 2) o (b 2, YE(t, ) — ot 2, V(1 2))?)
dt)dz] < oo, forall &€ A. (2.10)



Moreover, assume that the following mazimum condition holds:

£(dt, ) € argmax H(t, z, Y (t, ), p(t, x), G(t, ) (dt, £(dt, ), (2.11)
£eA

(At 2, Y (t,2))p(t, ) + h(t,x, Y (t, ) }(dt, x)
< AN, z, Y (L, 2)p(t, ) + h(t, 2, Y (t, ) Ye(dt, ) for all £ € A. (2.12)

Then é 18 an optimal singular control.

Proof of Theorem 2.1 Choose ¢ € A and put Y = Y¢. Then by (2.3) we can write

A

J(E) = J©E) =L+ L+ I (2.13)

where
L=E [/0 /D{f(t,x,Y(t,a:)) - f(t,x,f/(t,x))} da:dt] (2.14)
L=E UD {g(x,Y(T, 2)) — g(z, V(T @)} dm] (2.15)

L=E l /0 ' /D [t 2. ¥ (1. 2)) 6t 2) — h(t,x,Y(t,x))é(dt,x)}] S (216)
By our definition of H we have
L—E [ /0 ' /D (H(t 2, Y (4 2), (8, 2), d(t ) (dt, £(dt, )

~H(t @, ¥ (t,2),p(t @), d(t,2))(dE E(dt, @) |

{b(t,z, Y (t,2)) — b(t, x, Y (t,2)}p(t, x)dxdt

~

NHNN
S—s 5~

{o(t,z,Y(t,x)) — o(t,z, Y (t,2))}q(t, x)dxdt

Pt )N, 2, Y (¢, 2)E(dt, 2) — A(t, 2, Y (¢, 2))E(dt, ) }da

{h(t,z, Y (t,2))E(dt, x) — h(t, 2, Y (¢, 2))E(dt, z) Yz | . (2.17)



By (2.10) and concavity of g we have, with Y =Y — Y,

L<E UD g—Z(a:,Y(T, D) (Y(T,2) — V(T, x))dx] _E VDp(T, 2V (T, a:)da:}

:E{ /D /OT?(t,x)dﬁ(t,x)dx+ /D OTﬁ(t,x)d?(t,x)dx
+AAZdMﬂ%wDﬂWwY@@ﬂWwW®}

e[ [ ven {-asenm- Gy o} o
-ﬁLAZWwN@WwH%@%Y@@%*@%?@@Hﬁw
b [ s e ) - A, Y o s
+ [ [ 1oty otV Goate aginas).

Using integration by parts we get, since Y (t, ) = p(t, z) = 0 for all (¢,z) € (0,

/D V(b ) A*p(t, ) — / B(t, 2) AV (1, ) da.

D
Hence, combining (2.13)-(2.19) and concavity of H,

J@—J@SELLA{H@%WWWMM%WJM%HMM)

Jy

(2.18)

T) x 0D,

(2.19)

—H(t,z,Y(t,x), p(t, z), 4(t, 2))(dt, E(dt, z)) — Y (¢, x)aH (t,z,Y,p,q)(dt, f(dt,x))}dm}

U / VeH(t 2, Y (t,), p(t, ), 4(t, 2)) (§(dt, z) — E(dt, x)) }
‘EV/ M2, Y (1 2))p(t @) + bt 2, Y (@) HE(dE 2) = §(dt, 2))d ]

<0 by (2.12).

This proves that 5 is optimal.

O

For £ € A we let V(§) denote the set of adapted processes ((t, z) of finite variation w.r.t.

t such that there exists 6 = §(£) > 0 such that £ + y¢ € A for all y € [0, d].
Proceeding as in [S]| we prove the following useful result:

Lemma 2.2 The inequality (2.12) is equivalent to the following two variational inequalities:

At @, Y (t,2))p(t, ) + h(t,z, Y (t,2) <0 for all t,x
(N, 2, Y (t, 2)p(t, ) + h(t, 2, Y (t, ) Ye(dt, x) = 0 for all t,x

(2.20)
(2.21)



Proof.  (i). Suppose (2.12) holds. Choosing & = £+ y¢ with ¢ € V(é) and y € (0, 5(5)) we
deduce that

{X\(s,2,Y (s, 2))p(s, ) + h(s,z,Y (s,2))}(ds, ) < 0;(s,z) € (0,T) x D (2.22)

for all ¢ € V(E).
In particular, this holds if we fix ¢t € (0,7") and put

C(ds,x) = a(w)d(ds)p(x); (s, z,w) € (0,T) x D x Q,

where a(w) > 0 is F;- measurable and bounded, ¢(x) > 0 is bounded, deterministic and
d¢(ds) denotes the Dirac measure at t. Then we get

