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Abstract

We study optimal control problems for (time-) delayed stochas-
tic partial differential equations with jumps, where the controller has
only a partial information flow available. We establish sufficient and
necessary (Pontryagin-Bismut-Bensoussan type) maximum principles
for an optimal control of such systems. The associated adjoint pro-
cesses are shown to satisfy a (time-) advanced backward stochastic
partial differential equation (ABSPDE). Several results on existence
and uniqueness of such ABSPDEs are shown. The results are illus-
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is modeled by a stochastic reaction-diffusion equation.
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1 Introduction

Let B(t) = B(t, ω) be a Brownian motion and Ñ(dt, dζ) := N(dt, dζ) −
ν(dζ)dt, where ν is the Lévy measure of the jump measure N(·, ·), be an
independent compensated Poisson random measure on a filtered probability
space (Ω,F , {Ft}0≤t≤T , P ).
If the density Y (t, x) of a fish population at time t and at the point x is
exposed to a harvesting rate density c(t, x) ≥ 0, the corresponding population
state dynamics may be modeled by the following equation:

dY (t, x) = (
1

2
∆Y (t, x) + αY (t, x) + βY (t− δ, x)− c(t, x))dt

+ σ0Y (t, x)dB(t) +

∫
R
γ0(ζ)Y (t−, x)Ñ(dt, dζ), (1.1)

where

∆ =
n∑
i=1

∂2

∂x2
i

is the Laplacian operator acting on x. Here α, β, σ0 are constants and γ0 is
deterministic.

This is a stochastic partial differential equation (SPDE) of reaction-diffusion
type. The Laplacian operator models the diffusion (distribution in space),
while the other terms model the local growth at each point x. For biological
reasons it is natural to include a delay term like βY (t−δ, x) in the dynamics.

Suppose we want to find a harvesting rate density c(t, x) which maximizes
the total expected utility of the harvest plus the utility of the remaining
population at a terminal time T > 0. We assume that at any time the
controller (harvester) has only a partial information flow Et available to base
her decision on.

Then the problem is to maximize

J(c) = E

[∫
D

(∫ T

0

U1(t, x, c(t, x))dt+ U2(x, Y (T, x))

)
dx

]
(1.2)

over all admissible Et - predictable harvesting rate densities c(t, x), where
U1, U2 are given utility functions and D is the region of the lake.
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This is an example of a partial information optimal control problem of
an SPDE with delay.

In this paper we prove a sufficient version and a necessary version of
a Pontryagin-Bismut-Bensoussan type maximum principle (Sections 2 and
3). These maximum principles involve time-advanced backward SPDEs with
jumps for the adjoint processes. In Section 4 we prove existence and unique-
ness theorems for such equations. Then in Section 5 we apply these results
to study the harvesting problem above.

This paper is close in spirit and methods to the paper [17]. However,
there are also essential differences, and the results of the current paper are
new.

2 A sufficient maximum principle

Let D be a given bounded domain in Rn. We consider a general system
where the state Y (t, x) at time t and at the point x ∈ D ⊂ R is given by a
stochastic partial differential equation (SPDE) with delay, as follows:

dY (t, x) = LY (t, x)dt+ b(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))dt

+ σ(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))dB(t)

+

∫
R
γ(t, x, Y (t−, x), Z(t−, x), A(t−, x), u(t, x), ζ)Ñ(dt, dζ) ; (t, x) ∈ [0, T ]×D

(2.1)

with initial values

Y (t, x) = ξ(t, x) ; (t, x) ∈ [−δ, 0]×D (2.2)

and boundary values

Y (t, x) = 0 ; (t, x) ∈ [0, T ]× ∂D. (2.3)

Here L is a linear differential operator acting on x,

Z(t, x) := Y (t− δ, x) (2.4)

is the δ-delay of Y (t, x) and

A(t, x) :=

∫ t

t−δ
Y (s, x)ds (2.5)

3



is a moving average of delayed values of Y (t, x). We assume that the coeffi-
cients

b(t, x, y, z, a, u) : [0, T ]×D × R× R× R× U → R,

σ(t, x, y, z, a, u) : [0, T ]×D × R× R× R× U → R,

and
γ(t, x, y, z, a, u, ζ) : [0, T ]×D × R× R× R× U × R→ R

are C1 functions with respect to y, z, a and u. The set of possible control
values u(t, x, ω) ∈ R is denoted by U . The performance functional has the
form

J(u) = E

[∫ T

0

∫
D

f(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))dxdt+

∫
D

h(x, Y (T, x))dx

]
(2.6)

where f : [0, T ]×D × R4 → R and h : [0, T ]× R→ R is a given profit rate
and terminal payoff rate, respectively, both assumed to be C1 with respect
to y, z, a and u.

Let Et ⊆ Ft be a given subfiltration, representing the information avail-
able to the controller at time t. For example, we could have

Et = F(t−c)+ ; t ≥ 0

for some constant c > 0, corresponding to a delayed information flow. Let
A = AE be a given family of admissible controls, contained in the set of Et-
predictable processes u(t, x) such that (2.1)-(2.3) has a unique solution and
J(u) converges absolutely.

Define the Hamiltonian

H : [0, T ]× Rn × R× R× R× U × R× R×R → R

by

H(t, x, y, z, a, u, p, q, r(·)) = f(t, x, y, z, a, u) + b(t, x, y, z, a, u)p

+ σ(t, x, y, z, a, u)q +

∫
R
γ(t, x, y, z, a, u, ζ)r(ζ)ν(dζ),

(2.7)

where R is the set of functions R0 → R such that (2.7) converges. To H we
associate the following backward SPDE (BSPDE) in the unknown processes
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p(t, x), q(t, x), r(t, x, ζ):

dp(t, x) = −g(t, x)dt+ q(t, x)dB(t) +

∫
R
r(t, x, ζ)Ñ(dt, dζ) ; (t, x) ∈ [0, T ]×D

p(T, x) =
∂h

∂y
(x, Y (T, x)) ; x ∈ D

p(t, x) = 0 ; (t, x) ∈ (0, T )× ∂D. (2.8)

The driver g in the BSPDE (2.8) is defined by

g(t, x) = E[µ(t, x) | Ft]

where

µ(t, x) =
∂H

∂y
(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x), p(t, x), q(t, x), r(t, x, ·))

+
∂H

∂z
(t+ δ, x, Y (t+ δ, x), Z(t+ δ, x), A(t+ δ, x), u(t+ δ, x), p(t+ δ, x),

q(t+ δ, x), r(t+ δ, x)) · χ[0,T−δ](t)

+

∫ t+δ

t

∂H

∂a
(s, x, Y (s, x), Z(s, x), A(s, x), u(s, x), p(s, x), q(s, x)r(s, x, ·))χ[0,T−δ](s)ds

+ L∗p(t, x). (2.9)

Here L∗ is the adjoint of L, in the sense that (L∗ϕ, ψ) = (ϕ,Lψ) ; for all

ϕ, ψ ∈ C2
0(Rn) where (ϕ1, ϕ2) =

∫
Rn
ϕ1(x)ϕ2(x)dx denotes the inner product

in L2(Rn).
Note that this BSPDE is anticipative, or time-advanced, in the sense that

the process µ(t, x) in the driver contains future values of X(s, x), u(s, x),
p(s, x), q(s, x), r(s, x, ·) ; s ≤ t+ δ.

