
.

Master’s thesis

Application of Supervised Machine
Learning to the Search for New
Physics in ATLAS data
A Study of Ordinary Dense, Parametrized and Ensemble Networks and their
Application to High Energy Physics

William Hirst

Computational Science: Physics
60 ECTS study points

Department of Physics
Faculty of Mathematics and Natural Sciences

Spring 2023

William Hirst

Application of Supervised Machine
Learning to the Search for New Physics in

ATLAS data

A Study of Ordinary Dense, Parametrized and Ensemble
Networks and their Application to High Energy Physics

Supervisors:
Professor Farid Ould-Saada

Dr. Eirik Gramstad

i

Abstract

This thesis explores a diverse array of Machine Learning (ML) models as they search for chargino-neutralino
pair production in three-lepton final states with missing transverse momentum. The study is based on a data
set of

√
s = 13 TeV proton-proton collisions recorded with the ATLAS detector at the LHC, corresponding

to an integrated luminosity of 139 fb−1. The ML models applied in the study were three variants of Deep
Neural Networks (DNN), and Boosted Decision Trees (BDT). The DNN variants included an ordinary dense
Neural Network (NN), Parameterized Neural Network (PNN) and ensemble models utilizing pattern-specific
pathways created by competing neurons. In the latter variant I included a novel layer introduced in this thesis,
the Stochastic-Channel-Out (SCO). The study included an analysis of how each model attained sensitivity
when training on a diverse data set including several orthogonal Beyond Standard Model (BSM) variants,
specifically different masses for the chargino and neutralino. A study was also made on individual attributes
of each model, for example the sparse pathways of the ensemble methods or the effect of the choice of
parameters in the PNN. In my studies I found that the inclusion of multiple signal variants can be beneficial
during training of an ML model in the case that the variants exhibit overlapping feature distributions. This
is specifically true if the model displays a strong long-term memory, as the models utilizing sparse pathways
were found to do. When comparing each model in their ability to attain sensitivity, I found that the PNN
exhibited a preference towards high statistic signal which allowed it to attain impressive sensitivity in low
mass regions. On the contrary, the ensemble methods, which did not attain the same level of sensitivity on
low mass signals, was able to achieve a far more balanced sensitivity for signal in both high and low mass
regions. I found that performing a Principal Component Analysis (PCA) on the dataset led to an improved
sensitivity of the ensemble methods and the PNN for a majority of the mass combinations. When comparing
the expected sensitivity of the models to that achieved by ATLAS I found that none of the models were able
to extend the established exclusion limit on the masses of the chargino or neutralino. Further improvements
to the results could be achieved by more extensively studying the output from each model, especially the
ensemble networks, which showed good sensitivity in non-excluded regions.

ii

iii

Acknowledgments

First and foremost, I would like to thank Farid Ould-Saada, Eirik Gramstad and James Catmore. Without
the guidance of all three of you, I would surely never have been able to finish this thesis. I have been
incredibly privileged that you have taken time out of your lives to meet with me every single week and
discuss my work. I am particularly thankful that you have the patience to teach me the definition of jets
every week, as well as why neutrinos are not considered leptons.

To my family, who has never pushed education upon me, but have allowed me to follow whatever I
desired, whether it was DJing or particle physics. A special thank you to my grandmother, Brenda Rose
Hirst, for never allowing me to leave the breakfast table without finishing my math puzzles.

To my friends, both those I made before and during my studies. In the opening speech of my bachelor’s degree
I was told by the speaker that the majority of students who do not finish their degree, do so as a result of
lack of friends, not due to the difficulty of the degree. Without my friends I would have no doubt joined that
statistic. To the friends I made during my bachelor; thank you for all the espresso shots in RF-kjelleren and
stupid, loud conversations in Vilhelm Bjerknes Hus. To the friends I made during my masters; thank you for all
the delicious toast we have shared, and incredible ping-pong wars we have fought. And to Sakarias, for being
with me through both my bachelors and my masters. I will never be able to watch Doctor Who again without
reminiscing of our time in the experimental physics course. Finally, thank you to my friend Carl Martin
for being the co-creator of the codebase used to visualize the pathways of LWTA layers displayed in this thesis.

And finally, to my dear Martine. Without you, I would not only have struggled to finish my thesis,
but finishing it would be utterly meaningless.

iv

v

Contents

Introduction 1

1 The Standard Model of Elementary Particles and Beyond 3
1.1 The Building Blocks 3
1.2 The Forces 5
1.3 Beyond the Standard Model 6
1.4 Proton-Proton Collisions at the LHC 6
1.5 The Signal 8
1.6 The Background Channels 9

2 Introduction to Machine Learning and Data Analysis 13
2.1 Phenomenology 13
2.2 Optimization 14
2.3 Hyperparameters 15
2.4 Data Handling 15
2.5 Regularization 17
2.6 Neural Networks 18
2.7 Decision Trees and Gradient Boosting 25
2.8 Machine Learning Applied to a BSM Search 26
2.9 Model Assessment 28

3 Implementation & Preparation of the Analysis 31
3.1 The Simulated Data 31
3.2 The Tools 32
3.3 Selecting Features for the Analysis 35
3.4 Data Preprocessing and Preselection Cuts 35
3.5 The Machine Learning Models 37
3.6 Model Training and Validation 42
3.7 Handling Negative Weights in a BDT 43
3.8 Defining the Signal Region and Calculating the Significance 43

4 Results & Discussion 45
4.1 Benchmarking the Analysis with a BDT 45
4.2 Dense Ordinary Neural Networks 47
4.3 Ensemble Methods 50
4.4 Parametrized Neural Network 55
4.5 Remarks on Comparison between Models on Original Signal Set 58
4.6 Increasing Sensitivity through PCA 58
4.7 Comparing Models on the Complete Signal Grid 60
4.8 Comparing Exclusion Limits between Models and Previous Analysis 63

Conclusion & Outlook 67

Appendices 69
A Expected Significance Results 70
B The Features 73
C The Implementation of Channel-Out, SCO and Maxout 80
D Contour Plots for the Calculated Significance with a Flat Uncertainty 82

vi

vii

List of Figures

1.1 Event Cross Section in a computer generated image of the ATLAS detector. 7
1.2 An illustration of the general kinematics in a particle-collision. 8
1.3 The Feynman diagram of the signal producing a chargino-neutralino pair. 8
1.4 Feynman diagrams of background processes. 11

2.1 The value distribution of the two leading PCA-features. 17
2.2 The value distribution of the two last PCA-features. 18
2.3 An illustration of the architecture of a NN with two hidden layers. 19
2.4 An illustration of a forward propagation from one layer to a node in the next. 20
2.5 An illustration of a Neural network with two hidden layers using the maxout layer. 23
2.6 An illustration of three different layers, channelout, SCO and maxout. 24
2.7 An illustration of a comparison between the parameter individualistic network approach and

the PNN. 25
2.8 An illustration of a simple DT, mapping a four dimensional input {x1, x2, x3, x4} to one of

three values in the output space {y1, y2, y3}, through a set of cuts {c1, c2, c3}. 26
2.9 An illustration of a traditional CC approach and how non-overlapping features lead to effective

signal regions. 27
2.10 An illustration of a ROC curve and how a random, good and perfect classifier would differ. 28
2.11 An illustration of a Gaussian distribution and the area under the curve defined by a significance

equal to 1.64. 29

3.1 A grid of all chargino and neutralino mass combinations and their respective event count in
the full signal data set. Additionally, a white corner has been added to all combinations which
define the original signal set. 32

3.2 A visual summary of the workflow and frameworks used in the computational analysis. 33
3.3 Two tables displaying the baseline 3.3a and signal 3.3b requirements applied to the data as

part of the preprocessing. 36
3.4 References to figures for all lepton and event specific feature distribution which can be found

in appendix B.2. 36
3.5 MC simulated and measured data comparison showing the pT and η of the leading lepton as

well as the Emiss
T and flavor combination from each event. 38

3.6 A visual summary of the network architectures used in this analysis, for the ordinary dense
NN (top), the PNN (middle) and the maxout model (bottom). 39

3.7 The event distributions of the leading lepton for the features pT and ϕ, for events with negative
weights and all events. 44

4.1 A grid displaying the expected significance on the original signal set, using the signal region
created by the XGBoost model. 46

4.2 The output distribution from a trained XGBoost model for the background and signals with 4
different mass combination. 46

4.3 Two grids displaying the expected significance on the original signal set, using the signal region
created by two dense NN, one with 20 nodes per hidden layer 4.3a and one with 600 4.3b. 47

4.4 Two grids displaying the expected significance on a subset of the full signal set using the signal
region created by two dense NN’s, each training on different amounts of signal. 48

4.5 The comparison of the training history of two NNs, each training on different amounts of signal. 49
4.6 A grid displaying the expected significance on a subset of the full signal set using the signal

region created by a dense NN which has trained on one mass, and has been allowed to train
for 15 epochs. 49

viii

4.7 A calculated visualization of the activation of a three layer maxout network, before and after
training. 50

4.8 A calculated visualization of the activation of a three layer maxout network, after training
and displaying the signal and background separately. 51

4.9 A calculated visualization of the activation of a three layer maxout network, after training
and displaying the results for two signal with each their own mass combination. 51

4.10 A calculated visualization of the activation of a three layer maxout network, after training
and displaying the results for two signal with each their own mass combination, highlighting
the difference between two specific nodes. 52

4.11 A calculated visualization of the activation of a three layer SCO network, after training and
displaying the signal and background separately. 52

4.12 A plot comparing the AUC score made after each epoch on both the training and validation
set, between a dense NN and maxout model. 53

4.13 A grid displaying the expected significance on the original signal set using the signal region
created by the maxout network. 54

4.14 A sensitivity comparison between the ensemble networks (maxout, SCO, channel-out) on the
original signal data. 55

4.15 The output distribution from a trained PNN model for the background and signals with four
different mass combinations, where all events are given the same parameter. 56

4.16 The output distribution from a trained PNN model for the background and signals with four
different mass combinations, where all events are given the same parameter. 56

4.17 A grid displaying the expected significance on the original signal set using the signal region
created by the PNN. 57

4.18 A sensitivity comparison between a dense NN, PNN, maxout and XGBoost on the original
signal data. 59

4.19 Two ’pie-plots ’comparing the sensitivity on the original signal set, where each figure shows
the comparison between a model (maxout and PNN) training on data with and without a PCA. 59

4.20 A sensitivity comparison between a dense NN, PNN and maxout on the original signal grid.
A PCA analysis has been applied to the data being utilized in this result. 60

4.21 A grid displaying the expected significance on the complete signal grid using the signal region
created by the ordinary dense NN. A band around each cell with a significance over 1.64 has
been included. 61

4.22 A grid displaying the expected significance on the complete signal grid using the signal region
created by the maxout network. A band around each cell with a significance over 1.64 has
been included. 62

4.23 A grid displaying the expected significance on the complete signal grid using the signal region
created by the PNN. A band around each cell with a significance over 1.64 has been included. 62

4.24 A sensitivity comparison between a dense NN, PNN and maxout on the complete signal grid.
A PCA analysis has been applied to the data being utilized by the latter two models. 63

4.25 A surface plot of the significance comparing sensitivity limits set by PNN, dense NN, maxout
model and the ATLAS analysis, where the models have assumed a flat uncertainty of 20%. 64

4.26 Two surface plots of the significance comparing sensitivity limits set by PNN, dense NN,
maxout model and the ATLAS analysis, where the models have assumed a flat uncertainty of
10% and < 1% respectively. 65

27 A grid displaying the expected significance on the original signal set using the signal region
created by the SCO 27a and a channel-out network 27b. 70

28 A grid displaying the expected significance on the original signal set using the signal region
created by the ordinary dense NN 28a and a maxout network 28b. A PCA analysis has been
applied to the data being utilized in this result. 70

29 A grid displaying the expected significance on the original signal set using the signal region
created by the PNN network. A PCA analysis has been applied to the data being utilized in
this result. 71

30 ’Pie-plot’ comparing sensitivity on the original signal set, where the figure shows the comparison
between a model training on data with and without a PCA. 71

31 ’Pie-plot’ comparing sensitivity achieved by the maxout model on the original signal set, where
the figure shows the comparison between a model trained on the original signal grid, and the
complete signal grid. 72

LIST OF FIGURES ix

32 ’Pie-plot’comparing sensitivity achieved by the PNN model on the original signal set, where
the figure shows the comparison between a model trained on the original signal grid, and the
complete signal grid. 72

33 Two tables displaying the baseline 33a and signal 33b requirements of the jets applied to the
data as part of the preprocessing. 73

34 MC simulated and measured data comparison showing the pT for the first, second and third
lepton. Similarly, the distribution over η for the first, second and third lepton. 74

35 MC simulated and measured data comparison showing the ϕ for the first, second and third
lepton. Similarly, the distribution over mt for the first, second and third lepton. 75

36 MC simulated and measured data comparison showing the charge for the first, second and
third lepton. Similarly, the distribution over the flavor for the first, second and third lepton 76

37 MC simulated and measured data comparison showing the ∆R 37a and the azimuthal angle
of the missing transverse energy. The distribution of the invariant mass of the three leptons
and the OSSF pair. The distribution over the significance of the missing transverse energy
and the sum of pT . 77

38 MC simulated and measured data comparison showing the sum of pT for the SS pair and the
sum over all three leptons added with Emiss

t . The distribution of number of signal jets and
the mass of the leading dijet pair. Finally, the number of B-jets with 77% and 85% certainty. 78

39 Contour plots of the significance achieved by the ordinary dense NN and maxout model on
the complete signal grid. Contours are drawn around the band equal to a significance of 1.64
for each model respectively (cyan) and for the ATLAS analysis (pink). 82

x LIST OF FIGURES

1

Introduction

The Standard Model (SM) of Particle Physics is one of the most successful scientific theories ever created. It
describes the interactions of leptons and quarks as well as the force carrying particles which mediate said
interactions. The model is a result of over a century of work with the contributions of great minds like
Erwin Schrödinger (1887-1961), Paul Dirac (1902-1984) and Richard Feynman (1918-1988). In 2012 the
SM achieved one of its crowning successes when we discovered the Higgs boson [1, 2]. Much of the accolade
was rightfully given to the theoretical work on the SM, but another aspect of the discovery was equally
important. Data analysis was and is a crucial part of any new discovery in physics.

In spite of the success of the SM, there are still questions we are unable to answer. The SM is yet to
include gravity or even explain the energy-matter density in the universe. Theoretical physicists are con-
stantly at work trying to accommodate these aspects of the universe, introducing extensions of the SM such
as Supersymmetry (SUSY) [3] or String Theory [4]. To test these theories precisely we require larger and
larger amounts of data. During the period of Run 3, the LHC is projected to reach an integrated luminosity
of approximately 500fb−1 with Run 4 reaching over 1000fb−1.1 This is compared to the current 139fb−1

accumulated from Run 2. With the data sets in particle physics progressively growing, so does the demand
for numerical algorithms and frameworks to analyze them. One of the most exciting tools which is playing
and will play an important role in meeting this demand, is Machine Learning (ML).

ML is rapidly becoming an indispensable tool in many scientific fields. In areas ranging from cancer
research [5] to predicting supernova events [6], ML is being applied to problems once thought as impossible
to solve. Particle physics is no exception. Jet flavor classification [7], separating quark jets from gluon jets
[8] or using ML to create efficient signal regions [9] are just some examples where ML is a vital tool. The
traditional approach for ML in High Energy Physics (HEP) is the use of Boosted Decision Trees (BDT) and
shallow Neural Networks (NN). Especially with the release of XGBoost [10] in 2014, the BDT has been shown
to be both stable and capable of achieving excellent performance. In later years supervised Deep Neural Net-
works (DNN) have become more and more popular, partly due to their versatility and diversity in architecture.

This thesis will study ML as it is applied to the search for new physics in proton-proton collisions produced by
the LHC and collected by the ATLAS detector. Specifically, I have studied different ML models as they search
for chargino-neutralino pair production in final states with three leptons and missing transverse momentum.
I explored a range of ML models, such as ordinary dense NN, Parameterized Neural Network (PNN) [11],
ensemble models including layers introduced in the paper by Wang et al. [12] and Boosted Decision Trees.
Additionally, I introduced a new layer, Stochastic-Channel-Out, which resembles the channel-out layer
described in the aforementioned paper [12]. Each model was studied and tested for its ability to achieve
sensitivity in a diverse data set, including events representing different variations of new physics, particularly
variations in choice of mass for the chargino and neutralino. The aim of the thesis is to shed some light on
the application of supervised learning in HEP by experimenting and studying a set of ML methods as they
search for a set of SUSY signals.

1The projections were taken from the graph created by CERN https://lhc-commissioning.web.cern.ch/schedule/images/
LHC-nominal-lumi-projection.png (Accessed 21.04.2023).

https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png
https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

2 LIST OF FIGURES

Outline of the Thesis

This thesis is divided into 4 chapters: the first two introducing relevant theory and background for the
analysis; the third presenting details on the implementation and preparation of the analysis; and the
fourth presenting and discussing the results. At the end of the analysis I summarize the findings in my ana-
lysis in the Conclusion & Outlook section, as well as include some additional figures and tables in the appendix.

The first chapter will give an introduction of the SM as well as discuss the new physics I will be searching
for. This chapter will introduce relevant phenomenology surrounding particle physics, give a brief descrip-
tion of proton-proton collisions at the LHC and discuss the physics behind the data set utilized in the analysis.

The second chapter covers the necessary background in regard to ML and data analysis in general. This
chapter will introduce relevant topics surrounding data analysis such as optimization, regularization and
hyperparameters. It will explain the algorithms underlying the NNs and BDTs, and introduce techniques to
improve these ML methods. In the final parts of the chapter, I will discuss how ML relates to a Beyond
Standard Model (BSM) search and how one assesses the results.

The third chapter describes the implementations of the analysis. This will include discussing the relevant
frameworks, data formats and other tools, as well as diving a little further into the data set. Additionally,
this chapter will present the preselection cuts and other preprocessing steps used to generate the final data
sets, both simulated and measured collision data, and present the comparison between the two. Finally, this
chapter will present the models I studied in the analysis, displaying the architectures, and explaining the
general strategy utilized for training and validating the models.

In the fourth and final chapter, I present and discuss the results from the analysis. In the first four
sections, I study four different categories of ML models in how they perform on a subset of the data, as well
as different attributes of each model. The fifth section compares the performance of the four models, then
compares their results with and without a Principal Component Analysis (PCA) in the sixth section. Finally,
I compare the three best models I found when testing on a subset of the data on how well they perform on
the complete signal grid, then compare all three to previous results published by the ATLAS Collaboration.

3

Chapter 1

The Standard Model of Elementary
Particles and Beyond

Although this thesis will primarily emphasize the ML aspect of a particle physics analysis, there are still
terms and phenomena that are worth defining. In this chapter, I will introduce the basics of particle physics,
ranging from explaining the leptons and quarks to defining the layers inside a particle detector. Furthermore,
I will introduce the relevant extension of the SM, i.e. Supersymmetry (SUSY), and present some Feynman
diagrams to give further insight into the data set.

1.1 The Building Blocks
As early as Ancient Greece, humans pondered the nature of the most elementary building blocks of the
universe. The Greeks imagined a rope of a given length and a pair of scissors with adjustable size. Then one
could ask, how many times can you cut the rope in half? If the answer is less than infinite, what are you left
with?
In 1897, Joseph John Thomson (1856-1940) discovered the first elementary particle using the Cathode Ray
Tube [13]. The particle that Thomson discovered was named the electron. Prior to the time of discovery,
we believed atoms to be the smallest building blocks. After the discovery of the electron, the discovery of
the proton and neutron quickly followed. It was not until more than 50 years after the discovery of the
proton (by Ernest Rutherford 1871-1937 [14]) that we discovered that also protons and neutrons could be
further dissected to smaller particles. We call these particles quarks. The ’final-piece’2 of the puzzle came in
1956 [15] when we discovered the (at that time thought of as massless) neutrino. In later years, we have
discovered the tau, muon and their ’neutrino partners’. Together, the electron, muon, tau and the neutrinos
form the leptons. We refer to both leptons and quarks as fermions.
Upon the evolution of quantum mechanics and physics as a whole, we started to divert our focus from
’what’ and over to ’how’. How can we explain all the complex interactions that emerge between these
fundamental particles? Through the creation of the SM and countless experiments, we discovered that forces
are interactions between particles and fields. The SM describes forces as fields which are mediated through
particles called gauge bosons.
The four fundamental forces responsible in the universe are electromagnetism (Quantum Electro Dynamics
(QED)), the weak-force, the strong-force (Quantum Chromo Dynamics (QCD)) and gravity. The most
familiar boson is the photon. The photon is responsible for the mediation of QED and is responsible for all
electromagnetic effects, such as the ones allowing us to see objects using our eyes. Similarly, the W ± and Z
bosons are responsible for the weak-force which allows for radioactive decay. And gluons are responsible for
QCD which holds the quarks inside the protons and neutrons together. Gravity is the only force not included
in the SM, but would (if one day included) presumably have its own force carrying particle, the graviton.
The final building block in the universe introduced and described by the SM is the Higgs boson. The Higgs
boson was proposed by Robert Brout, Francois Englert and Peter Higgs in 1964 and discovered at CERN
in 2012 [1, 2]. The Higgs boson, sometimes called the God particle, is responsible for giving mass to the
particles in a process called spontaneous symmetry breaking of the electroweak theory [16]. Together the
fermions and the bosons make up all the particles in the SM.

2Given the nature of this thesis, the existence of further pieces is implied.

4 CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLES AND BEYOND

Generation Flavor Mass [MeV] Charge [Elementary charge]
1st e 0.511 −1
1st νe < 10−6 0
2nd µ 105.66 −1
2nd νµ < 0.17 0
3rd τ 1776.8 −1
3rd ντ < 18.2 0

Table 1.1: A list of all leptons along with their generation, flavor, mass and EM charge.

1.1.1 The Leptons
In table 1.1, a summary of all leptons is found, along with the respective mass and electric charge. The
leptons are all elementary particles with half-integer spin3, ±1/2. For reasons that are yet to be known, the
leptons come in three generations. Each generation contains a pair of charged and neutral lepton. The first
generation contains the electron, e− and the electron-neutrino, νe. The second contains the muon, µ and the
muon-neutrino, νµ. And the third generation contains the tau, τ− and ντ . The generations are numbered by
the mass of the charged lepton, where the first generation is the lightest. As is often the case in particle
physics, the heavier a particle, the lower the probability of it being produced in particle interactions. This,
and the fact that they sometimes behave similarly to jets in a detector, explains why particle physicists often
neglect the τ when speaking about leptons.
The charged leptons are all massive particles ranging from a fraction of 1eV to more than 109eV. The
neutrinos were up until the turn of the millennia assumed to be massless. This was not only backed by
experiments but also by the SM which had not previously been experimentally challenged. In 1998 [17], it
was discovered that neutrinos in fact do have mass, although a very small mass. Given the size of the masses
we are yet to accurately measure the mass of the neutrinos, but we have found them all to be less than 20
MeV4.

1.1.2 The Quarks

’Three quarks for Muster Mark!
Sure he hasn’t got much of a bark.
And sure any he has it’s all beside the mark.’ [18]

The poem above was written by James Joyce (1882-1941) in 1939, and was the motivation for Gell-Mann
(1929-2019) when naming the inner particles of hadrons, quarks. We can categorize quarks as being either a
down- or up-type. All down-type quarks have a negative electrical charge equal to 1/3 that of the electron
(e) and all positive quarks have a positive charge equal to 2/3 that of the electron (+e). Similarly to leptons,
all quarks have a spin equal to 1/2 and like the leptons, are divided into three generations. Each generation
of quarks are made of a pair of one up- and one down-type quark. The first generation contains the up,
u and the down, d quark, the second the charm, c and the strange, s quark and third the top, t and the
bottom, b quark. Table 1.2 presents a summary of all quarks, along with the respective mass and electric
charge. Also similarly to leptons, the higher the generation and mass the more energy is needed to create them.

Generation Flavour Mass [MeV] Charge [Elementary charge]
1st u 2.2 +2/3
1st d 4.7 −1/3
2nd c 1280 +2/3
2nd s 96 −1/3
3rd t 173100 +2/3
3rd b 4180 −1/3

Table 1.2: A list of all quarks along with their generation, flavor, mass and Electromagnetic (EM) charge.

Similarly to how difference in spin allows leptons to stay in an otherwise similar quantum state, the
quarks have ’color’. The colors of quarks are what connect them to the strong-force. QCD is what allows

3Spin is a quantum number which predicts the effect of an applied electromagnetic field.
4The lightest neutrino νe, is found to have an upper bound of 10−6eV.

1.2. THE FORCES 5

quarks to change color. It predicts asymptotic freedom when quarks are free at short distances, also known
as color confinement. Briefly explained, color confinement results in quarks never existing in isolation but
always in a quark-antiquark pair (meson) or in three quark state (baryons) such as protons and neutrons.
Given color confinement, quarks are never directly observed in experiments, instead we detect the signature
of quarks forming hadrons in a process called hadronization. At high energies, quark hadronization leads to
narrow, collimated jets of charged particles, which explains why we call these signatures ’jets of hadrons’, or
simply jets.

1.2 The Forces
Why do the nuclei of atoms hold together? Why do the electrons revolve around said nuclei? And why can
neutrons convert to protons and vice versa? These phenomena are all described through the interactions of
leptons and quarks. But how do we describe the interactions? In the previous section I briefly mentioned that
the interactions of the leptons and quarks (or fermions) are mediated by the gauge bosons. The explanation
of force as a mediation of bosons is the cornerstone of the SM and is explained through the introduction of
Quantum Field Theory (QFT). QFT is a precise mathematical framework which relies on the properties of
local symmetries (Gauge symmetries) and field theory. Given the scope of this thesis an introduction to
QFT will not be given, yet certain attributes of the forces themselves are of interest.

1.2.1 Electromagnetism
The Electromagnetic (EM) force is one of the two macroscopic forces5. This means that most people have
directly experienced it and therefore have built an intuition for it. If you place two oppositely charged objects
close enough, they attract. The closer they are, the more they attract. Electric charge is the property that
causes particles to experience electromagnetic forces. This is due to the boson responsible for mediating it,
the photon (γ). The photon is massless, and only couples to particles with an electric charge, which means
only particles with a non-zero charge can interact through the electromagnetic force.

