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Summary . Use of auxiliary variables for generating proposal variables within a Metropolis-
Hastings setting has been suggested in many different settings. This has in particular been of
interest for simulation from complex distributions such as multimodal distributions or in transdi-
mensional approaches. For many of these approaches, the acceptance probabilities that are
used turn up somewhat magic and different proofs for their validity have been given in each
case.

In this paper | will present a general framework for construction of acceptance probabilities
in auxiliary variable proposal generation. In addition to demonstrate the similarities between
many of the proposed algorithms in the literature, the framework also demonstrate that there is
a great flexibility in how to construct such acceptance probabilities, in addition to the flexibility
in how to construct the proposals. With this flexibility, alternative acceptance probabilities are
suggested. Some numerical experiments are also reported.

1. Introduction

Many approaches for constructing efficient sampling algorithms are based on the use of
auxiliary variables. This is particularly the case within the class of Markov Chain Monte
Carlo (MCMC) algorithms (Metropolis et al., 1953; Hastings, 1970; Gilks et al., 1996; Robert
and Casella, 2004) but has also been considered in e.g. importance sampling (IS) (Neal,
2001). The most common way of doing this is to extend the sample space with some
extra variable, in order to construct simpler or more efficient algorithms in this extended
space (Tanner and Wong, 1987; Edwards and Sokal, 1988; Besag and Green, 1993; Higdon,
1998; Damien et al., 1999). More recently, auxiliary variables have been used as a tool within
a Metropolis-Hastings setting for either generating better proposals (e.g. Tjelmeland and
Hegstad, 2001; Jennison and Sharp, 2007) or for calculation of acceptance probabilities (e.g.
Beaumont, 2003; Andrieu and Roberts, 2009).

The flexibility of choosing proposal distributions has long been recognised. In this
paper we take a different look at the use of auxiliary variables in that we discuss the
simultaneous flexibility in choosing target distributions. Assume our aim is to sample
y* ~ m(-). A proposal is generated by first simulating 2* ~ ¢, (-) followed by y* ~ gy (-[z*).
The flexibility follows in that the target distribution, 7 say, for the combined variables
(x*,y*) can be any distribution with 7 as its marginal distribution. For a given set of
proposal distributions g, gy, different acceptance probabilities can be obtained by different
choices of 7. By taking this alternative viewpoint, a common understanding of different
algorithms suggested in the literature is obtained, and also serves as a toolbox for suggesting
new algorithms. This toolbox will in particular be useful in cases where standard MCMC
algorithms fail and more complicated versions are of need. Typical examples are algorithms
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for jumping between possible modes (Tjelmeland and Hegstad, 2001; Jennison and Sharp,
2007) and reversible jump algorithms (Green, 1995, 2001).

An important special class of algorithms is where 2* = z7., is generated sequentially,
typically with 27 generated through a big jump (for jumping between modes or dimensions)
followed by a few steps of smaller jumps. For most such algorithms suggested in the lit-
erature, acceptance ratios within an Metropolis-Hastings (MH) setting are typically either
only depending on the first 2] (e.g. Al-Awadhi et al., 2004) or the last z} (e.g. Tjelmeland
and Hegstad, 2001; Jennison and Sharp, 2007). By combining different target distributions,
acceptance ratios depending on averages over all generated z7,...,z{ can be constructed,
giving higher and more stable acceptance probabilities.

Other algorithms that can be considered as special cases of this general framework is an-
nealed importance sampling (Neal, 2001), mode or model jumping (Tjelmeland and Hegstad,
2001; Jennison and Sharp, 2007; Al-Awadhi et al., 2004), multiple-try methods (Liu et al.,
2000), proposals based on particle filters (Andrieu et al., 2008), pseudo-marginal algo-
rithms (Beaumont, 2003), sampling algorithms for distributions with intractable normalis-
ing constants (Mgller et al., 2006) and delayed rejection sampling (Tierney and Mira, 1999;
Mira, 2001; Green and Mira, 2001).

We start in Section 2 by discussing the flexibility of weight functions in auxiliary impor-
tance sampling. This setting is of interest in itself but can also be seen as a starting point
for discussing auxiliary MH algorithms because MH acceptance probabilities are directly
related to the importance weights used in importance sampling. Such MCMC algorithms
are considered in Section 3. In Section 4 we focus on sequential generations of auxiliary
variables, while in Section 5 we apply our general results to many algorithms suggested in
the literature and also consider alternative versions of these. Although the main motivation
for this paper is the construction of a toolbox for construction of MCMC algorithms, in
Section 6 we consider some numerical experiments, demonstrating that alternative weights
and acceptance probabilities can improve the performance of an algorithm. We conclude
the paper by some final remarks and discussion in Section 7.

2. Auxiliary importance sampling

For simplicity we will assume 7(y) is a distribution in some continuous space R™ with full
support although the results are applicable to more general situations.

For consistent notation with MCMC sampling considered in the next section, we will
use z* for the generated auxiliary variable(s) and y* for the proposed variable. The idea of
auxiliary importance sampling is to assume that y* is generated trough first simulating =*
from some distribution ¢, (-) and thereafter generating y* from the conditional distribution
qy|2(-|z*). The auxiliary variable #* might be a single variable or a sequence of variables
x* = (af,...,z7) (the latter being discussed in section 4). Most applications of this idea
concentrate on the flexibility of choosing ¢.(-) and gy,(-|z*). The following result shows
that there also is a flexibility in choosing importance weights in this situation:

Proposition 1

Assume x* ~ q,(-) and y*[x* ~ q,(:[z*). Define S = {(x,y) : q.(%)qy.(y|r) > 0} and
assume the marginal support for q,(y) = [, ¢.(x)qy|.(y|x)dz includes the support of 7(y).
Let h(x|y) be any distribution such that T = {(z,y) : m(y)h(z|y) > 0} is a subset of S.
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Then for any measurable function g(y)

Elw(z*,y")g(y™)] Z/ﬂ(y)g(y)dy = E"[g(y)] (1)
where
w(z®, ) = m(y*)h(z*|y*) @)

PROOF. We have

. V(Y] mWhlely) . .
Blula™ 0N = o Gy oo 0)dady

o h(x|y)dxd
/y (y)g(y)/m:(w)es (z|y)dzdy
:/W(y)g(y)dy

Y

where in the last equation we have used that 7 is a subset of S. O

This result shows that for (z7,y}),i = 1,..., N all independent and generated by z} ~
qm() and yl*|1':< ~ qylz(|$:)a

. 1 X
0= NEw(x;“,yf)g(yi‘)

will be an unbiased estimate for 6.
For the special case h(x|y) = g.(x), the weight reduces to

m(y")

w(z”,y") = 3)
that is only the transition probability g, ,(y*|2*) is involved. Note however that this choice
is only legal if g, (y*|2*) has full support.