In the SDE case and when there are no jumps and no integral terms in
the system, similar anticipative BSDEs (A-BSDEs for short) have been stud-
ied by Peng and Yang (2009) [22], who prove existence and uniqueness of
such equations under certain conditions. They also relate a class of linear
A-BSDEs to a class of linear stochastic delay control problems with no delay
in the noise coefficients. Thus, in our paper we extend this relation to general
nonlinear, partial information, SPDE control problems and general nonlinear
A-BSPDEs by means of the maximum principle, and throughout the discus-
sion we include the possibility of delays also in all the noise coefficients, as
well as the possibility of jumps.
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Theorem 2.1 (Sufficient maximum principle) Let û ∈ A with corre-
sponding solutions Ŷ (t, x), Ẑ(t, x), Â(t, x), p̂(t, x), q̂(t, x) and r̂(t, x, ζ). As-
sume that

y → h(x, y) is concave for all x (2.10)

and that

(y, z, a, u)→ H(t, x, y, z, a, u, p̂(t, x), q̂(t, x), r̂(t, x, ·)) is concave, for all t, x.
(2.11)

Moreover, assume that

E[

∫ T

0

∫
D

{p̂2(t, x)[(σ(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))

−σ(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x)))2

+

∫
R
(γ(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x), ζ)

− γ(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x), ζ))2ν(dζ)]

+(Y (t, x)− Ŷ (t, x))2[q̂2(t, x)

+

∫
R
r̂(t, x, ζ)2ν(dζ)]}dxdt] <∞ (2.12)

for all u ∈ AE , and that the following maximum condition holds:

max
v∈U

E[H(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), v, p̂(t, x), q̂(t, x), r̂(t, x, ·)) | Et]

= E[H(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·)) | Et].
(2.13)

for a.e. (t, x, ω) ∈ [0, T ]×D × Ω.
Then û(t, x) is an optimal control.

Proof of Theorem 2.1 Choose u ∈ A and put Y = Y u etc. Then we can
write

J(u)− J(û) = I1 + I2, (2.14)

where

I1 = E

[∫ T

0

∫
D

{f(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))

]
−f(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x))}dxdt

]
(2.15)
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and

I2 = E

[∫
D

{h(x, Y (T, x))− h(x, Ŷ (T, x))}dx
]
. (2.16)

By the definition of H we have

I1 = E

[∫ T

0

∫
D

(H(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·))

−H(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·))
− {b(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))− b(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x))}p̂(t, x)

− {σ(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x))− σ(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x))}q̂(t, x)

−
∫

R
{γ(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x), ζ)

−γ(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x), ζ)}r̂(t, x, ζ)ν(dζ))
]
dxdt

≤ E

[∫ T

0

∫
D

{
∂Ĥ

∂y
(t, x)(Y (t, x)− Ŷ (t, x)) +

∂Ĥ

∂z
(t, x)(Z(t, x)− Ẑ(t, x))

+
∂Ĥ

∂a
(t, x)(A(t, x)− Â(t, x)) +

∂Ĥ

∂u
(t, x)(u(t, x)− û(t, x))

− (b(t, x)− b̂(t, x))p̂(t, x)− (σ(t, x)− σ̂(t, x))q̂(t, x)

−
∫

R
(γ(t, x, ζ)− γ̂(t, x, ζ))r̂(t, x, ζ)ν(dζ)

}
dxdt

]
, (2.17)

where we have used the abbreviations

∂Ĥ

∂y
(t, x) =

∂H

∂y
(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x)),

b(t, x) = b(t, x, Y (t, x), Z(t, x), A(t, x), u(t, x)),

b̂(t, x) = b(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), û(t, x)), etc.
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By concavity of h and the Itô formula we have

I2 ≤ E

[∫
D

∂h

∂y
(t, Ŷ (T, x))(Y (T, x)− Ŷ (T, x))dx

]
= E

[∫
D

p̂(T, x)(Y (T, x)− Ŷ (T, x))dx

]
= E

[∫
D

∫ T

0

{(Y (t−, x)− Ŷ (t−, x))dp̂(t, x) + p̂(t−, x)d(Y (t, x)− Ŷ (t, x))

+{σ(t, x)− σ̂(t, x)}q̂(t, x) +

∫
R
{γ(t, x, ζ)− γ̂(t, x, ζ)}r̂(t, x, ζ)ν(dζ)}dtdx

]
.

(2.18)

Adding (2.17) and (2.18) we get

J(u)− J(û) ≤ E

[∫
D

∫ T

0

{
∂Ĥ

∂y
(t, x)(Y (t, x)− Ŷ (t, x)) +

∂Ĥ

∂z
(t, x)(Z(t, x)− Ẑ(t, x))

+
∂Ĥ

∂a
(t, x)(A(t, x)− Â(t, x)) +

∂Ĥ

∂u
(t, x)(u(t, x)− û(t, x))

−(Y (t, x)− Ŷ (t, x))ĝ(t, x) + p̂(t, x)(LY (t, x)− LŶ (t, x))
}
dxdt

]
.

(2.19)

Note that, since Y (t, x) = Ŷ (t, x) for t ∈ [−δ, 0] we have∫ T

0

∂Ĥ

∂z
(t, x)(Z(t, x),−Ẑ(t, x))dt =

∫ T

0

∂Ĥ

∂z
(t, x)(Y (t− δ, x)− Ŷ (t− δ, x))dt

=

∫ T

0

∂Ĥ

∂z
(t+ δ, x)(Y (t, x)− Ŷ (t, x))χ[0,T−δ](t)dt. (2.20)

Similarly, changing the order of integration gives∫ T

0

∂Ĥ

∂a
(t, x)(A(t, x)− Â(t, x))dt =

∫ T

0

∂Ĥ

∂a
(t, x)

∫ t

t−δ
(Y (s, x)− Ŷ (s, x))dsdt

=

∫ T

0

(∫ t+δ

t

∂Ĥ

∂a
(s, x)ds

)
(Y (t, x)− Ŷ (t, x))χ[0,T−δ](t)dt. (2.21)
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Substituting (2.20) and (2.21) into (2.19) we get

J(u)− J(û) ≤ E

[∫
D

∫ T

0

({
∂Ĥ

∂y
(t, x) +

∂Ĥ

∂z
(t+ δ, x)χ[0,T−δ](t)

+

∫ t+δ

t

∂Ĥ

∂a
(s, x)dsχ[0,T−δ](t)− ĝ(t, x) + L∗p̂(t, x)

}
{Y (t, x)− Ŷ (t, x)}

+
∂Ĥ

∂u
(t, x)(u(t, x)− û(t, x))

)
dtdx

]
By our definition (2.9) of the driver g, this reduces to

J(u)− J(û) ≤ E

[∫
D

∫ T

0

∂Ĥ

∂u
(t, x)(u(t, x)− û(t, x))dtdx

]

= E

[∫
D

∫ T

0

E

[
∂Ĥ

∂u
(t, x)(u(t, x)− û(t, x)) | Et

]
dtdx

]

= E

[∫
D

∫ T

0

E

[
∂Ĥ

∂u
(t, x) | Et

]
(u(t, x)− û(t, x))dtdx

]
≤ 0,

since û maximizes the conditional Hamiltonian. �

3 A necessary maximum principle

A weakness of the sufficient maximum principle obtained in the previous
section is the rather restrictive concavity conditions, which do not always
hold in applications. Therefore it is of interest to obtain a maximum principle
which does not need these conditions. To this end, we need to make the
following assumptions:

A 1 For all t0, s ∈ [0, T ], t0 < s, and all bounded Et0− measurable random
variables α and all bounded, deterministic functions ϕ : D → R the process
β defined by

β(t, x, ω) = α(ω)χ[t0,s](t)ϕ(x) ; (t, x, ω) ∈ [0, T ]×D × Ω

is in AE .
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A 2 For all u ∈ AE and all bounded β ∈ AE there exists δ > 0 such that
u+ sβ ∈ AE for all s ∈ (−δ, δ).