At,z, Y (t,2)p(t, ) + h(t,z, Y (t,x) < 0for all ¢,z (2.23)

which is (2.20). A )
On the other hand, clearly ((dt,z) := £(dt,x) € V() and this choice of ¢ in (2.22) gives

(N, 2, Y (t,2)p(t, @) + h(t,z, Y (t, ) Y(dt, z) < 0; (t,2) € (0,T) x D (2.24)
Similarly, we can choose ((dt,z) = —¢ ( t,2) € V(€) and this gives
(N, 2, Y (t,2)p(t, @) + h(t,z, Y (t, ) Ye(dt, z) < 0; (t,2) € (0,T) x D (2.25)

combining (2.24) and (2.25) we get
(N, 2, Y (t,2))p(t, ) + h(t, 2, Y (£, 2))Y(dt, z) = 0
which is (2.21). Together with (2.23) this proves (i).
(ii). Conversely, suppose (2.20) and (2.21) hold. Since &(dt,xz) > 0 for all £ € A we see
that (2.12) follows. O

We may formulate what we have proved as follows:

Theorem 2.3 ( Sufficient mazimum principle II) Suppose the conditions of Theorem 2.1

hold. Suppose & € A, and that & together with its corresponding processes YS(t, ), p*(t, ), ¢* (¢, x)

solve the coupled SPDE-RBSPDE system consisting of the SPDE (2.1)-(2.2) together with
the reflected backward SPDE (RBSPDE) given by

dp*(t,z) = — {A*p’f(t, r) + g—i(t, x,Ye(t,x)) + g—Z(t, z, Ye(t, 2))p* (L, x)

+g—2(t, z, Ye(t, 2))g(t, x)} dt
— {g;\(t z, Y(t,2))p*(t, x) + g—z(t,x,Yf(t,:v))}f(dt,$) ; (t,x) €]0,T) x D
At 2, YE(t, 2))p*(t, ) + h(t,z, Y (t,2)) <0 ; for all t,,a.s.
I\t 2, YE(t, 2)p*(t, ) + h(t, 2, YE(t,x)}Y(dt,2) = 0 ; for all t,x,a.s.

99 .y :
a_y(xay (T,ZL‘)) ;reD

p(t,z) =0; (t,x) € (0,T) x ID.

p(T, x) =



Then & mazimizes the performance functional J(§).

The concavity conditions of Theorem 2.1 are not always satisfied in applications, and it is
of interest to have a maximum principle which does not need these assumptions. Moreover,
it is useful to have a version which is of so called “necessary type”. To this end, we first
prove some auxiliary results:

Lemma 2.4 Let &(dt,z) € A and choose ((dt,z) € V(§). Define the derivative process
V(t,z) = 11151 (YEJ”JC(t z) — YE(t, 7). (2.26)
y—0T Y
Then Y satisfies the SPDE

dY(t,x) = AY(t, z)dt + Y(t, x)[g—z

do O\
+ 8_y(t’ x,Y(t,x))dB(t) + 8—y(t, x,Y(t,x))E(dt, )]

+ At x,Y(t,x))((dt,z); (t,z) € [0,T] x D
Y(t,x)=0; (t,x)e€ (0,7)x0D
Y(0,2)=0; x€D (2.27)
Proof.  This follows from the equation (2.1)-(2.2) for Y (¢,x). We omit the details. O

(t,x,Y(t,x))dt

Lemma 2.5 Let £(dt,z) € A and ((dt,xz) € V(§). Putn =&+ yCy € [0,0(8)]. Assume
that

ﬂ[ﬁé{wﬂa@—YWa@Vf@@

+p2(t,x)(o(t,z, Y (t,2)) — o(t,z,Yo(t,2)))? }dt)dx] < oo for all y € [0, 5((5)],)
2.2

where (p(t, x) q(t,x)) is the solution of (2.5)-(2.7) corresponding to Y¢(t,x). Then

lim — ((§+yC) J ()

y%

_ E[/D(/O (ML 2, Y (6 2)p(t, 2) + bt 2, Y (£, 2))}C(dE, 2))da). (2.29)

Proof. By (2.3) and (2.26), we have

lim (J(& + y0) — J(€)

y—0t Y

/{/ of (t,z, Y (t,x))Y(t,x)dt + gy(x Y(T,2))V(T, z)}dz

// (t,2, Y (t, 2))V(t, 2)E(dt, x da:—l—// (t,2,Y (¢, 2))C(dt, x)da].
(2.30)



By (2.4) and (2.27) we obtain

Tof
E// a—y(t,:p,Y(t,x))y(t,m)dtdm]