Different choices of h correspond to the fact that (z*, y*) can follow many different simul-
taneous distributions giving the same marginal distribution of y* while g, (2*)qy.(y*[x*)
corresponds to the usual proposal distributions in importance sampling. The ability of
playing around with different choices of A in addition to g, and gy, will be important in
the following.

Note that while for proposal distributions, we need to choose the support large enough,
for the h distribution we must be sure that the support is small enough. In many cases
neither of these restrictions will cause any problems in that both the proposal and the h
distribution will have “full” support, but in some situations the proposal distributions will
make restrictions on S in which case some care must be taken in the construction of h.

For specific choices of g, optimal choices of proposal distributions exist. In cases where
expectations with respect to many g-functions are to be calculated simultaneously, simulta-
neous optimal choices are not possible to obtain. In such cases, the variances of the weight
functions are reasonable global measures to consider. The unconditional expectation of
w(x*,y*) is 1, as in ordinary importance sampling. More of interest is the properties of
w(x*, y*) conditional on y*, given in the next proposition:
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Proposition 2
Under the assumptions of Proposition 1,

m(y")

E[’LU(.T*, y*)|y*] = ) (4)
4 (y*)

where ¢, (y) is the marginal proposal distribution as given in Proposition 1, and
Var[w(z*, y*)] >Var [W(y**) ] . (5)
Qy(y )
ProoF. We have
e L h(zy)m(y)  4z(2)qy).(ylz)
Eluta” v )ly'] = [ Wyty) 4D 0e) g,
z:(z,y)ES Qm(‘r)qy\z(mx) qy(y)

_7() ey = W)

Further,

Varfu(a )] =VarElu(a® )y + ENarfua” )] Vr . it

Given that small variance of the importance weights is a desirable property, using the
importance weights given in (4) would have been a good strategy, if they were possible
to calculate. The weight w(z,y) can be seen as an unbiased estimate of that “optimal”
importance weight function.

The variance of the weight function in (2) is higher than the variance of the ordinary
importance weight function. The challenge is therefore to choose weight functions or equiv-
alently the conditional distributions h(z|y) such that the variability do not increase too
much.

Note that given a set of weight functions, all satisfying (4), also weighted averages of
these weight functions will satisfy (4). This will be useful in the following.

3. Weight functions within Metropolis-Hastings algorithm S

The flexibility of weight functions are directly transferable to a flexibility in acceptance
probabilities in MH algorithms. Our aim in this case is to generate a sequence of vari-
ables having invariant distribution 7(y). Our typical situation will be that a new y* is
generated through an auxiliary z* with proposal density g.(x*|y)qy.(y*|y,2*). We will
however consider a slightly more general scheme allowing for more general simulations of
the pair (z*,y*). In the following we will for weight functions, acceptance ratios and accep-
tance probabilities list the variables involved in the order they are generated with semicolon
separating variables that have been generated at the previous iteration,

The following results consider the situation where the auxiliary variables are stored at
each iteration. In order to get full generality, we allow the proposals to depend on the
previous x as well.
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Proposition 3
Assume (z*,y* ~ q(a*,y*|z,y). Define

v o (Y )z |y*)
w(y;z*,y") = —————
( ) q(z*, y*|z,y)

where h(xz*|y*) is an arbitrary conditional distribution. Then an acceptance probability of
the form

a(z,y; 2", y") = min {1, r(z,y; 2", y")}}
where the acceptance ratio is given by
ooy wysrt YY)
( ) w(y*;z,y) (

defines an MH algorithm with invariant distribution 7(y)h(x|y) and marginal distribution
m(y).

PROOF. The ordinary MH acceptance ratio for (z*,y*) with w(y)h(z|y) as target dis-
tribution and gq(z*,y*|z,y) as proposal distribution is

ro, g2t y) =R e ylatsy7)  wlyiat,y")
R m(yh(zly)g(z*, y*le,y) — wlyz,y)

Since m(y) is the marginal distribution for y of 7(y)h(z|y), the result follows. O

In this case there is no restriction on that S(y) = {(z*,y*) : ¢(«*, y*|z,y) > 0} should
cover 7, the support of h(z*|y*)w(y*). However, if the integral

Elw(y; 2", y*)y] :/ h(x* |y ) (y* ) da* dy*
(z*,y*)€S(y)

vary heavily with y, the ratio (6) can be far from one, making moves more difficult to
achieve. Note in particular that in order for the Markov chain to converge properly, also
irreducibility with respect to the target distribution need to be fulfilled.

Proposition 3 can be generalised in different ways. Other types of acceptance probabil-
ities as discussed in Hastings (1970) could also be considered. Similar to the importance
weights discussed in the previous section, also combinations of weights can be inserted into
the acceptance probabilities.

In the case of q(z*,y*|z,y) = ¢z (2*|y*)qy|(y*|y, 2*), similar to the simplifications that
leads to (3) we can assume h(z*|y) = ¢.(*|y) = ¢.(«™) in which case the weight function
reduces to

m(y")

w(y;z*,y") = (7)

The setting described above assumes the auxiliary variable x generated in the previous
iterations is stored. An alternative version is to assume a new z is generated in a “reverse”
proposal. Andrieu and Roberts (2009) show that generating new z’s at each iteration rather
than reusing those generated at the previous iteration can improve the acceptance rates.
The following proposition consider this setting.
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Proposition 4
Assume (z*,y*) ~ q(z*,y*|y). Assume further x ~ h(z|y,z*,y*) where h(x|y, x*,y*) is an
arbitrary distribution. Then an acceptance ratio of the form

. w(y; ", y*, x)
r(y; 2™,y ,0) =———"—"—+= 8
( ) w(y*; x,y, *) (®)
where
- m(y*)h(@*y", @,y
q(x*, y*|y)

defines a Markov Chain Monte Carlo algorithm with invariant distribution 7(y).

