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Abstract

Abstract A congruent number is a positive integer that appears as the area
of a right triangle with rational sides. Determining whether a number n is
congruent is equivalent to studying the rank of the elliptic curve y2 = x3 − n2x.
This thesis provides an overview of the theory of elliptic curves with a focus
on the rank, along with examples of congruent number elliptic curves. It also
explains the paper Mock Heegner points and congruent numbers by Monsky,
which presents a method for finding non-torsion points on these curves in specific
cases.

Abstract Un nombre congruent és un enter positiu que apareix com a àrea
d’un triangle rectangle amb costats racionals. El problema de determinar si
un enter n és congruent, és equivalent a estudiar el rang de la corba el·líptica
y2 = x3 − n2x. Aquesta tesi dóna una visió general de la teoria de corbes
el·líptiques amb emfàsi en el rang, i amb exemples de les corbes el·líptiques
corresponents a nombres congruents. També es presenta l’article de Monsky,
Mock Heegner points and congruent numbers, que dóna un mètode per trobar
punts d’ordre infinit en aquestes corbes en alguns casos particulars.

Sammendrag Et kongruent tall er et positivt heltall som dukker opp som
arealet av en rettvinklet trekant med rasjonelle sider. Å bestemme om et tall n
er kongruent tilsvarer å studere rangen til den elliptiske kurven y2 = x3 − n2x.
Denne masteroppgaven gir en oversikt over teorien om elliptiske kurver med
fokus på rangen, sammen med eksempler på kongruent tall elliptiske kurver.
Den forklarer også artikkelen Mock Heegner points and congruent numbers av
Monsky, som presenterer en metode for å finne ikke-torsjonspunkter på disse
kurvene i noen spesifikke tilfeller.
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Preface

A positive integer n is called congruent if it appears as the area of a right-angle
triangle with rational sides. There are known to be infinite congruent numbers,
the smallest being 5. However, given n, it is not straightforward to know if it
is congruent. This poses what is called the congruent number problem: Given
n, is there an algorithm that can determine whether n is congruent in a finite
number of steps? It turns out that this problem is equivalent to checking where
the elliptic curve y2 = x3 − n2x has a rational point of infinite order, so it can
be studied through the theory of elliptic curves.

This thesis provides an overview of some of the tools that are used to study
the rank of elliptic curves, and construct rational points on them, and concludes
with an exposition of the paper Mock Heegner points and congruent numbers
([Mon90]) by Paul Monsky, which builds up on this theory to prove among other
things that primes p ≡ 5 (mod 8) are congruent numbers, and so are numbers
of the form 2p when p ≡ 3 (mod 8).

Structure of the thesis

This thesis consists of four chapters.
The first chapter provides a first introduction to the congruent number

problem and shows the equivalence with the computation of the rank of the
curves y2 = x3 − n2x.

The second chapter covers the main arithmetic tools that are used to study
elliptic curves over a number field: reductions, some cohomological constructions,
and the weak Mordell-Weil theorem. These tools are then used in some examples
pertaining to the congruent number problem, in particular, we show that primes
p ≡ 3 (mod 8) are not congruent.

The third chapter gives an overview of the theory of elliptic curves with
complex multiplication and the theory of modular curves and modular functions.
These theories are then put together into defining Heegner points, which allow us
to construct points in an elliptic curve that are rational on quadratic imaginary
fields.
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The fourth chapter gives an exposition of the Mock Heegner points and
congruent numbers paper, which uses the ideas of the previous chapter to show
some general results on the congruence of primes. Finally, the construction in
this paper is showcased by a Mathematica implementation for the primes p = 5
and p = 29.

The main references of this thesis are the books Arithmetic of elliptic curves
([Sil09]), and, Advanced topics in the arithmetic of elliptic curves([Sil94]) by
J. Silverman. Elliptic curves ([Mil06] by J.S Milne and the paper by Monsky
([Mon90]). Special mentions to the books by Lozano-Robledo ([Loz11]) and
Cohen ([Coh07]).
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CHAPTER 1

The congruent number problem

Definition 1.0.1. A positive integer n is called congruent if it appears as the
area of a right-angle triangle with rational sides, that is, there are a, b, c ∈ Q
satisfying the equations a2 + b2 = c2 and ab = 2n.

Remark 1.0.2. As an immediate remark, given n,m positive integers, n is
congruent if and only if m2n is congruent. Therefore we restrict our study to
square-free integers.

Example 1.0.3. The numbers 1, 2 and 3 are known not to be congruent numbers,
we prove this fact in corollary 2.4.5 and lemmas 2.5.1 and 2.5.2. The number 5
is the smallest congruent number, we prove that it is section 2.5.

There are several equivalent definitions for congruent numbers ([Con]), that
allow for the study of the problem using fancier techniques, in particular, the
following definition is in terms of elliptic curves, which have an extensive theory.

Theorem 1.0.4. Let n be a square-free positive integer. The following are
equivalent:

1. The number n is a congruent number.

2. The elliptic curve E defined by y2 = x3 − n2x has a rational point of
infinite order. By the Mordell-Weil theorem, E(Q) = E(Q)tors ⊕ Zr, r is
called the rank of E. The property is equivalent to the rank of E being
at least 1.

Proof. We want to rewrite the system of equations

a2 + b2 = c2 (1.1)

ab = 2n (1.2)
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into an elliptic curve. Write c = a+ t for some rational t ̸= 0. The first equation
becomes then b2 − t2 = 2at, and since b ̸= 0, we can substitute a using the
second equation to obtain b3 − t2b = 4nt. Since t ̸= 0, we can multiply the
equation by n3

t3 to get the following,(bn
t

)3
−
(bn
t

)
n2 =

(2n2

t

)2
,

writing x = bn
t and y = 2n2

t we obtain the elliptic curve E : y2 = x3 − n2x.
Since all the steps are reversible, we have the equivalence. Given a rational
point (x, y) on E, we can solve for a, b, c:

a = y

x

b = 2nx
y

c = n2 − x2

y
.

The curve E has the obvious rational solutions (0, 0), (n, 0) and (−n, 0), these
do not correspond to triangles, note that in this case a, b, c are not well-defined.
It turns out that these points, as well as the point at infinity, make up the whole
torsion group of E defined over Q. Therefore, the points in E that produce
triangles are the points of infinite order. ■

We have therefore transformed the congruent number problem into the
problem of computing the rank of curves of the form y2 = x3 − n2x. This
approach not only gives a possible method to ascertain whether a given integer
is a congruent number but it also gives a way to build the realizing triangle if
we can compute the weak Mordell-Weil group (defined in theorem 2.3.1). For
a given congruent n, there are infinite triangles that realize it as a congruent
number, one of the advantages of the elliptic curve approach is that given two
realizing triangles for n, we can build another one through the group law on E.

Remark 1.0.5. This particular transformation is the most usual characterization
of congruent numbers through elliptic curves, but different changes of variables
can yield other families of elliptic curves for which the equivalence also holds.
In particular, in chapter 4 we use the elliptic curves ny2 = x3 − x, which are
isomorphic over Q to the curves defined in this chapter.

The next chapter explores the structure of the group of rational points of
an elliptic curve and gives some examples of the computation.

There is an algorithm that computes the rank of an elliptic curve, its finitude
is however conditional on the Tate-Shafarevich conjecture, that states that the
Tate-Shafarevich group is finite. If that were to be true for the family of elliptic
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curves of the form above (as it is expected to be), the we would be assured that
the algorithm would compute the rank in a finite number of steps and it would
settle the congruent number problem.

Current state

We state some elementary, and not so elementary results. These can be proved
using the elliptic curve definition and the theory of modular functions. It is
conjectured that all square-free numbers n such that n ≡ 5, 6 or 7 (mod 8) are
congruent numbers. It was shown by J. Chahal in 1984 that the other residue
classes mod 8 also contain congruent numbers. Later on, in 2002, M. Bennet
generalized the result to residue classes modulo a general m.

Theorem 1.0.6 (Chahal). Every non-square residue class modulo 8 contains
infinitely many congruent numbers.

Proof. Theorem 2 in [Cha06]. ■

Theorem 1.0.7 (Bennet). Given m ≥ 2, every residue class modulo m contains
infinitely many congruent numbers.

Proof. [Ben02]. ■

In the elliptic curve formulation, the result by Bennet was extended by J.
Johnstone in 2010, to show that not only there are infinitely many congruent
numbers in each residue class modulo m ≥ 2, but there are also infinitely many
so that the rank of the congruent number elliptic curve has a lower bound.

Theorem 1.0.8 (Johnstone). Given m ≥ 2, every residue class modulo m

contains infinitely many congruent numbers such that the corresponding elliptic
curve has rank at least 2.

Proof. [Joh10]. ■

The conjecture stated above is proved in almost all cases where n is the
product of two primes or twice the product of two primes. The paper Mock
Heegner points and congruent numbers by P. Monsky that we present in Chapter
4 gives this result. Denote pi a prime such that pi ≡ i (mod 8).

Proposition 1.0.9. The primes p3 are not congruent.

Proof. Proved in lemma 2.5.2 in chapter 2. ■

Theorem 1.0.10 (Monsky). The following are congruent numbers:

1. p5, p7, 2p7 and 2p3.
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2. p3p7, p3p5, 2p3p5 and 2p5p7.

3. p1p5 if
(

p1
p5

)
= −1, p1p7 and 2p1p7 if

(
p1
p7

)
= −1 and 2p1p3 if

(
p1
p3

)
= −1.

Proof. The full result is in [Mon90]. Chapter 4 presents the construction in the
paper and proves the cases p5 and 2p3. ■

Finally, the congruent number problem was settled by Tunell in 1983
conditionally to the Birch and Swinerton-Dyer (BSD) conjecture. Therefore
this is not an unconditional result, but the BSD conjecture is expected to be
true. The theorem says that to check if a given n is congruent we need only
compare the cardinality of two finite sets.

Theorem 1.0.11 (Tunell’s theorem). Assuming BSD, for a square-free natural
number n, let d = 1 if n is odd and d = 2 if n is even. Define the sets
N1 = {(a, b, c) ∈ Z3 | n

d = 2da2 + b2 + 8c2} and N2 = {(a, b, c) ∈ Z3 | n
d =

2da2 + b2 + 32c2}. Then n is congruent precisely when |N1| = 2|N2|.

Proof. [Tun83] ■
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CHAPTER 2

The weak Mordell-Weil theorem

This chapter, mainly based on [Sil09] and [Mil06], provides an overview of the
arithmetic tools used to prove the weak Mordell-Weil, as well as some examples.
We give the main definitions and results on elliptic curves defined over local
fields, some tools used to study the groups E(K)/mE(K) and E[m], and we
prove the weak Mordell-Weil theorem, which states that E(K)/mE(K) is finite
for any m ≥ 2 and any number field K. Finally, these results are used to show
that 1,2, and 3 are not congruent numbers and that 5 is.

2.1 Elliptic curves over a local field and reduction

Let K be a local field complete with respect to a valuation v. Let R be its
ring of integers, which is a local ring with maximal ideal m. For simplicity we
will suppose that K is a finite extension of Qp and therefore k = R/mR is a
finite field of characteristic p. Let E be an elliptic curve over K, through the
Riemann-Roch theorem, E has a Weierstrass equation,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

with ai ∈ K. Since we want to study the curve in the reductions modulo π and
the characteristic of k could be 2 or 3, we don’t have in general the reduced
equation of the form y2 = x3 +Ax+B. We can however obtain an equation such
that all the ai are integral (v(ai) ≥ 0) and it satisfies a minimality condition.
The substitutions (x, y) 7→ (u−2x, u−3y) give a new Weierstrass equation where
the ai becomes uiai, so for a u sufficiently big (with respect to v) we can assume
ai ∈ R. Furthermore, in this case ∆ ∈ R, so v(∆) ≥ 0. Since the valuation is
discrete, there’s a change u such that the ai ∈ R and v(∆) is minimal.

Remark 2.1.1. The substitution (x, y) 7→ (u−2x, u−3y) changes the discriminant
by ∆ 7→ u−12∆, therefore v(∆) changes only by multiples of 12. If the ai ∈ R

and v(∆) < 12 then the equation is minimal.
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2.1. Elliptic curves over a local field and reduction

Definition 2.1.2. Let E|K be an elliptic curve. A minimal Weierstrass equation
is a Weierstrass equation subject to the condition that ai ∈ R and v(∆) is
minimal. The minimality condition assures that reduction modulo m is as
well-defined as possible.

Remark 2.1.3. Suppose E is an elliptic curve defined over the global field Q,
and p is a prime. We can consider E|Qp, defined over the completion with
respect to the p-adic valuation vp. Then E|Qp will have a minimal Weierstrass
equation. What cannot be assured, however, is that this equation is minimal
over all Qp when p runs through all primes of Q.

Reduction modulo m

Since m is a maximal ideal of R, we have that R/m is a field, and by the
assumption that K is a finite extension of some Qp we have that R/m is a
finite field k of characteristic p. Given an elliptic curve E|K with a minimal
Weierstrass equation, we can reduce its coefficients modulo m to obtain an
equation over k. This equation defines a curve Ẽ(k) and we obtain a reduction
map,

E(K) −→ Ẽ(k)
P 7−→ P̃

by reducing the coordinates of P mod m. If v(∆) = 0, then we have that ∆ ̸= 0
in k, and Ẽ(k) is once again an elliptic curve, in such situation we say E has
good reduction modulo m. This need not be the case, there can be singular
points on the reduced curve. We denote Ẽns(k) the set of non-singular points
of Ẽ(k). This leads us to the following definition.

Definition 2.1.4. Let E|K. We define the following subgroups of E(K).

1. E0(K) = {P ∈ E(K) | P̃ ∈ Ẽns(k)}.

2. E1(K) = {P ∈ E(K) | P̃ = Õ}, the kernel of the reduction map.

Note that if E has good reduction then Ẽns(k) = Ẽ(k) and E0(K) = E(K).

Proposition 2.1.5. Let E|K. The subgroups E0(K), E1(K) sit in an exact
sequence,

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0, (2.2)

where the last map is the reduction map. In particular, the reduction is
surjective.
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2.1. Elliptic curves over a local field and reduction

Proof. The proof is based on Hensel’s lemma and can be found in [Sil09]VII.2.1.
■

As mentioned before, when reducing an elliptic curve defined by a minimal
Weierstrass equation, if v(∆) = 0, then Ẽ(k) will again be an elliptic curve. It
can happen that v(∆) > 0, in such cases Ẽ(k) will have singular points.

Definition 2.1.6. Let E|K be an elliptic curve.

1. E has good reduction if Ẽ(k) is non-singular (if v(∆) = 0).

2. E has bad, multiplicative reduction if Ẽ(k) has a node.

3. E has bad, additive reduction, if Ẽ(k) has a cusp.

Remark 2.1.7. The terminology multiplicative or additive reduction comes
from the fact that if E|K has multiplicative (resp. additive) reduction, then
Ẽns(k) ≃ k

× (resp. Ẽns(k) ≃ k
+).

