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Abstract

Duplicate code is present in most software today. The presence of duplicate code can negatively
affect the maintainability and extensibility of software, as modifying duplicated code can often
lead to modifying every instance of the duplication. In this thesis we present CCDetect-LSP, a
duplicate code detection tool which targets the IDE scenario and is both programming language-
and IDE agnostic. Duplicate code detection can be expensive in terms of time and memory,
which means most detection algorithms cannot be continuously run in a live environment, such
as while editing code in an IDE. In order to facilitate live detection of duplicate code in a code
base where small incremental edits are applied, our tool implements a novel detection algorithm
which supports fast incremental updates. Our empirical results demonstrate that our incremental
algorithm scales better than other non-incremental and incremental algorithms, when small edits
are applied to a code base.
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Chapter 1

Introduction

Duplicate code, often called code clones in the literature, is code which is more or less copied to
different locations in a code base. Code clones occur in practically every large software project,
and code clone analysis has therefore become a highly active field of research in the last decade.
While code clones are not always harmful to a code base [23, p. 209], code clones are generally
considered to negatively affect maintainability, analyzability and extensibility of software [23,
p. 22].

Code clone detection in large code bases can be a time-consuming process. A consequence of this
is that few existing tools are highly integrated into the workflow of software developers and are
not designed to be run on a code base every time the code base changes. This thesis will therefore
focus on efficient code clone detection and presents a novel algorithm and tool for detecting code
clones in a real-time programming environment. In addition, the thesis explores the topics of
both programming language agnostic clone detection, and IDE agnostic tooling, which are also
features of our tool.

1.1 Motivation and problem statement

Many tools and algorithms have been developed to detect, manage and refactor code clones [23,
p. 6]. However, few of these have the capability of efficiently detecting clones in a real-time
programming environment. A problem with existing algorithms is that most of them need to
rerun the entire analysis whenever a change to a file in the code base occurs. Incremental
algorithms that do not recompute all clones from scratch are therefore interesting for use-cases
such as while programming in an integrated development environment (IDE) and for analyzing
different revisions of the same source code, but this type of algorithm has not been thoroughly
explored for code clone analysis. Existing incremental algorithms either do not scale well in
terms of time or memory, or are not designed to be run in an IDE environment.

Our proposed solution and tool addresses this issue by introducing a new algorithm that is capable
of detecting and updating existing code clones as source code changes, which aims to be faster
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than rerunning the analysis from scratch. CCDetect-LSP1,2, the tool which implements this
algorithm, is also programming language- and IDE agnostic, allowing programmers to seamlessly
incorporate the detection of duplicated code into their existing development environment.

1.2 Our contribution

CCDetect-LSP provides type-1 and configurable type-2 code clone detection capabilities in a
real-time IDE environment. The tool allows the user to list and interact with all the clones in
the code base, jump between matching clones, and get quick feedback while editing code in order
to determine if clones are introduced or eliminated.

Existing incremental clone detection tools either do not fit into an IDE scenario, are limited in
terms of what clones they display, or have not been shown to scale well in terms of processing
time or memory usage for larger codebases. Therefore, this thesis will focus on the following
areas of code clone analysis.

Incremental clone detection: The main focus of this thesis is making the tool efficient in
terms of incrementally updating the analysis whenever edits are performed in the IDE. Most
clone detection algorithms either only list clones of a specific code snippet, or computes clones
from scratch in a manner which is too slow for an IDE scenario. Our algorithm is based on a
novel application and extension of dynamic extended suffix arrays for clone detection, which can
find clones and be efficiently updated whenever the code base changes. While suffix arrays have
been used for clone detection before [28], we are not aware of any other attempts to use suffix
arrays in an incremental setting. CCDetect-LSP can display all clones in the entire code base at
once, and efficiently update the list of clones whenever a file is edited. Our results demonstrate
that this algorithm scales better than a non-incremental suffix array algorithm and an existing
incremental algorithm in terms of time, when small edits are applied to a code base.

IDE and language agnostic clone detection: CCDetect-LSP gives programmers the ability
to view clones in their IDE. Utilizing features of the Language Server Protocol (LSP) such as
diagnostics and code-actions, the tool provides clone analysis to any editor which implements
LSP [33]. As far as we are aware there are no other clone detection tools which utilizes LSP to
provide clone analysis to IDEs. In addition, the tool is also language agnostic in the sense that
it only needs a grammar for the parser generator Tree-sitter, for it to be analyzed [10].

1.3 Structure

Chapter 2 provides background on code clone analysis, existing tools and preliminary algorithms
and data structures used in the implementation. Chapter 3-5 describes the implementation of
CCDetect-LSP and the algorithms used for initial and incremental clone detection. In Chap-
ter 6, the tool is evaluated based on multiple criteria, and compared to other existing solutions.
Chapter 7 discusses the results of the evaluation and lists related work. Chapter 8 lists future
work and concludes the thesis.

1CCDetect-LSP source code is available here: https://www.github.com/jakobkhansen/CCDetect-lsp
2Source code DOI release: https://doi.org/10.5281/zenodo.7933569
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Chapter 2

Background

2.1 Software quality and duplicated code

Software quality is hard to define. The term “quality” is ambiguous and is in the case of soft-
ware quality, multidimensional. Quality in itself has been defined as “conformance to require-
ments” [14, p. 8]. In software, a simple measure of “conformance to requirements” is correctness,
and a lack of bugs. However, software quality is often measured in other metrics, including
metrics which are not directly related to functionality [26, p. 29]. Whenever duplicated code
needs to be changed, it might require changes in multiple locations, which leads to metrics such
as maintainability, analyzability and changeability being negatively affected. Studies generally
report that software projects contain 10 − 15% duplicated code, but some studies also report
lower and higher percentages [2]. Even so, the percentage of duplication is generally considered
to be of non-trivial size in most large code bases. Therefore, research into tools and techniques
which can assist in reducing duplicated code will be of benefit to almost all software.

Duplicate code can lead to a plethora of anti-patterns in software. Anti-patterns are bad design
decisions for software which can lead to technical debt. Technical debt occurs when developers
make technical compromises that are beneficial in the short term, but increases complexity in
the long-term [4, p. 111]. An example of this, in the context of duplicated code, is the “Shotgun-
Surgery” anti-pattern [15, p. 66]. This anti-pattern occurs when a developer wants to implement
a change, but needs to change code at multiple locations for the change to take effect. This is a
typical situation which slows down development and reduces maintainability when the amount
of duplicated code increases in a software project.

2.2 Code clones

Duplicated code is often called code clones in the literature. A pair of code snippets which are
duplicated are considered clones of each other.

Definition 1 (Code snippet). A code snippet is a piece of contiguous source code in a larger
software system.
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for (int i = 0; i < 10; i++) {

print(i);

}

for (int i = 0; i < 10; i++) {

// A comment

print(i);

}

Figure 2.1: Type-1 clone pair

Definition 2 (Code clone). A code clone is a code snippet which is equal to or similar to another
code snippet. The two code snippets are both code clones, and together they form a clone pair.
Similarity is determined by some metric such as number of equal lines of code.

Definition 3 (Clone class). A clone class is a set of code snippets where all snippets are con-
sidered clones of each other.

The clone relation is a relation between code snippets which defines pairs of clones. The clone re-
lation is reflexive and symmetric, but not necessarily transitive. The transitive property depends
on the threshold for similarity when identifying code clones. Given

a
clone←−−→ b

clone←−−→ c

where a, b, c are code snippets and
clone←−−→ gives the clone relation. a and c are both clones of

b, but not necessarily similar enough to be clones of each other, depending on the threshold for
similarity. If the threshold for similarity is defined such that only equal clones are considered
clones, the relation becomes transitive, and clone classes are equal to the equivalence classes of
the relation.

Code clones are generally classified into four types [23]. The types classify two code snippets
as code clones with an increasing amount of leniency. Therefore, type-1 code clones are very
similar, while type-4 clones are not necessarily syntactically similar at all. When defining types,
it is the syntactic and structural differences which is compared, not functionality. The set of
code clones classified by a code clone type is also a subset of the next type, meaning all type-1
clones are also type-2 clones, but not vice versa.

Type-1 clones are syntactically identical. The only differences for a pair of type-1 clones are
elements without meaning, like comments and white-space, which is often already ignored when
source code is lexed and parsed. Figure 2.1 shows an example of a type-1 clone pair where only
a comment and white-space is added to the snippet on the right.

Type-2 clones are structurally identical. Possible differences include changes to identifiers,
literals and types. Type-2 clones are not much harder to detect than type-1 clones, since renaming
identifiers, literals and types allow a type-1 detection algorithm to find type-2 clones [6]. We
can also differentiate between blind and consistent type-2 clones, where consistent clones need
to have consistent renaming of values, such as a variable being consistently renamed in all the
locations it is being used. Blind type-2 clones can have differences in all the allowed types with
no consistency. Note that consistent type-2 clones are a subset of blind type-2 clones, as blind
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for (int i = 0; i < 10; i++) {

print(i);

}

for (int j = 5; j < 20; j++) {

print(j);

}

Figure 2.2: Type-2 clone pair

for (int i = 0; i < 10; i++) {

print(i);

}

for (int i = 0; i < 10; i++) {

print(i);

print(i*2);

}

Figure 2.3: Type-3 clone pair

type-2 clones are simply more lenient. Type-2 clones are relevant to consider in refactoring
scenarios when merging code clones as they can be relatively simple to parameterize in order to
merge two clones with for example differing literals. The original locations of clones can then be
replaced with a call to the merged code with different parameters. Figure 2.2 shows an example
of a type-2 clone pair where the numbers in the for loop initialization and condition could be
parameterized to correctly merge the two clones. This is an example of consistent type-2 clones,
because the i variable has been consistently renamed to j in the right-most snippet.

Type-3 clones are required to be structurally similar, but not equal. Differences include state-
ments that are added, removed or modified. This clone type relies on a threshold θ which
determines how structurally different snippets can be in order to be considered type-3 clones [23,
p. 6]. The granularity for this difference could for example be based on the number of differing
tokens or lines. Detecting this type of clone is generally computationally harder than detecting
type-1 and type-2 clones. Figure 2.3 shows two code snippets where the code snippet on the
right has an added statement. In this example there is a one line difference between the two
snippets, so if the similarity is based on differing lines and θ ≥ 1, the two snippets would be
considered Type-3 clones.

Type-4 clones have no requirement for syntactical or structural similarity, but are generally
only relevant to detect when they have similar functionality. Detecting this type of clone is very
challenging, but attempts have been made using program dependency graphs [48]. Figure 2.4
shows two code snippets which have no clear syntactic or structural similarity, but is functionally
equal.

Type-1 clones are often referred to as “exact” clones, while Type-2 and Type-3 clones are referred
to as “near-miss” clones [50, p. 1].

2.3 Code clone detection process and techniques

The Code clone detection process is generally split into (but is not limited to) a sequence
of common steps to identify clones [23]. This process is often a pipeline of input-processing steps
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print((n*(n-1))/2) int sum = 0;

for (int i = 0; i < n; i++) {

for (int j = i+1; j < n;

j++) {

sum++;

}

}

print(sum);

Figure 2.4: Type-4 clone pair

before finally comparing fragments against each other and filtering. The steps are generally as
follows:

1. Pre-processing: Filter uninteresting code that should not be checked for clones, for exam-
ple generated code. Then partition code into a set of fragments, depending on granularity
such as methods, files or lines.

2. Transformation: Transform fragments into an intermediate representation, with a source-
map which gives the location to the original code. An algorithm could potentially do
multiple transformation before arriving at the wanted representation

(a) Extraction: Transform source code into the input for the comparison algorithm. Can
be tokens, AST, dependency graphs, suffix tree, etc.

(b) Normalization: Optional step which removes superficial differences such as comments,
whitespace and identifier names. Often useful for detecting type-2 clones.

3. Match detection: Perform comparisons which outputs a set of candidate clone pairs.

4. Source-mapping / Formatting: Convert candidate clone pairs from the transformed
code back to clone pairs in the original source code.

5. Post-processing / Filtering: Ranking and filtering manually or with automated heuris-
tics

6. Aggregation: Optionally aggregating sets of clone pairs into clone sets

Matching techniques

Matching techniques are the techniques used in the matching stage of the algorithm which pairs
fragments as clone-pairs. Most matching techniques will also require specific pre-processing to
be done in the earlier steps, for example building an AST. Some of the most explored techniques
are as follows [38]:

Text-based approaches do little processing of the source code before comparing. Simple tech-
niques such as fingerprinting or incremental hashing have been used in this approach.
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Token-based approaches transform source code into a stream of tokens, similar to lexical
scanning in compilers. The token stream is then scanned for duplicated subsequences of tokens.
Since lexers often filter out superficial differences such as whitespace, indentation and comments,
this approach is more robust to such differences. Concrete names of identifiers and values can
be abstracted away when comparing the token stream, therefore type-2 clones can easily be
identified. Type-3 clones can also be identified by comparing the tokens and keeping clone
pairs with a lexical difference lower than a given threshold. This can be solved with dynamic
programming [7]. A common approach to detect clones using token streams is with a suffix
tree [6]. A suffix tree can solve the Find all maximal repeats problem efficiently, which essentially
is the same problem as finding clone pairs [19, p. 143]. A suffix array can also be used instead,
which requires less memory [1]. This type of code clone detection is very fast compared to more
intricate types of matching techniques.

Syntactic approaches transform source code into either concrete or abstract syntax trees and
find clones using either tree matching algorithms or structural metrics. For tree matching, the
common approach is to find similar subtrees, which are then deemed as clone pairs. One way
of finding similar subtrees is to compare subtrees with a tolerant tree matching algorithm for
detecting type-3 clones [9]. Variable names, literal values and types may be abstracted to find
type-2 clones more easily. Metrics-based techniques gather metrics for code fragments in the
tree and uses the metrics to determine if the fragments are clones or not. One way is to use
fingerprint functions where the fingerprint includes certain metrics, and compare the fingerprints
of all subtrees to find clones [25].

Hybrid approaches combine multiple approaches in order to improve detection capabilities.
For example a common approach which Zibran et al. [50] has implemented is a hybrid algorithm
combining both token-based suffix trees for type-1 and type-2 clone detection, with the dynamic
programming algorithm [7] for type-3 clone detection. Another example of a hybrid approach
is the tool named Siamese [36], which uses multiple intermediate representations to get a better
accuracy for clone detection.

2.4 Incremental clone detection

Incremental clone detection avoids computation of already computed results when performing
code clone detection on consecutive revisions of a code base. A revision of a code base is one
version of a code base which has been changed from a previous revision, and once edited, becomes
the next revision. A revision of the code base could for example be a certain version control
commit of the code base, or one could say a new revision of the code base is created for each edit
performed while programming. These two scenarios have respectively been called the evolution
scenario and the IDE scenario [17]. Incremental clone detection could be realized in the form
of either storing clones between each revision, or by maintaining a data structure which is fast
to update when the input updates, and also facilitates fast extraction of clones. Since in most
cases, an entire code base will not change drastically in consecutive revisions, many code clones
and the general structure of most of the source code will remain, and therefore a lot of processing
can be avoided. However, this is not a simple problem, since changes in a single location can
affect clone detection results across the entire codebase.

In order to incrementally detect code clones, an initial algorithm computes the initial clones
or builds the initial data structures, and for successive revisions of the source code, this list
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is incrementally updated by an incremental algorithm. In some cases, this could be the same
algorithm, but in general the incremental algorithm is faster than the initial algorithm, and
maintains dynamic structures to perform efficient updates.

Göde and Koschke proposed the first incremental clone detection algorithm [17]. The algorithm
employs a generalized suffix tree in which the amount of work of updating is only dependent
on the size of the edited code. This approach requires a substantial amount of memory, and is
therefore limited in scalability.

Nguyen et al. [34] showed that an AST-based approach utilizing “Locality-Sensitive Hashing”
can detect clones incrementally with high precision, and showed that incremental updates could
be done in real-time (< 1 second) for code bases of size 300KLOC (lines of code).

Hummel et al. [22] introduced the first incremental and distributed clone detection technique for
type-1 and type-2 clones. This approach utilizes a custom “clone index” data structure which
can be updated efficiently. The implementation of this data structure is similar to that of an
inverted index. This technique uses distributed computing to improve its performance and is
therefore not easily applicable to the IDE scenario.

More recently, Ragkhitwetsagul and Krinke [36] presented the tool Siamese, which as mentioned
uses a novel approach of having multiple intermediate representations of source code to detect a
high number of clones, with support for incremental detection. The tool can detect up to type-3
clones, but will only return clones based on “queries” given to it by the user, and therefore does
not allow listing all clones in the code base. Queries are either files or methods in source-code,
which are then matched with other code clones.

2.5 Code clone IDE tooling

Developers are not always aware of the creation of clones in their code. Clone-aware development
involves including clone management as a part of the software development process [50]. Clone-
aware development therefore requires programmers to be aware of and be able to identify code
clones while programming. Since large software projects can contain a lot of duplication, it
can be hard to keep track of and manage clones. Tools which help developers locate and deal
with clones can be a solution to this. However, Rieger et al. claims that a problem with many
detection tools is that the tools “report large amounts data that must be treated with little tool
support” [37, p. 1]. Detecting and eliminating clones early in their lifecycle with IDE integrated
tools could be a solution to the problem of dealing with too many clones.

There are multiple existing clone detection tools which integrate into IDEs. The IDE-based tools
which exist can be categorized as follows [43, p. 8]:

• Copy-paste-clones: This category of tools deals only with code snippets which are copy-
pasted from another location in code. These tools therefore only track clones which are
created when copy-pasting, and does not use any other detection techniques. Therefore,
this type of tool is not suitable for detecting clones which are made accidentally, since
developers are aware that they are creating clones when pasting already existing code
snippets.

• Clone detection and visualization tools: This category of tools has more sophisticated clone
detection capabilities and will detect all code clones algorithmically, unlike copy-paste clone
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tools.

• Versatile clone management: This category of tools covers tools which provide more ser-
vices than the above. Services like refactoring and simultaneous editing of clones fall under
this category.

The following tools have been developed as IDE tools to allow for clone-aware development:

• Zibran et al. introduced a hybrid technique for performing real-time focused searches, i.e.
searching for code clones of a selected code snippet [50]. This technique can also detect
Type-3 clones. This algorithm was later implemented in the tool SimEclipse [43] which is
a plugin for the Eclipse editor. This tool is also based on a suffix tree, but it is unclear if
this suffix tree is updated incrementally.

• Another tool, SHINOBI, which is a plugin for the Visual Studio editor, can detect code
clones in real-time without the need of the developer to select a code snippet [28]. However,
the clones being displayed seem to only be clones of the source-code which is currently being
edited. This is limiting if a developer is searching for locations of clones, as they cannot
simply look up the location of all clones. SHINOBI can detect type-1 and type-2 code
clones and uses a token-based suffix array approach to detect clones. The paper does not
describe how the suffix array is updated, but as the paper was released before the first paper
describing dynamic suffix arrays [40], one can assume that the suffix array is recomputed
from scratch in each search.

• The modern IDE IntelliJ has a built-in duplication detection and refactoring service. It
is able to detect type-1 and (some) type-2 code clones at a method granularity and can
refactor to remove a clone-pair by replacing one of the clones with a method call to the
other. The service does not seem to perform incremental updates.

2.6 The Language Server Protocol

Static analysis tools that integrate with IDEs are often tightly coupled to a specific IDE and its
APIs, like parsing and refactoring support. This makes it difficult to utilize a tool in another IDE,
since the APIs are no longer available. In order to make IDE-based static analysis tools more
widely available, it is therefore useful for such tools to be made IDE agnostic. The Language
Server Protocol (LSP) is a server-client protocol which attempts to solve this problem [33].

LSP is a protocol which specifies interaction between a client (IDE) and server (analysis tool)
in order to provide language tooling for the client. The goal of the protocol is to avoid multiple
implementations of the same language tools for every IDE and every language, allowing for
IDE agnostic tooling. Servers which implement LSP will be able to offer IDEs code-completion,
error-messages, go-to-definition and more. LSP also specifies generic code-actions and commands,
which the LSP server communicates to the client in order to perform custom actions defined by
the server.

Figure 2.5 shows a sample interaction between client and server using LSP. The client sends
requests to a server in the form of JSON-RPC messages, and the server sends a corresponding
response, also in the form of JSON-RPC messages.
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Visual Studio Code

Client Language Server Protocol
(JSON-RPC) Server

TSServer
(Javascript)

css-language-server
(CSS)

Request: textDocument/completion

Response: CompletionItem[]

Request: textDocument/definitionResponse: Location

Figure 2.5: Example client-server interaction using LSP

2.7 Preliminary algorithms and data structures

Before our implementation is discussed, we will look at some preliminary algorithms and data
structures which may provide useful insights in the following chapters.

Parsing and incremental-parsing

One of the first steps in most interpreters and compilers is to perform lexing and parsing on the
source code. Lexing is the process of turning the source code into a set of tokens, turning strings
such as “if”, “while”, “+” and “(” into singular values which are easier to work with. After the
source code has been converted to a token stream, the next step is to parse the source code into
a tree structure called a syntax tree. A syntax tree is a tree which describes the structure of
a program. For example an if-statement would usually be a node in the tree, with a condition
and a list of statements as children. An abstract syntax tree (AST) is a tree where some details
of the grammar may be left out in the tree structure, such as having concrete nodes of tokens
such as “(” and “)”, which does not matter in a compiler or interpreters understanding of the
program.

When parsing a program, the parser often relies on a grammar for the language, which specifies
the structure of the syntax tree, and is usually given in the form of a BNF grammar. Given a
BNF grammar, one could either write a parser which conforms to this grammar (often recursive-
descent for LL(1) grammars), or use a parser generator, which generates the parser, given the
grammar of the language. Parser generators can often generate parser which are more complex,
which allows for more complex grammars, such as LALR(1) or LR(1) grammars.

A syntax tree is not only used for interpreting or compiling a language, it is also used to perform
static analysis on the program. Static analysis is an analysis performed without running the
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program, and is often done in compilers in order to do for example type-checking or data-flow
analysis. Syntax trees are in essence very useful to traverse or search a programs structure to
look for certain properties of nodes or subtrees.

In our detection algorithm we will need to be able to parse our source code into an AST rep-
resentation in order to select specific syntactic regions and extract the tokens. Therefore, we
need a parsing algorithm. For an incremental scenario, a useful observation is that when a small
edit is applied to a program, the syntax tree will usually not change much. When source code
is edited it would therefore be more efficient to use a parsing algorithm which reuses parts of
the old syntax tree, but updates it to reflect the new source code. Incremental parsing is the
process of parsing only parts of a syntax tree whenever an edit is performed in a file, and reusing
subtrees of the previous syntax tree which did not change. The motivation behind incremental
parsing is to have a readily available syntax tree after every edit, while doing as little computing
as possible to maintain it.