Proor. Write ¢(z*,y*|y) = q=(2*|y)qy)2(y" |y, 2*) and define 7(y,x*) = 7(y)q.(z*|y).
Assume y ~ m(y). Since z* ~ g, (z*|y), this imply (y,2*) ~ 7. Now consider the generated
(y*,x) as a new proposal in an MH setting. Then the ordinary acceptance ratio for (y*,x)

1S

T(Y*) e (Y™ ) ay (o (ylz, y* ) (z*|y*, 2, y)
m(Y) e (*|Y) @yl (y* 2%, y) R (2]y, %, y*)

=r(y;2",y", x)

showing that the Markov chain is invariant with respect to 7(y,2*) of which 7(y) is the
marginal. O

In this case, the h function is involved both in the generation of x and in the acceptance
probability, but not in the proposal of y*. Some special cases are of general interest.
When h(zly, z*,y*) = q.(z|y*), the acceptance ratio reduces to

W(y*)qu|z(y|y*, :L')
ﬂ-(y)thc(y* |y7 ‘T*) ’

r(y;a® Yt ) = (10)
that is we obtain a similar simplification as (3) and (7). If * and x are low-dimensional,
this choice can work reasonable well. If however z* is generated as a sequence of auxiliary
variables (Section 4), qy.(y|y*, ) can be very small giving low acceptance probability.

We also have the following result, which corresponds to Proposition 2:

Proposition 5
Under the assumptions of Proposition 4,

Elr(y; =™, y", )|y, y"] =% =7r(y;y7), (11)

where q,(y*|y) is the marginal proposal density for y* generated through x*, and
Varlr(y; z%, y*, x)] =Varlr(y,y")]. (12)

PROOF. Define gy, (z*|y,y*) to be the conditional distribution of 2* given both y and
y*, that is

q(z*,y*y)

Galy (T Y, y") = et
wlv 4y (y*ly)



Flexibility of importance weights 7

Then
Elr(y; 2™, y", )|y, y"] =/ /r(y;w*,y*,w)qz\y(w*ly,y*)h(wly,w*,y*)dwdw*

which by direct insertion of the definition of r(y; z*,y*, z) reduces to

qy (yly*) . - « W)y (yly")
— Gy (2 y) (2 |y, y ) dede = —
/ / y)ay (y*|y) (el )] ) m(y)ay (y*|y)

proving (11). The second part is proved similarly to the second part of Proposition 2. O

Note that since min{1,} is a concave function, by Jensen’s inequality,

Ela(y; z*,y", x)ly,y"] < min{1,7(y; y*)}

showing that the optimal acceptance ratio (in the Peskun (1973) sense) would be to use
r(y; y*). In practise g, (y*|y) will not be possible to evaluate but by clever choices of h, we
hopefully get close to this.

The approach in Proposition 4 assumes auxiliary variables generated both forwards and
backwards. Some algorithms suggested in the literature (e.g. Al-Awadhi et al., 2004) only
consider generation forwards while the same variables are used backwards. This can be
obtained by choosing h to be a distribution giving probability one to a specific value of x
(typically dependent on (y*,2*,y)). The most direct approach is to choose h(z|y, z*,y*) =
0(x — x*) where § is Dirac’s delta distribution in which case the acceptance ratio becomes

ﬂ-(y*)QZ(‘T'y*)thc(y'y*a $*)

r(y;a*,y*,x) = .
( L P I P Py

This choice shares the same weaknesses as (10). If * = a}, = (7, ...,2}) is generated in
sequence, an alternative is to assume x1.; = zf,; with probability one. For such a choice
(Y ) e (€5 [y ) ay1= (Wly™, 271

T(Y) e (274 19) 2y 2 (Y™ |y, 27.4)

r(y;a®,yt @) =

In this case both g, (z},|y*) and gy (y|y*, z}.;) should be reasonable large. We will explore
these possibilities further in Section 4 for specific choices of proposal distributions.

Note that even though a choice of h making = a deterministic function of x* give a
proposal distribution not moving around in the full state space of 7(y, x*) = 7w(y)q.(x*|y),
this will typically not cause problems because this MH step is combined with the generation
of z*.

4. Sequential generation of auxiliary variables

In this section we will discuss the use of different importance weights in the case where x
is generated through a sequence of steps. Such schemes have been considered e.g. by Neal
(2001) in his annealed importance sampling scheme (to be discussed further in Section 4.4),
by Jennison and Sharp (2007) who proposed a method for mode jumping by first applying
one big jump and thereafter several smaller moves and by Al-Awadhi et al. (2004) within a
reversible jump MCMC framework. The weight functions obtained in this section will both
be of interest in themselves, but will also be used as building blocks for more advanced
algorithms in Section 5.
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4.1. A general approach

For ease of notation, let zj = y and z},; = y*. Assume x} ~ ¢;(-|zj_;) fori =1,...,t + 1.
The typical setup we will consider is where ¢; corresponds to a large jump while the following
proposal densities satisfy the detailed balance criterion

m(2)qi(y|x) = 7(y)qi(z|y). (13)

A consequence of such an assumption is that

t * | .k *
Hi:s qi+1(zi|xi+1) _ W(-Ts) (14)

szs Qi1 (w7 |]) W(x;rl),

which will be used repeatedly.

Our aim is to construct acceptance probabilities for the proposal y* = z},; when y is
the current state. A complicating factor is that the sequential approach for generating y*
will not make the proposal distribution for y* given y directly available. Note that if ¢; do
not depend on y, we obtain an independence sampler where the proposal is generated by a
sequence of internal MCMC steps.

Writing 7,1, = (¢, ...,%}, ), the general weight function will have the form

77(‘732‘+1)h(95>f:t |95;sk+1a z,y)
T+1
[l qi(@flay_y)

A wide variety of weight functions can be considered by different choices of h. Consider the
class of distributions

w(y; xT:t—i—la T) =

s—1 t
hs($1:t|$t+1) = H Qi($i|$i71) H Qi+1(zi|xi+1) (15)
i=1 i=s

and assume that for ¢ > s, the detailed balance criterion (13) is satisfied. For the setup of
Propositions 1 and 3 we must assume ¢ (z7|y) = ¢1(z7), which is no real restriction in the
importance sampling setting but is a restriction in the MH setting. In the latter case if the
generation of z7 is depending on y, a ¢i(x1) could be used in (15) above. Such proposals
could for instance be used for target distributions with several modes where ¢; corresponds
to a large jump while the subsequent moves are ordinary MCMC moves (Tjelmeland and
Hegstad, 2001; Jennison and Sharp, 2007). This particular setting will be further discussed
in Section 4.2. Another possibility is model or dimension moves in a reversible jump setting,
see Section 4.3. Allowing the additional moves also to depend on ¢ gives the possibilities
for different blocks of a high-dimensional state vector to be updated at different steps.
Under the assumptions above, from (14), we obtain

* t * |k *
U}(y, :C*. ) — ﬂ-(‘rt-i-l) Hi:s qi"rl (:C’L |‘Ti+1) _ Tr(:cs) ) (16)
1:24+1 | ok t+1 sk * | ek
gs(wilzi_y) Hi:s-l,-l Qi(xi |zi_1) qs (%} |$s—1)

The weights only depend on the ratio between the marginal distributions and the tran-
sition kernels for different components of the auxiliary variables. Note that the proposal
distributions ¢;,7 < s can in fact be arbitrary. The special case s = 1 gives

n(a3) )

w1 y;$1:t+1) - * )
( q1(z7]y)



Flexibility of importance weights 9

which corrects for using ¢; for drawing the first sample but then utilises that the following
samples keeps the distribution invariant with respect to m. This weight function do however
not account for that subsequent samples will be closer to 7.