Remark 2.1.8. Let L|K be a finite extension (of local fields). Then the valuation
vK extends to L in a unique way. In particular, if e is the ramification index of
L|K, vL = evK . This means that a Weierstrass equation that was minimal over
K might no longer be minimal over L, and the reduction type could change
over a field extension.

Definition 2.1.9. We say E|K has potential good reduction if there is a finite
extension L|K such that E|L has good reduction.

If E|K has potential good reduction then we can always extend the field
so that the Weierstrass equation can be minimized further and the curve has
good reduction. This is only possible when the reduction is multiplicative
([Sil09]VII.5).

We conclude this section with a very straightforward example.

Example 2.1.10. Let d be a square-free integer and E|Q the associated
congruent number curve given by y2 = x3 −d2x. This equation has discriminant
∆ = −26d6. The coefficients are integral and for any p ̸ |∆ we have that
vp(∆) = 0, therefore the curve defined over E|Qp has good reduction. Suppose
p|∆ and p odd, then vp(∆) = 6, so the given equation is minimal over Qp, but
the curve will have additive bad reduction because the reduced equation is
y2 = x3, which has a cusp. If d is even and p = 2 the equation is no longer
minimal because v2(∆) = 12 but it will have additive bad reduction nonetheless.
If d is odd, then the reduction at 2 will have a node. Thus we have seen that
the elliptic curve for a congruent number d has good reduction at all primes
but the ones that divide d.
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2.1. Elliptic curves over a local field and reduction

Torsion

Proposition 2.1.11. Let K be a local field, E|K be an elliptic curve and m ≥ 1
an integer relatively prime to char k.

1. The subgroup E1(K) is m-torsion free.

2. If E has good reduction on k, then E(K)[m] injects on Ẽ(k) through the
reduction map.

Proof. (1) is a consequence of the theory of formal group laws which is not
covered in this thesis ([Sil09]IV). (2) Taking m-torsion of abelian groups is
left-exact. We take m-torsion on the exact sequence in proposition 2.1.5. By
(1) and the remark after definition 2.1.4 we obtain

0 −→ E(K)[m] −→ Ẽ(k).

■

If K is now a global field, and v a place1of K, we have that E(K) injects
into E(Kv), so E(K)tors injects into E(Kv)tors. This is used to compute the
torsion group over global fields. The following example computes the torsion
group for the congruent number elliptic curves.

Example 2.1.12. Let d be a square-free positive integer and let E : y2 =
x3 − d2x be the associated congruent number elliptic curve. We show that
E(Q)tors = E[2] = (Z/2Z)2. The curve has good reduction at all primes that
don’t divide 2d and in these cases the reduced equation is minimal. For p ̸ |2d
we have that E(Q)tors injects into Ẽ(Fp). We use the following lemma, given
without proof ([Sil09]V.4.1).

Lemma 2.1.13. Let E : y2 = f(x) be an elliptic curve.

1. Let q be a power of an odd prime such that f ∈ Fq[x] has different roots
in Fq. Then E is supersingular if and only if the coefficient of xp−1 in
(f(x))(p−1)/2 is zero.

2. Let p ≥ 5 be prime. Then Ẽ is supersingular if and only if Ẽ(Fp) = p+ 1.

A quick computation shows that if p ≡ 3 (mod 4), then (x3 − d2x)(p−1)/2

does not have xp−1 term. We get then that for infinitely many p ≡ 3 (mod 4),
1A place of a number field K is an equivalence class of absolute values of K. The finite

places correspond to the non-archimedean valuations and are represented by the p-adic
valuations, for p ⊆ OK a prime ideal. The infinite places correspond to the archimedean
valuations and are in correspondence with the embeddings of K into R and conjugate pairs of
embeddings of K into C.
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2.1. Elliptic curves over a local field and reduction

Ẽ(Fp) = p+1. Therefore, 4 divides |E(Q)tors| and any other factor would divide
simultaneously p+1 for infinitely many primes, which is impossible. We have that
the points O, (−d, 0), (0, 0) and (d, 0) all have order 2 and therefore constitute
a (Z/2Z)2. We conclude that E(Q)tors = (Z/2Z)2 = {O, (−d, 0), (0, 0), (d, 0)}.

Ramification (or more appropriately, unramification)

As the previous section hinted, we can study the curve over extensions of the
base field, either the algebraic closure or just a finite extension, and see if the
reduction type changes. Let L|K be a finite extension and RL the ring of
integers of L. The maximal ideal m of R, has only one divisor mL in RL, and
we have that mL = me in RL for some e ≥ 1 called the ramification index.

Definition 2.1.14. Let K be the algebraic closure of K, and let Kun the maximal
unramified extension of K in K. By Galois theory we have an exact sequence,

1 −→ Gal(K|Kun) −→ Gal(K|K) −→ Gal(Kun|K) −→ 1,

We call the group I = Gal(K|Kun) the inertia subgroup of G = Gal(K|K).
A set Σ with a G-action is called unramified if the action restricted to I is
trivial. We can identify Gal(Kun|K) with Gal(k|k), therefore the action of I
on k through the reduction map is trivial.

Let K now be a global field. For each place v of K, we have an inertia
subgroup Iv corresponding to the completion Kv. If Σ is a set with an action
by Gal(K|K), we say it is unramified at v if the action of Iv is trivial.

Proposition 2.1.15. Let K be a local field and E|K be an elliptic curve with
good reduction. Let m ≥ 1 be relatively prime to char k. Then E[m] is
unramified.

Proof. The group E[m] need not be defined over K so we pass to a finite
extension K ′|K such that E[m] ⊆ E(K ′). The curve has good reduction to k,
so minimal Weierstrass equations will stay minimal in K ′, and v(∆) = 0 implies
v′(∆) = 0. Therefore Ẽ(k′) is non-singular and we may suppose then that
E[m] ⊆ K. Let σ ∈ I, we have that σ acts trivially on Ẽ(k). Let P ∈ E[m].
Then ︷ ︸

σ(P ) − P = σ(P̃ ) − P̃ = Õ

in Ẽ(k). By proposition 2.1.11 the reduction map is injective, so σ(P ) = P and
E[m] is unramified. ■
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2.2. Arithmetic tools on an elliptic curve

2.2 Arithmetic tools on an elliptic curve

Let K be a number field, not necessarily algebraically closed. Let m ≥ 2. In
this section, we will introduce three pairings: the Weil pairing, the Kummer
pairing, and the b-pairing.

The Weil pairing

The Weil pairing is a tool to study the arithmetic of the m-torsion of an elliptic
curve through a bilinear form on E[m] considered as a Z/mZ-module. The
construction of the Weil pairing is technical and can be found in [Sil09]III.8.
We only state its properties.

Proposition 2.2.1 (Properties of the Weil pairing). Let E|K be an elliptic curve
and m ≥ 0. Let em : E[m] × E[m] −→ µm be the Weil pairing.

1. (Bilinearity). Let S1, S2, T ∈ E[m]. Then,

em(S1 + S2, T ) = em(S1, T ) · em(S2, T ),

em(T, S1 + S2) = em(T, S1) · em(T, S2).

2. (Alternation) For T, S ∈ E[m],

em(T, T ) = 1,

em(S, T ) = em(T, S)−1.

3. (Non-degeneracy) If em(T, S) = 1 for all T ∈ E[m] then S = 0.

4. (Galois invariance) Let σ ∈ Gal(K|K) and S, T ∈ E[m],

em(T, S)σ = em(Tσ, Sσ).

5. (Compatibility with restrictions) Let T ∈ E[mm′], S ∈ E[m], then,

emm′(T, S) = em([m′]T, S).

Proof. [Sil09]III.8.1 ■

Remark 2.2.2. The explicit construction of the Weil pairing is hardly ever used,
but its existence and its nice properties are what make it useful. In particular,
the Galois invariance is what makes the bilinear form on E[m] interesting to
study the arithmetic of the curve. The following proposition showcases this
usefulness.

Proposition 2.2.3. Let E|K and m ≥ 2.
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2.2. Arithmetic tools on an elliptic curve

1. The Weil pairing is surjective. There are T, S ∈ E[m] such that em(T, S)
is a primitive m-th root of unity.

2. If E[m] ⊆ E(K), then µm ⊆ K×.

Proof. (1) The set of all em(T, S), where T, S vary over all E[m], is a subgroup
µd of µm, for a d|m. Fixed S, T , we have thus that em(T, S)d = 1. By linearity
1 = em([d]T, S). This is valid for all S, so by non-degeneracy [d]T = 0. Since
this is valid for all T ∈ E[m], we have that d = m.

(2) Let ζm be a primitive m-th root of unity and S, T ∈ E[m] such that
ζm = em(T, S). Then, by the Galois invariance of em we have that for all
σ ∈ Gal(K|K),

ζσ
m = em(T, S)σ = em(Tσ, Sσ) = em(T, S) = ζm.

Therefore ζm ∈ K and µm ⊆ K×. ■

Example 2.2.4. As an easy corollary we see that if K = Q and E[m] ⊆ E(Q)
then m = 2 since Q only contains µ2. It is thus impossible to contain all
m-torsion in Q for m > 2. The developed methods usually hinge on studying a
particular E[m], and we will want to assume that E[m] ⊆ E(K). Fortunately
we focus mainly on m = 2 and the curves we’ll want to study already have all
torsion in Q, so we will not need to work in a field extension of Q.

Example 2.2.5. Let E|Q and m = 2. Let’s explicitly build the Weil
pairing for the particular case where all 2-torsion points lie in Q, that is,
y2 = (x−λ1)(x−λ2)(x−λ3) for λ1, λ2, λ3 ∈ Q. Denote P = (λ1, 0), Q = (λ2, 0)
and R = (λ3, 0), then we have that E[2] = {O,P,Q,R}. We can use the
properties of the pairing to compute its matrix without having to explicitly use
the construction. By bilinearity, alternation and non-degeneracy we get the
following:

O P Q R
O 1 1 1 1
P 1 1 1 1
Q 1 -1 1 -1
R 1 -1 1 1

Table 2.1: Explicit e2 : E[2] × E[2] −→ µ2.

This applies in particular to the congruent number elliptic curves since they
are of the form y2 = x(x− d)(x+ d).

11



2.2. Arithmetic tools on an elliptic curve

The Kummer pairing

Sometimes elliptic curves and number fields have similar behaviour and tools
to study elliptic curves can be inspired by ideas from algebraic number theory.
Under some requirements on E, there’s a pairing E[m] ×GK −→ µm inspired
by the Kummer theory on cyclic field extensions. We first recall the case for
number fields.

Proposition 2.2.6 (Kummer pairing on number fields). Let K be a field that
contains µm. Let K be its algebraic closure and GK the absolute Galois group.
There’s a paring K× ×GK −→ µm.

Proof. The following sequence is exact,

1 −→ µm −→ K
× ·m−−−→ K

× −→ 1. (2.3)

Taking Galois cohomology and using Hilbert’s theorem 90, we obtain the
following exact sequence,

1 −→ µm −→ K× ·m−−−→ K× δK−−−→ H1(GK , µm) −→ 1. (2.4)

To construct the connecting morphism, given x ∈ K× we need to define a map
δK(x) : GK −→ µm. By exactness of (2.3) there is y ∈ K

× such that ym = x.
For any σ ∈ GK , σ(y)

y is in µm. We define thus δK(x) : GK −→ µm by σ 7→ σ(y)
y

for some y ∈ K
× such that ym = x. This in turn defines the pairing we were

after:

κ : K× ×GK −→ µm

(x, σ) 7−→ δK(x)(σ).

■

Remark 2.2.7. The exact sequence (2.4) gives an isomorphism K×/K×m ≃
H1(GK , µm) induced by δ. Since GK acts trivially on µm, we have that
H1(GK , µm) = Hom(GK , µm). This means that a morphism φ : GK −→ µm is
determined by an element of x ∈ K×/K×m and φ(σ) = δK(x)(σ).

As hinted above, something very similar can be done for elliptic curves.
In this case, the role of µm will be taken by E[m] and the condition that K
contains µm will be that the whole m-torsion of E is defined over K.

Proposition 2.2.8 (Kummer pairing on elliptic curves). Let E|K be an elliptic
curve over a number field such that E[m] ⊆ E(K). There is a pairing
κ : E(K) ×GK −→ E[m].

12



2.2. Arithmetic tools on an elliptic curve

Proof. We parallel the procedure for number fields. The following sequence is
exact,

0 −→ E[m] −→ E(K) [m]−−−−→ E(K) −→ 0. (2.5)

Taking Galois cohomology, we obtain the following exact sequence,

0 −→ E[m] −→ E(K) [m]−−−−→ E(K) δE−−−→ H1(GK , E[m]) −→ · · · (2.6)

We use the exactness of (2.5) to build δE . For P ∈ E(K), take Q ∈ E(K)
such that [m]Q = P . For any σ ∈ G, Qσ − Q ∈ E[m], so we can define
δE(P ) : GK −→ E[m] by σ 7→ Qσ −Q. This gives a well-defined pairing

κ : E(K) ×GK −→ E[m]

(P, σ) 7−→ δE(P )(σ) = Qσ −Q.

■

This pairing is the key ingredient in the proof of the weak Mordell-
Weil theorem, it will allow us to transform the question on the finitude of
E(K)/mE(K) into a question about number fields. We give now some properties
of the Kummer pairing.

Proposition 2.2.9.

1. The Kummer pairing is bilinear.

2. The kernel on the left is mE(K).

3. The kernel on the right is Gal(K|L), where L = K([m]−1E(K)), the field
generated over K by the coordinates of all points Q ∈ E(K) such that
[m]Q ∈ E(K). (We can think about this as taking m-th roots of the
points in E(K)).

With these properties the Kummer pairing is a perfect bilinear pairing

E(K)/mE(K) × Gal(L|K) −→ E[m].

Proof. [Sil09]VIII.1.2 ■

The b pairing

As if three pairings were not enough, we introduce yet another one that will
combine all of them, and as we will see later on, will allow us to give a
computational approach to finding describing E(K)/mE(K). We will build a
pairing

b : E(K)/mE(K) × E[m] −→ K×/K×m.

13



2.2. Arithmetic tools on an elliptic curve

We start with an element P ∈ E(K)/mE(K), then δE(P )(−) is a map
GK −→ E[m]. If we pick a point T ∈ E[m], we have that em(δE(P )(−), T )
is a map GK −→ µm, and by remark 2.2.7, it is determined by an element
b ∈ K×/K×m (we write b(P, T ) to emphasize dependence on P and T ) so that
δK(b(P, T ),−) = em(δE(P )(−), T ). The following proposition summarizes this
and gives some properties of this pairing b.