Tree-sitter is a parser generator tool which specializes in incremental parsing. It supports incre-
mental parsing, error recovery and querying for specific nodes and subtrees [10]. These features
combined makes Tree-sitter a powerful tool for editing and has been used for IDE features such
as syntax-highlighting, refactoring and code navigation.

The incremental parsing algorithm in Tree-sitter1 is inspired by and implemented similarly to
Wagner’s incremental parsing algorithm [47]. Each node in the AST is decorated with information
on the range which it covers in the original source code. Whenever an edit is performed at
location x in the source code, a new AST is built by first marking all the nodes where the range
of the node contains the position x. If a node contains the position x and is marked, it needs
to be parsed again, but subtrees rooted in nodes which are not marked can be reused, and can
therefore be reused. Figure 2.6 shows on the left an expression and its corresponding AST. If
the expression were to be changed to the expression on the right, the AST on the left could
be incrementally parsed by parsing only the marked nodes, and reusing all the other nodes.
Especially with the right-most difference node, we see how reusing an entire subtree in the AST
could save time compared to normal parsing. In larger programs we can see significantly more
reusage of subtrees, since an edit to a few lines would likely require few nodes to be parsed
compared to the number of nodes reused.

Suffix trees

A classic algorithm for code clone detection traverses a suffix tree in order to find maximal
repeats in all suffixes of the input string S [50, 17]. While our algorithm is only related to suffix
trees, this section gives some insight into the most common algorithm for clone detection.

A suffix of a string S is a substring S[i..N ], where N is the length of S. A suffix of S is therefore
any nonempty substring which reaches the end of S. The suffix at position i of S is denoted
Suffix(S, i).

The suffix tree of a string S is a compressed trie where all the suffixes of S have been inserted
into it. Consecutive nodes of the trie that only have one child are compressed into a single node.
A common usage of a suffix tree is to determine whether a suffix exists in S, and where in S the
suffix starts.

1For a preliminary introduction to Tree-sitter incremental parsing, see the following conference talk:
https://www.thestrangeloop.com/2018/tree-sitter---a-new-parsing-system-for-programming-tools.html
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'*' difference 'c' 'd''-'

'b' '-' 'e'

Figure 2.6: AST’s of two expressions. Left AST could be incrementally parsed to the right AST
if marked nodes are parsed again and the rest of the tree is reused.

Figure 2.7 shows the suffix tree for S = BANANA$. $ is often added as a unique terminal
character, which simplifies some string problems. In order to determine where the suffix ANANA$
exists in S, one can start from the root, and traverse the tree, choosing the child node which
correspond to the next character of the suffix which has not been “matched” yet.

root
A−→ node

NA−−→ node
NA$−−−→ 1

Following this path, we see that the suffix ANANA$ exists in S at index 1.

Suffix trees can be constructed in linear time with Ukkonen’s algorithm which builds a larger and
larger suffix tree by inserting characters one by one and utilizing some tricks to avoid inserting
suffixes before it needs to, which lowers the complexity [45].

This data structure also facilitates solving the maximal repeat problem. A repeat in a string S
is a substring that occurs at least twice in S. A maximal repeat in S is a repeat which is not a
substring of another repeat in S, meaning that the maximal repeat cannot be extended in either
direction to form a bigger repeat. The problem of finding all maximal repeats can be solved with
a suffix tree using the following theorem:

Theorem 1 (Repeats in suffix tree). Every internal node (except for the root) in a suffix tree
corresponds to a substring which is repeated at least twice in T. The repeated substring is found
by concatenating the strings found on the path from the root of the tree to the internal node.

This theorem is explained by the fact that any internal node has at least two children, and a
node having two children means that two suffixes share the same prefix up to that point. An
algorithm which finds the maximal repeats would find the internal nodes which represents the
longest strings.

The classic algorithm [50, 17] in terms of finding duplication in a string (such as source code)
using suffix trees would find all repeats of length k, where k is the threshold for how long a
clone needs to be. This can be found by traversing the suffix tree and looking at all internal
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Figure 2.7: Suffix tree for S = BANANA$

nodes which represent a string of length ≥ k. Every internal node which represents a string
which is ≥ k would correspond to a substring of the source code which occurs at least twice.
Finding where the duplication occurs can be done by finding all the leaves of the subtree rooted
in the internal node, which each hold the position where the suffix starts in S. Since a substring
can have multiple repeats of different lengths longer than k, different strategies can be used to
select which substrings are selected or not, such as filtering out repeats which are not maximal
or repeats which contain or overlap each other.

In figure 2.7, there are three repeats, ANA, A and NA. The only maximal repeat would be ANA,
since A and NA are not maximal.

Suffix arrays

A problem with the suffix tree data structure is that the pointers and nodes require a lot of
memory. The suffix array (SA) is a data structure which can achieve the same functionality, but
with a memory efficient array instead. The suffix array of a string S contains a lexicographical
sorting of all suffixes in S. The suffix array does not contain the actual suffixes, but it contains
integers pointing to the index where the suffix starts in S. The suffix array is therefore a
permutation of the values in the range 0 to N − 1. Conversely, the inverse suffix array (ISA)
contains integers describing which rank the suffix at a given position has. The rank of a suffix is
its lexicographical ordering in S. ISA is therefore the inverse array of SA, such that if SA[i] = n,
then ISA[n] = i.

Definition 4 (Suffix array). Let S be a text of length N. The suffix array SA of S is an array
of length N where SA[i] = n if Suffix(S, n) is the ith lexicographically smallest suffix in S.

Definition 5 (Inverse suffix array). Let S be a text of length N. The inverse suffix array ISA
of S is an array of length N where ISA[i] = n if Suffix(S, i) is the nth lexicographically smallest
suffix in S.

The Longest-common prefix (LCP) array describes how many common characters there are in
a prefix between two suffixes which are next to each other in the suffix array. Since the suffix
array represents suffixes in a sorted order, the prefix length between adjacent suffixes in SA will
be the longest possible common prefix for each suffix. These are the values in the LCP array.

Definition 6 (LCP array). Let S be a text of length N and SA be the suffix array of S. The LCP
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Index Suffix
0 BANANA$
1 ANANA$
2 NANA$
3 ANA$
4 NA$
5 A$
6 $

(a) Suffixes

Index Suffix
6 $
5 A$
3 ANA$
1 ANANA$
0 BANANA$
4 NA$
2 NANA$
(b) Sorted suffixes

Index SA ISA LCP
0 6 4 0
1 5 3 0
2 3 6 1
3 1 2 3
4 0 5 0
5 4 1 0
6 2 0 2

(c) SA, ISA and LCP

Table 2.1: S = BANANA$

array of S is an array of length N where LCP[i] = n if Suffix(S, SA[i]) and Suffix(S, SA[i − 1])
has a maximal common prefix of length n. LCP[0] is undefined or 0.

For example, in table 2.1, the LCP value at position 3 contains the number of characters in
the longest-common prefix of suffixes starting at position 1 (ANANA$) and position 3 (ANA$).
These suffixes have 3 common characters in their prefix, therefore the LCP value at position 3
is 3.

Suffix arrays can be constructed in linear time in terms of the length of S. Many suffix array
construction algorithms (SACA) have been discovered in the last decade [27], many of which run
in linear time. An algorithm which has been shown to be very efficient in practice is Nong and
Chan’s algorithm based on recursive suffix sorting of smaller constructed strings, which will be
used in our initial detection algorithm [35].

The extended or enhanced suffix array is a data structure storing both the suffix array and the
additional LCP array, which has been shown to be as powerful as a suffix tree, in terms of what
can be computed with it in the same time complexity [1]. An advantage of using an extended
suffix array over a suffix tree is that it uses a smaller amount of memory, as suffix trees needs
to store a lot of pointers and nodes, while the extended suffix array only need to store arrays of
integers. The extended suffix array is the major data structure which will be used in our detection
algorithm to find duplicate code, as explained in the upcoming implementation chapters.

Dynamic bitsets

For our detection algorithm, we need to utilize rank/select queries on strings in order to determine
how the suffix array has changed. We will first discuss rank/select queries on bitsets, which will
be used in the next section to extend this notion to strings as well.

A bitset is an array of bits, each bit representing either the value true or false. A bit with
the value of 1 is usually referred to as a set bit, and a value of 0 is referred to as an unset or
cleared bit. Operations on bitsets normally include at least an operation for setting the value
at a position, and an operation for looking up the value at a position. Bitsets are useful for
many problems, especially as a “succinct data structure”. A succinct data structure is a data
structure which attempts to use an amount of memory close to the theoretic lower bound, while
still allowing effective queries on it. For example for a string of length n, we could store up to
O(n log σ) bits before the bitset exceeds the size of the string itself, where σ is the size of the
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string’s alphabet.

The most well known queries to perform on bitsets is the rank/select queries.

Definition 7 (Rank query on bitset). A rank query rank1(i) on a bitset B, computes the number
of set bits up to, but not including position i. Conversely, rank0(B) returns the number of unset
bits up to position i.

Definition 8 (Select query on bitset). A select query select1(i) on a bitset B, computes the
position of the ith set bit in B. Conversely, select0(i) returns the position of the ith unset bit in
B.

Jacobson’s rank can perform rank/select queries on static bitsets in O(1) time by pre-computing
all answers in a space efficient table [24].

In some cases it is also useful to have a dynamic bitset, a bitset where insertions/deletions are
supported as well.

Definition 9 (Dynamic bitset). A dynamic bitset is a bitset which in addition to other operations
allow inserting and deleting bits.

An insert operation insert(i, v) on a bitset B inserts the value v at position i in B, pushing all
values at position ≥ i one position up.

A delete operation delete(i) on a bitset B removes the value at position i in B, pushing all values
at position > i one position down.

A simple implementation of a dynamic bitset could implement the whole bitset as a single array
of bytes B, which allows for accessing values in O(1) time, but insertions and deletions take O(n)
time, where n is the number of bits in B.

A better implementation which speeds up the insertions and deletions represents the bitset as a
balanced tree containing multiple smaller bitsets. To represent a bitset of n bits, we can divide
the bits into smaller bitsets, such that O( n

log(n) ) bitsets each contains O(log(n)) bits. Since the

bitsets are now of size O(log(n)), insertions and deletions take only O(log(n)) time. The bitsets
reside at the leaves of our balanced tree, and internal nodes contain only two integers, storing
the number of bits in the left subtree (N), and the number of set bits in the left subtree (S).
To access, insert or delete on index i, the tree is traversed to find the correct bitset where the
ith bit is located, where the operation is done at that position. Finding the correct bitset and
position is done by utilizing N and S in each node which is traversed. All operations now run in
O(log(n)) time, since traversing the tree to the correct bitset takes O(log( n

log(n) )) and performing

the operation takes O(log(n)) time. Keeping the tree balanced is done by splitting a leaf-node
bitset into two nodes when the leaf-node bitset has reached a certain size (such as 2× log(n)) and
rebalancing the tree after the split. Similarly, when considering deletions, two leaf-node bitsets
can be merged to their parent node when their combined number of bits has decreased to log(n).

Figure 2.8 shows how a dynamic bitset tree is structured, and Algorithm 1 shows how to access
a value in the tree. Traversing the tree to compute rank/select queries can be done similarly
by summing set bits in left-subtrees (rank) or selecting which subtree to descend based on the
number of set bits (select).

19



N = 8
S = 3

N = 4
S = 1

00000100

N = 4
S = 2

00010101

Figure 2.8: Dynamic bitset

Algorithm access(node, i)
if isLeaf(node) then

return node.bitset[i]
end
if node.N ≤ i then

return access(node.left, i)
end
return access(node.right, i− node.N)

Algorithm 1: Accessing a value in a dynamic bitset

Wavelet tree and wavelet matrix

We can extend the notion of rank/select queries to strings as well.

Definition 10 (Rank query on string). A rank query rankc(i) on a string S computes the number
of occurrences of a character c in S up to, but not including position i.

Definition 11 (Select query on string). A select query selectc(i) on a string S, computes the
position of the ith occurrence of a character c in S.

The classic data structure to efficiently compute rank and select queries on strings is thewavelet
tree [18]. The data structure is a binary tree where every node consists of a bitset, and each level
of the tree consists of the bits of a single position in each character of the string. Each bitset in
the wavelet tree can for example be implemented as a dynamic bitset to allow insertions/deletions
on a wavelet tree.

Figure 2.9 shows the wavelet tree for the string abbbefcagdd. Note that the wavelet tree does
not actually store the characters of the string, only the bitsets. The wavelet tree can perform
access, rank and select queries by traversing the tree from root to leaf.

access(i) gives the bitstring of the character at a position i by first accessing position i in the
root bitset, if the bit is a 0, we traverse to the left, if it is a 1 we traverse to the right. Before
traversing to a child, we compute rank0(i) or rank1(i), depending on what bit is at position
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Figure 2.9: Wavelet tree for S = abbbefcagdd

a b b b e f c a g d d
0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 1
0 1 1 1 0 0 1 1 0 1 0

Table 2.2: Levelwise wavelet tree

i, the resulting rank is the next position to consider in the subtree. This is done recursively
until a leaf-node is found, and the bits which were examined at each node is the bitstring of the
character at position i.

rankc(i) traverses the tree similarly to access(i), but we use the bits of c to guide us to the
correct subtree. When a leaf-node is reached, the value of i is returned, since when a leaf is
reached, i will be pointing to the correct rank in the fictitious bitset of only c characters

The wavelet tree can be traversed in O(log σ) time where σ is the size of the alphabet. However,
the access, rank and select operations also depend on how fast the bitsets can perform access,
rank and select operations. If the bitsets are implemented using for example Jacobson’s rank [24],
the bitsets have a O(1) access, rank and select time, but if we require dynamic bitsets for
insertion/deletions, the time complexity increases to O(log n log σ) because a bitset operation
which takes O(log n) time is required in each level of the tree.

The wavelet tree can also be implemented without pointers, known as a levelwise or pointerless
wavelet tree [32]. Table 2.2 shows the levelwise wavelet tree, which can be traversed level by
level, but determining which interval of the bitset the node you are in occupies requires two calls
to rank. The details of the levelwise wavelet trees are out of scope for this thesis, but leads us
into the next wavelet data structure.

The wavelet matrix is a relatively recent improvement on the wavelet tree, which has been
shown to be more efficient for access, rank and select queries, as well as less memory intensive
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a b b b e f c a g d d
0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 1
0 1 1 1 0 0 1 0 1 1 0

Table 2.3: Wavelet matrix for S = abbbefcagdd

Algorithm access(WM, i)
bits← empty list
l← 0
while l < Len(WM) do

Add(bits, access(WM[l], i))
if access(WM[l], i) = 1 then

i← zl + rank1(WM[l], i)
else

i← rank0(WM[l], i)
end
l← l + 1

end
return bits

Algorithm 2: Wavelet matrix access

Algorithm rankc(WM, i)
l← 0
p← 0
while l < Len(WM) do

if access(WM[l], i) = 1 then
i← zl + rank1(WM[l], i)
p← zl + rank1(WM[l],p)

else
i← rank0(WM[l], i)
p← rank0(WM[l],p)

end
l← l + 1

end
return i− p
Algorithm 3: Wavelet matrix rank

for larger alphabets [12]. As the name suggests, the wavelet matrix is a matrix of bitsets, instead
of a tree of bitsets. Similarly to the levelwise wavelet tree, for a string S of size n, each level of
the matrix consists of a bitset of size n. The difference between a levelwise wavelet tree and a
wavelet matrix is that the assumption that the ”children” of an interval [x, y] needs to occupy
exactly [x, y] is no longer true. We can instead put all 0 bits to the left in the next level, and all
1 bits to the right. For each level we store an integer zl, which holds the number of zero bits in
level l.

For access operations, we traverse each level similarly to a levelwise wavelet tree, but instead
of traversing a smaller and smaller interval in each level, we simply look at the current bit at
position i, if it is a zero, the bit to examine in the next level is rank0(i), if the bit is a 1, the bit
to examine in the next level is zl+ rank1(i). The rankc(i) operation is carried out similarly, but
we also keep track of a preceding position to the final i, which we subtract from i, to count only
the number of proceeding number of a characters. Table 2.3 shows an example wavelet matrix,
and algorithm 2 and 3 shows how access and rank operations can be carried out for a wavelet
matrix. The time complexities for access, rank and select operations is the same as for wavelet
trees.

The wavelet matrix is constructed level by level. In level i, the bit at position i in each character
is inserted. Before constructing the next level, each character is sorted by the current bit, so
that all the characters with 0 bits at position i occupies the left side of level i+1, and vice versa
for 1 bits.
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Index CS
0 BANANA$
1 ANANA$B
2 NANA$BA
3 ANA$BAN
4 NA$BANA
5 A$BANAN
6 $BANANA

(a) Cyclic shifts

Index CS
6 $BANANA
5 A$BANAN
3 ANA$BAN
1 ANANA$B
0 BANANA$
4 NA$BANA
2 NANA$BA

(b) Sorted cyclic shifts and
BWT

L F
0 RankA(0) + C[A] = 0 + 1 = 1
1 RankN (1) + C[N ] = 0 + 5 = 5
2 RankN (2) + C[N ] = 1 + 5 = 6
3 RankB(3) + C[B] = 0 + 4 = 4
4 Rank$(4) + C[$] = 0 + 0 = 0
5 RankA(5) + C[A] = 1 + 1 = 2
6 RankA(6) + C[A] = 2 + 1 = 3

(c) LF function

Table 2.4: S = BANANA$, BWT = ANNB$AA

Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) is a transform on strings, often performed to improve
compression and searching [11]. The transform is computed by sorting all “cyclic-shifts” of
the string lexicographically and extracting a new string from the last column of the cyclic-shift
matrix. The terminating symbol $ is added to the string, which makes some algorithms on the
BWT simpler. $ is always the lexicographically smallest character. Table 2.4 shows the BWT
for the string S = BANANA$. There is a strong correlation between the BWT of a string and
its suffix array, which is why this transform will be relevant for our detection algorithm.

Definition 12. Cyclic-shift

The cyclic-shift of order i for a string S is the cyclic-shift of S such that all characters in S are
rotated i characters to the left. The cyclic-shift of order i is denoted CSi

Definition 13. Burrows-Wheeler transform

The Burrows-Wheeler transform of a string S is a transformation on S where the cyclic-shifts
of S are sorted, and the final character in each shift is concatenated.

As mentioned, there is a strong correlation between the suffix array of S and the BWT of S.
Table 2.4 also shows that the indices of the sorted cyclic-shifts correspond to exactly the SA of
S. This coincides because when sorting cyclic-shifts, everything that occurs after the $ of the
CS will not affect its lexicographical ordering. This is because no CS will have a $ in the same
position, so comparing two cyclic shifts lexicographically will always terminate whenever a $ is
found. This means that the ordering of cyclic shifts is essentially the same as sorting all suffixes
of S. Algorithm 4 shows how the BWT of S can be computed directly from the SA of S in linear
time. Since there is a one to one correlation between the SA and BWT, dynamic updates to a
BWT would correspond to similar dynamic updates in the SA (and ISA). This will be useful in
the upcoming implementation chapters for the incremental code clone detection algorithm.

An essential property of the BWT is that the transformation is reversible. By examining the
BWT of a string S, we see that the BWT is a permutation of S. We will also see that there is
a correlation between the characters in the first column of the cyclic-shift matrix and the last
column, which allows us to compute the original string, given only the BWT.
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Algorithm ComputeBWT(S, SA)
n← S.len
BWT ← string of length n
for i from 0 to n do

pos← (SA[i]− 1) % n
BWT[i] = S[pos]

end
return BWT

Algorithm 4: Computing the BWT of a string S from its suffix array

S can be computed from only the BWT as long as there is a unique terminating character ($), or
the position of the final character is stored. Note that we only store the BWT here, which is the
final column of the sorted cyclic-shifts. S is computed backwards by finding the final character
($) in the BWT and then finding the CS where that character occurs in the first column (the
previous CS). The character in the last column of that CS is S[n − 2]. If there are multiple of
the same character, the nth occurrence of a certain symbol in the last column will map to the
nth occurrence of the same symbol in the first column. This process is repeated until we finish
the cycle, returning to the final character ($). Essentially, this process consists of traversing
cyclic-shifts backwards and looking at the final character, which will give us S, since the final
character of the current CS is continually shifting one position. We will use this technique in
our detection algorithm not to compute the original input, but to be able to traverse our input
string backwards.

Without storing the first column, it might seem hard to determine which CS to move to when
traversing backwards. We can use the fact that the first column consists of the letters of S in
sorted order to determine the previous CS with only the BWT. We can compute the previous
CS from only the last column by determining how many characters are lexicographically smaller
than the current character, and also the rank of the current character at this position. The sum
of these two values is the location of the previous CS. This function is called the Last-to-first
function (LF function). Computing the result of the LF function can be done efficiently by using
a rank/select data structure such as a wavelet tree [18] or wavelet matrix [12] to compute the
rank of all the characters in the BWT, and an array C which contains the number of occurrences
of each letter in the BWT. In table 2.4, we can compute the original S from the BWT by starting
at position 4, because that is the position of the $, then use the LF-function, LF (4) = 0, which
means the second to last character is BWT [0] = A. LF (0) = 1, which means the next character
is BWT [1] = N , and so on.

The LF function will also be useful in the detection algorithm, when we dynamically update the
suffix array of S, given the changes to the BWT.
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Chapter 3

Implementation: LSP server
architecture

The following chapters will discuss how CCDetect-LSP is implemented, and especially focuses
on our novel algorithm based on dynamic extended suffix arrays. The current chapter will look
at the LSP integration and how source code is initially indexed, while the following two chapters
will first discuss how clones are initially detected and then how this analysis is incrementally
updated as source code changes.

CCDetect-LSP is integrated into IDEs via LSP. The tool starts up as an LSP server, which an
IDE client can connect to and send/receive messages from. The goal of the LSP client-server
interaction is to give users of the tool an overview of all clones as they appear in source code,
and allow them to navigate between matching clones. CCDetect-LSP is implemented in Java
with the LSP4J library which provides an abstraction layer on top of the protocol which is easier
to work with programmatically.

Figure 3.1 shows how clones are displayed in the VSCode IDE. The image shows a section of a file
where a Java switch statement has been duplicated in two other files. Code clones are displayed
inline in the file as an “Information” diagnostic, and when hovered over, the client shows the
DiagnosticRelatedInformation information of the diagnostic where all the matching clones
are displayed and can be clicked to navigate to the corresponding match. For a client which
may not implement the DiagnosticRelatedInformation message1, invoking a code-action to
navigate to the matching clone is another option.

The following user-stories shows how interaction with the LSP server works.