1.2.2 The Strong Force
The strong force is, alongside the weak force, a microscopic force. The strong force holds nuclei together and
is (as the name suggests) the strongest force. Similarly to how electric charge plays a role in electromagnetism,
the strong force has color. Not to be mistaken with the spectrum of frequencies of light, color in the SM is
known as the charges associated with the strong force. There are three conserved color charges, ’r’, ’b’ and
’g’, or red, blue and green. Unlike photons which are neutral, the gluons (g) carry color and anticolor and
only couple to colorful6 particles. Due to the three color charges, there exists a collection of independent
color states, 8, which corresponds to the number of gluons. The only particles with color are the quarks,
antiquarks and gluons, which explain why only they experience the strong force.

1.2.3 The Weak Force
The weak force is the weakest of all the forces of the SM. This is due to the bosons coupling weakly to
fermions, and the fact that the W ± and Z are massive, which makes them short-lived. The charged weak
force is the only force which allows for flavor change7. The W ± and Z boson only interact with left-handed
particles, meaning particles whose spin is counterclockwise relative to its direction of motion. The charge
associated with the weak force is the weak isospin. All left-handed fermions and right-handed antifermions
have non-zero isospin (1/2), meaning the W and Z bosons interact with both the leptons and the quarks.

5The other being gravity.
6Meaning particles with a non-zero color charge.
7Flavor is a term used to differentiate the fermions, i.e. the six leptons (electron, muon, electron neutrino etc.) and six

quarks (top, bottom, charm etc.). A change in flavor therefore means to transition from one of these flavor to another through
the weak charge bosons. For example νe → e−W +

6 CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLES AND BEYOND

1.3 Beyond the Standard Model

1.3.1 Why look beyond?

’There is nothing new to be discovered in physics now.
All that remains is more and more precise measurement.’ [19]

The quote above is rumored to have been spoken by William Thompson (1824–1907), better known as Lord
Kelvin when addressing the British Association for the Advancement of Science in 1900. The statement was
followed by a long period of advancements in the field of physics by the likes of Max Planck (1858–1947) and
Albert Einstein (1879–1955). Less than half a decade after Lord Kelvin uttered the famous words, began
the development of Quantum Mechanics. Just as Kelvin was wrong back then, he would also be wrong today.
For although the SM explains a large range of phenomena, there are yet many mysteries to explain in the
universe and even problems rooted in the SM.

• The SM in its current form cannot incorporate gravity. The hope has been to integrate gravity into the
SM through the discovery of a gravity-carrying particle, the graviton [20]. So far, no-such particle is
found.

• Dark matter and dark energy make up more than 90% of the energy-density in the observable universe,
but is found to lie beyond the SM [21].

• Inflation is today the leading explanation to what happened in the early-stages (the first fraction of a
second) of the universe. It explains a universe in which all space undergoes a rapid increase in rate of
expansion. None of the fields explained by the SM are capable of causing any such expansion.

• Finally, what is the origin of the neutrino mass and is Charge-Parity (CP) violated in the neutrino
sector?

1.3.2 Supersymmetry, the Chargino and the Neutralino
Supersymmetry (SUSY) has for many years been an interesting candidate for BSM physics. SUSY aims
to extend the SM to introduce a symmetry between matter and force (i.e. fermions and bosons). SUSY
suggests that each SM particle has (at least) one additional Superpartner (SP) which we call a sparticle.
The sparticles all differ by half a spin from their original SM particle. The symmetry introduced by SUSY
is what is known as a broken symmetry. This is because sparticles are predicted to be much heavier than
their corresponding SM SP, often in the range of 100-1000GeV. The difference in spin means that the SP
of a fermion is a scalar boson and the SP of a boson is a fermion. SUSY is a candidate to address many
problems in physics, some of which are: the hierarchy problem; fixing the mass of the Higgs; and possibly
the mystery of dark matter. There are many variants of SUSY, all of which introduce a set of new particles.
In this thesis I will study a signal which stems from the simplest variant of SUSY, which is the most similar
to the SM, namely the Minimal Supersymmetric Standard Model (MSSM).
In this thesis I will be studying ML models as they process data including particles introduced by MSSM,
the neutralinos (χ̃1,2,3,4

8) and the charginos (χ̃±
1,2). The neutralino is often the lightest sparticle introduced

by MSSM, and is therefore stable, as it can not decay into a lighter sparticle. It is the sparticle of a mixture
of the neutral gauge bosons introduced by the EM and weak force, and the Higgs gauge boson, making the
neutralinos fermions. Similar to the neutrino, the neutralino has no EM charge, and only interacts through
the weak force, making it an ideal candidate for dark matter. The chargino is similar to the neutralino, with
the exception that it is electrically charged. For a more thorough explanation of MSSM and its application,
the reader is referred to [3].

1.4 Proton-Proton Collisions at the LHC

1.4.1 An Introduction to Particle Accelerators and Detectors
With a circumference of 27 km, the Large Hadron Collider (LHC) particle accelerator is the largest piece of
scientific equipment ever built. It consists of two separate large tubes aligned with powerful magnets. An
electromagnetic field is applied to accelerate bunches9 of charged hadrons (specifically protons) and lead, and

8I will in this thesis use the notation of χ̃1,2,3,4 to refer to the neutralinos, instead of χ̃0
1,2,3,4.

9Packets of around 1011 protons each.

1.4. PROTON-PROTON COLLISIONS AT THE LHC 7

Figure 1.1: Event Cross-Section in a computer generated image of the ATLAS detector [22].

the magnets are used to bend and focus the bunches. One set of bunches is accelerated in one of the tubes,
and another set is accelerated in the other direction inside the other tube. The bunches are accelerated to
relativistic speeds (v=0.99999991c) before they collide at a rate of once every 25 nanosecond. The energy
released from the collisions enable the creations of new particles.
To measure the outcome of the collisions, we use particle detectors. In this thesis I will be using data
collected by the ATLAS (A Toroidal LHC Apparatus) detector. The ATLAS detector is the largest general-
purpose detector at the LHC and took first data from particle collisions in 2009. The detector consists of
several layered cylinders and end-caps around the point of collision. In figure 1.1, taken from the ATLAS
collaboration [22], the cross-section of the detector along with the paths of different particles is visualized.
The inside of a detector can be summarized in the following points, listed from innermost to outermost layer:

• Inner Detector : The inner detector consists of three layers, Pixel detector, Semi-Conductor Tracker
and Transition Radiation Tracker. Its purpose is to measure EM interactions between the particles
produced in the collision and the material in the layers. The measurements are made at discrete points
and can be used to infer the trajectories of the particles. A magnetic field is applied to the inner
detector to bend the paths of the particles, enabling the measurement of the momentum and charge.

• Calorimeters: The ATLAS detector has two types of calorimeters, the Electromagnetic calorimeter and
the Hadronic calorimeter. The EM calorimeter is the first layer of the two and measures the energy of
photons and electrons interacting electromagnetically. The hadronic calorimeter is designed to measure
the energy of hadrons (i.e. protons, neutrons, mesons etc.).

• Muon Spectrometer : Contrary to electrons, photons and hadrons, the muons do not stop in the
calorimeters. The muon spectrometer measures their trajectories in the outer part of the detector
allowing the extrapolation of the path from the inner detector to the muon spectrometer. Similarly to
the inner detector, the muon spectrometer is surrounded by a magnetic field to deflect the path of the
particles which allows it to measure momentum and charge.

1.4.2 Kinematics
The kinematic variables of a particle collision are crucial in any HEP analysis and are explained using simple
geometry. In figure 1.2 I have drawn a simple frame to illustrate the kinematics of a particle in both the
longitudinal (left) and transverse (right) plane. In a three-dimensional axis where the particles colliding travel

8 CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLES AND BEYOND

Figure 1.2: An illustration of the general kinematics in a particle-collision, inspired by the figure in the thesis by
Gramstad [23]. The illustration shows both the longitudinal and transverse plane.

along the z-axis, the zy-axis defines the longitudinal plane. The angle between the z-axis and the direction of
the momentum of one of the particles, defines the polar angle of said particle, θ. The xy-axis defines the
transverse plane and the angle between the x-axis and the direction of the transverse momentum define the
azimuthal angle, ϕ. The transverse momentum and the azimuthal angle are both used in this analysis and
are used to create further features. Instead of the polar angle, a preferred feature is the pseudorapidity, η.
The pseudorapidity is defined as

η = −ln

[
tan

(
θ

2

)]
. (1.1)

The pseudorapidity is preferred to the polar angle because differences in η are Lorentz invariant under boosts
along the longitudinal axis. A large range of features are created using the variables described above. In
the appendix I have added a summary of all the features used in this analysis (see table 2). One of these
features is the distance between two particles in the ηϕ− plane, ∆R. We define ∆R as

∆R =
√

(∆η)2 + (∆ϕ)2. (1.2)

Figure 1.3: The Feynman diagram of the signal producing a chargino-neutralino pair.

1.5 The Signal
In this thesis, I will compare ML models in their ability to learn the patterns of the data, which will contribute
to our ability to separate the signal from the background. Specifically for this thesis, I will be studying
an expansion of the SM which includes SUSY (see section 1.3.2). The signal I will aim to separate from
the background, is one which produces a WZ pair, through a chargino-neutralino pair. Figure 1.3 shows a
Feynman diagram for such a process. The Feynman diagram shows a chargino-neutralino pair, (χ̃±

1 and χ̃2)
where both sparticles produce a boson (W and Z respectively) and a χ̃1, the lightest neutralino. Given that
the neutralinos in the final state are neutral, there are three leptons and a large amount of missing transverse
energy in the final state. In the section introducing the particle detector 1.4.1, I described how many of the
layers rely on EM interactions. Particles which only interact through the weak force are highly unlikely

1.6. THE BACKGROUND CHANNELS 9

to interact with the detector and so in general cannot be seen. However, their presence can be inferred if
they carry away sufficient transverse energy/momentum to measurably unbalance the event, leading to the
concept of missing transverse energy.

1.6 The Background Channels
We define background as anything that is not of interest, i.e. not signal. As will be further explained in later
sections, we will explicitly demand a three lepton final state in all collisions considered in the analysis. This
will remove a lot of background, but not all of it. Due to the imperfect nature of the reconstruction of events,
a demand for three lepton final state will not be without errors. This leaves room for more variation in the
background than one might expect. In this section I will cover the channels10 which will be of importance
during the analysis. I will also discuss which background channels are the hardest to reduce in a potential new
physics signal region, also called the irreducible background. These are channels whose features are largely
indistinguishable from the signal. Note that the sections below are listed by the size of the contribution to
the three lepton final state data (from biggest to smallest).
The processes are classified similarly to how they were classified in the original Monte Carlo (MC) simulated
data produced by ATLAS and used in this study. For the sake of making several of the figures in the thesis
more readable, I decided to merge several of the classifications. Diboson(llll), diboson(lll) and diboson(ll) are
in later figures categorized as simply diboson. Similarly, the three smallest processes, triboson, W-jets and
Higgs, are all merged to the category Others.

Z-Jets
The Z-jets channel contributes the most amount of events in the data. The channel consists of all events
resulting in a Z-boson alongside jets. If the Z-boson decays into two leptons, the additional jet can act as a
fake lepton and the channel looks like a three lepton final state. In figure 1.4a I have written the Feynman
diagram of an example of such a channel. The figure shows a quark-antiquark pair leading to a Z-boson
and gluon. The Z boson decays into two leptons (normally e−e+ or µ−µ+) and the gluon hadronizes as
a jet of hadrons which may obtain a b-hadron. From this point, a b-hadron can decay semileptonically,
creating what is called a non-prompt lepton, or be misidentified as a lepton. Both scenarios constitute what
is normally called fake non-prompt leptons.

Diboson (lll)
Diboson channels are defined as channels resulting in two bosons. In the case of (lll), the dibosons decay into
a total of three leptons. In figure 1.4b I have drawn the Feynman diagram of an example of such a channel.
The figure shows a W- and Z-boson production through a quark-antiquark pair. The W-boson decays into a
lepton with missing transverse energy and the Z-boson decays into a pair of leptons. The similarity to the
signal, i.e. a three lepton final state with missing transverse energy, makes the diboson(lll) process hard to
separate from the signal.

tt̄

The tt̄ channel is defined as a proton-proton collision resulting in a top quark-antiquark production through
the strong interaction. In figure 1.4c I have drawn a Feynman diagram of an example of such a channel. The
figure shows gluon-gluon fusion producing a pair of top quarks. The top quark-antiquark pair decay into a
bottom-quark and a W boson. The channel constitutes a background when both W bosons decay into a
charged and a neutral lepton and one of the b-quarks are misidentified as a lepton.

Diboson (llll)
In the case of diboson (llll), the channel refers to events resulting in two Z-bosons which decay into four
leptons. In figure 1.4d I have drawn a Feynman diagram of an example of such a diagram. The figure shows
a quark-antiquark pair annihilating into two Z-bosons. The two Z-bosons decay into two pairs of leptons.
This process constitutes a background when one of the leptons is not reconstructed in the detector.

10By channels, I refer to the stages by which a particle decays to a specific final state. Often this refers to the different
particles which mediates the process from initial- to final state.

10 CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLES AND BEYOND

Top Others
The top other channel is similar to the tt̄ channel, in that it results in top quarks. The main difference between
the two is that the top other process does not produce a top quark-antiquark pair through strong interaction
of quarks. In figure 1.4e I have drawn an example of a top other process, where a top quark-antiquark pair
is produced from a bottom quark-antiquark pair collision mediated through a W boson. From this point,
the top quark-antiquark pair decays to a similar state as described in the section regarding the tt̄ processes.
Both the top other and tt̄ processes exhibit large amounts of missing transverse energy in the final state,
making them both difficult to separate from the signal.

Single Top
The single top channel, similarly to top other and the tt̄ channel also produces a top quark, but in the case
of single top only one top quark is produced. In figure 1.4f I have drawn the Feynman diagram of such a
channel. The Feynman diagram displays a top quark produced through the strong interaction of a bottom
quark and a gluon. The top quark is produced through the interaction with a W boson which decays into a
charged-neutral lepton pair and the top quark decays to a W boson and bottom quark.

Diboson (ll)
The diboson(ll), similarly to diboson(llll) produces two bosons, but instead of ending in a four lepton final
state, ends in a two lepton final state. Figure 1.4g, displays the Feynman diagram of a diboson(ll) process
where a W-pair is produced through the annihilation of two fermions through a charged boson. To produce
the two lepton final state, the two bosons must each decay into a charged-neutral lepton pair.

Triboson
The triboson channel is defined as a proton-proton collision producing three bosons. In figure 1.4h, I have
drawn a Feynman diagram displaying an example of a triboson process. The Feynman diagram shows a
quark-antiquark pair annihilating to three bosons, two W and one Z. The Z-boson decays to a pair of leptons,
and the two W bosons each decay into a charged-neutral lepton pair resulting in a 4-lepton final state with
missing transverse energy.

W-jets
The W-jets process is defined as a proton-proton collision producing a W boson alongside jets. In figure 1.4i
I have drawn an example of a Feynman diagram for a W-jets process. The Feynman diagram displays a pair
of quarks colliding to form a W boson alongside a gluon. The gluon decays into a bottom quark-antiquark
pair and the W boson decays into a charged-neutral lepton pair. Given that this only produces the one
lepton, it relies heavily on poor reconstruction, and is hence quite rare.

Higgs
Finally, we have the Higgs process, which is defined as proton-proton collision producing a Higgs boson. The
Higgs boson is relatively heavy (125 Gev) and couples to mass. Therefore, the Higgs process is the rarest
process in the data set. In figure 1.4j, I have drawn a Feynman diagram of a collision producing a Higgs
boson. The Feynman diagram displays a gluon pair annihilation through exchanging a virtual top quark, and
producing a virtual top quark-antiquark pair. The latter pair annihilate, producing a Higgs boson, which
quickly (due to its mass) decay into a pair of Z bosons where one is virtual. The Z boson pair then further
decay into a total of 4 leptons.

1.6. THE BACKGROUND CHANNELS 11

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1.4: A collection of examples of Feynman diagrams for the SM background processes. The diagrams
display an example of the processes Z − jets (1.4a), Diboson(lll) (1.4b), tt̄ (1.4c), Diboson(llll) (1.4d),
T opOthers (1.4e), SingleT op (1.4f), Diboson(ll) (1.4g), T riboson 1.4h, W − jets (1.4i) and Higgs
(1.4j).

12 CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLES AND BEYOND

13

Chapter 2

Introduction to Machine Learning and
Data Analysis

Within this chapter, I will introduce the basics of data analysis and ML, as well as describe the algorithms
underlying the set of models I tested during my analysis. Additionally, I will in the final part of the chapter
describe where ML fits into a particle physics analysis and how I intend to assess the performance of the
analysis.

2.1 Phenomenology
ML differs from other analysis tools in their ability to learn. Where a purely analytical model is static in
both method and performance, an ML model aims to be dynamic and self-improving. ML utilizes data to
leverage towards an optimal model. The extent of utilization of data defines an ML model as being either
supervised, semi-supervised or unsupervised. In the case of supervised ML, a set of targets are provided
along with the data which allows an ML model to learn how to map a set of inputs to a target. In this
thesis I will use the notation of X = [x0, x1, x2, ..., xN] to refer to a data set, T = [t0, t1, t2, ..., tN] to the
corresponding target and Y = [y0, y1, y2, ..., yN] to the output of the model where N is a number of data
points. The data sets contain a set of vectors with length equal to the number of features. The target and
output could similarly contain vectors, but will in this thesis be restricted to scalar values. Generally, the
target values can be both continuous values, in which case the ML method aims to perform a regression, or
discrete values, in which case the ML method aims to perform a classification.
The goal of supervised learning is to apply knowledge obtained from a set of inputs and targets to predict
the target of a new data set. The success of any prediction is dependent on the quality of the data used
during training, or training-data. The training-data is required to be both representative of the new data
set (test-data) and be of sufficient size to adequately train the algorithm. The latter point stems from a
phenomenon known as overfitting, which is a problem where the training data becomes overly specialized to
only predict the target of the training-data, and nothing else11. In this thesis the main focus will be on the
application of supervised learning.
In the case of unsupervised ML, no target is provided. The motivation for unsupervised learning is to create a
model which is independent of any target and instead provide some metric which the algorithm can minimize
during training. Such models are often useful in the case where one is not certain what one is looking for. An
independence of target means that the model is not overly sensitive to any specific trends or patterns, this is
called being unbiased. Instead of learning to detect or predict specific phenomena, unsupervised learning is
often used to detect anomalies in the data, or find clusters.
Semi-unsupervised learning is a loose term which finds itself in the middle of the previous two. There is no
clear definition, but the term is often used in the case where one strides away from traditional supervised
learning to minimize bias. The goal is to alleviate as much bias as possible, but at the same time converge
towards the usually superior performance of supervised learning.

11More on this in later sections.

14 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

2.2 Optimization
For a general function, C, dependent on a set of parameters, θ = {θ0, θ1, ..., θNθ

}, the goal of optimization is
to find optimal parameters as defined by a predicated goal. In the case of ML, the parameters are what define
the model and the function is some metric which defines the error of the prediction. This means that in our
case, the optimization problem corresponds to finding the set of parameters corresponding to the minimum
value of C. Several methods can be applied to optimization problems, all with their own advantages and
disadvantages. In most methods the use of the gradient of the function, ∇θ(C), is involved in one way or
another. Many of the methods which were used in the analysis are based on one of the simplest optimization
methods, the gradient descent-method.

2.2.1 Cost functions
How we define the performance of an ML model is not only important when evaluating the model, but is
crucial during training. In the case of classification, it is natural to assume an appropriate metric should
involve a comparison between the predicted classification and the true classification. The variation of
performance metrics stems from the diversity of how one quantifies the comparison between the two. During
training, we define an objective function used to guide the model towards optimal tuning. We call this
function the cost function.

Binary Crossentropy

The binary crossentropy function is a very popular cost function for classification problems, as it can be
used to compare the predicted probability distributions to the true probability distributions for a set of
classification. It is ideal, as it heavily punishes high probabilities (high output) for wrong classification and
heavily rewards high probabilities for correct classifications. For a set of predictions, Y , and a set of targets,
T , the binary crossentropy function is defined as

C (Y, T) = −
N∑

i=1
[yi log (ti) + (1− yi) log (1− ti)] . (2.1)

2.2.2 Stochastic Gradient Descent and Mini-Batches
The gradient descent method aims to obtain the optimal parameters of a model through the application
of the derivative of the cost-function, C with respect to the parameters in the model, θ. When evaluated
at a given point in the parameter space, the negative of the gradient, −∇θ(C), is used to move closer to
the optimal set of parameters. The negative of the gradient corresponds to the direction for which a small
change, dθ, in the parameter space will result in the biggest decrease in the cost function. Finding the
minimum value is an iterative process, meaning the steps in the direction of −∇θ(C) are finite. The size of
the step is a hyperparameter decided by the user and is called the learning rate, η. The evolution from a
step i to i + 1 becomes

θi+1 = θi − η · ∇θC (θi) . (2.2)

Choosing the η can drastically affect the performance of the gradient descent method. Having a too large
η and one risks ’jumping’ over the true minimum or simply never allowing for parameters to reach a high
accuracy. Too small η and may result in spending computation time beyond reason as well as being sensitive
to local minima.
For a given data set of size N , we find the gradient (∇θ(C)) through the sum of the gradient for each data
point, xi, as

∇θ(C) =
N∑

i=0
∇θ(Ci(xi)). (2.3)

Note, that in the equation above, each data point is given an equal weighting in the sum. This does not
necessarily have to be the case. In the scenario that the points in the data set should be prioritized differently
during training, a simple weight, wi, can be multiplied in the sum of equation 2.3. We call these weights,
sample-weights.
The calculation of the gradient over numerous data points can be time-consuming. An alternative approach

2.3. HYPERPARAMETERS 15

which both reduces time and introduces randomness, is the application of mini-batches. Instead of summing
the gradient over the full data set, one randomly samples a predetermined number of points, B, creating a
subset of the data which is used to update the parameters. The points sampled to create the subset, can
be sampled both with or without replacement12, meaning allowing the same data points to be sampled
several times or not. An epoch is completed after N/B iterations of updating the parameters. The added
stochastic element reduces the risk of getting stuck in local minima. Gradient descent with randomly sampled
mini-batches is called Stochastic Gradient Descent (SGD).

2.2.3 Memory, Adaptive Learning and ADAM
Although SGD can be highly effective, it tends to be prone to oscillations between two points in the parameter
space. In other words jumping back and forth between the same two sets of parameters, without ever
converging closer to the minima. To alleviate this issue, we introduce momentum. The momentum aims to
act as a form of memory, conserving some momentum from the previous update. By defining the new step
between θi+1 and θi as

vi = η · ∇θC (θi) , (2.4)

we can implement momentum to the algorithm as

vi = vi−1γ + η · ∇θC (θi) , (2.5)

making our new parameter iteration equal to

θi+1 = θi − vi, (2.6)

where γ ∈ [0, 1] is a parameter which defines the size of the momentum.
An additional flaw in the SGD optimization algorithm, is that it treats all regions in the feature space equally.
Ideally, we would want the algorithm to focus on the most relevant areas (steep regions), while quickly
moving past less relevant areas (flat regions). A solution to this is the introduction of an adaptive learning
rate. By updating the learning rate based on the surface of the feature space, one can assign a prioritization
in the feature space which optimizes the search for optimal parameters.
The most intuitive way to prioritize steep areas is by introducing the second derivative of C, but this
can be quite time-consuming. The Adaptive Moment Estimation (ADAM) optimizer aims to create an
approximation of the second derivative, through the use of momentum and an adaptive learning rate. The
ADAM optimizer introduces a set of new parameters, and includes both the linear and squared term of
the derivative of C (i.e. ∇θC and (∇θC)2) with memory parameters for both (β1 and β2 respectively).
Additionally, the ADAM optimizer holds a memory of the average of the gradient and squared gradient,
which is used to create faster convergence. For a thorough description of the ADAM, the reader is referred
to the paper by Kingma et al. [24].

2.3 Hyperparameters
The tuning of parameters is a vital part of building an optimal ML model, though not all parameters are set
during training. Parameters that are chosen prior to and fixed during training are called hyperparameters. We
differentiate between two types of hyperparameters; model hyperparameters and algorithm hyperparameters.
Model hyperparameters refer to parameters used to define the architecture of the model. Examples of this
could be the size and depth of a NN or the maximum depth of a Decision Trees (DT). These parameters
are not tuned during training, but will nonetheless have a great impact on the performance of the model.
Algorithm hyperparameters on the other hand, do not have a direct impact on the performance of the model.
These are parameters that mainly affect the effectiveness and quality of the training process. Examples of this
are the learning rate of a NN, or the batch-size used during training. Regardless of whether we are discussing
model- or algorithm hyperparameters, it is in our interest to find the optimal choice of parameters.

2.4 Data Handling
As previously mentioned, the data used in ML is as, if not more, important than the model itself. As a
consequence, there are several steps taken to ensure that the data is in a good state before we apply the ML
models to it. In this section I will discuss some of these aforementioned steps, both what they do and what
each step hopes to achieve.

12In this analysis the data is sampled with replacement.

16 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

2.4.1 Feature Scaling
The range of values for the different data features can vary immensely, and for most cost functions, this is a
problem. For some features, a deviation on the magnitude of 103 can be a good approximation, whereas for
others it can be a vast overestimation. When a model is to define which direction it wants to tune, it is crucial
that the errors across all features are weighted equally. Scaling aims to alleviate this issue by transforming all
features to have a relatively equal range of values while simultaneously preserving all information regarding
each feature. Exactly how one chooses to scale the data heavily affects the performance of the model and is
regarded as a hyperparameter of the model.

Standard Scaler

In this analysis, I decided to use the highly popular scaling method, the standard scaler. The standard scaler
implemented in this study uses Scikit-learns’s StandardScaler [25]. The standard scaler function scales
each feature individually by subtracting the mean and dividing by the standard deviation. In doing so the
resulting scaled data has a mean of 0 and a standard deviation of 1. Mathematically the standard scaler, S,
transforms a data set, X, as

S (X) = X − µx

σx
, (2.7)

where µx and σx are vectors with the elements being the mean and standard deviation for each feature,
respectively.