Proposition 2.2.10 (The b pairing). . There’s a bilinear paring

b : E(K)/mE(K) × E[m] −→ K×/K×m

such that δK(b(P, T ),−) = em(δE(P )(−), T ).

1. It is non-degenerate on the left.

2. Let S be the union of the set of infinite places, the set of finite places
where E has bad reduction and the set of places dividing m. Then the
image of the b pairing lies in the subgroup of K×/K×m given by

K(S,m) = {b ∈ K×/K×m | ordv(b) ≡ 0 (mod m) ∀v ̸∈ S}.

3. For each T ∈ E[m], take fT , gT ∈ E[m] as in the definition of the Weil
pairing, that is, div(fT ) = m(T ) − m(O) and fT ◦ [m] = gm

T . Then, for
any P ̸= T ,

b(P, T ) ≡ fT (P ) (mod K×m).

Proof. [Sil09]X.1.1. (1) follows easily from the properties of the Weil and
Kummer pairings. (2) is a consequence of the coming theorem 2.2.11. (3)
follows from the construction of the Weil pairing. ■

The maximal abelian extension of exponent m unramified outside

a set S

This section gives a theorem from algebraic number theory that a priori has
nothing to do with elliptic curves. It will however be the key to proving the
weak Mordell-Weil theorem. Let K be a number field. We denote MK the set
of places of K. Suppose S is a finite subset of MK containing the infinite places.
If L,L′ are abelian extensions of K of exponent m and unramified outside of S,
then LL′|K is also abelian, of exponent m and unramified outside S. Taking
the composition of all of these we obtain the maximal abelian extension that
satisfies these properties.

Theorem 2.2.11. The maximal abelian extension L|K of exponent m unramified
outside S is finite.

14



2.2. Arithmetic tools on an elliptic curve

Proof. We give a sketch of the proof, which relies on the fact that the class
number of the S-integers is finite, and the Dirichlet unit theorem for S-integers.

• Adding a finite number of places to S only makes L larger so we can do
it without loss of generality. We can then assume that K contains µm,
and that the ring of S-integers is a PID. We assume also that v(m) = 0
for all v ̸∈ S.

• By Kummer theory, the maximal abelian extension of K of exponent m
is K( m

√
a | a ∈ K×). We have that K( m

√
a)|K is ramified at v if and only

if v(a) ≡ 0 (mod m), so the K(S,m) as defined in 2.2.10 represents the
elements of K× that give rise to unramified extensions. We have thus
that L = K( m

√
a | a ∈ K(S,m)). We show that K(S,m) is finite.

• The natural map R×
S −→ K(S,m) is surjective. Taking a ∈ K(S,m),

the ideal aRS is bmRS for some b ∈ K, since RS is a PID. This means
a = ubm for some u ∈ R×

S , which lies in the same class as a in K(S,m).

• The kernel of the map contains R×m
S , so there is a surjection R×

S /R
×m
S −→

K(S,m) and since R×
S is finitely generated, we get that K(S,m) is finite

as we wanted to see.

■

Heights

In this section, we let K = Q. We will prove in the next section the weak
Mordell-Weil theorem, which states that E(Q)/2E(Q) is finite. We give now a
tool that is used to prove the Mordell-Weil theorem by lifting the generators
of E(Q)/2E(Q) into generators of E(Q). We do not prove this result but we
give the basic definitions as well as a brief comment on how this tool is used.
Heights provide a way to measure the size of a point in Pn(Q) and find finite
subsets where one can try to find generators of E(Q).

Definition 2.2.12. Let P = (x0 : · · · : xn) ∈ Pn(Q) be a point. Multiplying
out denominators and eliminating common factors suppose that xi ∈ Z and
gcd(x0, . . . , xn) = 1. We define the height of P to be H(P ) = maxi{|xi|}. We
define the logarithmic height of P to be h(P ) = logH(P ).

Definition 2.2.13. Let E be an elliptic curve defined over Q with a Weierstrass
equation. Let P = (x : y : z) ∈ E(Q), we define H(P ) = H((x : z)) if P finite
and H(∞) = 1. The logarithmic height can be defined accordingly, we have
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2.3. The Weak Mordell-Weil theorem

thus a function

h : E(Q) −→ [0,+∞)

P 7−→ logH(P ).

Remark 2.2.14. Given M ≥ 0, the set of points in Pn(Q) such that H(P ) ≤ M

is finite, as there is only a finite amount of possibilities. Given an elliptic curve
E over Q, the set of points such that H(P ) ≤ M is also finite, there is only a
finite number of possible (x : z) and for each of those, at most two points.

Remark 2.2.15. Suppose E(Q)/2E(Q) is finite and let Q1, . . . , Qs be generators.
Let point P ∈ E(Q), we have that P = 2P1 + Qi1 and we can construct a
sequence of Pj = 2Pj−1 + Qij . It can be seen that for a sufficiently large n,
the logarithmic height of all the Pj , j ≤ n is less than a constant C dependent
only on the Qi and not on P . Then P can be seen as a linear combination
of the P1, . . . , Pn and Q1, . . . , Qs, since this does not depend on P we have
that P1, . . . , Pn, Q1, . . . , Qs generate E(Q), in particular it is finitely generated.
All these points have logarithmic height bounded by C, so if we are able to
compute C and the points Qi then a finite search yields generators for E(Q).
The constant is computable given the Qi, but as we see in the following section,
finding generators for E(Q)/2E(Q) is far from straightforward.

2.3 The Weak Mordell-Weil theorem

The Mordell-Weil theorem states that the group of points of an elliptic curve
E|K, where K is a number field, is a finitely generated abelian group. Thus,
by the structure theorem for finitely generated abelian groups we have that

E(K) ≃ E(K)tors ⊕ Zr,

for some r ≥ 0 called the rank. We have seen in section 2.1, that E(K)tors can
be easily computed with the theory of reductions. Finding whether there are
points of infinite order, that is r > 0, is not straightforward in general. We do
not prove this theorem but will be content in proving the following.

Theorem 2.3.1 (Weak Mordell-Weil). Let E|K be an elliptic curve and m ≥ 2.
Then E(K)/mE(K) is finite.

With the procedure described in remark 2.2.15, the Mordell-Weil theorem
is proved from the weak one.
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2.3. The Weak Mordell-Weil theorem

First reductions and proof

To prove the weak Mordell-Weil theorem we use the pairings developed in section
2.2. Note that the construction of the pairings required that E[m] ⊆ E(K),
and therefore that µm ∈ K, by proposition 2.2.3. The following lemma allows
us to reduce to that case.

Lemma 2.3.2. Let E|K and L|K be a finite Galois extension. If E(L)/mE(L)
is finite then E(K)/mE(K) is also finite.

Proof. Let L be a finite Galois extension of K such that E[m] ⊆ E(L), and
suppose E(L)/mE(L) is finite. We have an exact sequence

0 −→ E[m] −→ E(L) −→ mE(L) −→ 0.

Taking Galois cohomology with Gal(L|K) we get the following long exact
sequence,

0 −→ E[m](K) −→ E(K) −→ mE(L) ∩ E(K) −→

−→ H1(Gal(L|K), E[m]) −→ H1(Gal(L|K), E(L)),

from which we can extract the following injection,

0 −→ mE(L) ∩ E(K)
mE(K) −→ H1(Gal(L|K), E[m]).

Since both E[m] and Gal(L|K) are finite, H1(Gal(L|K), E[m]) is finite and
therefore so is (mE(L) ∩ E(K))/mE(K). This is the kernel of the map
E(K)/mE(K) −→ E(L)/mE(L), so E(K)/mE(K) is finite. ■

From now on we assume that E[m] ⊆ E(K). We will reformulate the
finitude question into a problem in algebraic number theory that can be easily
solved. By proposition 2.2.9, we have a perfect pairing

E(K)/mE(K) × Gal(L|K) −→ E[m].

That means that we have an isomorphism E(K)/mE(K) ≃ Hom(Gal(L|K), E[m])
induced by δE . Since E[m] is finite, we have that E(K)/mE(K) will be finite
if and only if L|K is a finite extension. Thus we focus on studying the field
L = K([m]−1E(K)), which was defined in proposition 2.2.9.

Proposition 2.3.3. Let L = K([m]−1E(K)).

1. L|K is an abelian extension of exponent m.

2. Let S be the union of the set of infinite places, the set of finite places
where E has bad reduction, and the set of places dividing m. Then L|K
is unramified outside S.

17



2.3. The Weak Mordell-Weil theorem

Proof. (1) The Kummer pairing on elliptic curves induces an injective map

Gal(L|K) −→ Hom(E(K), E[m]),

so Gal(L|K) has exponent m.
(2) Let Q ∈ E(L) so that [m]Q ∈ E(K), and let K ′ = K(Q). Let v ∈ MK

and v ̸∈ S, let v′ be a place in K ′ above v. We check that K ′ is unramified at
v′. Since v ̸∈ S, E has good reduction in kv and E(K ′) has good reduction at
k′

v′ . Moreover, the Weierstrass equation will be the same and the reduction
map is well-defined. Let σ ∈ Iv′|v, we have to see it acts trivially on Q. Since

inertia acts trivially on k′
v′ , we have that

︷ ︸
σ(Q) −Q = Õ; it is in the kernel of

the reduction. On the other hand,

[m](σ(Q) −Q) = σ([m]Q) − [m]Q = O.

Since E(K ′)[m] injects into Ẽ(k′
v′), we get that σ(Q) = Q. This reasoning

works for any K ′ = K(Q), and any v′ above v. Therefore L is unramified
outside S. ■

Corollary 2.3.4 (Weak Mordell-Weil). L|K is finite. And therefore
E(K)/mE(K) is finite.

Proof. Let S be as before. The set S contains the infinite places and the
extension L is contained in the maximal abelian extension of exponent m
unramified outside S. Therefore, by theorem 2.2.11, L is a finite extension. ■

The Selmer and Tate-Shafarevich groups

There is another route to prove the weak Mordell-Weil theorem that gives
a cohomological interpretation to the complete 2-descent procedure we will
introduce in the next section. Consider the exact sequence (2.3), the full
cohomology long exact sequence is

0 −→ E[m] −→ E(K) [m]−−−−→ E(K) δE−−−→ H1(GK , E[m]) −→ (2.7)
−→ H1(GK , E(K)),

and from it, we can extract a short exact sequence,

0 −→ E(K)
mE(K)

δE−−−→ H1(GK , E[m]) α−−→ H1(GK , E(K))[m] −→ 0. (2.8)

By exactness, we have that E(K)/mE(K) injects into H1(GK , E[m]) and
corresponds to kerα.
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2.3. The Weak Mordell-Weil theorem

The group H1(GK , E(K)) can be interpreted to be the group of equivalence
classes of homogeneous spaces for E, the theory of homogeneous spaces will
however not be developed here and can be found in [Sil09]X.2-3. Two things
worth remarking though, are the facts that a homogeneous space can be defined
by an equation over K, and that the class of a homogeneous space is trivial
in H1(GK , E(K)) if and only if the corresponding equation has a point in K.
Therefore we may study kerα through the solvability of some equations over
K. This is in general difficult so we appeal to a local-global principle. We will
study the equations over completions of K at places v since over local fields
we can use Hensel’s lemma to solve equations. If there’s a solution over every
completion we can try to lift it to K. This is generally called the Hasse principle,
and it doesn’t always hold for equations of degree higher than 2; there can be
equations with solutions over all completions that do not lift to a solution on
K. The following constructions measure this failure.

Let v ∈ MK be a place, let Gv = Gal(Kv|Kv). We have the following
inclusions

K Kv

Gv GK ,

K Kv

and, by repeating the procedure in (2.7) and (2.8), we get the following
commutative diagram where the rows are exact and the columns are the natural
restriction maps:

0 E(K)
mE(K) H1(GK , E[m]) H1(GK , E(K))[m] 0

0
∏

v
E(Kv)

mE(Kv)
∏

v H
1(Gv, E(Kv)[m])

∏
v H

1(GK , E(Kv))[m] 0.

δE α

r β◦α = αv◦r β

δv αv

We aim to replace E(K)/mE(K) with a subgroup of H1(GK , E[m]) that is
easier to study.

Definition 2.3.5. The Selmer group S(m)(E|K) is the following kernel,

ker
(
H1(GK , E[m]) −→

∏
v

H1(Gv, E(Kv))
)
,

by the previous commutative diagram, it contains Im δE , and it corresponds
to the cocycles γ ∈ H1(GK , E[m]) such that for each v ∈ MK , r(γ) ∈
Im δv. By the previous interpretation of the H1(Gv, E(Kv)), the elements
γ ∈ H1(GK , E[m]) get mapped to an homogeneous space, defined by some
equations, and the Selmer group S(m)(E|K) corresponds to the γ such that the
equations have a solution over all completions of K.
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2.4. Explicit constructions

Definition 2.3.6. The Tate-Shafarevich group X(E|K) is the kernel following
kernel,

ker
(
H1(GK , E(K)) −→

∏
v

H1(Gv, E(Kv))
)
.

Note that X(E|K)[m] = kerβ. It corresponds to homogeneous spaces over K
that have Kv-rational points for all v ∈ MK . If X(E|K) = 0 all homogeneous
spaces in H1(GK , E(K)) that are locally trivial are trivial over K, so it measures
failure of the Hasse principle.

Proposition 2.3.7. The groups S(m)(E|K) and X(E|K) lie on an exact
sequence,

0 −→ E(K)
mE(K) −→ S(m)(E|K) −→ X(E|K)[m] −→ 0, (2.9)

and S(m) is finite.

Proof. The exact sequence comes from the application of the kernel-cokernel
sequence to

H1(GK , E[m]) −→ H1(GK , E)[m] −→
∏

v

H1(Gv, E)[m].

The finitude of S(m) us shown through a procedure similar to the proof of the
weak Mordell-Weil and can be found in [Sil09]X.4.2. ■

Remark 2.3.8. The finitude of the m-th Selmer group S(m)(E|K) implies the
weak Mordell-Weil theorem. This can be interpreted as the order of Selmer
group being an upper bound for E(K)/mE(K) with the order of X(E|K)[m]
as error term. Computing the image of E(K)/mE(K) in S(m)(E|K) is not a
trivial process, the same goes for computing X(E|K).

2.4 Explicit constructions

In this section we introduce an explicit construction that uses the b-pairing to
compute explicitly the group E(Q)/2E(Q).

Complete 2-descent

The b pairing introduced in proposition 2.2.10 and its properties can be used
to compute the group E(K)/mE(K) explicitly. Since we are interested in the
case of congruent number curves, we drop generality. We will be content by
considering the case m = 2 and K = Q, since the curves only have 2-torsion
over Q. We note, however, that this can be generalized to number fields and
any m ≥ 2.
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2.4. Explicit constructions

Let E|Q be a curve such that E[2] ⊆ E(Q) (as is our case of particular
interest). Let Q(S, 2) be as defined in proposition 2.2.10. By 2.2.10.2 we have
that the image of the b pairing is contained in Q(S, 2), which is finite by theorem
2.2.11. To compute E(Q)/2E(Q) we aim to compute the preimage of b.