• A programmer wants to see code clones for a file in their project, the programmer opens the
file in their IDE and is shown diagnostics inline with the code wherever there are detected
clones. The matching code clones are not necessarily in the same file.

• A programmer wants to see all code clones for the current project. The programmer opens
the IDEs diagnostic view and will see all code clones detected as diagnostics there. The

1Added to LSP in version 3.16, released in 2020. In our experience, some IDEs do not implement this feature.
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Figure 3.1: Code clones displayed in the VSCode IDE

diagnostic will contain information like where the clone exists, and where the matching
clone(s) are.

• A programmer wants to jump to one of the matches of a code clone in their IDE. The
programmer moves their cursor to the diagnostic and will see a list of the matching code
clones. The programmer selects any of the code clones which will open the file and location
of the selected code clone. Alternatively, a code-action can be invoked to navigate, if the
client does not implement the DiagnosticRelatedInformation information.

• A programmer wants to refactor a set of clones by applying the “extract-method” refactor-
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Figure 3.2: Tool architecture

ing (not implemented by CCDetect-LSP). The programmer performs the necessary refac-
torings, saves the file and will see that the refactored clones are no longer detected when
the LSP server incrementally updates its analysis.

• A programmer is editing code and has written or copy-pasted a function which was already
present in the source code of a large code base. As soon as the programmer saves the file,
CCDetect-LSP will perform an incremental update based on the change, and display that
the duplicated source code is a clone. The clone will be displayed until it is removed or
modified until it is no longer a clone.

• A programmer wants to switch to a project in a different programming language, and
wants to use CCDetect-LSP to analyze clones in that project. The programmer edits the
CCDetect-LSP configuration sent from the client to select the new language, which involves
changing two parameters in the configuration. The configuration is explained in more detail
in section 3.3. If the programmer wants to add a new language which has not yet been
added in the CCDetect-LSP source code, a grammar for the language needs to be added
before CCDetect-LSP can analyze that language.

• A programmer wants to use CCDetect-LSP in a new IDE. The process of running CCDetect-
LSP in an IDE is different for each IDE. In general, an IDE which implements LSP, will
have some sort of setup for launching an LSP server with a command, or on a certain event.
The setup for CCDetect-LSP will be the same as for any other LSP server, but if extra
configuration beyond the default values is wanted (such as changing language), the set of
configuration options need to be sent from the client, as explained in section 3.3.

Figure 3.2 shows the architecture of the tool. The LSP module communicates with the IDE
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and delegates the work of handling documents to the document index. Detection of clones is
delegated to the detection module. The LSP module receives a list of clones from the detection
module which is then converted to LSP diagnostics and code-actions which is finally sent to the
client.

3.1 Document index

Upon starting, the LSP server needs to index the project. This involves creating an index and
inserting all the relevant documents in the code base. A document consists of the content of a
file along with extra information such as the file’s URI and some information which is useful for
the clone detection. We define the following record for our documents:

Document {

String uri,

String content,

AST ast,

// Location in fingerprint

int start,

int end

// Used for incremental updates

int[] fingerprint,

boolean open,

boolean changed,

}

Each document in the index primarily consists of the contents, the URI and the AST of the
document in its current state. Storing the AST will be useful for the incremental detection
algorithm.

There are two things to consider when determining which files should be inserted into the index.
First, we are considering only files of a specific file type, since the tool does not allow analysis
of multiple programming languages at the same time2. Therefore, the index should contain for
example only *.java files if Java is the language to analyze. Second, all files of that file type
might not be relevant to consider in the analysis. This could for example be generated code,
which generally contains a lot of duplication, but is not practical or necessary to consider as
duplicate code, since this is not code which the programmer interacts with directly. Therefore,
the default behavior is to consider only files of the correct file type, which are checked into version
control. The tool supports adding all files in a folder, or all files checked into version control.

When a document is first indexed by the server, the file contents is read from the disk. However,
as soon as the programmer opens this file in their IDE, the source of truth for the files content
is no longer on the disk, as the programmer is changing the file continuously before writing to
the disk. The LSP protocol defines multiple JSON-RPC messages which the client sends to the
server in order for the server to keep track of which files are opened, and the state of the content
of opened files.

Upon opening a file, the client will send a textDocument/didOpen message to the server, which

2However, multiple instances of CCDetect-LSP can be run to analyze multiple languages in the same IDE
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contains the URI for the opened file. The index will at this point set the flag open for the
relevant document and stops reading its contents from disk. Instead, updates to the file are
obtained via the textDocument/didChange message. This message can provide either the entire
content of the file each time the file changes, or it can provide only the changes and the location
of the change. Receiving only the changes will be useful for this algorithm when the analysis
incrementally parses the document.

3.2 Displaying and interacting with clones

When detection is finished and the list of clones is ready, the LSP module will convert clones into
diagnostics and code-actions which can be interacted with from the client. For diagnostics, each
clone object is converted into a diagnostic which has a range and some information about the
clone. The diagnostic displays an information message in the client which also has information for
each matching clone. This is achieved this by attaching DiagnosticRelatedInformation to a
diagnostic, which is defined in LSP. When all the code clones have been converted to diagnostics,
the server sends a textDocument/publishDiagnostics message which sends all the diagnostics
to the client in JSON-RPC format. For code-actions, the process is similar, for each clone pair,
we create a code-action which navigates from one to the other, using the window/showDocument
message. These code-actions are similarly sent to the client via the textDocument/codeAction

message, but this message is only invoked when the client specifically requests code actions at a
certain location.

3.3 Configuration

CCDetect-LSP allows the LSP client to configure different parameters of CCDetect-LSP. The
configuration works by utilizing the intializationOptions section of the initialize message,
which is the first message sent from the client to the server. The client can send initialization
options to the CCDetect-LSP server, with the following default values if none are given:

{

language = "java",

fragment_query = "(method_declaration) @method",

clone_token_threshold = 100,

dynamic_detection = true,

update_on_save = true,

ignore_nodes = [],

blind_nodes = [],

}

The fragment query option is a Tree-sitter query, which is explained in more detail in chapter 4.
The rest of the configuration options will also become clear in the following chapters.
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Chapter 4

Implementation: Initial detection

Source code Document index Fingerprint

Suffix arrayClone extractionSource-mappingCode clones

Fragment selection

Figure 4.1: Phases of the detection algorithm

This chapter discusses the detection module of CCDetect-LSP and how the initial detection
algorithm finds code clones. It consists of the detection algorithm which takes the document
index as input, and outputs a list of code clones. The initial input to the algorithm will be the
raw source code of each document in the index, in text format. Figure 4.1 shows all the phases
of the detection algorithm and in each section a figure will be shown to illustrate which part of
the pipeline is currently being discussed. The previous chapter has already detailed the first two
phases, how a document index is built for each file of the source code.

The algorithm of CCDetect-LSP detects syntactical type-1 and allows configuration to detect
blind type-2 code clones as well. Clones are detected based on a token threshold, which means
clones are snippets of source-code which have at least N equal tokens, where N is a configurable
parameter.

Without extra configuration, the clones detected are exactly equal (type-1), but allows differ-
ences in for example white-space, and anything else which is not parsed into the syntax-tree.
Additionally, Tree-sitter grammars often mark some AST nodes such as comments as “extra”
nodes, which are ignored. There is also a configurable parameter to ignore additional nodes.

For type-2 detection, the client can configure which token types are allowed to have different

30



values, which makes blind type-2 clone detection possible.

Finally, there are also two additional rules which govern which clones are included in the list of
reported clones.

• Clones which are completely contained within another larger clone are excluded.

• Clones cannot extend past the end of a fragment.

In broad strokes, the algorithm first selects the relevant parts of source code to detect code clones
in (fragment selection), then transforms the selected fragments into a smaller representation and
normalizes the input for type-2 detection (fingerprinting). For the matching, an extended suffix
array for the fingerprint is constructed, where the LCP array is used to find long matching
instances of source code. Finally, clones are filtered and aggregated into clone classes before they
are source-mapped back to the original source-code locations, which the LSP server can send to
the IDE in the form of diagnostics.

The decision to go with extended suffix arrays were based on the fact that extended suffix arrays
use less memory than the traditional suffix tree approach, which is important in an IDE scenario.
We also wanted to explore dynamic extended suffix arrays to determine if it could be a better
approach to clone detection in regard to performance as well, as we are not aware of any related
work which implements a dynamic extended suffix array and compares its performance with a
dynamic suffix tree for clone detection.

4.1 Fragment selection

Document index FingerprintFragment selection

The first phase of the algorithm involves extracting the relevant fragments of source code which
should be considered for detection. A fragment, in this case is an instance of a particular type
of node in the AST. The tokens the node encompasses is in this phase extracted and used in
the subsequent phases. Note that in a concrete syntax tree, each leaf-node encompasses a single
token, which means that selecting a node and extracting its tokens involves extracting all the
leaf-nodes in the subtree of the selected node1. Since the algorithm is language agnostic, it is
not feasible to have a single algorithm for fragment extraction or to define a separate fragment
extraction algorithm for every possible language. Therefore, a parser generator tool is used,
which can generate the code for parsing any programming language given a grammar. We use
Tree-sitter, a parser generator with incremental parsing capabilities, as well as a query language
for finding any type of node or subtree in the AST [10]. Tree-sitter queries are flexible queries
to select specific nodes or subtrees. For example, in Java it would be fitting to consider only
methods and constructors for clone detection. The Tree-sitter query for selecting only the method
nodes in a Java programs AST would be:

1For type-2 detection we say that we consider certain token types. This is actually AST leaf-node types, not
tokens, but we will call them token types, as it is essentially the same.
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(method declaration) @method (constructor declaration) @constructor (4.1)

This Tree-sitter query selects a node of either type method declaration or constructor declaration
and “captures” it with either the name @method or @constructor, so that it can be further
processed by the tool. The name given is not important, it is only essential that the node gets
captured. Readers interested in the details of the query system are referred to the Tree-sitter
documentation [10].

Using a tree-sitter query, the algorithm parses the program into an AST and queries the tree for
a list of all nodes which matches the query. For each node, all the tokens in the subtree of the
node are extracted and sent to the next phase. Note that in the special case where two nodes
are captured and one of the nodes are in the subtree of the other, only the parent will have its
tokens extracted, as that will extract all the tokens for the child as well.

Implementing something similar for another parser/AST could be as simple as traversing the
tree until a node of a specific type is found, using the visitor pattern [16, p. 366].

4.2 Fingerprinting

Fragment selection Suffix arrayFingerprint

The next phase of the algorithm is to transform the extracted tokens into a representation which
is less computationally heavy for the matching algorithm. The goal is to reduce the total size of
the input which needs to be processed.

Because the algorithm that is used for matching is based on an extended suffix array, the rep-
resentation should be in a format similar to a string, which is the standard input to a suffix
array construction algorithm. However, it is not strictly necessary to use strings. The essential
property of the input array is that we have a sizeable alphabet where each element is comparable.
The required size of the alphabet is correlated with the number of unique token values in the
code base. Therefore, it is safe to say that a larger code base requires a larger alphabet, as larger
code bases will generally have more unique token values. We will use an array of integers instead
of a string as it has a large alphabet in most programming languages. The size of the alphabet
of int values in Java is large enough that it will not be the limiting factor for how large code
bases can be analyzed.

The algorithm utilizes fingerprinting in order to reduce the size of the representation. Finger-
printing is a technique which involves taking some part of the input and mapping it to a smaller
bitstring, which uniquely identifies that part. In this case, the algorithm takes each token ex-
tracted in the last phase, and maps its token value to the bitstring of an integer. The algorithm
stores and increments a counter, which is used to fingerprint a token value whenever a new
unique token is found. The mapping therefore starts with small integers, and uses larger and
larger integers as more unique token values are encountered. The algorithm also stores a map
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public class Math() {

public int multiplyByTwo(int param) {

return param * 2;

}

public int addTwo(int param) {

return param + 2;

}

}

(a) Source-code

Token Fingerprint
public 2
int 3
multiplyByTwo 4
( 5
param 6
) 7
{ 8
return 9
* 10
2 11
; 12
} 13
addTwo 14
+ 15

(b) Fingerprint mapping

[ 2, 3, 4, 5, 3, 6, 7, 8, 9, 6, 10, 11, 1, 2, 3, 14, 5, 3, 6, 7, 8, 9, 6, 15, 11, 1, 0 ]

(c) Fingerprint, terminals underlined

Figure 4.2: Example fingerprint of Java source-code

from the token value, to the fingerprint value, which is used to map multiple occurrences of the
same token value to the same fingerprint value.

Figure 4.2 shows how a sample Java program would be fingerprinted. Note that in the example
only the tokens of the methods were extracted, which is why the class declaration is not finger-
printed. The fingerprint mapping initializes its counter at 2 to make space for some terminating
characters. Each fragment is terminated by a 1 and the fingerprint is ultimately terminated by
a 0. Having these values in the fingerprint will be useful for the matching algorithm where the
suffix array is constructed and utilized for detection. The fingerprint of each fragment is stored
in the relevant document object.

Type-2 clones

With the above fingerprinting algorithm, only type-1 clones would be detected. However,
CCDetect-LSP can detect type-2 clones if the client configures which token types should be
normalized. As shown in chapter 3, CCDetect-LSP can take a list of blind_nodes in its con-
figuration, which signalizes CCDetect-LSP that each token with a type which occurs in this list
should be fingerprinted with the same value. This is done by fingerprinting the token type,
instead of the token value. For example in Java, if the identifier token is set as a token to
normalize, then the param variables in figure 4.2 would be fingerprinted as identifier, instead
of param. This allows blind, but not consistent type-2 clone detection, as we do not introduce
any consistency here. With this fingerprint normalization, we can continue on as if we are only
detecting exactly similar fragments, since any instance of a normalized token, will have the same
value in the fingerprint.
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4.3 Suffix array construction

Fingerprint Clone extractionSuffix array

The next step is to input the fingerprint into a suffix array construction algorithm (SACA), so
that the suffix array can be used to find repeating sequences. Recall that the suffix array of a
string sorts all the suffixes of the string, as discussed in section 2.7. This makes it simple to find
similar regions of text, since the most similar suffixes will be adjacent in the suffix array. All the
fingerprints which are stored in each document object will now be concatenated to be stored in a
single integer array (with terminators after each fragment), which the suffix array (SA), inverse
suffix array (ISA) and longest-common prefix array (LCP) is computed from.

We have utilized a straight-forward implementation of the “Induced sorting variable-length LMS-
substrings” algorithm [35] which computes a suffix array in linear time. The following section
will give a high-level overview of how the algorithm works.

The algorithm will be assumed to have a string as its input, as this is most common for suffix
arrays, and working with strings can be more clear to the reader when considering suffixes. The
algorithm is still applicable to our fingerprint, since an array of integers will work similarly to a
string when given as input.

The “Induced sorting variable-length LMS-substrings” algorithm (SA-IS) is an algorithm that
works by divide and conquering the suffix array and inducing how to sort the suffixes of the
string S from a smaller string, S1. This smaller string consists of the “building blocks” of S and
will make it simple to compute the rest of the suffix array of S. First, we will introduce some
definitions and theorems used for the algorithm.

Definition 14 (L-type and S-type suffixes). A suffix starting at position i in a string S is
considered to be L-type if it is lexicographically larger than the next suffix at position i+1, meaning
suffix(S, i) > suffix(S, i + 1). Conversely, a suffix is considered to be S-type if suffix(S, i) <
suffix(S, i+ 1). The sentinel suffix ($) of S is always S-type.

Note that two suffixes in the same string cannot be lexicographically equal, therefore all cases
are handled by this definition. Determining the type of each suffix can be done in O(n) time
by scanning S from right-to-left and observing the following properties: suffix(S, i) is L-type
if S[i] > S[i+ 1]. Similarly, suffix(S, i) is S-type if S[i] < S[i+ 1]. If S[i] = S[i+ 1], then
suffix(S, i) has the same type as suffix(S, i+ 1). This is true because if the first character of the
current suffix is not equal to first character of the next suffix, we already know the type based on
the first character. If the first character is equal, we have effectively transformed the problem to
finding the type of the next suffix, since we are now comparing the second character of the current
suffix, with the second character of the second suffix. Since we have already computed the type
of the next suffix, we can reuse the value. Figure 4.3 shows a recurrence which determines the
type of each suffix in a string in O(n) time and table 4.1 shows an example.

Definition 15 (LMS character). An LMS (Left-most S-type) character in a string S is a position
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type(S, i) =


S-type if i is the last character of S

S-type if S[i] < S[i + 1]

L-type if S[i] > S[i + 1]

type(S, i+ 1) if S[i] = S[i + 1]

Figure 4.3: Suffix type

B A N A N A $
L S L S L L S
0 1 2 3 4 5 6

Table 4.1: Suffix types of S = BANANA$, LMS characters underlined

i in S such that S[i] is S-type and S[i− 1] is L-type. An LMS-suffix is a suffix in S which begins
with an LMS character. The final character of S (the sentinel) is always an LMS character and
the first character is never an LMS character.

Definition 16 (LMS-substring). An LMS-substring in a string S is a substring S[i..j] in S such
that i ̸= j, S[i] and [j] are LMS characters and there are no other LMS characters between. The
sentinel character is also an LMS-substring and is the only LMS-substring of length < 3

LMS-substrings are mostly lexicographically decreasing or increasing, which is easier to sort.
Table 4.2 shows that in the string BANANA$ there are 3 S-type suffixes and all of them form
LMS-substrings (ANA, ANA$, $). With these definitions, the following theorems will allow us
to induce the suffix array in linear time.

Theorem 2. Given sorted LMS-suffixes of S, the rest of the suffix array can be induced in linear
time.

Theorem 3. There are at most n/2 LMS-substrings in a string S of length n.

These theorems are proven in the original paper [35], these theorems will now be used to compute
the suffix array in linear time. Table 4.2 shows a running example. The smaller string is
construced S1 by first sorting the LMS-substrings. Note that in this algorithm, we are not
sorting suffixes and substrings, but integers of the positions of those suffixes and substrings in S.
Sorting LMS-substrings can be done by first bucketing each LMS-substring by its first character.
The buckets are implemented as a single array with pointers to the head and tail of each bucket,
where the pointers are computed in linear time. Each LMS-substring is inserted at the end of the
correct bucket. Afterwards, L-type suffixes are bucketed by iterating over the bucket array, and
for each suffix, bucket the suffix to the left of it in S, if it is L-type. Meaning that if we encounter
a 6 when iterating over the bucket array, the suffix at position 5 is bucketed, if it is L-type. These
suffixes should be bucketed at the head of their bucket. Finally, S-type suffixes are bucketed,
but the bucket array is now scanned from right-to-left and when encountering values where the
previous suffix is S-type, the previous suffix is bucketed at the tail of its bucket. This final step
could possibly change the ordering of the LMS-substrings. This procedure can be interpreted as
an initial attempt at building the suffix array, where the only thing we know is that the LMS
substrings are inserted in the correct ordering, which is proven in the original paper [35].
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Buckets $ A B N
Initial { -1 } { -1, -1, -1 } { -1 } { -1, -1 }

Slot LMS { 6 } { -1, 3, 1 } { -1 } { -1, -1 }
Slot L-type { 6 } { 5, 3, 1 } { 0 } { 4, 2 }
Slot S-type { 6 } { 5, 3, 1 } { 0 } { 4, 2 }

$ 0
Mapping ANA$ 1

ANA 2

S1 210
SA of S1 [2, 1, 0]
Sorted LMS-substrings [6, 3, 1]

Table 4.2: Building S1 and sorting LMS-substrings of S = BANANA$

After sorting, each LMS-substring is given a unique increasing integer value. If there are multiple
equal LMS-substrings, these are given the same value. Two LMS-substrings are considered equal
if they are equal in terms of length, characters and types. S1 is now built by mapping each
LMS-substring to its unique value, and concatenating them in the original ordering. S1 is now
a smaller case which the algorithm recurses on. The string is at most n/2 in size, meaning there
will be at most log2(n) recursive calls. The recursive call will return the suffix array of the S1.
The original paper proves a theorem which shows that sorting S1 is equivalent to sorting the
LMS suffixes of S. Therefore, the suffix array of S1 can be mapped to the LMS suffixes of S [35].

The base-case of the recursion occurs when the suffix array can be computed only by bucketing
each suffix, which occurs when each suffix starts with a unique character.

Table 4.2 shows how the LMS-substrings are bucketed and how S1 is constructed. We see that the
final buckets are actually equal to the final SA which we are trying to compute. This is because
the LMS-substrings are already sorted in reverse order, which is not true for any arbitrary input.
S1 consists of only unique characters, therefore the suffix array of S1 is computed by simply
bucketing each suffix and returning the array.

When the recursive call returns, the SA of S1 is used to infer the order which the LMS-suffixes
should be slotted into the bigger SA. By scanning the smaller SA and mapping those indices
back to the indices of the original LMS-substrings, we get a sorted ordering of the LMS-suffixes.
We then scan the sorted LMS-suffixes from right-to-left and slot each LMS-suffix at the end of
its bucket, the rest of the L-type and S-type suffixes will be slotted correctly afterwards. For
BANANA$ this will be the exact same process as in table 4.2, since the LMS-substrings were
already inserted in reverse ordering.

There will be O(log2(n)) recursive calls, where each recursive call takes O(n) time, with n halving
in each call. Therefore, the recurrence will have the complexity of:

T (n) =

{
O(n) if base-case.

T (n/2) +O(n) otherwise.

Which means T (n) = 2n = O(n).
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Algorithm ComputeISA(SA)
n← Len(SA)
ISA← array of size n
for i from 0 to n do

ISA[SA[i]]← i
end
return ISA

Algorithm 5: Compute ISA from SA

Algorithm ComputeLCP(S, SA, ISA)
n← Len(SA)
LCP← array of size n
lcpLen← 0
for i from 0 to n− 1 do

r← ISA[i]
prevSuffix← SA[r− 1]
while S[i + lcpLen] = S[prevSuffix + lcpLen] and S[i + lcpLen] ̸= 1 do

lcpLen← lcpLen + 1
end
LCP[r]← lcpLen
lcpLen← Max(0, lcpLen− 1)

end
return ISA

Algorithm 6: Compute LCP from input string S, SA, and ISA

Building ISA and LCP arrays

Computing the ISA after constructing the SA is simple. Since the ISA is simply the inverse of
SA, it can be constructed in linear time with a single loop as seen in Algorithm 5.