2.4.2 Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality reduction technique used in many analyses. The
goal of PCA is to reduce the dimensions of a high-dimensional data set while at the same time conserving
as much of the variance (or value spread) in the data as possible. The motivation behind dimensionality
reduction is (mainly) rooted in two points. The first is noise reduction. Some features could not only be
non-contributing during training, but could even introduce noise. The second reason is lack of convergence.
In a large data set with many features and different classifications (in our case channels), an ML model could
struggle to identify the most important patterns. By reducing the dimensionality in the data, the hope is
that this would be easier.
In short, a PCA finds the direction in the feature space along which the data has the largest variance (called
principal components), using a linear combination of the original features, and projects the data upon it,
creating a new data set. The principal components are ordered such that the first captures the most variation,
the second captures the most variation orthogonal to the first and so on. Before applying the PCA, it
is essential to scale the data, to ensure a realistic representation of the variance in each feature. We can
summarize the algorithm of the PCA in the following 6 steps:

1. Center the data around 0 by subtracting the mean from each feature.

2. Calculate the covariance matrix to find the covariance of each feature pair.

3. Calculate the eigenvalue and eigenvectors of the covariance matrix.

4. Order the eigenvector by size of the eigenvalues to define the directions in the feature space with the
largest variance.

5. Cast the data along these directions to form a new data set with the new features ranked from largest
to lowest variance.

6. Remove the features with the least variance according to some threshold defined by the user.

The threshold mentioned in the final point, is decided by the user, and defines how much of the variance
from the original data set should be included. For example if the threshold is set to 70%, X number of the
last features will be removed such that at least 70% of the variance is preserved.
In figures 2.1 and 2.2 I have plotted the distribution of 10, 100 and 300 samples for the features with the
most and second most variance (2.1), and least and second least variance (2.2) after applying PCA to our
data set. In this PCA I am yet to remove features, so all four features are taken from a data set where all
the variance is still conserved. Each color in the figures represents different categories of collisions, i.e. tt̄ or
diboson. With this in mind, the different scales on the y- and x-axis (100 for figure 2.1 and 10−8 for figure

2.5. REGULARIZATION 17

2

0

2

4

6

8

10

PC
A

Fe
atu

re
 2

2 0 2
5

0

5

10

15

20

25

2 0 2
PCA Feature 1

Figure 2.1: The value distribution of the two PCA-features containing most variation for (left to right, up to down)
10, 10, 100 and 300 samples from each channel (visualized with different colors). Each sample filling the
requirement with being less than one standard deviation from the mean of both features, respectively.
Apart from the first figure (top-left), shapes have been drawn around the scatter points.

2.2) exhibit how the PCA creates new features where there is a vast difference in variance (and therefore
value to the analysis), and justifies how one can remove features while preserving most of the variance. In
figure 2.2 we observe that all channels exhibit the same distributions and are practically identical. In other
words, these features would not contribute in training a model to distinguish the different channels. In
comparison, figure 2.1 displays large variance and individual patterns among the different processes.

2.5 Regularization
In ML, overfitting occurs when a model becomes overly tuned to random variation in the training data
and as a consequence fails to extract patterns which would allow it to predict previously unseen data. The
architecture of a NN, the maximum depth of a BDT or even the size of the data set can all contribute to
overfitting. In the case of deep learning especially, overfitting can be a large problem and is therefore a focus
in this thesis. Apart from predicting on a new data set, there are no rigid methods to detect overfitting.
Instead, there exists a variety of methods to minimize the risk of overfitting which are collectively known
as regularization. In ML, regularization is known as any attempt to reduce the error in a prediction by
reducing overfitting. Generally one can categorize regularization as being either implicit or explicit. Explicit
regularization means adding terms to the optimization problem. This is a very direct way of ensuring no
part of the model becomes overly dominant. Examples of this could be adding a penalty in the cost function
of a NN to ensuring no weights become too large. Implicit regularization is a less direct attempt to hinder
overfitting. This could be changing the depth of the ML model, varying the cost function or altering the
data itself.

2.5.1 Early Stopping
A simple implicit regularization method is to introduce early stopping in the training pipeline. Early stopping
simply means to stop training before the parameters of the model are allowed to over tune. The usual
approach is to introduce a goal for the training, which when reached, ends the training. Examples of these
goals could be a predetermined loss value on the training set or training until lack of progress on a second
unseen data set. The latter approach is the one I will use in this thesis.

18 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

2

0

2

4

6

PC
A

Fe
atu

re
 L

as
t 1e 7

2.5 0.0 2.5 5.0
1e 8

2

0

2

4

6
1e 7

5 0 5

PCA Feature Second Last
1e 8

Figure 2.2: The distribution of the two PCA-features containing the least amount of variation for (left to right, up
to down) 10, 10, 100 and 300 samples from each channel (visualized with different colors). Each sample
filling the requirement with being less than one standard deviation from the mean of both features,
respectively. Apart from the first figure (top-left), shapes have been drawn around the scatter points.

2.5.2 Ensembles
When comparing different ML methods by performance, more often than not the top performing model
includes ensembling in one way or another. Like the word suggests, ensembling in ML means using a
collection of ML models to create one complex model. The key point to ensembling is that an ensemble of
weak learners can together be a strong learner. There are many ways to create ensembles of models, most
methods fall into one of three categories; bagging, boosting and stacking. Creating an ensemble of models
through bagging, means to use several models each trained on their own sample from the same data set. The
overarching new model is created by averaging the predictions from the ensemble of models. The method
seeks to create a unique set of models through exposing each individual model to different training sets.
Boosting is different to bagging in that it uses the same training data on all the models. The diversity in the
models when boosting, stems from intentionally choosing the architecture of the models such that it reduces
the error made by the previous ensemble of models. Finally, stacking uses a predetermined model to decide
how to combine the predictions made by the ensemble.

2.6 Neural Networks
The concept of a NN has been around for more than 80 years, and today they are one of the most popular
and successful ML methods. The key to its popularity stems from its versatility, achieving high performance
in a large range of both regression and classification problems. One of the defining qualities in a NN is the
possibility of diverse architecture, meaning that there are many categories of NN, where each category has an
even deeper selection of networks. Categories ranging from Convolutional Neural Network (CNN), Recursive
Neural Network (RNN) to simple Feed-Forward Neural Network (FFNN), where each category is specified
for their own set of problems. In this section I will introduce some fundamental definitions in regard to
NN, and go through the underlying algorithm of the back- and forward propagation. Most of the theory
presented in the following section is a recapitalization of the book by Hastie et al. [26].

2.6. NEURAL NETWORKS 19

Figure 2.3: An illustration of the architecture of a NN with two hidden layers.

2.6.1 General Structure
There are often drawn comparisons between the structure of the neural network, and the way the human
mind operates, hence neural. Similarly to the human mind, a NN is composed of different neurons, or nodes
communicating information backwards and forwards in different regions. In the case of a neural network we
call these regions layers. All layers are composed of a specified number of nodes. A NN has three types of
layers; input layer, hidden layer and output layer. There is only one input layer, and it has the same number
of nodes equal to the number of features for each data point. There can be an arbitrary number of hidden
layers, with each hidden layer containing an arbitrary number of nodes. Finally, the NN has an output layer.
The output layer contains a number of nodes equal to the dimensions of the target.
A NN functions by passing information in between the different layers through nodes. The nodes are simply
pockets of information, each containing a value. All the nodes in the input layer are (in most cases) connected
to all nodes in the nearest hidden layer, and likewise said hidden layer is connected to the next hidden layer.
This structure continues until we reach the final layer, the output layer. The structure is illustrated in figure
2.3. The figure shows a simple NN with a two-dimensional data set (two nodes in input layer), two hidden
layers with three nodes each and a one-dimensional target value. It also illustrates how a NN aims to map
from data to a prediction. In figure 2.3 we can see how all the different nodes are connected, illustrated
by the arrows. The passing of values between different nodes are controlled by a set of weights and bias
parameters. These parameters are defined for each connection and are what will be tuned during training.
The weights and biases for a given connection of two nodes, defines the effect one node has on the other.
In a traditional FFNN the information is passed linearly (in figure 2.3, from left to right) in a process we call
forward propagation. Other variants can include the information taking a more complex route. It is often the
route from input- to output layer that categorizes the type of NN. In this report I used a set of FFNNs.

2.6.2 Feeding Forward
With the structure described in the previous section, a trained model, F , produces a prediction, Y , for a
data set, X, by passing information from input layer, through all hidden layers, to the output layer, which
we call forward-propagation. In this section I aim to explain the underlying algorithm and math used by the
NN to map input to output.
We imagine the passing from hidden layer l − 1 to l, where l ∈ {2, ..., L}13 and L is equal to the number of
hidden layers. The activated value of a node in layer l, is defined as al

j (as indicated by figure 2.3), where
j ∈ {0, 1, ..., Nl} and Nl is equal to the number of nodes in l. The value of al

j is defined as the activated sum
of all nodes in the previous layer, al−1

j , where the sum is weighted by a parameter, wl
j, and shifted by the

bias, bl
j , for j ∈ {0, 1, ..., Nl−1}. The activated value of a node j in layer l is defined as

zl
j =

Nl−1∑
k=1

wl
kjal−1

k + bl
j , (2.8)

where wl
kj corresponds to the weight in wl

k specific for the connection between node k and j.
To attain the full activated value, al

j , we pass zl
j through the activation function. The activation function,

13There is a special case for when l = 1 which will be addressed in the next paragraphs.

20 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

Figure 2.4: An illustration of a forward propagation from one layer to a node in the next.

σl, is a generally nonlinear function used to control the limit or expand the value range for the node values.
The activation function is general for all nodes in a given layer, but can vary in between layers. Therefore,
we find al

j by the equation

al
j = σ

Nl−1∑
k=1

wl
kjal−1

k + bl
j

 = σl(zl
j). (2.9)

A more detailed illustration of the information passed from one layer to a node in the next layer is displayed
in figure 2.4. In figure 2.4, we see all steps described in the process; (1) all nodes in l− 1 are summed with a
corresponding weight, (2) the sum is shifted by a constant term (bias), (3) the scaled and weighted sum
defines the inactivated value zl

j , (4) we define al
j by passing the sum through σl. This method is used to

pass information between all layers, except between the first and the second. In this case we simply replace
the activated term, al−1

k in equation 2.9, by the input data, xi for i ∈ {0, 1, ..., N}, where N is equal to the
number of features for the data. In the case l = 1, 2.9 becomes

a1
j = σ

(
N∑

k=1
w1

kjxk + b1
j

)
= σ(z1

j). (2.10)

And in the case where l = L, aL
j is equal to the final output.

2.6.3 Back Propagation
The backward propagation acts as the engine that drives the training of a neural network. It has the purpose
of calculating the gradients of the cost function, C, with respect to the weights and biases of the network.
The cost function defines to which metric we aim to optimize the network. When a neural network produces
a prediction, Y , the error in the prediction is defined by the cost function as C (Y, T), where T is the target.
To minimize C, the backward propagation utilizes the gradient with respect to the weights and biases in
the network, as described in the section regarding optimization 2.2. Instead of a direct calculation of the
gradient, which is very computationally heavy, the backward propagation aims to calculate the gradient
through a recursive algorithm which traces the error backwards through the network. It is this algorithm I
will describe in this section.
When minimizing the error defined by C, we can apply several optimization algorithms described in section
2.2. Common for the algorithms is the use of the gradient of the cost function with regard to the tunable
parameters. In our case these parameters are the weights and biases, wl

i,j and bl
j . The goal of the backward

propagation is therefore to calculate the gradients ∂C/∂wl
i,j and ∂C/∂bl

j .
To begin with we can derive an expression for ∂C/∂wl

i,j . We use the chain-rule to define

∂C
∂wl

i,j

= ∂C
∂zl

j

∂zl
j

∂wl
i,j

,

2.6. NEURAL NETWORKS 21

which we can simplify further by using equation 2.8 to calculate the second term, which becomes

∂C
∂wl

i,j

= ∂C
∂zl

j

al−1
i .

We can redefine the first term in the equation above as δl
j and write

δl
j ≡

∂C
∂zl

j

=
∑

k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

=
∑

k

δl+1
k

∂zl+1
k

∂zl
j

,

where we have again used the chain rule for all contributing nodes. To calculate the final partial derivative
we write

∂zl+1
k

∂zl
j

= ∂zl+1
k

∂al
j

∂al
j

∂zl
j

= wl+1
jk (σl(zl

j))′,

where we have again used equation 2.8. This gives the expression for δl
j

δl
j =

∑
k

δl+1
k wl+1

jk (σl(zl
j))′. (2.11)

Finally this gives us the expression

∂C
∂wl

i,j

= δl
jal−1

j . (2.12)

Next we want to derive ∂C/∂bl
k. We simply use the chain rule and derive

∂C
∂bl

j

= ∂C
∂zl

j

∂zl
j

∂bl
j

,

which from equations 2.11 and 2.12 is simply

∂C
∂bl

j

= δl
k · 1 = δl

j . (2.13)

From all three derived expressions, equations 2.11, 2.12 and 2.13 we see that to calculate for all l ∈ {0, 1, .., Nl}
we must first calculate δL

j and apply a recursive propagation. To calculate δL
j = ∂C/∂zL

j we again apply the
chain rule with the assumption of the activated node in the cost-function, and we find

δL
j = ∂C

∂aL
j

(
σL(zL

j)
)′

. (2.14)

This expression, similarly to equation 2.11, is dependent on the choice of C and the activation functions.
Now that equation 2.14 is defined, we can see that the gradient of the parameters in all other layers can
be calculated. A full epoch is defined as a forward propagation which creates a prediction, followed by a
backward propagation which tunes the parameters in an attempt to correct the errors in the prediction.

2.6.4 Activation Functions
As mentioned in previous sections, activation functions define how the weighted sum of the nodes in the
previous layer define the value of the node in the current. There are many types of activation functions,
where all have advantages and disadvantages. The choice of activation function for each layer is defined
before training, making it a hyperparameter. The activation functions applied and tested in this thesis are
the following:

• Sigmoid

σ(z) = 1
1 + e−z

= a ∈ [0, 1]

22 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

• LeakyReLU

σ(z) =
({

z, if z ≥ 0
αz, otherwise

)
= a ∈ (−∞,∞),

where α is scalar,

,

and where z is an inactivated node which is activated to define a, the activation.

2.6.5 Network Ensembles, Dropout and LWTA Networks
So far in the thesis, I have only covered dense layers, meaning that every node in a layer is connected to
the nodes in the previous and following layer. This definition covers many, but not all hidden layers. Some
layers do not pass values back and forth between nodes but instead dynamically change the architecture of
the NN. In this analysis, I have implemented both the dropout-layer, and also a group of layers fitting the
definition introduced in the paper [27], as Local-Winner-Takes-All (LWTA).

Dropout

The dropout layer functions by assigning a predetermined probability to each neuron in a given layer. Based
on the probability, a number of neurons (dependent on the probability) is dropped in each forward pass. By
doing this the dropout layer creates a different architecture for the network for every round of training. Each
unique architecture represents its own network in what becomes an ensemble of networks.
As mentioned in previous sections, creating ensembles of models is a form of regularization. In the case of
dropout, it minimizes the risk of overfitting by hindering a phenomenon known as complex co-adaptation.
Complex co-adaptation happens when a neuron becomes overly dominant such that neighboring neurons
no longer contribute (relative to the dominant neuron) and therefore lack the motivation to tune. When
this happens, networks become fragile and overly specialized to the training data. By randomly dropping
neurons, the neighboring neurons are no longer allowed to be passive and are forced to tune to compensate.
During evaluation, the dropout layers no longer take action. Instead, the dropout rate (frequency of drop) r
is used to scale the weights by a factor 1− r. The prediction made by the resulting model can therefore be
seen as the average of all the smaller networks. In other words, a neural network containing dropout layers
can be viewed as a bagging ensemble (see subsection 2.5.2).

Channel-Out

Dropout layers are not the only layers to dynamically change the architecture of a network. In this thesis I
additionally explore the lesser known, Channel-Out-layer as introduced in the paper by Wang et al. [12].
Channel-out, similarly to dropout, creates an ensemble of networks by removing a set of nodes for each round
of training. Contrary to dropout, channel-out does not choose the nodes to drop at random, but instead
creates local units by grouping the nodes, and removes all nodes except the node with the largest activation
in each respective unit. The ’removed nodes’ are multiplied by 0, as to remove any contributions to the next
layer. The goal of channel-out is to create an ensemble of networks through pattern-specific paths, where each
network is specialized for a given pattern in the data. This would create an ensemble of networks, which not
only applies a form of regularization, but also improves a phenomenon known as long-term memory in the
model. The phenomenon of long-term memory is discussed in the article by Srivastava et al. [27], and is
simply a measure of how well a model is able to retain information on a data set, A, after training on an
additional training set, B. This effect is also relevant for the two layers I will discuss in the next sections.
In this thesis I have implemented the layer such that upon prediction, the redimensionalization is still active.
This means that for each data point, a NN is chosen based on the specific activations in each of the nodes. In
other words, the channel-out layer creates something resembling a stacking ensemble (see subsection 2.5.2).

Stochastic-Channel-Out

As I will describe in further detail in sections to come, I choose to implement the channel-out layer myself. A
consequence of this was that I was able to experiment with it. In the section regarding dropout, I described
the issue of complex co-adaptation. I also described a possible solution to the issue, the dropout layer.
Although dropout and channel-out function rather similarly, they do not deal with this issue in the same way.
Where the dropout layer will force dormant nodes to contribute in the training by allowing for dominant

2.6. NEURAL NETWORKS 23

Figure 2.5: An illustration of a Neural network with two hidden layers, each with 8 neurons. The first and second
hidden layers have a maxout activation layer with four and two units respectively. The figure also
illustrates the resulting ensemble of smaller neural networks as a consequence of the maxout activation
layers.

nodes to be dropped, the channel-out would instead allow for dominant nodes to take further control inside
their respective unit.
To remedy the issue of complex co-adaptation inside the units, I proposed a new layer, the Stochastic-
Channel-Out (SCO). SCO functions similarly to channel-out, with the exception of the units. Where the
channel-out layer utilizes static local units14 throughout training, the SCO instead utilizes dynamic units
which change for each data point. In other words, for each data point, each node would potentially have a
new group of nodes to compare with when finding the largest activation. The goal of the SCO is to capitalize
on the randomness of the dropout layer and the pattern-specific paths aspect from the channel-out layer.
In the same manner as for channel-out, the redimensionalization is active during prediction and training for
the SCO. This means that also the SCO creates an ensemble resembling a bagging ensemble.

Maxout

Additionally to the channel-out I will be applying a second layer discussed in the paper by Wang et al. [12],
the Maxout layer. The maxout layer functions very similar to the channel-out with a small difference in the
dropping of nodes. In the dropout layer, nodes are dropped by neglecting all contributions from said node, or
in other words by multiplying the activation from the dropped nodes by zero. This is replicated in both the
channel-out layer and the SCO layer. In doing so all nodes, activated and dropped alike, possess their own
set of weights and biases. This is not the case for the maxout layer. In the maxout layer, each unit possesses
just one set of weights and biases. For each forward pass in the network, the largest activated node will
contribute to the nodes in the following layer using the same weights and biases as the rest of the nodes in
the units. However, the nodes only share parameters connected to the layer in front, not behind. This allows
for the maxout layer to have fewer parameters to tune, while at the same time building pattern-specific
pathways similar to channel-out and SCO.
In figure 2.5 I have illustrated a maxout network. The figure shows a NN with two hidden layers with eight

nodes each. In the first hidden layer the maxout layer creates four units, each containing two nodes, and in
the second layer the maxout creates two units with four nodes each. The resulting output from the first
layer is the four nodes with the highest activation in their respected unit, likewise the second layer’s output
is two nodes. To the right of the network in figure 2.5, I have illustrated how the different configurations of
paths through the network create an ensemble of networks with their own architecture. Note in the figure
how, as described in the previous paragraph, each node possesses its own connections to the previous layer,

14I.e. the nodes are placed in local units in the beginning of training and held constant throughout.

24 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

Figure 2.6: An illustration of three different layers, channelout, SCO and maxout. The figure shows how each
layer redimensionalize the network and how channelout and SCO differ from maxout in regard to the
relationship between units and parameters. The gray lines and nodes represent dropped nodes, whereas
the blue nodes and dark lines represent the nodes which are allowed to contribute. In the case of SCO
the different colors surrounding the nodes represents different units, which visualizes how any set of
nodes could define a unit.

while sharing the connections with the rest of the unit, to the next. In figure 2.6 I have drawn a separate
illustration to show how this differs from both channel-out and SCO in this regard. Figure 2.6 illustrates
how all three layers redimensionalize the network, how channelout and SCO differ from maxout in regard to
the relationship between units and parameters and finally how channel-out differs from SCO in choice of
units15.

2.6.6 Parametrized Neural Network
In this thesis I will be studying BSM-simulations produced with a diversity in choice of free parameters.
This means that the signal is itself diverse. The free parameters studied in this thesis are the masses of the
new particles. The set of masses of hypothetical particles in a given BSM theory can greatly alter the feature
space spanned by processes including said particle. This means that a single ML model could potentially
struggle to tune according to multiple signal samples that differ only in the masses of the hypothetical
particles. The obvious solution to this problem is simply to implement one model per mass combination,
or choice of masses, and simply reusing the background. Although this approach is very popular, I have
decided not to use it for (mainly) three reasons:

• This approach has been carefully studied for many years, and leaves little room to further exploration.

• Some signals overlap in the feature space. This means that by neglecting signals with relative similar
mass, you could be neglecting statistics which could help tune to your original signal.

• By including two signals with relatively similar masses in the training, some16 suggest that the model
would be able to interpolate between the masses and cover a larger search area.

When the data set, X, is dependent on a set of free parameters, θ = [θ0, θ1, θ2, ..., θN], we can write X(θ).
For a single neural network trained on a set of parameters, we define the model as F(X(θ)). In the case
where we build one model for each choice of parameters, we get a set of models defined as {Fa(X(θa)),
Fb(X(θb)), ...,Fc(X(θc))}, where a, b and c are indices which correspond to individual choices of parameters
respectively.
In the paper by Baldi et al. [11], they propose a separate solution to the problem than the one proposed
above, the Parameterized Neural Network (PNN). By simply including the parameters as additional features,
we can write F(X, θ). In doing so, we can utilize all the statistics at the same time, while also aiding the NN
in its effort to recognize all individual patterns for all signals. The difference in approach between parameter
specific networks and the PNN are highlighted in figure 2.7. In practice, it is aiding the NN by adding a shift
to the total output from the initial layer according to the discrete distribution of the parameters. The hope
is that each discrete shift will motivate a separate individualistic tuning for each choice of parameters. For

15In figure 2.6 this is highlighted by the different colors surrounding the nodes in SCO, where each color represents a unit.
16See the paper by Baldi et al. [11].

2.7. DECISION TREES AND GRADIENT BOOSTING 25

Figure 2.7: An illustration of a comparison between the parameter individualistic network approach and the PNN.

the SM background, adding a parameter representing the mass of a BSM particle is meaningless. Therefore,
the background is randomly assigned values according to the same distribution used in the signal data. In
doing so, one is essentially assigning each set of signal its own portion of the background data.

2.7 Decision Trees and Gradient Boosting

2.7.1 Decision Trees
Decision Trees (DT) are, similarly to NN some of the most popular ML methods used today. Contrary to
NN, DT are relatively easy in theory. Despite the simplicity of DT, they are capable of solving a large range
of complex problems. In this section I will cover the use of DT as applied to a supervised classification
problem.
The goal of decision trees is to create a flowchart-like tree structure from input to output. Similarly to the
traditional cut-and-count (CC) method used in particle physics, a DT places rectangular-cuts on a data set.
It does so to create a collection of thresholds {c1, c2, ..., cNc}, which when applied to a new data set and
target, will sort each data point to the corresponding target.
In figure 2.8, I have illustrated a simple DT classifying a 4-dimensional input data to one of three classifications.
As is visualized in figure 2.8, the DT applies a set of thresholds on the data to find the route applicable to a
target. For each applied cut, the data splits into what we call branches. Each branch represents a subset of
the data. The final subset, after a sufficient amount of cuts, ends in what we call leaves. Each leaf contains a
label which is assigned to the subset of data of which the leaf contains.
Just like most ML-methods there are many kinds of DT, each with their own architecture and benefits. In
the case of DT the defining qualities can be summarized in its choice of Depth and Optimization. When
provided with a data set, a DT can in theory create as many cuts needed to map each individual data point,
xi, to the corresponding target, ti. Doing so would not only be very computationally heavy, but would
almost certainly lead to overfitting if applied to any new data. Instead, when building a DT one defines a
maximum depth. This means that we must define a limit to the number of cuts, which subsequently leads to
the need for a prioritization of cuts.
Building a DT and choosing which cuts to apply at what point, is the equivalent of training a network. How
to decide by what standard one chooses to build the hierarchy of cuts is again the equivalent to choosing an
optimizer. For more information on DT, the reader is referred to the book by Hastie et al. [28].

2.7.2 Gradient Boosting in Decision Trees
Gradient-boosting is an algorithm which uses an ensemble of ’weak’ classifiers in order to create one strong
classifier. In the case of gradient-boosted trees the weak classifiers are an ensemble of shallow trees, which
combine to form a classifier that allows for deeper learning. As is the case for most gradient-boosting
techniques, the collecting of weak classifiers is an iterative process.
We define an imperfect model Fm, which is a collection of m number of weak classifiers, or estimators. A
prediction for the model on a given data-points, xi, is defined as Fm(xi), and the target for the aforementioned

26 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

Figure 2.8: An illustration of a simple DT, mapping a four dimensional input {x1, x2, x3, x4} to one of three values
in the output space {y1, y2, y3}, through a set of cuts {c1, c2, c3}.

data is defined as ti. The goal of the iterative process is to minimize some cost-function C by introducing a
new estimator hm to compensate for any error, C(Fm(xi), yi). In other words we define the new estimator as:

C̃(Fm(xi), yi) = hm(xi), (2.15)

where we define C̃ as some relation between the observed and predicted values such that when added to the
initial prediction we minimize C.
Using our new estimator hm, we can now define a new model as

Fm+1(xi) = Fm + hm(xi). (2.16)

Similarly to how we define a depth of trees, we can define the degree of boosting. We define this as the
amount of trees used in the iterative process, or M . This means that the final classifier becomes

FM (xi) =
M∑

i=0
hi(xi) (2.17)

The XGBoost [10] framework used in this analysis enables a (advanced) gradient-boosted algorithm, and was
initially created for the Higgs ML challenge. Since the challenge, XGBoost has become a favorite for many
in the ML community and has later won many other ML challenges. XGBoost often outperforms ordinary
decision trees, but what it gains in results it loses in interpretability. A single tree can easily be analyzed
and dissected, but when the number of trees increases this becomes harder. For a more detailed explanation
of the XGBoost framework, the reader is referred to [10].