Another special case is s =t + 1 which gives weight

m(y*)

, 18
(D) (18)

wi(Y; T1i41) =

only depending on the density of and the transition to y*. Note that in this case no
assumptions on ¢; are made for any ¢ although ¢:11(y*, z7) should be possible to compute.
A weakness here is that when t is large we would expect the marginal distribution of y
to be close to 7(y*), but this is not accounted for. This can however be accomplished by
combining the weights. Since weighted averages of weight functions are allowed, a proper
weight function is given by

t+1
w(y§x*1ﬁ:t+1) = Z asws(y; ff:t+1)a (19)
s=1

A particular interesting case is when a5 = (t + 1 — b)~1I(s > b), with b corresponding to
some “burn-in” period for the proposal generation. In this case, w(y;x1.;,) is a standard
MCMC estimate of E[w(y;x7,;,,)] with the first b iterations used as burn-in. If further
requirements for the Markov chain using ¢y, ..., ;41 as transition probabilities to be ergodic
is satisfied, the weight function will then converge towards its expectation which is 1, thereby
implying that the acceptance probability also converges towards 1. This indicates that the
weight function indeed reflects that x7,; converges in distribution to 7(-) as ¢ grows.

In some cases, updates are made component-wise (or block-wise). Similar to the non-
reversibility of the Gibbs sampler, some extra care need to be taken under systematic scan
updates. The weights (16) can however still be shown to be valid.

In order to use the weight functions from the previous section, transition probabilities
of the form gs(z%|x%_,) must be possible to calculate. When {z7,,,,} is generated through
internal MH steps, such transition probabilities are not always directly available (this is in
particular the case when an internal proposal is not accepted). There are different ways
around this. The details on this is considered in Appendix A.

4.2. Mode jumping

Jennison and Sharp (2007) considered an approach for performing mode jumping within
MCMC. Their approach was based on starting with a large jump followed by a sequence of
(typically smaller) MCMC steps. To be specific, 7 = y + ¢ where ¢ ~ f(+) is a symmetric
distribution while z; ~ q(zj|r;_;) for t = 2,...;t and finally y* ~ q,,(y*|z;). Here ¢ is
a transition kernel leaving 7 invariant. A different transition at the last step is chosen for
computational reasons, see below.

By choosing

t

h(zly, 2", y") = 6(x1 — y* + @) [ [ a(@ilzio),

=2
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we obtain through Proposition 4 (for ¢ = 27 — y = 21 — y*) the acceptance ratio

(") F (=) [Tiy a(@ilwion)aye (Wlae) TTi_y a(a|)y),
T(W) (0) TTims ¢} 1271 )y o (v*|2}) TTieg a(@ilaiy),
() gyl (ylTe)

W)y (7))

r(z®,y® xly) =

which is equal to the acceptance ratio obtained by Jennison and Sharp (2007). In order
to get a computationally tractable density, Jennison and Sharp (2007) suggested choosing
qy|=(y*|7}) as a local approximation to m(-). Note that xa.; is not involved neither in the
generation of y* nor in the acceptance probability making these variables unnecessary to
generate.

As discussed in Appendix A, gy, (y*|z}) can also be defined through a MH step. Within
such a setting, alternative constructions can be considered. Assume g, = ¢. Similar
to (15), consider now averages of

s—1 t
hs(zly™, 2%, y) = 0(z1 —y" + @) H q(w;lwi-1) HQ(xi|zi+l)'
=2 i=s

Using (14), we obtain an acceptance ratio equal to

t+1 w(zk)
® ok 2822 FICHENEN)
T(‘T )y ?‘T|y) = t+1 W(Is) :
ZS:Q a(zs|Ts—1)

In general, if ¢ is capable of moving efficiently around in the whole state space, this ratio
will converge to one. In more practical settings where ¢ is only able to move around within
the current mode, the ratio will converge towards the ratio between the masses of the
corresponding modes.

An earlier approach suggested by Tjelmeland and Hegstad (2001) is quite similar to the
approach by Jennison and Sharp (2007). In this case a similar large jump was followed
by a deterministic move to the nearest local mode. p(xz*). Thereafter, a second move
was performed through y* ~ gy, (y*|pu(2*)). Tjelmeland and Hegstad (2001) suggested to
choose g, to be a Gaussian with mean at p(z*) and covariance matrix derived from the
second derivatives of log 7(p(2*)) (very much similar to the choice of local approximation
in Jennison and Sharp (2007)). In order to calculate an acceptance probability, a backwards
move y* — = — p(x) — y was defined but now with z = y* — ¢. Applying Proposition 4
using h(z|y, z*,y*) = é(x — y* —y + x*), we obtain (for ¢ = a* —y = y* — x)

e () f( D)y (y*u(z*))  7(Y)ay(y*|n(z*))
which is the same acceptance ratio obtained by Tjelmeland and Hegstad (2001). Using the
general framework, combinations of these two approaches can also be considered (i.e. local
optimisation followed by a few MCMC steps).

4.3. Reversible jump MCMC proposals
Reversible jump algorithms (Green, 1995, 2001) is an important class of MH algorithms for
jumping between spaces of different dimensions. Obtaining reasonable acceptance rates is
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however recognised to be a hard problem (Brooks et al., 2003). Denote the state in this
case by § = (m,y) where m is the dimension (or model) while y is the set of parame-
ters/variables within the model (of which state space may depend on m). Further write
m(y) = mar (M) (y)-

The problem of jumping between different subspaces/models is to construct a proposal
g* giving high support. Al-Awadhi et al. (2004) suggested a change of model through
qu (n|m, y)qnm (27 |y) followed by ¢ fixed-dimension MCMC steps through states 73, ..., T}, | =
y* where Z; = (m},z}) but m = n. A reverse move was proposed somewhat asymmetric in
that in this case t fixed-dimension MCMC steps were taken before a final change of space.