A 3 For all u ∈ A and bounded β ∈ AE the derivative process

η(t, x) :=
d

ds
Y u+sβ(t, x) |s=0

exists and belongs to L2([0, T ]×D × Ω).

We see that, by (2.1),

dη(t, x) = Lη(t, x)dt+

[
∂b

∂y
(t, x)η(t, x) +

∂b

∂z
(t, x)η(t− δ, x)

+
∂b

∂a
(t, x)

∫ t

t−δ
η(s, x)ds+

∂b

∂u
(t, x)β(t, x)

]
dt

+

[
∂σ

∂y
(t, x)η(t, x) +

∂σ

∂z
(t, x)η(t− δ, x) +

∂σ

∂a
(t, x)

∫ t

t−δ
η(s, x)ds+

∂σ

∂u
(t, x)β(t, x)

]
dB(t)

+

∫
R

[
∂γ

∂y
(t, x, ζ)η(t, x) +

∂γ

∂z
(t, x, ζ)η(t− δ, x) +

∂γ

∂a
(t, x, ζ)

∫ t

t−δ
η(s, x)ds

+
∂γ

∂u
(t, x, ζ)β(t, x)

]
Ñ(dt, dζ), (3.1)

where we have used the short-hand notation

∂b

∂y
(t, x) =

d

dy
b(t, x, y, Z(t), A(t), u(t))y=Y (t) etc.

Note that

d

ds
Zu+sβ(t, x) |s=0=

d

ds
Y u+sβ(t− δ, x) |s=0= η(t− δ, x)

and

d

ds
Au+sβ(t, x) |s=0=

d

ds

∫ t

t−δ
Y u+sβ(r, x)dr |s=0=

∫ t

t−δ
η(r, x)dr.

Also, note that
η(t, x) = 0 for − δ ≤ t ≤ 0. (3.2)

We now state and prove the main result of this section:
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Theorem 3.1 (Necessary maximum principle) Suppose û ∈ AE with
corresponding solutions Ŷ (t, x), Ẑ(t, x), Â(t, x), η̂(t, x) of (2.1)-(2.3) and
(3.1), and adjoint processes p̂(t, x), q̂(t, x), r̂(t, x, ζ) solving (2.8)-(2.9). Sup-
pose the following growth condition holds:

E

[∫ T

0

∫
D

p̂2(t, x)

{(
∂σ

∂y

)2

(t, x)η̂2(t, x) +

(
∂σ

∂z

)2

(t, x)η̂2(t− δ, x)

+

(
∂σ

∂a

)2

(t, x)

(∫ t

t−δ
η̂(t, x)dr

)2

+

(
∂σ

∂u

)2

(t, x)

+

∫
R0

{(
∂θ

∂y

)2

(t, x, ζ)η̂2(t, x) +

(
∂θ

∂z

)2

(t, x, ζ)η̂2(t− δ, x)

+

(
∂θ

∂a

)2

(t, x, ζ)

(∫ t

t−δ
η̂(r, x)dr

)2

+

(
∂θ

∂u

)2

(t, x, ζ)

}
ν(dζ)

}
dxdt

+

∫ T

0

∫
D

η̂2(t, x)

{
q̂2(t, x) +

∫
R0

r̂2(t, x, ζ)ν(dζ)

}
dxdt

]
<∞. (3.3)

Then the following are equivalent:

(i)
d

ds
J(û+ sβ) |s=0= 0 for all bounded β ∈ AE .

(ii) E

[
∂H

∂u
(t, x, Ŷ (t, x), Ẑ(t, x), Â(t, x), u, p̂(t, x), q̂(t, x), r̂(t, x, ·)) | Et

]
u=û(t,x)

=

0 for all t ∈ [0, T ] and a.a. x ∈ D.
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Proof. (i) ⇒ (ii): Assume that (i) holds. For notational simplicity we
write û = u, Ŷ = Y , etc... in the following. Then we have

0 =
d

ds
J(u+ sβ) |s=0

=
d

ds
E

[∫ T

0

∫
D

f(t, x, Y u+sβ(t, x), Zu+sβ(t, x), Au+sβ(t, x), (u+ sβ)(t, x))dxdt

+

∫
D

h(x, Y u+sβ(T, x))dx

]
= E

[∫ T

0

∫
D

{
∂f

∂y
(t, x)η(t, x) +

∂f

∂z
(t, x)η(t− δ, x) +

∂f

∂a
(t, x)

∫ t

t−δ
η(s, x)ds

+
∂f

∂u
(t, x)β(t, x)

}
dxdt+

∫
D

∂h

∂y
(x, Y (T, x))η(T, x)dx

]
= E

[∫ T

0

∫
D

[{
∂H

∂y
(t, x)− p(t, x)

∂b

∂y
(t, x)− q(t, x)

∂σ

∂y
(t, x)

−
∫

R
r(t, x, ζ)

∂γ

∂y
(t, x, ζ)ν(dζ)

}
η(t, x)

+

{
∂H

∂z
(t, x)− p(t, x)

∂b

∂z
(t, x)− q(t, x)

∂σ

∂z
(t, x)−

∫
R
r(t, x, ζ)

∂γ

∂z
(t, x, ζ)ν(dζ)

}
η(t− δ, x)

+

{
∂H

∂a
(t, x)− p(t, x)

∂b

∂a
(t, x)− q(t, x)

∂σ

∂a
(t, x)

−
∫

R
r(t, x, ζ)

∂γ

∂a
(t, x, ζ)ν(dζ)

}∫ t

t−δ
η(s, x)ds

+

{
∂H

∂u
(t, x)− p(t, x)

∂b

∂u
(t, x)− q(t, x)

∂σ

∂u
(t, x)−

∫
R
r(t, x, ζ)

∂γ

∂u
(t, x, ζ)ν(dζ)

}
β(t, x)

]
dxdt

+

∫
D

∂h

∂y
(x, Y (T, x))η(T, x)dx

]
. (3.4)
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By (2.8) and (3.1),

E

[∫
D

∂h

∂y
(x, Y (t, x))η(T, x)dx

]
= E

[∫
D

p(T, x)η(T, x)dx

]
= E

[∫
D

{∫ T

0

p(t−, x)dη(t, x) +

∫ T

0

η(t−, x)dp(t, x)