2.8 Machine Learning Applied to a BSM Search
So far I have presented the goal of my analysis (to discover new physics) as well as the tools I will be using to
achieve it (ML). In this section I will discuss how ML is applied to the problem as well as how it compares
to traditional methods.

2.8.1 The Traditional Approach
As discussed, I have been presented with two sets of data; the measured collision data from ATLAS and
the simulated MC data. The origin of the latter data set will not be covered in great detail in this thesis,
but it is worth mentioning that the simulations are based on SM theory. In other words, by comparing the
measured collision data with the SM simulations, we are essentially comparing what is predicted by the SM
to what is measured by experiment. If the two differ in ways not explained by simulation inadequacies or
features of the data that are unrelated to physics, one could interpret the deviation as new physics.
In short, a search for new physics, is a search for deviations in the comparisons of simulations to experimental
data. At first thought, this might seem like a simple task. Given that the deviations would be large, it would
be easy. In reality, any new physics predicting large contributions in the data currently measured by ATLAS
has been excluded a long time ago. Today, any promising extension of the SM predicts to contribute rarely in

2.8. MACHINE LEARNING APPLIED TO A BSM SEARCH 27

Figure 2.9: An illustration of a traditional cut-and-count (CC) approach and how non-overlapping features lead
to effective signal regions. In the first figure (left) the distributions of signal and background are
relatively similar, and the signal region contains large amounts of background. In the second (right),
the distributions of signal and background are greatly different, and this variable would allow for a
much more effective signal region.

any collision. As will be presented in later sections some theories that will be searched for in this thesis only
contribute to a total of 6 collisions in a data set consisting of more than 3800000 events (< 0.002%). Not
only would such a deviation be incredibly hard to detect, but it would be close to impossible to determine if
such a deviation is rooted in new physics or statistical fluctuations of the background.
The traditional approach to this problem is to study the data in physics motivated regions. For example, in
section 1.5 I presented the Feynman diagrams of the SUSY signals I searched for in this thesis. As mentioned,
this type of final state is expected to exhibit large amounts of missing transverse energy17. The traditional
approach is to neglect all the data with small amounts of missing energy, and only consider events of interest.
By applying these kinds of constraints on the data, you are creating a region where you expect to find as
much of the signal and as little of the background as possible. After applying a sufficient amount of demands
(or cuts), you would count the remaining data in your search region and check for deviation. This approach
is called cut-and-count (CC).

2.8.2 The Machine Learning Approach
For a signal which greatly differs from the SM, the CC method could be sufficient. But, in cases where the
signal is similar to background, it becomes harder to create effective18 cuts. In figure 2.9, I have drawn an
illustration of two different feature distributions both displaying the distribution for a hypothetical signal
and background. Additionally, I have drawn a threshold in both distributions which represents the cut made
to create a search region. In the first figure (left) the distributions of signal and background are relatively
similar, and the signal region contains large amounts of background. In the second (right), the distributions
of signal and background are greatly different, and this variable would allow for a much more effective signal
region.
The goal of introducing ML, is to create a new feature in the data set where background and signal exhibit
as little overlap as possible. This is very similar to how we introduce physics motivated high-level features
like invariant mass, but instead of using an analytical function grounded in physics, we apply the output of a
trained ML model. Then, once the ML-variable is created, we apply a cut (similar to CC) which will define
an effective search region.
How we create the ML-variable can vary depending on the type of ML. An effective unsupervised approach
would be incredibly beneficial, as it would be totally model independent. In other words, the same model
could be applied to all signals. As mentioned in earlier sections (see section 2.1), the focus of this thesis will
not be on unsupervised ML, but supervised. The largest difference between the two is the introduction of
an additional data set, the simulated signal. By training on the simulated signal, we are able to achieve a
much more effective output which is tailored to what we expect the new physics to look like. Though, what

17Due to the neutralinos being both heavy, neutral and interacting only weakly with ordinary matter.
18By effective cuts I mean cuts which remove large amounts of the background while at the same time preserve as much of

the signal as possible.

28 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

Figure 2.10: An illustration of a ROC curve and how a random, good and perfect classifier would differ.

supervised learning gains in performance it loses in generalizability, i.e. the ability to find new physics it has
not trained on.

2.9 Model Assessment

2.9.1 The Rate of True-Positive - ROC Curve
A Receiver Operating Characteristic (ROC) curve is a tool used to measure and visualize a binary classifier’s
ability to correctly classify data. In figure 2.10 I have plotted an illustration of a ROC curve. The curve is
plotted on an xy-axis where the x-axis represents false-positive rates and the y-axis represents true-positive.
The different values for the curve are the rate of true positives with different thresholds, i.e. the value
deciding whether an event is 1 or 0, signal or background. If a classifier has learned nothing and is simply
guessing, the ROC curve will be a linear curve going across the diagonal of the axis. This line is often drawn
in a ROC curve. The better the classifier is, the higher the ROC curve will bend towards the upper-left
corner of the graph. The closer the line is to the diagonal, the worse the classifier.
A metric often used to measure classifiers’ ability to create an output which effectively separates two
categories, is the Area Under the Curve (AUC). The larger the area, the better the separation. An ideal
classifier which perfectly separates two categories will achieve a AUC of 1. A classifier which simply guesses,
will achieve an AUC of 0.5. Both these cases assume an equal weighting of both signal and background.
This present section was taken from some of my previous work, and can be found in the following rapport
[29].

2.9.2 Statistical Assessment - Discovery & Exclusion
The statistical aspect of the analysis will not be of focus in this analysis, nonetheless there are some
expressions which would be helpful to define. Let us assume that we expect to see no new physics in the
collision data, we can call this hypothesis the b(background)-hypothesis. To expect no new physics, is not
the same as expecting no deviation. We still assume statistical uncertainties to affect the simulations which
will affect the distribution of our simulations and lead to fluctuations. If these fluctuations are random, we
can assume that the noise can be described by a Gaussian distribution (which is a good approximation for
large statistics), which has a mean of 0 and a standard deviation equal to

√
b, where b is the number of

SM simulated events. Using this assumption, we can state that the higher the deviation, i.e. the further
away from the mean, the less likely such a deviation is explained by our b-hypothesis. Given a large enough
deviation, we can even define the hypothesis as rejected with a certain confidence.
We measure the deviation between the observed collision data and the simulated SM data in units of
significance, Z. For a given signal region with nobs events of measured collision data and b simulated SM

2.9. MODEL ASSESSMENT 29

data, we define the significance of a deviation as

Z =
√

2
[
nobs ln nobs

b
− nobs + b

]
or Z =

√
2
[
(s + b) ln

(
1 + s

b

)
− s
]
, (2.18)

where we have defined the signal as s = nobs − b. In the case of large statistics (b >> s), we can write Z as

Z = nobs − b√
b

= s√
b
. (2.19)

By studying equation 2.19 we observe that the significance of a deviation is simply the signal measured in
units of standard deviation of the Gaussian distribution. In physics, one often deems the results a discovery,
or the b-hypothesis as rejected, if Z > 5.

Figure 2.11: An illustration of a Gaussian distribution and the area under the curve defined by a significance equal
to 1.64.

Before attempting to search for deviations in the real data, we are interested in analysing the sensitivity
of our method as well as calculate the expected number of signal events in our signal region. To study the
sensitivity of an analysis one looks only at the simulated background and signal and performs a study to see
how well one can separate background from signal. The measure of the sensitivity of our models will be of
great focus in this thesis.
In the case we are determining the sensitivity, we do not have nobs. Instead we simply define s as the
number of events of the simulated signal inside the signal region. This number would be specific for each
mass combination and will be an estimation for how sensitive the model is for that exact combination. We
call the significance calculated using the simulated data for expected significance. In physics, we define a
model as sufficiently sensitive if it is able to achieve a significance of 1.64 or above. This number is chosen
based on its relation to the b-hypothesis. A significance of 1.64, equals the distance from the mean of the
Gaussian distribution which sums to an area of 0.95 (see figure 2.11). There are many ways to interprete
this. A layman’s interpratation (which is sufficient for this thesis), is that given the b-hypothesis is true,
there is a 95% probability that we will measure a signal which produces a significance of less than 1.64.
Therefore, there is only a 5% probability, given the b-hypothesis, that we would observe an equal or worse
comparison given further experiments. For more information on significance and discovery in physics the
reader is referred to the following lecture [30].

30 CHAPTER 2. INTRODUCTION TO MACHINE LEARNING AND DATA ANALYSIS

31

Chapter 3

Implementation & Preparation of the
Analysis

Before starting my analysis and applying the set of ML models, I first had to prepare the data set. This
chapter will present the steps, tools and frameworks used in the preparation work (and other aspects of the
analysis), as well as present the resulting feature distributions. Towards the end of the chapter I will present
the different architectures for each model and the general strategy applied to training. Note that all the code
used to prepare and implement my analysis can be found in my Github19.

3.1 The Simulated Data

3.1.1 Monte Carlo Simulated Data
Up to this point in the thesis I have discussed two data sets: the measured collision data and the simulated
MC data. The simulated events are produced with software that relies on Monte Carlo (MC) techniques20.
Through simulations, we are able to (among other things); test our understanding of the detector, model the
expected SM background events in different regions and model new BSM physics. The pipeline for simulating
collision events can be summarized in the following steps

• Generate events: Simulate each event in the collision, marking each event with the corresponding
process (see section 1.6)

• Simulate detection of events: Simulate the detection of each event in the different layers of the detector
described in section 1.4.1

• Digitization: Translate the interaction between the particles and the detector to a format that mimics
exactly the digital signals from the detector

• Reconstruct events: Apply the same software to the simulated digital signals that is applied to the real
data, producing representations of physically meaningful objects such as tracks, electrons, photons, jets
and muons

I was not involved in the collection or production of either of the datasets, simulated or measured.

3.1.2 The Simulated Signal
As I have mentioned in previous sections I will be searching for a large range of signals, all related to the same
physics, but with different sets of parameters, i.e. choices for the masses of the charginos and neutralinos.
In figure 3.1 I have drawn a grid displaying the different mass combinations searched for in this analysis.
The masses range from χ̃1 ∈ [0, 400]GeV and χ̃2 ∈ [200, 800]GeV21. In the beginning of my analysis I only
received a subset (which will be referred to as the original data set) of the full signal set. In figure 3.1 I have
marked the original data set with a white label in the top right corner of the box. The original signal set
contains a total of 30 different mass combinations in the ranges χ̃1 ∈ [0, 400] and χ̃2 ∈ [400, 800]. In the full

19The link to the repository can be found here https://github.com/WilliamHirst/MasterThesis
20For more information on MC simulation, the reader is referred to [31].
21The lightest chargino, χ̃±

1 , and second neutralino, χ̃2, are mass degenerate, meaning they share the same mass. As a
consequence, I will refer to the mass of each particle interchangeably throughout the thesis.

https://github.com/WilliamHirst/MasterThesis

32 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 3.1: A grid of all chargino and neutralino mass combinations and their respective event count in the full
signal data set. Additionally, a white corner has been added to all combinations which define the
original signal set.

signal data set there are a total of 90 different mass combinations.
Given that I received the original signal data set many months before receiving the full set, most of my
results were carried out using the original set. Therefore, I chose to use the original data set to compare the
performance of the models, then finally use the full set when comparing the results to previous analysis.

3.2 The Tools
Every year technology for generating and measuring particle collisions is improving. As a consequence, the
amount of data increases drastically. The ATLAS experiment is the largest particle detector experiment
currently operating at the CERN laboratory near Geneva. ATLAS alone generates approximately 60 terabyte
of raw data every second from proton-proton collisions at the LHC. In this analysis I will be studying
proton-proton collisions at a center of mass energy

√
s = 13TeV recorded by the ATLAS detector between

2015-2018, corresponding to an integrated luminosity of 139.0fb−1. With amounts of data this large, data
handling and storing is a big challenge. Therefore, taking advantage of sophisticated numerical tools and
data frameworks is pivotal if scientific development is to keep up with technological development.

3.2.1 ROOT
In many aspects of my analysis, ranging from statistical analysis to plotting I utilize the ROOT framework.
ROOT [32] is at its core a large C++ library and data structure made specifically for big data analysis and
computing, as well as data visualization. Today, all ATLAS data is stored as ROOT files, summing up to
more than 1 exabyte (1012) distributed globally via the Worldwide LHC Computing Grid (WLCG)[33]. ROOT
has many qualities which makes it ideal for particle physics analysis which demands heavy computations.
Additionally, many particle physics-specific packages have been developed to make it an even better tool.
Any function not already in library, can easily be added in a High Performance Computing (HPC)-effective

3.2. THE TOOLS 33

Figure 3.2: A visual summary of the workflow and frameworks used in the computational analysis.

manner through C++.
Many of the plots presented in the present thesis were created using ROOT. ROOT has implemented a highly
intuitive and effective Application Programming Interface (API) for data comparison and visualization,
and allows for quick and direct comparison between data through an advanced graphical user interface.
Furthermore, a lot of functionality for creating complex stacked histograms are implemented in the ROOT
API, such as uncertainty calculations, ordering of histograms and statistical analysis tools. A final and
important benefit of ROOT is its impressive handling of memory and I/O which makes it ideal to handle large
amounts of data.

3.2.2 Data Structure and Frameworks
Both data sets used as input to the analysis in this thesis, the measured and simulated, were stored in ROOT,
in the format of NTuples. NTuples are ROOT objects designed to store large amounts of data. They allow
for non-symmetrical entries, meaning cells with different number of entries. The simulated and measured
collision data are both stored in NTuples, with a matrix like structure where the columns represent the
variables/features, and the rows represent each event. Hence, allowing ragged entries is essential for the
purpose of storing data on particle collisions, given that the amount of information needed for each event
can vary. For example the pT of the event from a three lepton final state would need three entries, whereas
an event ending in a two lepton final state only needs two.
When starting preprocessing I load the NTuples using a ROOT interface called RDataFrame22. RDataFrame
allows for easy addition of new columns as well as filtering of events through native functionality. As a
consequence I used RDataFrame to calculate all features not already in the data set, such as the sum of
transverse momentum, or the invariant mass of the three leptons.
After pre-processing was completed, I used RDataFrame’s AsNumpy function to translate the data frame
into Numpy objects [34], which then allowed me to transform it to a Pandas data frame [35]. This is done
because Pandas, like most ML-tools, work in a strict Python environment. Pandas, similarly to RDataFrame,
includes a deep computational library, and is optimal for analysis of big data. When the full ML pipeline
(data-handling, training, validation etc.) is completed the data is transformed back to NTuples, to take
advantage of the plotting functionality in ROOT. The workflow of the data pre-processing is visualized in
figure 3.2.

3.2.3 Computing Features in ROOT: Example
In this section I will cover a simple example to highlight the steps taken in preparing the data set used in
the analysis. As mentioned earlier, the two main frameworks used were RDataFrame and Pandas. In this
example I will cover the case of a feature not already in the ROOT file, namely the trilepton invariant mass.
All loading of data is done using the ROOT framework and is easily read using the RDataFrame interface.
To effectively generate new features I want to stay in ROOT environment. To that end, I created a C++ file,

22For full documentation on RDataFrame, see https://root.cern/doc/master/classROOT_1_1RDataFrame.html (Accessed
16.04.2023).

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

34 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

helperfunction. The helperfunction contains additional ROOT functions which are used in the analysis
and are not already native to ROOT. In the case of computing the trilepton invariant mass, the C++ function
is created like shown in listing 3.1.
In listing 3.1, we see a couple of measures taken to conform to the ROOT environment. The first measure is
the typecasting to V ecF t. V ecF t is created to wrap floats in the native ROOT vector object, RV ec. The
same is done in other cases such as float and integers, V ecI t and V ecB t. The second measure was using
TLorentzVector23 to calculate the invariant mass. TLorentzVector is a class native to ROOT with many
built-in functions. In this case I use the class to create four-vectors through the kinematic variables, Pt, η,
ϕ and mass24. Then, through the TLorentzVector class I simply add, through vector sums, together and
extract the invariant mass of the three-lepton system.

1 // Compute the trilepton invariant mass
2 float ComputeInvariantMass (VecF t& pt , VecF t& eta , VecF t& phi , VecF t& m) {
3 TLorentzVector p1 ;
4 TLorentzVector p2 ;
5 TLorentzVector p3 ;
6 p1 . SetPtEtaPhiM (pt [0] , e ta [0] , phi [0] , m[0]) ;
7 p2 . SetPtEtaPhiM (pt [1] , e ta [1] , phi [1] , m[1]) ;
8 p3 . SetPtEtaPhiM (pt [2] , e ta [2] , phi [2] , m[2]) ;
9 return (p1 + p2 + p3) .M() ;

10 }

Listing 3.1: C++-function which implementes the calculation of the trilepton invariant mass.

The functions implemented in the C++ library (helperfunction) off-loads, from Python, all the time, passing
work to C++, which significantly speeds up the computation. The C++ library is compiled prior to the
execution of the main Python-code, which will be presented in the following. The main code, doing the
selections, calculations and plotting, uses the RDataFrame interface in a Python environment. Whenever
heavy calculations are needed the RDataFrame interface calls on function in the C++ library described above.
In the code written in listing 3.2, I show a simple example of loading new C++ functions, filtering out events,
calculating new features and adding said features to a histogram. The first three lines of code both compiles
and include the helperfunction into the ROOT framework. Then I loop over all keys in the data frame,
which in my case are the different channels (i.e. diboson, tt̄ etc.). For each channel I select ’good’ events,
based on the criteria I will present in section 3.4. Then I use RDataFrame’s Define function to calculate
and add a new feature using the ComputeInvariantMass-function. Finally, I save the feature as ROOT object
called Histo1D, which I later plot using ROOT API. In this example I chose the trilepton invariant mass, but
in the analysis all additional features were calculated using a similar method.

1 R.gROOT. ProcessL ine (".L helperFunctions.cxx+") ;
2 R. g I n t e r p r e t e r . Dec lare (’#include "helperFunctions.h"’)
3 R. gSystem . Load ("helperFunctions cxx.so")
4
5 for k in df . keys () :
6 # Define good leptons
7 isGoodLepton = "feature1 < cut1 && feature2 >= cut2"
8
9 # Define good leptons in dataframe

10 df [k] = df [k] . Def ine ("isGoodLepton" , isGoodLepton)
11
12 # Define number of good leptons
13 df [k] = df [k] . Def ine ("nGoodLeptons" ,"ROOT::VecOps::Sum(isGoodLepton)")
14
15 # Demand 3 good leptons
16 df [k] = df [k] . F i l t e r ("nGoodLeptons == 3")
17
18 # Define Invariant Mass (lll)
19 df [k] = df [k] . Def ine ("mlll" ,"ComputeInvariantMass(lepPt[isGoodLepton],
20 lepEta[isGoodLepton],
21 lepPhi[isGoodLepton],
22 lepM[isGoodLepton])")
23 # Add to histogram
24 h i s t o ["mlll %s"%k] = df [k] . Histo1D (("mlll %s"%k ,
25 "mlll %s"%k , 4 0 , 5 0 , 5 0 0) ,
26 "mlll" ,
27 "wgt SG")

Listing 3.2: Python-file for calling dataframe and calculating the trilepton invariant mass.
23For full documentation on TLorentzVector, see https://root.cern.ch/doc/master/classTLorentzVector.html (Accessed

16.04.2023).
24These features will be described in the next section 3.3.

https://root.cern.ch/doc/master/classTLorentzVector.html

3.3. SELECTING FEATURES FOR THE ANALYSIS 35

3.3 Selecting Features for the Analysis
The choice of which features to study and which to neglect is crucial in a search for new physics. This is
particularly true in the case of applying machine learning. The general motivation for including a given
feature can be based on several factors. One reason being its ability to provide a pattern which we can
exploit when creating our signal regions. By this I mean that it is a variable where there is a diversity in the
distribution between the different channels. This is often physics motivated, for example including a feature
on the missing transverse energy on the basis that we are searching for a signal with large amounts of it.
Another reason is grounded in the ability of the MC-simulation to represent the variable. If there seems to
be a clear deviation between the measured and simulated data, typically in some defined control regions
believed to not contain any new physics, the feature could be adding noise to the data set, and it would
not be included. In the following sections I will discuss the various features included in the data sets (both
simulated and measured), which are also summarized in the appendix in table 2. The features used in this
analysis were inspired by several publications by ATLAS I read in preparation of the analysis [36, 37].

3.3.1 Lepton Variables
Information regarding the kinematics of the electrons and muons were added into the data set: i.e. the
transverse momentum, pT , the pseudo rapidity, η, and the azimuth angle, ϕ. All kinematic features were
represented individually for each lepton. For example pT was added as three columns: pT (l1), pT (l2) and
pT (l3), where the ordering of the leptons were based on the momentum from highest (l1) to lowest (l3).
Similarly, I added information regarding the charge (±) and flavor (electron, muon) of each lepton. Based
on the kinematic variables the transverse mass, MT , of each lepton was calculated, ∆R for the two leading
leptons, and the transverse component, Emiss

T , and azimuth angle, ϕmiss, of the missing momentum.
Furthermore, I added different mass variables, namely mlll and mll(OSSF)(Opposite Sign Same Flavour).
The first being the trilepton invariant mass and the latter being the dilepton invariant mass of the pair with
OSSF. In the case of more than one possible OSSF-pair, the pair with the highest invariant mass was chosen.
Secondly I added variables composed of the scalar sum of the transverse momenta. These variables include
the sum of the transverse momenta of all three leptons, HT (lll), of the same sign lepton pair, HT (SS), and
the sum of the momenta for all three leptons added with the missing transverse energy HT (lll) + Emiss

T .
Finally, I added the significance of the Emiss

T , S(Emiss
T). The S(Emiss

T) is based on the log-likelihood ratio
which compares the reconstructed Emiss

T to the expected missing transverse energy in the case that there is
no Emiss

T . For more information on S(Emiss
T) the reader is referred to [38].

3.3.2 Jet Variables
Now we can have a look at the jet-features. Given that the final state of interest should be independent
of jets, there are not many features added with jet information. But, given the risk of mis-identification,
some jet features were included. The first features added were the number of jets, both all signal25 jets and
number of b-jets. B-jets are jets of particles originating from hadrons containing b-quarks. The information
regarding the number of b-jets was divided into two columns based on the efficiency of a multivariate analysis
used to separate jet-flavors. The efficiencies used for b-tagging are 77% and 85%. The last information added
for the jets were the mass of the leading pair (based on pt) dijet mass, mjj .

3.4 Data Preprocessing and Preselection Cuts
To allow for deep learning and a thorough analysis one must try to keep as much of the data as possible.
At the same time, including large amounts of irrelevant data, can be both redundant and destructive26.
Therefore, preprocessing in the form of preselection cuts are necessary. The cuts applied in the analysis were
grouped in two definitions, baseline and signal. The baseline requirements are written in table 3.3a and the
signal requirements are written in table 3.3b. Both sets of requirements were inspired by the ATLAS articles
[36, 39]. Given the definitions we demand that each event contains exactly three signal (3.3b) and three
baseline leptons (3.3a), thereby removing any event with more or fewer leptons.
Leptons are identified in the detector by using a likelihood-based method combining information from
different parts of the detector. The criteria of Loose or Tight identification are simply different thresholds
in the discriminant, where Loose is defined with a lower threshold than Tight [40]. The overlap removal is

25See section 3.4.
26By including large amounts of irrelevant data, you risk the ML model tuning unnecessarily to remove easily reducible

background, which could compromise performance.

36 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

used to solve any cases where the same lepton has been reconstructed as both a muon and an electron, and
leptons reconstructed as jets (or vice versa). The boolean of lepPassOr simply applies a set of requirements
to avoid any double counting. The cut for the longitudinal track parameters, z0 is applied to ensure that the
leptons originate from the primary vertex.
As for the requirements for the signal leptons, we impose additional selections in addition to the baseline
requirements. We require Loose isolation for both electrons and muons. This means imposing criteria on the
activity (i.e. additional tracks and deposits in the calorimeters) in a cone around the lepton. This is used
to suppress QCD-background events and reduce fake leptons. Similarly to the z0-cut, the transverse track
parameter is also used to ensure origin from the primary vertex. A similar process was applied to jets, where
the baseline and signal requirements are included in table 33, in appendix B.1.

Requirement Baseline electrons Baseline muons
Identification − Loose

Overlap Removal lepPassOR lepPassOR
η − cut |η| < 2.47 |η| < 2.7

|z0 sin(θ)| cut |z0 sin(θ)| < 0.5 mm |z0 sin(θ)| < 0.5 mm

(a)

Requirement Signal electrons Signal muons
Baseline yes yes

Identification Tight −
Isolation LooseVarRad LooseVarRad

|d0| /σd0 cut |d0| /σd0 < 5.0 |d0| /σd0 < 3.0

(b)

Table 3.3: Two tables displaying the baseline 3.3a and signal 3.3b requirements applied to the data as part of the
preprocessing.

As mentioned in previous sections, one must ensure a good comparison between MC- and real data.
Often one finds large deviation between the two in the case of either very large or very small transverse
momentum, pT . The latter case can often be caused by poor modeling of the physics at the event generator
level. These are issues we aim to solve by checking different triggers.
The triggers used in the data set were dielectron and dimuon triggers taken from previous ATLAS publications
[41–43]. Unfortunately, in the earlier parts of the analysis, I discovered that the data set I was given, did
not contain the correct information regarding the triggers. After spending some time trying to compensate
for this, my supervisor (Eirik Gramstad) suggested an alternative. Instead of filtering using the triggers,
an additional criterion of at least two leptons containing pT > 20GeV was placed on the data. The criteria
ensure that the momentum of the leptons are above the threshold of the triggers

Validation
As mentioned in previous sections, the comparison between MC simulated and measured collision data is a
crucial part of the analysis, and we must therefore ensure an adequate modeling of the real data before we
begin the analysis. This is not only true for the kinematic variables, but for all features to be used in the
analysis. Therefore, we will in this section compare both sets of data for a subset of features included in the
analysis.

Feature l1 l2 l3

pT − 34b 34a
η − 34c 34d
ϕ 35a 35b 35c

MT 35d 35e 35f
Charge 36a 36b 36c
F lavor 36d 36e 36f

(a)

Feature Reference

ϕ(miss) 37b
Mlll 37c

Mll(OSSF) 37d
Sig Emiss

T 37e
HT (lll) 37f
HT (SS) 38a

HT (lll) + Emiss
T 38b

∆R 37a
Nr of signal Jets 38c

Mjj 38d
Nr of B-jets(77) 38e
Nr of B-jets(85) 38f

(b)

Table 3.4: References to figures for all lepton (3.4a) and event (3.4b) specific feature distribution which can be
found in appendix B.2.