Computing the LCP in linear time is more complicated and requires some insight about which
order to compute LCP values. We will also add one extra restriction to the LCP values, being
that the LCP values cannot match past a 1, which were the terminal value between fragments.
This restriction will be useful when we want to extract clones using the LCP array. The algorithm
to compute the LCP is shown in Algorithm 6. The intuition for this algorithm is that if a suffix
at position i in S has an LCP value l describing the common-prefix between it and some other
suffix at position j in S, then the LCP value of the suffix at position i+ 1 is at least l− 1, since
there exists suffixes at position i+1 and j +1 which shares at minimum l characters, except for
the first character which is now cut off. Therefore, they share at least l − 1 characters, and the
algorithm can start comparing the characters at that offset. Table 4.3 shows an example where
the suffixes at position 2 and 4 have a minimum LCP value of 2, because the suffixes at position
1 and 3 have a common prefix of length 3.

Now that we have computed the extended suffix array in linear time, we are ready to detect
clones in our code base using this data structure.
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Index Suffix Minimum LCP
1 A N A N A $ 0
3 A N A $ 0
2 N A N A $ 2
4 N A $ 2

Table 4.3: Minimum common LCP values between suffixes for S = BANANA$

Algorithm SimpleCloneExtraction(S, ISA, LCP)

n← S.len
clones← list
for i from 0 to n− 1 do

if ISA[i] = 0 then
continue

end

if LCP[ISA[i]] ≥ THRESHOLD then
Insert(clones, i) // Adds i to the clone-list

end

end
return clones

Algorithm 7: Extract clones indices in a string S

4.4 Clone extraction

Suffix array Source-mappingClone extraction

With the extended suffix array computed, we can now consider which substrings (prefixes of
suffixes) we want to extract as potential code clones. In this phase, the indices of the fingerprint
which we consider to be code clones are extracted, which will be mapped back to the original
source code in the next phase.

A straightforward solution is to extract every suffix which has an LCP value which is greater
than the token threshold. The algorithm is a loop over S, using ISA to find the corresponding
LCP value. This finds the clone indices, as shown in Algorithm 7.

However, this algorithm will return a lot of contained clones. A contained clone is a clone where
all the tokens of the clone is a part of another, larger clone. The algorithm will give a lot of
contained clones, for example in the case where there is a suffix with an LCP value of 100, the
next suffix will have the LCP value of at least 99 and likely matches with the same code clone as
the previous suffix, but with an offset of 1 token. For any large code clone, there will therefore be
many smaller clones which are completely contained within it, but these clones are also likely to
match with another clone which is also contained within the larger clones match. Since the code
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Algorithm CloneExtraction(S, ISA, LCP)

n← S.len
clones← empty list
for i from 0 to n− 1 do

if ISA[i] = 0 then
continue

end

if LCP[ISA[i]] ≥ THRESHOLD then
Insert(clones, i) // Adds i to the clone-list

while i + 1 < n and LCP[ISA[i + 1]] < LCP[ISA[i]] do
i← i + 1

end

end

end
return clones

Algorithm 8: Extract clones indices in a string S, ignoring contained clones

clones point at mostly the same area, the contained clones are not very useful, and is discarded
by the tool. We extend our clone extraction algorithm to account for this, by using the following
theorem:

Theorem 4. The LCP of a suffix at position i is completely contained in the LCP of the previous
suffix at position i − 1 if the LCP value of the suffix at position i − 1 is greater than the LCP
value of the suffix at position i. Meaning LCP[ISA[i]] < LCP[ISA[i− 1]].

Algorithm 8 adds a while-loop to the clone extraction algorithm which skips over suffixes which
are contained according to the theorem. Note that this algorithm doesn’t disallow contained
clones entirely, but any clone which is a shorter version of another clone pointing to the same
match, will be discarded. Also note that overlapping clones, meaning two clones which share
tokens, but where neither contains the other, will not be filtered.

At the end of this phase we now have a list of indices in the fingerprint which is considered to
be code clones.

4.5 Source-mapping

Clone extraction Code clonesSource-mapping

With the clone indices in the fingerprint computed, we are almost finished. The final step is to
map the clone indices back to the original source code. This is the phase where clone objects are
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Algorithm SourceMap(documents, i)
left← 0
right← Len(documents)− 1

while left ≤ right do
mid← (left + right)/2
if documents[mid].end < i then

left = mid + 1
else if documents[mid].start > i then

right = mid− 1
else

D← documents[mid]
range← D.ranges[i−D.end]
return (D.uri, range)

end

end

Algorithm 9: Get source-map for a position i in the fingerprint

built. Clone objects consist mainly of the source-mapping information, and a list of other code
clones which it matches to. In order to correctly identify where a clone is located, we need to
know which file the clone is located in, the range of the source code in that file the code clone
covers, and the other matching code clones.

To accomplish this, each document in the index needs to store the range of each of its tokens
and keep track of which portion of the fingerprint the tokens of the document is located. This is
done by storing two integer variables, each storing the start position and end position that the
document has in the fingerprint.

To determine which document a fingerprint position corresponds to, we can perform a binary
search on the list of the documents, which is sorted based on the start position of the documents
fingerprint. The goal is to find the document D where the fingerprint position i is

D.start ≤ i ≤ D.end

Once the correct document has been found, we simply have to look up the correct range of the
token which the fingerprint index corresponds to, which the document stores. The index of this
range is i−D.start.

Algorithm 9 returns the source-map of a given position i in the fingerprint, which includes the
URI for the document and the source code range of the token at position i.

This algorithm only shows how to look up the position of a single token. Since a code clone is a
range between two tokens, we have to look up the position at index i extracted in the previous
phase, and the position where the clone ends, which is index i+ LCP[ISA[i]]. The range of the
code clone is therefore the combination of the starting range of the first token (at position i) and
the ending range of the second token (at position i+ LCP[ISA[i]]):
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Aggregating clones

With this algorithm which gets the clone locations, the next step is to make sure that matching
code clones are collected into buckets of clone classes. Remember that the LCP array only gives
us the longest match between two suffixes, but it is naturally possible to have more than two
clones of the same code snippet. This case happens when multiple consecutive indices in the SA
are considered to be clones. Since we only look for type-1 (and type-2 clones if token types are
normalized), the transitivity property holds, meaning that if

SA[i]
clone−−−→ SA[i+ 1]

clone−−−→ SA[i+ 2]

then clones at position SA[i] and SA[i+2] are clones as well. This should be achieved by making
sure that every new clone-pair discovered adds previously detected clones to their clone sets, and
previously discovered clones also add new clones to theirs. Figure 4.4 shows how a new match is
found in two previously disjoint clone classes, and the resulting aggregated clone class.

This is achieved in algorithm 10 where we build a clone-map, where the key is the index that
a clone starts in the fingerprint, and the value is a code clone object. For each clone index i
which was extracted in the last phase, we get the corresponding match index j (SA[ISA[i]− 1]),
and for both i and j we look in the clone-map if there already is a clone at that position, or
a new clone object is created and put in the map. Then, in order to aggregate the previously
discovered clones and the new clone together, the set of matching clones is unioned between the
two clones. In this way, all the previous existing clones of i is added as a clone in j and vice
versa. Every clone in the two clone classes will then receive the same set of code clones. The
UnionCloneClass function unions all the clone sets in both clone classes and then adds a match
from all clones in one clone class to all clones in the other.

Finally, we have a list of every code clone in the code base, which is then sent to the LSP module
of the tool, which handles the displaying of code clones to the client as shown in chapter 3.
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Figure 4.4: Clone class aggregation when a new match is found
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Algorithm GetCloneMap(index, cloneIndices)
n← cloneIndices.len
cloneMap← Empty map with type: int→ CodeClone

for i from 0 to n− 1 do
firstIndex← cloneIndices[i]
secondIndex← SA[ISA[firstIndex]− 1]
size← LCP[ISA[firstIndex]]− 1

// Use SourceMap function to get ranges and documents of clones

firstRange← Get source between firstIndex and (firstIndex + size)
secondRange← Get source between secondIndex and (secondIndex + size)

firstDocument← firstRange.document
secondDocument← secondRange.document

// Build clone objects if they don’t exist

if firstIndex not in cloneMap then
firstClone← new CodeClone(firstDocument.uri,firstRange)
Put(cloneMap,firstIndex,firstClone) // Put clone with firstIndex as key

end
if secondIndex not in cloneMap then

secondClone← new CodeClone(secondDocument.uri, secondRange)
Put(cloneMap, i, secondClone) // Put clone with secondIndex as key

end

// Union clone classes

UnionCloneClass(Get(cloneMap,firstIndex), Get(cloneMap, secondIndex))

end
return cloneMap

Algorithm 10: Build clone-map given the clone indices in the fingerprint
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Chapter 5

Implementation: Incremental
detection

The following chapter will present the incremental algorithm which efficiently updates the list
of clones, without having to rebuild the full extended suffix array. Given an edit to a file in the
project, we will be able to update the document index, fingerprint, extended suffix array and list
of clones faster than the initial detection.

The incremental algorithm is run whenever a document is changed. The document index is
signalized of a change either when a file is saved, or on any keystroke, configurable by the client.

In broad strokes, when a file is changed, we will first update the document index, which involves
also incrementally parsing the changes to the file. From there we want to determine which edits
have happened to the fingerprint, which we compute with an edit distance algorithm. The edits
are the input to the dynamic extended suffix array update algorithm, which is updated to reflect
the extended suffix array of the new fingerprint. Afterwards, the clones are extracted from the
extended suffix array similarly to the initial detection, but with slight optimizations based on
storing positions of potential clone locations between revisions.

5.1 Affordable operations

Before discussing the algorithm, it is useful to determine the time cost associated with different
operations and discuss what operations we can afford. The baseline we are comparing against
is the initial detection where everything is computed from scratch, which runs in linear time in
the size of the code base and fingerprint. We are therefore only looking to perform operations
which are less computationally heavy than a linear scan over the code base. We can for example
afford to iterate over the contents of a single file, which will be useful for our algorithm.

We cannot afford to iterate over the entire code base, meaning the contents of all files in the code
base. The initial detection takes linear time in the size of the code base, therefore, iterating over
the entire code base will likely make the algorithm as slow as the initial detection. The same
goes for the iterating over the entire fingerprint.
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As mentioned, we can afford to iterate over the contents of a single file. Iterating over the
contents of a file with up to a few thousands lines is not a very expensive operation to perform
and will not take a significant amount of time. The whole string of the file contents will be
needed for Tree-sitter to incrementally parse the file.

Parsing an entire file however, can be too expensive in some cases. While the running time
of parsing a single file is still linear in the size of file content, parsing a large file from scratch
can take a significant amount of time in practice, and for small code bases with large files,
parsing can take a significant portion of the total running time of an incremental update. This
is why incremental parsing with Tree-sitter is used, which lowers the runtime of parsing closer
to O(|edit|), rather than O(|file|).

We can also afford two more useful operations, iterating over the documents in the index (not
their contents), and iterating over the clones. We can afford to do these operations because
the number of documents and the number of clones is likely multiple magnitudes smaller than
the contents of the entire code base. Iterating over the documents will be useful when we are
updating the document index, and iterating over the clones is necessary to do when the clones
are mapped back to their original source code locations.

Why we can afford these operations will be become clearer in chapter 6, the main idea is that
all the operations we can afford will take an insignificant amount of time compared to updating
the extended suffix array.

5.2 Updating the document index

Source code Fragment selectionDocument index

The first step of the incremental algorithm is to update the document index. We will also look
at how we can reduce the memory usage of the index without a loss in terms of time complexity.

Each document stores its own content, AST and fingerprint. It is not strictly necessary to store
either the content or the AST in memory all the time, as it is likely that only a handful of files
are open in the IDE at once. Therefore, in the initial detection, we can free the memory of the
file content and AST for each document after the fingerprint has been computed and stored.
However, if a file is opened in the IDE, the file can now be changed, so we should facilitate
efficient updates for these files at least. When a file is opened, the file content should be read
from the disk and updated via the textDocument/didChange messages sent from the client. It
is also important to keep the AST of the opened file in memory in order to facilitate incremental
parsing of the opened files.

When a file is opened, the LSP client sends a textDocument/didOpen message to the server,
which finds the relevant document D in the index, and sets the following fields:
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D.open = true

D.content = Read(D.uri)

D.AST = Parse(D.content)

After the document fields have been set, the document is ready to receive updates. When the
LSP client sends a textDocument/didChange message, the message consists of the URI of the
edited file, the range of the content which has changed, and the content which has potentially
been inserted. This range is then used in a Tree-sitter incremental parse of the file content. After
this parse, we have efficiently updated a documents content and AST. After this update, we also
set D.changed = true.

5.3 Updating fingerprints

Fragment selection Suffix arrayFingerprint

With the updated AST for all documents, we can update the fingerprint of all documents which
have been changed. For each document D where D.changed = true, the fingerprint for D may
have changed. Computing the new fingerprint is the same process as in the initial detection,
where we first query the updated AST for all nodes of a certain type, then for each matched
node N , we extract and fingerprint all the tokens which N covers, using the same fingerprint
mapping as was used for the initial detection. It could be possible to store the nodes queried
between revisions, and try to incrementally update this list of nodes as well, but we do not
believe this would show any significant performance gains, as the number of queried nodes in
each file is normally small.

An additional change we have to consider when incrementally updating fingerprints is that for a
document D, D.start and D.end which corresponds to the range which D covers in the finger-
print, may have changed. Also, any document D1 where D1.start > D.start could also have its
range changed. This range needs to be updated in order for the source-mapping to work. This
is solved while updating each documents fingerprint by counting the number of tokens in each
document after updating, and setting the appropriate start and end fields.

Figure 5.1 shows how an index of three documents is updated when two tokens are inserted.
Note that each document stores its own fingerprint, we do not need to concatenate them to one
large array as in the initial detection.

5.4 Computing edit operations

With the updated fingerprint, we could build the suffix array from scratch and already see a
substantial improvement in performance, as is shown in chapter 6. The major bottleneck of the
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Figure 5.1: Old (above) and new (below) fingerprints and ranges when two tokens are inserted.

initial detection is to parse and fingerprint the entire code base. In order to improve the algorithm
even further, we will dynamically update the extended suffix array to avoid recomputing it fully.

The input to the dynamic extended suffix array algorithm is a set of edit operations. An edit
operation can either be deleting, inserting or substituting a set of consecutive characters in
the fingerprint. The dynamic extended suffix array algorithm will take each edit operation,
and update its state to reflect the new fingerprint. Therefore, the first problem to solve is to
determine what exactly has changed in the fingerprint.

There are a couple of approaches we could take to determine the edit operations. The simplest
is that whenever a file has changed, regard the entire file as changed, and perform a delete
operation which removes the entire fingerprint of that file, and then an insertion which inserts
the new fingerprint of that file. This is a simple approach which can have decent performance if
the file is small, but can also lead to unnecessarily large edit operations. The fingerprint of the
file is likely to be very similar to the previous version, therefore deleting and inserting the entire
fingerprint could be a lot more work than it needs to be. However, this idea that we can always
reduce the number of operations to only two, a deletion and an insertion, will be useful in our
final algorithm.

Another possible approach is to look at the ranges that the LSP client provides with each
textDocument/didChange message and determine which tokens in the fingerprint have been
affected according to this range. However, this approach tightly couples the algorithm to LSP
and the scenario where we know the exact ranges of each change, which makes the algorithm
harder to use, test and evaluate individually when not running as an LSP server. Also, we might
do unnecessary amounts of operations if we do multiple edits, since some operations could cancel
each other out, for example by inserting and then deleting the same text.

A better approach is to determine the changes of the fingerprint using an edit distance algorithm.
An edit distance algorithm is an algorithm which computes the distance between two strings S1

and S2. Distance between two strings is the minimum number of edit operations (insert, delete,
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M [i][0] = i where 0 ≤ i ≤ n

M [0][j] = j where 0 ≤ j ≤ m

M [i][j] =

{
M [i− 1][j − 1] if S1[i] = S2[j]

1 + Min(M [i− 1][j − 1],M [i][j − 1],M [i− 1][j])

Figure 5.2: Edit distance recurrence

D E M O C R A T
0 1 2 3 4 5 6 7 8

R 1 1 2 3 4 5 5 6 7
E 2 2 1 2 3 4 5 6 7
P 3 3 2 2 3 4 5 6 7
U 4 4 3 3 3 4 5 6 7
B 5 5 4 4 4 4 5 6 7
L 6 6 5 5 5 5 5 6 7
I 7 7 6 6 6 6 6 6 7
C 8 8 7 7 7 6 7 7 7
A 9 9 8 8 8 7 7 7 8
N 10 10 9 9 9 8 8 8 8

Table 5.1: Edit distance matrix for REPUBLICAN → DEMOCRAT

substitute) which is required to transform S1 into S2. Many of the algorithms which computes
the edit distance, also allow computing what the operations are.

The classic algorithm for calculating edit distance operations is attributed to Wagner and Fis-
cher [46]. The input to the algorithm is two strings S1 and S2 of length n and m. The output
will be the set of operations needed to turn S1 into S2. This algorithm is based on dynamic
programming where a matrix M is filled from top to bottom and then the operations are inferred
from M . The recurrence in figure 5.2 shows how the edit distance matrix is filled and table 5.1
shows an example matrix.

Each index i, j in M contains the edit distance value between the substrings S1[0..i] and S2[0..j]
The values in M are calculated by determining what is the cheapest operation to do at a certain
location to make the substrings equal. This can be determined by looking at the three surround-
ing indices in M : M [i− 1][j − 1], M [i− 1][j] and M [i][j − 1]. Each of these indices equate to
deleting, inserting or substituting a character in S1.

The edit operations can then be inferred from M by backtracking from the bottom-right index,
to the top-left, giving us the edit operations in reverse. At each position i, j we choose either of
the 3 surrounding indices, the same indices which were used to determine the value originally.
Choosing the left index (i, j − 1) equates to inserting the character S2[j − 1] at position i − 1.
Choosing the top index (i−1, j) equates to deleting the character S1[i− 1]. Choosing the top-left
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index (i−1, j−1) equates to substituting S1[i− 1] with S2[j − 1]. If these characters are already
equal, the operation can be ignored. For example in table 5.1, the first operation is to substitute
R with D at position 0. Afterwards P and U is deleted at position 2. Then the B which is now
at position 2 is substituted by M. This continues with more substitutions until we finally have
DEMOCRAT.

Aggregating edit operations

In the next phase we will feed the edit operations into an algorithm which dynamically updates
our suffix array based on those operations. However, this algorithm will be more efficient if
the operations are combined to singular inserts, deletes or substitutes of strings more than one
character. The edit distance algorithm outputs only single character operations, meaning we
insert, delete or substitute a single character at a time. We therefore want a way to combine
these operations to “larger” operations.

We define an EditOperation with the following record:

EditOperation {

OperationType type,

char[] chars,

int position

}

where OperationType is either an insert, delete or substitute.

One way to combine operations is to find operations of the same type which are sequenced in
the matrix. For example in table 5.1, we have two consecutive delete operations, where P and U

is deleted at position 2. These two operations could be combined to a single delete operation of
two characters.

The idea for the algorithm which computes the edit operations is to traverse the optimal matrix
path backwards and for each operation we either append to the current operation if possible, or
start a new operation. We can continue the current operation if the next operation is of the same
type, and the next operation has the same position as the current operation. For example in table
5.1, we have two delete operations in a sequence at position 1 where P and U is deleted. The first
operation we encounter is the deletion of U. At this point we create a new EditOperation with
position 1 and U in the chars array. The next operation is also a delete operation at position
1, so we add the P to the list of characters for the operation to delete. The next operation is
a substitute at position 0, so we cannot continue the delete operation, and a new substitute
operation is created instead. Similarly, at position 2 to 5, we substitute BLIC with MOCR. This
operation is computed in a backwards fashion similarly to how we did the deletion, except that
the position of the operation is decremented for each character we add to it.

Note that this algorithm is not an optimal algorithm, as this is a trade-off between processing
many characters in few operations, versus processing many operations with few characters. As
mentioned earlier, one could always reduce the solution to be only two operations, deleting the
whole string, and inserting the new string. This is only two operations, but likely processes more
characters in total compared to our algorithm. See Appendix 18 for detailed pseudocode of the
algorithm explained in this section.
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F I N I S H I N G
0 1 2 3 4 5 6 7 8 9

F 1 0 1 2 3 4 5 6 7 8
A 2 1 1 2 3 4 5 6 7 8
S 3 2 2 2 3 3 4 5 6 7
C 4 3 3 3 3 4 4 5 6 7
I 5 4 3 4 3 4 5 4 5 6
N 6 5 4 3 4 4 5 5 4 5
A 7 6 5 4 4 5 5 6 5 5
T 8 7 6 5 5 5 6 6 6 6
I 9 8 7 6 5 6 6 6 7 7
N 10 9 8 7 6 6 7 7 6 7
G 11 10 9 8 7 7 7 8 7 6

Table 5.2: Edit distance matrix for FASCINATING → FINISHING. Blue is optimal path, green
is minimized matrix

Optimizing memory usage

A problem with the above solution is the memory usage of the matrix. It is not feasible to input
the entire old and new fingerprint into an edit distance algorithm, as the full fingerprint can
have millions of symbols, and the old and new fingerprint is likely approximately the same size.
This would require a matrix which is too large to fit in memory. We will use a few techniques to
reduce the memory usage of this algorithm without compromising on the time complexity.

The first technique is to not input the whole fingerprint. We can drastically reduce the size of the
input by only comparing the old and new fingerprint of the document D which has been edited.
D stores its previous and current fingerprint, and whenever it is edited, we can compute the edit
operations of D, with its previous and current fingerprint as input. This also avoids having to
construct the full fingerprint by concatenating each documents fingerprint, which we had to do
in the initial detection. With this approach however, the position of each edit operation of D
will not have the correct position relative to the entire fingerprint, so D.start is added to the
position of each edit operation to correct this.

Another optimization we can do to reduce the size of the matrix is to remove the “trivial” part
at each end of our matrix. If we compare two strings which have many similar characters at the
beginning or end of our string, we know that these will not produce any edit operations in the
matrix, as they will simply be diagonal moves (substitutes) where the characters are already the
same. In table 5.2 we see the edit matrix for the input FASCINATING and FINISHING. The two
words share the common prefix F and the common suffix ING. If we examine the edit distance
values, we see that the highlighted green matrix starts at 0 in the top left, and ends with 6 in
the top right, which is the same final values as in the full matrix. Also, we see that there are
no edit operations being added outside the green matrix. Using this knowledge, we can see that
we only need to compare the strings ASCINAT and INISH, which would give us the exact same
edit distance. We can also get the exact same edit operations, as long as we account for the
starting offset of the original string, so that the operations have the correct positions. Algorithm
11 shows how two input strings can be minimized for usage in the edit distance algorithm. After
getting the edit operations from the algorithm, the startOffset is added to the position of each
operation to account for the offset of the minimized matrix.
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Algorithm EditDistanceMinimizeStrings(S1, S2)

for i from 0 to Min(Len(S1), Len(S1)) do
if S1[i] ̸= S2[i] then break

end
startOffset← i

s1End← Len(S1)− 1
s2End← Len(S2)− 1
while s1End ≥ startOffset and s2End ≥ startOffset and S1[s1End] = S2[s2End] do

s1End← s1End− 1
s2End← s2End− 1

end

miniS1← S1[startOffset...s1End]
miniS2← S2[startOffset...s2End]

return (miniS1,miniS2, startOffset)

Algorithm 11: Minimize strings for edit distance algorithm

The two optimizations drastically reduce the memory and time usage of the edit distance algo-
rithm, but in cases where a very large file is edited, and the beginning and end of the old and
new fingerprint do not match, we can still encounter instances of the matrix being too large to
fit in memory. The problem is that the matrix size has a polynomial growth in terms of the
fingerprint size. This is because the old fingerprint is of size n and the new fingerprint is of size
m, where n ≈ m, which requires an n × m size matrix to calculate the edit operations. For
example if a Java file contains 3000 lines, the number of tokens can exceed 10000, which would
require approximately a 100002 size matrix, which is approaching a memory usage which is too
much for an IDE scenario.