Suppose E : y2 = (x− e1)(x− e2)(x− e3), and suppose further e1 < e2 < e3.
Let Ti = (ei, 0) be the 2-torsion points of E over Q. We can take T1, T2 as basis
of E[2] as Z/2Z-module. With this basis we can define a group morphism

φ : E(Q)/2E(Q) −→ Q(S, 2) × Q(S, 2)
P 7−→ (b(P, T1), b(P, T2)),

by the non-degeneracy of b, this morphism is injective, and by finding an explicit
expression for it, given a pair (b1, b2) ∈ (Q(S, 2))2 we can try to invert and see
if it is the image of a point in E(Q)/2E(Q).

Remark 2.4.1. This already gives us a rather coarse bound on the rank of E.
We have that Q(S, 2) can be represented by the classes of ±p for p ∈ S and ±1.
Therefore |Q(S, 2)| = 2l+2, where l is the number of primes dividing ∆. Since
|E(Q)/2E(Q)| = 2r+2 and it injects into (Q(S, 2))2 we have that r ≤ 2l.

Now, it can be shown (using the duplication formula) that fTi(x, y) = x− ei

satisfies the properties in proposition 2.2.10.3, so if P = (x, y) ̸= T1, T2, then
b(P, Ti) ≡ x−ei (mod Q×2). Moreover, using the linearity of b we can explicitly
determine φ:

φ(P ) =



(x− e1, x− e2)Q×2 if P ̸= T1, T2,(
e1−e3
e1−e2

, e1 − e2

)
Q×2 if P = T1(

e2 − e1,
e2−e3
e2−e1

)
Q×2 if P = T2

(1, 1) if P = O.

(2.10)

Given a pair (b1, b2) ∈ (Q(S, 2))2, to see if it is the image of a point
P = (x, y) ̸= O, T1, T2 amounts to simultaneously solving in Q the equation
for E, b1z

2
1 = x − e1 and b2z

2
2 = x − e2. Introducing a third variable z3 and

manipulating a bit, we can rewrite this as finding non-trivial rational solutions
to: b1z

2
1 − b2z

2
2 = e2 − e1

b1z
2
1 − b1b2z

2
3 = e3 − e1.

(2.11)

The corresponding rational point is then (b1z
2
1 + e1, b1b2z1z2z3).

Remark 2.4.2. The systems of equations in 2.11 correspond to homogeneous
spaces for E. In order to show that one of these does not have rational points,
we can show that it does not have a point over some particular completion of
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2.4. Explicit constructions

Q. However it might happen that there is a solution over all completions of
Q, these pairs correspond to elements in the Tate-Shafarevich group of E. If
X(E|K) ̸= 0 then some of the pairs that have solutions over all completions
do not have solutions over Q.

The following proposition studies some of the first consequences of this
construction.

Proposition 2.4.3. For each prime p and point P ∈ E(Q)/2E(Q), define
φp(P ) = vp(φ(P )) (mod 2) ∈ F2

2 (the valuation and modulo are applied
component-wise). Define also φ∞(P ) = sgn(φ(P )) ∈ {±}2. Then,

1. For any P , φp(P ) = 0 if p ̸ |∆,

2. If the reduction at p is nodal, then φp(P ) is either (0, 0) or (1, 1).

3. With the ordering e1 < e2 < e3, φ∞(P ) is either (+,+) or (+,−).

4. The rank is bounded by r ≤ s1 + 2s2 − 1, where s1 is the number of
primes where the reduction is nodal and s2 the number of primes where
the reduction is cuspidal.

Proof. (1) follows from the fact that the image of b is contained in the Q(S, 2)
which is represented by integers having only elements in S as factors.

(2) Suppose without loss of generality that e1 ≡ e2 (mod p), let P = (x, y) ∈
E(Q) be a point and let ai = vp(x−ei). Since (x−e1)(x−e2)(x−e3) is a square
mod p, a1 + a2 + a3 ≡ 0 (mod 2). If a1 = 0 then a2 = 0 and φp(P ) = (0, 0). If
a1 > 0 then pa1 is a factor of the numerator of x− e1. Since p ̸ |e1 − e3, then
p ̸ |x − e3 = x − e1 + e1 − e3, so a3 = 0. Therefore a1 + a2 ≡ 0 (mod 2) and
φp(P ) is in the diagonal of F2

2. If a1 < 0, pa1 is a factor of the denominator of
x, so a = b = c and since a + b + c ≡ 0 (mod 2), a ≡ b ≡ c ≡ 0 (mod 2), so
φp(P ) = (0, 0).

(3) Due to the ordering, we have that e3 − e1, e2 − e1 > 0. This means that
pairs (b1, b2) of the form (−,−) and (−,+) cannot be in the image of φ since
the corresponding equations (2.11) don’t have solutions over R.

(4) The considerations in (2) and (3) allow to reduce the space of possible
images of φ and refine the bound in remark 2.4.1. ■

Remark 2.4.4. For the curve y2 = x3 −d2x, let l be the number of prime factors
of d. Then r ≤ 2l if d is odd, and r ≤ 2l + 1 if d is even.

Corollary 2.4.5. The curve y2 = x3 − x has rank 0 and 1 is not a congruent
number.
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Proof. No prime divides 1, so l = 0 and r = 0. ■

2.5 Examples

We will use the theory of 2-descent developed in the previous sections to show
that 1 is not a congruent number and that 5 is a congruent number. We use
the characterization in terms of elliptic curves given in theorem 1.0.4.

Therefore we aim to compute the rank of the congruent number curves to
show whether a given d is or is not a congruent number.

Bound on the rank for d = p prime

Before starting with explicit computations, the following lemmas give a bound
on the rank of the elliptic curve associated to the congruence of prime numbers.

Lemma 2.5.1. The curve y2 = x3 − 4x has rank 0 and therefore 2 is not a
congruent number.

Proof. The only prime that divides the discriminant is 2, and we have that the
reduction is cuspidal. By remark 2.4.4, r ≤ 3. The set S will be S = {2,∞}.
We can take {±1,±2} as representatives of Q(S, 2). The torsion points (−2, 0),
(0, 0) and (2, 0) are sent to (2,−2), (2, 1) and (1, 2) in Q(S, 2)2 through φ.

• Suppose P is a point of infinite order, then P + Q has also infinite
order when Q is a torsion point. The components of φ(P ) can have four
combinations of parity. If φ(P ) = (±1,±1), then φ2(P ) = 0. In the other
three cases, we can replace P by P +Q to obtain a point of infinite order
such that φ2(P ) = 0. In this case we have φ(P ) = (±1,±1).

• Now, by proposition 2.4.3, we have that φ∞(P ) is either (+,+) or (+,−).
In the case (+,−) we reach the system of equations a2 +b2 = 2, a2 +c2 = 4.
It is easy to see that a, b, c expressed as a quotient to the lowest terms
must have the same denominator d, so by introducing a factor d we get the
system a2 + b2 = 2d2, a2 + c2 = 4d2 for a, b, c, d ∈ Z. Reducing modulo 2
we get that a, b, c have the same parity, and they cannot be even, otherwise
d would be even and it would contradict that the expression was given in
lowest terms. Reducing the second equation modulo 4 we get then 2 ≡ 0
(mod 4), a contradiction, so the system has no rational solutions.

Therefore φ∞(P ) = (+,+) and φ(P ) = (1, 1). The morphism φ is
injective, so P = O. We get a contradiction and P cannot have infinite
order.
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Therefore the curve has rank 0 and 2 is not a congruent number. ■

Lemma 2.5.2. Consider the curve y2 = x3 − p2x, let r be its rank. Then,

r ≤ 2 if p ≡ 1 (mod 8)

r = 0 if p ≡ 3 (mod 8)

r ≤ 1 otherwise.

In particular, the primes p ≡ 3 (mod 8) are not congruent numbers.

Proof. In this case the primes that divide the discriminant are 2 and p, so
S = {2, p,∞}, with cuspidal reduction at p and nodal reduction at 2. By
remark 2.4.4 we get that r ≤ 2. We represent Q(S, 2) = {±1,±2,±p,±2p} and
the torsion points (−p, 0), (0, 0) and (p, 0) are sent to (2,−p), (p, 1) and (2p, p)
in Q(S, 2)2 respectively. We use now proposition 2.4.3 to refine the bound on
the rank, and reduce the search space.

• Suppose P is a point of infinite order, as in the previous lemma, we can
replace P with P + Q, where Q is a torsion point, so that we obtain a
point of infinite order with φp(P ) = 0. Therefore we study only pairs in
Q(S, 2)2 not involving p.

• We have that φ∞(P ) has to be (+,+) or (+,−), so we discard all the
pairs with (−,+) and (−,−).

• Nodal reduction gives φ2(P ) is diagonal, we may further discard pairs
with different parity. The remaining pairs are (1, 1), (1,−1), (2, 2) and
(2,−2).

The first pair corresponds to O. This reduction of the search space is equivalent
to having the bound r ≤ 2. We study each pair now.

• If φ(P ) = (1,−1) then there are a, b ∈ Q such that x + p = a2 and
x = −b2. Then a2 + b2 = p, multiplying p by a factor c2, c ∈ Z, we
may assume a, b ∈ Z. Then we get that pc2 is a sum of squares, if p ≡ 3
(mod 4), this cannot happen. This reduces the bound by 1 in the cases
p ≡ 3, 7 (mod 8).

• If φ(P ) = (2, 2). Then x+ p = 2a2 and x = 2b2 for a, b ∈ Q. Substituting
into the equation of E we obtain y2 = 8a2b2(a2 − p), multiplying c2, for a
c ∈ Z, on both sides we can assume a, b ∈ Z. Then reducing mod p we see
that for the equation to have a solution, 2 must be a square mod p. By
the supplement to quadratic reciprocity, 2 is a quadratic residue mod p
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when p ≡ ±1 (mod 8). This reduces the rank by 1 in the case p ≡ 5
(mod 8) and reduces the rank to 0 in the case p ≡ 3 (mod 8).

These considerations prove the proposition and the fact that r = 0 when p ≡ 3
(mod 8) shows that in that case p is not a congruent number. ■

Example of complete 2-descent: Congruent number

We study the curve E : y2 = x3 − 25x. The equation factors as y2 =
x(x − 5)(x + 5), so it has all its 2-torsion defined over Q and E(Q)tors =
E[2] = {O, (−5, 0), (0, 0), (5, 0)} ≃ (Z/2Z)2. By lemma 2.5.2 we know that
r ≤ 1, we will use the method of 2-descent to find a point of infinite order and
thus show the rank is exactly 1.

The discriminant of E is ∆ = −26 · 56, so in this case S = {2, 5,∞}, and
Q(S, 2) has representatives {±1,±2,±5 ± 10}. For each pair of the 64 pairs
(b1, b2) ∈ Q(S, 2) × Q(S, 2) we have to check now for solutions z1, z2, z3 ∈ Q of
the following systems, b1z

2
1 − b2z

2
2 = 5,

b1z
2
1 − b1b2z

2
3 = 10.

1. We map the 2-torsion points using the group morphism φ given in (2.10).
We get the following,

O 7−→ (1, 1), (−5, 0) 7−→ (2,−5) (0, 0) 7−→ (5, 1), (5, 0) 7−→ (10, 5).

2. Since 5 is prime in the class of 5 (mod 8) by 2.5.2, we can reduce the
search to the pair (1,−1). We have the system of equationsz2

1 + z2
2 = 5,

z2
1 + z2

3 = 10.

By inspection we see that the system has an integral solution (1, 2, 3). We
can use this to find the point P = (−4,−6), which is easily checked to be
a point in E.

By the lemma 2.5.2 and the previous computation we conclude that the rank
of E is 1 and E(Q) is generated by the 2-torsion points and P . If p is a prime
number p ≡ 5 (mod 8) the rank is always 1 and p is a congruent number. We
will prove this in proposition 4.5.1 in chapter 4.
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CHAPTER 3

Complex multiplication, modular
functions, and Heegner points

The goal of this chapter is to introduce the concept of Heegner points. This
is used to find rational points on an elliptic curve and is the main idea of the
Mock Heegner points and congruent numbers paper that we analyze in chapter
4. Firstly, we will discuss some concepts and results in the theory of complex
multiplication. After that, we will introduce the modular curves and modular
functions. Finally, we will combine these sections to introduce Heegner points
as an application of this theory.

3.1 Complex multiplication

This section gives an overview of the theory of elliptic curves with complex
multiplication, that is, curves that have more endomorphisms than just Z. The
theory of complex multiplication explicitly develops the class field theory of
imaginary quadratic fields. The class field theory of Q concerns the description
of all abelian extensions of Q, and by the Kronecker-Weber theorem, these
are all subfields of cyclotomic extensions. This means that any field extension
K|Q is generated by sums of roots of unity. In this case, the algebraic number
theory is well understood. General class field theory studies abelian extension
of number fields, but the main theorems do not give explicit constructions as in
the rational case. However, in the case of imaginary quadratic number fields
K = Q(

√
D), with D < 0, such an explicit construction is possible using the

torsion points and j-invariant of an elliptic curve with complex multiplication
by OK .

Definition 3.1.1. Let E|C be an elliptic curve. In the case of complex elliptic
curves, the endomorphism ring End(E) is always abelian, and it is either Z or
an order R in an imaginary quadratic field K. In the second case, we say that
E has complex multiplication by R.
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3.1. Complex multiplication

Remark 3.1.2. We remind that an order R in a number field K is a subring
of K such that K = R ⊗ Q. The ring of integers OK is an order in K. Let
K = Q(τ) be an imaginary quadratic extension where τ is such that OK = Z[τ ].
The possible orders of K are then R = Z⊕Zcω, for a c ≥ 1 called the conductor
of R. Note that OK is the maximal order in K.

Remark 3.1.3. For a curve E|C with complex multiplication, there are two
possible ways to identify End(E) with R inside C. There is a canonical
way to pick one of these embeddings; if ω is an invariant differential, and
f : R −→ End(E) is an embedding, we pick the embedding such that
f(α)∗ω = αω for all α ∈ R.

Example 3.1.4. The congruent number elliptic curves, E : y2 = x3 − n2x,
defined over C, have j-invariant j(E) = 1728. The automorphism group of
elliptic curves with j-invariant 1728 has order 4 ([Sil09]III.10). If End(E) = Z,
then the only possible automorphisms are {±1}, therefore End(E) has to be
strictly bigger than Z and E has complex multiplication.

Let E|C, by the Weierstrass’ uniformization theorem, we know that any
complex elliptic curve is isomorphic to C/Λ, for a lattice Λ ⊆ C. Moreover, two
complex elliptic curves E1, E2 are isomorphic if and only if the corresponding
Λ1,Λ2 are homothetic. This gives the following correspondence,

{Elliptic curves over C up to isomorphism}xy
{Lattices Λ ⊆ C up to homothety}.