In figure 3.5, I have drawn the event distribution for the pT (3.5a) and η (3.5b) for the leading lepton, as
well as the Emiss

T (3.5c) and flavor combination (3.5d) of the three leptons in the final state. The error bars

3.5. THE MACHINE LEARNING MODELS 37

in each bin are set by default to
√

#events per bin. The distribution of the remaining features which have
been used in the analysis, have been added in the appendix B.2. I have added two tables with references to
each feature not displayed in the main thesis, in the case the reader is interested in studying specific features.
Table 3.4a contains all lepton-specific features and table 3.4b contains all event specific-features.
Under each figure I have drawn the ratio between the measured collision data and the MC for each bin. By
studying the ratio-plots for each figure we observe that the ratio for all bins for all features are between
1.2 and 0.8. Most bins even lie closer to 1. The bins displaying the largest discrepancy between measured
collision data and MC are in the higher pT -range. This is exemplified in figures 3.5a and 3.5b27.
In figure 3.5a we can observe that for (relatively) small pT (< 100GeV) all events lie well within a range of
[0.9− 1.1] ratio. Whereas for higher pT (> 200GeV), the errors move closer to a range of [0.8− 1.2] ratio.
The difficulty of simulating SM processes in the high pT range is a known phenomenon, and not specific to
this analysis. Thankfully, a smaller portion of the data lies in the high pT -range and therefore most of the
simulation exhibits a solid comparison to measured data. By studying the figures in the appendix B.2, we
can deduce that this pattern continues throughout the full feature set. Additionally to studying the ratio for
each feature in different bins, we can read from the labels that there are a total of 381873 measured collisions
in the data, compared to 381860 simulated events. Simply put we observe that the MC seems to adequately
imitate the distributions of the observed data for all features used in the analysis.
Apart from the adequate agreement between observed and simulated data, we can note a couple of other
expected but interesting points. The first being the size of each channel. Z − jets is by far the process
which contributes the most in the MC data followed by the Diboson(lll). Although Z − jets is the largest
channel, by comparing the Feynman-diagrams of each channel (section 1.6), Diboson(lll) should be the
hardest background to separate due to the similarities in the final states of the signal28.

3.5 The Machine Learning Models

3.5.1 Model Selection
In this analysis I have chosen to compare 4 different ’types’ of ML models, ordinary dense Neural Network
(NN)29, Parameterized Neural Network (PNN), ensembles (networks utilizing the channel-out, SCO or
maxout layer) and Boosted Decision Trees (BDT). The first three methods are all variations of NN. I have
deliberately chosen to focus on NN given that there is far more freedom in the design of the architecture of
a NN compared to XGBoost. Additionally, this was motivated by the selfish reason being that I found the
networks more interesting to study and dissect. Therefore, most of the analysis, comparisons and discussions
are focused on the NNs, while XGBoost is included as a loose benchmark.
The choice of the three network architectures is motivated by a wish to compare three relatively different
approaches. Especially in how they perform with a diverse data set. The ensembles, or LWTA models
(channel-out, SCO and maxout), apply pattern-specific paths, the PNN includes parameters in the feature
set, and the dense NN relies on a deep set of weights and biases to uphold long-term memory. I would
assume that the optimal architecture would be a network which combines elements from each, but for the
purpose of discussion and research I have chosen to keep them separate.
All NN variants implemented in this analysis were created, trained and deployed using the TensorFlow
framework [44]. This choice was rooted in several factors, for example that TensorFlow has an intuitive
API, it has very effective HPC attributes, and it includes a large diversity in functionality which allows for
experimentation.

3.5.2 Model Architecture
When choosing a network architecture, there are several ways to proceed. One way is to apply a grid search.
A grid search is simply defining a grid of parameters to test, then running through all combinations and
choosing the highest performer. With a sufficient amount of tests, a grid search should converge towards an
optimal architecture. Grid searches are very common and there are a large range of very complex varieties
[45]. For my analysis I chose not to perform a grid search, for several reasons. The first being interpretability.
Understanding a NN is already hard, allowing for complex and unique architectures would only add another
layer of complication. The second is the size of the data set. The larger the data set, the more data would
be needed to adequately perform tests for each combination of parameters. Not only is this time-consuming,

27Due to η’s dependence on the polar angle (see equation 1.1), the larger the pT the higher the absolute value of η
28I.e. Diboson(lll) has a 3 lepton final state with large amounts of missing transverse energy.
29Note that for the remaining part of this thesis, I will refer to this model as a ’dense NN’, ’ordinary dense NN’ and in some

plots, just NN.

38 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

) [GeV]
1

(ltP

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

50 100 150 200 250 300

) [GeV]
1

(ltP

0.6

0.8

1

1.2

D
at

a
/ S

M

(a)

)
1

(lη

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

3− 2− 1− 0 1 2 3

)
1

(lη

0.6

0.8

1

D
at

a
/ S

M

(b)

[GeV]miss
TE

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

50 100 150 200 250 300 350

[GeV]miss
TE

0.6

0.8

1

1.2

D
at

a
/ S

M

(c)

Flavour Combination

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

eee eem emm mem mmm mme mee eme

Flavour Combination

0.6

0.8

1

D
at

a
/ S

M

(d)

Figure 3.5: MC and real data comparison showing the pT 3.5a and η 3.5b of the first lepton, as well as the
distribution of Emiss

T 3.5c and the flavor combination of the three final state leptons 3.5d.

3.5. THE MACHINE LEARNING MODELS 39

Figure 3.6: A visual summary of the network architectures used in this analysis, for the ordinary dense NN (top),
the PNN (middle) and the maxout model (bottom).

but trying to fix this issue could lead to poor performance. The third and most important reason is that I
wanted to experiment with the architectures. By manually tuning the parameters I was able to achieve a far
better understanding of the final architecture. In the following sections I will describe the architecture of all
the variations of networks and the BDT used in this analysis.

Dense Networks - Ordinary and PNN
The purpose of the dense NN is to compare the more complex networks to what is usually considered an
ordinary dense NN. The general structure of the network is summarized in figure 3.6, with the network label
NN. The figure shows a dense NN with three hidden layers, all with 600 nodes each. As is the default setting
of the dense layer implemented in TensorFlow, the weights and biases are initialized using the so-called
Glorot Uniform Initializer (see the article by Glorot [46] for more information). All hidden layers utilize the
LeakyReLU activation (see section 2.6.4) with α = 0.01, and the output layer utilizes the sigmoid function.
The NN, similarly to all network variants in this analysis, utilizes the ADAM optimizer (see section 2.2.3)
implemented in TensorFlow30 with the default settings, where the cost function is chosen to be the binary
crossentropy function described in section 2.2.1.
The PNN architecture is included to represent the model proposed in the article by Baldi et al. [11]. The
architecture is illustrated in figure 3.6, with the label PNN. The figure shows a practically identical structure
to the dense NN, with the only difference being in the input layer. As was discussed in section 2.6.6, the
PNN includes free parameters of the signal31 alongside the features in the input layer.

Maxout, Channel-Out and SCO
The ensemble models are slightly more complex than both the dense NN and PNN in terms of architecture.
To limit the complexity for comparison reasons I choose to build an identical architecture for the maxout,
channel-out and SCO model, with the only difference being which of the three layers is used in the model.
In figure 3.6 I have illustrated the maxout model architecture, with the label MaxOut. The figure shows a
network with six hidden layers, three maxout and three dropout layers applying a dropout rate of 0.15. The
network alternates between dropout and maxout, starting with dropout and finishing with maxout. The
maxout layers have 600 nodes each which is reduced to the 200 nodes with the largest activation in their
respective units. Each dropout layer has a dropout rate of 0.15. The Channel-out and SCO models have the
same architecture as the maxout, but replacing the maxout layer with each of the two, respectively.

BDT
The main motivation to apply a BDT is simply to benchmark my analysis, and therefore not a lot of effort
has been put into the design of the architecture. Furthermore, BDTs have far fewer hyperparameters. As a

30See https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam (Accessed 24.04.2023) for the full default
parameters.

31In our case, the masses of the chargino and neutralino.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

40 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

consequence, the default parameters32 of the XGBoost model have been used. The main parameters of the
model are summarized as the following:

• η (learning-rate) = 0.3

• Max depth = 6

• Maximum number of trees = 100

• Objective = ’binary:logistic’

The objective parameter refers to the learning task of the model, where ’binary:logistic’ specifies logistic
regression for binary classification.

3.5.3 Creating Custom Layers
The field of ML is one of the most dynamic and fastest growing fields of research today. This means that
regardless, of the brave attempt made by voluntary contributors and many large tech companies, there
will always be new and exciting ML tools and algorithms not yet implemented in their library. This was
certainly the case in this thesis. For several of the non-dense layers I was forced to dive into the world of ML
development and create my own implementation.
All LWTA methods described in section 2.6.5, channel-out, SCO and maxout, resemble a layer already
implemented by TensorFlow. This layer is called MaxPooling1D33. But, to allow for experimentation I
decided to not use MaxPooling1D, but instead implement my own custom layers. All custom layers were
implemented by creating new functions inside TensorFlow’s dense layer, which are called when the network
performs a forward pass. In the following sections I will describe the algorithms underlying the implementation
of each layer. For the actual python/TensorFlow implementation, see appendix C.

Channel-Out

In algorithm 1, I summarized the implementation of channel-out used in this analysis. For each input which
is to be passed through a forward-pass, the function first passes it through the weights and biases as described
in section 2.6.2. This is true for all the other layers as well. In line 7 I reshape the input to add a dimension
which creates the units. In line 10 I create a new variable, Output, by reducing each unit to the largest
activated node. Further, I set each node which is not equal to the largest activation to 0. Finally, I reshape
the output to the original shape and return the output.

Algorithm 1 The pseudocode for implementing the channel-out layer in TensorFlow
1: def Channel-out(Input):
2: % Pass input through weight kernel and adding bias terms
3: Input← Input×Weights
4: Input← Input + Bias
5:
6: % Reshape input into units
7: Input← Reshape(Input, (Nr Units, Size of Units))
8:
9: % Reduce input to the largest activation in each unit

10: Output←Max(Input)
11:
12: % Set original activation where activation is largest and 0 where it’s not
13: Output←Where(Input == Output, Input, 0)
14:
15: % Reshape to original size
16: Output← Reshape(Output, (Input′s Original Shape))
17: return Output

32See https://xgboost.readthedocs.io/en/stable/parameter.html for a complete overview of default parameters (Accessed
13.05.2023).

33For more information on MaxPoolind1D, the reader is referred to the documentation https://www.tensorflow.org/api_
docs/python/tf/keras/layers/MaxPool1D (Accessed 24.03.2023).

https://xgboost.readthedocs.io/en/stable/parameter.html
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool1D

3.5. THE MACHINE LEARNING MODELS 41

SCO

In section 2.6.5 I described how SCO is an extension of channel-out. This is certainly also the case for the
algorithms explaining the implementation. In algorithm 2 I have described the implementation of the SCO
layer. Similar to channel-out, the algorithm begins by passing input through weights and biases. Then,
contrary to channel-out, the nodes of the input are shuffled. This is to ensure that when the input is
reshaped (in line 10), the units are made differently for each pass through the function. Again the maximum
activation is found to create a new variable, this time called OutputShuffle. In line 16 InputShuflle and
OutputShuffle are compared such that where InputShuflle is equal to the largest activation, the value
is set to 1 and otherwise set to 0. OutputShuffle is then unshuffled, and reshaped to the original shape.
Finally, the input which has been passed through the weights and biases, is multiplied with Output and
returned.

Algorithm 2 The pseudocode for implementing the SCO layer in TensorFlow
1: def SCO(Input):
2: % Pass input through weight kernel and adding bias terms
3: Input← Input×Weights
4: Input← Input + Bias
5:
6: % Shuffle all the values
7: InputShuflle← Shuffle(Input)
8:
9: % Reshape input into units

10: InputShuflle← Reshape(InputShuflle, (Nr Units, Size of Units))
11:
12: % Reduce input to the largest activation in each unit
13: OutputShuffle←Max(InputShuflle)
14:
15: % Set 1 where activation is largest and 0 where not
16: OutputShuffle←Where(InputShuflle == OutputShuffle, 1, 0)
17:
18: % Un-shuffle all the values
19: Output← UnShuffle(OutputShuffle)
20:
21: % Reshape to original size
22: Output← Reshape(Output, (Input′s Original Shape))
23:
24: % Multiply input with output to set all input that are not the largest, to zero
25: NewOutput← Input×Output
26:
27: return NewOutput

Max-Out

In algorithm 3 I have summarized the logic behind the implementation of the maxout layer. Of the three
layers (channel-out, SCO and maxout), maxout was the simplest to implement. After passing the input
through the weights and biases and reshaping it to form the units, the input is reduced to only include the
largest activation in each layer. Finally, the output is reshaped to the size equal to the number of units.

42 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

Algorithm 3 The pseudocode for implementing the maxout layer in TensorFlow
1: def MaxOut(Input):
2: % Pass input through weight kernel and adding bias terms
3: Input← Input×Weights
4: Input← Input + Bias
5:
6: % Reshape input into units
7: Input← Reshape(Input, (Nr Units, Size of Units))
8:
9: % Reduce input to the largest activation in each unit

10: Output←Max(Input)
11:
12: % Reshape to size equal the number of units
13: Output← Reshape(Input, (Nr Units))
14: return Input

3.6 Model Training and Validation

3.6.1 Training and Validating Data
When building an ML model the usual approach is to divide your data into three sets; training, validation
and testing. The training set is used to tune the internal parameters of the model, i.e. the weights and
biases of a NN or the cuts of a DT. The validation set is used to tune the hyperparameters of the model, for
example the architecture of the NN or the maximum depth of the DT. The test set should only be used
when the model is finished, and is used to benchmark the model’s performance. In our case, the performance
we are interested in is the performance on the full MC background set and its comparison to the measured
collision data. Therefore, in this analysis only two sets of data will be used, training and validation where
both are sampled from the simulated MC data set. The validation set was added as a precaution to reduce
overfitting when applied to the measured collision data.
The overarching strategy in creating the training and validation set is summarized in the following steps:

1. Shuffle the data set.

2. Split the data set in two, training (80%) and validation (20%)

3. Scale the two data sets such that the sum of the weights of the background is equal to the sum of the
weights of the signal in each data set.

4. Scale both data sets using the Standard Scalar approach (see section 2.4.1) using the parameters (the
mean and standard deviation) of the training set on both sets.

The first step ensures an equal distribution of processes in both data sets. The 80 − 20% is a popular
practice in ML (see [47]) and was chosen here for convenience. The third step refers to the sample-weights
introduced in section 2.2.2. The sample-weights are included in the simulated data to scale each simulated
event based on the (among other things) probability of the collision, otherwise known as the cross-section.
The scaling of the weights is done to ensure an equal prioritization for background classification and signal
classification. Without weighting, an imbalance between signal and background would motivate the model to
tune more towards one distribution in the feature space than another. The final step is motivated in the
section regarding data handling 2.4.1.

3.6.2 Training Strategy
To best compare the different ML models, I decided to apply the same training strategy to all (including
the BDT). The strategy is simply to train the model with the training set, then apply an early-stopping
algorithm (see section 2.5.1) with a cut-off based on the performance on the validation set. For every epoch
the model makes a prediction on the validation data set, and logs the results. If more than 10 epochs
go by without improving on the epoch with the best result, training stops and the weights of the epoch
corresponding to the best performance on the validation set are reset. This strategy was repeated for the
BDT, but logging for each new additional tree instead of epoch. Furthermore, the batch-size for all NN
variants was set to 8192.

3.7. HANDLING NEGATIVE WEIGHTS IN A BDT 43

The performance from each epoch was measured in AUC (see section 2.9.1), where the AUC was calculated
with the same weighting as in training (50% signal and 50% background). The distribution of signal vs
background is important when studying AUC, as it will greatly affect the value. For example, a classifier
which predicts both signal and background to be background is a poor classifier. But the larger the amount
of background relative to signal, the higher the AUC would be.

3.7 Handling Negative Weights in a BDT
In section 3.6.1 I mentioned the inclusion of event-specific sample weights in the training of the ML models.
Most weights are in the range of wi ∈ [0, 1], but some sample weights are negative. The negative weight
problem is a well known problem in the world of ML-analysis for HEP, and is a consequence of higher
perturbative accuracy. For the purpose of visualizing distributions and training a NN, negative weights are
not a problem. But, when using the weights in the training of the XGBoost classifier, the algorithm does not
work34.
Before deciding how to address the issue I decided to plot the distribution for a small subset of features for all
the events with negative weights. In figure 3.7a and 3.7c I plotted the distribution of the leading lepton for
the features pT and ϕ, but only including events with negative weights. Additionally, I drew the distribution
for the full data set for the same features in figures 3.7b and 3.7d. By comparing the distributions, we can
observe that the full data set and the negative weights’ subset are very similar as well as only a fraction
(< 10%) of the weights being negative. There are differences in distributions when comparing the SM
processes individually, but when studying the background as a whole, the two sets exhibit the same pattern
across all regions. This means that the negative weights have little effect on the shape of the distribution of
the full data set, which justifies choosing a simple solution to the issue. This, and the fact that the BDT
implementation is not of focus in the thesis, lead to the simplest solution to the problem being chosen.
The solution was inspired by the ATLAS article [48], which introduced the solution when faced with the

same problem. The solution is to take the absolute value and normalize all the weights, conserving the total
sum of the weights and at the same time changing all negative signs. The simple procedure is shown bellow
in equation 3.1,

wi = P | wi | (3.1)

P =
N−1∑
j=0

wj

| wj |
, (3.2)

where wi is the weight of an event i, i ∈ [0, N − 1] and N equals the total number of events.

3.8 Defining the Signal Region and Calculating the Significance
When producing an output I define the signal region through a brute force method which maximizes the
significance. Based on trial and error and the study of the output from several models I found that, due
to the unbalanced ratio of signal to background, a successful signal region would have to be very ’strict’.
Therefore, for each model output I implemented a set of 200 cuts on the classifier output ranging from 0.9 to
the highest output of the model, with most cuts falling in the range of > 0.98. For each cut the significance
is calculated where all signal and background events larger than said cut are included in the signal region.
The cut corresponding to the largest significance is used to define the final signal region.
In most calculations of the significance I use equations 2.18. This equation does not include any uncertainty,
which is why any results using said equation is only for comparison reasons between the different ML models.
In the final sections of the thesis I am interested in including an uncertainty to the results. To do this I
utilize a function in ROOT, the RooStats.NumberCountingUtils.BinomialExpZ35, which takes the number
of expected signal and background, as well as the systematic uncertainty of the background, and calculates a
significance based on this.

34Upon further research in the codebase of XGBoost, it seems as though negative weights are not allowed as they interfere
with XGBoost’s use of the Hessian matrix. Due to time constraints, I decided not to pursue this further.

35For more information on the function and the statistics behind it, see https://root.cern/doc/master/rs_
_numbercountingutils_8C.html (Accessed 08.05.2023).

https://root.cern/doc/master/rs__numbercountingutils_8C.html
https://root.cern/doc/master/rs__numbercountingutils_8C.html

44 CHAPTER 3. IMPLEMENTATION & PREPARATION OF THE ANALYSIS

50 100 150 200 250 300
)
i

)| [GeV] (-w
1

(l
t

|P

1−10

1

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

(a)

50 100 150 200 250 300
) [GeV]

1
(ltP

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)

Diboson(ll) (0.3%)

Single top (0.5%)

Top other (0.9%)

Diboson(llll) (4.4%)

 (5.3%)tt

Diboson(lll) (10.8%)

Zjets (77.5%)

Data (381860 Events)

N(Bkg) = 381873

(b)

3− 2− 1− 0 1 2 3
)
i

)|(-w
1

(lφ|

1−10

1

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

(c)

3− 2− 1− 0 1 2 3
)

1
(lφ

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)

Diboson(ll) (0.3%)

Single top (0.5%)

Top other (0.9%)

Diboson(llll) (4.4%)

 (5.3%)tt

Diboson(lll) (10.8%)

Zjets (77.5%)

Data (381860 Events)

N(Bkg) = 381873

(d)

Figure 3.7: The event distributions of the leading lepton for the features pT and ϕ. Figures 3.7a and 3.7c display
only the events with negative weights (for pT and ϕ respectively) whereas 3.7b and 3.7d show the full
data set.

45

Chapter 4

Results & Discussion

In this the final chapter of my thesis I will present the results from my analysis. First, I will present the
result from my study of each model individually, followed by sections comparing the performance from all
models on a subset of the data. Finally, I will compare the models on their performance on the complete
signal grid and compare them to a similar ATLAS analysis from 2021 [37].

4.1 Benchmarking the Analysis with a BDT
BDTs have been an essential part of High Energy Physics (HEP) analysis for many years (see [49]). More
recently, the XGBoost framework has become the main BDT implementation in use in HEP due to its excellent
performance and scalability. Another reason for its popularity is the simple Application Programming Interface
(API), allowing to create and apply a model in two lines of code. Additionally, its boosting capabilities
means that it is little affected by variations in its structure. This leads many to the conclusion that the
default parameters (see section 3.5.2) are often the best.
I choose to perform a sensitivity analysis for the original signal data set using an XGBoost model. The results
will act as a benchmark when performing further testing with NN variants. In figure 4.1 I have presented a
grid displaying the expected significance (see section 2.9.2) for each mass combination in the original signal
data set. The significance presented in the grid (and will be in the next results to come) was calculated with
equation 2.18. In the figure we can observe that the XGBoost model performs better for smaller masses. This
results can be somewhat counterintuitive, due to signal with smaller masses having a larger resemblance to
background than signal with large masses. The explanation is simply that there are far more events with
smaller masses than there are with larger masses. By studying figure 3.1 we know that there are a total of
134 events with {250, 400}GeV

36 compared to 6 events with {400, 800}GeV . Not only does this mean that
the model will have had more small mass signals to train on than large mass, but also that a potential signal
region would have to keep far more of the large mass signal to achieve a high significance.
To further investigate the performance of the XGBoost model, I have drawn the distribution of the output

for the entire background data set as well as for signal with 4 different mass combinations. The result is
found in figure 4.2. The figure shows the output of the XGBoost model with the full output range 4.2a and
the output ranging from [0.975,1.00]37 (4.2b). From the figure we observe a clear separation between signal
and background, where most of the signal is given a high output (> 0.9) and most of the background is
given a small output (< 0.1). To further support the effect of statistics in the signal, we can take note of the
amount of signal in the higher range of the output ([0.975,1]). Although the model is able to achieve a much
higher effectiveness (is able to preserve more of the signal) for higher mass signals, there are over 4 times as
many events with masses {250, 400}GeV (the lightest mass combination in the figure) then there are of any
other. Note that the bins are filled using the event-specific sample weights from the simulated data which
explains why some bins are of the magnitude 10−2.
A final observation from figure 4.2, is the study of which SM processes contribute the most for higher model
output. In figure 4.2b, we can see that in the output range of [0.975, 1], the highest contributing processes are
Diboson(lll), Top−Other and tt̄. On the other hand Z − jets, which is originally the largest contributing
processes, is almost removed in the higher output range. This aligns with my predictions made when studying
the different processes in section 1.6.

36For the remainder of this thesis I will use the notation {A, B}GeV , where A and B are the masses of χ̃1 and χ̃2 (which is
the same as χ̃±

1), respectively.
37This interval was chosen to study the higher output region.

46 CHAPTER 4. RESULTS & DISCUSSION

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.1: A grid displaying the expected significance on the original signal set, using the signal region created by
the XGBoost model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
XGB-Output

1−10

1

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
SUSY(250-400Gev) (135)
SUSY(400-650Gev) (17)
SUSY(50-700) (13)
SUSY(400-800GeV) (7)
N(Bkg) = 381873

(a)

0.975 0.98 0.985 0.99 0.995 1
XGB-Output

1−10

1

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Diboson(ll) (0.4%)
Zjets (0.5%)
Single top (0.5%)
Diboson(llll) (2.0%)
Other (2.5%)

 (3.0%)tt
Top other (5.2%)
Diboson(lll) (85.9%)
SUSY(250-400Gev) (49)
SUSY(400-650Gev) (12)
SUSY(50-700) (12)
SUSY(400-800GeV) (6)
N(Bkg) = 1050

(b)

Figure 4.2: The output distribution from a trained XGBoost model for the background and signals with 4 different
mass combinations: {250, 400}GeV , {400, 650}GeV , {50, 700}GeV and {400, 800}GeV . The figures include
the full output range (4.2a) and the output ranging from 0.975-1.00 (4.2b). The number in parentheses
indicate the fraction of each background and the absolute number of events for each signal point. The
total number of background events is also shown.

4.2. DENSE ORDINARY NEURAL NETWORKS 47

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(a)

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(b)

Figure 4.3: Two grids displaying the expected significance on the original signal set, using the signal region created
by two dense NN, one with 20 nodes per hidden layer 4.3a and one with 600 4.3b.

4.2 Dense Ordinary Neural Networks

4.2.1 A Study of the Number of Parameters in a Network
In previous sections I have discussed the reasoning for not wanting an automated process for building network
architectures (otherwise known as hyperparameter searches). Although, I found manually choosing the
architecture for each model to be preferable in this analysis, there are some downsides to that decision.
When building each model I wanted to ensure that the performances of said models were representative
of the category of models I wanted to build. In other words, I wanted to ensure that any drawbacks were
related to the type of model (i.e. LWTA, PNN etc.) and not a result of a poorly chosen number of layers or
nodes. Therefore, I wanted to remove as much subjectivity in the choice of architecture as possible.
In this section I present a comparison of the results from two ordinary dense NN with different amounts
of nodes. The first network uses the dense NN architecture described in 3.5.2 and illustrated in figure 3.6,
while the second network uses the same activation functions and amount of hidden layers, but with only 20
nodes in each hidden layer. The comparison presented in this thesis represent a sample of networks I choose
to compare when deciding the number of nodes and hidden layers to be used in the analysis. Both networks
apply the training strategy described in section 3.6.2.
Figure 4.3a displays the expected sensitivity for the smaller network (20 nodes). By comparing with the
results achieved by the XGBoost model in figure 4.1, we can observe that the smaller network performs
very similarly to the XGBoost model. In fact, the XGBoost model seems to outperform (achieve a higher
significance for most combinations) the network ever so slightly.
In figure 4.3b, I present the same grid as described above, but using the larger network. By comparing
the results from the smaller network in figure 4.3a, we can discern that the larger network outperforms the
smaller network for every single mass combination in the original signal set. The higher the number of nodes
and layers, the more parameters need tuning during training, and consequently the more data is needed
during training. Generally, the more complex the problem, the more parameters are needed in a model.
Therefore, based on the comparison between the two networks, we can draw the conclusion that the data
used in this analysis is enough to tune a relatively deep network with large amount of parameters. This
result motivated the choice of layers and nodes for all networks used in the sections to come.