A solution to this problem is to reduce the required memory from the polinomial O(n × m)
memory usage, to a linear O(n) memory usage. A stepping stone towards such a solution is
an observation attributed to Ukkonen, which reduces the required memory to linear growth in
the size of either of the strings [44]. The observation shows that in order to compute the next
row/column of the edit distance matrix, we only need the previous row/column. For example
in table 5.3, the fifth row has been computed using only the fourth row. This is done by first
computing the left-most index of the fifth row, which is always one more than the previous row.
Afterwards, we can compute the other elements of the row from left to right, with the same
recurrence, shown in equation 5.2. This is possible because we always know the above, left, and
top-left elements from the current index. This can be implemented as two arrays, which holds
the previous and current row.

This change allows us to compute the edit distance in linear space, but now the problem is how
to find the actual edit operation. This is not possible, because we don’t have the entire matrix
available to traverse anymore. However, this can be solved using Hirschberg’s algorithm [21].
Hirschberg’s algorithm is an algorithm which can compute the edit operations of two strings in
the same time complexity as the Wagner-Fischer algorithm, but uses only linear space in the size
of either of the input strings.
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D E M O C R A T

R
E
P 3 3 2 2 3 4 5 6 7
U 4 4 3 3 3 4 5 6 7
B
L
I
C
A
N

Table 5.3: Edit distance matrix with minimal memory usage

Hirschberg’s algorithm

The first insight we need for this algorithm is that the optimal path contains at minimum one
edit operation on each row/column of the edit distance matrix. This is intuitive, because in
order to “travel” from the top-left to the bottom-right of the matrix, the path needs to travel
from the top to the bottom, visiting all the rows, and from the left to the right, visiting all the
columns. Hirschberg’s algorithm uses this insight to compute one position of the optimal path
at a time, which it finds in the middle row between two already known positions of the path.
Table 5.4 shows an example of how the positions are found.

Initially, we know that the top-left index, and the bottom-right index of the matrix are guaranteed
to be part of the optimal path, since those positions are the starting and ending point of the
path. The next position to find is in the middle row of the matrix. Determining which position
in the middle row should be selected is done by performing the edit distance recurrence twice,
once from the beginning to the middle row in the same fashion as the original algorithm, and
once in reverse, from the bottom-right to the middle row. Both of the recurrences can run in
linear space, because we only need to store two rows at a time. Summing the two results for the
middle row gives us an array which can intuitively be understood as how long the minimal path
which goes through the corresponding position in the row is. Since we know that there is at least
one of the positions in this row which has to be part of the optimal path, the minimum value
in this array corresponds to one position which has to be part of the optimal path. Once we
know the middle position which is part of the optimal path, we can recursively call the function
twice, once with the top-left and middle as input, and once with the middle and bottom-right as
input. The base-case of the recursion is when the size of the matrix is linear in the size of either
of the strings, in which case we call the Wagner-Fischer edit distance recurrence with a linear
space complexity. Note that there can be multiple minimum values in the row where a position
is selected, which corresponds to the fact that there can be multiple optimal paths through the
matrix.

Each position which is a part of the optimal path is stored as they are found, and can then be
traversed backwards to determine the edit operations similarly to traversing the matrix. For
example if we iterate over the list of positions backwards, we will know that if the first position
is at x, y and the second position is at x− 1, y, that corresponds to a delete operation, just as in
the matrix-based algorithm.
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F I N I S H I N G

F
A
S
C
I 10 8 6 7 6 7 8 8 10 12
N
A
T
I
N
G

F I N I S H I N G

F
A 5 3 3 4 6
S
C
I
N
A
T 5 4 3 4 6 8
I
N
G

F I N I S H I N G
0 1 2

F 1 0 1
A 2 1 1
S 2 2 4
C
I
N 3 3 4
A
T
I 2 0 2 4
N
G

F I N I S H I N G

F
A
S 0 1
C 1 1
I 2 1
N 0 1 2
A 1 1 2
T 2 2 2
I 0 1 2
N 1 0 1
G 2 1 0

Table 5.4: Hirschberg’s algorithm. Blue cells are part of the optimal path, dark-blue cells are
new positions in the current iteration.
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Using Hirschberg’s algorithm, we are now able to compute the edit operations for very large files
without memory usage issues.

A final problem we should be aware of is that in some instances, the number of edit operations
can explode. This happens in cases where there are no long stretches of similar operations in the
matrix. As mentioned, our algorithm which aggregates edit operations together is not optimal,
and could likely be improved to reduce the number of edit operations when we allow more than
one character in each operation. Therefore, in instances where the edit distance algorithm returns
so many edit operations that it is likely very slow to use them in the next phase, we will instead
reduce the solution to only two operations, deletion and insertion of the entire minimized string.
In practice this optimization can often avoid large spikes in the running time of the next phase.

5.5 Suffix array incremental updates

Fingerprint Clone extractionSuffix array

With the edit operations which describes how the fingerprint has changed, the next phase is to
input the edit operations into an algorithm which dynamically updates the extended suffix array.
The algorithm discussed in this section will be run once for each edit operation.

Constructing/updating the extended suffix array is the most time-consuming phase of the al-
gorithm, so the goal for the dynamic update is to take the previous suffix array and an edit
operation, and compute the new suffix array faster than building the suffix array from scratch.
We will also in a following section convert the extended suffix array into a dynamic structure,
which allows insertions, deletions and increments of multiple elements faster than linear time.

The algorithm used is the algorithm presented by Salson et al. [39, 40]. This algorithm is pre-
sented as two algorithms, one which dynamically updates the BWT and one which dynamically
updates an extended suffix array based on the BWT changes. We will first discuss how the
BWT is updated and how that relates to updates in the suffix array. In the next section, we
will present a new data structure which is more efficient for representing the suffix array in a
dynamic setting, and then explain how the LCP array can be attached to this data structure.
The original paper also describes how to incrementally update the ISA, but this will be omitted,
as our new data structure contains the ISA implicitly.

Recall that the BWT is a transform on an input string which is often used for compression
and text-search purposes. The BWT is also reversible by using the LF function to compute
the original string in reverse. The LF function is computed for a position i such that LF (i) =
rankBWT [i](i) + C[BWT [i]] where the array C contains for a character c, how many characters
are lexicographically smaller than c. This function can intuitively be used in the context of the
BWT to allow us to move from CSi to CSi−1. Also recall that the suffix array and the BWT of
a string is highly correlated to the point where one can compute the BWT from the suffix array
in a single pass. Any updates to the BWT will also correspond to similar updates to the suffix
array, so the algorithm which updates the BWT can be used to determine how the suffix array
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Order Cyclic-shift
6 $BANANA
5 A$BANAN
3 ANA$BAN
1 ANANA$B
0 BANANA$
4 NA$BANA
2 NANA$BA
(a) S = BANANA$

Order Cyclic-shift
7 $BABNANA
6 A$BABNAN
1 ABNANA$B
4 ANA$BABN
0 BABNANA$
2 BNANA$BA
5 NA$BABNA
3 NANA$BAB

(b) S = BABNANA$

Table 5.5: BWT for string before and after insert

changes as well.

Updating BWT on insertion

We will observe which parts of a BWT changes when we insert a single character. The approach
for deletions and substitutions are similar, and this approach can easily be extended to edit
operations of more than one character. Note that we are only storing the BWT in a data
structure, not the whole cyclic-shifts. We will consider an insertion of a character c, inserted at
position i. When c is inserted, we know that we will have exactly one more CS for the string,
which starts with the inserted character c, at position i. This CS ends with the character at
position i− 1. We also know that exactly one CS will change its last character, which is the CS
previously starting at position i, but is at position i + 1 after the insertion. This new CS will
end with the inserted character, c. These are the only changes that happen to the characters in
the BWT, but as we will see, the ordering of the BWT characters may not be correct anymore.

For the string BANANA$, let c = B, and i = 2, which results in the string BABNANA$. In table 5.5
we can see that some substrings of the BWT is preserved, such as $AA and AN, but some other
changes have occured. In table 5.6 We see that the new CS2 is BNANA$BA, and the changed CS3

is NANA$BAB. We can find where these cyclic-shifts are located by first looking up i in the ISA,
ISA[2] = 6. This is the location of CS3 (after the insertion), where the final character is updated
to the inserted character B. To find the position where the new cyclic-shift should be inserted, we
can use the LF function to move from the CS3 to CS2. Computing LF (6) after the substitute
gives us 5, which is where the new CS2 should be inserted in the BWT. When we insert in the
BWT, we only need to consider the final character of CS2, which in this case is A, the character
which was previously substituted.

The final stage of the algorithm now that all the elements are present, is to rearrange the
cyclic-shifts which have changed their lexicographical ordering. It is possible that the cyclic-
shifts change their ordering because of the new character. For example ANANA$B < ANA$BAN,
but ABNANA$B > ANA$BABN. A useful observation is that only CSj where j ≤ i will have their
lexicographical ordering changed. This is because only in these cyclic-shifts the inserted character
c comes before the $. Since the $ is the smallest lexicographical character, and no two cyclic-shifts
will have $ in the same location, we know that the lexicographical comparison of two cyclic-shifts
will never go past the $.
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Order F L
6 $ A
5 A N
3 A N
1 A B
0 B $
4 N A
2 N A

(a) Original BWT

Order F L
7 $ A
6 A N
4 A N
1 A B
0 B $
2 B A Inserted
5 B A
3 N B A→ B

(b) After change and insert

Order F L
7 $ A
6 A N
1 A B ↕
4 A N
0 B $
2 B A
5 B A
3 N B

(c) After reordering

Table 5.6: Updating BWT dynamically for the string BANANA$ → BABNANA$

We know that only CSj where j ≤ i can have their ordering changed, and we have already
inserted CSi at the correct position (the new cyclic-shift). We will store two positions, pos
and expected, where pos is initially the position of CSi−1, which was stored before any changes
were made to the BWT. pos is therefore the actual position of CSi−1, expected is the expected
position of CSi−1, which is computed by computing LF (insertionPoint) where insertionPoint
is the position where the new CSi was inserted. With the knowledge of where the cyclic-shift of
order i − 1 is, and where we expect it to be, we can move the cyclic-shift to that position. In
the example, we have that pos = 3, and expected = LF (5) = 2 after the insertion gives us the
expected location of the cyclic-shift of order 1. Therefore, we remove the cyclic-shift at position
3, and insert it again at position 2.

Before we move the character, we also compute newPos = LF (pos) which will give us the position
of the cyclic-shift of order i − 2. After the move, we can continue comparing the position and
expected position by updating pos = newPos, and expected = LF (expected). In the example
this would update both pos and expected to 4. Since the expected position and actual position
is the same, the algorithm is done, and we know that every position of the BWT is now in the
correct location. We know that there will be no more characters which are out of place for any
other CS down to CS0, because LF (pos) = LF (expected), which would be true for all future
iterations as soon as pos = expected

Updating SA on insertion

The suffix array is updated similarly to the BWT. When we insert the new CS at position
LF (ISA[i]) in the BWT, we similarly insert the value i at position LF (ISA[i]) in SA. We insert
the value i because the new suffix which corresponds to the new cyclic-shift starts at the position
where the new character was inserted. When the new CS is inserted, we are now in an invalid
state for the suffix array, because we have two elements with the value i. Note that a suffix
array is always a permutation of the values (0..n) where n is the number of characters in the
input. Since we have inserted a new suffix in the suffix array which is the ith smallest suffix, all
the previous suffixes which had a value j ≥ i is now incremented. After incrementing all these
suffixes, we are now in a valid suffix array state, but similarly to our BWT, some suffixes may
have had its ordering changed. For every reordering operation in the BWT, the elements in SA
are reordered in the same fashion.

Algorithm 12 dynamically updates a suffix array and BWT when a single character is inserted.
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Algorithm UpdateSuffixArrayInsert(SA, ISA, BWT, i, ch)
posFirstModified← ISA[i]
previousCS← LF(BWT, i)

storedLetter← BWT[posFirstModified]
BWT[posFirstModified]← ch

insertionPoint← LF(BWT, i)
if storedLetter < ch then insertionPoint← insertionPoint + 1

// Insert storedLetter in BWT at pointOfInsertion

Insert(BWT, insertionPoint, storedLetter)

// Insert i in SA at pointOfInsertion, increment all values ≥ position

Insert(SA, insertionPoint,pos)
IncrementGreaterThan(SA,pos)

if insertionPoint ≤ previousCS then previousCS← previousCS + 1

pos← previousCS
expected← LF(insertionPoint)
while pos ̸= expected do

newPos← LF(pos)

// Delete value at pos and reinsert at expected in BWT and SA

MoveRow(pos, expected)

pos← newPos
expected← LF(expected)

end

Algorithm 12: Update BWT and suffix array when inserting a single character

This algorithm can easily be extended to insert a string instead of a single character by adding
a loop which continuously updates the pointOfInsertion to the previous CS with the LF
function, and inserts all the characters at that position into the BWT and SA backwards. This
is more efficient than calling the single character algorithm multiple times, because the reordering
stage is only performed once. The details for insertions/deletions of multiple characters is covered
in the original paper [40].

Deletion

A deletion of a single character is a similar procedure as an insertion, as it is simply reversing
the substitution and insertion, and then performing the reordering stage again. If we have the
string BABNANA$, and delete the B at position 2, We know that there will be exactly one CS
removed. This is CS2 which starts with the deleted character B, and ends with the character
before it, A. There is also a single CS which will have its final character changed, CS3, because
the final character B will be deleted. The final step is to again perform the reordering stage for
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CSj where j ≤ 2, as these are the only cyclic-shifts which can have their lexicographical ordering
changed.

The algorithm which performs the deletion at position i will do the deletion and substitution
in the opposite order. First we find both the CS which will have its character substituted in
the BWT, and the CS which will have its character deleted in the BWT. The character to be
substituted will be found with substituted = ISA[i + 1], and the character to delete will be
found with deleted = LF (substituted). BWT [deleted] is then deleted, and BWT [substituted]
is substituted with the character that was deleted. Finally, the reordering phase is performed in
the same fashion, where pos is set to the position of the original CSi−1 and expected is set to
LF (substituted)

In our example substituted = ISA[3] = 7, deleted = LF (7) = 5 and pos = LF (5) = 2.
Then BWT [deleted] is deleted, and BWT [substituted] is set to the deleted character. Then
expected = LF (6) = 3. Note that substituted was decremented after the deletion because the
deletion moved that CS one position up. When the reordering stage happens, we have pos = 2
and expected = 3, so we perform the reordering in the BWT and SA in the same fashion as
previously, and the algorithm will again terminate after one iteration of the reordering phase.

Substitution

Substitution operations are also possible and covered in the original paper, but in CCDetect-LSP
these were simply implemented as a deletion followed by an insertion. This is less efficient than
a single operation, since the reordering stage is done twice, but we do not suspect that this will
worsen the performance in any significant way.

LF function

The LF function is used multiple times for any suffix array update. Therefore, it is important
to be able to efficient compute LF at any point in time. The naive approach of linearly iterating
through the BWT to compute the rank and number of smaller characters is too slow, as it
would be a linear scan in the size of the fingerprint. Recall that LF (i) = rankBWT [i](i) +
C[BWT [i]] where rankBWT [i](i) is the rank for the character BWT [i] at position i in the BWT,
and C[BWT [i]] counts the number of lexicographically smaller characters than BWT [i] in the
BWT. We therefore need a data structure for rank queries on the BWT, and a data structure
which stores the number of smaller characters of each character in the BWT.

For the rank queries, recall that the wavelet matrix was a data structure which could efficiently
compute rank/select queries for strings. The data structure is implemented as a matrix of
dynamic bitsets, where we also stored the number of 0 bits in each level. Traversing this matrix
from top to bottom and performing rank queries on the dynamic bitsets in each level allows us
to perform access, rank and select queries efficiently for a string input. We will use the wavelet
matrix to store the BWT and perform efficient access and rank queries on it as needed. With
the wavelet matrix, we do not need to store the BWT itself, as we can simply query the wavelet
matrix to access characters of the BWT. We also do not need to store the full fingerprint, since
we can access characters in the wavelet matrix and if we need to access the characters in a
sorted order, we can use the LF function. We decided to use the wavelet matrix instead of a
wavelet tree as it has been shown to have faster rank queries, and is more memory efficient
for larger alphabets. Our alphabet can be quite large compared the standard applications of
rank/select data structures (such as DNA analysis). The wavelet matrix is also generally simpler
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to implement, and can be dynamically updated in a simple manner. Each bitset in the wavelet
matrix is a dynamic bitset where we can efficiently insert and delete characters as needed when
the size of the BWT grows/shrinks.

When inserting a character c into the wavelet matrix at position i, we insert the first bit of
c in level 0 in the matrix at position i. The next bit of c is then inserted in level 1 in the
matrix at position rankx(WM [0], i) where x is the value of the previous bit. We continue this
process, updating the position by performing a rank query, and then inserting the bit at that
position, until we reach the bottom of the matrix. Similarly, for a deletion, we find each bit
which was inserted for that position in each level, and remove them. Algorithm 13 shows how
an element can be dynamically inserted into the wavelet matrix. Algorithms for deletions and
substitutions are left out, but follow the same idea. Substitutions are simply implemented as a
deletion followed by an insertion.

A complication with the wavelet data structures is to update the data structure as the alphabet
increases in size. In our case the alphabet size will at some point increase to a size where elements
need an additional bit. For the wavelet matrix, this can be solved by simply inserting a new row
at the beginning of the matrix (level 0), where the bitset consists of all zeroes. Afterwards, the
new element is inserted in the normal fashion.

The C array can be implemented in two ways. Either C[c] holds the number of smaller character
than c in the input, or C[c] holds the number of occurrences of c. There are trade-offs with either
implementation, as storing the number of smaller characters requires a linear scan whenever a
character is inserted or deleted, while storing the number of occurrences requires a linear scan to
compute the number of smaller characters whenever the LF function is called. We have chosen
the approach of storing the number of occurrences, as updating the array is simpler in cases
where the alphabet size increases. When we later update LCP values, we will see that there is a
possibility that choosing the option of storing the number of smaller characters in C is faster.

5.6 Dynamic extended suffix arrays

A major bottleneck when inserting or deleting elements in the suffix array is that when an
element is for example removed, all elements after it needs to be moved by one index so that
the gap is closed. This is also the case in the reordering stage, where all the elements between
the old position and new position of an element needs to be moved by one position. In addition,
since a suffix array is always a permutation from 0 to n − 1 where n is the number of elements
in the input, we need to increment/decrement all elements greater than or equal to the element
which was inserted or deleted. For example, if we insert a new element into the suffix array which
indicates that a new suffix is the ith smallest, then the previous suffix with value i in SA should
now have the value i + 1, which applies to all other suffixes lexicographically greater than the
new suffix as well. In a standard representation for a suffix array (an array), this would require
either a linear scan through the entire SA, or a linear scan through ISA from position i, which
is also linear in the worst case. Multiple linear scans through the SA would make the algorithm
slower than the linear time SACA when the amount of inserted or deleted character increases.

In this section we will introduce a data structure we call the dynamic extended suffix array.
This data structure consists of a dynamic permutation, which facilitates insertion and deletion
of elements in a permutation from 0 to n − 1, without linear scans to close gaps or increment-
ing/decrementing elements. The data structure stores SA, ISA and LCP and is inspired by

59



Algorithm WaveletMatrixInsert(wm, index, value)
numBits← Number of bits in value

while numBits > Len(wm.levels) do
Insert new row at level 0 in wm

end

level← 0
currIndex← index

while level < Len(wm.levels) do
currentBit← Len(wm.levels[level])− level− 1

// Get the bit value at position currentBit in value

bit← GetBit(value, currentBit)

// Insert the bit into the bitset at position currIndex

Insert(wm.level, currIndex,bit)

// Update currIndex to the position to insert in the next level

currIndex← rankbit(wm.level, currIndex)

// If the bit we inserted is 1, add the number of zeroes in the level

if bit = 1 then
currIndex← currIndex + wm.level.zl

end
level← level + 1

end

Algorithm 13: Dynamically insert an element into the wavelet matrix

the data structure introduced for the same purpose by Salson et al. [40]. The data structure
presented by Salson et al. uses the same dynamic permutation tree which facilitates access to
SA and ISA. They also reduce the amount of values stored to reduce memory consumption,
however this compression also slows down the access time of elements in the permutation. Our
data structure will not be compressed, which allows faster access to arbitrary elements, and will
be extended to include the LCP values as well. Therefore, this data structure encompasses the
entire extended suffix array.

The data structure consists of two balanced binary trees, with pointers between elements in one
tree to the other. Figure 5.3 shows the two trees which are labeled the A tree and the B tree.
We will see that these trees can intuitively be understood as a tree containing the indexes (A),
and a tree containing the values (B) of our permutation. Note that the trees do not actually
hold the values displayed in the figure, the values in each node of the figure only represents the
inorder position of each node, which is called the inorder rank of the node.

To construct a permutation of length n, such as [6, 5, 3, 1, 0, 4, 2], we can insert a node in each
tree for each element. After the trees both contain n nodes, pointers are added from a node in
A to a node in B and vice versa (doubly linked). If an element in SA has a value i at position
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j, pointers will be added between the node in A with inorder rank i, and the node in B with
inorder rank j.

Now the tree is complete, but we can also insert new nodes into the data structure as the suffix
array grows. When a new value j is added at position i, a node is inserted into A such that it
has the inorder rank of i, and a node is inserted into B such that it has the inorder rank of j.
For example, if we wanted to insert a new value 4 at position 1 in the permutation in figure 5.3,
we would insert a new node in A so that it is the right child of the node labeled 0, and then
insert a new node in B which is the left child of the node labeled 4.

Deleting a node at position i is similar, but we will instead find the node with a rank of i in A,
then delete that node and the node it points to in B. As the trees are implemented as balanced
trees, traversing, inserting and deleting nodes takes O(log n) time.

