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Abstract

This master thesis investigates the performance and usage of autoencoders in Beyond Standard Model (BSM)
searches, using n-tuples from ATLAS that are converted to python dataframe structures. The Rapidity-Mass
matrix (RMM) is proposed as the input data features, with 6 b-jets and 6 l-jets, and 5 of each lepton. The
goal was to test and understand the performance in the 3 lepton + emiss

T final state, but due to poor results,
the 2 lepton + emiss

T dataset was used instead. To deal with the large dataset size, megasets were used
to conserve the overall distribution in smaller batches. The autoencoders were benchmarked by creating
anomalous events by altering the pT of standard model events and testing on two supersymmetric signal
models. The performance was measured in three categories: reconstruction error, background and signal
reduction, and significance when performing cuts. The regular autoencoder performed better in the first and
second categories, while the variational autoencoder performed slightly better in the third. Increasing the
training data improved the performance in all categories. A blind test with ATLAS data and BSM signals
showed that the autoencoder, when trained on the 2 lepton + emiss

T dataset, managed to separate out some
signals from the ATLAS data, indicating its potential use in more rigorous analyses. The thesis also discusses
future work and challenges, such as computational bottlenecks, further investigation of the RMM, and better
feature engineering.
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Introduction

Not only is the Universe stranger than we
think, it is stranger than we can think.

Werner Heisenberg[4]

So goes the quote by Werner Heisenberg, acclaimed for his work in quantum physics in the early to mid
20th century. The quote is a reminder and a statement of the fact that the world we live in is immensly
strange, beautiful, complex and interesting. From the fundamental particles to the largest galaxy clusters,
the universe is a place of wonder and mystery. It is perhaps easy to forget what science tries to do when
studying nature. Its fundamental duty is to model the universe as well as possible given the tools available.
These models get better over time, but unlike what scientific absolutists might think and argue for, we will
never know the whole truth. One should always remember Heisenberg’s quote, for it illustrates the very point
that nature is indeed stranger than we can think. Science with its predictive power is only an approximation,
one can never truly know if the model we have of nature is a hyperfitted model or the actual instruction
manual for nature itself.

As physicists, we develop and extend, replace and debunk models at the most fundamental level of nature,
one of which is the Standard Model (SM) of particle physics. At higher energies, it is the most accurate,
experimentally tested theory to date, only rivalled by general relativity. From the 1930s to around 1973, there
were huge leaps within the field of particle physics. Even then, the SM leaves several important questions
unadressed. Dark matter, dark energy and the energy density are phenomena that we observe around us
but cannot be answered by the SM. Attempts have been made to create theoretical frameworks that could
extend the SM with the strange behavior, but all have yet to be experimentally verified. One could ask
oneself why this is the case. Why is this New Physics, what ever it may look like, so difficult to find? Is the
framework wrong? Are the theories not well enough understood or wrong? Or it could be that the New
Physics is hiding within the data already collected, in some set of features, too subtle for traditional analysis
techniques, but available through advanced data analysis tools? The answer is, perhaps not to anyone’s
shock, we have no idea. In fact, they may all be true or false.

This story does not end here, as there are countless departments all over the world searching for this New
Physics. The ATLAS experiment at CERN is one organization that has taken upon itself this task, including
my supervisors Professor Farid Ould-Saada and Dr. James Catmore working on searches for New Physics
at the University of Oslo. This thesis will take a somewhat different search approach than conventional
analyses done at ATLAS. In a humble attempt, the assumption is made that if the New Physics exist, it is
too subtle for existing analysis techniques, and that it is hiding in the data in some set of features. Further,
it is assumed that by focusing on data we can label and that we know from experiment to exist, deviations
from this would be of interest for more narrow searches. The hope is to filter out the events of interest, that
with some certainty differs from the established theory, and then try to understand them better.

In the last decade, data analysis tools such as neural networks have become more and more available to
the public, getting optimized, upgraded and extended more computationally powerful every day. Google’s
Tensorflow[5] and Facebooks PyTorch[6] are two increasingly popular frameworks that are used within
industry, academia, and even within the particle physics community. Tensorflow was chosen for this thesis,
and all the neural networks are using this framework, together with several other third party pieces of
software.

Outline of the Thesis

The master thesis is outlined in the following way. The first two chapters are dedicated to machine learning
and SM physics background required to understand the analysis done and tools used in the thesis. The third
chapter goes through the implementation of the project, the input dataset, the ATLAS architecture, the
programming libraries and feature choice. Chapter four goes through the results from the implementation as

1
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well as discussion and interpretation of the results, the pros and cons of the implementation, aspects for
future improvement, and other thoughts around the process. The final chapter is dedicated to the conclusion,
were the results are summarized.



Chapter 1

Data Analysis

1.1 Anomaly detection
Anomaly detection is a versatile tool that finds application in a diverse range of scenarios, including fraud
detection, anomalous sensor data analysis and time series data. The primary objective of this tool is to
identify data that deviates from a predetermined standard of normal behavior. The definition of this standard
can vary from situation to situation, based on the context and the expected anomalous behavior. According
to Chandola, Banerjee, and Kumar [7], anomalies can be classified into three categories: point anomalies,
contextual anomalies, and collective anomalies. Point anomalies represent singular or few outliers from
a larger group or context and can occur in various situations. A notable example of a point anomaly is
Michael Phelps, who is able to swim intensively for longer periods due to his body producing less lactic acid.
Contextual anomalies, on the other hand, are determined based on the context of the anomaly and data,
rather than as a whole. For instance, in the case of continuous gas flow data, a sudden change in flow on a
Saturday, despite being within the range of Friday’s flow, could be categorized as a contextual anomaly. The
third type, collective anomalies, represents a group of anomalies that deviate from the expected behavior of
the dataset. In particle physics experiments, collective anomalies are of particular interest as there are many
sources of anomalous behavior where only collective anomalies are worth investigating. A single anomalous
event in the detector could be explained by electronic noise, a cosmic ray or radioactive decay. Additionally,
the noise generated by numerous components in such experiments makes it essential to consider collective
anomalies.

1.2 Neural Networks
In the field of machine learning, statistical algorithms are commonly used for data analysis. Neural networks,
a specific category of such algorithms, have experienced growth in usage in both industry and academia
over the past decade. Although most of the theory behind it was developed as far back as the 1980s, the
technology has only now in the last 10 to 15 years become good enough. These statistical models are of
extensive use in a variety of applications, ranging from image analysis to weather prediction.

The fundamental principle behind feed forward neural networks (FFNN) involves the data being fed
forward through the network, with the end output evaluated and corrections then back propagated through
the network to update the weights and biases. This training process is repeated until a certain threshold is
met. Figure 1.1 shows a general layout of a neural network, wherein the input layer consists of one node per
feature in the dataset. The number of hidden layers and nodes per layer can be fine-tuned, with the last
hidden layer connected to the output layer. The latter is determined by the problem being addressed, and in
the case of the binary classification problem shown in figure 1.1, the nodes interact via tunable weights w
and biases b that must be trained on the dataset prior to making predictions. The neural network, especially
deep1 ones become black boxes, meaning that once the training data or the test data is fed in through the
input layer it is hard to know exactly what happens with the data until it comes out as a prediction. It
is because of this that some2 have shown some hesitancy with using neural networks for problems of high
importance. Nonetheless, they can be very effective if used correctly.

1Deep here refers to a neural network with more than one hidden layer, and often also a network where the layers have
many neurons. One example would be a network with say a 200 - 500 - 500 - 700 - 500 - 200 - 1 network where the numbers
correspond to number of nodes in their layers.

2In cases where a lot of money is at stake or lives are dependent on the output and performance of the neural network, it is
reasonable to expect some explainability from the engineers if something goes wrong. There are other algorithms that are less

3



4 CHAPTER 1. DATA ANALYSIS

Figure 1.1: Simple neural network diagram drawn using Draw.io. Here the blue dots constitute the input layer, the
green dots constitute the hidden layer, and the red dots constitute the output layer. The arrows show
the connections between the nodes.

In order to avoid confusion, we will adhere to table 1.1 for the notation used in the following sections.
Some of the following subsections contains work previously done by myself and two co-students, and can be
found here[10].

Gradient descent
Let us now consider a general n-dimensional problem, with parameters θ = {θ1, θ2, ..., θn}. Our objective is
to find the set of θ that minimize a cost function with respect to the data and target. One way to solve this
problem is using ordinary least squares. For this approach, the optimal paramters θopt are derived from
minimizing the cost function, as shown here:

θopt = (XT X)−1XT t,

where X is the design matrix containing the data, and t is the target vector. This could however lead to a
problem. Suppose the design matrix is sufficiently large, then the matrix inversion will get computationally
expensive, or it might not even exist for a given X. Thus, an alternative approch is to iteratively approximate
the ideal parameters θopt. 

Suppose we have a cost function C(θ) for a given problem. We can approximate the minimum of the
cost function by calculating the gradient ∇θC with respect to θ. The negative of this gradient indicates the
direction for the minimum of C when evaluating it in a specific point θi in the parameter space [10]. This is
expressed as follows

θi+1 = θi − η∇θC(θi), (1.1)

”black box” machines, such as decision trees[8] or support vector machines[9], both of which have their pros and cons compared
to neural networks.
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Matrices and vectors
Notation Description Type

X Design Matrix (input
data).

RN×#features

t Target values. RN×#categories

y Model output, the
prediction from our
network.

RN×#categories

W l The weight matrix
associated with layer l
which handles the
connections between layer
l − 1 and l .

Rnl−1×nl

Bl The bias vector associated
with layer l which handles
the biases for all nodes in
layer l.

Rnl×1

Elements
wl

ij The weight connecting
node i in layer l − 1 to
node j in layer l.

R

bl
j Bias acting on node j in

layer l.
R

zl
j Node output before

activation on node j on
layer l.

R

al
j Activated node output on

node j on layer l.
R

Functions
C Cost function.
σl Activation function associated with layer l.

Quantities
nl The number of nodes in layer l.
L Number of layers in total with L− 2 hidden layers.
N Total number of data points.

All indexing starts from 1: i, j, k, l = 1, 2, . . .

Table 1.1: Table containing notation used for deriving the mathematical formulas for the neural network found in
previous work[10]. The # here refers to number of.

where η is a step size, also called the learning rate. The choice of η is not a trivial case. It is one of
several hyperparameters[11] that can be altered, and that highly depend on the given problem. With regard
to the learning rate, there are only three situations to consider, shown in figure 1.2.

Figure 1.2 visualizes the relation between the learning rate and the cost function. In the left most figure
we note that the learning rate is too small. This leads to many iterations before you reach a minimum. In the
rightmost figure we note that the learning rate is too high, and the result is that we get divergent behavior.
Thus, the goal is to find the optimal learning rate, shown in the middle figure. There are several algorithms
that try to do what is shown in the middle figure above, one of which is Adaptive Moment Estimation
(ADAM)[12].

A modified and prefered version of gradient descent is the so-called stochastic gradient descent. Regular
gradient descent can, for large datasets be quite slow, and is prone to getting stuck in a local minimum. To
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Figure 1.2: Figures showing different choices of learning rate for a given cost function, with respect to the tunable
parameters. Source: Jeremy Jordan, accessed 03.10.22.

circumvent this issue, mini batches are introduced. For each epoch (training step) the input data is divided
into M mini batches of size m. For each batch we compute the gradient and update the unknown parameter
according to equation 1.1. The parameter θi+1 is then updated M times for each epoch. This will reduce
computation time as well as reduce the risk of getting stuck in local minima. [10].

Feed forwarding
Inference (prediction) and training both use the same feed-forward algorithm. Let’s then assume that we
have generated a network. The network initializes the weights and biases usually with normal or uniformly
distributed values, that can later be adjusted. The procedure is to send the data through the network,
weighting each connection according to the neural network’s architecture, and produce an output. The
procedure can be summarized in the following steps[10]:

• The data is received by the input nodes in the network for each feature.

• Each input node weights the data value according to the connection of each node in the next layer.

• Every node in the hidden layers sums the weighted data values and adds the bias associated to the
given node. The resulting number is denoted as z.

• This value z is then sent through an activation function σ, which produces the output of the node,
denoted as a = σ(z).

• This process is repeated for each hidden layer, and it is important to note that the number of nodes in
the hidden layers is not dependent on the number of features in the original dataset.

• The last hidden layer then sends the activated values to the output layer, where the number of nodes
and choice of activation function depends on the problem to solve.

Mathematically this is expressed as follows:

zl
j =

nl−1∑
i=1

wl
ijal−1

i + bl
j , al

j = σl(zl
j), (1.2)

where l is the layer index, j is the node index, and i is the index of the node in the previous layer, and l 6= 1,
as it is not used on the input layer.

Backpropagation
The way neural networks learn is conventionally by the use of the backpropagation algorithm, first proposed
by Rumelhart et al[13]. This is a bit misleading, as the backpropagation algorithm actually only refers to
how to compute the gradient with respect to the weights at each unit[11]. The algorithm allows us to alter
the weights and biases such that we get an ideal output. Assuming a cost function C, we can calculate the

https://www.jeremyjordan.me/content/images/2018/02/Screen-Shot-2018-02-24-at-11.47.09-AM.png
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gradient ∇w,bC, and use this to back propagate the error correction from the last to the first layer. The
gradient ∇w,bC comprises two derivatives.

∇w,bC =
(

∂C

∂wl
i,j

,
∂C

∂bl
j

)
.

We have to use the chain rule to calculate the derivatives, and using that the last layer is l = L, we get the
derivative with respect to the weights as

∂C

∂wL
i,j

= ∂C

∂aL
j

∂aL
j

∂zL
j

∂zL
j

∂wL
i,j

,

where

aL
j = σ(zL

j ), zL
j =

nL−1∑
i=1

wL
i,jaL−1

i + bL
j .

This then gives us
∂C

∂wL
i,j

= ∂C

∂aL
j

σ′(zL
j )aL−1

i ,

where we defined that

σ′(zL
j ) =

∂aL
j

∂zL
j

. (1.3)

This derivative is very easy to calculate given a specific cost function and activation function. The derivative
with respect to the bias is given as follows:

∂C

∂bL
j

= ∂C

∂aL
j

∂aL
j

∂zL
j

∂zL
j

∂bL
j

,

which gives us the final expression as
∂C

∂bL
j

= ∂C

∂aL
j

σ′(zL
j ).

We will now introduce a new notation, a local gradient commonly called the ”error”. It reflects how the rate
of change of the cost function depends on the j’th node in the l’th layer.

δl
j ≡

∂C

∂zl
j

.

Using this we get the following expression:

δL
j = ∂C

∂zL
j

= ∂C

∂aL
j

∂aL
j

∂zL
j

= ∂C

∂aL
j

σ′(zL
j ),

giving us the more compact forms of the derivatives with respect to the weights and biases:

∂C

∂wL
i,j

= δL
j aL−1

i ,
∂C

∂bL
j

= δL
j .

We can now let δl be the vector of all the errors in the l’th layer, and δL be the vector of all the errors in the
last layer. The error in the l’th layer can then be expressed as a matrix equation for the last layer as follows:

δl = ∇aC � ∂σ

∂zL
, ∇aC =

[
∂C

∂aL
1

,
∂C

∂aL
2

, ...,
∂C

∂aL
nL

]T

.

Here � is the Hadamard product (element wise product). This local gradient can now be defined recursively
for the j’th node in a layer l as a function of the local error in the next layer:

δl
j ≡

∂C

∂zl
j

=
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂zl
j

=
∑

k

∂zl+1
k

∂zl
j

δl+1
k . (1.4)
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We also note that

zl+1
k =

nl∑
j=1

wl+1
j,k al

j + bl+1
k =

nl∑
j=1

wl+1
j,k σ(zl

j) + bl+1
k ,

thus the partial derivative is given as
∂zl+1

k

∂zl
j

= wl+1
j,k σ′(zl

j), (1.5)

using the substitution from equation 1.3. This allows us to substitute equation 1.5 into equation 1.4 to get
the following expression:

δl
j =

∑
k

wl+1
j,k σ′(zl

j)δl+1
k . (1.6)

Using this, we can derive a three-step formula for the backpropagation algorithm:

• Compute the local gradient for the last layer, δL.

• Recursively compute the local gradient for the remaining layers, δl for l = L− 1, L− 2, ..., 1.

• Update the weights and biases via gradient descent3 for all layers, l = 1, 2, ..., L, given the learning rate
η as shown below:

wl
i,j ← wl

i,j − ηδl
jal−1

i ,

bl
j ← bl

j − ηδl
j .

1.3 Autoencoders
Autoencoders are a subset of neural networks. Whereas a general neural network in principle can take any
shape, autoencoders are more restrictive. This restrictiveness can in its most general sense be condensed into
the following points:

• Same number of output categories as input categories

• A latent space with smaller dimensionality than the input/output layer

• The autoencoders are trained on their own input, using reconstruction as metric

What we end up with are two funnel shaped parts linked together. The two funnels are called the encoder
(left funnel) and decoder (right funnel) respectively. This architecture is not accidental, but rather designed
with a very specific solution of problems in mind, namely reconstruction. A good example to illustrate this
is image reconstruction, illustrated in figure 1.3. Suppose you have an image, and want to reconstruct it. By
feeding the encoder an image, and comparing the decoder output to the actual image, the autoencoder can
tune itself to recreate the image it trained on.

Regular autoencoder
Mathematically the regular autoencoder is represented accordint to reference [1]. Using the annotations of
each component in figure 1.3 the decoded information is defined as follows

z = gφ(x),

and the reconstruction given as

x′ = fθ(gφ(x)).

To achieve (φ, θ) are the tuneable parameters adjusted according to the loss function. In our case, the
goal is reconstruction without copying4, thus we can use the mean squared error (MSE), given as

LAE(φ, θ) = 1
N

N−1∑
i=0

(
xi − fθ(gφ(xi))

)2
. (1.7)

3In practice one would use gradient descent with an optimizer, such as ADAgrad or ADAM as mentioned in section 1.4
4In some cases one can train the autoencoder to learn the identity matrix, which leads to reconstruction by copying, not

training.
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Figure 1.3: Figure depicting a model for an autoencoder. Here the input x is the original image, x′ is a reconstructed
version of x, gφ is the encoder, fθ is the decoder, and z is the latent space. The term bottleneck here
only refers to the fact that the latent space have fewer nodes than the two funnels on either side. Found
14.01.23 at lilianweng.github.io [1].