+

∫ T

0

q(t, x)

[
∂σ

∂y
(t, x)η(t, x) +

∂σ

∂z
(t, x)η(t− δ, x)

+
∂σ

∂a
(t, x)

∫ t

t−δ
η(s, x)ds+

∂σ

∂u
(t, x)β(t, x)

]
dt

+

∫ T

0

∫
R
r(t, x, ζ)

[
∂γ

∂y
(t, x, ζ)η(t, x) +

∂γ

∂z
(t, x, ζ)η(t− δ, x) +

∂γ

∂a
(t, x, ζ)

∫ t

t−δ
η(s, x)ds

+
∂γ

∂u
(t, x, ζ)β(t, x)

]
ν(dζ)dt

}
dx

]
= E

[∫
D

{∫ T

0

p(t−, x)

[
Lη(t, x) +

{
∂b

∂y
(t, x)η(t, x) +

∂b

∂z
(t, x)η(t− δ, x)

+
∂b

∂a
(t, x)

∫ t

t−δ
η(s, x)ds+

∂b

∂u
(t, x)β(t, x)

]
dt

+

∫ T

0

η(t−, x)[−g(t, x)]dt

+

∫ T

0

q(t, x)

[
∂σ

∂y
(t, x)η(t, x) +

∂σ

∂z
(t, x)η(t− δ, x)

+
∂σ

∂z
(t, x)

∫ t

t−δ
η(s, x)ds+

∂σ

∂u
(t, x)β(t, x)

]
dt

+

∫ T

0

∫
D

r(t, x, ζ)

[
∂γ

∂y
(t, x, ζ)η(t, x) +

∂γ

∂z
(t, x, ζ)η(t− δ, x) +

∂γ

∂a
(t, x, ζ)

∫ t

t−δ
η(s, x)ds

+
∂γ

∂u
(t, x, ζ)β(t, x)

]
ν(dζ)dt

}
dx

]
. (3.5)
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Adding (3.2) and (3.3) and using (2.9) we get

0 = E

[∫
D

{∫ T

0

η(t, x)

(
∂H

∂y
(t, x)− g(t, x)

)
dt+

∫ T

0

η(t− δ, x)
∂H

∂z
(t, x)dt

+

∫ T

0

(∫ t

t−δ
η(s, x)dx

)
∂H

∂a
(t, x)dt+

∫ T

0

∂H

∂u
(t, x)β(t, x)dt

}
dx

]
= E

[∫
D

{∫ T

0

η(t, x)

(
∂H

∂y
(t, x)− ∂H

∂y
(t, x)− ∂H

∂z
(t+ δ, x)χ[0,T−δ](t)

−
∫ t+δ

t

∂H

∂a
(s, x)χ[0,T−δ](s)ds− L∗p(t, x)

)
+

∫ T

0

η(t− δ, x)
∂H

∂z
(t, x)dt+

∫ T

0

(∫ t

t−δ
η(s, x)ds

)
∂H

∂a
(t, x)dt

+

∫ T

0

∂H

∂u
(t, x)β(t, x)dt

}
dx+

∫ T

0

p(t, x)Lη(t, x)dt

}
dx

]
. (3.6)

Since Y (t, x) = 0 for (t, x) ∈ (0, T ) × ∂D, we also have η(t, x) = 0 for
(t, x) ∈ (0, T ) × ∂D. Moreover, we have p(t, x) = 0 for (t, x) ∈ (0, T ) × ∂D
by (2.8). Therefore∫

D

p(t, x)Lη(t, x)dx =

∫
D

L∗p(t, x)η(t, x)dx for t ∈ (0, T ). (3.7)

Note that, by (3.2) and a change of variable,∫ T

0

η(t, x)
∂H

∂z
(t+ δ, x)χ[0,T−δ](t)dt =

∫ T+δ

δ

η(r − δ, x)
∂H

∂z
(r, x)χ[0,T−δ](r − δ)dr

=

∫ T

0

η(r − δ, x)
∂H

∂z
(r, x)dr. (3.8)

Similarly, by changing the order of integration,∫ T

0

η(t, x)

∫ t+δ

t

∂H

∂a
(s, x)χ[0,T−δ](s)dsdt =

∫ T

0

∂H

∂a
(s, x)

∫ s

s−δ
η(t, x)dtds.

(3.9)
Combining (3.6)-(3.9) we conclude that

E

[∫
D

∫ T

0

∂H

∂u
(t, x)β(t, x)dtdx

]
= 0. (3.10)
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Since this holds for all bounded β ∈ AE we can for any fixed 0 ≤ t0 ≤
s ≤ T apply it to

β(t, x) = χ[t0,s](t)α(ω)ϕ(x) ; (t, x, ω) ∈ [0, T ]×D × Ω,

for all bounded Et0-measurable α and all bounded (deterministic) ϕ(x) in D
(see Assumption A1). Then (3.10) becomes

E

[∫
D

(∫ s

t0

∂H

∂u
(t, x)dt

)
ϕ(x)dxα

]
= 0. (3.11)

Differentiating with respect to s we get

E

[∫
D

∂H

∂u
(t0, x)ϕ(x)dxα

]
= 0. (3.12)

Since this holds for all α and ϕ we conclude that

E

[
∂H

∂u
(t0, x) | Et0

]
= 0 for a.a. (t0, x) ∈ [0, T ]×D,

which is (ii).

(ii) ⇒ (i): The proof works both ways: If (ii) holds, then (3.12) holds
and hence (3.11) also. Then we obtain (3.10) for all bounded β ∈ A by
taking limits of linear combinations of the β’s in Assumption A1. Then the
computation above shows that (3.10) ⇒ (i). �

4 Time-advanced BSPDEs with jumps

We now study time-advanced backward stochastic partial differential equa-
tions driven both by Brownian motion B(t) and compensated Poisson ran-
dom measures Ñ(dt, dz).

4.1 Framework

Let B(t) = B(t, ω) be a Brownian motion and Ñ(dt, dz) := N(dt, dz) −
ν(dz)dt, where ν is the Lévy measure of the jump measure N(·, ·), be an
independent compensated Poisson random measure on a filtered probability
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space (Ω,F , {Ft}0≤t≤T , P ). Let D be a smooth bounded domain in Rn.
Consider the following general second order differential operator:

Au =
1

2

n∑
i,j=1

∂

∂xi
(aij(x)

∂u

∂xi
) +

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x)

where a = (aij(x)) : D → Rn×n (n > 2) is a measurable, symmetric matrix-
valued function which satisfies the uniform elliptic condition

λ1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ2|ξ|2, ∀ ξ ∈ Rn and x ∈ D (4.1)

for some positive constants λ1, λ2, b = (b1, ...bn), : D → Rn and c : D → R
are bounded measurable functions. Set H = L2(D). Let H1,2

0 (D) denote the
Sobolev space of order one with zero boundary condition. In view of (4.1)
and the boundedness of b and c(x), for u ∈ H1,2