4.2.2 Parameter Specific Networks and Interpolation
As I have touched upon in earlier sections, one possible solution to a diverse signal set (in my case a
signal set with many potential mass combinations) is to implement one model for each individual signal set.
Initially one might assume that although this approach demands more work, it also produces the strongest

48 CHAPTER 4. RESULTS & DISCUSSION

45
0

50
0

55
0

60
0

65
0

2 [Gev]

150

200

250

300

350

1 [Gev]

(a)

45
0

50
0

55
0

60
0

65
0

2 [Gev]

150

200

250

300

350

1 [Gev]

(b)

Figure 4.4: Two grids displaying the expected significance on a subset of the full signal set using the signal region
created by two dense NNs. Figure 4.4a presents the results from a model which has only seen one mass
combination during training, {250, 550}GeV . Figure 4.4b presents the results from a model which has
seen all mass combinations in the grid, but for the inner square of masses around the {250, 550}GeV

point. The figures display which combinations were used during training, highlighted using a green
corner.

performances for all mass combinations individually. I have already discussed how, by including different
mass combinations in the same data set, we hope to reduce overfitting and potentially allow the model to
interpolate between the different mass combinations. However, I have not yet discussed how by moving from
a one mass combination signal set to a diverse set would affect the performance on the original signal. In
this section I will present the results from an analysis which aims to study this.
In figure 4.4 I present the results from two models for which each is trained on two different sets of signals.
The figures display which combinations were used during training, highlighted using a green corner. The
training performed to produce the results aligns with the strategy described in section 3.6.2 and both apply
an ordinary dense NN architecture described in section 3.5.2. Figure 4.4a presents the expected sensitivity
from a dense NN which has only trained on one mass combination (which will henceforth be referred to as
One-Mass-Model (OMM)), {250, 550}GeV , while figure 4.4b presents the achieved sensitivity after training
on a large set of mass combinations (which will henceforth be referred to as Several-Mass-Model (SMM)).
Specifically, the latter figure shows the results after training on all signals on the outer square38 in the figure
4.4b as well as the point in the middle, {250, 550}GeV .
My initial prediction for this comparison was that the OMM would outperform the SMM for the signal

with masses {250, 550}GeV , while underperforming on all other data points. The expectation was that OMM
would learn the patterns of the only signal it had seen, while the SMM would do the same but for a larger set
of mass combinations and at the same time interpolate the results for the masses in between. By comparing
figures 4.4a and 4.4b we see that my prediction was not completely correct. We can observe that the model
which has trained on several-masses outperformed the OMM on every single combination. At first, I believed
this to be caused by the OMM overfitting a lot sooner than the other model, in other words being stopped
earlier in training by the early stopping criteria described in section 3.6.2. To test this theory, I drew the
AUC score made after each epoch on both the training and validation set for the OMM and the SMM,
shown in figures 4.5a and 4.5b, respectively. By comparing the two figures, we observe that the OMM’s
performance on the validation set peaks in the first epoch, therefore stopping training after 10 epochs, while
the SMM peaks after 6, allowing the SMM model to train longer. This is a clear indication that training on
one mass combination leads to overfitting.

38I.e. all mass combinations which lie on the edges of the grid.

4.2. DENSE ORDINARY NEURAL NETWORKS 49

0 2 4 6 8 10
Epochs

0.992

0.993

0.994

0.995

0.996

AU
C

NN

Training
Validation

(a)

0 2 4 6 8 10 12 14 16
Epochs

0.985

0.986

0.987

0.988

0.989

0.990

0.991

AU
C

NN

Training
Validation

(b)

Figure 4.5: A plot displaying the AUC score made after each epoch on both the training and validation set. Figure
4.5a shows the results from the OMM and figure 4.5b shows the results from the SMM.

Given that the OMM’s performance is reduced by the early stopping criteria, I wanted to explore if
it would be able to outperform the SMM given it was allowed to train longer. In figure 4.6, I display the
achieved significance of the OMM in the case where early stopping has been removed, and the model was
allowed to train for 15 epochs. By comparing figures 4.4b and 4.6, we can observe that even when early
stopping is removed from the OMM, it is still outperformed by the SMM. This indicates that overfitting is
not the only reason for the OMM’s disappointing performance.

45
0

50
0

55
0

60
0

65
0

2 [Gev]

150

200

250

300

350

1 [Gev]

Figure 4.6: A grid displaying the expected significance on a subset of the full signal set using the signal region created
by the NN. The figure presents the results from a model which has only seen one mass combination
during training, {250, 550}GeV , and was allowed to train for 15 epochs without early stopping.

The most probable explanation for the underwhelming performance of the OMM is that nearby mass
combinations (i.e. mass combinations with relatively similar masses) exhibit a lot of overlap in terms of
feature distributions. In other words, nearby mass combinations (in this example, mass combinations which
differ by 100GeV) often contribute to the same type of tuning. This means that by including a larger range
of signals, which are similar in mass, we are essentially increasing the amount of data for each individual
signal. This gives further motivation to include diversity in the signal set.

50 CHAPTER 4. RESULTS & DISCUSSION

-

-1.0

0.0

(a)

-

-1.0

0.0

(b)

Figure 4.7: A calculated visualization of a three layer maxout network. Each path represents a data point where all
connected nodes were the largest activation in their respective unit. The distribution on the far right
represent the output distribution. The figure to the left (4.7a) is the result before training and the
figure to right (4.7b) is after.

4.3 Ensemble Methods

4.3.1 Visualizing Sparse Pathways
As mentioned in section 3.5.3, the channel-out, SCO and maxout layers applied in this analysis were created
by me using the TensorFlow API. As such, I found it imperative to make sure that the layers worked as
intended. To do this I created a small network with three layers, with eight nodes each, all applying maxout
layers with four, two and four units respectively. In this section I will dissect the activations of said network
before and after training.
In figure 4.7a, I have plotted the activation of 100 randomly sampled events, 50 background and 50 signal for
an untrained model. Adjacent, I plotted the resulting distribution of the output. From the figure we observe
little to no difference between the activation from the signal and the background. This is mirrored in the
distribution of the output which is centered around the middle of the range. This result is as expected, given
that an untrained model holds no knowledge of the data and simply applies a random set of weights. A
small exception from this result can be found for larger output values, where we observe a small distribution
of signal values. This is due to the signal having some inherent differences to the background (for example
high Emiss

T).
In figure 4.7b, I plotted a similar plot as described above, but using a trained model. In this figure the
output is far more separated, and we see noticeable differences in the activation of nodes. To highlight the
difference in activation, I drew two new figures where the signal (4.8a) and background (4.8b) were drawn
individually. In figure 4.8 we notice that there is a noticeable variation in the activation for both signal and
background. The differences are highlighted in the different paths through network, indicating the model is
able to differentiate between signal and background. Most noticeably, the two units in the middle hidden
layer highlight this fact. In the case of the signal, the upper unit clearly favors the second bottom node.
For the background this is also partly true, but with far more spread in the other nodes. Similarly, in the
bottom unit (in the same layer), the background shows large activation in the uppermost node, while the
signal data does not. To conclude, the maxout layer does indeed find specific paths through the network
which will aid in separating the output for the signal and the background.

Ideally, we would want the model to not only be able to separate the signal from the background, but do
so in a way which allows the network to store the different patterns within the signal. In section 2.6.5, I
described this ability as long-term memory. One way to implement long-term memory is through a high
number of parameters. However through the LWTA layers we can achieve the same through specific paths.
To study this I have created similar figures as discussed in the paragraphs above, but this time only including

4.3. ENSEMBLE METHODS 51

-

-1.0

0.0

(a)

-

-1.0

0.0

(b)

Figure 4.8: A calculated visualization of a three layer maxout network. The lines represent the path through the
nodes with the largest activation in their respective unit. The bolder the line the more frequently the
path is used. The distribution on the far right represent the output distribution and the figure with
blue paths (left) 4.8a is the result of signal, and the pink paths (right) is a result from background 4.8b.

-

-1.0

0.0

(a)

-

-1.0

0.0

(b)

Figure 4.9: A calculated visualization of a trained maxout network with three hidden layers. The lines represent
the path through the nodes with the largest activation in their respective unit. The bolder the line the
more frequently the path is used. The distribution on the far right represent the output distribution.
The figure to the left (4.9a) is a result of signal with masses {50, 250}GeV , and the right (4.9b) with
masses {200, 300}GeV .

52 CHAPTER 4. RESULTS & DISCUSSION

-

-1.0

0.0

(a)

-

-1.0

0.0

(b)

Figure 4.10: A cut-out of the fifth and sixth node (counting from the top) in the second hidden layer, activated by
the signal with masses {50, 250}GeV 4.10a and {200, 300}GeV 4.10b.

results from applying the network on one mass combination. Figures 4.9a and 4.9b present the results for
the mass combinations {50, 250}GeV , and {200, 300}GeV respectively. By comparing the figures, we see a
small but noticeable difference in paths. Again the middle hidden layer seems to be the differentiating factor.
To highlight the differences, I have included a cutout, comparing the first and second node in the bottom
unit for the middle layer of both figures, 4.10a and 4.10b. By studying the cutouts, we can discern that the
maxout layer allows the model to discriminate both background from signal, and different variations of the
signal through an increase in long-term memory. We can conclude that the maxout layer not only applies a
form of regularization, but also increases the long-term memory of the model through pattern-specific paths
through the network.
Finally, I wanted to compare the activations of the maxout model, to the activation of the SCO model. In

section 2.6.5, I stated that the inspiration behind the SCO was to elevate the channel-out method in a way
which reduced complex co-adaptation among neighboring nodes. In figure 4.11, I included a visualization
of the activation of a three layer SCO network before (4.11a) and after (4.11b) training. However, it is
important to note that the boxes in the figures do not equal the units given that the SCO creates a large
set of different units. The boxes are simply included for aesthetic reasons. By comparing the activations
from the SCO layers to maxout, we can discern that the SCO behaves exactly as intended. In the figures
visualizing the maxout layer (4.8), we can observe that several of the nodes which are not activated before
training, are left dormant even after training. In comparison, the SCO layers display a far more balanced
activation, and exhibits no signs of complex co-adaptation.

-

-1.0

0.0

(a)

-

-1.0

0.0

(b)

Figure 4.11: A calculated visualization of a three layer SCO network. The lines represent the path through the
nodes with the largest activation in their respective unit. The bolder the line the more frequently the
path is used. The distribution on the far right represent the output distribution. The figure to the left
(4.11a) is the result before training and the figure to right (4.11b) is after. Note: The boxes in the
figures do not represent the units, given that the SCO changes the units dynamically.

4.3. ENSEMBLE METHODS 53

4.3.2 Training History and Overfitting
In section 2.5 I described how creating ensembles of networks is a form of regularization. Therefore, it is of
interest to study the relationship between performance on the training set and the validation set for our
ensemble methods. In figure 4.12 I drew plots displaying the performance using the original signal on the
training and validation set after each epoch (50 in total), as measured in AUC for both a dense NN (4.12a)
and maxout (4.12b).
In figure 4.12a we can observe that an ordinary dense NN reaches a maximum in performance for the
validation set after only a couple of epochs. This peak is then followed by a quick drop in performance, while
the training set increases in performance. The drop in performance for the validation set and increase in
performance for the training set is a sure sign of overfitting.
In figure 4.12b we observe that an ensemble method (in this case the maxout) displays a different training
history. For the first 10 epochs the model increases in performance for both data sets. After this, the
validation set does not decrease in performance, but simply holds stable while the training set increases.
This is a sign that the model is not experiencing overfitting. Furthermore, the training history of the
maxout model raises an interesting point. From experience I know that the maxout model reaches a peak in
performance on the validation set after approximately 15-20 epochs. Given that the performance after this is
stable, it is plausible that continuing training will not worsen the performance or lead to overfitting, but
rather improve. This is definitely an interesting possibility for the LWTA layers, but will not be studied in
this thesis due to time constraints.
In section 3.6.2, I discussed the training strategy used when training all models in this analysis. I mentioned
the implementation of an early stopping criterion which makes sure that the model continues to train only
as long as the performance on the validation data set increases. By studying the subfigures in figure 4.12, we
can deduce that the ensemble methods will not only be able to avoid overfitting, but will as a consequence
be allowed to train much longer than the other models.

0 10 20 30 40 50
Epochs

0.970

0.975

0.980

0.985

0.990

0.995

AU
C

NN
Training
Validation

(a)

0 10 20 30 40 50
Epochs

0.985

0.986

0.987

0.988

0.989

0.990

AU
C

MaxOut

Training
Validation

(b)

Figure 4.12: A plot displaying the AUC score made after each epoch on both the training and validation set. Figure
4.12a shows the results from the dense NN and figure 4.12b shows the results from a maxout network.

4.3.3 Comparing Achieved Sensitivity between Ensemble Methods
In this section I will present and discuss the performance of the three different networks discussed in section
3.5.2, channel-out, SCO and maxout. The results presented in this section were made using the original
signal set (see section 3.1.2), the training strategy described in section 3.6.2 and the ensemble architectures
described in section 3.5.2.
In figure 4.13 I present the expected sensitivity of the maxout model using the original signal set. The grid
shows the same trends as the previous models, i.e. the preference in the higher statistics mass combinations.
By comparing the results from the maxout model to the deep, dense network presented in figure 4.3b, we
discern that the dense network outperforms the maxout model (ever so slightly) for the higher statistic mass
combinations. It is plausible that this is due to the difference in depth. The dense network utilizes 3 hidden
layers of 600 nodes each, while the maxout, although built with the same architecture, only utilizes 200
nodes per layer when propagating input through the network. This could result in the dense network being
able to more deeply tune for the patterns in the higher statistics combinations.
However, the most interesting result for the maxout model, is its ability to tune for all mass combinations.
Although the dense network outperformed the maxout model for the high statistics combinations, the maxout

54 CHAPTER 4. RESULTS & DISCUSSION

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.13: A grid displaying the expected significance on the original signal set using the signal region created by
the maxout network.

model outperformed the dense for most other combination (26 of the 30 possible mass points). This result
can be credited to two factors. The first being maxout’s effect as a form of regularization. In the previous
section (see section 4.3.2), I presented how, maxout, through its regularization abilities, is able to uphold
the early stopping criteria for a larger number of epochs. The second factor is maxout’s innate long-term
memory which was studied in section 4.3.1. From figure 4.13, we are able to deduce that although the
maxout model is not able to tune to the same depth for the lower masses, it is able to achieve a large level of
generalizability through reducing overfitting and increasing long-term memory.
In appendix A.1 I have included grids displaying the achieved sensitivity for both channel-out and SCO.

Both models demonstrate similar performance to the maxout layer. To compare the three methods I created
a ’pie-plot’. A ’pie-plot’ compares the achieved sensitivity between several models and displays the results for
each individual mass combination. In figure 4.14 I present the ’pie-plot’ comparing maxout, channel-out
and SCO. Each mass combination includes a ’pie’, where the size of each ’slice’ represents the relative size
of the significance compared to the other methods. For example, if a slice occupies half of the ’pie’, then
the method corresponding to that slice achieved a significance equal to the sum of the significance of the
other methods. The color surrounding each ’pie’ marks which method achieved the highest sensitivity for
the respective combination.
By studying the ’pie-plot’ in figure 4.14, we can deduce that maxout model outperforms the other two in
most of the mass combination (24 out of the 30 mass points). From the sizes of each slice, we can deduce
that all three models seem relatively equal in performance, maxout only outperforming the others by a small
fraction. The most interesting observation from the ’pie-plot’ is the performance from the SCO, as this
model was in-part created by me. Except the mass combinations where maxout was the most sensitive, SCO
was the best performing model. Most interestingly, it outperformed the channel-out model, which is the
model most similar to SCO, in 9 out of the 30 mass point (see figure 27). In hindsight, I believe that by
removing the SCO during prediction (similar to what is done for dropout), the SCO layer would greatly
improve in performance, on a count of the fact that the performance on each event is dependent on the
random choice of unit for that prediction. This means it is possible that upon prediction, a data point is
sent through a path which has never been chosen during training. Nonetheless, this analysis is an indicator
that although the maxout model was the highest performing model, the SCO layer shows great promise and
should be further explored in further analysis.

4.4. PARAMETRIZED NEURAL NETWORK 55

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOut
StochChannelOut
ChannelOut

Figure 4.14: A sensitivity comparison between the ensemble networks (maxout, SCO, channel-out) on the original
signal data. The size of each slice represents the relative size of the significance and the color around
each point displays the method with the largest sensitivity for the respective combination.

4.4 Parametrized Neural Network

4.4.1 Discriminating Masses
When introducing the PNN in section 2.6.6, I mentioned that by including the masses of the introduced
particles as features in the feature set, we motivate individual tuning for each mass combination in the
signal set. To study this, I will in this section present results where I manually assign all the events, both
background and signal, the same parameters (mass combinations) thereby assigning most of the signal the
wrong parameters. The hope is that if indeed the PNN has been able to tune individually for each mass
combination, then the PNN should perform best when each signal event is given the correct parameter in
the feature set. In other words, when each signal event is given the mass of the chargino and neutralino
which was used when generating that specific event.
In figure 4.15a I have drawn the distribution of the output from the trained PNN architecture (see section
3.5.2). The model was trained using the complete signal grid. In figure 4.15a, 4 signals have been
included; {50, 250}GeV , {100, 200}GeV , {200, 300}GeV , and {150, 250}GeV . All data, including both signal
and background were given the parameters of 50 and 250 (corresponding to the masses {50, 250}GeV) in the
feature set. In figure 4.15a the full output range is included, whereas in figure 4.15b a cut of 0.975 is placed
on the output and therefore only includes the output in the range [0.975− 1]. In both figures, it is evident
that all mass combinations have been effectively separated from the background, even for the combinations
which are given the wrong parameters (i.e. {100, 200}GeV , {200, 300}GeV , and {150, 250}GeV). Nevertheless,
upon close study of figure 4.15b and the corresponding legend, we can deduce that the signal which is given
the correct parameters ({50, 250}GeV) is also the signal which is able to conserve the highest percentage of
events when applying a simple cut off 0.97539.
In section 4.1 I presented results indicating that some signals were easier to separate from background than

others. This leads me to the question; did the PNN perform better on the events with masses {50, 250}GeV

because it was given the correct parameters in the feature set, or simply because this particular signal was
easier to separate. To answer this question I conducted a second test. In figure 4.16 I repeated the analysis
described in the paragraphs above, but where all the signals were given the parameter corresponding to the
masses {200, 300}GeV . Similarly to the previous results, I drew the output for the full output range (4.16a)

39This is further evident when studying the efficiency percentages in table 4.1.

56 CHAPTER 4. RESULTS & DISCUSSION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PNN(50,250)-Output

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
SUSY(50-250Gev) (811)
SUSY(100-200GeV) (1618)
SUSY(200-300Gev) (383)
SUSY(150-300GeV) (406)
N(Bkg) = 381873

(a)

0.975 0.98 0.985 0.99 0.995 1
PNN(50,250)-Output

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Diboson(ll) (0.2%)
Single top (1.0%)
Other (1.3%)
Diboson(llll) (3.2%)
Zjets (3.2%)
Top other (3.6%)

 (7.4%)tt
Diboson(lll) (80.1%)
SUSY(50-250Gev) (655)
SUSY(100-200GeV) (742)
SUSY(200-300Gev) (192)
SUSY(150-300GeV) (315)
N(Bkg) = 9049

(b)

Figure 4.15: The output distribution from a trained PNN model for the background and signals with four different
mass combinations: {50, 250}GeV , {100, 200}GeV , {200, 300}GeV , and {150, 250}GeV , and where all
the data were given the parameters corresponding to the masses {50, 250}GeV . The figure includes the
full output range (4.15a) and the output ranging from 0.975-1.00 (4.15b). The number in parentheses
indicate the fraction of each background and the absolute number of events for each signal point. The
total number of background events is also shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PNN(200,300)-Output

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
SUSY(50-250Gev) (811)
SUSY(100-200GeV) (1618)
SUSY(200-300Gev) (383)
SUSY(150-300GeV) (406)
N(Bkg) = 381873

(a)

0.975 0.98 0.985 0.99 0.995 1
PNN(200,300)-Output

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Diboson(ll) (0.1%)
Single top (0.8%)
Other (1.1%)
Top other (2.7%)
Zjets (3.1%)
Diboson(llll) (3.7%)

 (7.0%)tt
Diboson(lll) (81.5%)
SUSY(50-250Gev) (627)
SUSY(100-200GeV) (885)
SUSY(200-300Gev) (226)
SUSY(150-300GeV) (310)
N(Bkg) = 10492

(b)

Figure 4.16: The output distribution from a trained PNN model for the background and signals with four different
mass combinations: {50, 250}GeV , {100, 200}GeV , {200, 300}GeV , and {150, 250}GeV , and where all the
data were given the parameters corresponding to the masses {200, 300}GeV . The figure includes the
full output range (4.16a) and the output ranging from 0.975-1.00 (4.16b). The number in parentheses
indicate the fraction of each background and the absolute number of events for each signal point. The
total number of background events is also shown.

and after a cutoff off 0.975 (4.16b). Via the examination of the two figures, we can indeed see that my
assumption was right. Despite the fact that events with masses equal to {50, 250}GeV are given the wrong
parameter, the PNN still achieves the highest efficiency when predicting on the aforementioned events.
To further study this result, I created a table of the efficiencies of each mass combination for both results,

after applying a simple cut of 0.975. The results are presented in table 4.1. It is evident from table 4.1
that the PNN achieves the highest performance when events are given the correct label, although not by
much. In the events with masses {50, 250}GeV , the efficiency improved by a little over 3%, while the events
with masses {200, 300}GeV , improved efficiency by almost 10%. Another interesting observation is that
events with masses {100, 200}GeV perform better when given the parameter of {200, 300}GeV compared to
{50, 250}GeV , despite the latter mass combination being closer in mass. A possible explanation is that the
difference in mass (∆m = |mχ̃1 −mχ̃2 |), influences the feature distribution in the data, similarly to what
we saw that size of mass does. Regardless, from figure 4.1, we can deduce that the PNN, by including the
mass parameters in the feature set, does in fact discriminate between mass combinations and tune for them
independently.

4.4. PARAMETRIZED NEURAL NETWORK 57

Parameters
Channel (50, 250) (100, 200) (150, 300) (200, 300)

(50, 250) 80.8% 45.8% 77.5% 50.1%
(200, 300) 77.3% 54.6% 76.3% 59.0%

Table 4.1: A listing of the remaining percentages of each mass combination after applying a cut of 0.975. The
results are from a PNN where all of the events were given the parameters corresponding to the masses
{50, 250}GeV and {200, 300}GeV , respectively.

4.4.2 Sensitivity Result
In this section I will present the achieved sensitivity by the PNN on the original signal set. In figure
4.17, I present a grid displaying the sensitivity of the PNN on the original signal set. Similarly to the
previous models, the figure indicates that the PNN is able to achieve a much higher sensitivity on the
lower masses. The most notable difference to the previous models, is the span of values for the significance.
The PNN almost doubles the highest significance achieved by any previous model (from 2.44 to 4.14), and
simultaneously achieves the lowest significance (now 0.30). The most probable explanation to this result is
the distribution of parameters for the background. In section 2.6.6, I described how the background was
randomly assigned the mass parameters using the same distribution as the signal. In other words, the higher
the statistics for a given mass combination, {A, B}GeV , the higher the amount of background would have
the parameters corresponding to the masses {A, B}GeV . Within the same section I also described the hope
that the parameters would shift the output from the initial layer in a way that motivates individualistic
training. If this is true40 it means that masses with larger statistics, are given larger amounts of background
to train on. This could explain the uneven performance by the PNN.

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.17: A grid displaying the expected significance on the original signal set using the signal region created by
the PNN.

In this analysis I choose to follow the methodology described in the article by Baldi et al. [11], but other
variants of the PNN could be of interest in future studies. An alternative to the current setup for distributing
parameters to the background, is to distribute the parameters evenly. In other words, for N different mass
combinations, each set of parameters will be randomly distributed to 1/N parts of the background. This
would most likely produce a more balanced result. I considered using an even approach, but found that
the current setup was more aligned with the rest of the analysis where a one-one, signal-background ratio

40For a network of this depth, it is very hard to explain what happens during training, which explains the passive statement.

58 CHAPTER 4. RESULTS & DISCUSSION

approach has been made41. The more interesting alternative would be to assign the background most similar
to a given mass combination42, the same parameters. This would focus the training of the PNN on the set
of events which should be hardest to separate. One approach to determine which events are deemed ’most
similar’ to a combination, is to apply a prior ML analysis with a simple BDT or dense NN. Due to time
constraints of this thesis, I decided not to test this approach, but would be an interesting area to explore.

4.5 Remarks on Comparison between Models on Original Signal
Set

So far in the thesis I have presented results from two branches of ML, Boosted Decision Trees (BDT) and
Neural Networks (NN). In the case of the latter, I tested three further variations, an ordinary dense NN,
ensemble networks and PNN. In figure 4.18 I have drawn a ’pie-plot’ comparing the sensitivity on the original
signal set for the four different models where maxout has been chosen to represent the ensemble networks.
By assessing figure 4.18, we can deduce that the maxout network outperforms all other models in most mass
combinations (24 out of 30 mass points), although not by much. Additionally, we can discern that the PNN
is far more sensitive than the other models for higher statistics mass combinations, and underperforms for
low statistic mass combinations. This indicates that the PNN is able to train much deeper, and attain more
information for a subset of the signal compared to maxout, but struggles to uphold performance for a diverse
signal set. The long-term memory of the maxout layer, allows the model to train relatively evenly for all
patterns in the signal set, but at the cost of never training to the same degree as the PNN.
On the other hand, the XGBoost model is outperformed in all but one combination, implying that the
networks are more ideal for this analysis. It is worth noting however, that not a lot of time was spent tuning
the XGBoost model. While for the networks I experimented with different layers and tested for different
architectures, no effort was put in deciding the architecture of the XGBoost. Likewise, the solution to the
negative weights (see section 3.7) could by all means be optimized if given more attention. Therefore, it is
worth saying that the results in this analysis do not imply that deep networks are better analysis tools for
BSM searches than BDT, but rather exemplify the advanced capabilities of deep networks.