/ / V(t,x) dt J(dt, ) — p(t,x)g—Z(t,x)dt
8)\ oh

—q(t, x) o (t x)dt — (p(t,x >8y (t,z) + 8—y(t,x))§(dt,x)})dx, (2.31)

where we have used the abbreviated notation

%Z[ (dr, €(dt, x)) = %Z (t,2.Y (¢, 2), p(t, 2, q(t, 2)) (d, E(dt, @)

ete.
By the It6 formula and (2.5), (2.28) we see that

B /D g—gwwﬂ
= E[/Dp(T, 2)W(T, z)dx]
— B /D ( / {p(t,2)dV(t, ) + V(b 2)dp(t, 2)} + [p(- 2), V(- 2)](T))dx]

_ B /D ( /0 [p(t,x){Ay(t,a:)dt+y(t,x)§—2(t,x)dt

+ Y(t, x)g—;\(t, x)&(dt, x) + A(t,x)¢(dt, x)}
V(o) Al )t — P (ar, e(dt, x))}

dy
+ V(t, x)g—(;(t, x)q(t, z)|dt)dx], (2.32)

where [p(-,z), Y(-,z)](t) denotes the covariation process of p(-,z) and Y(-, x).
Since p(t,z) = Y(t,z) = 0 for x € 0D, we deduce that

/Dp(t,:z:)Ay(t,x)dx:/ A*p(t, z)Y(t, x)dx. (2.33)

D
Therefore, substituting (2.31) and (2.32) into (2.30), we get

lim — ((€+yé) J(€))

y—)

— g /D ( / (AL 2)p(t, ) + h(t, $)}C(dt, 2))da].

We can now state our necessary maximum principle:

8



Theorem 2.6 [Necessary mazimum principle/
(i) Suppose £ € A is optimal, i.e.

max J(§) = J(&7). (2.34)

Let Y*, (p*, q*) be the corresponding solution of (2.1)-(2.2) and (2.5)-(2.7), respectively, and
assume that (2.28) holds with & = £*. Then

At x, Y*(t,x)p*(t,x) + h(t,z,Y*(t,2)) <0  forallt,x € [0,T] x D, a.s. (2.35)
and
{At, 2, Y*(t,)p*(t,x)+h(t,z, Y™ (t,2))}*(dt,z) =0  for allt,x € [0,T|xD,a.s. (2.36)

(ii) Conversely, suppose that there exists f € A such that the corresponding solutions

~

Y(t,x), (p(t, x),4(t,x)) of (2.1)-(2.2) and (2.5)-(2.7), respectively, satisfy
At @, Y (L 2))plt, @) + ht,z,Y(t,x) <0 forallt,z €[0,T] x D, a.s. (2.37)
and
(N, @, Y (¢, 2)p(t, ) + h(t, 2z, Y (t,2)Ye(dt,z) =0 for allt,x € [0,T] x D,a.s. (2.38)

Thené is a directional sub-stationary point for J(-), in the sense that

~

lim S(J(E+y0) = J(E) <0 for all ¢ € V(E). (2.39)

y—0t Y

Proof.  This is proved in a similar way as in Theorem 2.4 in [)S]. For completeness we
give the details:
(i) If £ € A is optimal, we get by Lemma 2.5

0> lim 1(J(5+y<) - J(§)
y—0t Yy

T
_ B / / (Mt 2)p(t, ) + h(t, 2)}C(dt, 2)da],  for all ¢ € V(E). (2.40)
D JO
In particular, this holds if we choose ( such that

((ds, x) = a(w)dy(s)¢(z) (2.41)

for some fixed ¢t € [0,7] and some bounded F;-measurable random variable a(w) > 0 and
some bounded, deterministic ¢(x) > 0, where 0;(s) is Dirac measure at t. Then (2.40) gets
the form

E[/D{)\(t, z)p(t,x) + h(t,z)}a(w)p(x)dz] < 0.

9



Since this holds for all such a(w), ¢(z) we deduce that
At, x)p(t,x) + h(t,x) <0 for all t,x,a.s. (2.42)

Next, if we choose ((dt, x) = &(dt,z) € V(), we get from (2.40)

E[/D/O {A(t,z)p(t,x) + h(t,z)}&(dt, x)dz] < 0. (2.43)

On the other hand, we can also choose ((dt,x) = —£(dt, z) € V(€), and this gives

E| /D /0 (Mt 2)p(t, ) + h(t, 2)}e(dt 2)dz] > 0. (2.44)

Combining (2.43) and (2.44) we get

B /D /O (At 2)p(t, ) + h(t, ) e (dt, w)dz] = 0. (2.45)
Combining (2.42) and (2.45) we see that
{\t,2)p(t,z) + h(t,z)}q(dt,x) =0 for all ¢, x,a.s. (2.46)

as claimed. This proves (i).
(ii) Conversely, suppose £ € A is as in (ii). Then (2.39) follows from Lemma 2.5.