0 (D) we have

− < Au, u > =
1

2

∫
D

(
n∑

i,j=1

aij(x)
∂u

∂xi

∂u

∂xj
)dx

−
n∑
i=1

∫
D

bi(x)
∂u

∂xi
u(x)dx−

∫
D

c(x)u(x)2dx

≥ 1

2
λ1

∫
D

|∇u|2(x)dx− 1

4
λ1

∫
D

|∇u|2(x)dx− Cλ1

∫
D

u2(x)dx

=
1

4
λ1

∫
D

|∇u|2(x)dx− Cλ1

∫
D

u2(x)dx (4.2)

Given a positive constant δ, denote by D([0, δ], H) the space of all càdlàg
paths from [0, δ] into H. For a path X(·) : R+ → H, Xt will denote the
function defined by Xt(s) = X(t+ s) for s ∈ [0, δ]. Put H = L2(R→ H; ν).
Consider the L2 spaces V1 := L2([0, δ]→ H, ds) and V2 := L2([0, δ]→ H, ds).
Let

F : R+ ×H ×H × V1 ×H ×H × V1 ×H×H× V2 × Ω→ H

be a predictable function. Introduce the following Lipschitz condition: There
exists a constant C such that

|F (t, p1, p2, p, q1, q2, q, r1, r2, r, ω)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄, ω)|H
≤ C(|p1 − p̄1|H + |p2 − p̄2|H + |p− p̄|V1 + |q1 − q̄1|H + |q2 − q̄2|H
+ |q − q̄|V1 + |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄|V2). (4.3)
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4.2 First existence and uniqueness theorem

We first consider the following time-advanced backward stochastic partial dif-
ferential equation (BSPDE) in the unknown Ft adapted processes (p(t), q(t), r(t, z)) ∈
H ×H ×H:

dp(t) = −Ap(t)dt
+ E[F

(
t, p(t), p(t+ δ)χ[0,T−δ](t), ptχ[0,T−δ](t), q(t), q(t+ δ)χ[0,T−δ](t),

qtχ[0,T−δ](t), r(t), r(t+ δ)χ[0,T−δ](t), rtχ[0,T−δ](t)
)
|Ft]dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [0, T ] (4.4)

p(T ) = G, (4.5)

where G is a given H-valued FT -measurable random variable.
Note that the time-advanced BSPDE (2.7)-(2.8) for the adjoint processes

of the Hamiltonian is of this form.
For this type of time-advanced BSPDEs we have the following result:

Theorem 4.1 Assume that E[G2] <∞ and that condition (4.3) is satisfied.
Then the BSPDE (4.4)-(4.5) has a unique solution p(t), q(t), r(t, z)) such that

E

[∫ T

0

{
|p(t)|2H + |q(t)|2H +

∫
R
|r(t, z)|2Hν(dz)

}
dt

]
<∞. (4.6)

Moreover, the solution can be found by inductively solving a sequence of
BSPDEs backwards as follows:

Step 0: In the interval [T − δ, T ] we let p(t), q(t) and r(t, z) be defined as
the solution of the classical BSPDE (see [19])

dp(t) = −Ap(t)dt+ F (t, p(t), 0, 0, q(t), 0, 0, r(t, z), 0, 0) dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [T − δ, T ] (4.7)

p(T ) = G. (4.8)
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Step k ; k ≥ 1: If the values of (p(t), q(t), r(t, z)) have been found for
t ∈ [T − kδ, T − (k − 1)δ], then if t ∈ [T − (k + 1)δ, T − kδ] the values of
p(t+ δ), pt, q(t+ δ), qt, r(t+ δ, z) and rt are known and hence the BSPDE

dp(t) = −Ap(t)dt
+ E[F (t, p(t), p(t+ δ), pt, q(t), q(t+ δ), qt, r(t), r(t+ δ), rt) |Ft]dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [T − (k + 1)δ, T − kδ] (4.9)

p(T − kδ) = the value found in Step k − 1 (4.10)

has a unique solution in [T − (k + 1)δ, T − kδ].
We proceed like this until k is such that T − (k + 1)δ ≤ 0 < T − kδ and

then we solve the corresponding BSPDE on the interval [0, T − kδ].
Proof. The proof follows directly from the above inductive procedure. The
estimate (4.6) is a consequence of known estimates for classical BSPDEs. �

4.3 Second existence and uniqueness theorem

Next, we consider the following backward stochastic partial differential equa-
tion in the unknown Ft-adapted processes (p(t), q(t), r(t, z)) ∈ H ×H ×H:

dp(t) = −Ap(t)dt
+ E[F (t, p(t), p(t+ δ), pt, q(t), q(t+ δ), qt, r(t), r(t+ δ), rt)|Ft]dt

+ q(t)dBt +

∫
R
r(t, z)Ñ(dt, dz), t ∈ [0, T ] (4.11)

p(t) = G(t), t ∈ [T, T + δ]. (4.12)

where G is a given H-valued continuous Ft-adapted stochastic process.

Theorem 4.2 Assume E[supT≤t≤T+δ |G(t)|2H ] <∞ and that condition (4.3)
is satisfied. Then the backward stochastic partial differential equation (4.11)
admits a unique solution (p(t), q(t), r(t, z)) such that

E[

∫ T

0

{|p(t)|2H + |q(t)|2H +

∫
R
|r(t, z)|2Hν(dz)}dt] <∞.

Proof.
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Step 1 Assume F is independent of p1, p2 and p. Set q0(t) := 0, r0(t, z) = 0.
For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the unique solution to the
following backward stochastic partial differential equation:

dpn(t) = −Apn(t)dt

+ E[F (t, qn−1(t), qn−1(t+ δ), qn−1
t , rn−1(t, ·), rn−1(t+ δ, ·), rn−1

t (·))|Ft]dt
+ qn(t)dBt + rn(t, z)Ñ(dt, dz), t ∈ [0, T ] (4.13)

pn(t) = G(t) t ∈ [T, T + δ].

It is a consequence of the martingale representation theorem that the above
equation admits a unique solution, see, e.g. [19]. We extend qn, rn to [0, T+δ]
by setting qn(s) = 0, rn(s, z) = 0 for T ≤ s ≤ T + δ. We are going to show
that (pn(t), qn(t), rn(t, z)) forms a Cauchy sequence. By Itô’s formula, we
have

0 = |pn+1(T )− pn(T )|2H

= |pn+1(t)− pn(t)|2H − 2

∫ T

t

< A(pn+1(s)− pn(s)), pn+1(s)− pn(s) > ds

+ 2

∫ T

t

< pn+1(s)− pn(s), (E[F (s, qn(s), qn(s+ δ), qns , r
n(s, ·), rn(s+ δ, ·), rns (·))|Fs]

− E[F (s, qn−1(s), qn−1(s+ δ), qn−1
s , rn−1(s, ·), rn−1(s+ δ, ·), rn−1

s (·))|Fs]) >H ds

+

∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hds ν(dz) +

∫ T

t

|qn+1(s)− qn(s)|2Hds

+ 2

∫ T

t

< pn+1(s)− pn(s), qn+1(s)− qn(s) >H dBs

+

∫ T

t

∫
R
{|rn+1(s, z)− rn(s, z)|2H

+ 2 < pn+1(s−)− pn(s−), rn+1(s, z)− rn(s, z) >H}Ñ(ds, dz) (4.14)
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Rearranging terms, in view of (4.3) and (4.2) we get