4.6 Increasing Sensitivity through PCA
So far in the analysis, all features have been given an equal weighting in the beginning of training, But, as
mentioned in section 2.8, not all features contribute to an effective signal region. In section 2.4.2, I explained
how through the use of PCA, we are able to create a new set of features which can be ordered by amount of
variance. In this way, we can reduce the dimensionality of the data set, while at the same time preserving
most of the variance. In this section I will present the results of training on a data set which has gone
through such a PCA.
In this analysis I performed a PCA on the data set, and demanded that 99.9% of the variance should be
preserved. With a threshold of 99.9%, five features were removed. In appendix A.2, I have included the
grids displaying the new sensitivity for the original signal set, using data which has gone through a PCA. In
figure 4.19, I have included two ’pie-plots’ comparing the sensitivity of the maxout (4.19a) and the PNN
(4.19b) with and without a PCA.

In figure 4.19a, we can observe a relatively similar behavior with and without the PCA. There seems to be
no obvious trends in regard to improvement or decrease in performance for any of the mass combinations.
But, to simplify the comparison between the two, we can treat all mass combinations equally. With this
in mind, maxout achieves a higher sensitivity with a PCA in 21 out of 30 combinations, indicating that
PCA indeed increased performance. Similarly, the PCA increased performance for the PNN, but contrary to
maxout it did so for every combination in the original signal set. Additionally, through closer study of the
ratios for each ’pie’, the PCA not only increased a larger number of combinations for the PNN, but also
increased the performance by a larger degree. Through a similar analysis, I deemed the PCA to decrease
performance for the NN, only improving 11 out of 3043.
To compare all three models discussed above with the PCA included, I created a ’pie-plot’ which is displayed
in figure 4.20. By comparing the ’pie-plots’ made with and without PCA (see figure 4.18), we notice that
maxout now outperforms the dense NN in combinations previously preferred by the dense NN. Similarly,
the PNN now outperforms the maxout in three new combinations. By chance, all three of said combinations

41In section 3.6.1 I discuss how I have chosen to scale the weights such that sum of the weights of the background is equal to
the sum of the weights of the signal.

42By most similar I refer to the background with the largest overlap in the feature space to the signal.
43The ’pie-plot’ comparing the dense NN with and without a PCA is included in the appendix A.2.

4.6. INCREASING SENSITIVITY THROUGH PCA 59

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOut
PNN
NN
XGB

Figure 4.18: A sensitivity comparison between a dense NN, PNN, maxout and XGBoost on the original signal data.
The size of each ’slice’ represents the relative size of the significance and the color around each point
displays the method with the largest sensitivity for the respective combination.

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOut
MaxOutPCA

(a)

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

PNN
PNNPCA

(b)

Figure 4.19: Two ’pie-plots’ comparing sensitivity on the original signal set, where each figure shows the comparison
between a model trained on data with and without a PCA. Figure 4.19a displays the comparison
for the maxout model, and likewise figure 4.19b for the PNN. The size of each ’slice’ represents the
relative size of the significance and the color around each point displays the method with the largest
sensitivity for the respective combination.

60 CHAPTER 4. RESULTS & DISCUSSION

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOutPCA
PNNPCA
NNPCA

Figure 4.20: A sensitivity comparison between a dense NN, PNN and maxout on the original signal grid. A PCA
analysis has been applied to the data being utilized in this result. The size of each ’slice’ represents the
relative size of the significance and the color around each point displays the method with the largest
sensitivity for the respective combination.

were combinations where the maxout model preferred no PCA. This is yet another indication that building
models to be sensitive to a large range of signals can sometime lead to changes which improve performance
for some data, and are destructive for others. Like I mentioned in the paragraph above, I decided to treat all
combinations equally, but with the previous point in mind, weighting the importance of certain combinations
based on scientific promise/interest could be a better approach.

4.7 Comparing Models on the Complete Signal Grid
So far in the analysis I have for the most part tested on a subset of the signal grid, which I have called the
original signal grid. In this section I will extend my search to include the complete signal grid displayed in
figure 3.1. The full grid consists of 89 mass combinations compared to the original 30, and extends the mass
ranges to χ̃1 ∈ [0− 400]GeV and χ̃2 ∈ [200− 800]GeV. In the figures to come, I have included a turquoise
band around all points for which a significance of more than 1.64 is expected (see section 2.9.2). When
comparing the results, we are not only interested in how sensitive the models are for each combination
individually, but also for how many points we are able to achieve a sensitivity over 1.64. However, similarly
to previous results, the significance does not include any uncertainty.
I will not apply all previously tested models to the complete signal grid. Instead, I will only apply the
models I found most ideal for this analysis, based on the tests performed in the previous sections. I decided
to choose one model from each ’type’44 of network. Based on the results in section 4.3, where I compared
the different ensemble methods, I found the maxout model to be the top performer. Likewise, in section
4.6, I found that both maxout and the PNN preferred to utilize data with PCA. Therefore, I will utilize
the maxout model and PNN model defined in section 3.5.2 with the use of PCA. Finally, I will include the
ordinary dense NN, but without a PCA, as this was found to be preferred.
In figure 4.21 I have drawn a grid displaying the sensitivity of an ordinary dense NN, on the complete signal
grid. Again, we observe that higher statistics mass combinations, result in a higher significance. Additionally,
the dense NN was able to achieve a sufficient significance for over 38 mass combinations, all between the
ranges of χ̃1 ∈ [0− 250]GeV and χ̃2 ∈ [200− 600]GeV. What is even more interesting, is that by comparing
the results on the full set with the results on the original set (see figure 4.3b), we notice that the network
was able to improve its sensitivity on every single mass combination from the original signal set. This is
yet another indication that the deep networks are able to exploit overlapping regions in the feature space
between nearby combinations.

44By network type, I am referring to either the ordinary dense network, the PNN or a LWTA model.

4.7. COMPARING MODELS ON THE COMPLETE SIGNAL GRID 61

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.21: A grid displaying the expected significance on the complete signal grid using the signal region created
by the ordinary dense NN. A band around each cell with a significance over 1.64 has been included.

Figure 4.22 displays a grid presenting the sensitivity of the maxout model using the complete signal grid.
The data used to train this model has been through a PCA, and the architecture is the same as described
in section 3.5.2. Similarly to the dense NN, by including the complete grid, the maxout model improved
performance on all combinations in the original set. Also, the maxout model achieves a significance over the
limit (> 1.64) for the same mass combinations as the dense NN. However, contrary to the tests performed
on the original signal set, the dense network outperforms the maxout model for most of the signals points
(74 out of 89 mass combinations) when using the full signal grid. A possible explanation to the shift in
performance could be that the dense NN lacked the statistics when training with the original signal set.
When the complete signal grid is included, the dense NN (which is deeper than the maxout model) is able to
train much deeper, which in turn, increases sensitivity. However, the maxout model outperforms the dense
network for the low statistics combinations, again indicating the maxout layers ability to increase long-term
memory.

Finally, I applied the PNN to the complete signal grid. The results are found in the grid presented in
figure 4.23. Similarly to the tests performed with the original signal set, the PNN is able to achieve a
high sensitivity for the high statistics mass combinations (χ̃2 < 400GeV). For the combinations with the
highest statistics (χ̃2 < 300GeV), the PNN more than doubles the expected significance of the previous two
methods. For the lower statistics combinations, the PNN drops in performance. Moreover, the performance
of the PNN on the combinations with the highest statistics in the original signal set ({250, 400}GeV and
{200, 450}GeV), has decreased by more than half. This is an indication that including further distributions
in the data was destructive for training. In other words, although the PNN achieves impressive sensitivity
towards high statistics mass combinations, it suffers from the lack of long-term memory which allows the
maxout model to uphold performance for lower statics combinations. In the appendix (A.3) I have included
two ’pie-plots’ comparing the performance of the maxout model and PNN (figures 31 and 32 respectively) on
the original signal set using models trained on the original and the complete signal grid, respectively. The
’pie-plots’ further exemplify how the maxout model is able to exploit the full statistics to improve on most
mass combinations (17 out of 30), compared to the PNN where the performance drops for most combinations
(28 out of 30). Finally, in comparison to the ordinary dense network and the maxout model which both
achieved sufficient sensitivity for 38 out of 89 combinations, the PNN only did so for 33.
To summarize the comparisons on the complete signal grid, I created a ’pie-plot’ in figure 4.24. As shown

in the figure, the ordinary dense NN achieved the highest sensitivity in most of the combinations (49 out
of 89), followed by the PNN (25 out of 89) and the maxout model (15 out of 89). From the tests we can

62 CHAPTER 4. RESULTS & DISCUSSION

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.22: A grid displaying the expected significance on the complete signal grid using the signal region created
by the maxout network. A band around each cell with a significance over 1.64 has been included.

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 4.23: A grid displaying the expected significance on the complete signal grid using the signal region created
by the PNN. A band around each cell with a significance over 1.64 has been included.

4.8. COMPARING EXCLUSION LIMITS BETWEEN MODELS AND PREVIOUS ANALYSIS 63

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOutPCA
NN
PNNPCA

Figure 4.24: A sensitivity comparison between a dense NN, PNN and maxout on the complete signal grid. A PCA
analysis has been applied to the data being utilized by the latter two models. The size of each ’slice’
represents the relative size of the significance and the color around each point displays the method
with the largest sensitivity for the respective combination.

conclude that the PNN network achieves the highest sensitivity, but struggles for unbalanced data sets.
On the contrary the ordinary dense neural network performs best with larger amounts of training data,
achieving the highest sensitivity on the largest number of combinations, but never attains the same degree of
sensitivity as the PNN. The maxout layer underperforms on most combinations, but exhibits impressive
training memory, attaining the most balanced performance on all combinations.

4.8 Comparing Exclusion Limits between Models and Previous
Analysis

In the previous section I compared the expected significance between the three optimal models for the
complete signal grid. In this section I will do the same, but with the introduction of a flat uncertainty on
the background using the ROOT function described in section 3.8. Additionally, I will compare the expected
exclusion limits (the mass combinations with an expected significance of over 1.64) by the models created in
this thesis, with the limit set in the paper by ATLAS from 2021 [37], Search for chargino–neutralino pair
production in final states with three leptons and missing transverse momentum in

√
s = 13 TeV pp collisions

with the ATLAS detector.
In the analysis by ATLAS, they have not assumed a flat uncertainty. Instead, an analysis has been made on
the simulated data over individual regions and collision processes. Due to time constraints, a flat uncertainty
has been made for comparison reasons. Aligning with what I have found when reading similar analyses (as
well as based on recommendation from my supervisors), the uncertainty will be in the region of 20% of the
SM background.

In figure 4.25, I have drawn the contours of the significance using the PNN, while outlining all points
corresponding to a significance of 1.64. The same outline has been made on top of the contours of the
PNN for the dense NN, maxout model and the statistical analysis made by ATLAS. The calculations of
the significance for the output of the ML models were made with a flat uncertainty equal to 20% of the

64 CHAPTER 4. RESULTS & DISCUSSION

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

2

4

6

8

10

2

4

6

8

10
=1.64expZ

PNN

NN

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

20% UNCERTAINTY

[37]

Figure 4.25: A surface plot of the significance achieved by the PNN on the complete signal grid. Contours are
drawn around the band equal to a significance of 1.64 for the PNN (yellow), dense NN (cyan), maxout
model (green) and the ATLAS analysis [37] (pink). The significance achieved by the ML models were
calculated with a flat uncertainty equal to 20% of the background.

4.8. COMPARING EXCLUSION LIMITS BETWEEN MODELS AND PREVIOUS ANALYSIS 65

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

2

4

6

8

10

12

14

16

2

4

6

8

10

12

14

16=1.64expZ

PNN

NN

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

10% UNCERTAINTY

[37]

(a)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

5

10

15

20

25

5

10

15

20

25
=1.64expZ

PNN

NN

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

<1% UNCERTAINTY

[37]

(b)

Figure 4.26: Two surface plots of the significance achieved by the PNN on the complete signal grid. Contours are
drawn around the band equal to a significance of 1.64 for the PNN (yellow), dense NN (cyan), maxout
model (green) and the ATLAS analysis [37] (pink). The significance achieved by the ML models were
calculated with a flat uncertainty equal to 10% of the background in the left figure 4.26a and less than
1% in the right 4.26b.

background. The figure shows that none of the models are able to extend the sensitivity achieved by ATLAS,
although the PNN was able to equal the ATLAS analysis for smaller masses. Furthermore, it is evident from
the figure that the NN and maxout model are not able to extend the limit as far as the PNN. In section 4.7
I presented the significance, calculated without uncertainty. In these calculations the dense NN and maxout
model were able to extend the limit past that achieved by the PNN (in certain areas). This contradiction
can be explained by the fact that PNN achieved a much higher sensitivity for smaller masses, in some cases
even doubling the sensitivity to that of the dense NN and maxout model. When introducing uncertainty, the
NN and maxout model are penalized for attempting to tune according to all signals, thereby not obtaining
enough sensitivity to ’survive’ the reduced significance. In contrast, the PNN, although attempting to tune
for all masses, includes the bias towards large statistics signals, which explains why there is less of a difference
when comparing the limit with and without uncertainty.
To further study the sensitivity of the models, I produced two additional figures similar to the one above.

In these figure I applied an uncertainty of 10% (4.26a) and less than 1%45 (4.26b) of the background. As
expected, the limits converge close towards the limits observed in section 4.7 for smaller uncertainties. In
figure 4.26a, we even discern that the limits set by the dense NN and maxout model extend past the PNN,
for high masses (χ̃1 > 175 and χ̃2 > 400GeV), although they are outperformed for most other combinations.
In figure 4.26b, I used an uncertainty close to 0%. As depicted in this figure, we discern that the dense NN
and maxout model very closely resemble the limits from ATLAS, only being beaten by 50GeV for high mass
χ̃2. For events in the mass region of χ̃1 ≈ 250GeV and χ̃2 ≈ 350GeV, the PNN seems to ever so slightly
extend the limit produced by ATLAS. Although this is promising for the method, it is worth mentioning
that the uncertainty is far from realistic. Furthermore, the size by which the limits are extended are so small
that it could be explained by the method of interpolation between the grid of mass combinations.
A final observation is that the dense NN and maxout model, although not performing equally to the
PNN for realistic uncertainties (20%), did achieve the highest performance in the areas which are not yet
excluded (χ̃1 ≳ 300 and χ̃2 ≳ 700GeV). This is further exemplified in the contour plots for the dense NN
and maxout model, which can be found in the appendix D. Especially the maxout model, which achieved
the highest sensitivity for the largest masses of χ̃2, utilized an impressive long-term memory to draw
benefits from the large statistics of the lower mass combinations, while preserving a relatively balanced

45The uncertainty was set to 1e−5.

66

performance on lower statistics performance. Compared to the PNN, which achieved difference in sensitivity
of max(Z) −min(Z) = 24.79 in the case of zero uncertainty, the maxout model achieved a difference of
only max(Z)−min(Z) = 10.91. When attempting to explore further regions in the parameter space of the
chargino-neutralino pair, balanced performance and the ability to exploit the full statistics in the signal data,
are critical attributes. Therefore, I believe, the generalizability and memory of the maxout model, makes it
an interesting candidate for further studies.

Final Remarks and Possible Improvements
To summarize the discoveries in the figures above, none of the methods were able to extend the limits beyond
the results made by the ATLAS collaboration, at least not for realistic uncertainties. This is by no means
to say that the methods discussed and presented in this thesis are not of interest. The matter of trying to
extend the limit of sensitivity beyond that produced by ATLAS, was given little attention and consideration
during the timespan of this thesis. Most of the time was instead spent comparing and exploring the different
models. In contrast, the limit set by ATLAS is the result of a large team of focused scientists all attempting
to push the limit as far as they can. This considered, I believe the models show great promise. If I were
to prioritize expansion of exclusion limits, there are several aspects of the analysis in this thesis I would
improve.

• A more advanced analysis of the signal region: In my analysis I chose to define the signal regions from
each model’s output using a brute force approach. A more advanced approach, applying optimization
techniques to find the maximum possible significance from each output, would most likely produce a
higher sensitivity.

• Implement multiple orthogonal signal regions: In the analysis made by ATLAS [37], several signal
regions were implemented and studied, with the final sensitivity equalling the combination of all the
regions. This approach is far more complex, and can lead to a higher sensitivity. With the same
treatment on the ML output presented in this thesis, a much higher significance could be achieved.

• Devote additional time to studying the relationship between overfitting and significance: The early
stoppage criteria of ten epochs applied in this analysis was chosen for convenience and simplicity. This
rigid criteria could be destructive for optimal performance, and by devoting additional time to study
the relationship between the threshold for the criteria and optimal performance could lead to better
performing models.

• Perform a thorough hyperparameter search: For comparison reasons I decided not to apply a hyper-
parameter search for the architecture of the networks. By attempting a grid search for the different
hyperparameters, one might be able to find more sensitive models. Additionally, it would be interesting
to attempt to combine the methods presented in this thesis, for example a PNN with LWTA layers.

• Create region specific models: In the final analysis I applied one model (per method) to study the full
signal set. It would be interesting to explore the possibility of creating different models for different
regions in the parameter (mass) space. In the analysis we have seen how models can both improve and
worsen in performance with regard to specific masses by increasing the number of mass combinations
in the training set. With individual models covering specific, possibly physics motivated regions, I
believe some methods would benefit.

• Focus on relevant regions: In this analysis I have treated the performance of a model on all mass
combinations equally. This was a choice I made to easier compare methods, but given the goal of
extending the limits, it would most likely be beneficial to prioritize the regions closest to the existing
limits, in hopes of achieving a higher sensitivity in these regions46.

• Further study of features: In the beginning of the analysis, the signal was yet undecided. As a
consequence, the variables used in the analysis are not tailored to the SUSY signal. In retrospect, other
variables could be relevant for my analysis. For example the Z-veto (|mlll −mz|) or the stransverse
mass (MT 2) [50], which were used in the analysis of ATLAS in 2021 [37].

46See the final paragraph in section 4.6

67

Conclusion & Outlook

In this thesis I have applied a range of ML models to the search for chargino-neutralino production resulting in
a three lepton final state with missing transverse momentum. Two data sets were utilized during the analysis:
simulated MC data, including both the SM background and the BSM signal, and measured proton-proton
collisions at

√
s = 13 TeV produced at the LHC and detected at ATLAS. The models applied and studied

during my analysis were a set of NN variants, in addition to a BDT which was used to create a benchmark
for my analysis. The network variants encompassed a diverse array of approaches including an ordinary
dense NN, ensemble networks employing LWTA layers and a PNN.

The simulated signal set included and studied in the analysis consisted of a set of orthogonal BSM variants,
specifically different masses for the chargino (χ̃±

1) and neutralino (χ̃1). In my analysis I tested two approaches
for dealing with a diverse signal set: training one model per variant, and training one model on a larger set
of variants. Comparing the two, I found that the latter achieved a higher sensitivity as a consequence of a
number of factors. By including an assortment of variations of new physics, the ML models were able to
avoid overfitting longer, which allowed for deeper learning. Furthermore, I found that the models were able
to exploit overlapping feature distributions between the variations, which resulted in more training data for
all mass combinations. As a consequence, all further models were trained on a diverse signal set, and large
parts of the analysis was focused on how each individual method handled this decision.

I studied three variants of LWTA layers; channel-out, maxout, and SCO. The first two were taken from the
paper by Wang et al. [12], and the third layer was introduced in this present thesis. Each layer reduces the
number of nodes during a forward propagation, similarly to the dropout layer, but does so by comparing
activation with other nodes in the layer, and dropping all but the largest node. To study the implementation
and effect of these layers, I constructed a set of figures to visualize the activation and dropping of nodes
before and after training. When dissecting the figures, I observed that the LWTA layers (specifically the
maxout layer) were able to build an ensemble of networks by means of pattern-specific paths. In other
words, after training the model, the data chose different paths through the network dependent on if it was
background or signal. Moreover, by comparing two sets of signals with different mass combinations, I found
that the model was also able to differentiate between different variations of signal. This indicates a strong
long-term memory, which allows the model to target a larger set of signals and is an important attribute in
the LWTA layers. Additionally to studying the maxout layer, I repeated the analysis for SCO. By comparing
the activation between the maxout and SCO layer, I found that the SCO layer was able to reduce complex
co-adaptation by motivating all nodes to contribute to the output.

The PNN applied in the thesis was inspired by the network introduced in the paper by Baldi et al. [11].
The purpose of the PNN was to motivate the model to differentiate between the mass combination in the
signal set through including the parameters (choice of chargino and neutralino mass) as a feature. To study
the effect of the PNN I drew the distribution of a subset of mass combinations, where all the events were
given the same parameters. The idea was that the PNN would perform better when events were given
the correct parameters, compared to when they were not. By repeating this test, but assigning the data
another set of parameters I found that PNN did perform better when predicting on data which were given
the correct parameters, although not by much. For example, compared to when the events were given the
wrong parameters, signal events with masses equal to {50, 250}GeV , improved effectiveness by 3% when
applying a rigid cut on the output of 0.975. This indicates that the PNN was able to discriminate between
different variations of signal, even if only by a small amount.

When studying and comparing the performance of the ML models, two different sets of the signal were used,
original (χ̃1 ∈ [0− 400] GeV and χ̃2 ∈ [400− 800] GeV) and the complete signal grid (χ̃1 ∈ [0− 400]GeV and
χ̃2 ∈ [200− 800]GeV), where the first was a subset of the second. When comparing the achieved sensitivity,

68

or significance, of the models on each mass combination in the original signal set I found that the maxout
model outperformed all other LWTA models, achieving a higher significance in 24 out of the 30 combinations.
Although the introduced SCO layer did not outperform maxout model, it did achieve a higher significance in
6 combinations. Most likely, by modifying the SCO layer during prediction the performance of the layer
would improve.

Four models (not including channel-out and SCO) were chosen when comparing performance on the original
signal set; ordinary dense NN, maxout model, PNN and a BDT implemented using the default settings of
XGBoost [10]. In the comparison, I found that all three network variants were able to outperform the BDT,
although I believe this to be explained by little attention given towards the tuning of the BDT. Out of the
three network variants, the maxout model was able to achieve the highest significance for most mass combin-
ations (24 out of 30), but mostly in the higher mass range (χ̃2 > 600GeV). In the events with lower masses
and higher statistics (χ̃2 < 600GeV), the PNN outperformed all others, almost doubling the significance
achieved by the maxout model. Shared among all models was the fact that they all found processes with high
amounts of missing transverse energy difficult to separate from the signal, i.e. Diboson(lll), tt̄ and top other.

Before applying the models to the complete signal grid, I applied a PCA to study if it could improve
performance. When requiring the conservation of 99.9% of the variation from the original feature set, 5
features were removed. Training the dense NN, maxout model and PNN with this new data set, I found it
to improve the sensitivity of the two latter models. The comparison was based on the choice to weight the
importance of all mass combinations equally.

Finally, in my analysis I compared the performance of my three best performing models (maxout model and
PNN with a PCA, and the dense NN) on the complete signal grid. Additionally, I compared the results to the
expected exclusion limits (Z > 1.64) set by ATLAS in 2021 [37]. The expected significance achieved by the
models were calculated using a flat uncertainty of 20%, 10% and < 1%. Based on the comparison I found that
none of the ML models were able to extend the limits set by ATLAS, with the exception of the PNN when util-
izing < 1% uncertainty. For an uncertainty of 20%, the PNN was able to achieve a limit which mirrors ATLAS
for smaller masses (χ̃2 < 250GeV) and set a limit past that achieved by the other networks, for both the
chargino and neutralino mass. When decreasing the uncertainty, the maxout model and dense NN were able
to extend the limit past that achieved by the PNN for higher masses, but never surpassing the limit by ATLAS.

From my analysis I found that where the PNN exhibits bias towards higher statistic signal, the ordin-
ary dense NN and maxout model are able to achieve a more balanced sensitivity. Especially the maxout
model, with an impressive long-term memory, was able to uphold a strong performance for lower statistics
signal and smaller differences in significance (∆Z ≈ 10 when no uncertainty is applied). The effect of the
long-term memory is further demonstrated in the comparison between the model after training on the
original, and the complete signal grid. In the comparison, the maxout model improved its performance on
the original set in 17 out of 30 mass combinations compared to the PNN which, only improved 2 out of
30. Due to the fact that future analysis will need sensitivity in low statistics regions (high mass), I believe
the LWTA layers to be interesting candidates for future models in regard to their ability to exploit high
statistics combinations while maintaining a strong performance on lower statistics signal.

In conclusion, my results indicate that although none of the ML models extended the expected exclu-
sion limit made by the traditional CC approach from ATLAS in 2021 [37], the network variants showed great
promise. I believe that through a more complex analysis of the signal region, both in choice of region and
combining the statistics from multiple signal regions, the models would drastically increase in sensitivity.
Furthermore, any future ML models would greatly benefit from including multiple overlapping new physics
variants, especially through the application of models displaying long-term memory, similarly to the models
utilizing the LWTA layers in this thesis.

69

Appendices

70

A Expected Significance Results

A.1 The Ensemble Models Applied to the Original Signal Set
40

0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(a)

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(b)

Figure 27: A grid displaying the expected significance on the original signal set using the signal region created by
the SCO 27a and a channel-out network 27b.

A.2 Results from the PCA

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(a)

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

(b)

Figure 28: A grid displaying the expected significance on the original signal set using the signal region created by
the ordinary dense NN 28a and a maxout network 28b. A PCA analysis has been applied to the data
being utilized in this result.

71

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400
1 [Gev]

Figure 29: A grid displaying the expected significance on the original signal set using the signal region created by
the PNN network. A PCA analysis has been applied to the data being utilized in this result.

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

NN
NNPCA

Figure 30: ’Pie-plot’ comparing sensitivity on the original signal set, where the figure shows the comparison between
a model trained on data with and without a PCA. The size of each ’slice’ represents the relative size of
the significance and the color around each point displays the method with the largest sensitivity for the
respective combination.

72

A.3 Comparing Models Trained on Original and the Complete Signal Grid

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

MaxOutPCA-Original
MaxOutPCA-Full

Figure 31: ’Pie-plot’ comparing sensitivity achieved by the maxout model on the original signal set, where the
figure shows the comparison between a model trained on the original signal grid, and the complete signal
grid. A PCA analysis has been applied to the data being utilized in this result. The size of each ’slice’
represents the relative size of the significance and the color around each point displays the method with
the largest sensitivity for the respective combination.