In order to put this into the general framework, assume that for each pair (m,n) if
a change from m to n performs a model change first, a change from n to m performs a
model change last. Using Proposition 4 with Z1.; = Z},; with probability one, we obtain the
acceptance ratio

* * * t * *
W(n)ﬂn(ﬂcm)qM(mW xl)qm|n(y|x1) [Ti=1 gn(z; |$i+1)
1 *
T(m) T (y)qnr (0, ) g (25 |y) TTi55 @ (2F27_)

*

(73,9, 2) =

Al-Awadhi et al. (2004) assumed 7% (y)gn (¥*|y) = 75 (y*)gn(y|y*) for some distribution 7

that might differ from 7. Using (14) this reduces to

()T (€7 41)qas (M0, 27) G (y|27) 77 (27)

7T(7n)7r7n (y)QM (n|m7 y)qmnl(ziK |y)7T,;§ (:C:karl)

(77,9, 2) =

which is equal to the acceptance rate obtained by Al-Awadhi et al. (2004). They suggested
choosing 7 to be some intermediate distribution between 7, and ¢,,. Note however that
the number of steps ¢t does not affect the acceptance probability.

Consider now an alternative scheme where both the forward and the reverse generation
of proposals starts with a change of model followed by ¢t MCMC steps within the chosen
model. We further assume ¢, is invariant with respect to m,, avoiding the extra burden of
defining ;. Using Proposition 4 with

s—1 t
hs(:ﬂg*a f*v g) = 5(m1 - m)qm\n(xﬂx;}-l) H qm(zi|xi71) H Qm(xi|xi+1)
i=2 i=s
results in weights
* t * * *
ks o 7”(”)7Tn(95t+1) Hi:s qn (7} |9Ui+1) . m(n)m(xs)

ws(7; 7, 9", %) = = -
o au(nm, ) TIEL gu(at|zioy)  am(nlm,y)gn(zlal_q)

who can be combined to give an acceptance ratio of the form

% t+1 n (]
L m(n)gn (mn, y*) > .1 asqn&;ﬂﬁ;iﬁ
r(y; 2,7, ) = t+1 T (2 5)

Tr(m)qM(n|m7y) s=2 s gm (Ts|Ts—1)

If g, and g, define ergodic Markov chains within their respective models and we choose
as = 1, this acceptance ratio converges towards m(n)qa (m|n,y*)/m(m)ga(nim,y) as ¢
increases.
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4.4. Annealed importance sampling
Neal (2001) proposed a sequential method for generating variables using different transition
distributions at each step. Also this approach can be considered as a special case of our
general framework, although a small generalisation of the discussion in Section 4.1.

Define a sequence of distributions 71, ..., 711 = 7™ where 7 is some distribution which
is easy to sample from while 7 is the distribution of interest. Now generate 27, ..., 2}, = y*
through the sequence =} ~ ¢;(xf|z;_,) for i =1,...,t + 1 (where ¢1(x}|zy) = m1(z7)). Here
¢; is a transition distribution satisfying detailed balance with respect to 7,

mi(@im1)qi(wilwim1) = mi(xi)qi (1] 2s)-

Similar to (15), define

s—1 t
* * _ | . * |,k
hs(21l2iy) = H qi(z7|zi_q) H Qi1 (@i |2i4)
i=1 i=s
which, using similar calculations as earlier, results in

mor (@) 1 mi (@)
go(zlei_y) 1 mia)

Ws (zT:t-i-l) =

This gives a weight function that can be used in the setting of Proposition 1 for importance
sampling and in the setting of Proposition 4 for MCMC sampling.
Using s = 1, we obtain

*

t
:L'Z
1(21.441) H E maaat (20)

\./

[

This is the weight function used in Neal (2001). If the sequence 7y, ..., m441 is chosen such

that m;(y) ~ mi—1(y), the weights will be close to one. Note that if using these weights

within an MH algorithm, 7; only needs to be known up to a proportionality constant.
Another interesting special case is when s = ¢ 4 1 in which case

7Tt+1($:+1)

— (21)
Qt(zt+1 |z7)

wt($1:t+1) =

This last option is also a special case of (3) (or (7) if used within an MH setting). Com-
paring (21) with the more “standard” choice (20), we see that a multiplication of a ratio of
many densities is avoided. On the other hand a conditional density ¢;(x¢+1|z:) is needed,
which is not always available, see however the discussion in Appendix A.

4.5. Multi-try methods and particle proposals

Liu et al. (2000) suggested a multiple-try algorithm in which several proposal (or particles)
where generated with one of these selected as the actual proposal. Andrieu et al. (2008)
considered a generalisation of this idea where each particle was generated through sequential
Monte Carlo methods (Doucet et al., 2001). We will discuss these approaches in the latter
setting.
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The simplest form is to generate many parallel sequences {x;yuﬂ,j =1,...,N}, choose
an index K € {1, ..., N} with some probability depending on all the sequences and then use
as proposal y* = 3, . Andrieu et al. (2008) considered more general schemes where at
each iteration resampling is performed. We will, mainly for notational simplicity, consider
the simpler case where no resampling is performed.

Assume 77 ;4,4 is generated sequentially with @7 ; ~ ¢;(z] ;27 ,_), similar to the proce-
dure in Section 4.4. Identify z}, =y for all j. Assume g,,(y"|z*) is a discrete probability
distribution with

ﬂ-(x;(,tJrl)

yla(Y" = Ty |27) o (22)

qi+1 (x*K,t+1 |9U*K,t) .

In this case, choose

t+1
h(x|y,z*,y*) :Nil(s(xK,tJrl 7y)]:[ ($K1|$K1 1 H HQz Xy, z|1']z 1)
i=1 J#K i=1

By inserting into (2), we obtain for y* = 23, ,

t+1
w(y;z*,y", x) 12}——4i——

Qt+1( Ty t+1|% t
giving the acceptance ratio

ZN W(I;,t+1)
Jj=1 qt+1(I;,t+1 ‘z;,t)
ZN m(xje41)

J=1 geq1(zjeq1lz)e)

r(y;a®,yt @) =

Comparing the weight function to (21), we see that we now have obtained an average of sim-
ilar terms which will have reduced variability. Alternative weight functions and acceptance
ratios can be obtained by considering other choices of h functions.

A special case of this approach using t = 0 corresponds to the multiple-try method
by Liu et al. (2000). They considered different types of acceptance probabilities that can
be related to different choices of h functions in our setting.

5. Non-sequential approaches

In this section we will discuss non-sequential algorithms proposed in the literature that also
can be seen as examples of the general scheme. Putting these into the general framework
both makes it easier to see the basic ideas these approaches are based on and suggest
alternative weight functions or acceptance probabilities to use.