Variational autoencoders
Another popular method for reconstruction is the so-called variational autoencoder. The work by Kingman
and Welling [14] showed how one can use the variational bayesian approach for efficient approximate posterior
inference, leading to the use of variational autoencoders. Here, contrary to regular autoencoders, the latent
space is a distribution that can be sampled from. In the context of reconstruction, this means that we want
to create a latent space distribution based on the true distribution in the data, and use this latent space
distribution to then generate data given that latent space.

The variational autoencoder contains two neural networks. The generative model pθ(x|z) is the decoder
of the network and qφ(z|x) is the encoder. One of the ways a variational autoencoder learns is through the
Kullback-Leibler (KL) divergence[15]. The KL divengence is a measure of how one probability distribution is
different from a second reference propability distribution, and is related to the cost function via the marginal
likelihood

log pθ(x(i)) = DKL(qφ(z|x(i))||pθ(z|x(i))) + L(θ, φ; x(i)). (1.8)

Under certain conditions[14] the KL divergencecan be computed analytically, and it can then be showed[14]
that the variational approximate posterior is:

L(θ, φ; x(i)) ' 1
2

J∑
j=1

(
1 + log ((σ(i)

j )2)− (µ(i)
j )2 − (σ(i)

j )2
)

+ 1
L

L∑
l=1

log pθ(x(i)|z(i,l)), (1.9)

where z(i,l) = µ(i) + σ(i) � ε(l) and ε(l) ∼ N (0, I). � is the elementwise product, and N (0, I) is a
normal distribution with the identity as variance. L(θ, φ; x(i)) is then the cost function for the variational
autoencoder.

Figure 1.4 is a graphical representation of a variational autoencoder. The encoder produces a mean and
a standard deviation based on the input data, which then produce a latent space distribution from which the
decoder can sample and produce an output.

Inference
As with the cost function for the autoencoder, the inference evaluation is also done by reconstruction. To
look for anomalies in the data, the reconstruction error will span a range of values, where the lower end
represents events that the autoencoder reconstructed well. The reconstruction error used in the analysis is
defined in equation 1.10

err = log10

[∑
i

(xi − x̃i)2

]
, (1.10)

https://lilianweng.github.io/posts/2018-08-12-vae
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Figure 1.4: Figure depicting a model for a variational autoencoder. Found 14.01.23 here [1].

where x is the input data and x̃ is the output from inference. The distributions produced from the
reconstruction error is key to analyse the performance of the autoencoders.

1.4 Other tools and algorithms
Adaptable moment estimation (ADAM) Optimizer
Stochastic gradient descent, though very useful, lack the ability to adapt to the feature space. One algorithm
that address this issue is the ADAM optimizer[12]. The Adaptable Moment Estimation (ADAM) algorithm
uses stochastic gradient descent, but with an adaptive learning rate. This learning rate is adjusted by
calculating estimates for the first and second moment5. Thus, a large gradient would indicate proximity to a
minimum in feature space, thus a lower learning rate would yield a more accurate result. A small gradient
would suggest far proximity to a local minimum, and thus a larger learning rate would increase the chance of
approaching a minimum.

Activation functions
Several activation functions are used in neural networks, and how one chooses the best combination for a
given problem is not trivial. This often leads to the use of tuning. In bulletlist 1.4 we have the activation
functions used in this thesis, and their mathematical definitions.

1. sigmoid(x) = 1
1+e−x

2. tanh(x) = ex−e−x

ex+e−x

3. ReLU(x) = max(0, x)

4. LeakyReLU(α, x) = max(αx, x)

5. Softmax(xj) = exj∑n

i=1
exi

6. Linear(x) = x

5In statistics the first moment is the expectation value for a distribution, E[X − µ]. The second moment is the expectation
value of the distribution squared, i.e the variance, E[(X − µ)2]

https://lilianweng.github.io/posts/2018-08-12-vae/vae-gaussian.png
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Statistical significance
In the frequentist statistics, the Poisson distribution can be approximated with a Gaussian distribution in
the limit of large number of events[16]. The expression for the expected significance is given then as

Z = s√
b
, (1.11)

where s is the amount of signal, and b is the amount of background. For low statistics we have that the
significance is given as

Z =
√

2
[
(s + b) ln

(
1 + s

b

)
− s
]
. (1.12)

It can be shown that in the limit where s << b, the two expressions are approimately the same[16].
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Chapter 2

The Standard Model and Beyond
Standard Model physics

Figure 2.1: The SM of elementary particles. Source here. Accessed 07.10.22

2.1 Structure and composition of the Standard Model
This section will briefly describe the Standard Model (SM) in a phenomelogical way, as the mathematics
and physical reasoning behind the theory is not of great importance to understand the work, results and
discussions in this thesis. For a more technical explanation, see (Pich, 2008)[17] for a well written paper
containing some more SM fundamentals as well as summarizing the experimental status regarding the SM.
For more mathematical understanding of the SM, Peskin and Schroeder’s ”An introduction to Quantum
Field theory” (Peskin and Schroeder, 1995)[18] is highly recommended. Finally, see Thomson’s ”Modern
Particle physics” (Thomson, 2013) [19] for a very comprehensive and up-to-date book that is easy to read
and understand.

13

https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/1200px-Standard_Model_of_Elementary_Particles.svg.png
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The SM is to physicists what the periodic table is to chemists, and is to this day the most fundamental
description of matter as we know it at the subatomic scale. It comprises two parent class particles, fermions
with half integer spin and bosons with full integer spin. The model contains 6 leptons, 6 quarks, coming
in 3 colors each, 4 gauge bosons mediating the electroweak interactions (γ, W ±, Z0), 8 gluons behind the
strong interaction and one scalar Higgs boson explaining particle masses, all of which are shown in figure 2.1
together with some quantum numbers.

Fermions
The fermions are the building blocks of matter, and contain two types of particles, leptons and quarks. The
up and down quarks form protons and neutrons, which together with electrons form the atoms. Fermions,
unlike bosons, are spin half particles. The fermions are grouped into three so-called families:[

νe u

e− d
′

]
,

[
νµ c

µ− s
′

]
,

[
ντ t

τ− b
′

]
The left column contains the leptons whilst the right column contains the quarks. Within the left column,
the subscripted ν denotes what kind of neutrino that corresponds to the given lepton6. Here, the first family
consists of the electron, the electron neutrino, the up and down quarks. The second family consists of the
muon and the muon neutrino, the charm and strange quarks. The third family consists of the tau and the
tau neutrino, the top and bottom quarks. The masses of these particles increases for each particle in the
matrix as the family number increases, i.e. the muon is heavier than the electron, and the tau is heavier
than the muon, and so on for the other charged fermions. It is not known wether or not the neutrinos follow
this pattern as well due to their very low mass. Below is a table with specific properties of the fermions.

Generation Name Symbol Antiparticle Spin Charge Mass (MeV/c2)
Quarks

1
up u ū 1/2 2/3 2.2+0.6

−0.4

down d d̄ 1/2 −1/3 4.6+0.5
−0.4

2
charm c c̄ 1/2 2/3 1280± 30
strange s s̄ 1/2 −1/3 96+8

−4

3
top t t̄ 1/2 2/3 172100± 600

bottom b b̄ 1/2 −1/3 4180+40
−30

Leptons

1
electron e− ē− 1/2 -1 0.511

electron neutrino νe ν̄e 1/2 0 < 9 · 10−7

2
muon µ− µ̄− 1/2 -1 105.7

muon neutrino νµ ν̄µ 1/2 0 < 0.170

3
tau τ τ̄ 1/2 -1 1776.86± 0.12

tau neutrino ντ τ̄τ 1/2 0 < 15.5

Table 2.1: Table showing properties of all the fermions, including name, symbol, antiparticle, spin, charge, generation
and mass. The masses were found here [2] and [3].

Another mystery regarding the neutrinos is the relation to antiparticles. To each particle corresponds
an antiparticle, i.e. for l− → l+, q → q̄, where the antiparticle and particle are different. With neutrinos
however it is not known whether the neutrinos and antineutrinos are the same particle ν = ν̄ (Majorana
neutrino), or if they are different ν 6= ν̄ (Dirac neutrino).

Quarks are fractional charge particles, with defined charge of either 2/3 or −1/3, as shown in table 2.1.
Among them are the main building blocks of protons and neutrons, the up and down quarks, and are bound
by the strong force, the strongest of the four fundamental forces. The force mediator is the gluon. The other
half of fermions are the leptons. They are split into the charged leptons (electrons, muons and taus), and the
uncharged leptons (neutrinos). The charged leptons can interact via the electroweak force, where the Z, W
bosons as well as the photon can be a mediator. Note that the neutrinos can only interact through the weak
force.

6The d’, s’, b’ weak eigenstates are linear combinations of the mass eigenstates d, s, b.
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Bosons
Bosons are integer number spin particles, with spin 0, 1, 2, .... Within bosons there are so-called elementary
bosons, some of which are force carriers or mediators such as the W ±, Z and the photon. The Higgs boson is
the only elementary scalar boson, but it is not a force carrier. It is the excitation of the Higgs field which
is reponsible for providing masses to the fermions via a process called spontaneous symmetry breaking[17].
Other bosons are so-called composite bosons, such as mesons (qq̄). Baryons (qqq) are fermion particles
constructed from half integer spin quarks. Bosons also have antiparticles, where (γ, g, H0, Z0) are equal to
their respective antiparticle, and the W − →W + are not equal.

Feynman diagrams
A graphical way to understand particle interactions are through Feynman diagrams. Feynman diagrams are
drawn based on the Feynman rules for a given Lagrangian[17][20], and each component can be linked to a
part in the Lagrangian for the system.

e−

e+

µ−

µ+

γ, Z

Figure 2.2: Feynman diagram of muon pair production from electron annihilation. Here, both Z and γ can work as
the propagator.

In figure 2.2 we have a Feynman diagram describing electron-positron annihilation into muon-antimuon
pairs. In this thesis, all diagrams will be interpreted from left to right with positive time direction, i.e. figure
2.2. The diagram contains all the components in the Lagrangian, and arrows, curly lines and so on all have
their own meaning. A straight line with an arrow usually means a fermion, where the direction of the arrow
tells if the particle is a particle(arrow towards the vertex) or an antiparticle (arrow away from the vertex).
There is often also a propagator between the left and right side of the Feynman diagram, and they depend
on the processes we want to study. In the diagram above we have lepton annihilation, thus we can both have
the photon and the Z-boson as a propagator. This process is called a neutral current[17], as the charge is the
same before and after the vertex is 0. There are also so-called charged currents, where the charge is different
before and after the vertex. Note that we only require charge conservation, thus there is nothing wrong with
either having a neutral or a charged current, as long as charge conservation is preserved.

Feynman diagrams are used for both visualizing scatterings, annihilations and decays. An example is
provided in figure 2.3.

µ−

νµ

e−

ν̄e

W −

Figure 2.3: Muon decay into an electron, an electron neutrino and a muon neutrino via the W − boson. Read the
graph from left to right.

In figure 2.3 we have a decay of a muon into an electron and two neutrinos through a charged current. The
examples above in figure 2.2 and 2.3 show interactions with the electroweak force. Quantum chromodynamics
(QCD) is responsible for interactions between quarks and gluons. A strange property of QCD, is that the
coupling constant αS , contrary to the αEM for electromagnetism, gets stronger as the distances decreases.
This is because QCD (and weak interactions) are based on non-abelian groups[18], thus to study such
interactions, one needs to create collisions at very high energies, where αs gets small and pertubation theory
applies.
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Proton-proton collisions

During an interaction between the protons in proton-proton collisions both the quarks and gluons can interact
as shown below:

q

q̄

l−

l+

γ, Z

Figure 2.4: Proton-proton collision with lepton pair production via the Z boson or photon. Read from left to right.

g

g

t̄

t

t

w−

b̄

w+
b

Figure 2.5: Proton-proton collision showing the tt̄ channel. Read from left to right.

In figure 2.4 and figure 2.5 we have two examples of Feynman diagrams of possible interactions in
proton-proton collisions. Figure 2.4 displays a lepton pair production via the Z boson or photon from
quark-antiquark annihilation, and figure 2.5 displays the tt̄ production via gluon-gluon fusion.

Some limitations
Although the SM has had great success comparing predictions with experiments, there are still several
problems not addressed by it. Gravity is one example. The SM as described above cannot incorporate
gravity in a quantized way. There are models that try, without success so far, to address this problem, by
supplementing the SM. Another problem with the SM is a curious property of the weak interaction, namely
that parity is broken. Parity as a mathematical operation is equivalent to the spatial inversion through the
origin[19]:

x→ −x. (2.1)

In other words, parity can be thought of as left-right symmetry, or mirror symmetry. Breaking of parity
is observed in weak currents, where the mediator of the charged currents W ±, only interacts with left-
handed fermions and right-handed antifermions. In the SM, neutrinos are assumed to be massless, and the
righthanded neutrinos are sterile, i.e. they do not interact in the SM.

This asymmetry is strange, and hints towards new physics that perhaps can restore the parity symmetry
at much higher energies. Another note to make is that it has been experimentally verified through observation
of neutrino oscillations that the neutrinos are massive. An upper limit on the mass for the anti electron
neutrino of mν < 0.8eV c2 at 90% confidence level[21]. This is direct experimental evidence that the SM is
wrong, as the tiny masses of the neutrinos are not predicted by the SM.

2.2 Beyond Standard Model (BSM) physics
The approach of using an autoencoder is an attempt to try and detect BSM physics in an as model agnostic
way as possible. This is because there are numerous amounts of possible BSM physics signals some of which
could exist in nature. To test the autoencoder two signals from supersymmetry were used. The testing was
performed only after having trained on SM only background.

Supersymmetry
Supersymmetry is a BSM theory that attempts to solve two problems that the SM has. First we have the
hierarchy problem. As the SM is a perturbative theory, the Higgs mass increases at higher energies. The
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problem is that when you approach higher and higher energies, the Higgs mass goes to infinity, which is
not physical. Supersymmetry solves this problem by introducing a supersymmetric partner to each particle
in the SM. The result is that the contributions to the Higgs mass from fermions and bosons mainly cancel
each other out, thus fixing the hierarchy problem. Another problem we have with the SM is that is does not
have a candidate for dark matter, whereas some supersymmetry models have a dark matter candidate. As
supersymmetry in theory could solve some problems with the SM it is a topic of great interest with both
theoretical and experimental physicists. Still, after two LHC runs supersymmetry has not been observed[22].

To test the autoencoders, two simplified signal models from SUSY were picked up. The chosen signal
samples have a final state with 3 leptons + emiss

T , as the background does. The signal final state is shown
below in figure 2.6.

Figure 2.6: SUSY diagram showing chargino-neutralino prodiction in proton-proton collision. The test samples we
look for with this signal is where the W and Z boson decay leptonically.

Figure 2.6 shows chargino(χ̃±
2 )-neutralino(χ̃0

1) production via proton-proton collisions. The charginos
are the supersymmetric partners to the charged bosons and the neutralinos are the supersymmetric partner
of the neutral bosons (γ, Z0) and the neutral Higgs bosons (h, H0)7. The neutralino is the lightest stable
supersymmetric particle, and is therefor a good candidate for dark matter. The search for these particles
was similarly done by ATLAS in 2021[22].

7Supersymmetry spontaneous symmetry breaking leads to 5 physical Higgs bosons: H0, h0, A0, H±
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Chapter 3

Implementation

This section contains the implementation of the analysis. It provides a description of the ATLAS detector,
the data collection and event selection, feature engineering, machine learning setup, search strategy and
testing setup.

3.1 The ATLAS detector
The ATLAS detector comprises several main components for recording proton-proton collisions. Amongst
them are the muon detectors, the electromagnetic calorimeters, the hadronic calorimeters and the inner
detector. The kinematics and geometry describing the collisions are written below.

Kinematics and detector geometry
Before the data can be analysed, it has to be collected and processed in a detector. The data used in the
work of this thesis are generated from proton-proton collisions in the ATLAS detector at the Large Hadron
Collider (LHC) during the Run 2 period from 2015 to 2018. The ATLAS inner detector itself is contained in
a solenoid field, and the kinematic variables are measured based on the following coordinate system. The
z-axis is defined to go along the center axis of the solenoid, whereas the y-axis points upwards in the detector
and the x-axis radialy outwards from the center axis. This allows for all transverse variables to be defined in
the x-y plane[23]. From this we contruct the azimuthal and polar angles φ and θ, where the azimuthal angle
φ is the angle around the z-axis, and the polar angle θ is the angle from the z-axis, as shown in figure 3.1.

(a) Transverse plane of detector (b) Longitudal plane of detector

Figure 3.1: Spherical coordinate definitions with the azimuthal and polar angles φ and θ. Here figure 3.1a of the
transverse plane shows the z-axis into the paper, where as figure 3.1b of the longitudal plane shows the
positive x-axis going out of the paper. Figure taken from [23].

In figure 3.1 the kinematic variables for proton-proton collisions are described by the energy, rest mass
and momentum, given as E, m, and p = (px, py, pz) respectively. As the particles move with very high energy,

19
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we will use the relativistic four momentum8, given as P = (E, p). We also have that

γ = 1√
1− β2

,

where γ is the Lorentz factor, and β = v
c , which gives us the following definitions for energy E = γm and

momentum p = βγm[23]. From this we can derive the energy momentum formula:

p2 = β2γ2m2

p2 + m2 = m2(β2γ2 + 1)
p2 + m2 = m2γ2

p2 + m2 = E2

E =
√

p2 + m2. (3.1)

It can be shown that the phase space of a particle is given by[24]:

dp = dpxdpydpz = p2dpdΩ = dpzpT dpT dφ, (3.2)

where pz is the momentum along the beam direction, pT is the projected momentum on the transverse
plane, and Ω is the solid angle. An analog to the relativistic longitudal velocity is the rapidity y. To define
this we have that the relativistic generalization of equation 3.2 is given by:

d4pδ(E2 − p2 −m2) = dp 1
E

= pT dpT dφdy, dy = dpz

E
.

Using the fact that p =
√

p2
T + p2

z and equation 3.1 we can integrate dy to get the rapidity:∫
dy =

∫
dpz√

p2
T + p2

z + m2

y = cosh−1

(
E√

p2
T + m2

)
(3.3)

For particles with little to no mass relative to the transverse momentum, we have that p2
T + m2 ≈ p2

T

where pT = E sin (θ), which gives us the following relations:

cosh(y) = 1
sin(θ) ,

sinh(y) = 1
tan(θ) ,

tanh(y) = cos(θ).

which can be used to show that e−y = tan θ
2 . From this we define the pseudorapidity η as:

η = − ln
(

tan θ

2

)
, (3.4)

which is, in the relativistic limit, the same as the rapidity y. A useful property of the pseudorapidity is that
the phase space of a single particle is uniformly distributed for both η and φ, making them good features for
controls and verification of SM MC.