If E|C is the elliptic curve corresponding to the lattice Λ, an endomorphism of
E is given by an α ∈ C such that αΛ ⊆ Λ. With this presentation, it is clear
that Z ⊆ End(E), but if E has complex multiplication by R, then there’s a
non-integral α such that αΛ ⊆ Λ. For the sake of simplicity, we will restrict
ourselves to the case where R = OK for the rest of the chapter.

Given an elliptic curve with complex multiplication, we can obtain an
imaginary quadratic field, End(E) ⊗ Q. How can we get an elliptic curve with
complex multiplication by OK given an imaginary quadratic field K? Let
a ⊆ K be a fractional ideal, that is, a finitely generated OK-submodule of
K. Fractional ideals can be seen as lattices in C, therefore we can define the
corresponding elliptic curve Ea, and it is easy to check that End(Ea) = OK .
Moreover, since homothetic lattices give isomorphic elliptic curves, we have
that fractional ideals that lie in the same ideal class give rise to an isomorphic
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curve. We have thus a map

Cl(OK) −→ ELL(OK)
a 7−→ Ea,

where ELL(OK) is the set of isomorphism classes of complex elliptic curves
with complex multiplication by OK . This allows us to define an action of Cl(K)
into ELL(OK).

Proposition 3.1.5. Let Λ be a lattice such that EΛ ∈ ELL(OK), let a be a
non-zero fractional ideal of K, we can define aΛ to be the product of a and Λ
as Z-submodules of C. We have then

1. aΛ is a lattice in C.

2. The curve EaΛ has complex multiplication by OK .

3. Let b be another non-zero fractional ideal, then EaΛ ≃ EbΛ if and only if
a = b in Cl(K).

4. Cl(K) acts on EΛ ∈ ELL(OK) by a ∗ EΛ = Ea−1Λ simply transitively, so
|ELL(OK)| = |Cl(K)|.

Proof. [Sil94]II.1.2. ■

Remark 3.1.6. An interesting thing to note is that for the case of elliptic curves
with complex multiplication, we can also consider a-torsion and the a isogeny,
for a fractional ideal a ⊆ K. We have E[a] = {P ∈ E | [a]P = 0 ∀a ∈ a} and
the isogeny [a] : EΛ −→ a ∗ EΛ. It is easy to see that ker[a] = E[a] and E[a] is
a rank 1 OK/a-module. This is a generalization of the case of integral torsion.

Up to this point, we have seen that elliptic curves with complex multiplication
have a close relationship with the arithmetic of the associated imaginary
quadratic field K. We see now that the j-invariant such an elliptic curve
is an algebraic number, and therefore it will generate a finite field extension of
K.

Proposition 3.1.7. Let E|C be an elliptic curve.

1. If σ : C −→ C be a field automorphism. Then End(σ(E)) = End(E).

2. If E has complex multiplication by OK , for a imaginary quadratic field
K, then j(E) is algebraic.

Proof. [Sil94]II.2.1. ■
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The fact that j is algebraic is somewhat surprising, taking into account
that E is defined over C, and j could be any complex number. This implies
that curves with complex multiplication can be defined over a number field.
Moreover, the specific field extension K(j(E)|K turns out to be the Hilbert class
field of K. That is, the maximal abelian extension of K which is unramified at
all primes of K. Through class field theory and the Artin reciprocity law, the
Galois group Gal(K(j(E))|K) is isomorphic to the class group Cl(K). The next
proposition, which could be called the main theorem of complex multiplication,
states that the action of Gal(K(j(E))|K) on the j(Eai

) is compatible with
the action of Cl(K) on the Eai described in proposition 3.1.5 through the
isomorphism given by Artin reciprocity.

Theorem 3.1.8. Let E|C be an elliptic curve with complex multiplication by
OK , for K some imaginary quadratic field. The field H = K(j(E)) is the Hilbert
class field of K. Moreover, if Ea1 , . . . , EahK

are representatives of ELL(OK)
for each ideal class in Cl(K), then the action of the Artin automorphism on
the j(Eai

) is the following:

σai(j(Eaj )) = j(ai ∗ Eaj ) = j(Ea−1
i

aj
).

Proof. [Sil94]II.4.3 ■

3.2 Modular functions

We explain now the main concepts in the theory of modular functions and
modular curves. To begin with, we introduce the modular curve X(1), which
is the moduli space of complex elliptic curves. Next, we talk about the curves
X(N) and X0(N), which also represent equivalence classes of complex elliptic
curves, but with some additional structure. These curves are defined by taking
the quotient of the upper half plane H by specific subgroups Γ of PSL(2,Z),
and then compactifying the result. Finally, we introduce modular functions
and modular forms, which are meromorphic functions on H that satisfy certain
compatibility conditions with the action of Γ. Additionally, we state the
modularity theorem, which enables us to use modular functions to parameterize
any elliptic curve over Q.

The curve X(1)

As mentioned above, elliptic curves over C up to isomorphism are in bijective
correspondence with lattices in C up to homothety. In this section, we study
elliptic curves from the perspective of the later space. We denote L the space
of lattices and L/C∗ the space of lattices up to homothety.
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A lattice Λ is given by two periods ω1, ω2 not both in R, we further assume
that they are ordered such that ω1

ω2
∈ H. We would like to find a good

representative of the class of lattices, and we can obtain a homothetic lattice
by dividing by ω2 The lattice is then represented by 1, τ with τ ∈ H. We have
a surjective map

H −→ L/C∗.

This map is however not injective. For this, we have to see which τ, τ ′ ∈ H give
rise to the same lattice.

Definition 3.2.1. We define the modular group Γ(1) = SL(2,Z)/{±1} =

PSL(2,Z). Given τ ∈ H and γ =
(
a b

c d

)
∈ Γ(1), we define the action of

Γ(1) on H by γτ = aτ+b
cτ+d .

Lemma 3.2.2. Let τ, τ ′ ∈ H and Λ,Λ′ be the corresponding lattices. Then Λ
and Λ′ are homothetic if and only if there is a γ ∈ Γ(1) such that γτ = τ ′.

Proof. [Sil94]I.1.2. ■

In virtue of this lemma, we can finally give a bijective correspondence. There
is a one-to-one correspondence between L/C∗ and the quotient of H by Γ(1).
We denote this quotient by Γ(1)\H or Y (1). The following propositions will
describe this space, give it a topological structure, and a complex structure.

Proposition 3.2.3. Let F = {τ ∈ H | |τ | ≥ 1 , | Re(τ)| ≤ 1
2 }. Let τ ∈ H.

1. There is γ ∈ Γ(1) such that γτ ∈ F ,

2. If τ, γτ ∈ F for some γ ∈ Γ(1), then
Re(τ) = − 1

2 and γτ = τ + 1,

Re(τ) = 1
2 and γτ = τ − 1, or

|τ | = 1 and γτ = −1
τ .

Proof. [Sil94]I.1.5. ■

This proposition describes a fundamental domain for the action of Γ(1) on
H. The quotient space by this action looks like a punctured sphere, which is
not compact. To obtain a compact space we consider an extension of H.

Definition 3.2.4. We define the extended upper half plane H∗ to be H ∪ P1(Q).
We call these added points, cusps. The action of Γ(1) extends to the rational
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projective line as follows, for a point (x : y) ∈ P1(Q), and γ =
(
a b

c d

)
∈ Γ(1),

we define
γ(x : y) = (ax+ by : cx+ dy).

We define X(1) = Γ(1)\H∗.

Remark 3.2.5. Any point in P1(Q) can be represented as (x : y), with x, y ∈ Z
and gcd(x, y) = 1. There are then a, b ∈ Z such that ax + by = 1, and the

transformation
(
a b

−y x

)
∈ Γ(1) sends (x : y) to (1 : 0). This means that all

points in P1 are in the same orbit of the action of Γ(1) and that Γ\H∗ only
adds one point to Γ(1)\H, that is, X(1) has only one cusp.

The extended upper half plane can be given a topology with a basis of open
neighborhoods:

• For τ ∈ H, the basis is the usual basis.

• For τ0 = ∞, we take as basis the sets {τ ∈ H | Im(τ) > k} ∪ {∞} for
k > 0.

• For any other cusp τ0, represented by a rational number, we take as a
basis the interior of the circles in H that are tangent to τ0 on the real
axis.

This is a Hausdorff topology on H∗, and X(1) becomes a compact Hausdorff
topological space through the quotient map. As mentioned before, Y (1) is
a punctured 2-sphere, and with the added cusp, X(1) becomes the whole
sphere. Moreover, X(1) can be given a complex structure by which it becomes
a Riemann surface of genus 0, that is, the Riemann sphere.

Given a finite τ ∈ X(1), we can compute the j-invariant of the associated
elliptic curve C/Λτ . This extends to a bijective map of sets

j : X(1) −→ P1(C)
τ 7−→ j(C/Λτ ),

which can be shown to actually be a complex isomorphism. With this, we have
completely described the moduli space for complex elliptic curves, a space that
parametrizes all possible elliptic curves over C up to isomorphism. For every
isomorphism class of complex elliptic curves we get a unique point in X(1),
and for every non-cuspidal point in X(1) we get a unique isomorphism class of
complex elliptic curves.

Remark 3.2.6. The details of this construction are technical and complicated,
and therefore omitted from this chapter. They can be found in [Sil94]I.2.2-6.
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Congruence subgroups and the curves X(N) and X0(N)

In the previous section we have described the quotient of H by the modular
group Γ(1), which was PSl(Z, 2). Given a subgroup Γ of Γ(1), we can restrict
the action on H to Γ, and consider the quotient. These quotients become also
complex curves, although more complicated that, P1(C). Moreover, for some
specific subgroups of Γ(1), the resulting curves parameterize objects of number
theoretical interest. We introduce the Γ0 and Γ.

Definition 3.2.7. Let N ≥ 1 be an integer, we define the subgroup Γ0(N) by

Γ0(N) =
{(

a b

c d

)
∈ Γ(1)

∣∣∣∣∣
(
a b

c d

)
≡

(
a b

0 d

)
(mod N)

}
,

and the subgroup Γ(N) by

Γ(N) =
{(

a b

c d

)
∈ Γ(1)

∣∣∣∣∣
(
a b

c d

)
≡

(
1 0
0 1

)
(mod N)

}
.

We define the curves Y0(N) = H\Γ0(N) and Y (N) = H\Γ(N) and their
compactifications X0(N) = H∗\Γ0(N) and X(N) = H∗\Γ(N). These curves
are called modular curves of level N . Note that for N = 1 we have that
Γ0(1) = Γ(1) and therefore X0(1) = X(1).

Remark 3.2.8. We saw in remark 3.2.5 that all points in P1(Q) are equivalent
under the action of Γ(1). This does not happen when restricting the action to
the Γ0(N) or Γ(N) when N > 1, so, therefore, the curves X0(N) and X(N)
have more than one cusp. For example, X(2) has three cusps that can be
represented by (0 : 1), (1 : 1) and (1 : 0) ([DS05]2.4).

Remark 3.2.9. In the same way that X(1) parameterizes elliptic curves up
to complex isomorphism, the X0(N) and X(N) also parameterize families of
elliptic curves, but in this case with added structure ([DS05]1.5). Namely,

• Y0(N) is in correspondence with pairs (E,C) where E is an elliptic curve
and C is a cyclic subgroup of order N . In this case, the isomorphism
relation for two pairs (E,C) and (E′, N ′) is a complex isomorphism
φ : E −→ E′ such that φ(C) = C ′. It also can be interpreted as the set
of isogenies φ : E −→ E′ with E,E′|C and kerφ cyclic of order N , up to
isomorphism.

• Y (N) is in correspondence with triples (E,P,Q), where E is an elliptic
curve and P,Q are generators for E[N ] such that the Weil pairing is
eN (P,Q) = e2πi/N . The isomorphism relation is the natural one.
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Remark 3.2.10. It can be shown that the curves X(N) and X0(N) actually
have models as algebraic curves over Q. In the particular case of X0(N), it can
be seen ([Bir04]) that there is f ∈ Q[x, y] such that f(j, jN ) = 0, where j is the
modular j-invariant defined in example 3.2.15, and jN is j(Nτ). This gives a
singular model for X0(N) as a plane curve, but it implies that X0(N) can be
parameterized by (j(τ), jN (τ)) outside a finite number of singular points.

Modular functions and modular forms

In the previous section, we have introduced the curves X(N) and X0(N) and
we have stated that they have a compact Riemann surface structure. Modular
functions and modular forms for a Γ ⊆ Γ(1) are meromorphic functions defined
on H with a controlled action of Γ. In some cases these are meromorphic
functions on the modular curves but not always.

Definition 3.2.11. Let Γ be Γ(N) or Γ0(N). A weakly modular function of level
N and weight k is a function f : H −→ C such that

1. f is meromorphic on H, and

2. f(γz) = (cz + d)kf(z) for γ =
(
a b

c d

)
∈ Γ.

Both groups Γ(N) and Γ0(N) contain the matrix γN =
(

1 N

0 1

)
so if f is

a weakly modular function of level N , then the second condition implies that
f(z) = f(γNz) = f(z+N), so f is N -periodic. This means that it can be Fourier
transformed, that is, expressed as a function f̃ of q = e

2πi
N , this q is called nome.

This transform is meromorphic on the punctured disk {q ∈ C | 0 < |q| < 1},
and has Laurent expansion

f̃(q) =
∞∑

n=−∞
anq

n.

This transformation allows us to define a notion of meromorphy, or holomorphy
at the cusps.

Definition 3.2.12. Let f : H −→ C be a weakly modular function of weight k
and level N for the group Γ, with Fourier transform f̃(q).

1. We say that f is meromorphic at the cusps of Γ\H∗ if there is an m0 ≥ 0
such that f̃(q) =

∑∞
−m0

anq
n. In that case, we say f is a modular function

of weight k for Γ.
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3.2. Modular functions

2. We say that a modular function of weight k for Γ, f , is holomorphic at
the cusps of Γ\H∗ if f̃(q) =

∑∞
0 anq

n. In that case, we say that f is a
modular form of weight k for Γ.

3. We say that a modular form of weight k for Γ vanishes at the cusps of
H∗/Γ if a0 = 0. In that case, we say it is a cusp form.

Remark 3.2.13. Note that modular functions of weight k = 0 for Γ correspond
to meromorphic functions on the curve Γ\H∗. Moreover, these functions cannot
be holomorphic because there are no non-constant globally defined holomorphic
functions on a compact Riemann surface.

Remark 3.2.14. The set of modular functions for Γ of weight k form a vector
space over C, we denote it by Mk(Γ). Moreover

⊕
k Mk(Γ) has a graded C-

algebra structure. The set of cusp forms of weight k, denoted by Sk(Γ) is also a
vector space over C and a subspace of Mk(Γ). These subspaces have geometric
interpretation as differential forms on the corresponding X(Γ), for example,
S2(Γ0(N)) can be interpreted as the space of differential 1-forms on X0(N).