5.1. The Pseudo-marginal algorithm
Beaumont (2003) considered a situation where 7(y) is not known specifically, but given
through

ﬂm=éﬁ@wﬂ
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with 7(z,y) known (up to perhaps a proportionality constant). The following algorithm
was proposed: Given (y,z1,...,TN),

(1) simulate y* ~ g, (y*|y),
(2) simulate 27, ..., o3 ~ Gy (2" [y*),
(3) accept the new sample with acceptance ratio
1 N w(x],y")
ay(ly") N 21 @, G50

* N 7(xj,
W) & Y, s

r(z,y;a”,y") = (23)

. . . N w(z]y")
(slightly rewritten). Using that + > i1 %

estimate of m(y*), the acceptance ratio is a Monte Carlo estimate of

can be considered as a Monte Carlo

r(y:y*) = 4y Wly )7 (y”)
’ ay(y*y)m(y)

the acceptance ratio for marginal simulation of y. The algorithm has therefore been termed
the pseudo-marginal algorithm Andrieu and Roberts (2009).
In order to put this algorithm into our general framework, define

he(z1:nly) = 7 (@) [ [ gury (@510). (24)
J#s
The corresponding weight function has the form
m(y )7 (@ily™) s doly (51y") (x5, y%)
N w1, % - * | g%
Qy(y*|y) H_j:l q$|y($j|y ) Qy(y |y)q®|y(zs|y )

ws(y; 275, Y") =

A weighted average of these weight functions is also a proper weight function resulting in
the acceptance ratio (23). As an alternative to store x1,...,2y, new x’s can be generated
according to the mixture distribution the hg distributions given in (24). It then follows
from the general theory that applying these weights in a MH setting makes (under suitable
regularity conditions) the sequence of generated y’s converge towards 7(y). Beaumont
(2003) showed this in the special setting of independent z’s while Andrieu and Roberts
(2009) generalised this to the more general setting, although through a different route.

Andrieu and Roberts (2009) generalised this idea to allow for non-independent z’s and
also considered the theoretical properties of this algorithm. A possible framework in this
case is to divide the set {1,..., N} into three disjoint subsets {s}, v1,v2 and define

hS(xT:tly*) = ﬁ-(xz |y*)qx|y(le |y*)QI\y($:2 |'T:’ le ) y*)
where x, = {z;,7 € v}. Then the corresponding weight function has the form
_ T(x3,y”)
(YY) 4aly (€t 123, y7)

ws (Y5 7.4, Y")

A weighted average of these weight functions is also a proper weight function. It then follows
from the general theory that applying these weights in a MH setting makes (under suitable
regularity conditions) the sequence of generated y’s converge towards 7(y). Beaumont
(2003) showed this in the special setting of independent z’s while Andrieu and Roberts
(2009) generalised this to the more general setting, although through a different route.
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5.2. Distributions with intractable normalising constants
Mgller et al. (2006) considered a problem of drawing from a posterior distribution

m(y) = p(ylz) = C~'p(y)p(zly)

where the likelihood for data z is

p(zly) = Z7 (y)p(zly).

Here both the normalisation constant involved in the posterior C' and the normalisation
constant defining the likelihood Z(y), which depend on y, are unknown (a problem often
encountered in spatial modelling). The data z is dropped in 7(y) since we are considering
this as a given constant. Mgller et al. (2006) proposed an MCMC algorithm that we now
will describe in the setting of Proposition 3.

Assume (z, y) is the current state and generate a proposal (x*, y*) through g(z*, y*|z, y) =
4y (5%, 9)uty (2° |2, 9,57) Where gy, (27|, 4,57) = Z-(3")p(a°ly"). Consider a weight
function of the form

wi, o, y) = S PWIZ WPy oea P )B(ly )l ly)
R ay(y* |z, y) 2= (y* )p(a*|y*) qy(y* [z, y)p(z*|y*)

and an acceptance ratio

p(y*)p(zly* ) h(@* [y ) gy (ylz*, y*)p(x|y)
pW)D(z[y)h(x|y) gy (y*|x, y)p(z*|y*)

r(z,y;a*,y") =

where h(z|y) has a state space similar to z but may otherwise be arbitrary (and even depend
on z). The given algorithm will according to Proposition 3 have 7(y)h(z|y) as invariant
distribution. This is the same ratio obtained by Mgller et al. (2006). They also discussed
several options for choosing the h distribution.

Consider now the case where q,1,(y*[y,z) = q,1(y*|y), a special case only considered
further by Mpgller et al. (2006) after their general description of the algorithm. Through
Proposition 4 we then are able to construct an alternative algorithm where z do not need
to be stored from one iteration to another. Using the same ¢ function as above but now
simulating x ~ h(z|y,2*,y*) in addition to z*, y*, we obtain

h(x* |y, 2, y)p(y*)p(2|y™ ) ay . (v [y)D(x|y)
h(zly, 2, y*)p(y)D(21y) dy 12 (yly*)D(* y*)

r(a®,ytle,y) =

In this case, more general choices of the h distribution can be considered. One option is to
choose h(z|y, z*,y*) = d(x — =), making generation of an extra x unnecessary. In which
case the acceptance ratio reduces to

()2l ) ay (* [y)p(z*y)
p(W)P(2ly)ay = (yly*)p(z*ly*)

r(z*,yt|e,y) =

5.3. Delayed rejection sampling

Tierney and Mira (1999) suggested a method for composing a new (different) proposal in
an MH setting when the first proposal was rejected. This approach was further considered
and extended in Mira (2001) and Green and Mira (2001).



16 Geir Storvik

Consider a situation where given the current state y, a first proposal z7 is generated
by q1(xf]y) and accepted with a probability a;(y;x7). If rejected, a new proposal x3 is
generated by go(x3|y, 27) and this new proposal is accepted with probability as(y,x7;x3).
We will see how this approach can be considered as a special case of Proposition 4.

In this case it is reasonable to consider gy, (y*|y, =}, z3) to be a discrete distribution
putting y* = x7 with probability a4 (y; z7) and = x5 otherwise, so

Gyl (Y |y, 27, 03) = aq (y;27) VT [1 — oy (y; 2])] =72,

Consider first a situation where in addition to (z7, z3) also (21, x2) are generated using the
proposal distribution h(x1, 2|y, 3, 25, y*). In order to get the variables to work within the
same spaces, we make h(xz1, za|y, 7, 5, y*) degenerate in the sense that either z; or xs is
equal to y. Consider the choice

8(z1 — y)ha(w2ly, x3,y*) if y* = 7;

h(zy, z2ly, 7, 25, y") =
(1,2l i 22 v7) {5(fcz—y)h1(fc1|y,w1‘,y*) if y* = a3.