Data collection
The features in the dataset used in this analysis are computed with or fetched from the quantities measured
from the detector itself. Such measured properties include the momentum, energy, angles etc., all of which are
either measured or computed based on the measurements in the detector. In figure 3.2 a visualization shows
how different particles move through the detector and how they are detected. For example, energy deposits

8In special relativity, four momentum is used as both energy and momentum are conserved, and thus by creating the four
momentum, you achieve a Lorentz invariant quantity[19].
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Figure 3.2: Figure describing how particles are detected at ATLAS, fetched from ATLAS detector slice (and particle
visualisations), by Sascha Mehlhase [25] .

are measured using electromagnetic and hadronic calorimeters, specifically designed to efficiently measure
the energy of all particles interacting through the electromagnetic and strong interactions, respectively.
Charged particles leave tracks in the inner tracking device. Thus, electrons leaves tracks in the inner tracker
and deposit energy in the electromagnetic calorimeter, muons pass through the muon spectrometer leaving
electrical signal and momentum and energy of a muon is then based on the curvature of the track of the
muon in the muon detector. Between the calorimeters and the muon detector there is another magnetic
field to help on the measure of the muons. Photons only deposit energy in the electromagnetic calorimeter.
Hadrons such as protons and neutrons deposit energy in the hadronic calorimeters, and charged hadrons also
leaves tracks in the inner tracker. This is shown in figure 3.2.

The ATLAS detector has a few selection stages before the data is stored. In order to reach the highest
intensity of collisions, the LHC accelerates packets of around 1011 protons, and collides each batch every 25
nanoseconds, yielding a collision rate of 40 MHz[26].

Data preparation

During data recording at the ATLAS detector, triggers on the hardware and software level select out the
events9 that are of most interest. Most of the intitial collisions are discarded with about 1 in 40000 events
being accepted. This is because the amount of recorded events simply are too high to realistically analyse
and store. Also, most of the events are of no interest for BSM searches anyway as they do not yield massive
particles. There are therefor no large deposits of energy or tracks with high transverse momentum. Instead,
these collision fragments leave the interaction region with very small angles between their trajectory and the
beam pipe.

Once the trigger selection is done, the data is reconstructed. This means that the objects in the recorded
events are being reconstructed into particles like jets and photons using advanced software algorithms. The
reconstruction is done based on the tracks and measurements in the detector, but it is not perfect, and can
lead to fake leptons or jets. By fake, it is meant that an object might look like a lepton but is in reality a jet
or vice versa[27]. Once the reconstruction is done, further slimming of the data is done. Derivations are
slimmings of the data where the selection of events are further reduced to match the needs of the different
analysis groups.

The simulated data go through parts of the same process as the recorded data from ATLAS. These events
are first generated by software that simulates the initial interaction and then run through the detector to
simulate the interaction of the particles with the detector and the resulting production of digital signals.

9An event here is defined as a collision recorded and reconstructed.

https://cds.cern.ch/record/2770815
https://cds.cern.ch/record/2770815
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Since these signals mimic the real detector signals, the events can be reconstructed and go through derivations
just like the proton-proton collision data, and then be used in analysis.

Figure 3.3: Figure describing the steps to take for data collection at ATLAS, fetched from Hybrid ATLAS Induction
Day + Software Tutorial workshop, part Computing and Data preparation, initially drawn by Dr. James
Catmore, later held by S.M Wang [26].

Jets

Photons and electrons are detected in the electromagnetic calorimeter, and are easy to track and detect
as they separate easily. Quarks, however, are bound by QCD and thus cannot be seperated as individual
particles. An illustration of how quarks and gluons materialise as jets during a proton-proton collision is
shown below in figure 3.4.

In a proton-proton collision, the quarks and gluons form stable or unstable hadrons such that the color
confinement is upheld[28]. These particles then decay to other stable hadrons that can be tracked, and
these collimated tracks and energy deposits are called jets. The jets are defined through complex algorithms.
Another point to make is that some quarks yield more information than others. Using the properties of
heavy quarks such as the b- and c-quarks and their non-negligible lifetime allows us to differentiate jets
containing these quarks from jets only consisting of light quarks. The b-jet coming from a b quark are
particularly interesting as they are produced in the decay of top quarks. The Higgs can be produced from,
and in association with, top-quarks. The behavior of hadrons containing b-quarks may be indirectly sensitive
to BSM physics as well.

https://indico.cern.ch/event/1159574/timetable/?view=standard
https://indico.cern.ch/event/1159574/timetable/?view=standard
https://indico.cern.ch/event/860971/contributions/3672974/attachments/1972049/3280896/Atlas_computing_data_preparation_jan20.pdf
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Figure 3.4: Figure describing how quarks and gluons are treated in the detector, and thus why we name them jets,
fetched from the CMS webpage.

3.2 ROOT
ROOT is an open-source data analysis framework used in high energy physics. It can do fast data manipulation,
save and access data, create graphics for publication, and even combine with high level languanges such as R
and Python.

RDataFrame
RDataFrame’s main purpose is to make reading and handling of ROOT files easier, especially in relation to
modern machine learning tools and their respective frameworks and environments. This is done by creating
a dataframe type of structure of the ROOT n-tuples, and then lazily10 apply contraints to the data. Using
PyROOT 11, RDataFrame can be accessed in Python, as the functionality is wrapped around a C++ class.
Below is a code example of how to create a RDataFrame object, apply a cut and then create a column for
later use. Here, good leptons are defined first, denoted as ”ele_SG” and ”muo_SG”. A cut is then applied
where we require that the number of good leptons is always 312. Finally, a column is created where the
combination of type of leptons in the 3 lepton system is stored, as well as creating a histogram containing the
results for that given channel13 k. Notice here that if the variable already exists as a column in the dataframe,
arithmetic and logic can be applied directly using those columns to create new one. More complicated
variables, such as the flavor combination for the leptons, or the invariant mass of two particles must be found
or calculated using C++ functions. An example of such a C++ function is shown in code example 3.5.

In the code example 3.5 we see how RDataframe can be used for event selection. Line 1-9 are settings for
ROOT, number of threads to use in the paralellization, extra helper functions written in C++ with .h and
.so files and the path to the folder. Lines 11-13 create a dictionary containing the ROOT RDataFrames used
for event selection. These are categorized by channel name. The loop on line 15 does event selection for
each channel sample, defining new variables in the RDataFrame, applying filters and creating histograms.
Some variables are constructed using variables already in the ROOT files such as energy and mass. Through
custom C++ functions these properties can be added to the RDataFrames. Code example 3.6 shows a
custom C++ function which is used in work of this thesis.

This C++ function creates Lorentz vectors for two particles, and then returns the invariant mass based
on the parameters sent in. This function will be used on all the leptons in a given event. If one particle or
both do not exist, the C++ function will return zero as the invariant mass14.

Once the event selection is done, the features have been chosen and histograms have been drawn, the
RdataFrame can be converted to a Pandas dataframe. This is a very popular choice for data structure when
performing data analysis in python. This is done through an intermediate step of converting the RDataframe

10In this context lazily means that the functions and or cuts are done first after all have been registered, see ROOT guidelines
for more.

11PyROOT website
12Final states with two leptons present wre also analysed
13A channel here refers to a certain decay channel. The simulations of the SM is divided into several channels, and some look

more alike than others. One example is the Higgs decay channel, with possible decays such as two photons, W bosons or Z
bosons. This pertains to simulated events only, as we cannot control what decay channels we get in the data recorded at ATLAS

14The invariant mass function getM is used for jet-jet, jet-lepton and lepton-lepton invariant masses

https://cms.cern/sites/default/files/field/image/Sketch_PartonParticleCaloJet.png
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://root.cern/manual/python/
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1 import ROOT as R
2
3 R.EnableImplicitMT(200) # Enable multithreading, sets number of threads to 200 or the highest

number possible if the number of threads is less than 200
4 R.gROOT.ProcessLine(".L helperFunctions.cxx+") # Load the C++ helper functions in ROOT

interpreter
5 R.gSystem.AddDynamicPath(str(dynamic_path)) # Add the path to the library with the helper

functions to the ROOT interpreter
6 R.gInterpreter.Declare(
7 '#include "helperFunctions.h"'
8 ) # Header with all helper functions
9 R.gSystem.Load("helperFunctions_cxx.so") # Library with the myFilter function

10
11 df_mc = getDataFrames(mypath_mc) # Function to create a dictionary of RDataFrames for each

channel in the SM MC and possible signal samples
12 df_data = getDataFrames(mypath_data) # Function to create a dictionary of RDataFrames for ATLAS

data
13 df = {**df_mc, **df_data} # Combine the two dictionaries
14
15
16
17 for k in df.keys(): #* Loop over all channels, i.e [Zeejets, ttbar, data15, ...]
18
19 # Define "good" electrons
20 df[k] = df[k].Define(
21 "ele_SG",
22 "ele_BL && lepIsoLoose_VarRad && lepTight && (lepD0Sig <= 5 && lepD0Sig >= -5)",
23 )
24 # Define "good" muons
25 df[k] = df[k].Define(
26 "muo_SG",
27 "muo_BL && lepIsoLoose_VarRad && (lepD0Sig <= 3 && lepD0Sig >= -3)",
28 )
29 # Define "good" leptons based on good electrons and muons
30 df[k] = df[k].Define("isGoodLep", "ele_SG || muo_SG")
31
32 #* Number of good leptons
33 df[k] = df[k].Define(
34 "nlep_SG", "ROOT::VecOps::Sum(ele_SG)+ROOT::VecOps::Sum(muo_SG)"
35 )
36
37 #* Require exactly 3 good leptons
38 df[k] = df[k].Filter("nlep_SG == 3", "3 SG leptons")
39
40 #* Define flavor combination based on leptons available
41 df[k] = df[k].Define("flcomp", "flavourComp3L(lepFlavor[ele_SG || muo_SG])")
42
43 #* Histogram with the flavor combinations
44 histo[f"flcomp_{k}" ] = df[k].Histo1D(
45 (
46 f"h_flcomp_{k}",
47 f"h_flcomp_{k}",
48 len(fldic.keys()),
49 0,
50 len(fldic.keys()),
51 ),
52 "flcomp",
53 "wgt_SG",
54 )
55

Figure 3.5: Example of event selection done using RDataFrame. Four example features are created here, the ”good
electrons”, ”good muons”, ”good leptons” and flavor combination of leptons. Then a filter is applied
to the RDataFrame structure, and finally a histogram is created. In section B.1 it is shown how to
implement the Rapidity-Mass matrix from section 3.4 in event selection.

to a numpy filestructure, which then can be converted to a Pandas[29] dataframe or some other framework.
The new Pandas dataframes are stored as HDF5[30] files to be used later. This is because the HDF5 format
has a very good compression ratio, and is very fast to read and write.
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1 double getM(VecF_t &pt_i, VecF_t &eta_i, VecF_t &phi_i, VecF_t &e_i,
2 VecF_t &pt_j, VecF_t &eta_j, VecF_t &phi_j, VecF_t &e_j,
3 int i, int j)
4 {
5 /*
6 Calculates the invariant mass between two particles.
7 If the particles are not found, or the index is out of range,
8 function returns zero, else returns the invariant mass.
9 */

10
11 const auto size_i = int(pt_i.size());
12 const auto size_j = int(pt_j.size());
13
14 if (size_i == 0 || size_j == 0){return 0.;}
15 if (i > size_i-1){return 0.;}
16 if (j > size_j-1){return 0.;}
17
18 TLorentzVector p1;
19 TLorentzVector p2;
20
21 p1.SetPtEtaPhiM(pt_i[i], eta_i[i], phi_i[i], e_i[i]);
22 p2.SetPtEtaPhiM(pt_j[j], eta_j[j], phi_j[j], e_j[j]);
23
24 double inv_mass = (p1 + p2).M();
25
26 return inv_mass;
27 }

Figure 3.6: Example of a C++ function used in event selection. This function is used to calculate the invariant
mass between two particles. It takes the kinetic parameters for both particles and the index for which
of the leptons available to compute for. If the particles do not exit for that event, it returns zero.

1 import pandas as pd
2
3 def Convert_RDF_to_numpy(df, PATH_TO_STORE):
4
5
6 cols = df.keys()
7
8 for k in cols:
9

10 print(f"Transforming {k}.ROOT to numpy")
11 numpy = df[k].AsNumpy(DATAFRAME_COLS) #* DATAFRAME_COLS is a list of columns to be

converted to a numpy array
12 print(f"Numpy conversion done for {k}.ROOT")
13 df1 = pd.DataFrame(data=numpy) #* Convert to pandas dataframe
14 print(f"Transformation done")
15
16 #* Convert to HDF5
17 df1.to_hdf(
18 PATH_TO_STORE + f"/{k}_3lep_df_forML_bkg_signal_fromRDF.hdf5", "mini"
19 )
20
21 #* Flush memory for new dataframe
22 df1 = pd.DataFrame()

Figure 3.7: Loop converting RDataFrames to NumPy structures, before being stored as HDF5 files. Her df [k] is a
dictionary containing each channel, with channel name as key.

3.3 Background samples
To look for anomalies in the 2 or 3 lepton final states we need to train on background Monte Carlo samples
with that specific final state. This means in a sense that we want the autoencoder to learn what is expected
from the SM in terms of this final state. The 2 and 3 lepton + emiss

T background Monte Carlo contains the
following channels:

Below are three Feynamn diagrams, two of which are both represented in the 2 and 3 lepton + emiss
T

background MonteCarlo shown in table 3.1. The selected ones are likely Feynman diagrams for tt̄, Higgs and
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3 lepton + emiss
T 2 lepton + emiss

T

Channel names:
Wjets Wjets
ttbar ttbar

Singletop Singletop
ZeeJets ZeeJets

ZmmJets ZmmJets
ZttJets ZttJets
Higgs Diboson

Triboson
TopOther
Diboson2L
Diboson3L
Diboson4L

Table 3.1: SM MC channels for both the 2 and 3 lepton + emiss
T final state background.

Zeejets channels. The tt̄ process shown in figure 3.8 leads to two leptons + emiss
T from the W-decays, as well

as to two b-jets. One jet can be mis-identified as a lepton.

g

g

t̄

t

t

w−

b̄

w+
b

Figure 3.8: Proton-proton collision showing the tt̄ channel. Here the w bosons decay leptonically and one or more
jets can be misreconstructed as fake leptons by the detector.

The Higgs process in figure 3.9 can lead to four leptons. One or two leptons can be misidentified and
therefor constitute a background for the 2 lepton + emiss

T or 3 lepton + emiss
T analyses.

g

g

t̄

t

H

Z

Z

Figure 3.9: Proton-proton collision showing the Higgs channel. Here the Z bosons decay leptonically, leading to a
four lepton final state.

The Z + jets process in figure 3.10 can lead to two leptons and two b-jets. If one or both of the jets are
fakd as leptons, the process constitutes a source of background for the 3 lepton + emiss

T or 2 lepton + emiss
T

analysis.
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Figure 3.10: Proton-proton collision showing the Zeejets channel. Here one of the Z bosons decay leptonically and
the gluon decays hadronically.

3.4 The dataset features
The Rapidity-Mass matrix (RMM)
Most of the features in the analysis are elements in the Rapidity-Mass matrix (RMM) inspired by the work
of Chekanov [31]. The RMM is a convenient structure to create a feature space for the dataset. It contains
information of various reconstructed objects and their combinations about mass, rapidity, momenta and
missing transverse energy, all of which are useful in searches for new physics in HEP[32]. One example of
an analysis that has used some features from the RMM is demontrated in [33]. The main reason however
for using this structure is the systematic layout and automated feature space, that maintains low to no
correlation between the cells in the matrix, which is optimal when using neural networks.

The RMM is determined as a square matrix of 1 +
∑T

i=1 Ni columns and rows, where T is the total
number of objects (i.e. jets, electrons etc.), and Ni is the multiplicity of a given object. In the case where
the multiplicity of a particle is equal to the number of different particles, we can denote the RMM matrix as
a TmNn matrix, where m is the number of objects, and n is the multiplicity of each object. One should
already here choose appropriately the number of objects and the multiplicity of each, as the computation
time increases significantly when expanding the RMM. Each cell in the matrix contains information about
either single or two particle properties. It is also important to remember that each event gets its own RMM,
therefor each event creates its own signature that the autoencoder hopefully can learn trends from. An
example of a small RMM is shown in matrix 3.5.

emiss
T mT (j1) mT (j2) mT (e1) mT (e2)

hL(j1) eT (j1) m(j1, j2) m(j1, e1) m(j1, e2)
hL(j2) h(j2, j1) δeT (j2) m(j2, e1) m(j2, e2)
hL(e1) h(e1, j1) h(e1, j2) eT (e1) m(e1, e2)
hL(e2) h(e2, j1) h(e2, j2) h(e2, e1) δeT (e2)


(3.5)

In matrix 3.5 we have the RMM matrix for a T2N2 system, in other words we have two types of objects,
jets 15 and electrons, and for each object we consider a multiplicity of two. The matrix itself is partitioned
into three parts. The diagonal represents energy properties, the upper triangle represents mass properties
and the lower triangle represents longitudal properties related to rapidity. The diagonal has three different
properties, emiss

T , eT and δeT . emiss
T is placed in the (0, 0) position in the matrix. It accounts for the

missing transverse energy of the system, which is of high interest for analyses in searches for BSM physics
such as heavy neutrinos or supersymmetric particles. eT is the transverse energy defined as

eT =
√

m2 + p2
T (3.6)

but for light particles such as electrons, this can be approximated to eT ≈ pT . δeT is the transverse energy
imbalance. It is defined as

δeT = ET (in−1)− ET (in)
ET (in−1) + ET (in) , n = 2, ..., N, (3.7)

where in is the nth entry of object i. The first column in the RMM matrix, except the first element, is related
to the longitudal property of the given particle. It is defined as

hL(in) = C(cosh (y(in))− 1).
15Jets here can both be b- or l-jets. Ljet is defined as jets with jetdl1r < 0.665, whereas bjet77 is defined as jets with

jetdl1r>=2.195. jetdl1r is a machine learning output from a network trained to distinguish b- and ljets.
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C is a constant to ensure that the average hL(in) values do not deviate too much from the ranges of the
invariant masses or the transverse masses, found to be 0.15, as it ensures that rapidity ranges in the range
[−2.5, 2.5] produces hL(in) values in the [0, 1] interval[31]. y(in) is the rapidity of the particle, and in is the
particle number. In the lower triangle we have the longitudal properties of the combinations of particles.
Similar to hL(in), this property is defined as

h(in, jk) = C(cosh (∆y)− 1),

where ∆y = yin − yjk
is the rapidity difference between particle in and jk.