3 Existence and Uniqueness

In this section, we will prove the main existence and uniqueness result for reflected backward
stochastic partial differential equations. For notational simplicity, we choose the operator A
to be the Laplacian operator A. However, our methods work equally well for general second
order differential operators like

1 0 0
A=32 gpla@g),

where a = (a;;(x)) : D — R%? (d > 2) is a measurable, symmetric matrix-valued function
which satisfies the uniform elliptic condition

d
Nz2 < Z aij(v)ziz; < Az, V2 € R* and x € D

3,j=1

for some constant A\, A > 0

10



First we will establish a comparison theorem for BSPDEs, which is of independent inter-

est. Consider two backward SPDEs:

dui(t,x) = —Auy(t)dt —bi(t,ui(t,x), Z1(t, z))dt + Z1(t, 2)dBs, t € (0,T)

w(T,z) = ¢i(z) as.

dug(t,x) = —Aug(t)dt — ba(t, us(t, x), Zs(t, x))dt + Zs(t, x)dBy, t € (0,T)

ug(Tyx) = ¢o(z) a.s.

From now on, if u(¢, z) is a function of (¢, x), we write u(t) for the function wu(t,-).

(3.1)

(3.2)

The following result is a comparison theorem for backward stochastic partial differential

equations.

Theorem 3.1 (Comparison theorem for BSPDFEs) Suppose ¢1(x) < ¢o(x) and by(t,u, z) <

ba(t,u, 2). Then we have uy(t,z) < us(t,x),x € D, a.e. for every t € [0,T].

Proof. For n > 1, define functions ¥, (z), fn(x) as follows (see [DP1]).

0 if <0,
Un(2) =14 2nz f0<z<3
2 if z > %
fulw) =4 " if z <0,
M= dy () i > 0.
We have
0 if 7 <0,
fo(x) =9 na?  ifr <l

o0r — 1 if x> 1
n n

Also f,(z) 1 (z7)* asn — oo. For h € K := L*(D), set

ﬂ@:éhwmm

F, has the following derivatives for hy, hy € K,

zwwm:éﬂwmmmm

f%WM@:AﬂWWMWWMw

11
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Applying Ito’s formula we get

where,

For

I3

IN

Foua (t) — ua(t))
f%@r—@%+l—ﬂ@ﬂﬁ—ux$XAWK$—UAQ»%

+/t Fy(ur(s) —ua(s))(bi(s,u(s), Z1(s)) — ba(s, ua(s), Za(s)))ds

- / Fi(un(3) — us(5)) (Za(5) — Za(s))dB,

1 4 /!
—§/t F(ur(s) — ua(s))(Z1(s) — Za(s), Z1(s) — Za2(s))ds

D+ R+ R+ + I (3.8)

I = / Fl(us(s) — us(s)) (A (s) — ua(s)))ds

= / /f ur(s, ) — uz(s, ) (Au (s, x) — us(s, x)))dxds

= —/t I (ur(s, ) — ug(s, )|V (ur(s, 2) — us(s, x)|*drds <0, (3.9)

T
1 [ Xtoznr stz a(5:) = wa(s,2)) Zas,) = Zals, o) Pdads
t D

T
- /t /D X o)y 111 Z1(5, ) — Zafs, @) Pdads, (3.10)

/t /Df;l(ul(s,x) —ug(s,x))(b1(s,u1(s, ), Z1(s,x)) — ba(s,us(s, x), Za(s,x)))dxds
/t /Df,'l(ul(s,x) —ug(s,x))(b1(s,u1(s, ), Z1(s,x)) — ba(s,u1(s, x), Z1(s,x)))dxds
—i—/t /DfT’L(ul(s,x) — ug(s,x))(ba(s,u1(s,x), Z1(s,x)) — ba(s,us(s, x), Z1(s,x)))dxds
—i—/t /Dfé(ul(s,x) — uy(8, ) (ba(s, ua(s, ), Z1(s,x)) — ba(s,us(s, x), Za(s,x)))dxds
/t /Df;(ul(s,x) — ua(5, 2)) (b5, (5, 7), Za(5, 7)) — ba(s, un(s, %), Zo(s, 7)))dads

T
+C’/ / ((ur(s, @) — ua(s, ) ") dads == I} | + I} ,, (3.11)
t Jp

12



where the Lipschiz condition of b and the assumption b; < by have been used. I? 1 can be
estimated as follows:

3
[n,l

<

IN

C’/T/ fi(uy(s,x) —ua(s,x))|Z1(s,x) — Zo(s, x)|dzds
tT D
C [ [ Xosutoorwterzynlin(s.) = ualo )| Za(s,) = Za(s,)dods
T 1
O [ [ Moo st 1200 (50) = s.2) = 111Z1(5,2) = Zo(s, )