The trees can intuitively be understood such that the inorder values in A represent the indices of
the permutation, and the inorder values in B represent the values in the permutation. Therefore,
if we look at a node in A with inorder rank i, and follow the pointer to a node in B with inorder
rank j, this means that the permutation has the value j at position i.

An essential property of this tree is that when a new value j is inserted into the permutation
at position i, all indices ≥ i and values ≥ j is incremented by 1. This is because all the nodes
which had an inorder rank greater than or equal to the new nodes in each respective tree has
now been incremented by 1 simply because the structure of the tree has changed. No additional
work is required to increment the elements.

The part we are still missing is how to find a node with inorder value i, and how to determine the
inorder value of a given node. We cannot afford to traverse all the nodes in an inorder fashion to
find a node with a specific inorder rank. Therefore, the trees are implemented as order-statistic
trees [13, p. 340]. An order-statistic tree is a tree where each node x stores an additional integer
size, which contains the number of nodes in the subtree rooted at x. This allows us to easily
determine how many nodes is in the left subtree of a given node, and use this to determine where
the node with a certain inorder rank is located. If we wanted to find the node in the A tree of
figure 5.3 with inorder rank 4, we would start at the root and see that the left subtree of the
root contains 3 nodes. Therefore, the roots inorder rank is 3. With this information we know
that we need to traverse to the right child, and look for the node with inorder rank 4 − 4 = 0
in that subtree (since we have already seen 4 nodes). Since the node labelled 5 has an inorder
rank of 1 (in its own subtree), we know to traverse left, and at that point we have reached the
correct node.

Algorithm 14 shows how to find a node in a tree by its inorder rank, and algorithm 15 shows
how to determine the rank of a given node, which uses the same idea, but counts the inorder
rank of the node when traveling from the node up to the root instead. The algorithm to find the
value at a certain position is simple with these algorithms. To find the value in the permutation
at position i, find the node with inorder rank i in A, follow its pointer to a node in B, and then
find the inorder rank of that node, which is the value at position i in the permutation. We can
also find the position of any value j in the permutation by performing this algorithm in reverse,
by instead starting at the B tree, finding a node with inorder rank j, then following its pointer
to a node in A and returning that nodes inorder rank.

With the ability to both find a value at a given position in the permutation, and also finding the
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Figure 5.3: Dynamic permutation for the permutation [6, 5, 3, 1, 0, 4, 2]. Colors have no meaning
except to make lines clearer

position of a given value, we can use this data structure to represent the suffix array and inverse
suffix array, instead of a simple array. Inserting, deleting and accessing a node in this data
structure takes O(log n) time, and we no longer need a linear scan through the data structure to
increment/decrement values, as values are automatically incremented/decremented when a new
element is inserted or deleted.

5.7 Dynamic LCP array updates

Now that we have a dynamic structure to represent SA and ISA, we can extend the data structure
to also contain the LCP array, and efficiently update the LCP values as well.

Since every node in the A tree of our data structure correlates to an index, we can easily extend
the data structure to contain LCP values by setting a value in each node of the A tree. This
would make the A tree work as a balanced binary tree for the LCP values, and if an SA value
at position i is deleted, the LCP value stored in the respective node is also deleted.

In the initial construction of the dynamic permutation, LCP values would be inserted together
with the nodes. When dynamically updating the LCP values as suffixes are inserted/deleted, the
procedure is more complicated. Salson et al. also describe a procedure for updating the LCP
values after an insert/delete operation, which we will use [40].

When inserting a character into the input string, the suffix array changes by inserting a new
value, and afterwards moving values from one position to another (reordering stage). Similarly,
a deletion in the suffix array consists of deleting a value, and performing the same reordering
operations. The moving of a value from position i to j can be decomposed into a deletion at
position i followed by an insertion at position j. When updating the LCP array we therefore
need to consider how insertion of a value and deletion of a value in SA affects the LCP values.

The idea for this algorithm is to keep track of all positions which could have its LCP value
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Algorithm GetNodeByRank(root, rank)
current← root
while current ̸= null do

currentRank← current.left.size
if currentRank = rank then

break
else if currentRank > rank then

current← current.left
else

current← current.right
rank← rank− currentRank + 1

end

end
return current

Algorithm 14: Find the node in a tree with a given inorder rank

Algorithm GetRankOfNode(node)
rank← node.left.size
while node.parent ̸= null do

if node.parent.right = node then
rank← rank + node.parent.right + 1

end
node← node.parent

end
return rank

Algorithm 15: Find the inorder rank of a given node

changed, and update the LCP values after the SA is fully updated. There are four different cases
where an LCP value at a position i could be changed:

1. A suffix was inserted at position i − 1 in SA, which is the new suffix that the suffix at
position i should compute its LCP value for.

2. The suffix at position i− 1 was deleted in SA, making the suffix at position i− 2 the new
suffix that the suffix at position i should compute its LCP value for.

3. A character was inserted or deleted in the middle of the LCP for the suffix at position i in
SA, which shortens the LCP value between it and the suffix at position i− 1, and the LCP
value between the suffix at position i and i+ 1.

4. A character was inserted or deleted at the end of the LCP for the suffix at position i in SA,
which could potentially extend the LCP value between it and the suffix at position i − 1,
and the LCP value between the suffix at position i and i+ 1.

To cover the first two cases, we will store a dynamic bitset where a set bit at position i indicates
that at some point, the LCP value at position i needs to be updated.
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Algorithm DynamicPermutationAccess(permutation, i)
aNode = GetNodeByRank(permutation.A.root, i)
bNode = aNode.pointer
return GetRankOfNode(bNode)

Algorithm 16: Get value at position i in a permutation

For an insertion at position i− 1 in SA (case 1), we will set the bit at position i, as the suffix it
compares its LCP to has changed. We will also insert a set bit at position i − 1, as the newly
inserted suffix also needs to compute its LCP value with the suffix at position i− 2.

Similarly, for a deletion at position i− 1 in SA (case 2), we will set the bit at position i, as the
suffix it used to compare its LCP to has been deleted. We will also delete the bit at position
i− 1, as the suffix at that position has been deleted.

After setting these bits while performing an insert/delete operation in the SA, the bitset now
contains all the positions of LCP values which need to be updated for the first two cases. The
other two cases are more complex to find the positions of. Instead of inserting the positions of
these suffix into the bitset, we will iterate over the suffixes which could possibly have their LCP
value changed. Iteration over every suffix and recomputing the LCP value takes linear time in
the size of the fingerprint and is therefore too slow for this algorithm. However, we can reduce
the number of suffixes we need to update by applying a series of observations.

The first observation is that we only need to consider suffixes where the insertion/deletion of a
character at position i has changed the suffix. Those are the suffixes which start at a position
j where j ≤ i. Other suffixes cannot change, as the insertion/deletion happened before the
starting position of the suffix. For a suffix at position j which has changed, two LCP values
can change, the values at position k and k + 1 where SA[k] = j. These two LCP values can
change, because at position k, the suffix at position SA[k] is compared with SA[k − 1], and at
position k + 1, the suffix at position SA[k + 1] is compared with SA[k]. Since both of these
LCP values depend on the suffix at position SA[k] = j, they can potentially change when the
suffix is changed. The positions in the LCP array which can possibly be changed can be iterated
over with the LF function. In the final phase of the suffix array update algorithm when we have
inserted or deleted an element at position i, we are reordering suffixes at position j ≤ i. These
are the suffixes we are looking for, but we can skip all suffixes which are reordered, as they are
already marked to be computed in the bitset for the previous cases. Therefore, the variable pos
points to the next suffix we need to consider at the end of Algorithm 12.

Another useful observation when iterating over suffixes is that after an insertion/deletion, no two
suffixes will have the insertion/deletion occur at the same position. This is true because no two
suffixes start on the same position in the input, and an insertion/deletion at a position i in the
input can therefore never correspond to an insert/deletion at the same position for two different
suffixes. With that in mind, another useful observation is that given two suffixes with an LCP
value of p, any change inside the range of the LCP in either of the suffixes, will change p.

The idea when updating LCP values in the last two cases is to determine if the insertion/deletion
is out of range to possibly affect the LCP value of a suffix. Recall that the LCP value for a suffix
at position i−1 is at minimum one less than the LCP value for the previous suffix at position i, as
discussed in chapter 4. We can determine that it is impossible for the LCP value at position i−1
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↔ INS
BWT A N B N $ A A B
SA 7 6 4 1 0 2 5 3

Old LCP 0 0 1 3 0 N 0 2
New LCP 0 0 1 1 0 1 0 2

Table 5.7: LCP array updating after BANANA$ → BABNANA$ suffix array update. Values
which needs to be updated is underscored in old LCP

to change, if neither of the LCP values which is affected by the suffix at position i changes, unless
the insertion/deletion happens at position i− 1. This is explained by the fact that at minimum,
the LCP of the suffix at position i covers every character of the LCP of the suffix at position i−1
except for the first character. If the first character was the position of the insertion/deletion,
it can change the LCP value, but that case is already handled by the positions stored in the
bitset. Since the suffix at position i− 1 did not update, this holds recursively for the next suffix
at position i − 2 as well. Therefore, as soon as we find a single suffix at position i which does
not lead to an LCP value update, this will recursively hold for all suffixes at position j < i.

With this in mind, the algorithm to update the LCP array has two stages. Given the bitset of
positions which need to be updated in correlation with the first two cases, we perform a select
operation to continuously find the location of set bits in the bitset, and use their position to
determine which positions in the LCP array need to be computed. After all the positions in the
bitset have been updated in the LCP array, we move on the last two cases. From the position of
pos, which was computed during the suffix array update, we continuously call the LF function
on pos to find the previous suffix. At each position, we update the LCP value of the suffix at
position pos and pos + 1, as these two LCP values are both affected by the suffix at position
SA[pos]. When we encounter the situation where both LCP values at position pos and pos+ 1
did not lead to a change in LCP values, the algorithm is finished and the LCP array is updated.

Now that we know which LCP values need to be updated, the next step is to compute the new
LCP values at those positions. The actual computation of updating LCP values is also fairly
complex. In the incremental detection algorithm we are not storing the entire fingerprint, we
only have the BWT stored in the wavelet matrix, and the LF function allows us to move from
one character to the previous in the original input text. When we compute LCP values, we
need to be able to compare characters in two suffixes from start to potentially end of the input,
therefore we need to be able to move from one character to the next, which is the inverse of the
LF function.

The inverse LF function for a position i computes the next cyclic-shift by first determining what
character is in the first column of the CS at position i in the sorted cyclic-shifts, and its rank in
the first column. With the character and rank of that character, we can perform a select query
on the BWT for that character and rank, which will give us the location of where that character
is located in the last column (BWT) which is the next CS. This is the next cyclic-shift because
it is the cyclic-shift where the character which was previously in the first column is now cycled
one character to the left, which corresponds to the next CS. To find which character is in the
first column at position i, recall that the F column in the sorted cyclic-shifts just contain all the
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characters of the input in sorted order. We can therefore use the C array to determine which
character is located at exactly position i, just by counting the number of occurrences of the
previous characters. If C is instead implemented as an array where the C[c] holds the number of
characters smaller than c in the input, finding the correct character can be done efficiently with
a binary search. When we know which character is located at position i in the first column, we
do selectc(i − C[c]) to determine where that occurrence of c is located in the last column (the
BWT), which is then returned as the result of the inverse LF function.

With the inverse LF function, computing the LCP value between two suffixes at position i and j
is done by repeatedly applying the inverse LF function to i and j, and comparing the characters
at those positions in the BWT.

Table 5.7 shows how the LCP array is updated for the same example as in table 5.6. In the suffix
array update, we inserted a new suffix array value at position 5. This also means a new LCP
value is inserted at position 5 (N). This new suffix at position 5 means that the LCP value at
position 5 and 6 needs to be updated. In addition, the reordering of the two suffixes at position 2
and 3 both lead to two LCP values needing to be updated. For position 2, position 2 and 3 needs
to be updated, and for position 3, position 3 and 4 needs to be updated. As these LCP updates
overlap on position 3, only 5 LCP values need to be updated in total. Note that multiple of the
LCP values that needed to be updated did not actually change value, this is simply because the
new LCP value coincided with the previous value, and it was marked to be changed because it
could potentially have changed. The last two cases of potential LCP updates, where we need to
iterate over suffixes, did not lead to any additional LCP value changes in this instance.

5.8 Dynamic clone extraction and source-mapping

Suffix array Source-mappingClone extraction Code clones

The LCP array is no longer implemented as an array, but as a balanced tree. As trees are more
costly to traverse linearly compared to arrays, we also want to improve how we extract clones in
this phase. The goal of the clone extraction phase is still to find the indices in the fingerprint
which corresponds to the beginning of a code clone in the original source code. These indices
will be mapped back to the original source code in the source-mapping phase.

Recall that the initial detection clone extraction algorithm in chapter 4 traversed the suffixes
from beginning to end, and extracts indices of suffixes where the LCP value is above the token
threshold parameter. Also recall that some clones were ignored, those being clones which extend
past a single fragment, or clones which are contained inside a larger clone. This algorithm
will now be converted to run on the balanced tree which contains the LCP values, which also
optimizes the algorithm to reduce the amount of LCP values we need to examine.

The idea for this algorithm is to always store a list of all the nodes in the tree which have an LCP
value above the token threshold. These are after all the only nodes which could possibly be the
beginning of a code clone, even if some of them will be filtered out later. When an LCP value
is updated, we can check to see if the new value is above the token threshold. If the previous
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Algorithm DynamicCloneExtraction(nodesAboveThreshold)
clones← empty list
lastAdded← −1
lastLCP← −1
for node in nodesAboveThreshold do

index← GetRankOfNode(node.pointer)
if lastAdded ̸= −1 then

difference← index− lastAdded
if node.key + difference ≤ lastLCP then

continue
end

end
Add(clones,node)
lastAdded← index
lastLCP← node.key

end
return clones

Algorithm 17: Extract clone indices in dynamic extended suffix array

value was below the threshold, and the new value is above the threshold, we know that this is
a node which could potentially be a new code clone, so storing and examining only these nodes
can reduce the amount of nodes we need to examine. When all LCP values have been updated,
we can filter out nodes which have had their LCP value updated to be below the threshold as
well.

After all LCP values are updated, we are left with a set of all the nodes with an LCP value above
the token threshold. In order to filter out clones which are contained within other clones, we
need to add a similar check to the loop which was added in Algorithm 8, however since the set
only contains nodes with LCP values above the token threshold, the algorithm will be slightly
different. Instead of adding a loop which skips past indices which are contained clones, we can
instead check if the last node which was deemed the start of a code clone contains the current
clone we are looking at. Doing the process in this fashion allows us to skip checking many nodes if
there are long stretches of suffixes in the fingerprint with LCP values below the token threshold.
Algorithm 17 shows how these clone indices are computed.

After applying this algorithm we are left with the nodes with inorder ranks which correspond
to the same indices as in the initial detection For the final phase, which involves mapping the
clone indices back to the original source code, we can do almost the same procedure as in the
initial detection. This algorithm is similar to Algorithm 10, but some parts are changed to avoid
traversing through the trees many times to find the second index, which we would have to do
if we used Algorithm 10 without any modifications. The problem with Algorithm 10 is that it
computes the expression SA[ISA[firstIndex]− 1] to find the index of the matching clone. This
is not a problem in the initial detection, because SA and ISA are arrays, which give O(1) time
access. This is not the case for the dynamic extended suffix array, which would require O(log n)
access time for that expression. Instead, only the nodes of the clone indices in Algorithm 17 is
stored, and for a node firstNode, we can find the node of the matching secondNode in O(1) time
by finding the predecessor of firstNode and following its pointer. Remember that the nodes we
have stored as clone indices are nodes in the A tree which corresponds to SA indices. Following
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the pointer corresponds to SA values, or alternatively, ISA indices. After we have both the
firstNode and secondNode, we can get their fingerprint indices by getting the inorder rank of
their pointer, with Algorithm 15. Afterwards, the algorithm continues as in the initial detection,
which finally builds the clone-map. While this algorithm still requires traversing the tree in
O(log n) time, we have reduced the number of traversals needed from 5 with a direct translation
of Algorithm 10, to 2 traversals for each clone, with the smarter traversal of nodes.

Now that we have successfully source-mapped from our dynamic extended suffix arrays to code
clones, we are finished, and we have the set of clones ready to be sent to the client.
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Chapter 6

Evaluation

In this chapter, CCDetect-LSP will be evaluated based on different criteria, which combined will
provide a basis for evaluating the tool as a whole.

The most important aspect of CCDetect-LSP to evaluate is its performance in a real-time en-
vironment. We will compare the time of the initial detection with the incremental detection,
as well as compare its performance with another incremental clone detector, iClones [17]. Note
that we will also distinguish between the initial detection where parsing the entire code base is
necessary, and subsequent detections which still constructs the suffix array from scratch, but does
not require parsing the entire code base. We will call this type of detection the SACA detection,
while the detection which uses the dynamic extended suffix arrays will be called the incremental
detection. This is done to compare the dynamic extended suffix array against building the suffix
array from scratch.

This chapter will evaluate CCDetect-LSP in the following ways:

• Verify correctness of clone detection with BigCloneBench

• Informal complexity analysis of each phase in the initial and incremental detection algo-
rithms

• Performance benchmark of SACA detection, incremental detection and iClones

• Memory usage benchmark of SACA detection, incremental detection and iClones

• Language and IDE support

6.1 Verifying clones with BigCloneBench

In order to verify that CCDetect-LSP correctly identifies clones, we should analyze and confirm
that CCDetect-LSP finds all clones in a given code base. BigCloneBench [41] is a clone detection
benchmark of a set of known clones in a Java dataset called “IJaDataset”. The benchmark
consists of the IJaDataset and a database containing information of the clones which exist in the
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dataset. BigCloneEval [42] is a tool which simplifies evaluation of a tool on the BigCloneBench.
BigCloneEval evaluates a tool by running the tool on the dataset, letting the tool output all
the clones the tool finds, and then matching the clones the tool found with the clones in the
database. This makes the BigCloneBench essentially a big oracle for clone detection in a code
base, which we test CCDetect-LSP against. The clones in the database are manually verified by
humans, and include type-1 to type-3 clones.

We evaluated CCDetect-LSP by running the initial detection algorithm on the dataset, and
outputting all the clones the tool found. BigCloneEval expects to get a file where each line
contains a clone pair, where a clone is specified with filename, starting and ending line. This
was simple to extract from our clone-map, where we converted our ranges which point to the
beginning and ending token, to just the line number of those tokens.

BigCloneEval reports the recall of a tool, meaning the percentage of found clones. Therefore, we
did not make sure that our conversion to the format BigCloneEval expects gave the minimum
number of clone pairs. For example, for a clone pair of clones A and B, we output both that
A is a clone of B and that B is a clone of A, which is superfluous. This would lead to a bad
precision, but does not affect the recall in the report which BigCloneEval outputs.

For CCDetect-LSP, we used mostly the default parameters of BigCloneEval, but we increased
the minimum clone size to 100 and set the minimum similarity threshold to be 100%, since we
are only evaluating CCDetect-LSP for type-1 and type-2 clone recall. Setting the minimum
similarity threshold also drastically reduces the time an evaluation takes, as we skip evaluating
detection of type-3 clones. The default token threshold was set to 100 instead of 50, as the
evaluation time alsos increases drastically as the number of clones to match in the database and
the number of clones reported by CCDetect-LSP increases.

For the type-2 detection, we set the following AST nodes to be normalized:

blind_nodes = [

"name",

"identifier",

"string_literal",

"decimal_integer_literal",

"decimal_floating_point_literal",

"type_identifier",

]

These nodes were normalized because it correlates with our definition of a type-2 clone.

Appendix 9.1 shows the command which runs BigCloneEval, and the beginning of the report gen-
erated when CCDetect-LSP is evaluated. The report shows that CCDetect-LSP has a ∼99.98%
recall for type-1 clones and a ∼89.40% recall for type-2 clones. CCDetect-LSP is clearly capable
of detecting type-1 clones. As for the missing type-1 clones, while it is not so simple to deter-
mine which clones were not detected, it is possible that these clones are not reported because of
inconsistencies in the database. The report also shows that CCDetect-LSP manages to detect
almost all type-2 clones. This will be discussed further in chapter 7.
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6.2 Time complexity of detection

In this section we will conduct an informal analysis of the running time of each phase of the
initial, SACA and incremental detection to argue that the average runtime complexity of the
incremental detection is lower than the initial detection. In each phase we will argue the run
time in terms of Big O notation. Some claims will be substantiated in the next section where we
look at concrete code bases and their properties.

First, we will define some notation for this analysis. We are analyzing a code base of size n,
where n is the number of characters in the code base. The fingerprint of the code base is of size
f , where f is the number of symbols in the full fingerprint and f ≪ n. The alphabet of the
fingerprint has a size of σ. In the incremental detection, E is an edit, consisting of e characters.
We will also use |clones|, |documents|, |edits| when discussing the number of clones, documents
and edits.

The initial detection runs in O(n) time. The bottleneck of the initial detection is reading and
parsing all the content in each file. Tree-sitter generates Generalized LR (GLR) parsers [29],
which in the worst-case have a O(n3) running time, but O(n) for any deterministic grammar. As
programming languages generally have deterministic grammars, we will assume that the running
time of parsing with Tree-sitter takes O(n) time. After the initial parsing, the SACA detection
runs in O(f) time. The running time is O(f) because the suffix array construction is performed
for every update, which takes linear time in the size of the input, which is the fingerprint. The
extraction of clones from the LCP array also runs in O(f) as it is a single scan over the LCP
array. The final source-mapping is a bit more complicated, taking O(|clones|× log(|documents|)).
This complexity arises from binary-searching the list of documents to find the correct document
for each clone. This is highly likely to be less time consuming than the suffix array construction,
as the number of documents and number of clones are usually orders of magnitude lower than
the size of the whole code base. Therefore, we get a final running time of O(f) + O(|clones| ×
log(|document|)), where O(f) is highly likely to be the dominating factor.

For the incremental detection, we have already parsed the code base and built the index, dynamic
extended suffix array and wavelet matrix for the code base. Afterwards, when an edit E is
performed in a document D, the first phase is to update the document index. We iterate over
the documents to update their fingerprint ranges, which has a complexity of O(|documents|).
When a document which has been edited is reached, the new document content is incrementally
parsed, queried for fragments and then the fragments are fingerprinted. In an IDE scenario, only
one file is edited in each update, so only one document needs to be parsed in each update. In
the worst-case, we have to fingerprint the entire document, which has a complexity of O(|D|).
The complexity of this phase is therefore O(|documents|+ |D|).