Tabular and sparse data
A consequence of using the RMM structure is that the RMM for the data and SM MC can be sparse for
some events. This is due to the fact that the RMM allows for the variety of final states of the reconstructed
events, i.e. that one event has two ljets, zero bjets, one electron and two muons, whereas another event can
have four ljets, three bjets and three electrons. This means that the non-zero elements of the RMM wil vary
from event to event, and for neural networks this is a problem. To solve this problem, Chekanov simply pads
the missing values with zeros[31].

Standard Model Monte Carlo and data comparison
Before we can start the analysis, we need to compare the SM MC and data. This is done to ensure that
the measured features used are well modelled by the SM MC training samples we use. As described by
R. Stuart Geiger et al. [34], the concept of ”Garbage in, garbage out” is of key importance in computer
science, and is indeed important in high energy physics. To ensure that the models we train actually learn
physical processes, the training set must closely resemble the data. The SM MC simulations are indeed very
good, but they are numerical approximations and can sometimes be off. Thus, every feature that will be
used for training must be checked before being used. This is done by comparing the distributions of the
features in the SM MC and ATLAS data. Monte Carlo simulations are based on the actual theory itself, and
comparisons with data taken from ATLAS and other detectors alike are neccesary to ensure that the SM
background events look like data. This is done by creating control regions were there with high confidence is
no signatures of New Physics. This of course becomes problematic if the New Physics are embedded in the
background.

Now, if we compare all SM MC and ATLAS data, we would usually expect there to be a good agreement.
To ensure that the SM MC actually represents the physics, we create signal and background regions to
optimize for amount of signal and amount of background. If we can create a background region where we
believe with very high certainty that only SM processes can occur, and we get a good match, we usually
conclude that the SM MC is good enough. Since the data from ATLAS used in the work for this thesis has
been thoroughly analysed for New Physics without finding any, it is not needed here to create these control
regions. Traditional searches using rectangular cuts have only excluded some models, which is why machine
learning is getting more popular. The hope is that the signal, whatever it might be, can be revealed with
more clever feature engineering and smart machine learning algorithms. Particle physics differs here from
more day-to-day machine learning as the recorded data from ATLAS, the true data, is completely unlabeled.

In figure 3.11 two features have been selected to vizualize the comparison between SM MC and ATLAS
data, emiss

T and m(ele0, ele1) in the 3 lepton + emiss
T dataset16. The emiss

T and m(ele0, ele1) shows a ratio
between SM MC and ATLAS data reasonably close to 1, thus we can safely move forward with the analysis. All
features were checked, and can be found in the GitHub repository for this thesis at Figures/Histo_var_check17

under the 3lep folder. 
Similar checks were done for the 2 lepton + emiss

T dataset. In figure 3.12 the features emiss
T and m(ele0, ele1)

do not satisfy the same ratio between SM MC and ATLAS data, as with the 3 lepton + emiss
T case. It appears

that RDataframe struggles with some diboson events, leading to a discrepency. This could be a trigger
matching issue or an issue with RDataFrame. The samples were run using both C++ ROOT event selection
and RDataFrame by one of the supervisors, and the issue seems to only occure with RDataFrame. Therefor
all results regarding the 2 lepton + emiss

T dataset should be interpreted with this in mind. One attempt can
be shown in figure 3.12b where a cut on the invariant mass above 70 GeV of at least the two leptons with the
highest energy was done to try to acommodate the trigger issue. There is some improvement needed, but we
proceded with the dataset, keeping a cut on the leading lepton pair invariant mass > 70 GeV. All features

16Full treatment of systematic uncertainties, which is beyond this work, covers for the apparent deviations between MC and
data.

17Full link: https : //github.com/Gadangadang/MasterT hesis/tree/main/F igures/histo_var_check/LEP 3

https://github.com/Gadangadang/MasterThesis/tree/main
https://github.com/Gadangadang/MasterThesis/tree/main/Figures/histo_var_check/LEP3
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(a) Missing transverse energy for the three lepton final state in GeV. The
histogram contains the entire Run 2 dataset.
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(b) Invariant mass for the first and second electron in GeV. The histogram
contains the entire Run 2 dataset.

Figure 3.11: Comparison of the Monte Carlo and data for the three lepton + emiss
T final state with the features

emiss
T and flavor composition.

were checked, and can be found in the GitHub repository for this thesis at Figures/Histo_var_check18 under
the 2lep folder.

18Full link: https : //github.com/Gadangadang/MasterT hesis/tree/main/F igures/histo_var_check/LEP 2

https://github.com/Gadangadang/MasterThesis/tree/main
https://github.com/Gadangadang/MasterThesis/tree/main/Figures/histo_var_check/LEP2
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(b) Invariant mass for the first and second electron in GeV. The histogram
contains the entire Run 2 dataset. Note the sharp reduction of events
from 10-70 GeV.

Figure 3.12: Comparison of the SM MC and data for the 2 lepton + emiss
T final state with the features emiss

T and
flavor composition. In figure 3.12b a cut on the invariant mass above 70 GeV of the leading lepton
pair. In some cases the first and second electron are not the leading pair, thus there will be some
events in this histogram below 70 GeV.

Triggers

The triggers used in the 2 lepton + emiss
T and 3 lepton + emiss

T dataset are datasets are shown in Table 3.2,
3.3, 3.4 and 3.5 for the 2015, 2016, 2017 and 2018 data taking periods.
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Name

2015

HLT_2e15_lhvloose_nod0_L12EM13V H

HLT_2e12_lhloose_L12EM10V H

HLT_2mu10
HLT_mu18_mu8noL1
HLT_e17_lhloose_mu14
HLT_e7_lhmedium_mu24

Table 3.2: Triggers used in the 2015 SM MC and ATLAS data samples for the 2 lepton 0 emiss
T dataset.

Name

2016

HLT_2e15_lhvloose_nod0_L12EM13V H

HLT_2e17_lhvloose_nod0
HLT_2mu10
HLT_2mu14
HLT_mu20_mu8noL1
HLT_mu22_mu8noL1
HLT_e17_lhloose_nod0_mu14
HLT_e24_lhmedium_nod0_L1EM20V HI_mu8noL1
HLT_e7_lhmedium_nod0_mu24

Table 3.3: Triggers used in the 2016 SM MC and ATLAS data samples for the 2 lepton 0 emiss
T dataset.

Name

2017

HLT_2e17_lhvloose_nod0_L12EM15V HI

HLT_2e24_lhvloose_nod0
HLT_2mu14
HLT_mu22_mu8noL1
HLT_e17_lhloose_nod0_mu14
HLT_e26_lhmedium_nod0_mu8noL1
HLT_e7_lhmedium_nod0_mu24

Table 3.4: Triggers used in the 2017 SM MC and ATLAS data samples for the 2 lepton 0 emiss
T dataset.

Name

2018

HLT_2e17_lhvloose_nod0_L12EM15V HI

HLT_2e24_lhvloose_nod0
HLT_2mu14
HLT_mu22_mu8noL1
HLT_e17_lhloose_nod0_mu14
HLT_e26_lhmedium_nod0_mu8noL1
HLT_e7_lhmedium_nod0_mu24

Table 3.5: Triggers used in the 2018 SM MC and ATLAS data samples for the 2 lepton 0 emiss
T dataset.

Each trigger is designed to detect certain base expectations in the detector, for example reconstructed
leptons. In the tables above, the triggers are laid out, showing which were used for a given data taking
year. For a more in-depth understanding of trigger, it is recommended to look at the ”Performance of
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the ATLAS Trigger System in 2015” paper[35], as well as the paper for the electron and photon triggers
paper[36] and the muon trigger paper[37]. The most important thing to note about these triggers is that
the second argument in the trigger, in other words the component after ”HLT_” indicates the leptons and
their transverse momentum criteria. The trigger ”HLT_2mu14” requires two reconstructed muons with a
transverse momentum of at least 14 GeV to be triggered for a given event. The other components in some
other triggers are more complicated, and describe reconstruction quality working points and more.

For the 3 lepton + emiss
T final state, applying the trigger system on the data did not work as expected,

thus a simple cut of requiring at least two leptons with a pT above 20 GeV was implemented. Note that
further triggers would refine the dataset even more.

3.5 Code implementation
Machine learning implementation
The machine learning analysis was written with Keras[38] using the Tensorflow api[5]. The machine learning
structure was written using a functional structure19. In practice, this model could just as well have been
written as a Sequential model20, but at a cost of flexibility and lack of the possibility for creating non-linear
structure in the architecture. The code consists of one general class for the autoencoder, where the different
testing cases are different classes inheriting from the parent class.

Construction of a neural network in Tensorflow
Using the functional structure, a general neural network in the Tensorflow API can be constructed as shown
in code example 3.13.

1 import tensorflow as tf
2
3
4 inputs = tf.keras.layers.Input(shape=data_shape, name="input")
5
6 # First hidden layer
7 First_layer = tf.keras.layers.Dense(
8 units=30,
9 activation="relu"

10 )(inputs)
11
12 # Second hidden layer
13 Second_layer = tf.keras.layers.Dense(
14 units=45,
15 activation="relu"
16 )(First_layer)
17
18 # Second hidden layer
19 output_layer = tf.keras.layers.Dense(
20 units=1,
21 activation="sigmoid"
22 )(Second_layer)
23
24
25 # Model definition
26 nn_model = tf.keras.Model(inputs, output_layer, name="nn_model")
27
28 hp_learning_rate = 0.0015
29 optimizer = tf.keras.optimizers.Adam(hp_learning_rate)
30 nn_model.compile(loss="mse", optimizer=optimizer, metrics=["mse"])

Figure 3.13: Functional structure for Tensorflow neural network.

The neural network in the code above contains one input layer, one hidden layer and an output layer.
The choice of nodes and activation functions are arbitrary here as the use case has not been defined. Note
that code example 3.14 is exactly the same as code example 3.13, but using the sequential structure.

19Functional structure uses a function call for layers, i.e. for layers a, b, then b(a) will connect the two layers, and equals a
sequential link a → b. This allows for more flexible structures. More on the functional api can be found here.

20Sequential structure adds layers in sequence, i.e. for layers a, b, c we have that a → b → c, with a strict structure. This
allows for more organized code. More on sequential models can be found here.

https://www.tensorflow.org/guide/keras/functional
https://www.tensorflow.org/guide/keras/sequential_model
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1 import tensorflow as tf
2
3 nn_model = tf.keras.Sequential(
4 [
5 tf.keras.layers.Dense(30, activation="relu", input_shape=data_shape),
6 tf.keras.layers.Dense(45, activation="relu"),
7 tf.keras.layers.Dense(1, activation="sigmoid"),
8 ]
9 )

10
11 hp_learning_rate = 0.0015
12 optimizer = tf.keras.optimizers.Adam(hp_learning_rate)
13 nn_model.compile(loss="mse", optimizer=optimizer, metrics=["mse"])

Figure 3.14: Sequential structure for Tensorflow neural network.

Data handling python side
Implementation of the RMM matrix

Examples of RMM matrices used in this thesis are shown in figure 3.15.
The two RMM matrices in figure 3.15 are created from two different channels in the MC samples. This

RMM is of type T4N521. For easier interpretability, the gray area corresponds to a missing value, leading to
so-called ”islands” in the RMM matrix. Note here that the y-axis for the RMM’s lack every other label, due
to lack of space in the y-axis of the plot. If looked more closely upon, one can see that each figure has all
RMM cells, just that the labels, which are identical to the x-axis label, only show for 1, 3, 5, ... The RMM
plots were created using Plotly[39].

Setup for 3 lepton dataset

The 3 lepton dataset is about 96 GB of data or cirka 381873 events when implementing the RMM structure
for 6 b- and ljets, 5 electrons and 5 muons. The dataset is converted from a ROOT N-tuple using RDataframe
to a Pandas dataframe[29] for further preprocessing. Having added the channel name column22, weights,
trilepton mass23 as well as the RMM structure, the datasets are divided into a training and a validation/test
set in an 80-20 split24. The split was done using the train_test_split() function from the Scikit-learn
library[40]. Then the data and SM MC was scaled using the MinMax scaler via the ”.fit_transform()”
and ”.transform()” functions from the Scikit-learn library. The training and validation/test set are then
converted to numpy arrays[41] for faster loading and easier indexing, and saved as ”.npy” files. This allows
for faster reuse of the arrays.

Setup via iterative training for 2 lepton dataset

The two lepton dataset contains about 1.5 - 2 TB of data or about 119291900 events when implementing the
RMM structure for 6 b- and ljets, 5 electrons and 5 muons, as for the 3 lepton dataset. This is too much
to hold in memory at the same time, thus it had to be split into several smaller datasets, called megasets.
Figure 3.16 visualize the structure used.

Pandas is not built for very large datasets since it is not running in a parallalized way. To handle this,
the library Polars25 [42] was used instead. When all channels were split, a merging was done combining
all the channels in a given megaset to a separate dataset. The selection of events from each channel was
done randomly, which is important, as we want to the best of our ability keep the distribution signature of
the entire dataset in each megaset. If not, the model will be biased towards those datasets with the most
events. Once each of the megasets where merged, the training could begin in an iterative fashion. Because
Tensorflow is statically compiled, one cannot call the fit function over and over again. Instead, the weights
trained based on one megaset is stored and reloaded into a new model, thus the weights are still trained on

21T4 → 4 particle types: bjets, ljets, electrons and muons. N5 → 5 particles per particle type. Note here that we have 5
particles only for the leptons, and 6 particles for each of the types of jets, so it is a almost T4N5 matrix.

22This column would in a fully supervised setting be used as a target vector, but in this thesis it will only be used for legends
in histograms and to index out certain channels in the validation and training set.

23Invariant mass of three leptons. This is assured to exist from event selection in the 3 lepton dataset.
2480 percent are resrved for training and 20 percent are reserved for testing/validation. This convention is standard within

the machine learning community.
25Polars uses all available cores on the system and has excellent memory handling capability, see Polars User Guide

https://pola-rs.github.io/polars-book/user-guide/
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(a) RMM matrix for event number 6993776 from the Monte Carlo diboson4L event. Each feature is
scaled based on a fit for that feature for all events in the training set (≈ 80% of total MC). This
event contains two ljets, one electron and two muons.
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(b) RMM matrix for event number 11739638 from the Monte Carlo Higgs event. Each feature is scaled
based on a fit for that feature for all events in the training set (≈ 80% of total MC). This event
contains five ljets, one bjet, one electron and two muons.

Figure 3.15: Two RMM matrices for one diboson4L (3.15a) event and one Higgs (3.15b) event.

the entire set, but in a batch like manner. The implementation used in this thesis is shown in code example
3.17.

3.6 The chosen neural network architectures



3.6. THE CHOSEN NEURAL NETWORK ARCHITECTURES 35

Figure 3.16: Megaset structure for the 2lep dataset. This figure generalises to M channels, and N megasets, where
M and N does not have to be equal. The more you increase the number of megasets, the smaller each
megaset will be in bytesize, but in order to keep the natural distribution in the SM MC distribution,
it is not recommended to make too small sets. In this thesis 10 megasets were created where the
simulated data contained 7 channels.

1 for megaset in range(totmegasets):
2
3 #* Load model
4
5 autoencoder = getModel()
6
7 if megaset != 0:
8 autoencoder.load_weights('./checkpoints/Megabatch_checkpoint')
9

10
11 #* Run Training
12 with tf.device("/GPU:0"):
13
14 tf.config.optimizer.set_jit("autoclustering")
15
16 autoencoder.fit(
17 xtrain,
18 xtrain,
19 epochs=epochs,
20 batch_size=b_size,
21 validation_data=(xval, xval),
22 sample_weight=x_train_weights,
23 )
24
25
26 AE_model.save_weights('./checkpoints/Megabatch_checkpoint')

Figure 3.17: Example code for training a neural network on megasets with Tensorflow.

The regular Autoencoder
Figure 3.18 shows the small autoencoder. It consists of an input and output layer of 529 nodes, with one
latent space layer of 150 nodes. The activation functions for the input is Tanh while the latent space and the
output layer use LeakyReLU with α = 0.3.

Figure 3.19 shows the large regular autoencoder. It consists of an input and output layer of 529 nodes,
with three hidden layers of 450, 300 and 200 nodes, respectively, in the encoder and three hidden layers of
200, 300 and 450 in the decoder, respectively. The activation functions for the input and ouput layers are
the Tanh and LeakyReLU with α = 0.3. The encoder layers have the activation functions Tanh, LeakyReLU
with α = 0.3 and ReLU. The decoder layers have the activation functions ReLU, LeakyReLU with α = 0.3
and Tanh. The latent space has 150 nodes, with the LeakyReLU activation function with α = 0.3. The
activation functions as well as the number of nodes per layer were chosen based on earlier work done on the
ATLAS open data[43], as well as some light hyperparameter testing using Keras-Tuner[44].
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Figure 3.18: Small autoencoder architecture.

Figure 3.19: Large autoencoder architecture.

The variational Autoencoder
Figure 3.20 and 3.21 summarize the two models used for the variational autoencoder.

In figure 3.20 we have the small variational autoencoder. It consists of an input and output layer of
529 nodes, with one latent space layer of 150 nodes sampling from a mean and variance layer of same size.
The activation functions for the input, latent space and output are the Tanh, LeakyReLU with α = 0.3 and
Sigmoid, respectively.

The large variational autoencoder in figure 3.21 consists of an input and output layer of 529 nodes, with
three hidden layers of 400, 300 and 200 nodes respectively in the encoder and three hidden layers of 200, 300
and 400 in the decoder. The activation functions for the input and ouput layers are the ReLU and Sigmoid,
respectively. The hidden layers in the encoder have the activation functions Tanh, ReLU, LeakyReLU with
α = 0.3, respectively. The hidden layers in the decoder have the activation functions LeakyReLU with
α = 0.3, ReLU and Tanh, respectively. The activation functions as well as the number of nodes per layer
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Figure 3.20: Small variational autoencoder architecture.

Figure 3.21: Large variational autoencoder architecture.

were chosen based on earlier work done on the ATLAS open data[43], as well as some light hyperparameter
testing using Keras-Tuner[44].