We consider the two possibilities separately:

y* =z7: In that case 1 = y and by applying Proposition 4, we obtain
m(y* ) (YY) g2 (2ly™, x1) o (y*; y) ha (@5 y*, 22, y)
m(y) a1 (v*|y) a2 (@5 |y, y*)oa (y; y* ) ha (@2 |y, 25, y*)
_ @@y, m1)ha(3]y", w2, )
a2 (x3|y, y*)ho(22ly, x5, y*)

r(y;a*,y*,x) =

where we have used that 7(y*)q1 (y|y*)a(y*;y) = 7(y)q1 (y*|y)oa (y; y*) for a standard MH
choice of a1 (y;y*). For ha(zh|y*, z1,y) = q2(x5|y, 27), this reduces to 1, which corresponds
nicely to accepting the first proposal 27 with probability «(y; z7).

* *

y* =x5: In this case 2 =y and we obtain

()1 (z1]y*) g2 (yly*, x1)[1 — aq (y*; 1) )b (2 |y*, 21, y)
m(y)q1 (@7 y) a2 (y* |y, 27)[1 — aa (y; 27)]ha (21 |y, 27, ¥*)

r(y;a®,yt @) =

Choosing now hq(z1|y, 23, y*) to be degenerate in that x; = z% with probability one, this
reduces to

(") (@1 y*) @ (yly*, 27)[1 — s (y*; 7))

()1 (@192 (|9, 7)1 — o 20)] (25)

r(y;a®, Yt @) =

which is the same acceptance ratio as that given by Tierney and Mira (1999). An alternative
in this case is to choose hi(x1|y,z7,y*) = ¢i(x1|y*) in which case the acceptance ratio
reduces to

m(y")g2(yly", 21)[1 — a1 (y*;21)] (26)

Lt PR RS TPy oy
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This acceptance probability might be a reasonable choice in the case where you have the
choice between using a (computationally) cheap proposal ¢; and a more expensive go which
is close to m. Note that in the special case where ¢ = 7, this acceptance ratio reduces to

1 —ai(y;71)

With ¢; being a bad approximation to 7, both the acceptance probabilities « (y;27) and
a1 (y*; x1) will be small, making r(y; «*, y*, ) almost equal to 1, as it should!

6. Experiments

The usefulness of most of the different algorithms discussed in Section 5 have already been
presented in the literature. In this section we will concentrate on the flexibility of choosing
different weight functions/acceptance probabilities.

6.1. Sequential updating and Gaussian mixtures
Consider a model in R?

m(y) = BN (y; 1, I) + (1 — B)N (y; pa, 1)

where (11,1 = —po,1 = —10 while p; ; = 0,7 =1,2,j = 2,...,p. This corresponds to a model
with multiple modes so separated that ordinary MCMC methods will get stuck in one of
the modes.

We will consider an MH algorithm where proposals are generated sequentially as de-
scribed in Section 4 with starting value generated from N (u1,I).

Proposals y* are generated by simulating a sequence x7, ..., z;,; with y* =z} ;. Here
xf ~ N(0, 0’l2m_ gel ) followed by a set of ¢ “inner” MH steps using a discrete version Langevin
diffusion (Besag, 1994; Roberts and Tweedie, 1996) where proposals z; are generated by

* * 1.2 * 2
Zj ~ N(zjfl + §O—smallA10g7T(xj71)a Jsmalll)

and proposals are accepted using ordinary MH acceptance rates. The number of “outer”
MH steps, i.e. the number of generated y*’s will be denoted by M.

The final proposals y* are accepted with probabilities given by Proposition 3 with three
different weight functions, all based on the general weight functions (16):

(1) The special case s = 1 corresponding to weight function (17).

(2) The special case s =t + 1 corresponding to weight function (18).

(3) A weighted average of (16) as given in (19) with a; = 0 for s < (t+1)/2 and = 2/(t+1)
for s > (t+1)/2.

The full algorithm was restarted N times and the last sample was stored in each case, giving
samples y1,...,yn. As a measure for the performance of the different weight functions,

d(Fy, F1) = sup | Fi(y1) — Fy ()] (27)
Y1
was used where ﬁl is the empirical distribution function based on the the first component

of the samples y1, ..., yn while Fj is the true marginal cumulative distribution function of
the corresponding variable.
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Figure 1 (panels (a)— (¢)) shows boxplots of d(F, F) with N = 10000, M = 20,t+1 = 10
and with oj4rge = 15, 0sman = 1.5. The different panels correspond to different dimensions
p. The boxplots are obtained by repeating the experiments 100 times. We see in all cases
that the first weight function do not perform that good, an expected property given the
previous discussion about this particular choice. Both the other choices give significant
improvements with the third weight function performing best in all cases. The difference
between these seem to depend on dimension though. In particular it seems like the difference
between them are decreasing with dimension, but then increasing for p = 10. This is
probably due to that for p = 10, 20 iterations in the outer MCMC iterations is not that
much. Increasing M to 40 (panel (f)), the similarities between the second and the third
weight functions are again obtained.

Figure 2 shows the true cumulative distribution for the first component and typical
examples of empirical distributions based on the three different weight functions for p = 10
and M = 20. The differences between the choices of weight functions shown in Figure 1 is
clearly seen. Note in particular that the third weight function produces estimates that are
indistinguishable from the truth, indicating that convergence has been reached even with
this small number of MCMC iterations.

6.2. Delayed rejection and multiple precision models
Consider a model where observations z € R? follow a model

Zi=p+n +e;

where €1, ...,&, are iid zero-mean Gaussian variables with precision = while 7y,...,n, are
spatially correlated variables with a conditional autoregressive (CAR) structure (Besag,
1974; Besag and Kooperberg, 1995) with conditional distributions given by

miln—i ~ N(Bn; 'y ny,n; k)
Wiad2
with n; being the number of neighbors for observation ¢. Our interest will be in the posterior
distribution of 7 = (71,72) where 7, = k!, Assuming independent Gamma distributions
for 7, 72), both with shape parameter a and rate parameter 3, the posterior distribution
has the form

1 _
7(7) Tlafle—BnTQafl —B2 I e~ s@—m TS @—p)

He et al. (2007) state that such distributions in many cases are “l-shaped with two long arms
pressed tightly along one or both coordinate axes”, which is demonstrated in the left panel
of Figure 3 showing the posterior distribution obtained from simulated values of z1, ..., z,
onabx5gridusing u=0,0=0.257 =1and 2 =1/3.