Next, extracting the edit operations which have happened to Df (fingerprint of D), takes
O(|Df | + |E|2) where |E| ≤ |Df |. Note that the size of the edit is calculated as the area
which E covers, meaning that if an edit consists of changing a token at the beginning of the
file, and a token at the end of the file, then |E| ≈ |Df |. We get this time complexity because
Hirschberg’s algorithm runs in O(n × m) where in our case, n ≈ m. If the size of the edit is
contained in a smaller area, we apply the optimization which reduces the size of the edit by
comparing characters at the beginning and end of the string, as discussed in chapter 5. This
process has a complexity of O(|Df |), and afterwards Hirschberg’s algorithm has a worst-case
complexity of O(|E|2).
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The worst-case complexity of dynamically updating the extended suffix array is actually slower
than a linear time SACA algorithm in the worst-case. The worst-case scenario when insert-
ing/deleting a character in the fingerprint is that every single suffix needs to be reordered, mean-
ing we reorder O(f) suffixes, where each reordering takes O(log(f)) time, as it requires deleting
and inserting an element in the dynamic extended suffix array. In addition, we need to call the
LF function twice for each reordering, which has a O(σ+log f log σ) complexity. The complexity
of the LF function comes from a rank call in the wavelet matrix, and an iteration over C to find
the number of smaller characters. This results in a O(f × (σ + log f log σ)) running time of this
phase, which is worse than the O(f) running time of the SACA algorithm. In addition, before the
reordering when we are inserting/deleting characters in the BWT, we use the LF function and
insert/delete in the wavelet matrix and the C array. The dominating factor of these operations
is again the LF function. If an edit operation consists of inserting/deleting multiple characters,
the number of LF function calls is increased, with a complexity of O(e × (σ + log f log σ)). We
can extend this to account for multiple edit operations as well, which increases the complexity to
O(|edits|×(e×(σ+log f log σ))). Note that while there are many factors in this time complexity,
all the factors should be quite small compared to f , making the complexity of reordering the
suffixes the dominating factor of this phase.

The average-case complexity of this phase is however highly likely to be faster. Salson et al.
have shown that on average, the number of reorderings required for an insertion/deletion in a
suffix array is highly correlated with the average LCP value of the input [30]. Their data shows
that for multiple different types of data such as genome sequences and english text, the average
LCP value of the input is generally magnitudes lower than the input size. In our experiments,
this applies to source code as well, as code bases we have tested on have all had an average
LCP values well below 100. See Table 6.1 to see the average LCP value for different code
bases. A lower number of reordered suffixes for lower LCP values seems intuitive, as lower LCP
values mean that the insertion/deletion will affect the ordering of fewer suffixes in the input.
With this information, it would be more accurate to de-emphasize the importance of the O(f)
number of reordered suffixes in our analysis, and we therefore claim that the average running
time of an edit operation on the suffix array is closer to O(e× (σ+ log f log σ)) if we account for
multiple characters being inserted or deleted as well. We extend this to account for multiple edit
operations as well, for each edit operations which was computed in the last phase, we perform
an insertion/deletion of e characters. Therefore, the total complexity of this phase on average is
closer to O(|edits| × (e× (σ + log f log σ))).

Next there is the clone extraction phase. Recall that in the dynamic detection clone extraction
phase, we had stored all nodes with an LCP value above the token threshold, and iterate over
those to determine which of them are clones or not. In the worst-case, every index in the
LCP array would be above the token threshold, which would be an O(f) complexity iteration.
However, this is highly unlikely, since the nodes with LCP value above the token threshold are
either clones, or contained clones. The number of contained clones is limited by the number
of clones because each clone can only have a limited amount of contained clones. Therefore,
the number of LCP nodes examined should be closer to O(|clones|), which is highly likely to
be less expensive than iterating over all the LCP nodes. For each examined LCP node, we
need to traverse from the node, to its pointer node, and then to the root of the B tree to
determine the fingerprint index of that LCP node. We do the same to determine the index of the
matching clone, as described in Chapter 5. These traversals take O(log f) time. The worst-case
performance of this phase is therefore O(f × log(f)), but on average the complexity is closer to
O(|clones| × log(f)).
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Finally, the source-mapping phase is easier to analyze. As we now know all the positions of
clones and their matches, building the clone-map takes O(|clones| × log(|documents|)) time. We
perform the binary-search over the documents to get the source location for each clone index we
found in the previous phase. This is the same complexity for both the SACA and incremental
detection.

With this informal analysis, we have demonstrated that in the average case, the incremental
detection should be faster than the SACA detection, as none of the phases reach or exceed the
O(f) running time of the SACA detection. In the next section we will show that the properties
we have assumed for this analysis are present in multiple code bases, and that these properties
lead to a better benchmark performance for the incremental detection.

6.3 Benchmark performance

For the performance benchmark we will benchmark the running time of CCDetect-LSP on code
bases and edits of different sizes. We will compare the performance of the incremental detection
with the SACA detection and iClones [17].

iClones is a tool which, similarly to CCDetect-LSP, does incremental clone detection. The
tool takes n revisions of the same code base and will after the initial detection, reuse as much
information as possible to reduce the amount of work needed to analyze consecutive revisions.
The algorithm which iClones uses is based on generalized suffix trees (GST), and the tool can
detect up to type-3 clones. For a revision i, iClones expects to have a file named changed in
the root folder of the revision, which contains information on which files have changed between
revision i − 1 and i. For each file which has changed, the suffixes in the file is inserted into the
GST, reusing nodes of the tree if possible.

For the performance benchmark, the code bases are set up in the way iClones expects. For each
code base to analyze, we will store n revisions of it, where each revision contains some changes
to some files. An evaluation program for CCDetect-LSP was written so that it can process this
same setup, making it simple to run both CCDetect-LSP and iClones on the same code bases,
and compare their results. Note that it was not feasible to perform incremental parsing for such
a setup, as this setup did not include a range for the changed content inside a file. Instead, each
file which is edited in each revision is parsed from scratch. However, we believe that the cases
where incremental parsing is particularly useful, such as when repeatedly editing a large file, is
not displayed in such a setup anyway, as each revision will only edit a file once in each revision.

To create a larger sample set of code bases and edits, it is preferable to generate new revisions
of a code base programmatically. Generating new revisions of a code base means that we copy
the code base and apply a number of insertions/deletions to random files, to simulate how a
programmer would edit files when programming. Generating new revisions of code bases is not
a trivial problem, since each edit performed in a file should still give a valid program which
can be parsed. If the file cannot be parsed, Tree-sitter will not give a proper AST for the file.
Because of this, generating insertions is hard, because we need to make sure that the location
we are inserting some code is a valid location for that code. It is easier to generate deletions
first instead. Deletions are easier to generate, as we can use Tree-sitter to determine where a
fragment of size n is located, and remove that section of code in the next revision. For example
in Java, we can delete an entire method, and still know that the program will parse to a valid
AST afterwards. After we have generated for example 10 revisions where the difference between
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Revision 0
(Original source)

Revision 1
Delete 100 tokens x 10

Revision 2
Delete 100 tokens x 10

Revision 2
(Original source)

Revision 1
Insert 100 tokens x 10

Revision 0
Insert 100 tokens x 10

Figure 6.1: Reversion of an evaluation test. Delete100x10 to Insert100x10

each revision is deletion of some number of fragments, we can then reverse the ordering of the
revisions, so that the final revision is now the first revision, and so on. This will translate each
deletion to instead be an insertion, as an insertion is simply an inversion of a deletion. Figure
6.1 illustrates how a test consisting of three revisions with deletions can be inverted to create
a test of insertions. With this technique we can generate arbitrary tests consisting of either a
number of insertions or deletions in each revision.

There are multiple variables we can tune when generating the tests. Primarily the three most
important factors of the tests is the size of the code base, the number of edit operations in each
revision, and the size of those edit operations.

The size of the code base will naturally affect the running time of the algorithm. We randomly
picked open-source code bases of differing sizes and differing amounts of duplication to run the
benchmark on. We selected the code bases WorldWind1, neo4j2, graal3, flink4, elasticsearch5

and intellij-community6. The code bases are all Java code bases of different size, with different
amounts of duplication. Table 6.1 shows some properties of the code bases, including their
number of lines, the number of clones detected by CCDetect-LSP for a token threshold of 100,
the average LCP value and the number of LCP values above 100. An interesting aspect of the
graal and flink code bases is that they both contain ∼2.2MLOC, but graal has a higher LCPavg,
which could potentially lead to a slower suffix array update, according to our informal analysis.

Additionally, we chose to test both an edit size of 10 and 100 tokens with 10 edits in each
revision. We believe these values to be slightly larger than what is realistic for an IDE scenario
where a programmer is editing and updating the fingerprint of a single file at a time. For a test
where we are performing 10 insertions of 100 tokens, this means we are inserting 1000 tokens in a
single edit, which is likely larger than any realistic edit, but could occur in large-scale automatic
refactoring operations. Therefore, if the results shows that the algorithm can process these types
of edits in “real-time”, we believe that the algorithm can process most realistic editing scenarios.

1WorldWind: https://github.com/NASAWorldWind/WorldWindJava
2neo4j: https://github.com/neo4j/neo4j
3graal: https://github.com/oracle/graal
4flink: https://github.com/apache/flink
5elasticsearch: https://github.com/elastic/elasticsearch
6intellij-community: https://github.com/JetBrains/intellij-community
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Code base LOC Clones detected LCPavg LCP≥100

WorldWind 550KLOC 1517 18 63967
neo4j 1MLOC 1313 9 27557
graal 2.2MLOC 2012 28 154452
flink 2.3MLOC 4729 13 155754
elasticsearch 3.2MLOC 9986 14 289511
intellij-community 5.8MLOC 3585 19 336190

Table 6.1: Properties of code bases

In addition, we performed a final test on the elasticsearch code base where in each revision, the
number of edits increase. This was tested to see how CCDetect-LSP scales when the number of
edits increase. The size of these edits are not realistic for the IDE scenario, as when the number
of edits increases, thousands of tokens are being edited in a single revision. However, this could
be more realistic for the evolution scenario. Recall that the evolution scenario is when we analyze
different revisions of a code base such as different commits in version control.

The benchmarks were run on a computer with 16GB RAM, and an Intel i7-2600K CPU with a
3.4GHz clock speed and 4 cores7. The computer runs Manjaro Linux with kernel version 6.1.25-1.
The SACA detection, incremental detection and iClones was run with a token threshold of 100,
and the processing time of each revision was timed using a simple clock mechanism programmed
in Java. CCDetect-LSP did not normalize any AST node types in this evaluation, so CCDetect-
LSP detects strictly type-1 clones in this benchmark. We do not believe detection of type-2 clones
would affect the performance benchmarks signficantly. Type-3 clone detection was disabled for
iClones with the -minclone 100 parameter. Each test was run three times, and the results
were averaged. Only three runs of all tests were performed because running all the tests takes
a significant amount of time (multiple hours), and the results seem to be stable from three runs
only.

Figure 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 shows the benchmark results on the different code
bases. Each graph shows the running time of the SACA detection, the incremental detection
and iClones when run on a certain code base and edit operation size. For each code base there
were four tests, where two graphs consider deletions of size 10 or 100 (DEL10, DEL100) and two
graphs consider insertions of size 10 or 100 (INS10, INS100). The running time is shown on a log
scale, as the initial detection is extremely slow compared to the subsequent detections. iClones
was not able to run on the intellij-community code base, as the memory usage exceeded 16GB,
therefore only the CCDetect-LSP algorithms is shown on those graphs. The elasticsearch code
base with a size of 3.2MLOC was approximately the maximum size code base iClones could run
on before the computer ran out of available memory. Note that figure 6.8 shows the test where
an increasing number of edits were performed in each revision, the number of edits are displayed
as the labels of the x-axis.

7Note that this CPU is quite old, and may not be representative of today’s modern CPUs
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Figure 6.2: WorldWind performance benchmark
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Figure 6.3: neo4j performance benchmark
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Figure 6.4: graal performance benchmark

78



0 1 2 3 4 5 6 7 8 9
Revision

1,000

10,000

m
s (

lo
g)

flink DEL10
CCDetect SACA
CCDetect incremental
iClones

0 1 2 3 4 5 6 7 8 9
Revision

1,000

10,000

m
s (

lo
g)

flink DEL100
CCDetect SACA
CCDetect incremental
iClones

0 1 2 3 4 5 6 7 8 9
Revision

1,000

10,000

m
s (

lo
g)

flink INS10
CCDetect SACA
CCDetect incremental
iClones

0 1 2 3 4 5 6 7 8 9
Revision

1,000

10,000

m
s (

lo
g)

flink INS100
CCDetect SACA
CCDetect incremental
iClones

Figure 6.5: flink performance benchmark
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Figure 6.6: elasticsearch performance benchmark
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Figure 6.7: intellij-community performance benchmark
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Figure 6.8: Elasticsearch performance benchmark with increasing number of edits
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Figure 6.9: Memory usage of each tool when running the DEL10 test for each code base.

6.4 Memory usage

Another important aspect of clone detection tools and especially IDE tools, is the memory usage
of the tool. As CCDetect-LSP is primarily implemented as an IDE tool, it is important that
the tool can run alongside other IDE tools and applications. Therefore, we will in this section
analyze the memory usage of CCDetect-LSP and again compare the SACA detection, incremental
detection and iClones. To simplify this analysis, we will for each code base run one of the tests
we previously ran for the performance benchmark, and observe the peak memory usage of each
algorithm, using the JProfiler8 profiling tool. In our experience, the clone detection tools we are
evaluating in this scenario does not have large spikes in memory usage, and generally stabilizes
around the peak memory usage. Therefore, we only observed the peak memory usage, as it seems
to represent the amount of memory which would be required to run each tool in an IDE scenario.

JProfiler provides a live memory profiling overview which records the memory usage of a running
JVM process every 2 seconds. Figure 6.9 shows the results of the memory usage test. iClones is
again left out for the intellij code base, as the memory usage exceeded 16GB.

8JProfiler: https://www.ej-technologies.com/products/jprofiler/overview.html
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6.5 Languages and IDEs

CCDetect-LSP attempts to achieve the goals of being IDE agnostic by utilizing LSP, and pro-
gramming language agnostic by utilizing Tree-sitter. In this section we will quickly go over our
experience with using these tools, and what we have implemented and tested to determine if
these goals are met.

Language agnostic

For the goal of being language agnostic, we have tried CCDetect-LSP with multiple languages,
including Java, Python, C, Rust, JavaScript, and Go. To add a new language to CCDetect-
LSP all that is needed to be done is to download the correct grammar into the grammars/

directory of the CCDetect-LSP source code, and add one case to a match-statement in order for
CCDetect-LSP to tie that grammar to a certain file-type. From there, the client needs to change
its configuration to the new language. This involves only changing two configuration parameters,
the file-type to analyze, and the Tree-sitter query to be used in the fragment selection phase.
Determining the Tree-sitter query may not be trivial in some languages, but we suspect that
the most common choices would be either selecting the root node of the AST, or all methods
or functions9. If type-2 detection should be enabled, the client needs to provide a list of token
types which should be normalized for that language.

Initial experiments show that CCDetect-LSP seems to work flawlessly on most languages. These
experiments are not shown in the thesis and are based purely on our experience with testing
the tool on different code bases. While we cannot objectively tell if all clones are detected
without having an oracle like the BigCloneBench for each code base, the experience of browsing
and navigating clones seems to work as well when switching between different languages. For
example, we explored the source code of both the Rust and Go compilers in their respective
languages, and we were able to locate thousands of clones in each code base (token threshold
100).

While our testing of multiple languages was not extensive, only one language we tested did not
work flawlessly out of the box. The Tree-sitter grammar for C had a weird quirk where not every
token had its own leaf-node in the AST. For example, the string literal token did not have a
distinct leaf-node for the string value. Therefore, functions which had completely different string
literals in them could be considered clones. This resulted in some clones being detected which
were not clones at all. Even if this issue was preventable by treating some AST nodes differently,
we consider this to be an instance where CCDetect-LSP did not have perfect language support.

IDE agnostic

CCDetect-LSP can communicate with any IDE which can act as an LSP client. We have tested
CCDetect-LSP on two IDEs which have great LSP support, Neovim10 and VSCode11.

For Neovim, only a configuration file needs to be setup, where we specify the command which
launches the LSP server, which file-type the LSP server should be launched on, and the rest
of the configuration which CCDetect-LSP needs. Diagnostics and code-actions work out of
the box, but a diagnostic view which shows all code clones requires an extra plugin such as

9Tree-sitter queries for multiple languages are shown in the README file of the CCDetect-LSP source code.
10Neovim: https://neovim.io/
11VSCode: https://code.visualstudio.com/
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Telescope12. Neovim does not support the DiagnosticRelatedInformation information which
can be attached to diagnostics, therefore listing matches and navigating to them is achieved with
code-actions.

For VSCode, a small extension (plugin) had to be created, which simply uses the built-in APIs of
VSCode to launch the LSP server on the correct file-type with the correct configuration options.
Once launched, VSCode has full LSP support, including diagnostics with match information,
code-actions and a nice diagnostic view which displays all code clones. VSCode running this
extension was shown in figure 3.1 in chapter 3. While the configuration settings such as token
threshold and language is currently hard-coded into the extension, we imagine it would be simple
to create a GUI configurator for CCDetect-LSP in VSCode. It could also be possible to use the
didChangeConfiguration message defined by LSP to change the configuration as the LSP server
is running, which would allow changing for example the clone token threshold without restarting
the LSP server.

12Telescope: https://github.com/nvim-telescope/telescope.nvim
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Chapter 7

Discussion

This chapter discusses the results of the evaluations performed in chapter 6 and conclude with
some insights into which algorithms seem to be more efficient in each case. We will also discuss
the implications of the memory usage, and discuss the clones which are detected. Finally, this
chapter will discuss some related work.

7.1 Performance

In chapter 6 we saw how the SACA detection, incremental detection and iClones performed on
multiple code bases of differing size. This section will discuss these observations and consider
which factors that contributed to the observed outcomes and what this means for CCDetect-LSP
as a clone detection tool in an IDE environment. While we have tested iClones in our evaluation,
we do not have access to the source code. Therefore, we cannot speak much to why iClones
is faster/slower on certain test instances. It is possible that iClones spends some time to build
data structures for detecting type-3 clones, which would be unfair for the evaluation as type-3
detection is not considered. However, it seems most of the work is avoided when type-3 clone
detection is disabled, as enabling it drastically slows down the benchmarks of iClones.

It is clear that for the initial detection (revision 0), iClones has the best performance. This was
unexpected, as one would think that the SACA detection, which does not need to build any
significant data structures, would be able to detect the clones faster than iClones. However, we
also see that the subsequent SACA detections (revisions 1-9) after the initial detection is generally
much faster than the initial iClones detection (revision 0). Since much of the initial detection
time is taken up by parsing the entire code base, it is possible that the parsing in the SACA
detection is slower than iClones parsing, not the clone detection. Tree-sitter focuses on being
performant on incremental parsing, and therefore might not be as performant on the initial parse,
which could explain why the initial detection for both the CCDetect-LSP detections are slower
than iClones1. In the case of our incremental algorithm, it is not unexpected that the initial
detection is slower than the SACA initial detection, and therefore also the slowest algorithm
overall for the initial detection. Because our incremental algorithm does the same work as the

1Tree-sitter is not widely discussed in the literature, but is open-source. This claim is based on the source
code and discussions surrounding it, e.g. Github issues.

86



initial detection, but also needs to build the wavelet-matrix and dynamic extended suffix array
data structures, it seems to consistently be the slowest algorithm in the initial detection. This
is one of the tradeoffs of our incremental algorithm, as the initial detection can be very slow
for larger code bases, taking 3-4 minutes for the intellij-community code base. An interesting
idea is to persist some of the data on the disk, in order to avoid the slow initial detection of
CCDetect-LSP. If the fingerprint of each document was stored in a file on disk, this file could be
read and used to index the project without needing to parse every file before the detection can
happen. However, we encounter a problem whenever we want to perform an incremental update,
as we do not know which tokens map to which integer values in the fingerprint. This could be
solved by also persisting the token to integer mapping.

For the subsequent incremental detections (revisions 1-9), we see that depending on the size of
the code base, and the size of the edits, our incremental detection and iClones are generally
much faster than the SACA detection, as expected. For the smallest code bases (WorldWind
and neo4j), our incremental detection seems to be the fastest for smaller edits (INS10, DEL10),
while iClones seems to be faster for the larger edits (INS100, DEL100). It seems that when the
code bases increase in size, our incremental detection scales better than iClones and the SACA
detection. The incremental detection is able to process updates to intellij-community (5.8MLOC)
in less than 1 second for smaller edits (INS10, DEL10) and less than 2 seconds for the larger edits
(INS100, DEL100). Elasticsearch (3.2MLOC) was the largest code base that iClones could be
run on with 16GB RAM, and for this code base it seems that our incremental detection starts to
outperform the other two detection algorithms in all cases. It would be interesting to see if this
trend continues for even larger code bases and continue to compare CCDetect-LSP incremental
detection with iClones, but this would require more RAM to benchmark.

In the case of figure 6.8, where we performed an evaluation of the elasticsearch code base and
increased the number of edits in each revision, we see that for a smaller number of edits, our
incremental detection has the best performance. For the smaller edits (INS10, DEL10), the
incremental detection outperforms or is comparable to the other algorithms even up to 100 edits
(1000 tokens inserted or deleted in total). However, we see a clear trend that once the number
of edits increase, our incremental algorithm is slowly overtaken by iClones. For the larger edits
(INS100, DEL100), we see that our incremental detection is fastest for the smaller number of
edits, but is quickly outperformed by iClones and even the SACA detection at around 25 edits
(2500 tokens inserted or deleted in total). These results are an indication that CCDetect-LSP
incremental detection scales worse than the other algorithms when the number of edits increase.
Our incremental detection can outperform the other algorithms up to a decently large number of
edits, but if the code base drastically changes (thousands of tokens) in each revision, iClones seems
to have the best performance. Since editing thousands of tokens in a single edit is unrealistic in
the IDE scenario, we are therefore confident in saying that CCDetect-LSP incremental detection
still has the best performance for the IDE scenario, but that this algorithm may not be suitable
in the evolution scenario, if the changes in each revision are affecting thousands of tokens or
more.