3.7 The search strategy
The strategy used to look for anomalies in the 3 lepton + missing energy final state is presented here. First,
the SM MC and ATLAS data for training and inference are constructed with the RMM from section 3.4
as features. After scaling and splitting, 80% of the MC will be used for training the neural network, and
the remaining 20% will be used for inference. The reconstruction error from inference will then be used to
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separate the anomalies from background. The hope is that the anomalous events will be skewed towards
higher reconstruction errors.

Standard analyses rely on what is called a signal region. The signal region is a region in the feature space
in which the signal is expected to be enriched. These are often not inspected until all analysis selections are
fixed (”blind” analysis). We use this region to calculate the significance of a result in the search, which is
really the only metric that is of use. The statistical uncertainty and noise is proportional to the amount of
SM MC, thus with lower amounts of SM MC, the better the significance will be. This is a) given that the
signal does not reduce in the same (or more extreme) manner and b) that one does not run out of SM MC
statistics. Because otherwise one does not have any predictive power anymore. Using the reconstruction
error, the autoencoder can create its own signal region, more specifically the areas of high reconstruction
error. By placing a cut at ”high” reconstruction error one can look at e.g. the missing transverse energy or
other features of interest to see if the AE has managed to select events which have anomalous behavior (wrt.
the SM) in these distributions. I.e. the cut on the reconstruction error from the AE replaces the pre-selection
cuts one typically design in an ordinary cut-and-count analysis using traditional kinematic variables.

The signal regions for the regular autoencoder models were created by calculating the median merr of the
reconstruction error. Then, 3 cuts were made, starting at merr + imerr/5 for i = 1, 2, 3. This was a direct
result of the shape of the background reconstruction error being a hill-like shape. The median then became
a good place to start to remove much of the SM MC. This is however just a guess for an optimal signal
region, as the true signal is unknown, and the method has to be as unbiased as possible. There is however
an issue to keep in mind here. The method to find the cut is in some sense based on the slope shape of the
SM MC reconstruction error distribution, thus three cuts based on the median seems like a good choice.
However, if one then uses all the events in the signal region, it might be that one misses the ideal amount
of background and signal to create the significance26. Thus, for each reconstruction error cut, there is an
associated plot showing the significance as a function of emiss

T for the events passing a given cut on the AE
reconstruction error. The emiss

T would be the final discriminating variable for where we look for deviations
from the expected SM background. Thus, you can find the ideal cut, within the signal region, for where to
choose the amount of background and signal to get a better significance.

Since the analysis is based on semi supervised learning, one should avoid tuning on specific signal models.
Therefor one should also prepare a blind test.

Testing strategy
Before testing the AE and VAE on signal samples, it is interesting to test the sensitivity of both the regular
and variational autoencoders on anomalous SM MC events. This can be thought of as initial testing.

Channel removing
One idea was to test the anomaly detection capability by removing one of the channels in the SM. The idea
was that some of the channels differ enough in the final states and thus in their RMM signature that they
might be treated like anomalous data by the autoencoders. All channels were tested on as signal.

Altering transverse momentum
Another idea for anomaly detection testing with the SM MC was to alter the transverse momentum of some
particles. Random events were selected, and their transverse energy was changed by scaling it with a factor.
The hope is that especially events with at least a scaling of 5 in transverse momentum should be picked
up. Note that by changing the transverse momentum, the elements in the RMM related to the difference in
transverse energy between the objects change. From equation 3.7 we see that a scale change k in pT yields
the following new relation:

δek
T = kET (in − 1)− ET (in)

kET (in − 1) + ET (in) , n = 2, ..., N. (3.8)

Thus, both the transverse energy and the difference in transverse energy between the various objetcs are
changed for this test.

26Only 20% of the background and 100% of the signal are used for inference. This is important to know when evaluating the
significance plots, as to not overinflate the results provided by the AE’s and VAE’s.
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Signal testing
It is not correct to refer to the machine learning algorithm used in this thesis as unsupervised learning. This
is mostly due to the fact that we show it labeled MonteCarlo to train on, and thus essentially gives the
models a target to aim for. But, since we do not show the autoencoders any signals in training, it can be
allowed to name the learning strategy as semi-supervised learning. Because of this, one does not bias oneself
too much if the algorithm is tested on one or more signal samples. This type of testing can be separated into
two different categories, the open signal testing and the blind signal testing.

The open signal testing first takes a trained model that has only seen SM MC and then runs inference on
both SM MC and the given signal. Then the search strategy mentioned in the previous section is done on
those collected reconstruction error distributions.

The blind signal testing is the final test, where a dataset is prepared incapsulating SM MC or ATLAS
data, and one or multiple signals. The labels are kept, for verification. That way, if one were to do open
signal testing on many signal samples from many theories, one could in principle bias oneself too much. This
way one can get an unbiased measurement of the performance.
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Chapter 4

Results and Discussion

4.1 Non signal testing of the regular and variational autoencoder
Channel removing
Results following removal of specific channels are shown in figures 4.1 - 4.6. The left plots in the figures show
the results from the small AE while the right plots show the corresponding result using the large AE. Figure
4.1 - 4.3 show the results where the Higgs, single top and ttbar channel, respectively, has been removed in
the training of the AE. The inference of the AE is applied on the removed process (shown as markers in the
distributions). Figure 4.4 - 4.6 show the corresponding results using a variational autoencder. These three
channels were chosen since they are the most unlike the rest of the background channels.
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Figure 4.1: Reconstruction error on validation SM MC from the small (a) and large (b) autoencoders. The Higgs
channel has been removed from training and is used as signal. No significant difference in distributions
is found.

It is clear from figures that the reconstruction error distributions for the removed SM channel and the
remainding SM MC are very similar. The same behavior is also shown for the other channels, which can
found in section A.1 in the appendix. Although the two models did not demonstrate much separation of
reconstruction error distributions, the regular autoencoder seems to have a more shifted pattern of reconstruc-
tion to lower values than the variational autoencoder. In fact, the regular autoencoder’s reconstruction error
distribution peak is about 3 order of magnitude lower than the variational autoencoder’s error distribution
peak along the x-axis. There could be several reasons for this, one of which could be that the variational
autoencoder might require more input data to approximate the distribution, as well as the fact that the
balance between the KL divergence and MSE loss can be difficult to handle[45]. The variational autoencoder
is a larger and more complex model. Given that the natural distributions in the data are quite complex,
learning the natural distribution might require more data. This can lead to comparably poorer performance
of the neural network compared to the regular autoencoder. It should be noted that although the three
channels selected here, as well as the rest in section A.1 in the appendix, do not differ that much from one
another, and it was not expected that the networks would be able to separate the two distributions created.
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Figure 4.2: Reconstruction error on validation SM MC from the small (a) and large (b) autoencoders. The single top
channel has been removed from training and is used as signal. No significant difference in distributions
is found.
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Figure 4.3: Reconstruction error on validation SM MC from the small (a) and large (b) autoencoder. The ttbar
channel has been removed from training and is used as signal. No significant difference in distributions
is found.
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Figure 4.4: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The Higgs channel has been removed from training and is used as signal. No significant difference in
distributions is found.

However, it does provide us with a baseline, as well as insight for what to expect if we were to test on signals
that looks a lot like some background channels.
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Figure 4.5: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The single top channel has been removed from training and is used as signal. No significant difference
in distributions is found.
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Figure 4.6: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The ttbar channel has been removed from training and is used as signal. No significant difference in
distributions is found.

Altering of transverse momentum
Altering the transverse momentum of some particles would in the extreme be anomalous, and the hypothesis
was that some of those trends would be picked up by the autoencoder. Scaling of k ∈[1.5, 3, 5, 7, 10] for the
transverse momentum were used according to equation 3.8. A scaling of pT for the regular and variational
autoencoder are shown in figures 4.7 and 4.8, respectively. The other scaling plots can be found in section
A.2 in the appendix.

The first thing to notice here is that, as with the channel removal, the distribution shape of the output
from the regular autoencoder compared to the variational autoencoder is different. The shape from the
regular autoencoder is clearly shifted to the left end, with low reconstruction error compared to the shape
from the variational autoencoder, where the peak of the distribution is around -1. From the pT altering
test we also see here that the variational autoencoder falls short to the regular one. It is also interesting to
observe here that the high pT events are picked up as anomalous from both autoencoders, with both shallow
and deep structure. In the regular autoencoder it is arguably even separated distributions. This is also a
good sign as it indicates that the network has learned which ranges the pT should be in for the 3 lepton plus
missing energy final state. The most extreme case is, as expected, in the case where the pT is multiplied by
10. There is a clear separation in reconstruction error distributions for the signal and background for the
deep regular autoencoder, and a slightly more subtle separation of reconstruction error distributions for the
shallow regular autoencoder. For the variational autoencoder, the separation in figure 4.8 is not as clear, but
the signal is still picked up as anomalous. The peaks are separated, but not to the same degree.
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Figure 4.7: Reconstruction error on validation SM MC from the small (a) and large (b) regular autoencoder. The
signal is a subsample of the validation set where the transverse momentum of the first electron and the
first muon has been increased with a scale of 10. The difference in transverse energy between the objects
has also been changed according to the scaling of transverse momentum. A peak is found around 10−1.6.
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Figure 4.8: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The signal is a subsample of the validation set where the transverse momentum of the first electron
and the first muon has been increased with a scale of 10. The difference in transverse energy between
the objects has also been changed according to the scaling of transverse momentum. A peak is found
around 10−1.6.

4.2 3 lepton training for high emiss
T and invariant mass search

To better accertain and map the usefulness of the regular and variational autoencoder in the search for new
physics, two MC signals were used as test cases. They are both 3 lep +emiss

T final state SUSY signals, and
thus are a suitable fit to use for testing. The two autoencoders were tested on four metrics.

• Low reconstruction error on SM MC

• Background to signal ratio in emiss
T signal region

• Large tail or possible resonance in trilepton signal region

• Significance scan in emiss
T signal region

Regular autoencoder output

Figures 4.9, 4.10, 4.11 and 4.12 contain four subplots each showing the total reconstruction error distributions
(a), the emiss

T signal regions (b), the mlll signal regions (c) and the significances as function of a lower cut on
emiss

T curve (d) for the shallow (figure 4.10 and 4.12) and deep (figure 4.9 and 4.11) regular autoencoder
using two different SUSY scenarios for inference. From figures 4.9a - 4.12a it is clear that the autoencoders



4.2. 3 LEPTON TRAINING FOR HIGH EMISS
T AND INVARIANT MASS SEARCH 45

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Log10 Reconstruction Error

10 1

100

101

102

103

104

105

106

#E
ve

nt
s

Reconstruction error histogram with MC
450p0p0300
Wjets
triboson
higgs
diboson2L
Zttjets
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(a)

0 200 400 600 800 1000 1200
E miss

T  [GeV]
10 1

100

101

102

103

#E
ve

nt
s

emiss
T  with recon err cut of -1.56

450p0p0300
Wjets
Zttjets
triboson
diboson2L
higgs
singletop
diboson4L
topOther
ttbar
Zmmjets
Zeejets
diboson3L

(b)

0 200 400 600 800 1000 1200
mlll [GeV]

10 1

100

101

102

#E
ve

nt
s

Trilepton invariant mass with recon err cut of -1.56
450p0p0300
Wjets
Zttjets
triboson
diboson2L
higgs
singletop
diboson4L
topOther
ttbar
Zmmjets
Zeejets
diboson3L

(c)

0 200 400 600 800 1000 1200
emiss

T  [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
gn

ifi
an

ce

Significance as function of emiss
T

2((s + b)log(1 + s
b ) s)

s
b

(d)

Figure 4.9: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the deep regular autoencoder using the SUSY 450p300. Figure 4.9a shows the reconstruction error
distribution for the SM MC and the SUSY signal. Here the autoencoder produces the same reconstruction
error shape for both background and signal. Figure 4.9b shows the emiss

T distribution for the SM MC
and the SUSY signal in the signal region, defined as the region having a log10 reconstruction error
above -1.56. Most of the background is removed, and the signal distribution is clearly shifted towards
higher values of emiss

T compared with SM MC. Figure 4.9c shows the mlll distribution for the SM
MC and the SUSY signal. The shape of the SM MC and the signal distributions are too similar to
distinguish. Figure 4.9d shows the significance as function of emiss

T . The maximum significance is found
when applying a cut of about > 380 GeV in the emiss

T , with a significance of around 0.7.

struggles more to reconstruct the 800p50 point (i.e. more anomalous, higher reconstruction error) compared
with the 450p300 point, which is expected from the fact that the 800p50 point has a larger mass difference
between the chargino and the lightest supersymetric particle and thus would lead to more missing transverse
energy in the events. The steepness of the slopes of the reconstruction error show quite similar behavior for
both the shallow and deep regular autoencoders, indicating that the performance of these two models does
not differ. The bulk of the events are below 10−2 reconstruction error, indicating that the autoencoder has
learned a lot of the internal RMM structures for the 3 lepton + emiss

T final state MC.
In figures 4.9b, 4.10b, 4.11b and 4.12b signal regions are created for each of the two SUSY models for

both the shallow and deep regular autoencoder. The cuts were created using the median and then iteratively
increasing the error requirement, as explained in section 3.7. Only one of the three cuts done are shown
here, the rest can be found in appendix A.3. The most inclusive signal region is chosen in order to illustrate
the difficulty of the anomaly detction method since we do not have any idea how anomalous (i.e. how large
reconstruction error) we expect a BSM signal to have. A too strict a cut could possibly eliminate a large
fraction of the signal events in the signal region, whereas a too loose a cut would result in the SM MC
background dominating completely.
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Figure 4.10: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
shallow regular autoencoder using the SUSY 450p300 model. Figure 4.10a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces the same
reconstruction error shape for both background and signal, but with a small separation of the peaks of
the distributions. Figure 4.10b shows the emiss

T distribution for the SM MC and the SUSY signal in
the signal region, defined as the region having a log10 reconstruction error above -1.71. Most of the
background is removed, and the peaks of the SM MC and signal distributions are somewhat separated.
Figure 4.10c shows the mlll distribution for the SM MC and the SUSY signal. The shape of the SM
MC and the signal distributions are too similar to distinguish. Figure 4.10d shows the significance as
function of emiss

T . The maximum significance is found when applying a cut of about > 380 GeV in the
emiss

T , with a significance of around 0.78.

In figures 4.9c, 4.10c, 4.11c and 4.12c the mlll distributions for the most inclusive signal regions from
both the shallow and deep regular autoencoder for both of the SUSY signals. The results from the most
inclusive signal region is shown here while the rest can be found in appendix A.3. The difference observed in
the mlll distribution between the SM MC and signal are small for both the shallow and deep autoencoders.
This is expected considering the signal modeling being used, which do not have any particular resonance in
the three-lepton invariant mass.

In figures 4.9d, 4.10d, 4.11d and 4.12d the significance as a function of applying a lower cut on emiss
T is

shown. It displays that an additional cut on emiss
T leads to an increased significance. The best case is achieved

for the SUSY 450p300 signal using the shallow autoencoder, leading to a significance of 0.78. Although the
autoencoders gave a larger reconstruction error for the high-mass SUSY signal the final significance is found
to be higher for the low mass SUSY signal. This is due to the cross section being a factor of 15 larger for the
450p300 model compared with the 800p50 model.
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Figure 4.11: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T

for the deep regular autoencoder using the SUSY 800p50. Figure 4.11a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a mirrored
reconstruction error shape for background and signal. The peaks of the two distributions are separated
with two orders of magnitude in reconstruction error. Figure 4.11b shows the emiss

T distribution for the
SM MC and the SUSY signal in the signal region, defined as the region having a log10 reconstruction
error above -1.27. Most of the background is removed, and the peaks of the SM MC and signal
distributions are separated. Figure 4.11c shows the mlll distribution for the SM MC and the SUSY
signal. The shape of the SM MC and the signal distributions are somewhat separated. Figure 4.11d
shows the significance as function of emiss

T . The maximum significance is found when applying a cut of
about > 430 GeV in the emiss

T , with a significance of around 0.37.

Variational autoencoder output

The corresponding results for the variational autoencoders are shown in Figure 4.13 - 4.16 following the same
outline as used in section 4.2. From figures 4.13a, 4.14a, 4.15a and 4.16a we observe that the variational
autoencoder seems to struggle with differentiating between background and signal. There is however a slight
difference in the shape of the distributions from the shallow and deep network shown for both of the SUSY
signal samples. The shallow VAEs have typically a more narrow and slightly more left-skewed shape, whereas
the deep network has a slightly more broad distribution shifted a bit to the right. The bulk of the events
for all four histograms are between 10−2 and 10−0.5 reconstruction error, indicating that the autoencoder
struggles to learn the internal RMM structures for the 3 lepton + emiss

T final state MC.
In figures 4.13b, 4.14b, 4.15b and 4.16b we have the reconstruction error cut imposed on the SM MC and

the signal samples. Interestingly, one should note that although the total reconstruction error distributions
are not well separated, the signal regions show a separation in the emiss

T distribution. Unlike in the regular
autoencoder case, the variational autoencoder allows for almost two orders of magnitude more background
events in the signal region. This is because of the signal region definition from section 3.7 where the median for
all four cases with the variational autoencoder is exactly at the peak of the reconstruction error distribution
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Figure 4.12: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow regular autoencoder using the SUSY 800p50. Figure 4.12a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a mirrored
reconstruction error shape for background and signal. The peaks of the two distributions are separated
with two orders of magnitude in reconstruction error. Figure 4.12b shows the emiss

T distribution for the
SM MC and the SUSY signal in the signal region, defined as the region having a log10 reconstruction
error above -1.41 Most of the background is removed, and the peaks of the SM MC and signal
distributions are separated. Figure 4.12c shows the mlll distribution for the SM MC and the SUSY
signal. The shape of the SM MC and the signal distributions are somewhat separated. Figure 4.12d
shows the significance as function of emiss

T . The maximum significance is found when applying a cut of
about > 450 GeV in the emiss

T , with a significance of around 0.39.

for the background. Therefor we also get the peak of the signal distributions, which is why we see so much
signal in the signal region in figures 4.13b, 4.14b, 4.15b and 4.16b.

As expected the separation between SM MC and signal in the mlll distribution, shown in Figure 4.13c -
4.16c, is less prominent compared with the emiss

T distribution. The performance of the deep and shallow
VAE, based on the separation of SM MC and signal in the signal regions, are very similar.