40
0

45
0

65
0

70
0

75
0

80
0

2 [Gev]

0

50

100

150

200

250

300

350

400

1 [Gev]

PNNPCA-Original
PNNPCA-Full

Figure 32: ’Pie-plot’ comparing sensitivity achieved by the PNN model on the original signal set, where the figure
shows the comparison between a model trained on the original signal grid, and the complete signal
grid. A PCA analysis has been applied to the data being utilized in this result. The size of each ’slice’
represents the relative size of the significance and the color around each point displays the method with
the largest sensitivity for the respective combination.

73

B The Features

B.1 Jet Requirements

Requirement Baseline Jets
pT − cut pT > 20GeV
η − cut |η| > 2.8

(a)

Requirement Signal Jets
pT − cut pT > 60

or
JV T − cut |JV T | < 0.91

(b)

Table 33: Two tables displaying the baseline 33a and signal 33b requirements of the jets applied to the data as part
of the preprocessing. Note that signal jets are required to pass both baseline and signal requirements. For
a formal definition of Jet Vertex Tagger (JVT), see [51].

74

B.2 The Feature Distribution

) [GeV]
3

(ltP

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

20 40 60 80 100 120

) [GeV]
3

(ltP

0.6

0.8

1

1.2

D
at

a
/ S

M

(a)

) [GeV]
2

(ltP

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

50 100 150 200 250

) [GeV]
2

(ltP

0.6

0.8

1

D
at

a
/ S

M

(b)

)
2

(lη

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

3− 2− 1− 0 1 2 3

)
2

(lη

0.6

0.8

1

D
at

a
/ S

M

(c)

)
3

(lη

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

3− 2− 1− 0 1 2 3

)
3

(lη

0.6

0.8

1

D
at

a
/ S

M

(d)

Figure 34: MC simulated and measured data comparison showing the pT for the third 34a and second 34b lepton.
Similarly, the distribution over η for the second 34c and third 34d lepton.

75

)
1

(lφ

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

3− 2− 1− 0 1 2 3

)
1

(lφ

0.6

0.8

1

D
at

a
/ S

M

(a)

)
2

(lφ

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

3− 2− 1− 0 1 2 3

)
2

(lφ

0.6

0.8

1

D
at

a
/ S

M
(b)

)
3

(lφ

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

3− 2− 1− 0 1 2 3

)
3

(lφ

0.6

0.8

1

D
at

a
/ S

M

(c)

) [GeV]
1

(lTM

10

210

310

410

510

610

710
E

ve
nt

s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

50 100 150 200 250

) [GeV]
1

(lTM

0.6

0.8

1

D
at

a
/ S

M

(d)

) [GeV]
2

(lTM

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

50 100 150 200 250

) [GeV]
2

(lTM

0.6

0.8

1

1.2

D
at

a
/ S

M

(e)

) [GeV]
3

(lTM

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

50 100 150 200 250

) [GeV]
3

(lTM

0.5

1

1.5

D
at

a
/ S

M

(f)

Figure 35: MC simulated and measured data comparison showing the ϕ for the first 35a, second 35b and third 35c
lepton. Similarly, the distribution over MT for the first 35d, second 35e and third 35f lepton.

76

)
1

Charge(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

)
1

Charge(l

0.6

0.8

1

D
at

a
/ S

M

(a)

)
2

Charge(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

)
2

Charge(l

0.6

0.8

1

D
at

a
/ S

M
(b)

)
3

Charge(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

)
3

Charge(l

0.6

0.8

1

D
at

a
/ S

M

(c)

)
1

Flavor(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

)
1

Flavor(l

0.6

0.8

1

D
at

a
/ S

M

(d)

)
2

Flavor(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

)
2

Flavor(l

0.6

0.8

1

D
at

a
/ S

M

(e)

)
3

Flavor(l

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

)
3

Flavor(l

0.6

0.8

1

D
at

a
/ S

M

(f)

Figure 36: MC simulated and measured data comparison showing the charge for the first 36a, second 36b and third
36c lepton. Similarly, the distribution over the flavor for the first 36d, second 36e and third 36f lepton.

77

 R∆

10

210

310

410

510

610

710
E

ve
nt

s

 -113TeV, 139 fb

0 1 2 3 4 5 6

 R∆

0.5

1

1.5

D
at

a
/ S

M

(a)

 (miss)φ

10

210

310

410

510

610

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

3− 2− 1− 0 1 2 3

 (miss)φ

0.6

0.8

1

D
at

a
/ S

M
(b)

 [GeV]lllM

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

50 100 150 200 250 300 350 400 450 500

 [GeV]lllM

0.6

0.8

1

1.2

D
at

a
/ S

M

(c)

 (OSSF) [GeV]llM

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

0 50 100 150 200 250 300 350 400

 (OSSF) [GeV]llM

0.6

0.8

1

1.2

D
at

a
/ S

M

(d)

miss

t
Significance of E

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

0 2 4 6 8 10 12 14 16 18 20
miss

t
Significance of E

0.6

0.8

1

1.2

D
at

a
/ S

M

(e)

(lll)[GeV]tH

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

50 100 150 200 250 300 350 400 450 500

(lll)[GeV]tH

0.6

0.8

1

D
at

a
/ S

M

(f)

Figure 37: MC simulated and measured data comparison showing the ∆R 37a and the azimuthal angel 37b of the
missing transverse energy. The distribution of the invariant mass of the three leptons 37c and the OSSF
pair 37d. The distribution over the significance of the missing transverse energy 37e and the sum of pT

37f.

78

(SS)[GeV]tH

10

210

310

410

510

610

710
E

ve
nt

s

 -113TeV, 139 fb

50 100 150 200 250 300 350 400

(SS)[GeV]tH

0.6

0.8

1

D
at

a
/ S

M

(a)

[GeV]miss

T
(lll) + EtH

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

100 200 300 400 500 600

[GeV]miss

T
(lll) + EtH

0.6

0.8

1

D
at

a
/ S

M
(b)

Nr of signal Jets

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

0 1 2 3 4 5 6 7 8 9 10

Nr of signal Jets

0.6

0.8

1

D
at

a
/ S

M

(c)

[GeV]jjM

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

0 100 200 300 400 500 600 700 800

[GeV]jjM

0.6

0.8

1

1.2

D
at

a
/ S

M

(d)

Nr of B-jets (77)

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

0 0.5 1 1.5 2 2.5 3

Nr of B-jets (77)

0.6

0.8

1

1.2

D
at

a
/ S

M

(e)

Nr of B-jets (85)

10

210

310

410

510

610

710

E
ve

nt
s

 -113TeV, 139 fb

Other (0.3%)
Diboson(ll) (0.3%)
Single top (0.5%)
Top other (0.9%)
Diboson(llll) (4.4%)

 (5.3%)tt
Diboson(lll) (10.8%)
Zjets (77.5%)
Data (381860 Events)

N(Bkg) = 381873

0 0.5 1 1.5 2 2.5 3 3.5 4

Nr of B-jets (85)

0.6

0.8

1

1.2

D
at

a
/ S

M

(f)

Figure 38: MC simulated and measured data comparison showing the sum of pT for the SS pair 38a and the sum
over all three leptons added with Emiss

t 38b. The distribution of number of signal jets 38c and the mass
of the leading dijet pair 38d. Finally, the number of B-jets with 77% 38e and 85% 38f certainty.

79

B.3 The Selection of Features

Feature Name Description
PT Transverse momentum
η Pseudo rapidity
ϕ Azimuthal angle

MT Transverse mass
Charge EM charge
Flavour Particle type
Emiss

T Missing transverse energy
ϕ(miss) Azimuthal angle of the missing transverse energy

Mlll Invariant mass of the trilepton
Mll(OSSF) Mass of the OSSF pair
Sig Emiss

T Significance of Emiss
T

HT (lll) Sum of pT for all three leptons
HT (SS) Sum of pT for the Same Sign pair

HT (lll) + Emiss
T -

∆R Distance defined in the ηϕ-space
Flavor combo Combination of flavors for all three leptons

Nr of signal Jets Nr of jets passing the signal criteria
Mjj Mass of the leading jet pair

Nr of B-jets(77) Number of B-jets with 77% efficiency
Nr of B-jets(85) Number of B-jets with 85% efficiency

Table 2: A summary and description of all features used in this analysis.

80

C The Implementation of Channel-Out, SCO and Maxout

Channel-out

1 def c a l l (self , i nputs : t f . Tensor , mask : t f . Tensor = None) −> t f . Tensor :
2 # Pass input through weight kernel and adding bias terms.
3 inputs = gen math ops . MatMul(a=inputs , b=self . k e r n e l)
4 inputs = nn ops . b ias add (inputs , self . b i a s)
5
6 num inputs = inputs . shape [0]
7 if num inputs is None :
8 num inputs = −1
9

10 # Reshaping inputs such that they are grouped correctly
11 num competitors = self . u n i t s // self . num groups
12 new shape = [num inputs , self . num groups , num competitors]
13 inputs = t f . reshape (inputs , new shape)
14
15 # Finding maximum activations and setting losers to 0.
16 outputs = t f . math . reduce max (inputs , a x i s =−1, keepdims=True)
17 outputs = t f . where (t f . equal (inputs , outputs) , outputs , 0 .)
18 # Reshaping outputs to original input shape
19 outputs = t f . reshape (outputs , [num inputs , self . u n i t s])
20
21 #Count the activate nodes. This variable is used when plotting the activations

.
22 self . counter = outputs
23
24 return outputs

Listing 1: Python implementation for the custom activation function used to define the channel-out layer.

SCO

1 def c a l l (self , i nputs : t f . Tensor , mask : t f . Tensor = None) −> t f . Tensor :
2 inputs = gen math ops . MatMul(a=inputs , b=self . k e r n e l)
3 inputs = nn ops . b ias add (inputs , self . b i a s)
4 num inputs = inputs . shape [0]
5
6 if num inputs is None :
7 num inputs = −1
8 # Create the indices to shuffle and unshuffle nodes
9 s h u f f l e i n d e x = t f . random . s h u f f l e (self . index)

10 u n s h u f f l e i n d e x = t f . t e n s o r s c a t t e r n d u p d a t e (t e ns o r = self . z e r o s ,
11 i n d i c e s = t f . reshape (
12 s h u f f l e i n d e x ,
13 [inputs . shape [1] , 1]
14) ,
15 updates = self . index)
16 i n p u t s s = t f . gather (inputs , s h u f f l e i n d e x , a x i s = 1)
17
18
19 # Reshaping inputs such that they are grouped correctly
20 num competitors = self . u n i t s // self . num groups
21 new shape = [num inputs , self . num groups , num competitors]
22 i n p u t s s = t f . reshape (input s s , new shape)
23
24 # Finding maximum activations and setting losers to 0.
25 outputs = t f . math . reduce max (input s s , a x i s =−1, keepdims=True)
26
27 outputs = t f . where (t f . equal (input s s , outputs) , 1 . 0 , 0 .)
28 # Reshaping outputs to original input shape
29 outputs = t f . reshape (outputs , [num inputs , self . u n i t s])
30
31 outputs = t f . gather (outputs , u n s h u f f l e i n d e x , a x i s = 1)
32 outputs = t f . mul t ip ly (inputs , outputs)
33 #Count the activate nodes. This variable is used when plotting the activations
34 self . counter = outputs
35 return outputs

Listing 2: Python implementation for the custom activation function used to define the SCO layer.

81

Maxout

1 def c a l l (self , i nputs : t f . Tensor) −> t f . Tensor :
2 # Passing input through weight kernel and adding bias terms
3 inputs = gen math ops . MatMul(a=inputs , b=self . k e r n e l)
4 inputs = nn ops . b ias add (inputs , self . b i a s)
5
6 num inputs = inputs . shape [0]
7 if num inputs is None :
8 num inputs = −1
9 num competitors = self . u n i t s // self . num groups

10 new shape = [num inputs , self . num groups , num competitors]
11
12 # Reshaping outputs such that they are grouped correctly
13 inputs = t f . reshape (inputs , new shape)
14 # Finding maximum activation in each group
15 outputs = t f . math . reduce max (inputs , a x i s =−1,keepdims=True)
16
17 counter = t f . where (t f . equal (inputs , outputs) , outputs , 0 .)
18
19 # Reshaping outputs to original input shape
20 outputs = t f . reshape (outputs , [num inputs , self . num groups])
21
22 #Count the activate nodes. This variable is used when plotting the activations

.
23 self . counter = t f . reshape (counter , [num inputs , self . u n i t s])
24
25 return outputs

Listing 3: Python implementation for the custom activation function used to define the maxout layer.

82

D Contour Plots for the Calculated Significance with a Flat
Uncertainty

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3
=1.64expZ

NN

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

20% UNCERTAINTY

[37]

(a)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

1

2

3

4

5

1

2

3

4

5=1.64expZ

NN

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

10% UNCERTAINTY

[37]

(b)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

2

4

6

8

10

2

4

6

8

10

=1.64expZ

NN

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

<1% UNCERTAINTY

[37]

(c)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
=1.64expZ

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

20% UNCERTAINTY

[37]

(d)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

0.5

1

1.5

2

2.5

3

3.5

4

0.5

1

1.5

2

2.5

3

3.5

4
=1.64expZ

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

10% UNCERTAINTY

[37]

(e)

200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

2

4

6

8

10

2

4

6

8

10

=1.64expZ

Maxout

Ref.

[Gev]
1

χ ~

[Gev]
2

χ ~

<1% UNCERTAINTY

[37]

(f)

Figure 39: Contour plots of the significance achieved by the ordinary dense NN and maxout model on the complete
signal grid. Contours are drawn around the band equal to a significance of 1.64 for each model
respectively (cyan) and for the ATLAS analysis [37] (pink). The significance achieved by the ML models
were calculated with a flat uncertainty equal to 20% (39a and 39d), 10% (39b and 39e) and < 1% (39c
and 39f) for the dense NN and maxout model, respectively.

83

Acronyms

ADAM Adaptive Moment Estimation

API Application Programming Interface

ATLAS A Toroidal LHC Apparatus

AUC Area Under the Curve

BDT Boosted Decision Trees

BSM Beyond Standard Model

CC cut-and-count

CNN Convolutional Neural Network

CP Charge-Parity

DNN Deep Neural Networks

DT Decision Trees

EM Electromagnetic

FFNN Feed-Forward Neural Network

HEP High Energy Physics

HPC High Performance Computing

I/O Input/Output

LHC Large Hadron Collider

LWTA Local-Winner-Takes-All

MC Monte Carlo

ML Machine Learning

MSSM Minimal Supersymmetric Standard Model

NN Neural Networks

NN Neural Network

OMM One-Mass-Model

OSSF Opposite Sign Same Flavour

PCA Principal Component Analysis

PNN Parameterized Neural Network

QCD Quantum Chromo Dynamics

QED Quantum Electro Dynamics

QFT Quantum Field Theory

RNN Recursive Neural Network

ROC Receiver Operating Characteristic

SCO Stochastic-Channel-Out

SGD Stochastic Gradient Descent

SM Standard Model

SMM Several-Mass-Model

SP Superpartner

SUSY Supersymmetry

84

85

Bibliography

[1] ATLAS collaboration, Observation of a new particle
in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B
716 (2012) 1–29, [1207.7214].

[2] CMS collaboration, Observation of a new boson at
a mass of 125 GeV with the CMS experiment at the
LHC, 1207.7235.

[3] D. Chung, L. Everett, G. Kane, S. King, J. Lykken
and L.-T. Wang, The soft supersymmetry-breaking
lagrangian: theory and applications, Physics Reports
407 (2005) 1–203.

[4] A. Cole, S. Krippendorf, A. Schachner and G. Shiu,
Probing the structure of string theory vacua with
genetic algorithms and reinforcement learning,
2111.11466.

[5] A. Rezvantalab, H. Safigholi and S. Karimijeshni,
Dermatologist level dermoscopy skin cancer
classification using different deep learning
convolutional neural networks algorithms,
1810.10348.

[6] A. Möller, V. Ruhlmann-Kleider, C. Leloup,
J. Neveu, N. Palanque-Delabrouille, J. Rich et al.,
Photometric classification of type ia supernovae in
the SuperNova legacy survey with supervised
learning, 1608.05423.

[7] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban
and D. Whiteson, Jet flavor classification in
high-energy physics with deep neural networks,
Physical Review D 94 (dec, 2016) .

[8] J. Pumplin, How to tell quark jets from gluon jets,
Phys. Rev. D 44 (Oct, 1991) 2025–2032.

[9] P. Baldi, P. Sadowski and D. Whiteson, Searching
for exotic particles in high-energy physics with deep
learning, 1402.4735.

[10] T. Chen and C. Guestrin, XGBoost: A scalable tree
boosting system, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, (New York,
NY, USA), pp. 785–794, ACM, 2016. DOI.

[11] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski and
D. Whiteson, Parameterized neural networks for
high-energy physics, The European Physical Journal
C 76 (2016) 235.

[12] Q. Wang and J. JaJa, From maxout to channel-out:
Encoding information on sparse pathways,
1312.1909.

[13] J. J. T. M. F.R.S., Xlviii. the relation between the
atom and the charge of electricity carried by it, The

London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 40 (1895) 511–544.

[14] P. E. R. F.R.S., Lxxix. the scattering of α and β
particles by matter and the structure of the atom,
The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 21 (1911) 669–688.

[15] F. Reines and C. L. Cowan, The neutrino, Nature
178 (1956) 446–449.

[16] J. Bernstein, Spontaneous symmetry breaking, gauge
theories, the higgs mechanism and all that, Rev.
Mod. Phys. 46 (Jan, 1974) 7–GS.

[17] Super-Kamiokande Collaboration
collaboration, Y. Fukuda, T. Hayakawa, E. Ichihara,
K. Inoue, K. Ishihara, H. Ishino et al., Evidence for
oscillation of atmospheric neutrinos, Phys. Rev.
Lett. 81 (Aug, 1998) 1562–1567.

[18] J. Joyce, Finnegans Wake. Penguin Books, New
York, 1999.

[19] W. Thomson, Lord kelvin addresed the british
association for the advancement of science, 1900.

[20] O. Antipin, D. Atwood and A. Soni, Search for rs
gravitons via wlwl decays, Physics Letters B 666
(2008) 155–161.

[21] E. Oks, Brief review of recent advances in
understanding dark matter and dark energy, vol. 93,
p. 101632. DOI.

[22] J. Pequenao, “Event Cross Section in a computer
generated image of the ATLAS detector..”
https://cds.cern.ch/record/1096081, 2008.

[23] E. Gramstad, Searches for supersymmetry in
di-lepton final states with the ATLAS detectorat

√
s

= 7 TeV, .

[24] D. P. Kingma and J. Ba, Adam: A method for
stochastic optimization, 1412.6980.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel et al., Scikit-learn:
Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[26] T. Hastie, R. Tibshirani and J. Friedman, Neural
networks, in The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (T. Hastie,
R. Tibshirani and J. Friedman, eds.), Springer
Series in Statistics, pp. 389–416. Springer. DOI.

[27] R. K. Srivastava, J. Masci, S. Kazerounian,
F. Gomez and J. Schmidhuber, Compete to compute,
in Advances in Neural Information Processing
Systems, vol. 26, Curran Associates, Inc.

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2004.08.032
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2004.08.032
http://arxiv.org/abs/2111.11466
http://arxiv.org/abs/1810.10348
http://arxiv.org/abs/1608.05423
http://dx.doi.org/10.1103/physrevd.94.112002
http://dx.doi.org/10.1103/PhysRevD.44.2025
http://arxiv.org/abs/1402.4735
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://arxiv.org/abs/1312.1909
http://dx.doi.org/10.1080/14786449508620801
http://dx.doi.org/10.1080/14786449508620801
http://dx.doi.org/10.1080/14786449508620801
http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1038/178446a0
http://dx.doi.org/10.1038/178446a0
http://dx.doi.org/10.1103/RevModPhys.46.7
http://dx.doi.org/10.1103/RevModPhys.46.7
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2008.07.009
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2008.07.009
http://dx.doi.org/https://doi.org/10.1016/j.newar.2021.101632
https://cds.cern.ch/record/1096081
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1007/978-0-387-84858-7_11

86

[28] G. James and D. W. Trevor Hastie,
Robert Tibshirani, An introduction to statistical
learning: With applications in R, .

[29] S. Frette and W. O. Hirst, “Searching for the higgs
through supervised and unsupervised machine
learning algorithms.” https://github.com/
WilliamHirst/Advanced-Machine-Learning/blob/
main/article/Project_1.pdf.

[30] G. Cowan, “London postgraduate lectures on
particle physics.” http://www.pp.rhul.ac.uk/
˜cowan/stat/lectures20/stat_week_6.pdf, 2020.

[31] S. Raychaudhuri, Introduction to monte carlo
simulation, in 2008 Winter Simulation Conference,
pp. 91–100. DOI.

[32] R. Brun and F. Rademakers, Root - an object
oriented data analysis framework, in AIHENP’96
Workshop, Lausane, vol. 389, pp. 81–86, 1996.

[33] I. Bird, P. Buncic, F. Carminati, M. Cattaneo,
P. Clarke, I. Fisk et al., Update of the Computing
Models of the WLCG and the LHC Experiments.
No. 2 in Technical design report. LCG.

[34] C. R. Harris, K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau et al.,
Array programming with NumPy, Nature 585 (Sept.,
2020) 357–362.

[35] W. McKinney, Data structures for statistical
computing in python, in Proceedings of the 9th
Python in Science Conference (S. van der Walt and
J. Millman, eds.), pp. 51 – 56, 2010.

[36] ATLAS collaboration, Search for type-III seesaw
heavy leptons in dilepton final states in pp collisions
at

√
s = 13 TeV with the ATLAS detector,

2008.07949.

[37] ATLAS collaboration, Search for
chargino–neutralino pair production in final states
with three leptons and missing transverse
momentum in

√
s = 13 TeV pp collisions with the

ATLAS detector, 2106.01676.

[38] ATLAS collaboration, Object-based missing
transverse momentum significance in the ATLAS
detector, tech. rep., CERN, Geneva, 2018.

[39] ATLAS collaboration, Search for electroweak
production of supersymmetric particles in final
states with two or three leptons at

√
s = 13 TeV

with the ATLAS detector, 1803.02762.

[40] M. Aaboud, , G. Aad, B. Abbott, D. C. Abbott,
O. Abdinov et al., Electron reconstruction and
identification in the ATLAS experiment using the
2015 and 2016 LHC proton–proton collision data at√

s= 13 TeV, The European Physical Journal C 79
(aug, 2019) .

[41] ATLAS collaboration, Performance of the ATLAS
trigger system in 2015, 1611.09661.

[42] ATLAS collaboration, Performance of the ATLAS
muon triggers in run 2, 2004.13447.

[43] ATLAS collaboration, Performance of electron and
photon triggers in ATLAS during LHC run 2,
1909.00761.

[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro et al., TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.

[45] P. Liashchynskyi and P. Liashchynskyi, Grid search,
random search, genetic algorithm: A big comparison
for NAS, 1912.06059.

[46] X. Glorot and Y. Bengio, Understanding the
difficulty of training deep feedforward neural
networks, in Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, pp. 249–256, JMLR Workshop and
Conference Proceedings.

[47] A. Gholamy, V. Kreinovich and O. Kosheleva, Why
70/30 or 80/20 relation between training and testing
sets: A pedagogical explanation, .

[48] ATLAS collaboration, Observation of W W W
production in pp collisions at

√
s = 13 TeV with the

ATLAS detector. Observation of WWW Production
in pp Collisions at

√
s = 13eV with the ATLAS

Detector, 2201.13045.

[49] CMS collaboration, Reconstruction and
identification of tau lepton decays to hadrons and
tau neutrino at CMS, 1510.07488.

[50] C. G. Lester and D. J. Summers, Measuring masses
of semi-invisibly decaying particles pair produced at
hadron colliders, hep-ph/9906349.

[51] ATLAS collaboration, Tagging and suppression of
pileup jets with the ATLAS detector, tech. rep.

https://github.com/WilliamHirst/Advanced-Machine-Learning/blob/main/article/Project_1.pdf
https://github.com/WilliamHirst/Advanced-Machine-Learning/blob/main/article/Project_1.pdf
https://github.com/WilliamHirst/Advanced-Machine-Learning/blob/main/article/Project_1.pdf
http://www.pp.rhul.ac.uk/~cowan/stat/lectures20/stat_week_6.pdf
http://www.pp.rhul.ac.uk/~cowan/stat/lectures20/stat_week_6.pdf
http://dx.doi.org/10.1109/WSC.2008.4736059
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2008.07949
http://arxiv.org/abs/2106.01676
http://arxiv.org/abs/1803.02762
http://dx.doi.org/10.1140/epjc/s10052-019-7140-6
http://dx.doi.org/10.1140/epjc/s10052-019-7140-6
http://arxiv.org/abs/1611.09661
http://arxiv.org/abs/2004.13447
http://arxiv.org/abs/1909.00761
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/2201.13045
http://arxiv.org/abs/1510.07488
http://arxiv.org/abs/hep-ph/9906349

	Introduction
	The Standard Model of Elementary Particles and Beyond
	The Building Blocks
	The Forces
	Beyond the Standard Model
	Proton-Proton Collisions at the LHC
	The Signal
	The Background Channels

	Introduction to Machine Learning and Data Analysis
	Phenomenology
	Optimization
	Hyperparameters
	Data Handling
	Regularization
	Neural Networks
	Decision Trees and Gradient Boosting
	Machine Learning Applied to a BSM Search
	Model Assessment

	Implementation & Preparation of the Analysis
	The Simulated Data
	The Tools
	Selecting Features for the Analysis
	Data Preprocessing and Preselection Cuts
	The Machine Learning Models
	Model Training and Validation
	Handling Negative Weights in a BDT
	Defining the Signal Region and Calculating the Significance

	Results & Discussion
	Benchmarking the Analysis with a BDT
	Dense Ordinary Neural Networks
	Ensemble Methods
	Parametrized Neural Network
	Remarks on Comparison between Models on Original Signal Set
	Increasing Sensitivity through PCA
	Comparing Models on the Complete Signal Grid
	Comparing Exclusion Limits between Models and Previous Analysis

	Conclusion & Outlook
	Appendices
	Expected Significance Results
	The Features
	The Implementation of Channel-Out, SCO and Maxout
	Contour Plots for the Calculated Significance with a Flat Uncertainty