T
1
C [ [ Moo towro 2y (2r(5,2) = wals.2) = 1 Fedads

T
+/ /X{ul(sa} —ug sx)> }‘Zl(s .CE) ZQ(S,.Z’)|2d.Td$
D
1
10 [ [ Nosateormasemzn(on(s,) — o, ) dads
D
T
+/ / X{0<us (s,2) UQ(M)S%}n(ul(s,x) —uy(s,1))?|Z1(s, ) — Zy(s, x)|*dxds
D
T
< / / ui(s, ) — us(s, x))")?dxds
D
T
+/ /X{ul(sw) —ua( sac)> }|Zl(s fL’) ZQ(S’:L‘)|2dde
D
T
+/ / X{O<u1(s;t —ug (s,x)ﬁ%}n(ul(‘s?x) - UQ(S"'L‘))2|Zl(S7x) - ZQ(S,J})FdIEdS
D
(3.12)
(3.10),(3.11) and (3.12) imply that
T
IP+12 < C’/ / (u1(s,2) — ua(s,2))")?drds (3.13)
t Jp

Thus it follows from (3.8), (3.9) and (3.13) that

Fo(uq(t) — ua(t))

< Fu(d1— o) +C / /D (s (5, ) — n(5, 2))*)?dcds

_ /t F (ur(s) — us(s))(Zu(s) — Za(s))dB, (3.14)

Take expectation and let n — oo to get

ol /D (un(t, 2) — un(t, 2)))2da] < /t dsE /D (un(s,7) — ua(s,2)))2da]  (3.15)
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Gronwall’s inequality yields that

E[/ ((ur(t, z) — ua(t, 2)))dz] = 0, (3.16)
D
which completes the proof of the theorem. W

Remark. After this paper was written we became aware of the paper [MYZ], where a similar
comparison theorem is proved. However, the theorems are not identical and the proofs are
quite different.

We now proceed to prove existence and uniqueness of the reflected BSPDEs. Let V =
W, (D) be the Sobolev space of order one with the usual norm || - ||. Consider the reflected
backward stochastic partial differential equation:

du(t) = —Au(t)dt — b(t,u(t,x), Z(t,z))dt + Z(t,x)dBy,t € (0,T) (3.17)

—n(dt z),t € (0,7), (3.18)
) > L(t,x),
/ / (t, ) (t,x))n(dt, z)dz = 0,
o(z) a.s. (3.19)

Theorem 3.2 Assume that E[|¢|%] < co. and that
1b(s,u1,21) — b(s,u, 21)| < C(Jup — uz| + |21 — 22]).

Let L(t,x) be a measurable function which is differentiable in t and twice differentiable in

x such that
//L'thdxdt<oo//|ALt:p|dxdt<oo

Then there exists a unique K x L*(D,R™) x K-valued progressively measurable process
(u(t,x), Z(t,x),n(t,z)) such that

(i) fo ||u(t)]3dt] < oo, Efo |Z(t) LQ(DRW dt] < co.
(i) n isa K-valued continuous process, non-negative and nondecreasing in
t and 77(0 x) = 0.

(iii) u(t,z) = +ft Au(t,z dS—l—ft (s,u(s, ), Z(s,x))ds — ftT Z(s,2)dB, (3.20)
+77(T x)—n(t,z); 0<t<T,

(iv) u(t,z) > L(t,x) a.e. x€ DVtel0,T].

(v) I [o(u(t, z) — Lt,2))n(dt, x)dz = 0

where u(t) stands for the K-valued continuous process u(t,-) and (iii) is understood as an
equation in the dual space V* of V.
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For the proof of the theorem, we introduce the penalized BSPDEs:

du™(t) = —Au"(t)dt —b(t,u"(t,x),Z"(t,x))dt + Z"(t,z)d B,
—n(u"(t,x) — L(t,z))"dt, te (0,T) (3.21)
u (T,z) = o¢(x) a.s. (3.22)

According to [OPZ], the solution (u",Z™) of the above equation exists and is unique. We
are going to show that the sequence (u", Z™) has a limit, which will be a solution of the
equation (3.20). First we need some a priori estimates.

Lemma 3.3 Let (u™, Z™) be the solution of equation (3.21). We have

sup El[sup |[u"(t)|%] < oo, (3.23)

n t

T
sup B[ [l (0lf}) < . (3.24)

n 0
T
sup ] / 1Z7() g pom] < 00 (3.25)
n 0

Proof. Take a function f(t,z) € C3*([—1,T + 1] x D) satisfying f(t,z) > L(t,x).
Applying I[to’s formula, it follows that

w0 - F0 = o= ST+ " <) - 1), A (s) > ds
+2 /tT < u™(s) — f(s), b(s, u"(s), Z"(s)) > ds
—z/tT <u™(s) — f(s), Z"(s) > dB,
bn [ <) = 509, 006) = 16))" > ds = [ 1776 s

—|—2/t <u"(s) — f(s), f'(s) >ds, a.s. (3.26)

where <, > denotes the inner product in K. Now we estimate each of the terms on the right
hand side.