In figures 4.13d, 4.14d, 4.15d and 4.16d we have the significance as a function of the emiss
T . Interestingly,

for the SUSY 450p300 case, we have that both the deep and shallow autoencoder manages to get a significance
of around 4, which is much better than the regular autoencoder which got around 0.7. For the SUSY 800p50
signal the difference between the significance from the AE and VAE was small. A cut at etmiss > 400 GeV
provided the best significance of around 4.5 for the 450p300 signal point using the signal region defined by a
cut in the reconstruction error of 10−1.1 (10−1.06) using a deep (shallow) VAE.
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Figure 4.13: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the deep variational autoencoder using the SUSY 450p300. Figure 4.13a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a hill-like for
background and signal with little destinction. The peaks of the two distributions are not separated
in reconstruction error. Figure 4.13b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region, defined as the region having a log10 reconstruction error above -1.10. Some
background is removed, and the peaks of the SM MC and signal distributions are separated. Figure
4.13c shows the mlll distribution for the SM MC and the SUSY signal. The shape of the SM MC and
the signal distributions are displaying almost the same shape. Figure 4.13d shows the significance as
function of emiss

T . The maximum significance is found when applying a cut of about > 450 GeV in the
emiss

T , with a significance of around 4.1.

4.3 2 lepton training for high emiss
T and invariant mass search

An important factor for how well AEs and VAEs perform is the availability of sufficient amount of training
data. In order to better understand the effect of introducing more data for training the same procedure as in
section 4.2 was followed, but now considering a data set requiring at least 2 leptons. The increase in events
is from 81873→19291900. The requirement of at least two leptons would imply that the 3 lepton dataset
used in the previous section is a subset of the 2 lepton set exploited in the following and thus the same signal
samples can be used for inference. The same studies of shallow and deep regular and variational autoencoders
as in section 4.2 will be performed, except that the distribution of the mlll will not be considered in the
following.

Regular autoencoder performance

This section presents some results from training the shallow and deep regular AEs and VAEs on the 2 lepton
cas, using the same two SUSY signals as test cases.
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Figure 4.14: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder using the SUSY 450p300. Figure 4.14a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a hill-like for
background and signal with little destinction. The peaks of the two distributions are not separated
in reconstruction error. Figure 4.14b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region, defined as the region having a log10 reconstruction error above -1.06. Some
background is removed, and the peaks of the SM MC and signal distributions are separated. Figure
4.14c shows the mlll distribution for the SM MC and the SUSY signal. The shape of the SM MC and
the signal distributions are displaying almost the same shape. Figure 4.14d shows the significance as
function of emiss

T . The maximum significance is found when applying a cut of about > 400 GeV in the
emiss

T , with a significance of around 4.5.

Figures 4.17, 4.18, 4.19 and 4.20 display three subplots each, containing the total reconstruction error
distributions (a), the emiss

T signal regions (b), and the significance as function of a cut in emiss
T (c). By

comparing the reconstruction error distributions of the AEs trained on the two lepton dataset (Figure 4.17a -
4.20a) with the corresponding figures from ones trained on the 3 lepton dataset (Figure 4.9a - 4.12a.) we see
a clear tendency towards the signals having a larger reconstruction error compared with the SM MC. This
indicates that as we increase the statistics, in other words the amount of background events used for training,
the ability of the autoencoder to learn the internal structure increases. As expected, Z-boson production
in association with jets along with tt̄ are the channels with the highest statistics in the 2 lepton + emiss

T

dataset, thus it should be easier to for the AEs to better reconstruct those events. However, note the amount
of diboson in the higher end of the reconstruction error histograms, as well as in the emiss

T distribution after
applying a cut on the reconstruction error.

In figures 4.17b, 4.18b, 4.19b and 4.20b we have the emiss
T distributions for the least strict cuts for the

regular autoencoder models. The corresponding significances obtained by applying a cut in the etmiss
distribution of the most inclusive signal regions are shown in figures 4.17c, 4.18c, 4.19c and 4.20c. The highest
significance (of about 1.75) was found with the shallow autoencoder with the SUSY 450p300 signal model. It
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Figure 4.15: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the deep variational autoencoder using the SUSY 800p50. Figure 4.15a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a hill-like for
background and signal with little destinction. The peaks of the two distributions are not separated
in reconstruction error. Figure 4.15b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region, defined as the region having a log10 reconstruction error above -1.06. Some
background is removed, and the peaks of the SM MC and signal distributions are separated. Figure
4.15c shows the mlll distribution for the SM MC and the SUSY signal. The shape of the SM MC and
the signal distributions are displaying almost the same shape. Figure 4.15d shows the significance as
function of emiss

T . The maximum significance is found when applying a cut of about > 480 GeV in the
emiss

T , with a significance of around 0.6.

should be noted that the significance for the 800p50 signal model is a lot smaller than for the 450p300 signal
model, even though the separation shown in figures 4.17a, 4.18a, 4.19a, 4.20a would suggest otherwise. In
order to better understand the performance of the AEs a comparison of the maximum significance obtained
from a cut in etmiss before and after imposing a requirement on the reconstruction error was performed.
Before any cut in reconstruction error the maximum significances obtained were 0.017 and 0.0014 for the
450p300 and 800p50 points, respectively. This can be compared with the significances of 2.4 and 0.42 obtained
after the cut in reconstruction error. Note that for the results without the reconstruction error cut no
other cuts were applied to enhance the signal over background ratio and thus a better significance would be
expected in a more comprehensive analysis.

Variational autoencoder performance

Figures 4.21 - 4.24 the same plots as above, but now using the shallow and deep variational autoencoder
with the 2 lepton + emiss

T dataset.
Figures 4.21a, 4.22a, 4.23a, 4.24a show the reconstruction error distributions for both SUSY signals for

the shallow and deep variational autoencoder. Compared with the result from the regular AE we see a
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Figure 4.16: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder using the SUSY 800p50. Figure 4.16a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produces a hill-like for
background and signal with little destinction. The peaks of the two distributions are not separated
in reconstruction error. Figure 4.16b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region, defined as the region having a log10 reconstruction error above -0.91. Some
background is removed, and the peaks of the SM MC and signal distributions are separated. Figure
4.16c shows the mlll distribution for the SM MC and the SUSY signal. The shape of the SM MC and
the signal distributions are displaying almost the same shape. Figure 4.16d shows the significance as
function of emiss

T . The maximum significance is found when applying a cut of about > 480 GeV in the
emiss

T , with a significance of around 0.45.

much steeper fall-off of the SM MC at higher reconstruction error. Moreover, we observe that the deepness
of the neural network here seems to play a role, which is different from what we observed for the regular
autoencoder output where both the shallow and deep autoencoder made a steep slope shape of the SM
MC reconstruction error distribution. The peak of the distribution here is slightly shifted to the left for
the shallow autoencoder model, and slightly shifted to the right of the center with the deep autoencoder
model. One possible reason for this somewhat hill-like distribution could be that the variational autoencoder
samples from a Gaussian distribution that has yet to be trained on enough data to produce a good enough
error distribution.

Figures 4.21b, 4.22b, 4.23b and 4.24b show the emiss
T distribution after imposing least strict cut on

reconstruction for each signal on the reconstruction error. We see that cuts on the reconstruction error have
a similar effect as observed for the regular autoencoder, but with two key differences. First, because the
peaks in reconstruction error for SM MC and signal are so close, the cuts allowed for more background events
in the signal region. Here, as with the regular autoencoder output, the reconstruction cut from section 3.7,
merr, was used to create the signal region. However, in the cases where the background and signal show
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Figure 4.17: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces a slope-like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in
the signal region. The signal region is made using a cut around 10−1.44. Most of the background is
removed, and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the
significance as function of emiss

T . The peak is put around a cut of about 380 GeV in the emiss
T , with a

significance of around 1.85.

similar behavior in the reconstruction error this way to define the signal region is not optimal as it typically
leads to too much background in the signal region.

Secondly, the background that remains are slightly Although the peak in both signal models are fairly
separated from the peak of the SM MC, the SUSY 800p50 signal model is shifted a bit more to the right end.
The reason for the low signifcance is that the cross-section is much lower for the different from the signal
region from the regular autoencoder. In the lower energy range there is a large excess of Zeejets, Zmmjets
and ttbar events that have a high reconstruction error, which is not the case for the variational autoencoder,
dominated by diboson events in all bins. In the higher energy range, diboson are largest contributer to the
background, but the number of bins are exceptionally smaller than the Zmmjets/Zeejets/ttbar events, by a
magnitude of 3 at the most.

4.4 Blind ATLAS data sample testing
The final test to run on the autoencoder is a blind test. The blind test will compare the reconstruction error
from the autoencoder on an ATLAS dataset with the reconstruction error on the same ATLAS dataset where
about 1.6 million events have been randomly removed and switched with samples from many BSM samples.
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Figure 4.18: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the shallow
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces a slope-like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in
the signal region. The signal region is made using a cut around 10−1.72. Most of the background is
removed, and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the
significance as function of emiss

T . The peak is put around a cut of about 380 GeV in the emiss
T , with a

significance of around 2.4.

The signal samples have been given the same weight as the ATLAS data. Therefor the total amount of events
before eventselection are the same in both datasets. The dataset was prepared by one of the supervisors of
this thesis, and not shown to the author. The ATLAS data contains events from the data collection from
2015 and 2016, and the signal samples are created according to those runs. The ATLAS data will therefor
be referred to as ATLAS data 15 and data 16 for the ATLAS events, and the mix set will be referred to
data1516 mix.

In figure 4.25 the reconstruction error for the blind test is shown. The ratio subplot beneath the histogram
shows the reconstruction error discrepancy. This indicates that the autoencoder is able to distinguish between
the ATLAS data 15 and data 16, and BSM samples. The highest ratio difference is around 15 between the
two datasets. The ratio discrepancy is also due to event selection. The mix set contains the same events as
the ATLAS data 15 and data 16 sample set, but has around 1.6 million ATLAS events removed and replaced
with BSM events. It appears that a higher number of BSM signal samples than the events that was removed
passed the cuts in event selection.

The model has not been changed after running inference on the blind test, and we can therefor unblind
the test, and see how well the autoencoder actually did in separating out the BSM events.
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Figure 4.19: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. Figure 4.19a shows the reconstruction error distribution for
the SM MC and the SUSY signal. Here the autoencoder produce slope-like shape that is highly shifted
to the lower end of the reconstruction error range for the background. The signal has a peak around
10−1.5 with a mirrored distribution shape from the background. The peaks of the two distributions
are separated with two orders of magnitude in reconstruction error. Figure 4.19b shows the emiss

T T
distribution for the SM MC and the SUSY signal in the signal region. The signal region is made using
a cut around 10−1.48. Most of the background is removed, and the peaks of the SM MC and signal
distributions are somewhat separated. Figure 4.19c shows the significance as function of emiss

T . The
peak is put around a cut of about 400 GeV in the emiss

T , with a significance of around 0.38.

In figure 4.26 the reconstruction error distributions for both ATLAS data 15 and data 16 samples, and
BSM signals samples are shown. Allthough some samples have low reconstruction error, the peak is between
10−2 and 100.5 reconstruction error. The hishget ratio discrepancy is around 15 between the two distributions,
and it is shown to be in the same area of the peak.

4.5 Final remarks on the results
In sections 4.1, 4.2, 4.3 and 4.4 the performance of the regular and variational autoencoder with respect to
usage in BSM searches has been shown through various tests. The final remarks can be summed up in five
points:

• Shape of SM MC reconstruction error distribution

• Dataset altering testing

• Megaset changes

• Network architecture
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Figure 4.20: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the shallow
regular autoencoder using SUSY 800p50. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces a slope-like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in
the signal region. The signal region is made using a cut around 10−1.61. Most of the background is
removed, and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the
significance as function of emiss

T . The peak is put around a cut of about 400 GeV in the emiss
T , with a

significance of around 0.42.

• Blind tests

First, it appears that the shape of the reconstruction error is more sensitive to the choice between variational
and regular autoencoder than it is to the number of training samples it uses. However, the skewedness of the
reconstruction error produced by the regular autoencoder increases with the size of the training data. From
this observation it is reasonable to assume that to improve on the performance of the autoencoder, large
amounts of training data is needed. This is also observed in the case of the variational autoencoder, where if
one increases the amount of training data by going from the 3 lepton + emiss

T case to the 2 lepton + emiss
T

case we observe a shift towards lower reconstruction error. It was not investigated further why the outputs
of the two models are so different, but one reason could be that the decoder that samples from the latent
space distribution in the variational autoencoder needs even more training data to get good separation.

Secondly, with the increase in training data it would be interesting to do the ”altering pT ” test, as well as
some other SM MC altering tests with especially the regular autoencoder. Based on the signal tests and the
”altering pT ” test done with the 3 lepton + emiss

T trained regular autoencoder, it is reasonable to assume that
the autoencoder would perform even better. Other tests could for example be to swap certain features in the
RMM, or swap events from one decay channel with another in order to create unphysical events. Essentially,
by making these anomalous events and testing the autoencoder, one would get a better picture on the reach
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Figure 4.21: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
variational autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a hill-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made
using a cut around 10−0.81. The peaks in the signal region are also somewhat separated, but the
overall distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak
significance is around 1.61 at around 400 GeV.

and ability of the autoencoder. This is of importance given the fact that the target signal or signals could in
theory look very strange or perhaps in some feature space very similar to the SM MC.

A third point to note is in regard to the megaset training done in the 2 lepton + emiss
T case. An arbitrary

set of 10 megasets was chosen, but it might have been beneficial to choose a larger or smaller number of
megasets27, and this might have had an impact on how well the autoencoders learn the SM signatures. A
key criterion to uphold when doing training is to ensure that the megasets, when sampled, all maintain the
natural distribution of the entire training set and thus the SM. If not, the algorithm will learn with a bias
that is not contructive.

The fourth point to draw from the results are that it appears that the results are not too sensitive to the
architecture of the networks. The two different architectures chosen were one model with only a latent space
layer between the input and output layer, and a model with three layers on each side of the latent space.
The choice of layers and nodes per layer was somewhat arbitrary, and after inference it was also clear that
changes to the latent space affected more a change in the reconstruction error. This is though more related
to the size of the input layer and the complexity of the data, more than the number of events in the training
and test set.

27As the total amount of events would be the same, the difference with using say 20 megasets would be faster loading and
writing time. The batchsize for a given training session with a batch would still be the same.
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Figure 4.22: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the shallow
variational autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a hill-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made
using a cut around 10−0.85. The peaks in the signal region are also somewhat separated, but the
overall distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak
significance is around 1.75 at around 420-450 GeV.

The fifth point is in regard to the blind test done with the 2 lepton + emiss
T trained deep autoencoder.

This test was done in order to see if the autoencoder could pick up on signals mixed with SM events in
ATLAS data. From the results in section 4.4 it appears that the autoencoder is able to some extent separate
out BSM signals. This indicates that there might be use for this search method and therefor more to learn
about the autoncoders. Further in-depth research into the method should be done to figure out its usefulness
in high energy physics research.
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Figure 4.23: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
variational autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a hill-like shape. The peaks of the
background and signal distributions are not well separated, with some separation of distribution
peaks. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.72. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.20 at around 450 GeV.

4.6 Executive summary
The results and discussion for the 3 lepton + emiss

T and 2 lepton + emiss
T datasets are summarized in table

4.1, and bullet points for the two dataset cases.
Table 4.1 provides the signal region cut in reconstruction error, the optimal cut in emiss

T , the maximum
significance and the architecture choice for both the AE and VAE in both the 3 lepton + emiss

T and 2 lepton
+ emiss

T dataset cases.

3 lepton + emiss
T executive summary

AE:

• Better separation for high mass SUSY scenarios

• Shallow and deep architecture have similar performace for both signal samples with reconstruction
error

• In general low reconstruction error (i.e the AE’s have learned well the structures of the RMM)

• Shallow and deep architecture show similar results whn looking at distributions of mlll and emiss
T in

the signal region
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Figure 4.24: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the shallow
variational autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a hill-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.72. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T .

3 lepton + emiss
T 2 lepton + emiss

T

Model AE AE VAE VAE AE AE VAE VAE
Signal sample 450p300 800p50 450p300 800p50 450p300 800p50 450p300 800p50
SR cut in
reconstruction

10−1.71 10−1.41 10−1.06 10−1.06 10−1.72 10−1.61 10−0.85 10−0.85

Optimal cut in
emiss

T [GeV]
380 450 400 480 380 400 430 510

Max significance 0.78 0.39 4.5 0.52 2.4 0.42 1.75 0.21
Architecture Shallow Shallow Shallow Deep Shallow Shallow Shallow Shallow

Table 4.1: Summary of the best results obtained by the regular and variational autoencoders for the 3 lepton and 2
lepton + emiss

T datasets

• Best significance of 0.78 is found for the low mass SUSY by cutting at < 380 GeV in emiss
T after

requiring a reconstruction error of 10−1.71 for the shallow AE

• Generally, shallow network architecture is better for maximum significance
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Figure 4.25: Reconstruction error for the blind test. The blue histogram is the ATLAS data 15 and data 16 sample
and the black crosses are the ATLAS data mixed with BSM samples. Between a reconstruction error
of 10−2 and 100.5 there is a separation of the peaks of the two distributions. The biggest difference is
a ratio difference of around 15.

VAE:

• Worse separation in reconstruction error between SM MC and signal

• Consistently higher reconstruction error for both signal and SM MC compared with AE

• The signal region choice for the VAE achieves a better significance although the separation in recon-
struction error between SM MC and signal is worse compared with the AE

• Shallow and deep VAE perform similarly in terms of obtained significance

2 lepton + emiss
T executive summary

• The highest significance of 2.4 was found for the shallow AE on low mass signal sample, and shallow
models provided highest significance in all four cases

• The VAE have typically larger reconstruction error for the background28 leading us to think that it
may require even more training data to train properly

• The AE seem to perform better than the VAEs

• When going from 3 lepton + emiss
T to 2 lepton + emiss

T the performance of the VAE compared to the
AE goes from being better to worse for calculating the maximum significance. This may be because
the VAEs lacks sufficient training data to be able to reduce the background in the signal region.

28The bulk of the distribution is placed more to the higher ends of the reconstruction error compared with the regular AEs,
which was the same observed behavior seen in the 3 lepton + emiss

T case.
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Figure 4.26: Reconstruction error for the unblind test. In the histogram the blue bins are the ATLAS data 15 and
data 16 samples from the mix dataset and the black crosses are the BSM samples with the legend
”Unblind”. Between a reconstruction error of 10−2 and 100.5 there is a separation of peaks of the two
distributions. The biggest difference is a ratio difference of around 15.