E[|pn+1(t)− pn(t)|2H ] +
1

2
E

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤ 2E

[∫ T

t

| < pn+1(s)− pn(s), E[F (s, qn(s), qn(s+ δ), rn(s, ·), rn(s+ δ, ·))

−F (s, qn−1(s), qn−1(s+ δ), rn−1(s, ·), rn−1(s+ δ, ·))|Fs] >H |ds
]

+ CE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
]

+ εE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+ εE

[∫ T

t

|qn(s+ δ)− qn−1(s+ δ)|2Hds
]

+ εE

[∫ T

t

(

∫ s+δ

s

|qn(u)− qn−1(u)|2Hdu)ds

]
+ εE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

+ εE

[∫ T

t

|rn(s+ δ)− rn−1(s+ δ)|2Hds
]

+ εE

[∫ T

t

(∫ s+δ

s

|rn(u)− rn−1(u)|2Hdu
)
ds

]
(4.15)

Note that

E

[∫ T

t

|qn(s+ δ)− qn−1(s+ δ)|2Hds
]
≤ E

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]
.

(4.16)
Interchanging the order of integration,

E

[∫ T

t

(∫ s+δ

s

|qn(u)− qn−1(u)|2Hdu
)
ds

]
= E

[∫ T+δ

t

|qn(u)− qn−1(u)|2Hdu(

∫ u

u−δ
ds

]
≤ δE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]
. (4.17)
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Similar inequalities hold also for rn − rn−1. It follows from (4.15) that

E[|pn+1(t)− pn(t)|2H ] +
1

2
E

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
]

+ (2 +M)εE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+ 3εE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
. (4.18)

Choose ε > 0 sufficiently small so that

E[|pn+1(t)− pn(t)|2H ] +
1

2
E

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hds ν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
]

+
1

2
E

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+
1

2
E

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
. (4.19)

This implies that

− d

dt

(
eCεtE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
])

+
1

2
eCεtE

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

+ eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hds ν(dz)

]
+ eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤ 1

2
eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+
1

2
eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
.

(4.20)
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Integrating the last inequality we get

E

[∫ T

0

|pn+1(s)− pn(s)|2Hds
]

+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

+

∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+

1

2

∫ T

0

dt eCεtE

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

≤ 1

2

∫ T

0

dt eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+
1

2

∫ T

0

dt eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

(4.21)

In particular,∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤ 1

2

∫ T

0

dt eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2Hds
]

+
1

2

∫ T

0

dt eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

(4.22)

This yields∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

≤
(

1

2

)n
C (4.23)

for some constant C. It follows from (4.21) that

E

[∫ T

0

|pn+1(s)− pn(s)|2Hds
]
≤
(

1

2

)n
C. (4.24)

(4.18) and ((4.21) further gives

E

[∫ T

0

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+ E

[∫ T

0

|qn+1(s)− qn(s)|2Hds
]

≤
(

1

2

)n
CnCε. (4.25)
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In view of (4.18), (4.21) and (4.22), we conclude that there exist progressively
measurable processes (p(t), q(t), r(t, z)) such that

lim
n→∞

E[|pn(t)− p(t)|2H ] = 0,

lim
n→∞

∫ T

0

E[|pn(t)− p(t)|2H ]dt = 0,

lim
n→∞

∫ T

0

E[|∇(pn(t)− p(t))|2H ]dt = 0,

lim
n→∞

∫ T

0

E[|qn(t)− q(t)|2H ]dt = 0,

lim
n→∞

∫ T

0

∫
R
E[|rn(t, z)− r(t, z)|2H ]ν(dz)dt = 0.

Letting n→∞ in (4.13) we see that (p(t), q(t), r(t, z)) satisfies

p(t)−
∫ T

t

Ap(s)ds

+

∫ T

t

E[F (s, q(s), q(s+ δ), qs, r(s, ·), r(s+ δ, ·), rs(·))|Fs]ds

+

∫ T

t

q(s)dBs +

∫ T

t

∫
R
r(s, z)Ñ(ds, dz) = g(T ) (4.26)

i.e., (p(t), q(t), r(t, z)) is a solution. Uniqueness follows easily from Ito’s for-
mula, a similar calculation of deducing (4.14) and (4.15), and Gronwall’s
Lemma.

Step 2. General case. Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z))
to be the unique solution of the following BSDE:

dpn(t) = −Apn(t)dt+ qn(t)dBt + rn(t, z)Ñ(dt, dz)

+ E[F (t, pn−1(t), pn−1(t+ δ), pn−1
t , qn(t), qn(t+ δ), qnt , r

n(t, ·), rn(t+ δ, ·), rnt (·))|Ft]dt,
(4.27)

pn(t) = G(t); t ∈ [T, T + δ].

The existence of (pn(t), qn(t), rn(t, z)) is proved in Step 1. By the same
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arguments leading to (4.18), we deduce that

E[|pn+1(t)− pn(t)|2H ] +
1

2
E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)

]
+

1

2
E

[∫ T

t

|qn+1(s)− qn(s)|2Hds
]

+
1

2
λ1E

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hds
]

≤ CE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
]

+
1

2
E

[∫ T

t

|pn(s)− pn−1(s)|2Hds
]

(4.28)

This implies that

− d

dt

(
eCtE

[∫ T

t

|pn+1(s)− pn(s)|2Hds
])
≤ 1

2
eCtE

[∫ T

t

|pn(s)− pn−1(s)|2Hds
]

(4.29)
Integrating (4.29) from u to T we get

E

[∫ T

u

|pn+1(s)− pn(s)|2Hds
]
≤ 1

2

∫ T

u

dteC(t−u)E

[∫ T

t

|pn(s)− pn−1(s)|2Hds
]

≤ eCT
∫ T

u

dtE[

∫ T

t

|pn(s)− pn−1(s)|2Hds]. (4.30)

Iterating the above inequality we obtain that

E[

∫ T

0

|pn+1(s)− pn(s)|2Hds] ≤
eCnTT n

n!

Using above inequality and a similar argument as in Step 1, it can be shown
that (pn(t), qn(t), rn(t, z)) converges to some limit (p(t), q(t), r(t, z)), which
is the unique solution of equation (4.11). �

Theorem 4.3 Assume E
[
supT≤t≤T+δ |G(t)|2αH

]
< ∞ for some α > 1 and

that the following condition hold:

|F (t, p1, p2, p, q1, q2, q, r1, r2, r)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄)|
≤ C(|p1 − p̄1|H + |p2 − p̄2|H + sup

0≤s≤δ
|p(s)− p̄(s)|H + |q1 − q̄1|H + |q2 − q̄2|H + |q − q̄|V1

+ |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄|V2). (4.31)
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Then the BSPDE (4.11) admits a unique solution (p(t), q(t), r(t, z)) such that

E

[
sup

0≤t≤T
|p(t)|2αH +

∫ T

0

{|q|2H(t) +

∫
R
|r|2H(t, z)ν(dz)}dt

]
<∞.

Proof.

Step 1. Assume F is independent of p1, p2 and p. In this case condition
(4.31) reduces to assumption (4.3). By the Step 1 in the proof of Theorem
4.2, there is a unique solution (p(t), q(t), r(t, z)) to equation (4.11).