Z/t <u™(s) — f(s), Au"(s) > ds
_ —z/t |yu"(s)y|2vds+2/t L) 9uls)

or = Ox

IN

- / [u(s)|[2ds + / /()| [2ds (3.27)
15



2 [ <) = 1606, 27060 > s

= 2 [ <) S5, 275~ b S(6), 7706) > s
82 [ <) 160,00 11, 27(6)) ~ s, £9),0) > ds
+2/T < w(s) = £(s),b(s, (s),0) > ds

/|U s)|hds + = /|Zn |L2DRndS

+C / Ib(s, £(s),0)|%ds (3.28)

IN

Qn/ <u"(s) = f(s), (u"(s) — L(s))” > ds
= Qn/ / (s,x) L)) X gun (s,2)<L(s,2)} (L(S, ®) —u"(s,x))dsdx <0 (3.29)

Substituting (3.27),(3.28) and (3.29) into (3.26) we obtain

T T
n 1 n
- <t>|%<+/ u <s\|"éds+—/ 127(5) By
t

T
< o= SO+ C [ () - fo)ds +C / (s, £(5), 0) &ds
t
T T
[ GNRds =2 [ <ur(s) - 5(5),2°() > dB. (3.30)
t t
Take expectation and use the Gronwall inequality to obtain
sup sup Ef|u"(t)|%] < oo (3.31)
n t
T
sup ([ [l (0] < oo 332
n 0
T
sup ] / |27 ()2 ] < 00 (3.33)
n 0

By virtue of (3.33), (3.31) can be further strengthened to (3.23). Indeed, by Burkholder

16



inequality,

E[Q sup | "< u"(s) = f(s), 2"(s) > stq

v<t<T t

< CE| sup (1 6) = FOI [ 126

(SIS

< OE[< [0 = FORIZ ) )

v<s<T

< 18] s ()= 10| + 08| [ 12 Opants] 63

v<s<T
With (3.34), taking superum over ¢t € [v,T] on both sides of (3.26) we obtain (3.23). W

We need the following estimates.

Lemma 3.4 Suppose the conditions in Theorem 3.2 hold. Then there is a constant C' such
that

B /0 /D (" (¢, 7) — L(t, 2))")2dad] < % (3.35)

Proof. Let f,, be defined as in the proof of Theorem 3.1. Then f,,(z) T (z7)? and f/ (z) 1
22t as m — oo. For h € K, set

Gon(h) = /Dfm(—h(x))dx.

It is easy to see that for hy, hy € K,

G () (h) = — /D £ (~h(z))ha(z)de, (3.36)

G (1) (s, ha) = /D J(=h(@) Yo (2)ha(2)da. (3.37)
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Applying Ito’s formula we get

1 4 1 n n
—é/t Gy (Z"(s), Z"(s))ds

= I+ 2+ + I+ 1+ I8+ 17 (3.38)

Now,
2= [ ) - L@
= [ [ Alnt) - s @) Lo,
_/tT/Df;n(L(s,x)—u”(s,x))(AL(s,x))dxds

IA

[ s, o ) V0 6,) ~ Do) s
i ' [ £u0s.0) = (s,2) s
+% /t ' /D (AL(s, ))2dwds, (3.39)

I = —/tT/Df;n(L(s,x)—u”(s,a:))b(s,u"(s,:c),Z”(s,a:))da:ds
%ln/tT/Dﬂn(L(s,x) —u"(s,x))%ds
+ %/tT/D(b(s,u”(s,x),Z"(s,a:)))deds, (3.40)

IA

18



L= [ R ) s mdnds

IN

in /tT/Df’,“(L(S"”) —u"(s,x))*ds
i %/tT/D(L’(S,x))deds,

Combining (3.38)—(3.41) and taking expectation we obtain

E[Gm(u"(t) — L(t))]

S E[Gm(¢ -

QE[/tT/D(L’(s,x))Qd:cds] +%E[/tT/D(AL(s,x))2dxds]

o+ S [ [ S0 = s as

+%E[/tT/D(b(s,u”(s,x),Zn(S,x)))2d$d3]

—nE| / /D Fo(L(s,2) — u(s,2)) (" (s, 2) — L(5,2))")ds)].

Letting m — oo we conclude that

IN

B[ ((w(t2) = Lit, ) ]
ZnE[/t /((u”(s,x) — L(s,2))")*dzds]

D

—nE[/tT/ (u™(s,2) — L(s,x))”)*dzds] + %/,

(3.41)

(3.42)

(3.43)

where the Lipschiz condition of b and Lemma 3.3 have been used. In particular we have

E[/tT/D((u"(s,x) ~ L(s,))dads] < %

Lemma 3.5 Let (u", Z") be the solution of equation (3.21). We have

lim E[ sup Iu (t) —u™(t)|%] = 0,

n,m—00

lim E/ [ (t) — ™ (8)| 2] =

lim EJ IZ"() Z™(t)|12(pzmydt] = 0.
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Proof. Applying 1td's formula, it follows that
|U"(§) —u"(t)[%
_ 2/t < u™(s) — u™(s), A" (s) — u™(s)) > ds
+2 /tT < u(s) —u™(s), b(s,u"(s), Z2"(s)) — b(s,u™(s), Z™(s)) > ds
_2/; < () — " (s), Z"(s) — Z™(s) > dB,
+2 /tT <u(s) —u"(s),n(u"(s) — L(s))” —m(u™(s) — L(s))” > ds

— [ 1776) = Z76) B s (3.49)

t

Now we estimate each of the terms on the right side.