• The regular autoencoder manages to separate a mix of signal samples from ATLAS data in blind test,
which is validated with an unblinded figure. This indicates a potential for the AEs to be used in more
comprehensive analyses at ATLAS

4.7 Challenges with the search method and tools
In the previous sections, the output and results of using the autoencoder for anomaly detection have been
shown. The method and results, as produced and shown in this thesis, have yielded some promising results
given the nature of the search method. However, it should be known what the challenges of the task actually
are to truly understand why the results are only promising, and not great compared to other search methods.
The challenges can be divided into three main points, all of which are tangled together. The three challenges
are listed below.

• Model independence

• Reconstruction error minimization

• Feature engineering

Model independence is the first challenge. By model, it is here referring to signal models.
As mentioned in the theory section for the SM, the SM, although very successful in certain predictions,

lack the ability to explain a whole number of behavior around us, and so there have been made many
suggested solutions to the issues. These new models are often called extensions to the SM, and although
mathematically consistent, not neccesarly physically possible. And even if they are physically possible, in
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other words, they adhere to certain fundamental physical principles, they still might not exist, as several
searches at ATLAS have excluded but never found any new physics.

The search method is inherently biased as one assumes that the new physics looks like the signal, and
thus do analysis, data preparation etc. with that signal in mind. But we do not know, at all, what the new
physics looks like, even the assumption that we are looking for particles are implying a bias that might not
be true. From the collisions in the detector to the analysis, there are biased descisions, we cannot avoid them,
but we can minimize them as much as possible, which is the goal with the search strategy in this thesis.

This leads us to the second challenge, which is reconstruction error minimization. The proposed method
in this thesis is to learn the signature of the SM so well, that even subtle anomalous behavior will be picked up
by the analysis tool. The autoencoder learns the signature of the SM via reconstruction error minimization,
and then hopefully the anomalous data will be picked up in a signal region. One problem with this is that
one first blinds oneself to signals that might be very, very similar to the SM in some feature space, but with
very low statistics. These events will for a given set of features, never be found.

The third challenge is the choice of features. This thesis utilized the RMM structure by Chekanov et
al., as it maximizes the amount of information in the input data by using almost completely uncorrelated
features. However, as we do not know the signals we are looking for, there is no way to know if this choice
is the optimal choice for new physics. In fact, even if we found an ideal set of features, based on some
physical principles or something else, it is not trivial that the reconstruction error calculation should weight
the error of each feature equally. It might very well be that some features are less important than others.
Essentially, the goal is to optimize for a signal we do not know, using features we don’t know are optimal,
and weighting them as ”unbiased” as possible, simply taking the average, to dictate how the autoencoder
learns and updates its internal weights and biases.

4.8 Future work
Autoencoders and their applications to anomaly detection in high energy physics are not well understood,
and this thesis only scraped on some issues and attempts that needs to be done. It is a recent topic within the
HEP community, and consequently much work is needed to reach a better understanding of how autoencoders
behave with HEP data. The work done in this thesis has led to three areas of focus that should be explored
more, listed below.

• Computational bottlenecks

• Data and feature engineering

• Network and architecture engineering

Computational bottlenecks
From sections 4.2 and 4.3 there seems to be a positive trend in increasing the amount of training data for
the autoencoders, both regular and variational. With a continual increase in data from Run3 and onward,
the loading and storing time used for doing analyses increase[46].

Figure 4.27 shows the expected time periods for data collection and the amount of data expected for the
next two decades.

One bottleneck29 that was discovered during the work with this thesis was the use of Pandas pre the 2.0
version release, which is written on top of NumPy. Although Pandas has many very useful features and is the
industry standard for data analysis and feature engineering, it is somewhat slow. NumPy is not parallelized,
thus all operations are done in serial. Polars has proven useful as a replacement, and was used for the
megaset training. Allthough in its early stages still, it unlike Pandas has a Rust backend, which natively
parallelizes. Thus, if one works with rather large datasets one should use Polars, or some other parallalized
tool. Another tool used for training and inference was to store training and test data post-processing in
numpy arrays such that one can just load them. NumPy makes this very simple, but as mentioned above it
is serial in its execution and thus takes long time for large arrays. In the 2 lepton case the clear bottleneck
both in processing of the training and testing data, as well as inference and training of the models, was the
loading and storing time using NumPy’s load and save functions. Sadly there is not much one can do per
now as NumPy’s load and save functions are the fastest, provided one has a lot of storage available. This

29The bottleneck problem explained here is not in regard to the recording of the events. It is rather in the amount of data the
analysis tools have to ingest. Figure 4.27 is used as a tool to illustrate the amount that will have to be ingested.
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Figure 4.27: LHC nominal luminosity projections for the next 2 decades

can also be generalised to number of conversion steps from ROOT files to an useable python format. In the
future this might be better incorporated in ROOT such that many conversion steps are not needed.

Another bottleneck is computation time of training and inference. There is a continuing battle between
speed and accuracy in terms of choosing an appropriate batchsize. The choice of batchsize for this thesis
is 8192. It is common to choose a batchsize that is a multiple of two, as this is most optimized for GPU’s.
8192 is 213, and it a rather large batchsize. Allthough this allows for epoch training time to be as low as
less than 2 minutes for 2 lepton case and less than 1 minute for 3 lepton case, it does decrease the model’s
ability to learn more about the dataset[11]. With better and faster equipment this could be improved whilst
decreasing the batchsize.

Data and feature engineering
Scaling

One aspect that was not explored in this thesis is the choice of scaling for the data. The choice used for this
thesis was the MinMax scaling algorithm from Sci-kit learn. From previous work done on the ATLAS Open
data [47] it appeared that MinMax was better for over all accuracy than Standard scaling. Still, it should be
looked at and more understood why this is or is not the case for the Run2 dataset used in this thesis.

Interpretation and possible feature changes

This thesis used the Rapidity-Mass matrix described by Chekanov[31] as features in the dataset. Whilst
containing features that are very uncorrelated it creates a feature signature that could be used by the
autoencoder to learn underlying structures in the SM. There are however some aspects to discuss. First, every
nonexisting entry in the RMM for a given event is replaced with a zero value. This creates ”islands” in the
RMM structure which contributes to create the signatures for the events. It is however not clear how these
zero values propagate through the network, and how they affect the performance and the autoencoder’s ability
to learn the underlying structures in the SM. In cases where one uses tools like decision trees, this is not an
issue, as they can just remove the feature if it holds a certain value, but as we need a tabular and rectangular
shape to do the matrix multiplication that is neural network feed forwarding and backpropagation, a value
has to be put in the missing entries, and it is not obvious or known what the choice of using zeros does.

Another choice to consider is the amount of particles in the RMM. This thesis tried allowing for 5 electrons
and 5 muons, and 6 b- and ljets, yielding a total of 529 elements in the RMM. This choice was an arbitrary
one, but it is not unreasonable to think that an even larger RMM would be more beneficial, as it contains
more information. Some events might have even more jets in them, or leptons. But with a larger RMM
comes a larger amount of zero valued features as well. And also, with a larger RMM, the memory needed
for a given array increases, which in the case of the 2 lepton case, would mean more megasets of smaller
size. The computation time, from event selection and conversion from Rdataframe to Numpy, and training
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and inference, would increase a lot. A third point to make is that the RMM alone might not be the ideal
set of features. It would be interesting to test a combination of RMM and some other features, where we
remove some of the features that are on average zero and replace them with other useful information. If the
goal is to learn the autoencoders the signature of the SM, then it is not unreasonable to assume that more
specific information would be better. It should be better understood what it means to learn the signature of
a channel, and of the SM as a whole.

Architecture engineering
The regular autoencoder appears to provide a better anomaly detection performance than the variational
autoencoder. The architecture is somewhat simple, given the hard task it is meant to perform. It might be
possible to add some more complex layer structures like convolutional neural network (CNN) autoencoders or
principal component analysis (PCA) to make a more complicated and better performing network architecture.
This is of course only speculation, and was not investigated much in depth. General trends were found to
vary depending on the size of the dataset, and it is not trivial that for example a deep neural network is
beneficial as the training sample increases. What was important though was to ensure that the latent space
was large enough to store enough information for the decoder. In the early attempts the latent space was set
between 10 and 50 nodes, which was too little for the encoded information to be useful. As there is no clear
way to find the optimal architecture, an educated guess on the number of nodes were done. In theory, one
can create a tunable network where the number of layers and nodes in each layer are hyperparameters, but
the sheer number of combinations would lead to much longer computation time than what was reasonable
within the timescale of this thesis. Tools like Keras-Tuner could facilitate this search, but if this were a
PhD thesis or a long term research project it would be beneficial with more significant hardware or a more
rigorous way to set an optimal architecture.

Another point to think about is how the autoencoder is trained. As explained in section 1.3 the
autoencoder is trained by how well it manages to reconstruct the input data. This is done by calculating
the error of each feature for a given event, and averaging the error for all features. This has its pros and
cons, and should be investigated further. Suppose one has an RMM which is very sparse, with 10 bjets, 10
ljets, 10 electrons, 10 muons, and 10 photons, i.e a T5N10 matrix of 2601 colums and rows. In this case, one
can easily assume that the RMM would be very sparse, as few if any SM events produced at the current
energy level at the LHC contains that many particles. Thus, one could argue that some features are more
important to learn correctly than others, and thus should be weighted more. It is however difficult to know
which features that should be in focus, as the signatures for each event might differ, and some might look
completely different from one another. One way to deal with this issue is to calculate the average RMM for
a given channel, and then see if there are general trends in the RMM for those channels. Then one could
perhaps weigh the most used features more than the sparser areas.
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Chapter 5

Conclusion

The main goal of this thesis was to benchmark and investigate the performance and usage of autoencoders
in BSM searches. The analysis and testing were done using n-tuples from ATLAS that was converted to
python dataframe structures. We argued for using the Rapidity-Mass matrix as features in our input data,
with 6 bjets and 6 ljets, and 6 of each lepton. The original goal was to test and understand the performance
in the case where we have a 3 lepton + emiss

T final state. In testing, it was shown that the performance was
not too impressive, thus the choice was made to use the 2 lepton + emiss

T dataset which contains much more
data. Due to the large size of the total dataset, we proposed a solution where the overall distribution in the
total set was conserved in smaller batches, called megasets. Several tests were deviced to benchmark the
autoencoders, making anomalous events by altering the pT of standard model events and testing on two
supersymmetric signal models. We showed that the autoencoders performance increased with larger training
samples, but argue for more testing as these methods are not well understood yet. The performance was
measured in three categories: how well it reconstructs the test dataset; how much background and signal
is left in the signal region; and the significance it achieves when performing cuts in the signal region. It
was shown that for the reconstruction of the test dataset, the regular autoencoder is much better than the
variational autoencoder, creating a reconstruction error distribution with slope like shape pushed to the
lower end. In the second category the regular autoencoder is much better at reducing the background, but
not that much better at increasing the amount of signal. In the second category the regular autoencoder is
much better at reducing the background, but struggles with increasing the amount of signal. The variational
autoencoder struggled with reducing the background, but increased the amount of signal relative to the
regular autoencoder reconstruction error. On the significance test the regular autoencoder performs better
than the variational autoencoder. It was also shown that with an increase in training data, the reconstruction
of the test dataset was improved for both the regular autoencoder and the variational autoencoder. The final
test of the autoencoder was a blind test with ATLAS data and BSM signals. It showed that the autoencoder,
when trained on the 2 lepton + emiss

T dataset, managed to separate out some signals from the ATLAS data.
This indicates that there might be an usecase for it in more rigorous analyses at ATLAS, and should be
better understood.

We also argue for future work and challenges with the method. Amongst other issues where computational
bottlenecks related to writing and loading of data from training and inference. It is recommended to further
investigate the RMM, as well as alter the training process by physics informed or machine learning informed
choices, such as a weighted mean squared error (MSE). The autoencoder might perform even better with
better feature engineering, and this should be of focus for futher research as well.

67
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Appendix A

A.1 Channel removal testing
In this section the remaining histograms for the channel removal test are shown. Each figure contains the
same subfigure structure as shown in the results and discussion section.
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Regular autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson2l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson2l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson3l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson3l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson4l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson4l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.

Figure 1: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the diboson2l,
diboson3l and diboson4l have been used for the small (left) and large (right) regular autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Wjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Log10 Reconstruction Error

10 1

100

101

102

103

104

105

106

#E
ve

nt
s

Reconstruction error histogram with MC
Wjets
triboson
higgs
diboson2L
Zttjets
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Wjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the topOther channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the topOther channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the triboson channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the triboson channel has been
removed from training and is used as signal. No signi-
ficant difference in distributions is found.

Figure 2: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the Wjets, topOther
and triboson have been used for the small (left) and large (right) regular autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zeejets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zeejets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zmmjets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zmmjets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zttjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zttjets channel has been
removed from training and is used as signal. No signi-
ficant difference in distributions is found.

Figure 3: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the Zeejets, Zmmjets
and Zttjets have been used for the small (left) and large (right) regular autoencoder
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Variational autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson2l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5
Log10 Reconstruction Error

10 2

10 1

100

101

102

103

104

#E
ve

nt
s

Reconstruction error histogram with MC

diboson2L
Wjets
triboson
higgs
Zttjets
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson2l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson3l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson3l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the diboson4l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the diboson4l channel has
been removed from training and is used as signal. No
significant difference in distributions is found.

Figure 4: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the diboson2l,
diboson3l and diboson4l have been used for the small (left) and large (right) variational autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Wjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Wjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the topOther channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the topOther channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the triboson channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the triboson channel has been
removed from training and is used as signal. No signi-
ficant difference in distributions is found.

Figure 5: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the Wjets, topOther
and triboson have been used for the small (left) and large (right) variational autoencoder
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(a) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zeejets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(b) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zeejets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(c) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zmmjets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(d) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zmmjets channel has
been removed from training and is used as signal. No
significant difference in distributions is found.
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(e) Reconstruction error on validation SM MC from the
small Autoencoder. Here the Zttjets channel has been
removed from training and is used as signal. No
significant difference in distributions is found.
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(f) Reconstruction error on validation SM MC from the
big Autoencoder. Here the Zttjets channel has been
removed from training and is used as signal. No signi-
ficant difference in distributions is found.

Figure 6: Reconstruction error on validation SM MC from the small and big Autoencoder. Here the Zeejets, Zmmjets
and Zttjets have been used for the small (left) and large (right) variational autoencoder

A.2 Transverse momentum altering
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Regular autoencoder output
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Figure 7: Reconstruction error on validation SM MC from the small (a) and large (b) regular autoencoder. The
signal is a subsample of the validation set where the transverse momentum of the first electron and the
first muon has been increased with a scale of 1.5. The change of transverse energy has also been changed
according to the scaling of transverse momentum. A small peak is found around 10−3.3.
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Figure 8: Reconstruction error on validation SM MC from the small (a) and large (b) regular autoencoder. The
signal is a subsample of the validation set where the transverse momentum of the first electron and the
first muon has been increased with a scale of 3. The change of transverse energy has also been changed
according to the scaling of transverse momentum. A small peak is found around 10−2.8.
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Figure 9: Reconstruction error on validation SM MC from the small (a) and large (b) regular autoencoder. The
signal is a subsample of the validation set where the transverse momentum of the first electron and the
first muon has been increased with a scale of 5. The change of transverse energy has also been changed
according to the scaling of transverse momentum. A small peak is found around 10−2..
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Figure 10: Reconstruction error on validation SM MC from the small (a) and large (b) regular autoencoder. The
signal is a subsample of the validation set where the transverse momentum of the first electron and the
first muon has been increased with a scale of 7. The change of transverse energy has also been changed
according to the scaling of transverse momentum. A small peak is found around 10−2.
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Variational autoencoder output
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Figure 11: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The signal is a subsample of the validation set where the transverse momentum of the first electron and
the first muon has been increased with a scale of 1.5. The change of transverse energy has also been
changed according to the scaling of transverse momentum. A small peak is found around 10−0.8.
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Figure 12: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The signal is a subsample of the validation set where the transverse momentum of the first electron
and the first muon has been increased with a scale of 3. The change of transverse energy has also been
changed according to the scaling of transverse momentum. A small peak is found around 10−0.5.
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Figure 13: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The signal is a subsample of the validation set where the transverse momentum of the first electron
and the first muon has been increased with a scale of 5. The change of transverse energy has also been
changed according to the scaling of transverse momentum. A small peak is found around 10−0.3.
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Figure 14: Reconstruction error on validation SM MC from the small (a) and large (b) variational autoencoder.
The signal is a subsample of the validation set where the transverse momentum of the first electron
and the first muon has been increased with a scale of 7. The change of transverse energy has also been
changed according to the scaling of transverse momentum.A small peak is found around 10−0.3.

A.3 Reconstruction error cuts for 3 leptons + emiss
T

In this section the remainding two reconstruction error cuts in the 3 lepton + emiss
T are shown. The figures

here are shaped with the same subfigure structure as the figures in the results and discussion section.
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Regular autoencoder output
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Figure 15: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the deep regular autoencoder using the SUSY 450p300. Figure 15a shows the reconstruction error
distribution for the SM MC and the SUSY signal. Here the autoencoder produce the same reconstruction
error shape for both background and signal. Figure 15b shows the emiss

T distribution for the SM MC
and the SUSY signal in the signal region. The signal region is made using a cut around 10−1.17. Most
of the background is removed, with almost no signal in the signal region. Figure 15c shows the mlll

distribution for the SM MC and the SUSY signal. There is almost no signal in the signal region. Figure
15d shows the significance as function of emiss

T . The peak is put around a cut of about 430 GeV in the
emiss

T , with a significance of around 0.35.
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Figure 16: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
shallow regular autoencoder. Here the SUSY 450p300 model is used. Figure 16a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce the same
reconstruction error shape for both background and signal. Figure 16b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−1.28. Most of the background is removed, with almost no signal in the signal region. Figure 16c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 16d shows the significance as function of emiss

T . The peak is put around a cut of about
380 GeV in the emiss

T , with a significance of around 0.33.
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Figure 17: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep regular autoencoder. Here the SUSY 450p300 model is used. Figure 17a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a mirrored
reconstruction error shape for both background and signal. Figure 17b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−0.95. Most of the background is removed, with almost no signal in the signal region. Figure 17c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 17d shows the significance as function of emiss

T . The peak is put around a cut of about
480 GeV in the emiss

T , with a significance of around 0.25.
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Figure 18: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
shallow regular autoencoder. Here the SUSY 450p300 model is used. Figure 18a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a mirrored
reconstruction error shape for both background and signal. Figure 18b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−1.06. Most of the background is removed, with almost no signal in the signal region. Figure 18c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 18d shows the significance as function of emiss

T . The peak is put around a cut of about
480 GeV in the emiss

T , with a significance of around 0.23.