Example 3.2.15. Let

g2(τ) = 60
∑

(m,n)̸=(0,0)

1
(m+ nτ)4 ,

g3(τ) = 140
∑

(m,n)̸=(0,0)

1
(m+ nτ)6 .

These sums converge, for τ ∈ H, to meromorphic functions H −→ C. It can
be shown that g2 and g3 are modular functions for Γ(1) of weights 4 and
6 respectively. These functions are called the Weierstrass invariants since
the Weierstrass equation of the elliptic curve C/Λτ , given by the Weierstrass
uniformization z 7−→ (℘τ (z), ℘′

τ (z)), is y2 = 4x3 −g2(τ)−g3(τ). This motivates
the definition of the modular discriminant ∆(τ) = g2(τ)3 − 27g3(τ)2, which is
a modular function for Γ of weight 12, and the modular j-invariant

j(τ) = 1728g2(τ)3

∆(τ) ,

which is a modular function of weight 0. This means that the j-invariant is a
well-defined holomorphic function Y (1) −→ C. As mentioned in section 3.2,
this gives an analytic isomorphism j : X(1) −→ P1(C) and means that the field
of rational functions on X(1) is C(j).
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3.3. Heegner points

Modular parameterization

Finally, we state an important consequence of the famous modularity theorem.
The proper statement of this theorem is very subtle and complicated and outside
the scope of this document ([Dar03]).

Theorem 3.2.16 (Modularity theorem, [Bru+08]4.4). Let E be an elliptic curve
of conductor N . Given an algebraic model of X0(N), there is a rational map
ΦN : X0(N) −→ E called the modular parameterization. There are modular
functions x(τ), y(τ) for Γ0(N) that parameterize E over Q, this means that if
y2 = f(x) is a Weierstrass equation for E, then y(τ)2 = f(x(τ)) for τ ∈ H.

3.3 Heegner points

In this section, we will explore a stunning application of complex multiplication
and modular parameterization. This is the main idea, albeit with some
adaptations, used in the Monsky paper. Consider the singular algebraic model
of the modular curve X0(N). Certain points (E,CN ) on this curve correspond
to elliptic curves that have complex multiplication by the same ring for both E
and E/CN . These points turn out to be defined over the Hilbert Class field and
can be transported to any elliptic curve of conductor N through the modular
parametrization.

Definition 3.3.1. A point τ ∈ H is a complex multiplication point if it is the root
of a quadratic equation Aτ2 +Bτ +C = 0 with A,B,C ∈ Z and B2 −AC < 0.
There is a unique such triple (A,B,C) with the condition that A > 0 and
gcd(A,B,C) = 1, we define the discriminant of τ to be ∆(τ) = B2 − 4AC for
this representation. A complex multiplication point τ is called a Heegner point
of level N and discriminant D = ∆(τ) if ∆(τ) = ∆(Nτ) for some N > 0.

Proposition 3.3.2.

1. Let τ ∈ H be a complex multiplication point and γ ∈ Γ(1) of discriminant
D. Then γτ is also a complex multiplication point of discriminant D.

2. Let τ ∈ H be a Heegner point of level N and discriminant D and
γ ∈ Γ0(N), then γτ is also a Heegner point of level N and discriminant
D.

Proof. [Coh07]8.6.2. ■

Remark 3.3.3. This means that complex multiplication points are defined in
X(1), and that Heegner points of level N are defined in X0(N). Since, X0(N)
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3.3. Heegner points

covers X(1), if there exist Heegner points of level N and discriminant D, they
are lifts of the complex multiplication points of discriminant D on X(1).

A fundamental discriminant D is an integer that appears as the discriminant
of a primitive binary quadratic form. It can be shown that this is equivalent
to either D ≡ 1 (mod 4) and square-free, or D ≡ 8 or 12 (mod 16). This also
coincides with the D that appear as field discriminants of quadratic number
fields. We take in this case

K =

Q(
√
D) if D ≡ 1 (mod 4), or,

Q
(√

D
4

)
if D ≡ 8, 12 (mod 16).

(3.1)

Given a fundamental discriminant D, there is a bijective correspondence between
Cl(OK) and the classes of primitive quadratic forms. From now on we assume
that D is a fundamental discriminant. By this correspondence, fixed D, there
are hK different complex multiplication points of discriminant D. These give
rise to different, and all, elliptic curves with complex multiplication by OK . The
action of Cl(OK) was given in proposition 3.1.5. A similar situation happens
in the case of Heegner points. If τ ∈ H is a Heegner point of level N and
discriminant D, the condition that ∆(τ) = ∆(Nτ) means that both C/Λτ and
C/ΛNτ have complex multiplication by the same OK .

Let N > 1 and D be a fundamental discriminant. We have talked about
Heegner points of level N and discriminant D, but we have not shown that such
points actually exist. Not all pairs N,D can give Heegner points, but fixed an
N , we can always find infinitely many D such that the corresponding Heegner
points exist.

Proposition 3.3.4. Let τ ∈ H be a complex multiplication point of discriminant
D represented by the quadratic form (A,B,C). Then τ is a Heegner point of
level N if and only if N |A and there is an F ∈ Z such that B2 − 4NF = D

with gcd(N,B, F ) = 1.

Proof. [Coh07]8.6.3. ■

Remark 3.3.5. Fixed N , let τ be a root of an equation NAτ2 +Bτ + C = 0,
for A,B,C ∈ Z, A > 0 and gcd(A,B,C) = 1. Then both τ and Nτ have
discriminant D = B2 − 4NAC. We can therefore always find a D such that
there are Heegner points of level N and discriminant D.

Lemma 3.3.6. Let N > 0 and let D < 0 be a fundamental discriminant, let K
be the corresponding imaginary quadratic field. If there is an ideal n ⊆ OK

such that OK/n = Z/NZ, then there exist Heegner points of level N and
discriminant D.
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3.3. Heegner points

Proof. The ideal n has absolute norm N(n) = N . This implies that there is a
binary quadratic form of discriminant D representing N . If a quadratic form
represents N , it is equivalent to the form Nx2 +Bxy +Cy2 for some B,C ∈ Z
having discriminant D. Then D = B2 −4NC, by the previous remark, there are
Heegner points of level N and discriminant D. The facts on binary quadratic
forms can be found in [Cox22]7B. ■

The following proposition introduces a compatibility condition between N

and D that implies the existence of such an ideal.

Proposition 3.3.7 (Heegner hypothesis). Let N > 0, let D < 0 be a fundamental
discriminant andK the corresponding imaginary quadratic field. If every prime p
dividing N splits in K, then there is an ideal n ⊆ OK such that OK/n ≃ Z/NZ.
This is called the Heegner hypothesis, and the previous lemma implies the
existence of Heegner points of level N and discriminant D.

Proof. Let N = pa1
1 · · · par

r . Since each pi splits in OK , we have that
piOK = pi1 · · · pisi

. Since there is no ramification OK/p
ai
ij = Z/pai

i . Now, take
n =

∏r
i p

ai
i1 .By the Chinese remainder theorem we get that OK/n = Z/NZ. ■

We have seen that there is sort of a correspondence between Heegner points
of level N and discriminant D, and binary quadratic forms of discriminant D,
which in turn are in correspondence with the class group. This means that
there in the situations where Heegner points exist, there is a way to lift the hK

complex multiplication points, to hK Heegner points.

Proposition 3.3.8. Suppose N and D are such that the corresponding Heegner
points exist. There is a one-to-one correspondence between classes modulo
Γ0(N) of Heegner points of discriminant D and level N , and pairs (β, a) where
β ∈ Z/2NZ is such that D ≡ b2 (mod 4N) for any lift b of β to Z and a is an
ideal class of OK .

Proof. See [Coh07]8.6.6 for the proof and the explicit correspondence. ■

The usefulness and purpose of Heegner points is clear from the following
two propositions. As mentioned above, the fact that τ and Nτ have the same
discriminant means that the corresponding curves have complex multiplication
by the same ring. Therefore their j-invariants are defined over the same Hilbert
class field, and they are acted on by the same Galois group.

Proposition 3.3.9. Let τ ∈ H be a Heegner point of level N and discriminant D.
Let H be the Hilbert class field of the K defined in (3.1). Then τ ∈ X0(N)(H)
in the singular algebraic model of X0(N) over Q mentioned in remark 3.2.10.
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3.3. Heegner points

Proof. Since C/Λτ and C/ΛNτ have complex multiplication by OK , we
have by the main theorem of complex multiplication (theorem 3.1.8), that
j(τ), j(Nτ) ∈ H. We mentioned in remark 3.2.10 that the singular algebraic
model of X0(N) has coordinates (j(τ), jN (τ)) outside of the singular points. We
assume (sadly with loss of generality, the remaining discussion is out of the scope
of this document) that τ is not one of those, so in this model τ ∈ X0(N)(H). ■

Proposition 3.3.10. Let N > 0 and D < 0 satisfying the Heegner hypothesis.
Let K be as defined in (3.1) and τa1 , . . . , τahK

be the Heegner points of level
N and discriminant D corresponding to each ideal class. The class group
Cl(OK) = Gal(H|K) acts on the τi as follows,

σb(τa) = τb−1a.

Proof. We take the representation of X0(N) as the moduli space of (φ : E −→
E′) isogenies where E,E′ have complex multiplication by the same order and
cyclic kernel of order N . By the Heegner hypothesis there is an ideal n ⊆ OK

such that OK/n = Z/NZ. Given a ∈ Cl(K), (C/a −→ C/an−1) can be shown
to be corresponding Heegner point of discriminant D and level N . Then, for
b ∈ Cl(K), the main theorem of complex multiplication gives

σb(τa) = (C/b−1a −→ C/b−1an−1) = τb−1a).

■

We put everything together now. Let E be an elliptic curve of conductor
N , by the Modularity theorem there is a morphism of algebraic curves
ΦN : X0(N) −→ E, defined over Q. Let D < 0 be a fundamental discriminant
satisfying the Heegner hypothesis for N and K the imaginary quadratic field
defined in (3.1). Then there exist τ1, . . . , τhK

∈ H Heegner points of level N
and discriminant D, we may see them as their class in X0(N). By proposition
3.3.9, τi ∈ X0(N)(H) for the singular algebraic model of X0(N). Since the map
ΦN is algebraic, ΦN (τi) ∈ E(H), and since it is defined over Q, the action of
Gal(H|K) on the τi is preserved. We summarize this in the following theorem.

Theorem 3.3.11. Let E be an elliptic curve of conductor N , ΦN its modular
parameterization, and D and K as defined in the previous paragraph. There
are points P1, . . . , PhK

∈ E(H) such that for σb ∈ Gal(H|K), σbPa = Pb−1a.
Moreover,

P =
hK∑
i=1

Pi ∈ E(K).

Proof. This comes from the preceding discussion. Similar presentations of this
result can be found in [Coh07],[Gal11] or [Dar03]. ■
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3.3. Heegner points

Thus we have found a way to construct a K-rational point in E. Sometimes
this point will even be Q-rational. This construction does however not guarantee
that P has infinite order.

Remark 3.3.12. This section has dealt mainly with the case D being a
fundamental discriminant satisfying the Heegner hypothesis for N . Different
sources define Heegner points differently. We have given the definition in [Coh07].
The paper Mock Heegner points and congruent numbers, that we present in
the next chapter, takes the definition to be points arising from a D satisfying
the Heegner hypothesis. The curve y2 = x3 − x has conductor 32, and the
points are obtained evaluating modular functions at quadratic number fields
where 2 ramifies, so the discriminant of the field does not satisfy the Heegner
hypothesis. The construction still yields points defined over the corresponding
Hilbert class field and they call them Mock Heegner points since the hypothesis
is not satisfied.
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CHAPTER 4

Mock Heegner points and
congruent numbers

In this final chapter, we discuss the paper "Mock Heegner points" by Monsky
([Mon90]). We present the theoretical framework for the case where D ≡ 1
(mod 4). We provide detailed proofs of how this framework can be applied
to show that the numbers p ≡ 5 (mod 8) and 2p, where p ≡ 3 (mod 8), are
congruent. Additionally, we include some straightforward computations in
Mathematica to make the construction more explicit.

We denote by E the elliptic curve with affine model y2 = x3 − x, and by
EN the curves Ny2 = x3 − x. The curves EN are isomorphic over Q to the
curves y2 = x3 −N2x, so we are studying the same problem. The goal of this
paper is to show the existence of points of infinite order on the elliptic curves
EN for some N , generally prime or product of two primes. This will give the
most general result on the congruence of prime numbers (mod 8) and products
of two primes. The idea can be summarized informally in the following steps:

1. We parameterize the curve E with modular functions. More precisely, we
parameterize the curve C : 2Y 2 = X4 + 1, which is Q-isomorphic to E
but easier to work with.

2. We show that certain subgroups ΛN of points of C defined over quadratic
extensions Q(

√
N) are isomorphic to the Q-rational points of EN .

3. We construct points on C, and therefore on E, by evaluating the modular
functions at imaginary quadratic arguments in the imaginary quadratic
field Q(ω) for ω = i

√
2D.

4. These points are defined over the Hilbert class field of the Q(ω) and are
permuted by the action of the Galois group. We call them mock Heegner
points, by remark 3.3.12.
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4.1. The curve 2Y 2 = X4 + 1

5. Certain linear combinations of these points can be shown to be in the ΛN

and in some cases can be shown to have infinite order. And therefore N
will be congruent.

Let’s make the points 2 and 3 a bit more precise. We will study imaginary
quadratic fields generated by an element ω = i

√
2D, where D is an odd square-

free positive integer. We will further assume that there is a factorization
2D = NN∗, with some congruence conditions on these factors, and we will
study whether the N appearing here is a congruent number or not. It is
convenient to distinguish the two cases D ≡ 1 (mod 4) and D ≡ 3 (mod 4).
The paper treats both, but for the sake of simplicity, this chapter will treat in
detail only the first case and give a short overview of the second.

4.1 The curve 2Y 2 = X4 + 1

Let E : y2 = x3 − x be the elliptic curve corresponding to the congruent
number problem for 1. We know that E has rank 0, but studying it over the
field extension Q(

√
N) will give us a connection with the curves EN . Instead

of studying E however, we study another curve that is Q-isomorphic to it.
Consider the affine curve 2y2 = x4 + 1, its projectivization is singular but by
blowing up we can obtain a non-singular model. Let C be its the complete
non-singular model, which can be given an abelian variety structure with origin
(1, 1).

Proposition 4.1.1.

1. The morphism (x, y) 7→ (x−1, yx−2) is an endomorphism of C of order 2
and therefore corresponds to multiplication by −1. The fixed points are
(1,−1),(−1, 1) and (−1,−1), and they constitute the 2-torsion subgroup.