In terms of stability of performance, it seems that the SACA detection is naturally very stable
between each revision, as it is recomputing the entire suffix array anyway. The two incremental
algorithms are more unstable in terms of running time, and this stems from the fact that some
incremental updates are less computationally heavy than others. We cannot speak to the imple-
mentation of iClones, however, we often see that iClones takes an extra revision or two before it
stabilizes at a lower running time. We can also sometimes see spikes in performance for iClones
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(such as in figure 6.3). Our incremental algorithm has a running time which fluctuates mostly by
how much time updating the suffix array takes. The other phases are generally either very stable
(source-mapping) or are too fast to differentiate between revisions (parsing, fingerprinting). The
time to update the suffix array is highly dependent on how the suffix array changes and how
many LCP values need to be updated. The number of suffixes being reordered directly affects
how many LCP values need to be updated, which is often the bottleneck of the suffix array
update. In our testing we examined two different code bases of size ∼2.2MLOC, graal and flink.
We hypothesized that graal would have slower updates, as its LCPavg was more than double
that of flink. According to Salson et al. [30], this should on average lead to more suffixes being
reordered. However, our results show that the running time for updates in these code bases are
very similar. The reason why we do not see much of a difference could be because the LCPavg

difference in these code bases is too small to see any noticeable effect by doubling the LCPavg.
Inspecting the numbers by Salson et al. [30], shows that the number of suffixes needing to be
reordered for lower LCPavg values were often below 20 and that the number of reordered suffixes
only drastically increases for LCPavg in the hundreds. These values are more realistic for inputs
such as DNA sequences than for our source code fingerprints. It therefore seems that source code
is a good candidate to apply the dynamic extended suffix array update algorithm to, as updates
in source code will on average mean few suffixes need to be reordered.

With these results, it is clear that CCDetect-LSP incremental detection is fast enough to be
used in the IDE scenario for many code bases at least up to ∼2.2MLOC (flink, graal), as most
updates can be processed in under 1 second for these code bases. For code bases of larger sizes
(elasticsearch, intellij), small edits (INS10, DEL10) can still be processed in under 1 second, but
larger edits (INS100, DEL100) can start to take some time, as the processing time exceeds 1
second and can be closer to 2 seconds. If the programmer is generally only performing small
edits in few files, and not doing large-scale automated refactoring across many files at once,
CCDetect-LSP is likely fast enough to feel “real-time” even for these large code bases, but might
feel sluggish to update on such larger refactoring operations. It is also clear that while CCDetect-
LSP incremental detection is fast for the IDE scenario, it starts to get outperformed by other
algorithms in the evolution scenario if the number of edits increases, and the size of the edits get
larger.

7.2 Memory usage

In chapter 6, we also saw the results of the memory usage evaluation for the different tools. This
section will discuss these results and consider which factors increase the memory usage of each
tool, and what this means for CCDetect-LSP when used in an IDE environment.

The results demonstrate a clear picture on how the memory usage scales with the number of
lines of code. The SACA detection has the lowest peak memory usage, which is expected, since
it only needs to store the extended suffix array in array form, which is more memory efficient
than the dynamic structures of the incremental algorithms. The main memory usage for the
SACA detection is the extended suffix array, which is not much larger than the source-mapping
information.

For the incremental algorithms it is clear that CCDetect-LSP incremental detection has a lower
memory usage than iClones, but the memory usage is still quite high compared to the SACA
detection. Inspecting the JProfiler memory overview shows that the main memory bottleneck
of CCDetect-LSP incremental detection is the wavelet-matrix, and the dynamic extended suffix
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array data structures. These two data structures take up about the same amount of memory, and
since they both are pointer-based structures representing values for the entire fingerprint, these
two take up a lot of memory combined. For iClones, we see that the memory usage is even more
severe, seemingly doubling the memory usage of CCDetect-LSP incremental detection. JProfiler
reports that it is the suffix tree data structure which is the memory bottleneck in iClones.

While our incremental detection manages to lower its memory usage compared to iClones, the
memory usage is still quite high for an IDE tool. While the dynamic structure for storing the
extended suffix array gave us a large performance gain in terms of time, it is clear that it is
not nearly as memory efficient as the normal suffix array in array form. For a larger code base
such as elasticsearch and intellij-community, one would likely require a computer with at least
16GB RAM in order to justify running CCDetect-LSP incremental detection in the IDE. Again,
it seems like CCDetect-LSP incremental detection is a good fit for code bases up to ∼2.2MLOC
(graal, flink), where the memory usage is lower than 4GB.

7.3 Clones detected

In chapter 6 we saw that CCDetect-LSP identifies ∼99.98% of type-1 clones, and ∼89.40% of
type-2 clones in the BigCloneBench dataset. The results showed that CCDetect-LSP was able
to identify practically all type-1 clones, which gives us confidence that our algorithm is correct
in terms of the reported clones. BigCloneBench also reported that CCDetect-LSP was able to
detect almost all type-2 clones, which we believe is correct, considering we did not fully explore
which token types should be normalized to get a better recall in the BigCloneBench.

We decided to store and represent clones as clone classes, rather than clone pairs. We chose this
because it gives a clearer picture to the programmer of all the clones of a certain code snippet,
rather than having to navigate multiple times between multiple clones to determine all the clones
of the snippet. Baars et al. also claims that storing clone classes is advantageous in a refactoring
scenario, which is intuitive, as refactoring a set of clones likely leads to a better result than
refactoring only a single clone pair [5].

Detecting type-1 clones is likely the most important clones to detect in an IDE scenario, but type-
2 clones are also likely important. CCDetect-LSP has shown that it can detect almost all type-2
clones with only a few normalizations added to its configuration, but we believe that this number
would increase closer to 100% if we added more normalizations. We only normalized the token
types which correlated with our definition of a type-2 clone, but it is possible that BigCloneBench
considers more token types to be tokens which should be allowed to be normalized. We therefore
claim that CCDetect-LSP is able to detect type-2 clones, but it requires the client to list every
single token type which should be normalized, which is not optimal.

If type-3 clones were to be considered, we need to consider how useful it is to report these clones
in an IDE scenario. Recall that type-3 clones are clones which in addition to type-1 and type-2
clones, allow some leniency in terms of the code clones structure. Type-3 clones allows tokens
to be added, modified or removed and two type-3 clones are considered equal based on some
similarity threshold. Seeing such clones in the IDE could possibly lead to a lot of noise, and
CCDetect-LSP could possibly detect a lot of clones which are not necessarily simple to refactor
and remove. It would be interesting to see how many type-3 clones are reported in large code
bases and how much value it would provide to the user to list them in the IDE. It would also
be interesting to see how implementing a type-3 clone algorithm such as Baker’s algorithm [7]
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would affect the speed of the incremental detection, and if any type-3 detection algorithms can
be made more efficient for an incremental detection approach.

CCDetect-LSP identifies clones on a token level, unlike other tools which identifies clones on
a line level [50]. It is more fine-grained to detect clones on a token level, and it could detect
clones which would not be detected on a line level without needing to format the source code.
However, it is possible that we could see a substantial performance and memory usage gain by
instead fingerprinting entire lines instead of each token. This would drastically reduce the size
of the fingerprint, which would make the suffix array updates faster and reduce the size of the
dynamic extended suffix array and wavelet matrix. However, as there are a lot more unique lines
in a code base than tokens, this would also drastically increase the alphabet size σ, which will at
least slow down operations on the wavelet matrix. This is a trade-off which would be interesting
to explore further.

7.4 IDE and language agnostic clone detection

In this section we will briefly discuss how well CCDetect-LSP works in both an IDE and language
agnostic setting.

IDE agnostic

CCDetect-LSP was implemented as a standalone program, which communicates with an IDE
client via LSP. This means that the tool is IDE agnostic in the sense that any IDE which im-
plements LSP can communicate with CCDetect-LSP and receive code clone information from it.
With our implementation we are able to list clones in the form of diagnostics, and navigate be-
tween all the matches of a clone via code-actions and/or information embedded in the diagnostic.
This demonstrates that LSP is capable of supporting the bare-minimum needed functionality of
a clone detection tool.

In the previous chapter, we discussed that CCDetect-LSP is able to run in at least two IDEs
which implement LSP, but we also saw that some LSP clients require more setup than others,
and some LSP clients implement fewer features. This is the reality of working with a protocol
which tries to unify multiple tools which do things differently. There will always be some IDEs
which do not implement the full LSP protocol, but we believe that the features we have decided
to use (diagnostics and code-actions) are good candidates to be implemented in most IDEs.
Barros et al. [8] performed a study on LSP servers, which showed that out of 30 LSP servers, 28
of them implemented diagnostics, and 15 of them implemented code-actions. While this is not
necessarily an indication of what the LSP clients implement, there is likely a correlation between
what is generally offered by LSP servers, and what is therefore supported by LSP clients.

One downside to reporting code clones as diagnostics is that code clones are listed together with
all other diagnostics reported by other LSP servers. If the project contains hundreds of clones
this could make the diagnostics list hard to use for any other usage than to list clones. A nice
addition to the LSP protocol in this regard would be the possibility of categorizing diagnostics,
and letting the client filter or show only diagnostics of a certain category. For CCDetect-LSP it
would be nice to be able to have a separate view of only code clone diagnostics, which can be
opened or closed as needed, and allow another LSP server to be the “main” source of diagnostics.

Another interesting feature which could be implemented with LSP is the concept of linked editing.
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Linked editing means being able to edit two or more locations at the same time, which could be
used as an automatic way to apply an edit to all clones at once. LSP has since version 3.16 had
such a feature, but we are not sure how fitting this feature is for code clone linked editing, as it
seems targeted towards smaller refactoring operations such as renaming variables.

Language agnostic

The algorithm of CCDetect-LSP is language agnostic. We have shown that as long as there exists
a Tree-sitter grammar for a language,2 it can be parsed and fingerprinted. When the source code
has been fingerprinted, there is no longer any difference between detection for different languages.
Therefore, CCDetect-LSP should work for any language, and in our testing, there is nothing that
hinders CCDetect-LSP from working for any language we have tested, other than grammars not
working correctly. We have tested CCDetect-LSP for multiple languages, and shown that there
is very little configuration required to change the desired language. Therefore, we claim that
CCDetect-LSP works very well as a language agnostic clone detection tool.

However, for type-2 clones, CCDetect-LSP requires manual configuration of which token types
to normalize in the fingerprint. This process can hardly be called language agnostic, as which
token types to normalize is fully up to the client, and requires the user to be at least familiar
with the parser of the language they are working with, for type-2 clone detection to work well.

In the case of the C language, which did not work correctly because of a quirk of its grammar,
it demonstrates a downside to going with the parser generator strategy. You cannot completely
rely on every grammar to always work as you expect. It could be possible to forego parsing
the source code, and only use a tokenizer to get the tokens. One could then use a language
agnostic tokenization algorithm to avoid needing a grammar at all, and makes the algorithm
truly language agnostic. Such a tokenization algorithm was for example used by Li et al. in their
tool named SAGA [31]. However, this would not allow any sort of fragment selection, which
likely leads to a lot of unnecessary code being analyzed for clones. This both slows down the
detection process, but can also lead to a lot of noise in the clone list. For example in Java, a
sorted list of imports at the beginning of the file could easily be cloned in multiple files, without
any real possibility of being refactored to avoid this duplication. For this reason, we believe a
“grammar-pluggable” approach with a parser generator such as Tree-sitter is a better approach
than a completely language agnostic one, for the IDE scenario.

7.5 Related work

This section will list related work which have explored similar topics, or work which could be
relevant for future work.

Our work falls under the category of incremental clone detection which focuses on performance in
an incremental scenario rather than accuracy of clone detection. As previously cited in chapter 2,
other algorithms and tools have been made which also focuses on incremental clone detection [17,
34, 22, 36].

The most common algorithm for clone detection is the suffix tree implementation. Therefore,
many existing tools use a suffix tree [17, 50]. The tool SimEclipse implements a suffix tree
algorithm [43]. Additionally, the tool implements many interesting features, such as visualization

2Tree-sitter can parse most mainstream languages, see: https://tree-sitter.github.io/tree-sitter/
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of clones in a tree-view, simultaneous editing of clones, and multiple features related to tracking
the evolution of a clone.

Zhu et al. published a paper while this thesis was being written which shows a tool which
implements grammar-pluggable clone detection [49]. This is the same concept which we have
implemented in CCDetect-LSP where we achieve language agnostic clone detection by using a
parser generator. They are able to identify all type-2 clones and obtain a 61% recall for type-3
clones. Their algorithm seems to be based on a completely different paradigm of clone detection
than suffix trees and suffix arrays, which could be interesting to examine for its potential in an
incremental setting. However, we should note that their evaluation shows that this type of clone
detection is not very fast, so it is not clear if this approach is suitable in a “real-time” setting.

While we are not aware of any other attempts at using dynamic suffix arrays for clone detection,
suffix arrays have been used for clone detection before. Li et al. [31] has used suffix arrays as a
way to perform clone detection while utilizing GPU acceleration. The tool SHINOBI also uses a
suffix array which can be queried for clones based on a string [28]. Their paper seems to indicate
that only code being edited gets queried in the suffix array at a given moment, which is an
interesting idea.

For our dynamic extended suffix array implementation, we built upon the ideas of Salson et
al. [40, 30, 39] There have been other attempts to improve such an algorithm, such as Amir et
al. [3]. They claim to have obtained a sub-linear time for queries in the suffix array, with a data
structure where symbols can be substituted in the input string, in O(log4(n)) time. This would
not be suitable for our clone detection algorithm, as we also require inserts and deletions. They
also show a data structure with O(log5(n)) query-time for the inverted suffix array, which can

maintain the inverted suffix array in O(n
2
3 ) time, and supports insertions and deletions as well. It

would be interesting to see if this data structure could in any way improve the performance over
our current approach, but this is questionable, as the data structure needs to support querying
the suffix array, inverted suffix array and the LCP array efficiently, and preferably also support
inserting/deleting multiple characters at a time without performance problems.
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Chapter 8

Conclusion

This chapter will first list future work, then conclude the thesis.

8.1 Future work

In this section we list future work and research in order of what we consider most interesting to
do more research on.

Type-3 clones

Finding type-3 clones incrementally could be interesting to research. A classic algorithm to detect
type-3 algorithms is to use sparse dynamic programming to find matches of type-1 and type-2
clones which are not exactly similar [7]. It would be interesting to look at such an algorithm in
an incremental perspective, and determine if it would be beneficial to try and avoid computation
of the same type-3 clones in each revision. Another approach could be to create a dynamic data
structure which is simple to maintain between revisions, and allows extraction of type-3 clones
in addition to type-1 and type-2 clones.

Optimal edit operations

A problem we discussed in chapter 5 is that our algorithm for computing edit operations is
not optimal. The problem was to find an optimal amount of edit operations to turn one string
into another, but we also preferred edit operations of more than one character, over many edit
operations of one character. We implemented a simple algorithm which would aggregate edit
operations of the same type which were consecutive in the edit matrix, but this could likely
be optimized to output fewer operations with multiple characters in each. There is a trade-off
where one could always reduce the problem to only two operations, delete the original string,
and then insert the new string, but this might be more expensive than performing more edit
operations, with a fewer number of characters. A possible approach is to assign a higher weight
to starting a new edit operation than extending the previous operation, and build the edit matrix
with these weights in mind, and using our algorithm to aggregate the edit operations afterwards
with these weights. This could be difficult if Hirschberg’s algorithm is still used, but the regular
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Wagner-Fischer algorithm could be used in a majority of cases if the memory usage of the regular
Wagner-Fischer matrix is not too big.

Refactoring of clones

Another interesting topic is the refactoring of clones. Automatic refactoring of clones has not been
thoroughly researched, but automatic refactoring of code clones could be beneficial to practically
all software. Some literature exists on the topic [5, 20], especially targeted at object-oriented
programming languages. For CCDetect-LSP it would be interesting to look at either combining
the clone detection with existing refactoring tools from other LSP clients, or to implement
refactoring code-actions in CCDetect-LSP itself, which automatically refactors to remove the
selected clone. However, this would be hard to achieve while CCDetect-LSP is still a language
agnostic tool, as different languages have completely different paradigms to perform refactoring
on.

Compressing data structures

A problem with CCDetect-LSP in its current state, is its memory usage. As mentioned, when
the size of the code base grows, the memory usage of CCDetect-LSP grows as well, and might
reach a point where it is not feasible for lower-end computers to run it simultaneously with
other applications, which is often the case in an IDE scenario. As mentioned, it is possible that
reducing the size of the fingerprint by fingerprinting entire lines instead of tokens could improve
the memory usage, but another potential solution is to compress the memory consuming data
structures.

The wavelet matrix can be compressed to zero-order entropy, but Claude et al. explain that this
compressed wavelet matrix is likely not as efficient as a compressed wavelet tree [12]. It might be
worthwhile to implement either a compressed wavelet matrix or a compressed huffman-shaped
wavelet tree, and test how this affects both memory usage and performance. It is likely that
the performance will be slower with this compressed data structure, but the memory usage will
likely improve as well.

It is also possible to compress the dynamic extended suffix array data structure as explained by
Salson et al. [40]. This is done by sampling (storing) only some values of the dynamic permutation
at a time, and computing the values at unsampled positions by using the sampled values. This
would again slow down the performance of accessing the data structure, as computing the values
at unsampled positions is slower, but it will also reduce the number of values stored, and therefore
the memory usage will be improved.

Lazy LCP array updates

In the suffix array update phase, for each edit operation we computed in the previous phase, we
run a suffix array update. In each one of these updates, we determine which positions in the
LCP array need to be updated, and then compute the LCP value at that position. It is possible
that we can avoid some work here if multiple of these edit operations lead to updating the same
LCP positions, as we can delay the computation of those LCP values until after all the edit
operations have updated the suffix array. This would be of interest for algorithms which utilizes
the dynamic extended suffix array algorithm in general, if multiple edits are applied.
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8.2 Conclusion

The results demonstrate that the incremental algorithm of CCDetect-LSP scales better than the
other two algorithms in terms of time, at least in the IDE scenario where edits are relatively
small. The incremental algorithm was able to process large edits for code bases of over 5MLOC
in under 2 seconds, and faster for smaller edits. We have demonstrated that our novel application
of dynamic extended suffix arrays is a suitable and fast approach to clone detection in the IDE
scenario, and can give comparable and better results than tools which implement a dynamic suffix
tree. Though memory consumption is the main limitation for practical use, CCDetect-LSP still
outperforms other incremental algorithms.

We have demonstrated that LSP can implement the bare-minimum features needed for a clone
detection tool, but some extensions would be useful in order to separate clone detection from
other types of diagnostics.

Finally, we have demonstrated that language agnostic clone detection using a parser generator
works and allows sufficient selection of fragments for flexible analysis, and to avoid listing un-
wanted clones. We have also discussed that a language agnostic approach is more challenging in
terms of normalizing inputs and therefore detection of type-2 and type-3 clones. However, this
challenge was partly solved for type-2 clones by allowing the client to configure how the input
should be normalized.
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Chapter 9

Appendix

The appendix contains supplementary figures, logs and algorithms which do not naturally fit
into the thesis. Algorithms in this chapter are generally very verbose, and it is recommended to
read them alongside their respective explanations in the implementation chapters.
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./evaluateTool --min-tokens=100 -s=100 --output=ccdetect.report -t=1

-- Versioning --

BigCloneEval: Release Version 0.1

BigCloneBench: Version 1.0 (2016-06-19)

-- Selected Clones --

Min Lines: null

Max Lines: null

Min Tokens: 100

Max Tokens: null

Min Pretty Lines: null

Max Pretty Lines: null

Min Judges: null

Min Confidence: null

Sim Type: BOTH

Minimum Similarity:

-- Clone Matcher --

Coverage Matcher. Coverage Ratio = 0.7, minimum raito is of reference clone: null

================================================================================

All Functionalities

================================================================================

-- Recall Per Clone Type (type: numDetected / numClones = recall) --

Type-1: 23205 / 23210 = 0.9997845756139595

Type-2: 3171 / 3547 = 0.8939949252889766

Type-2 (blind): 9 / 245 = 0.036734693877551024

Type-2 (consistent): 3162 / 3302 = 0.9576014536644458

-- Inter-Project Recall Per Clone Type (type: numDetected / numClones = recall) --

Type-1: 4620 / 4625 = 0.9989189189189189

Type-2: 2917 / 3185 = 0.9158555729984301

Type-2 (blind): 2 / 223 = 0.008968609865470852

Type-2 (consistent): 2915 / 2962 = 0.9841323430114788

-- Intra-Project Recall Per Clone Type (type: numDetected / numClones = recall) --

-- Recall Per Clone Type --

Type-1: 18585 / 18585 = 1.0

Type-2: 254 / 362 = 0.7016574585635359

Type-2 (blind): 7 / 22 = 0.3181818181818182

Type-2 (consistent): 247 / 340 = 0.7264705882352941

Figure 9.1: BigCloneEval evaluation report on CCDetect-LSP
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Algorithm WagnerFischerOperations(S1, S2, matrix)
operations← Empty list
currentOperation← None operation
lastOperationIndex← −1
x← Len(matrix)− 1
y← Len(matrix[x])− 1

while x > 0 and y > 0 do
subValue← matrix[x− 1][y − 1]
delValue← matrix[x− 1][y]
insValue← matrix[x][y − 1]
if subValue ≤ delValue and subValue ≤ insValue and then

if subValue ̸= matrix[x][y] then
if currentOperation is not a substitute or lastOperationIndex ̸= x then

currentOperation← New substitute operation with position x− 1
Insert(operations, 0, currentOperation) // Add operation at index 0

end
else

currentOperation.position← currentOperation.position− 1
end

end
Add S2[y − 1] to beginning of currentOperation.chars
lastOperationIndex← x− 1
x← x− 1
y← y − 1

end
else if insValue ≤ delValue then

if currentOperation is not an insert or lastOperationIndex ̸= x then
currentOperation← New delete operation with position y − 1
Insert(operations, 0, currentOperation) // Add operation at index 0

end
Add S1[x− 1] to beginning of currentOperation.chars
lastOperationIndex← x− 1
y← y − 1

end
else

if currentOperation is not a delete or lastOperationIndex ̸= x then
currentOperation← New insert operation with position x− 1
Insert(operations, 0, currentOperation) // Add operation at index 0

end
Add S1[x− 1] to beginning of currentOperation.chars
lastOperationIndex← x− 1
x← x− 1

end

end
return operations

Algorithm 18: Compute aggregated edit operations from Wagner-Fischer matrix
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Algorithm WagnerFischerEditDistance(S1, S2)

n← Len(S1)
m← Len(S2)
matrix← new array[n + 1][m + 1]

for i from 0 to n do
matrix[i][0] = i

end

for i from 0 to m do
matrix[0][i] = i

end

for i from 1 to n do
for j from 1 to m do

if S1[i− 1] = S2[j− 1] then
matrix[i][j] = matrix[i− 1][j− 1]

end
else

delete← matrix[i− 1][j]
insert← matrix[i][j− 1]
substitute← matrix[i− 1][j− 1]

matrix[i][j] = Min(insert,delete, substitute)+ 1
end

end

end
return matrix

Algorithm 19: Fill edit distance matrix using Wagner-Fischer algorithm
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