88 APPENDIX . APPENDIX A

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Log10 Reconstruction Error

10 1

100

101

102

103

104

105

106

#E
ve

nt
s

Reconstruction error histogram with MC
450p0p0300
Wjets
triboson
higgs
diboson2L
Zttjets
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(a)

0 200 400 600 800 1000 1200
E miss

T  [GeV]
10 1

100

101

#E
ve

nt
s

emiss
T  with recon err cut of -0.78

450p0p0300
Wjets
Zttjets
triboson
diboson2L
higgs
singletop
diboson4L
topOther
Zmmjets
ttbar
diboson3L
Zeejets

(b)

0 200 400 600 800 1000 1200
mlll [GeV]

10 1

100

101

102

#E
ve

nt
s

Trilepton invariant mass with recon err cut of -0.78
450p0p0300
Wjets
Zttjets
triboson
diboson2L
higgs
singletop
diboson4L
topOther
Zmmjets
ttbar
diboson3L
Zeejets

(c)

100 200 300 400 500 600 700 800 900
emiss

T  [GeV]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Si
gn

ifi
an

ce

Significance as function of emiss
T

2((s + b)log(1 + s
b ) s)

s
b

(d)

Figure 19: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep regular autoencoder. Here the SUSY 450p300 model is used. Figure 19a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce the same
reconstruction error shape for both background and signal. Figure 19b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−0.78. Most of the background is removed, with almost no signal in the signal region. Figure 19c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 19d shows the significance as function of emiss

T . The peak is put around a cut of about
430 GeV in the emiss

T , with a significance of around 0.185.
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Figure 20: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
shallow regular autoencoder. Here the SUSY 450p300 model is used. Figure 20a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce the same
reconstruction error shape for both background and signal. Figure 20b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−0.85. Most of the background is removed, with almost no signal in the signal region. Figure 20c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 20d shows the significance as function of emiss

T . The peak is put around a cut of about
430 GeV in the emiss

T , with a significance of around 0.155.
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Figure 21: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep regular autoencoder. Here the SUSY 450p300 model is used. Figure 21a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a mirrored
reconstruction error shape for both background and signal. Figure 21b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−0.64. Most of the background is removed, with almost no signal in the signal region. Figure 21c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 21d shows the significance as function of emiss

T . The peak is put around a cut of about
400 GeV in the emiss

T , with a significance of around 0.078.
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Figure 22: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
shallow regular autoencoder. Here the SUSY 450p300 model is used. Figure 22a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a mirrored
reconstruction error shape for both background and signal. Figure 22b shows the emiss

T distribution for
the SM MC and the SUSY signal in the signal region. The signal region is made using a cut around
10−0.95. Most of the background is removed, with almost no signal in the signal region. Figure 22c
shows the mlll distribution for the SM MC and the SUSY signal. There is almost no signal in the signal
region. Figure 22d shows the significance as function of emiss

T . The peak is put around a cut of about
400 GeV in the emiss

T , with a significance of around 0.067.
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Variational autoencoder output
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Figure 23: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep variational autoencoder. Here the SUSY 450p300 model is used. Figure 23a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a bell-shape for
background and signal with little destinction. The peaks of the two distributions are not separated in
reconstruction error. Figure 23b shows the emiss

T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.82. Some background is removed, and
the peaks of the SM MC and signal distributions are separated. Figure 23c shows the mlll distribution
for the SM MC and the SUSY signal. The shape of both distributions are displaying almost the same
shape. Figure 23d shows the significance as function of emiss

T . The peak is put around a cut of about
400 GeV in the emiss

T , with a significance of around 2.5.



A.3. RECONSTRUCTION ERROR CUTS FOR 3 LEPTONS + EMISS
T 93

2.5 2.0 1.5 1.0 0.5 0.0
Log10 Reconstruction Error

10 2

10 1

100

101

102

103

104
#E

ve
nt

s
Reconstruction error histogram with MC

450p0p0300
Wjets
triboson
higgs
diboson2L
Zttjets
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(a)

0 200 400 600 800 1000 1200
E miss

T  [GeV]
10 1

100

101

102

103

#E
ve

nt
s

emiss
T  with recon err cut of -0.80

450p0p0300
Wjets
triboson
higgs
Zttjets
diboson2L
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(b)

0 200 400 600 800 1000 1200
mlll [GeV]

10 1

100

101

102

103

#E
ve

nt
s

Trilepton invariant mass with recon err cut of -0.80
450p0p0300
Wjets
triboson
higgs
Zttjets
diboson2L
singletop
topOther
diboson4L
ttbar
diboson3L
Zeejets
Zmmjets

(c)

0 200 400 600 800 1000 1200
emiss

T  [GeV]

0.0

0.5

1.0

1.5

2.0

Si
gn

ifi
an

ce

Significance as function of emiss
T

2((s + b)log(1 + s
b ) s)

s
b

(d)

Figure 24: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder. Here the SUSY 450p300 model is used. Figure 24a shows the
reconstruction error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a
bell-shape for background and signal with little destinction. The peaks of the two distributions are not
separated in reconstruction error. Figure 24b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region. The signal region is made using a cut around 10−0.80. Some background is
removed, and the peaks of the SM MC and signal distributions are separated. Figure 24c shows the mlll

distribution for the SM MC and the SUSY signal. The shape of both distributions are displaying almost
the same shape. Figure 24d shows the significance as function of emiss

T . The peak is put around a cut of
about 400 GeV in the emiss

T , with a significance of around 2.6.
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Figure 25: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep variational autoencoder. Here the SUSY 450p300 model is used. Figure 25a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a bell-shape for
background and signal with little destinction. The peaks of the two distributions are not separated in
reconstruction error. Figure 25b shows the emiss

T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.79. Some background is removed, and
the peaks of the SM MC and signal distributions are separated. Figure 25c shows the mlll distribution
for the SM MC and the SUSY signal. The shape of both distributions are displaying almost the same
shape. Figure 25d shows the significance as function of emiss

T . The peak is put around a cut of about
400 GeV in the emiss

T , with a significance of around 3.3.
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Figure 26: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder. Here the SUSY 450p300 model is used. Figure 26a shows the
reconstruction error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a
bell-shape for background and signal with little destinction. The peaks of the two distributions are not
separated in reconstruction error. Figure 26b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region. The signal region is made using a cut around 10−0.69. Some background is
removed, and the peaks of the SM MC and signal distributions are separated. Figure 26c shows the mlll

distribution for the SM MC and the SUSY signal. The shape of both distributions are displaying almost
the same shape. Figure 26d shows the significance as function of emiss

T . The peak is put around a cut of
about 450 GeV in the emiss

T , with a significance of around 0.27.
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Figure 27: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep variational autoencoder. Here the SUSY 450p300 model is used. Figure 27a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a bell-shape for
background and signal with little destinction. The peaks of the two distributions are not separated in
reconstruction error. Figure 27b shows the emiss

T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.55. Some background is removed, and
the peaks of the SM MC and signal distributions are separated. Figure 27c shows the mlll distribution
for the SM MC and the SUSY signal. The shape of both distributions are displaying almost the same
shape. Figure 27d shows the significance as function of emiss

T . The peak is put around a cut of about
400 GeV in the emiss

T , with a significance of around 0.94.
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Figure 28: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder. Here the SUSY 450p300 model is used. Figure 28a shows the
reconstruction error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a
bell-shape for background and signal with little destinction. The peaks of the two distributions are not
separated in reconstruction error. Figure 28b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region. The signal region is made using a cut around 10−0.53. Some background is
removed, and the peaks of the SM MC and signal distributions are separated. Figure 28c shows the mlll

distribution for the SM MC and the SUSY signal. The shape of both distributions are displaying almost
the same shape. Figure 28d shows the significance as function of emiss

T . The peak is put around a cut of
about 450 GeV in the emiss

T , with a significance of around 0.81.
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Figure 29: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for the
deep variational autoencoder. Here the SUSY 450p300 model is used. Figure 29a shows the reconstruction
error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a bell-shape for
background and signal with little destinction. The peaks of the two distributions are not separated in
reconstruction error. Figure 29b shows the emiss

T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.53. Some background is removed, and
the peaks of the SM MC and signal distributions are separated. Figure 29c shows the mlll distribution
for the SM MC and the SUSY signal. The shape of both distributions are displaying almost the same
shape. Figure 29d shows the significance as function of emiss

T . The peak is put around a cut of about
480 GeV in the emiss

T , with a significance of around 0.21.
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Figure 30: Reconstruction error, emiss
T signal region, mlll signal region and significance as function of emiss

T for
the shallow variational autoencoder. Here the SUSY 450p300 model is used. Figure 30a shows the
reconstruction error distribution for the SM MC and the SUSY signal. Here the autoencoder produce a
bell-shape for background and signal with little destinction. The peaks of the two distributions are not
separated in reconstruction error. Figure 30b shows the emiss

T distribution for the SM MC and the SUSY
signal in the signal region. The signal region is made using a cut around 10−0.46. Some background is
removed, and the peaks of the SM MC and signal distributions are separated. Figure 30c shows the mlll

distribution for the SM MC and the SUSY signal. The shape of both distributions are displaying almost
the same shape. Figure 30d shows the significance as function of emiss

T . The peak is put around a cut of
about 480 GeV in the emiss

T , with a significance of around 0.11.

A.4 Reconstruction error cuts for 2 leptons + emiss
T

In this section the remainding two reconstruction error cuts in the 2 lepton + emiss
T are shown. The figures

here are shaped with the same subfigure structure as the figures in the results and discussion section.
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Regular autoencoder output
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Figure 31: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−1.08. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 340 GeV in the emiss
T , with a significance of

around 0.95.
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Figure 32: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−1.29. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 380 GeV in the emiss
T , with a significance of

around 1.3.
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Figure 33: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows the reconstruction error distribution for the SM MC
and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the lower
end of the reconstruction error range for the background. The signal is more evenly spread out along
the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude in
reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−1.11. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 340 GeV in the emiss
T , with a significance of

around 0.29.
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Figure 34: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows the reconstruction error distribution for the SM MC
and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the lower
end of the reconstruction error range for the background. The signal is more evenly spread out along
the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude in
reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−1.21. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 340 GeV in the emiss
T , with a significance of

around 0.31.
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Figure 35: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.72. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 380 GeV in the emiss
T , with a significance of

around 0.42.
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Figure 36: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows the reconstruction error distribution for the SM
MC and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the
lower end of the reconstruction error range for the background. The signal is more evenly spread out
along the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude
in reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.86. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 350 GeV in the emiss
T , with a significance of

around 0.47.
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Figure 37: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows the reconstruction error distribution for the SM MC
and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the lower
end of the reconstruction error range for the background. The signal is more evenly spread out along
the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude in
reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.74. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 340 GeV in the emiss
T , with a significance of

around 0.125.
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Figure 38: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows the reconstruction error distribution for the SM MC
and the SUSY signal. The autoencoder produces A slope like shape that is highly shifted to the lower
end of the reconstruction error range for the background. The signal is more evenly spread out along
the x-axis. The peaks of the two distributions are totally separated with two orders of magnitude in
reconstruction error. (b) shows the emiss

T T distribution for the SM MC and the SUSY signal in the
signal region. The signal region is made using a cut around 10−0.81. Most of the background is removed,
and the peaks of the SM MC and signal distributions are somewhat separated. (c) shows the significance
as function of emiss

T . The peak is put around a cut of about 340 GeV in the emiss
T , with a significance of

around 0.125.
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Variational autoencoder output
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Figure 39: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.81. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 1.2 at around 400 GeV.
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Figure 40: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.61. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 1.31 at around 400 GeV.
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Figure 41: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.64. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 1.35 at around 400 GeV.
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Figure 42: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.54. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.17 at around 450 GeV.
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Figure 43: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.41. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.71 at around 400 GeV.
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Figure 44: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 450p300. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.42. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.92 at around 400 GeV.
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Figure 45: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.36. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.148 at around 400 GeV.
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Figure 46: Reconstruction error (a), emiss
T signal region (b) and significance as function of emiss

T (c) for the deep
regular autoencoder using SUSY 800p50. (a) shows that the peak of the distribution is somewhat
centered in the middle of the reconstruction error range forming a bell-like shape. The peaks of the
background and signal distributions are not well separated, with almost identical reconstruction error
pattern. (b) shows a signal region with large background distribution. The signal region is made using
a cut around 10−0.43. The peaks in the signal region are also somewhat separated, but the overall
distributions are overlapping still. (c) shows the significance as function of emiss

T . The peak significance
is around 0.123 at around 400 GeV.
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Appendix B

B.1 Algorithmic implementation
The RMM as a set of features were a bit tricky to implement, and one way to implement it was to use a
dictionary containing the names of features already in the RDataFrame set. RDataFrame allows for custom
c++ functions to be run on the entire dataframe, and because almost all the features in the RMM use the
kinematical variables for each particle they were needed to be accessed. Each element in the dictionary
contains a number ID corresponding to the column it belongs to, a name, the 4 kinematic variables pT , η, φ
and E, and the rank within its particle type. Thus, ele0 is the first electron, and its rank is 0.

1 rmm_structure = {
2 1: ["ljet_0", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 0,],
3 2: [ "ljet_1", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 1,],
4 3: [ "ljet_2", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 2,],
5 4: [ "ljet_3", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 3,],
6 5: [ "ljet_4", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 4,],
7 6: [ "ljet_5", "jetPt[ljet]", "jetEta[ljet]", "jetPhi[ljet]", "jetM[ljet]", 5,],
8 7: [ "bjet_0", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 0,],
9 8: [ "bjet_1", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 1,],

10 9: [ "bjet_2", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 2,],
11 10: [ "bjet_3", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 3,],
12 11: [ "bjet_4", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 4,],
13 12: [ "bjet_5", "jetPt[bjet77]", "jetEta[bjet77]", "jetPhi[bjet77]", "jetM[bjet77]", 5,],
14 13: [ "ele_0", "lepPt[ele_SG]", "lepEta[ele_SG]", "lepPhi[ele_SG]", "lepM[ele_SG]", 0,],
15 14: [ "ele_1", "lepPt[ele_SG]", "lepEta[ele_SG]", "lepPhi[ele_SG]", "lepM[ele_SG]", 1,],
16 15: [ "ele_2", "lepPt[ele_SG]", "lepEta[ele_SG]", "lepPhi[ele_SG]", "lepM[ele_SG]", 2,],
17 16: [ "ele_3", "lepPt[ele_SG]", "lepEta[ele_SG]", "lepPhi[ele_SG]", "lepM[ele_SG]", 3,],
18 17: [ "ele_4", "lepPt[ele_SG]", "lepEta[ele_SG]", "lepPhi[ele_SG]", "lepM[ele_SG]", 4,],
19 18: [ "muo_0", "lepPt[muo_SG]", "lepEta[muo_SG]", "lepPhi[muo_SG]", "lepM[muo_SG]", 0,],
20 19: [ "muo_1", "lepPt[muo_SG]", "lepEta[muo_SG]", "lepPhi[muo_SG]", "lepM[muo_SG]", 1,],
21 20: [ "muo_2", "lepPt[muo_SG]", "lepEta[muo_SG]", "lepPhi[muo_SG]", "lepM[muo_SG]", 2,],
22 21: [ "muo_3", "lepPt[muo_SG]", "lepEta[muo_SG]", "lepPhi[muo_SG]", "lepM[muo_SG]", 3,],
23 22: [ "muo_4", "lepPt[muo_SG]", "lepEta[muo_SG]", "lepPhi[muo_SG]", "lepM[muo_SG]", 4,],
24 }

The dictionary is then used in the nested for loop below. The loop is partitioned into several scenarios.
Firstly, the first element in the matrix is the emiss

T . Once that is set, the loop has three cases to check, the
upper triangle, the lower triangle and the diagonal. The upper triangle is related to masses, and the lower
triangle is related to longitudal properties. Using this, the number ID helps ID which particle(s) to use and
where to put the properties calculated based on them.
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1 for row in range(N_row):
2 if row == 0:
3 # Calculate e_T^miss and m_T for all objects
4 for column in range(N_col):
5 if column == 0:
6 # Set e_T_miss
7 df[k] = df[k].Define("e_T_miss", "met_Et")
8 else:
9 # Set m_T for all particles

10 name, pt,eta,phi,m,index = rmm_structure[column]
11 df[k] = df[k].Define(
12 f"m_T_{name}", f"getM_T({pt},{eta},{phi},{m},{index})"
13 )
14 else:
15 # Calculate rest of matrix
16 for column in range(N_col):
17 if column == 0:
18 # Set h_L for all particles
19 name, pt,eta,phi,m,index = rmm_structure[row]
20
21 df[k] = df[k].Define(
22 f"h_L_{name}", f"geth_L({pt},{eta},{phi},{m},{index})"
23 )
24 elif column == row:
25 name, pt,eta,phi,m,index = rmm_structure[column]
26 if index == 0:
27 # If particle is the first of its type, calculate e_T of particle
28 df[k] = df[k].Define(
29 f"e_T_{name}", f"getET_part({pt},{m},{index})"
30 )
31 else:
32 # If particle is not the first of its type, calculate the difference in e_T
33 df[k] = df[k].Define(
34 f"delta_e_t_{name}", f"delta_e_T({pt},{m},{index})"
35 )
36
37
38 elif column > row:
39 # For invariant mass
40 # Particle 1
41 name1, pt1,eta1,phi1,m1,index1 = rmm_structure[row]
42
43 # Particle 2
44 name2,pt2,eta2,phi2,m2,index2 = rmm_structure[column]
45
46 histo_name = f"m_{name1}_{name2}"
47 df[k] = df[k].Define(
48 histo_name,
49 f"getM({pt1},{eta1}, {phi1}, {m1}, {pt2}, {eta2}, {phi2}, {m2}, {index1}, {

index2})",
50 )
51 elif row > column:
52 # For h longitudal stuff
53 # Particle 1
54 name1, pt1,eta1,phi1,m1,index1 = rmm_structure[row]
55
56 # Particle 2
57 name2,pt2,eta2,phi2,m2,index2 = rmm_structure[column]
58
59 histo_name = f"h_{name1}_{name2}"
60 df[k] = df[k].Define(
61 f"{histo_name}",
62 f"geth({pt1},{eta1}, {phi1}, {m1}, {pt2}, {eta2}, {phi2}, {m2}, {index1}, {

index2})",
63 )
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