2. The maps (x, y) 7→ (x−1,−yx−2), (x, y) 7→ (−x−1, yx−2) and (x, y) 7→
(−x,−y) are the translations by (1,−1),(−1, 1) and (−1,−1) respectively.

Proof. The proof is an easy exercise in algebraic manipulation. ■

Proposition 4.1.2. The curve C is isomorphic to E over Q.

Proof. Consider the rational map given by

(x, y) 7−→

((x2 + 1
x2 − 1

)2
,

4xy(x2 + 1)
(x2 − 1)3

)
.

It extends to a morphism ψ : C −→ E defined over Q. If we suppose that this
is also a group morphism, we can compute its kernel. We see that kerψ is the

41



4.1. The curve 2Y 2 = X4 + 1

2-torsion in C, therefore ψ is a 4-to-1 map and it is ψ = 2φ for an isomorphism
φ. ■

Figure 4.1: Plot of the affine curve 2y2 = x4 + 1 with the origin and 2-torsion
points.

As mentioned before, we can use points of C (or E) defined over quadratic
field number fields to study the rational points on EN . Remember that we are in
the case D ≡ 1 (mod 4), and suppose that we can factorize 2D as 2D = NN∗

with N ≡ 5 or 6 (mod 8) and N∗ ≡ 2 or 3 (mod 8).

Definition 4.1.3. Let ΛN be the subgroup of C consisting of the points rational
over Q(

√
N) that are transformed into their negatives (in the sense of the group

law) by the involution of Q(
√
N).

Proposition 4.1.4. Let T be the group of 2-torsion on C. Then,

1. ΛN is isomorphic to the Q-rational points of EN .

2. If P ∈ ΛN and P ̸∈ T , then P has infinite order and N is a congruent
number.

Proof.

(1) Let P = (u, v) be a point on E(Q(
√
N)), this means u = u1 + u2

√
N

and v = v1 + v2
√
N with u1, u2, v1, v2 ∈ Q. The points of E that are

transformed into their negatives by the involution of Q(
√
N) are those
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4.2. Parametrization of the curve C

that satisfy −P = (u,−v) = (u1 − u2
√
N, v1 − v2

√
N). This means

u2 = v1 = 0. Therefore u, v/
√
N ∈ Q, which is the same as a Q-rational

point on EN . Composing the isomorphism φ with the correspondence
(u, v) 7→ (u, v/

√
N) yields the isomorphism between ΛN and EN (Q).

(2) The only torsion in EN (Q) is the 2-torsion, so if P ̸∈ T then it has infinite
order.

■

Remark 4.1.5. Let P ∈ ΛN and P ̸∈ T . If we have that the rank of EN is
bounded by 1, then it will be equal to 1. Moreover, T and P generate a finite
index subgroup of ΛN . If P ̸∈ 2ΛN ⊕ T then the index must be odd.

Remark 4.1.6. We have assumed a factorization 2D = NN∗ with some
congruence conditions on N and N∗. These conditions have not been used
in the proof of this proposition, and it is in fact true that this isomorphism
holds for any N . However, we will construct some points on C dependent on
D, and we see in lemma 4.4.6 and proposition 4.4.9 that these assumptions are
necessary to assure these points lie in the ΛN .

4.2 Parametrization of the curve C

The curve C can be parametrized with modular functions X,Y of weight 2 and
level 8. These modular functions can be defined in terms of division values of
the Weierstrass ℘ elliptic function.

Let z ∈ H and let Λz be the lattice in C spanned by 1 and z. Let ℘z be
the Weierstrass ℘ function associated to Λz. This ℘z and its derivative can
be used to parameterize the elliptic curve C/Λz. Given u, v ∈ Z/8Z, not both
zero, the numbers ℘z( uz+v

8 ) are called the division values of ℘ and correspond
to x-coordinates of the 8-torsion points of the curve C/Λz in the Weierstrass
parameterization. As such, they are algebraic over the field generated by the
coefficients of the Weierstrass equation.

Definition 4.2.1. Let z ∈ H and let u, v ∈ Z/8Z, not both zero. We define
eu,v(z) = ℘z( uz+v

8 ). Note that z appears both in the lattice defining ℘z and in
its argument. For z such that C/Λz is defined over a number field, the eu,v(z)
will be algebraic numbers.

Remark 4.2.2. We have that eu,v = e−u,−v and, that the action of SL(2,Z) gives
the relation eu,v( az+b

cz+d ) = (cz + d)2eau+cv,bu+dv(z). If the action is restricted to
Γ(8), it holds that au+ cv ≡ u (mod 8) and bu+ dv ≡ v (mod 8), so we have
that the eu,v(z) are modular forms of weight 2 and level 8.
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4.3. Mock Heegner points on C

Definition 4.2.3. We define the following auxiliary modular functions:

E1 = e0,4 − e4,0,

E2 = e4,4 − e4,0,

E3 = E1 − E2 = e0,4 − e4,4,

E4 = e1,0 + e1,4 − e5,0 − e5,4,

E5 = e1,6 + e3,6 − e5,6 − e7,6,

E6 = e2,4 − e2,0.

We define the modular functions X and Y as follows,

X = i

16
√

2
E4E5

E1E2
,

Y = 1√
2
E1 + E2

E6
.

Remark 4.2.4. The functions E1, E2 and E3 are modular functions of level
2, the function E6 is of level 4 and the functions E4 and E5 are of level 8.
Therefore X is a modular function of level 8 and Y is of level 4.

Proposition 4.2.5. Let X,Y be the modular functions defined above. Then

1. X,Y are holomorphic on the upper half plane and X has no zeros there.

2. X,Y take positive values on iR+.

3. 2Y 2 = X4 + 1.

4. X(−2/λ)) = X(λ)−1 and Y (−2/λ) = Y (λ)X(λ)−2, for any λ ∈ H.

Proof. The proof is relatively straightforward but tedious. It is based on the fact
that X can be seen as a meromorphic function on X(8), and Y as a meromorphic
function on X(4) and studying their behavior and Fourier expansion at the
cusps. ■

We see thus that the X,Y parametrize the C. Through the isomorphism
defined in the previous section we can construct points on E by constructing
points on C, and we will do this by evaluating the modular functions X,Y at
some elements of Q(ω).

4.3 Mock Heegner points on C

We will now construct some points on the curve C, these points we will call mock
Heegner points in the spirit of remark 3.3.12. Remember that ω = i

√
2D, where
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4.3. Mock Heegner points on C

D is an odd square-free positive integer and D ≡ 1 (mod 4). Let K = Q(ω).
The curve y2 = x3 −x, and therefore also C, has conductor 32. The discriminant
of the field K is 8D, so the pair 32, 8D do not satisfy the Heegner hypothesis.
It is nonetheless still possible to find points in H such that evaluating X and Y
at them gives algebraic values.

Let H be the Hilbert class field of K, which as we mentioned in Chapter
3, is the maximal unramified extension of K. By the Artin Reciprocity law, it
holds that Gal(H|K) ≃ Cl(K). Note also that, since 2D ̸≡ 1 (mod 4), then
the ring of integers of K is exactly Z[ω].

Remark 4.3.1. There is some abuse of notation in this chapter due to the
correspondence Gal(H|K) ≃ Cl(K). If G is this Galois group, we write
automorphisms σ ∈ G and ideal classes A ∈ G interchangeably. The
automorphism corresponding to A will be denoted σA.

The following two propositions are consequences of the Shimura reciprocity
law ([Cox22]15), which is a generalization of proposition 3.3.10. It is a
complicated theory and will not be presented in this thesis.

Proposition 4.3.2 ([Mon90]2.3). Let D ≡ 1 (mod 4) and denote x = X(ω), y =
Y (ω). Then x, y ∈ H. The point (x, y) ∈ C is H-rational.

Proposition 4.3.3 ([Mon90]2.4). Let A be an ideal class of Z[ω] represented by
an ideal I of odd absolute norm. Let (aω + d, b) be a Z-basis of I with b ≡ 0
(mod 8) and ad > 0, and norm N(I). Let η = (aω + b)/d and σA the Artin
automorphism. Then

σ−1
A (x) =

(
2

N(I)

)
X(η), and σ−1

A (y) =
(

2
N(I)

)
Y (η).

Definition 4.3.4. With the same definitions as above, for the ideal class A we
define the point PA =

((
2

N(I)

)
X(η),

(
2

N(I)

)
Y (η)

)
. For the trivial class O we

take PO = (x, y).

Remark 4.3.5. The points PA lie on the curve C, and the definition is
independent of the representative ideal I, the Z-basis and they are H-rational.

Definition 4.3.6. We denote CR the points P ∈ C with P = P (the curve
represented in Figure 4.1). C+

R consists of the points (x, y) ∈ CR with y > 0
and C−

R those with y < 0. We denote the m the maximal ideal (2, ω) and Pm

the point associated to the class of m.

Lemma 4.3.7. If D ≡ 1 (mod 8) then Pm = −PO. If D ≡ 5 (mod 8) then
Pm = (−1,−1) − PO.
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4.4. The points SN

Proof. The ideal m has an even norm, but it is in the same ideal class as the
ideal (D,ω) of odd norm D. Since ω/D = −2ω by proposition 4.2.5, we have
that X(ω/D) = X(ω)−1 = x−1 and Y (ω/D) = Y (ω)X(ω)−2 = yx−2. We
have now that Pm =

((
2
D

)
x−1,

(
2
D

)
yx−2

)
. By the translation properties in

proposition 4.1.1 and the properties of the Jacobi symbol for 2, we get the
result. ■

Proposition 4.3.8. If D ≡ 1 (mod 4).

1. Each PA is H-rational.

2. PA = PA−1 . And if J is another ideal class, the Artin automorphism σJ

acts as σJPA = PJ−1A.

3. PmA + PA = (1, 1) or (−1,−1) according to D ≡ 1 or 5 (mod 8), where
m = (ω, 2).

4. Let q|D and A the class containing (q, ω). Then PA lies on C+
R if q ≡ ±1

(mod 8) and C−
R if q ≡ ±3 (mod 8).

Proof. (1) and (2) come from the preceding propositions, the action of the Artin
isomorphism comes by the construction of the PA. (3) Is a consequence of (2)
and the preceding lemma. (4) is consequence of the preceding lemma and the
fact that Y takes positive values on iR+. ■

4.4 The points SN

In the previous section, we have constructed an H-rational point PA on C for
each ideal class A. By proposition 4.1.4, we can study whether a suitable N
appearing in the factorization of 2D is a congruent number by finding points on
ΛN , which are Q(

√
N)-rational points. We will construct now, points SN as sums

of some of the PA, where A runs through a subgroup of G = Cl(K) = Gal(H|K).
These points will be in the ΛN and under some conditions we can even show
they have infinite order. This requires some careful analysis of the structure of
G.

Definition 4.4.1. An ideal class A ∈ G is called an ambiguous class if its square
is the trivial class. That is, A is in the kernel of the squaring map G −→ G2.

Fact 4.4.2. For Z[ω] and q|D then the class of (q, ω) is ambiguous. All ambiguous
classes arise this way, and different divisors of D give rise to different ambiguous
classes. Therefore the subgroup of ambiguous classes has order 2l, where l is
the number of primes dividing D. Equivalently [G : G2] = 2l. The proof can be
found in [Cox22]2C.
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4.4. The points SN

Definition 4.4.3. Let p|D be prime and p∗ = (−1) p−1
2 p so that p∗ is a square

in H. An ideal class A ∈ G is in the principal genus if σA(
√
p∗) =

√
p∗ for all

p|D. This is equivalent to σA ∈ Gal(H|K(
√
p∗

1, . . . ,
√
p∗

l )), where the pi are
the primes dividing D. Note that this condition can also be stated in terms of
Legendre symbols.

Fact 4.4.4 (Gauss). The principal genus is G2.

Remark 4.4.5. We will use the parity of the order G2 in the following discussion.
We have that G2 will have odd order if and only if no ambiguous class but
the trivial class lies in G2, that is, there is no element of order 2 in G2. The
characterization of G2 as the principal genus allows us to study this through
number theory. For example, if D is prime, there is only non-trivial ambiguous
class, m = (2, ω), of norm 2. This class lies in the principal genus if and only if
2 is a quadratic residue mod D. By quadratic reciprocity, if D ≡ ±3 (mod 8)
then 2 is not a quadratic residue mod D and m doesn’t lie in the principal
genus, therefore G2 has odd order. On the other hand, if D ≡ ±1 (mod 8) the
opposite happens and G2 has even order.

We remind that we are assuming a factorization 2D = NN∗ with N ≡ 5 or
6 (mod 8) and N∗ ≡ 2 or 3 (mod 8).

Lemma 4.4.6. It holds that
√
N ∈ H. Denote GN the subgroup of G consisting

of the A such that σA fixes
√
N . Then, m ̸∈ GN .

Proof.

• Suppose N ≡ 5 (mod 8). Then the prime (2) is inert (and therefore
unramified) in Q(

√
N)|Q, so m is inert in K(

√
N)|K. The odd primes

of K are also unramified in K(
√
N)|K, so

√
N ∈ H. Since 2 is inert,

σm(
√
N) = −

√
N .

• Suppose N∗ ≡ 3 (mod 8). The same reasoning applies to the extension
K(i

√
N∗)|K and we get that

√
N ∈ H and that σm(

√
N) = −

√
N .

■

Remark 4.4.7. Through this lemma we can identify GN = Gal(H|K(
√
N)).

Moreover, since σm ̸∈ GN , we have that σm(
√
N) = −

√
N . This means that σm

restricts to the involution of Q(
√
N) in Gal(Q(

√
N)|Q) (which was important

in the definition of the ΛN in definition 4.1.3).
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4.5. Congruent numbers

Definition 4.4.8. We define SN =
∑
PA, where the sum runs over the A in

GN . This point will be H-rational and, since the PA are permuted by the GN ,
which is identified with Gal(H|K(

√
N)), the point will be K(

√
N)-rational.

Proposition 4.4.9. It holds that 2SN ∈ ΛN and, if D is composite, SN ∈ ΛN .

Proof. By proposition 4.3.8, complex conjugation acts as PA = PA−1 . Since
GN is a group, SN = SN and SN is Q(

√
N)-rational (and so is 2SN ). By

remark 4.4.7, σm acts as the involution in Q(
√
N), and by proposition 4.3.8,

σm(PA) + PA = (1, 1) or (−1,−1). This implies that σm(2SN ) = −2SN

and therefore that 2SN ∈ ΛN . Since GN has index 2 in G, if D is composite,
[G : G2] is a power of 2 bigger than 4, so GN has even order and σm(SN ) = −SN .
Therefore SN ∈ ΛN (summing up σm(PA) + PA along GN has an even number
of terms). ■

4.5 Congruent numbers

We denote pi for a prime number such that pi ≡ i (mod 8). We already have
some results on the congruence of the pi-s. For example, lemma 2.5.2 shows
that p3 is never congruent because the associated elliptic curve always has rank
0. We use the framework developed in this chapter to prove more results.