T
2/ <u"(s) —u™(s), Au"(s) —u™(s)) > ds
b or
= —2/ [[u™(s) — u™(s)|[3ds. (3.49)
t
By the Lipschitz continuity of b and the inequality ab < ea? + C.b%, one has

2/ <u™(s) —u™(s),b(s,u"(s), Z"(s)) — b(s,u™(s), Z™(s)) > ds

o A
< C [u™(s) — u™(s)|%ds + 5/ |Z"(s) — Zm(s)]i%D?Rm)ds. (3.50)
t t
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In view of (3.44),

2E[/t <u™(s) —u™(s),n(u"(s) — L(s))” —m(u™(s) — L(s))” > ds]

- ZnE[/t < u"(s) — L(s), (u"(s) — L(s))~ > ds]

LomE] /t L L)
omE] /t " ()
LE] /t L)

IA

2mE[/tT < L(s)
+2nE[/tT < L(s)

IN

et [ /
el
el /

11
< CO(=+—

n m’

IA

2mE[/tT/D(u"(s,$) -

—u"(s), (u™(s) = L(s))” > ds]
— L(s), (u™(s) = L(s))” > ds]
—u™(s), (u"(s) = L(s))” > ds]
—u"(s), (u"(s) = L(s))” > ds]

—u™(s), (u"(s) — L(s))” > ds]

L(s,z))” (u"(s,x) — L(s,x))” dzds]

)" (u"(s,2) — L(s, ) dzds]
(s,2))")2dxds))2 (E / /
“)2dxds))z (E / /

It follows from (3.48) and (3.49) that

Pllu(@) = O]+ 551 12°(6) = Z7() By

w1 [ o) - )R

<C/
t

Effu"(s) —u™(s )!K]d5+0’(n )-

1
m

Application of the Gronwall inequality yields

lim {E[|u"(t)

n,Mm—00

O]+ 5L 127(5) = 27 (6o sl =0
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x))")?dxds))

N =

r))")?dxds))

(3.51)

(3.52)

(3.53)



lim E[/t [ () — u™(s)|[2ds] = 0. (3.54)

7,1M—00

By (3.53) and the Burkholder inequality we can further show that
lim E[sup |[u"(t) —u™(t)|%] = 0. (3.55)

n,m—00 0<t<T

The proof is complete. N

Proof of Theorem 3.2. From Lemma 3.5 we know that (u™, Z"),n > 1, forms a Cauchy
sequence. Denote by u(t, x), Z(t,z) the limit of u™ and Z". Put

7" (t,x) = n(u"(t,x) — L(t,x))”

Lemma 3.4 implies that 7" (¢, ) admits a non-negative weak limit, denoted by 7(¢, ), in the
following Hilbert space:

T
K ={h; hisa K-valued adapted process such that E[/ |h(s)|5ds] < oo}
0

with inner product
T
<y hy g E[/ / ha (£, 2)ha(t, 7)dtda].

Set n(t, x) fo s,x)ds. Then n is a continuous K-valued process which is increasing in t.
Keeping Lemma 3.5 in mind and letting n — oo in (3.21) we obtain

u(t, x)
= ¢(:1:)+/t Au(t,x)ds+/t b(s,u(s,x),Z(s,a:))ds—/t Z(s,x)d By
+n(T,x) —n(t,x); 0<t<T. (3.56)

Recall from Lemma 3.4 that

E[/tT/D((“n(S’x) — L(s,z))7)2dzds] < C’%

By the Fatou Lemma, this implies that E[ftT Jp((u(s,z) — L(s,x))”)*dxds] = 0. In view of
the continuity of w in ¢, we conclude u(t,z) > L(t,z) a.e. in z, for every ¢ > 0. Combining
the strong convergence of u™ and the weak convergence of n", we also have

E[/OT/D(u(s,x) — L(s, ) (dt, 2)dz]
_ E[/OT/DW(S,J;) ~ L(s,2))i(t, x)dtda]

< lim E| /0 /D (" (s, 7) — L(s, 2))7"(t, 2)dtdz] < 0 (3.57)

n—oo

22



Hence,
T
/ /(u(s,:c) — L(s,x))n(dt,x)dx =0, a.s.
o Jp
We have shown that (u, Z,n) is a solution to the reflected BSPDE (3.17).