Step 2. General case. Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z))
to be the unique solution of the following BSDE:

dpn(t) = −Apn(t)dt+ qn(t)dBt + rn(t, z)Ñ(dt, dz)

+ E[F (t, pn−1(t), pn−1(t+ δ), pn−1
t , qn(t), qn(t+ δ), qnt , r

n(t, ·), rn(t+ δ, ·), rnt (·))|Ft]dt
(4.32)

pn(t) = G(t), t ∈ [T, T + δ].

By Step 1, (pn(t), qn(t), rn(t, z)) exists. We are going to show that (pn(t), qn(t), rn(t, z))
forms a Cauchy sequence. Using Itô’s formula, we have

|pn+1(t)− pn(t)|2H +

∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz) +

∫ T

t

|qn+1(s)− qn(s)|2Hds

− 2

∫ T

t

< Apn(s), pn(s) > ds

= −2

∫ T

t

< pn+1(s)− pn(s),

E[F (s, pn(s), pn(s+ δ), pns , q
n+1(s), qn+1(s+ δ), qn+1

s , rn+1(s, ·), rn+1(s+ δ, ·), rn+1
s (·))

− F (s, pn−1(s), pn−1(s+ δ), pn−1
s , qn(s), qn(s+ δ), qns , r

n(s, ·), rn(s+ δ, ·), rns (·))|Fs] >H ds

− 2

∫ T

t

< pn+1(s)− pn(s), qn+1(s)− qn(s) > dBs

−
∫ T

t

∫
R
[|rn+1(s, z)− rn(s, z)|2H + 2 < pn+1(s−)− pn(s−), rn+1(s, z)− rn(s, z) >H ]Ñ(ds, dz)

(4.33)
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Take conditional expectation with respect to Ft, take the supremum over the
interval [u, T ] and use the condition (4.31) to get

sup
u≤t≤T

|pn+1(t)− pn(t)|2H + sup
u≤t≤T

E

[∫ T

t

|qn+1(s)− qn(s)|2Hds|Ft
]

+ sup
u≤t≤T

E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hdsν(dz)|Ft

]
+ sup

u≤t≤T
E

[∫ T

t

|∇(pn+1(s)− pn(s))|2Hdsν(dz)|Ft
]

≤ Cε sup
u≤t≤T

E

[∫ T

u

|pn+1(s)− pn(s)|2Hds|Ft
]

+ C1ε sup
u≤t≤T

E

[∫ T

u

|pn(s)− pn−1(s)|2Hds|Ft
]

+ C2ε sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2H |Fs]ds|Ft
]

+ C3ε sup
u≤t≤T

E

[∫ T

t

|qn+1(s)− qn(s)|2Hds|Ft
]

+ C4ε sup
u≤t≤T

E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2Hds ν(dz)|Ft

]
(4.34)

Choosing ε > 0 such that C3ε < 1 and C4ε < 1 it follows from (4.34) that

sup
u≤t≤T

|pn+1(t)− pn(t)|2H ≤ Cε sup
u≤t≤T

E

[∫ T

u

|pn+1(s)− pn(s)|2Hds|Ft
]

+ (C1 + C2)ε sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2H |Fs]ds|Ft
]

(4.35)

Note thatE

[∫ T

u

|pn+1(s)− pn(s)|2Hds|Ft
]

and E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2H |Fs]ds|Ft
]

are right-continuous martingales on [0, T ] with terminal random variables∫ T

u

|pn+1(s)− pn(s)|2Hds and

∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2H |Fs]ds. Thus for
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α > 1, we have

E

[(
sup
u≤t≤T

E

[∫ T

u

|pn+1(s)− pn(s)|2Hds|Ft
])α]

≤ cαE

[(∫ T

u

|pn+1(s)− pn(s)|2Hds
)α]

≤ cT,αE

[∫ T

u

sup
s≤v≤T

|pn+1(v)− pn(v)|2αH ds
]
, (4.36)

and

E

[(
sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2H |Fs]ds|Ft
])α]

≤ cT,αE

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2αH |Fs]ds
]

≤ cT,αE

[∫ T

u

sup
s≤v≤T

|pn(v)− pn−1(v)|2αH ds
]
. (4.37)

(4.35), (4.36) and (4.37) yield that for α > 1,

E

[
sup
u≤t≤T

|pn+1(t)− pn(t)|2αH
]
≤ C1,αE

[∫ T

u

sup
s≤v≤T

|pn+1(v)− pn(v)|2αH ds
]

+ C2,αE

[∫ T

u

sup
s≤v≤T

|pn(v)− pn−1(v)|2αH ds
]
. (4.38)

Put

gn(u) = E

[∫ T

u

sup
t≤s≤T

|pn(s)− pn−1(s)|2αH
]
.

(4.38) implies that

− d

dt
(eC1,αugn+1(u)) ≤ eC1,αuC2,αgn(u). (4.39)

Integrating (4.39) from t to T we get

gn+1(t) ≤ c2,α

∫ T

t

eC1,α(s−t)gn(s)ds ≤ C2,αe
C1,αT

∫ T

t

gn(s)ds. (4.40)

Iterating the above inequality we obtain that

E

[∫ T

0

sup
t≤s≤T

|pn+1(s)− pn(s)|2αH dt
]
≤ eCnTT n

n!
.
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Using above inequality and a similar argument as in step 1, we can show that
(pn(t), qn(t), rn(t, z)) converges to some limit (p(t), q(t), r(t, z)), which is the
unique solution of equation (4.11). �

5 Application

To illustrate our results, we now apply them to the optimal harvesting prob-
lem presented in the Introduction. In this case the state is given by the
reaction-diffusion equation (1.1) and the performance functional is given by
(1.2). Therefore, by (2.7) the corresponding Hamiltonian is

H(t, x, y, z, a, c, p, q, r(·)) = U1(t, x, c) + (αy + βz − c)p

+ σ0yq +

∫
R
γ0(ζ)r(ζ)yν(dζ) (5.1)

The BSPDE for the adjoint processes p(t, x), q(t, x), r(t, x, ζ) is, by (2.9),

dp(t, x) = −{1

2
∆p(t, x) + αp(t, x) + σ0q(t, x) +

∫
R
γ0(ζ)r(t, x, ζ)ν(dζ)

+βE[p(t+ δ, x)|Ft]χ[0,T−δ](t)}dt

+q(t, x)dB(t) +

∫
R
r(t, x, ζ)Ñ(dt, dζ); 0 ≤ t ≤ T

p(T, x) = U ′2(x, Y (T, x));x ∈ D (where U ′2(x, y) =
∂

∂y
U2(x, y))

p(t, x) = 0; (t, x) ∈ (0, T )× ∂D. (5.2)

Maximizing the conditional Hamiltonian with respect to c gives the first order
condition:

∂U1

∂c
(t, x, c(t, x)) = E[p(t, x)|Et]; (t, x) ∈ [0, T ]×D (5.3)

So, assuming that c → ∂U1

∂c
(t, x, c) is strictly decreasing, to find the optimal

c = c∗(t, x) it suffices to find the solution p(t, x) of (5.2). To this end, we
proceed inductively, as in Theorem 4.1:
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Step 0: In the interval [T − δ, T ] we solve the following BSPDE for p(t, x),
q(t, x), r(t, x, ζ):

dp(t, x) = −{1

2
∆p(t, x) + αp(t, x) + σ0q(t, x) +

∫
R
γ0(ζ)r(t, x, ζ)ν(dζ)}dt

+q(t, x)dB(t) +

∫
R
r(t, x, ζ)Ñ(dt, dζ); t ∈ [T − δ, T ] (5.4)

p(T, x) = U ′2(x, Y (T, x));x ∈ D, p(t, x) = 0; (t, x) ∈ (0, T )× ∂D.