Proposition 4.5.1 ([Mon90]3.6). Taking D = N = p5, then 2SN ̸∈ T . Therefore
p5 is a congruent number.

Proof. Suppose for the sake of a contradiction that SN ∈ 2ΛN ⊕ T , then
2SN = 2S + t, for some S ∈ ΛN and t ∈ T . The point A = SN − S is
4-torsion, and since it is Q(

√
N)-rational and E(Q(

√
N)) only has 2-torsion,

then it is 2-torsion. We have that A ∈ T , and in particular A ∈ ΛN , so
σm(A) + A = (1, 1). On the other hand, by proposition 4.3.8, and using that
S ∈ ΛN and so σm(S) = −S, we get the following:

σm(A) +A = σm(SN ) + SN

=
∑

A∈GN

(σm(PA) + PA)

=
∑

A∈GN

(−1,−1).

In this case, GN , is the principal genus, and, by remark 4.4.5, it has odd
order. Thus, σm(A) + A = (−1,−1). We have reached a contradiction, so
2SN ̸∈ 2ΛN ⊕ T and it has infinite order. ■
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4.5. Congruent numbers

Proposition 4.5.2 ([Mon90]3.9). Let D = p3p
′
3 and N = 2p3, then SN ̸∈

2ΛN ⊕ T . Therefore 2p3 is a congruent number.

Proof. The proof of this case is a bit more complicated since D has more than
one factor. We break down the proof into several points.

• The number D has two prime factors, so [G : G2] = 4, and since G2 ⊆ GN ,
we have that [GN : G2] = 2. This means that we can decompose SN as
follows,

SN =
∑

A∈G2

PA +
∑

A̸∈G2

PA. (4.1)

We denote by R the first sum. We claim that the point SN − (R+σm(R))
lies in C−

R . Since D ≡ 1 (mod 8), by proposition 4.3.8, we have that
R+ σm(R) = (1, 1), so SN − (R+ σm(R)) = SN . There are 4 ambiguous
classes: the principal class, m, (ω, p3) and (ω, p′

3). Since [G : GN ] = 2,
there is only one ambiguous class in GN aside from the principal class. By
lemma 4.4.6, m ̸∈ GN , so it must be one of the other two. Regardless of
which one, by proposition 4.3.8, the points corresponding to these classes
lie in C−

R , so we suppose without loss of generality that it is (ω, p3). Now,
the elements in GN such that A ̸= A−1, that is, the ones corresponding
to non-ambiguous classes, come in conjugate pairs, so

SN = PO + P(ω,p3) +
∑

PA + PA.

For any point P ∈ C, P + P is real, and it lies in C+
R . Then, since all

terms but one lie in C+
R , we get that SN ∈ C−

R .

• Let N ′ = 2p′
3, we can define the corresponding GN ′ , ΛN ′ and SN ′ . Both

GN and GN ′ have index 2 in G and contain G2 as an index 2 subgroup.
Taking I ∈ GN ∖G2, the decomposition in (4.1) can be seen as,

SN =
∑

A∈G2

PA +
∑

A̸∈G2

PA = R+
∑

A∈I−1G2

PA

= R+
∑

A∈G2

σI(PA)

= R+ σI(R).

Since mI ∈ GN ′∖G2, we also have that SN ′ = R+σmI(R). By proposition
4.3.8, σI(R) − σmI(R) = σI(R) − σm(σI(R)) is a torsion point, so it holds
that SN + SN ′ − 2R ∈ T . Since T ⊆ ΛN ′ , subtracting SN ′ we get that
SN − 2R ∈ ΛN ′ .
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4.6. Some comments on the case D ≡ 3 (mod 4)

• Suppose for the sake of contradiction that SN ∈ 2ΛN ⊕ T , that is,
SN = 2S + t, for some S ∈ ΛN and t ∈ T . We have that 2(S − R) =
(SN − 2R) − t ∈ ΛN ′ . The point S is Q(

√
N)-rational by definition, and

the point R is H-rational and fixed by G2, so it is K(
√
N,

√
N ′)-rational,

it even is Q(
√
N,

√
N ′)-rational because R = R. We have thus that S−R

is Q(
√
N,

√
N ′)-rational and its double is Q(

√
N ′)-rational. The curve

C only has bad reduction at 2 so, given a number field K and a point
P ∈ E(K) such that 2P ∈ E(K), the extension K(P )|K is unramified at
all odd primes, by proposition 2.3.3. Since Q(

√
N,

√
N ′)|Q(

√
N ′) ramifies

at some odd prime above p3, we have that S−R must be Q(
√
N ′)-rational.

• Both σI and σm restrict to the involution of Q(
√
N ′). Then,

SN = R+ σI(R),

= R+ σI(R− S) + S, since S ∈ ΛN and σI ∈ GN ,

= R+ σm(R− S) + S, since σm = σI over Q(
√
N ′),

= (R+ σm(R)) + (S + S), since S is real and so S = S.

Therefore SN − R − σm(R) = (S + S) ∈ C+
R , which is a contradiction with

the first point. We conclude that SN has infinite order and 2p3 is a congruent
number. ■

This strategy, although with some additional complications, can be applied
to prove the other cases. We summarize it in the following proposition.

Proposition 4.5.3 ([Mon90]3.9). In each of the following cases, SN ̸∈ 2ΛN ⊕ T :

1. D = p5p
′
5 and N = p5,

2. D = p3p7 and N = p3p7,

3. D = p3p7 and N = 2p7,

4. D = p1p5 and N = p1p5 if
(

p1
p5

)
= −1.

4.6 Some comments on the case D ≡ 3 (mod 4)

We finally give a quick overview without proofs of the case D ≡ 3 (mod 4). Let
now ω = i

√
2D, with D ≡ 3 (mod 4), let K = Q(ω) and H be its Hilbert class

field. This case is a bit more complicated because the point (X(ω), Y (ω)) is no
longer H-rational but H(i)-rational. The definition of the points PA has to be
adjusted as well.
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4.6. Some comments on the case D ≡ 3 (mod 4)

Proposition 4.6.1 ([Mon90]2.3-2.4). Let D ≡ 3 (mod 4).

1. Let x = X(ω), y = Y (ω). Then x ∈ H and iy ∈ H. The point (x, y) is
H(i)-rational.

2. Let I be an ideal of odd norm representing an ideal class A of Z[ω].
Let (aω + d, b) be a Z-basis of I with b ≡ 0 (mod 8) and ad > 0. Let
η = (aω + b)/d and σA the Artin automorphism. Then

σ−1
A (x) =

(
2

N(I)

)
X(η), and σ−1

A (iy) =
(

−2
N(I)

)
iY (η).

3. For each ideal class A we define the PA =
((

2
N(I)

)
iX(η),

(
−2
N(I)

)
Y (η)

)
,

which are H(i)-rational.

Now, Gal(H(i)|K) ̸= Cl(K), but it contains it as an index 2 subgroup. The
action on the points will be a bit more complicated because we also have to
consider the involution in Gal(H(i)|H). The following proposition is the analog
of proposition 4.3.8.

Proposition 4.6.2 ([Mon90]2.11).

1. Complex conjugation acts as PA = (−1, 1) − PA−1 and the involution of
H(i)|H sends PA to PA + (−1,−1).

2. If σ ∈ Gal(H(i)|K) is trivial on K(i), then it restricts to H to an
element σ ∈ Gal(H|K) = Cl(K) corresponding to an ideal class J . Then
σ(PA) = PJ−1A.

3. Action of m: PmA − PA = (1,−1) or (−1, 1) if D ≡ 3 or 7 (mod 8).

In this case proposition 4.1.4 is a bit different, we now assume a factorization
of 2D = NN∗ with N ≡ 6 or 7 (mod 8) and N∗ ≡ 1 or 8 (mod 8). The
isomorphism between C and E is of course the same since it does not depend
on N , but the subgroup ΛN has to be defined differently. In this case, it
holds that i

√
N ∈ H, and the GN is Gal(H|K(i

√
N)). The subgroup ΛN

of Q(i
√
N)-rational points on C that are transformed into their negatives by

complex conjugation will become now isomorphic to the Q-rational points on
EN . The point SN is defined similarly to the case D ≡ 1 (mod 4) albeit with
some additional complications.

Proposition 4.6.3 ([Mon90]5.14). In each of the following cases, SN ̸∈ 2ΛN ⊕T :

1. D = p1p7 and N = 2D if
(

p1
p7

)
= −1.

2. D = p1p7 and N = D if
(

p1
p7

)
= −1.

51



4.7. Conclusion

3. D = p3p5 and N = D.

4. D = p3p5 and N = 2D.

5. D = p1p3 and N = 2D if
(

p1
p3

)
= −1.

6. D = p5p7 and N = 2D.

7. D = p5p7 and N = p7.

4.7 Conclusion

We have seen how the modular parameterization can be used to construct
rational points on an elliptic curve. We have studied the congruent number
elliptic curves associated to some particular cases of N through the curve C.
The results obtained in the paper [Mon90] are collected in the following theorem,
which can be summarized by saying that any N ≡ 5, 6, 7 (mod 8) with at most
two odd prime factors is a congruent number except possibly N = pq or N = 2pq
with p ≡ 1 (mod 8) and ( p

q ) = 1.

Theorem 4.7.1 ([Mon90]5.13-5.14). Denote by pi a prime number such that
p ≡ i (mod 8).

1. The numbers p5,p7,2p7, 2p3, p3p7, p3p5, 2p3p5 and 2p5p7 are congruent
numbers.

2. The number p1p5 is congruent if (p1
p5

) = −1. The numbers p1p7 and
2p1p7 are congruent if ( p1

p7
) = −1. The number 2p1p3 is congruent when

( p1
p3

) = −1.

4.8 Computations

This final section uses Mathematica and SAGE to explicitly compute these
points in the very simple cases p = 5, p = 29. We see that the points obtained
have infinite order. The complications of applying this method, in general, are
showcased by taking p = 1237, in this case, the associated Hilbert class field is
not quadratic over the corresponding imaginary quadratic field and it is not
straightforward to compute the values X(ω), Y (ω).

Implementation

The modular functions X,Y defined in definitions 4.2.1 and 4.2.3 are
implemented in Mathematica using the WeierstrassP function and the
WeierstrassInvariants function:
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4.8. Computations

1 e[u_, v_, z_] := WeierstrassP[(u*z + v)/8, WeierstrassInvariants[{1/2, z/2}]]

2 E1[z_] := e[0, 4, z] - e[4, 0, z]

3 E2[z_] := e[4, 4, z] - e[4, 0, z]

4 E3[z_] := E1[z] - E2[z]

5 E4[z_] := e[1, 0, z] + e[1, 4, z] - e[5, 0, z] - e[5, 4, z]

6 E5[z_] := e[1, 6, z] + e[3, 6, z] - e[5, 6, z] - e[7, 6, z]

7 E6[z_] := e[2, 4, z] - e[2, 0, z]

8 X[z_] := (-1)^(1/2)/(16*(2)^(1/2)) (E4[z]*E5[z])/(E1[z]*E2[z])

9 Y[z_] := (1/(2)^(1/2))*(E1[z] + E2[z])/E6[z]

The following code in SAGE is used to compute class groups, class numbers,
and Hilbert class fields:

1 K.<y> = NumberField(x^2+10)

2 K.class_group()

3 L = K.hilbert_class_field(’z’)

Computation for p = 5

The case p = 5 is the simplest case of a congruent prime p ≡ 5 (mod 8),
and the application of the procedure in this chapter is very simple. The
corresponding imaginary quadratic field is K = Q(ω), for ω =

√
−10. Through

SAGE, we can see that its class number is 2, and that the Hilbert class field
is H = K(

√
5) = Q(

√
−2,

√
5). To find a point in the curve 5y2 = x3 − x we

compute the point S5 in the curve C : 2Y 2 = X4 + 1 defined over Q(
√

5). Since
the class number is 2, the sum in the definition of the S5 only involves the point
corresponding to the trivial class, so we need only evaluate X and Y at ω.

We compute X(ω) and Y (ω) using the Mathematica functions defined
above. The implementation of the WeierstrassP function is numerical and it
only computes an approximation, however, taking enough decimals, Wolfram
Alpha can find closed form approximations. We find that the values are

X(ω) = 2 +
√

5, and,
Y (ω) = 6 + 3

√
5.

We can check that the point PO = (X(ω), Y (ω)) is indeed on C and it clearly is
H-rational. Proposition 4.4.9 states that 2PO ∈ Λ5, so it will lead to a point in
5y2 = x3 − x. The proof of proposition 4.1.4 gave us an isomorphism 2φ = ψ,
where ψ is the morphism defined in the proof. Thus φ(2PO) = ψ(PO) = ( 5

4 ,
3

√
5

8 ),
which is a point in y2 = x3 − x. Composing with the map (u, v) 7−→ (u, v/

√
5)

we obtain ( 5
4 ,

3
8 ), a Q-rational point in 5y2 = x3 −x, and this can be transformed

into a point in the curve y2 = x3 − 25x through the map (x, y) 7−→ (5x, 25y).
The resulting point is ( 25

4 ,
75
8 ), which is not one of the torsion points. Therefore

we have found a non-torsion Q-rational point on y2 = x3 − 25x.
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4.8. Computations

Computation for p = 29

The same procedure can be applied with p = 29, which is the second prime p ≡ 5
(mod 8). In this case we take ω =

√
−58, and fortunately the class number of

K = Q(ω) is also 2. It suffices to compute the point PO = (X(ω), Y (ω)). Using
the Mathematica functions and the closed form provided by Wolfram Alpha we
obtain the following values:

X(ω) = 70 + 13
√

29, and,
Y (ω) = 6930 + 1287

√
29,

which as before can be easily checked to be in C. In this case, the Hilbert class
field turns out to be K(

√
29) = Q(

√
−2,

√
29), so we see that the point is H-

rational. As before, the point S29 = PO and the theorem states that 2PO ∈ Λ29.
Through the isomorphism we get the point ( 4901

4900 ,
1287

√
29

34300 ) in y2 = x3 −x which
is Q(

√
29)-rational. Through the same transformations applied in the case p = 5

we obtain the point (142129
4900 ,

1082367
343000

)
in y2 = x3 − 292x.

Computation for p = 1237

The impracticality of this method in general appears now. The prime 1237 is
the third prime p ≡ 5 (mod 8), and it is a congruent number by proposition
4.5.1. The computations involved in the procedure become too complicated.
The class number of the corresponding imaginary quadratic field is 78, which
means that H is not quadratic over K. Moreover, the values X(ω),Y (ω) become
too big, so WolframAlpha cannot find symbolic approximations (which in any
case would not have a nice closed form with square roots as before).
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