We will consider a delayed rejection sampling algorithm where at the first stage proposals
are generated through scale-proposals suggested by Knorr-Held and Rue (2002) where

T =75
and f; € [F~!, F] with density proportional to 1+ f~!. At the second stage, a proposal is

generated through the reparametrisations

T1T2 T2

(28)

b)
T+ T2 T+ T2
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Fig. 1. Boxplot of d(ﬁ F) for the Gaussian mixture distribution. The different panels correspond
to results on different dimensions p = 1,2, 3,5, 10. The experimental setup is described in the text.
Panels (a)-(e) correspond to M = 20 while panel (f) corresponds to M = 40. The numbers on the
z-axis correspond to the different types of weight functions.

where a new 72 is generated uniformly on [0, 1] while 72 is generated through the posterior of
7 given r which can be shown to be a Gamma distribution with shape parameter 2a+n and
rate parameter [3 + 0.5ssq]/[r(1 — r)] where ssq is the sum of squares using the covariance
matrix divided by 7. New proposals 72, 72 are then given by the inverse transformations
of (28).

Our aim will be to compare the two alternative acceptance probabilities (25) and (26),
referring to the references in Section 5.3 for demonstration of the power in using delayed
rejection sampling algorithms in general. The right panel of Figure 3 shows the distance
measure (27) as function of number of MCMC iterations based on the “standard” delayed
rejection sampling acceptance probability (25) (solid line) and the alternative acceptance
probability (26) (dashed line). We clearly see the improvements made using the alternative
acceptance probability.



20 Geir Storvik
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Fig. 2. Mixture Gaussian distribution with dimension p = 10 and number of outer MCMC iterations
M = 20. True (shaded) and examples of estimatedycumulative distributions of the first component.
Solid line corresponds to the first weight function, dashed line to the second weight function and
dotted line to the third weight function.

7. Summary and discussion

In this paper we have presented a framework for construction of auxiliary variable proposal
generation. Many algorithms proposed in the literature are shown to fit within the frame-
work and in several cases, alternative acceptance probabilities and/or importance weights
are suggested. Numerical experiments demonstrate that in some cases significant improve-
ments can be obtain by using these alternatives.

The variety of options for acceptance probabilities have also been suggested elsewhere.
In this paper we have shown that these options can be related to choices of extended state
spaces for the variables to be generated. These choices comes in addition to the flexibility
in how proposals are generated.

Although the added flexibility makes it possible to define alternative and hopefully better
algorithms, it also extends the number of choices to make in order to construct an efficient
algorithm. Theoretical results guiding the practitioner in these choices would be valuable
additions to the framework but are so far lacking.

Acknowledgement

Part of this work was performed when the author was a visiting fellow at the Department
of Mathematics, University of Bristol. The author is grateful for valuable discussions with
colleagues there, in particular Professor Christophe Andrieu.

A. Transition densities for internal Metropolis-Hastings moves

In this section we discuss the use of weight functions when proposals are generated by a
fixed number of internal MH steps. The general difficulty in this case is that the transition
probabilities gs(x%|z%_;) not always are directly available

One possibility, explored by both Tjelmeland and Hegstad (2001) and Jennison and
Sharp (2007) is to only consider transition probabilities for the last proposal and in this
case use a local approximation to 7 (typically a multivariate Gaussian) in which case the
transition probabilities involved can easily be calculated, see Section 4.2.
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Fig. 3. Left panel: Posterior distribution of (1, 72) in the CAR model based on 50 simulated obser-
vations on a 5 x 5 grid using p = 0,8 = 0.25 and = 1,7» = 1/3. Right panel: Distance, as
defined through (27), between true and empirical distribution as function of the number of MCMC
iterations for the “standard” delayed rejection sampling acceptance probability (25) (solid line) and
the alternative acceptance probability (26) (dashed line).

In the case where only parts of the state vector is changed at the time and at least one
of the blocks can be moved through a Gibbs sampler update, using as; > 0 only for those
steps at which a Gibbs sampler is used, avoids the need for calculating more complicated
transition kernels.

In order to utilise all the generated auxiliary variables, an alternative is to include also
the proposed values at each iteration into the set of auxiliary variables. Assume that x7,;,
(with proposals z7,,) are generated by MH steps, i.e.

zi ~q; (|zi)

. zF with probability a;(z}_1;2F);
Ty =
! xi_, otherwise.

The generating distribution can be written as

t+1
[T o ler g rlary o))
=1

where g;(z}|x;_;),7 = 1,...,t+ 1 is the transition kernel for the Markov chain {z7.,;} while

7 (7 )o@ty 2) D[ — gl 2)] =)

zlw i—1) %
ACHENY!

4

(2] |wim1,27) =
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is the conditional distribution for z} given (x}_;,z}). Now consider the choice
h’S(ZT:tJrlazI:thJa €z, y*)

s—1
= H 6 (@) 7)) (25 2y )

hi(z5laxe_y, @ H%H z|zz+l)ql+1( :+1|z:,$:+1)-

Using (14), we obtain

t
W(y*)hz( *l‘r:—l’x:)ni:s Qi+1($:|$:+1)
t
gs (2|23 )ad " (2l o) [T, di (a0 2)
m(@h)hz (2wt g, xt)

G2 (22 ) (2515 2) TOF =201 — @ s (g 2)) 3 7000)

. * * —
Ws (y, Zl:tﬂ zl:tJrl) -

For the choice of hZ(zX|z%_;,z%), some care should be taken in order to increase the proba-
bility for nonzero acceptance probabilities. In particular the distribution should reflect that
i # xs—1 = 25 = x%. Therefore, assume

5z —a2) if o} # 23y

RE(zixi_y,a%) =
S( é| b S) {(jflm( §|$§71a$§) ifxl‘:xllp

where (jj‘z(-|x:71,x:) is a general density with support equal to ¢Z(-|z%_;). The obvious

option is to choose Gs * (2¥|z%_1, %) = ¢Z(2%|z%_,) in which case the weight function reduces

to
m(x}) . *
if Tr_;
(it ) = 4 BEEE Joslr e s F Ty
s\YsLiipy1) = w(zk) - *
— fa*=ux
1—o o(z%_132%) s s—1-

Another option is to choose

§(z¥ — %)  with probability 1 — a, s(x%_q, 2%);
gs(z¥|zi_1) with probability o, s(zi_1,z%)

hi(z5lasy, x5) = {

In that case, the weight function reduces to

m(z3) - .
ws(Y; 21,4, Ty pin) = PACHEY) if o3 # 251
s\Yi 2140 T1p41) = .
0 otherwise.

In this case, only those iterations corresponding to acceptance are considered.
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