Uniqueness. Let (u1, Z1,m), (u2, Zo,m2) be two such solutions to equation (3.20). By
Ito’s formula, we have

!ul(tT) — us(t)[%
- Q/t < ur(s) — us(s), Aur(s) — us(s)) > ds
2 /tT < s (s) — us(s), b(s, ur(s), Z1(s)) — b(s, us(s), Zo(s)) > ds
—z/tT < ui(s) — us(s), Zu(s) — Za(s) > dB,
12 [ <ls) = (o) mlds) - () >
[ 1) 2 s (3.58)
Similar to the proof of Lemma 3.5, we have
z/tT < s (s) — us(s), Alus(s) — us(s)) > ds < 0, (3.50)
and
2/T < us(s) — us(s), b(s, s (s), Z1(s)) — b(s, us(s), Z(s)) > ds

tT 1 T
< [ ) - wfds 5 [ 17406) = 2o s (3.60)
t t
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On the other hand,

28 /<U1()—U2()m(d8) na(ds) >

_ / / wi(5,2) — Lis, 7)) (ds, z)da]

_2f] /t /
+2E[/tT/D(u2(s,x) ~ L(s,2))na(ds, x)dz]

_2m] /t /D (us(s, ) — L(s, 2))m (ds, z)da]
<0 (3.61)

(ur(s,x) — L(s,z))na(ds, z)dz]

Combining (3.58)—(3.61) we arrive at
91, 1 ! 2
Effur(t) = ua()[5] + §E[/t 1Z1(s) = Za(5)|L2(p ey d]

< C/t Ellui(s) — ua(s)|35]ds. (3.62)

Appealing to Gronwall inequality, this implies
Uy =uz, 21 =2

which further gives 7, = 1y from the equation they satisty. 0

4 Link to optimal stopping

In this section, we provide a link between the solution of a reflected backward stochastic
partial differential equation and an optimal stopping problem. Let wu(t,z) be the solution of
the following reflected BSPDE.

u(t, x)
= ¢(x)—i—/t %Au(t,a:)ds—i—/t k(s,x,u(s,x),Z(s,a:))ds—/t Z(s,x)dB;

+77(T z) —n(tx); 0<t<T,
x) > L(t,x),

/ / u(s, x) (s,z))n(dt,z)de =0 a.s. (4.1)
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Let S;r be the set of all stopping times 7 satisfying ¢ <7 < T'. For 7 € §; 1, define

Rt(Tu .75) = / Ps—tk(sa Z‘)dS + PT—tL(T7 I)X{T<T} + P’r—tgb(x)X{T:T}a
t

where k(s, ) = k(s, -, u(s,-), Z(s,-)) and P; denotes the semigroup generated by the Laplacian
operator $A, ie.
k

)dy; f € L'(R?).

Rfa) = @ty [ plerp(-2 T
R4

Here, and in the following we will use the simplified notation Pik(s,z) = (Pk(s,-))(z) etc.

Theorem 4.1 u(t,z) is the value function of the the optimal stopping problem associated
with Ry(T,x), i.e.,

U(t7 l') = eSSSUpTESt,TE[Rt(Ta "L‘) |ft] (42)
Proof. Observe that u admits the following mild representation:

u(t, x)

T T
= Pr_;¢(x) +/ Po_i(k(s,u(s,x), Z(s,x)))ds — / P, (Z(s,x))dBs
. t t
t
This implies that for any stopping time 7 with ¢t < 7 < T, we have
u(t, )
— P (u(r 7)) + / Py y(k(s, 2))ds — / Py o(Z(s,2))dB,
t t
+/ P,_n(ds,z); 0<t<T. (4.4)
t

Since n(s, z) is increasing in s and u(s,x) > L(s,z) for s < T, it follows that

w(t,z) > Rilr,z) — /t " Py (Z(s,2))dB, (4.5)

Take conditional expectation with respect to F; on both sides to get
u(t, )
> ER(ro)lF) - Bl P(Z(s.0)dB.|7)
= E[Ri(r,x)|F]. (4.6)
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As 7 is arbitrary, we obtain

u(t,z) > ess sup E[Ry(T,z)|F] (4.7)

TeSt7T

Now, define
7 =inf{s € [t,T)|u(s) = L(s)} AT

From the property of 7, it is not increasing on the interval [¢, 7;]. Therefore, f:t P,_yn(ds,x) =
0. Thus we have from (4.4) that

u(t, x)
= P+t(u(7°t),ac)+/ Pst(k(s,:v))ds—/ P, (Z(s,x))dBs
t t
— Ry(h,) - / P, (Z(s,2))dB.. (4.8)
t
Taking conditional expectation yields that

u(t,z) = E[Ry(T, x)| F]

Combining this with (4.7) we obtain the theorem. B
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