It is well known that this equation has a unique solution. See [19]. In fact,
in this particular case the solution can be found explicitly by adopting the
procedure in Example 1.1 of [19]. as follows:

Choose Ft-predictable processes Θ0(t, x) and Θ1(t, x, ζ) such that

q(t, x)Θ0(t, x) +

∫
R
r(t, x, ζ)Θ1(t, x, ζ)ν(dζ)

= q(t, x)σ0 +

∫
R
r(t, x, ζ)γ0(ζ)ν(dζ)

An obvious choice is

Θ0(t, x) = σ0 Θ1(t, x, ζ) = γ0(ζ)

Next, define the probability measure Q on FT by

dQ(ω) = ZT (ω)dP (ω),

where {
dZt = Zt−(ω)[−σ0dB(t)−

∫
R γ0(ζ)Ñ(dt, dζ)]

Z0 = 1

i.e.

Zt = exp(−σ0B(t)− 1

2
σ2

0t+

∫ t

0

∫
R
ln(1− γ0(ζ))Ñ(ds, dζ)

+t

∫
R
{ln(1− γ0(ζ)) + γ0(ζ)}ν(dζ)); 0 ≤ t ≤ T.

Then
BQ(t) := σ0t+B(t)
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and
ÑQ(dt, dζ) := γ0(ζ)ν(dζ)dt+ Ñ(dt, dζ)

is a Q-Brownian motion and a Q-compensated Poisson random measure,
respectively, and in terms of BQ and ÑQ the BSPDE (5.4) gets the form

dp(t, x) = −{1

2
∆p(t, x) + αp(t, x)}dt+ q(t, x)dBQ(t)

+

∫
R
r(t, x, ζ)Ñ(dt, dζ); (t, x) ∈ [T − δ, T ]×D

p(T, x) = U ′2(x, Y (T, x));x ∈ D,
p(t, x) = 0; (t, x) ∈ (0, T )× ∂D. (5.5)

See [16], chapter 1 for details.
Let

Rtf(x) =

{ ∫
R(2πt)−

1
2f(y)exp(− |x−y|

2

2t
)dy; t > 0

f(x); t = 0
(5.6)

be the transition operator for Brownian motion, defined for all f : R → R
such that the integral exists. Then

∂

∂t
(Rtf(x)) =

1

2
∆(Rtf(x)) (5.7)

Put
F (x) = U ′2(x, Y (T, x)). (5.8)

By the Itô representation theorem there exists Ft-predictable processes
g(s, x) = g(s, x, ω) and k(s, x, ζ) = k(s, x, ζ, ω) such that

EQ[

∫
D

(

∫ T

0

{g2(s, x) +

∫
R
k2(s, x, ζ)ν(dζ)}ds)dx] <∞ (5.9)

and

F (x) = EQ[F (x)] +

∫ T

0

g(s, x)dBQ(s) +

∫ T

0

∫
R
k(s, x, ζ)ÑQ(ds, dζ). (5.10)

In fact, by the L2-extension of the Clark-Ocone formula ([1]) we have

g(s, x) = EQ[DsF (x)|Fs], k(s, x, ζ) = EQ[Ds,ζF (x)|Fs] (5.11)
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where Ds and Ds,ζ denotes the Malliavin derivatives with respect to B and
Ñ , respectively. Define

p(t, x) = eα(T−t)RT−t(

∫ t

0

g(s, ·)dBQ(s)+

∫ t

0

∫
R
k(s, ·, ζ)ÑQ(ds, dζ)+EQ[F (·)])(x)

(5.12)
q(t, x) = eα(T−t)RT−tg(t, ·))(x) (5.13)

r(t, x, ζ) = eα(T−t)RT−t(k(s, ·, ζ))(x); (t, x) ∈ [0, T ]×D. (5.14)

Then (p, q, r) solves (5.4). This completes Step 0.

We now proceed to the next step:
Step 1. If [T − 2δ, T − δ] and T − 2δ > 0, we get by (5.2) the BSPDE

dp(t, x) = −{1

2
∆p(t, x) + αp(t, x) + σ0q(t, x)

+

∫
R
γ0(ζ)r(t, x, ζ)ν(dζ) + βE[p(t+ δ, x)|Ft]}dt

+q(t, x)dB(t) +

∫
R
r(t, x, ζ)Ñ(dt, dζ); (t, x) ∈ [T − 2δ, T − δ]× ∂D.

Note that if t ∈ [T−2δ, T−δ] then P (t+δ, x), and in particular p(T−δ, x),
are known by Step 0. So again we can solve the BSPDE by the method in
[19].

We continue like this by induction up to and including step j, where j
is such that T − jδ ≤ 0 < T − (j − 1)δ. This procedure leads to a unique
solution p(t, x) of (5.2). Note, however, that this solution p(t, x) = p(c)(t, x)
depends in a complicated way of the optimal terminal value Y (T, x), which
again depends on the optimal control c(t, x). Therefore equation (5.3), given
by

∂U1

∂c
(t, x, c(t, x)) = E[p(c)(t, x)|Et] (5.15)

is in general difficult to solve for the optimal control c(t, x).
However, there is an important solvable special case, namely when

U2(x, y) = U2(x, y, ω) = k(x, ω)y (5.16)

for some bounded FT -measurable random variable k(x) = k(x, ω) ≥ 0. In
this case we get

F (x, ω) = U ′2(x, Y (T, x)) = k(x, ω),
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which does not depend on c, and hence (5.15) can be solved for the optimal
c(t, x).

We summarize the above as follows:

Theorem 5.1 The optimal consumption rate c(t, x) of the problem (1.1),
(1.2), when U2(x, y) is of the form (5.16), is given by equation (5.15), where
p(t, x) is the solution of (5.2), as outlined in (5.4)-(5.14).

It is interesting to note how the delay affects the optimal harvesting
policy: Using inductively at each step above the comparison theorem for
BSPDEs [18] we obtain the following:

Corollary 5.2 For 0 < δ1 < δ2 let pδi(t, x) be the solution of the BSPDE
(5.2) corresponding to δi; i = 1, 2, with

pδi(T, x) = U ′2(x, Y (T, x)) = k(x, ω)

as in Theorem 5.1. Assume that β ≥ 0. Then
(i) pδ2(t, x) ≤ pδ1(t, x); (t, x) ∈ [0, T ]×D.
Hence, by (5.15), the optimal harvesting rates cδi(t, x) satisfies the in-

equality
(ii) cδ1(t, x) ≤ cδ2(t, x); (t, x) ∈ [0, T ]×D.
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