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Abstract

The COVID-19 pandemic, which affected societies worldwide, and many
were compelled to shut down, also affected social media platforms like
Twitter. The COVID-19-related misinformation on Twitter covered vari-
ous topics and contained many competing narratives, including conspir-
acy theories. This thesis aims to analyze such conspiracy theories using
the manually labeled nine conspiracy categories from the COCO dataset,
a multilabel multiclass text-based dataset. The first part of the thesis fo-
cuses on developing machine-learning models to detect these categories.
Classical approaches such as Bag-of-Words, TF-IDF, and N-gram varia-
tions were used as baseline models. In addition, various pre-trained Trans-
former models, including general and domain-specific models, were ex-
plored using multi-task and ensemble learning methods. Among these
models, COVID-Twitter-BERT (CT-BERT), pretrained on a large corpus of
Twitter messages related to COVID-19, achieved the best performance on
the dataset.

The second half of the thesis focuses on conducting a large-scale inference
of 2.5 billion tweets, which were reduced to approximately 381 million
tweets after removing retweets and duplicates. First, we evaluate the
speed performance of Graphical Processing Units (GPUs) and Graphcore
Intelligence Processing Units (IPUs) for NLP-based inference tasks to find
the fastest processing unit. The experiment results revealed that the
IPUs performed relatively faster than the GPUs for the inference task
and were, therefore, used to perform the inference on all tweets, which
produced a substantial dataset annotated with nine conspiracy theories,
each comprising three subcategories: promoting, discussing, and non-
conspiracy.
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Chapter 1

Introduction

1.1 Motivation

Before the internet, print media, radio, and television were the primary
news and knowledge sources. However, the digital revolution drastically
transformed societies, providing unparalleled access to global information
and enabling real-time communication, eliminating time and space barri-
ers. In this digital age, social media platforms like Facebook, Twitter, and
Instagram have become virtual hubs for community growth and idea ex-
change, surpassing pre-internet limitations and opening up vast resources
of information and connections. Nevertheless, as we traverse the digital
landscape, we must address its inherent challenges, including concerns
about information reliability, impacts on mental health, and potential mis-
use of disinformation and propaganda.

The COVID-19 pandemic is a global pandemic that was first detected in
Wuhan City, Hubei Province of China, on 31 December 2019, where the
WHO China Country Office was informed of cases of pneumonia of un-
known etiology1. Due to the rapid transmission of COVID-19, many soci-
eties were compelled to enforce lockdown measures. Furthermore, similar
to the swift global dissemination of the virus, social media posts concerning
the virus on platforms such as Twitter and Facebook propagated rapidly as
well. Unfortunately, a significant amount of misinformation was spread on
these platforms at the start of the pandemic, including conspiracy theories,
fake cures, and misleading information about the virus. Some examples of
these misinformation types were unverified treatments, conspiracy theo-
ries about an intentional virus outbreak, and political propaganda, often to
promote a particular political agenda or blame a particular party or coun-
try for the outbreak.

The term digital wildfires often refers to the rapid dissemination of misinfor-
mation across social media platforms, particularly during crises or break-
ing news events. Analogous to the swift spread of a wildfire through dry
vegetation, misinformation can propagate quickly through social media,

1https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229

1

https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229


fueled by user engagement such as shares, likes, and comments. The quick
proliferation of inaccurate, counterfactual, or deliberately misleading in-
formation, which can quickly infiltrate public awareness and yield severe
real-world consequences, is considered one of the top global risks of the
21st century [106]. Nevertheless, only a minuscule fraction of the perva-
sive misinformation on the internet results in harmful real-world actions.
One such example is the burning of 5G towers due to the misguided belief
that these towers contribute to the spread of viruses [85]. Identifying po-
tential digital wildfires before they inflict significant real-world damage is
crucial. However, given the sheer volume of text on social media, such as
the 500 million daily tweets on Twitter, only systems capable of automati-
cally detecting misinformation narratives can reliably fulfill this role.

During the pandemic, a wave of COVID-19-related conspiracy theories
emerged alongside the misinformation pervading social media. Despite
the efforts of major social networks, an overload of fabricated facts, base-
less theories, and seemingly credible posts inundated online media sources.
Such rumors and rapidly spreading inaccuracies quickly infiltrated pub-
lic awareness, leading to significant real-world consequences. Heightened
public focus on this issue has prompted content moderation and particu-
lar limitations on freedom of speech to deter manipulation of pandemic-
related public opinion. Therefore, addressing the deceptive and mislead-
ing content within the COVID-19 infodemic is crucial. In this thesis, we aim
to distinguish between content free of misinformation and content tainted
with misinformation by analyzing, with building machine learning and
NLP-based models, the COCO dataset[52]. The COCO dataset is a multi-
label, multi-class dataset comprising twelve distinct conspiracy categories,
each with three unique subcategories.

We aim to develop a robust language-based model to detect conspiracy on
large amounts of Twitter data with the help of pre-trained transformer-based
models such as BERT [23, 99]. These transformer-based models, which
leverage self-attention mechanisms and parallel processing to effectively
capture long-range dependencies and complex linguistic patterns within
the text, have transformed the field of natural language processing (NLP)
and have a significantly advanced state-of-the-art in various NLP tasks by
enabling more profound understanding of context and semantics in tex-
tual data. As a result, they have set new benchmarks and reshaped the
research landscape in NLP. With the pandemic, several pre-trained trans-
former models have been developed to tackle the misinformation on Twit-
ter. Among them is the CT-BERT and BERTweet [69, 71]. We intend to fine-
tune and evaluate these and other pre-trained transformer-based models to
identify the one that optimally suits the COCO dataset.

The second part of the thesis is about making a large-scale inference.
We will evaluate different processing units, such as GPUs and Graphcore
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IPUs2, to find the one which is best suited for large-scale inference. GPUs,
which are the state-of-art processing units for deep learning models, are
designed for parallel processing, which makes them particularly effective
for tasks that can be broken down into many smaller tasks that can
be performed simultaneously. On the other hand, IPUs are a type
of specialized processing unit designed to accelerate complex machine-
learning tasks. They are built with a unique architecture that includes
thousands of parallel computing cores, advanced on-chip memory, and
optimized software to achieve high performance and efficiency for artificial
intelligence applications. The inference aims to annotate a large-scale
Twitter dataset comprising 2.5 billion tweets. Owing to the massiveness of
the dataset, we require a processing unit capable of conducting inference
swiftly to ensure timely completion.

1.2 Problem Statement

Although there has been much research on fake news and conspiracy the-
ory detection related to COVID-19, to the author’s knowledge, no work has
been conducted on datasets featuring a high degree of specificity, such as
multiple categories of conspiracies for in-depth analysis of conspiracy the-
ories. In addition, no other work has made a large-scale inference at the
size of 2.5 billion tweet texts. With these points in mind, we formulate the
following research question:

RQ1 Which machine-learning model is best suited for creating a multi-class
multi-label conspiracy theory detection based on the COCO dataset?

1a) Some conspiracy categories are known to be more keyword-based than
others in the COCO dataset. How big is the gap between the text vectoriza-
tion methods like the TF-IDF approaches compared to the large pre-trained
models for these categories?

RQ2 How does the performance of IPUs compare to other hardware solu-
tions, such as GPUs, when conducting large-scale inference tasks for con-
spiracy theory detection using large pre-trained models?

2a) What is the distribution of conspiracy theories on big data? How do the
different conspiracy categories evolve through time?

We aim to solve these research questions with the following research
objectives:

Objective 1: Investigate the performance of keyword-based methods on
the COCO dataset, including TF-IDF and BOW approaches.

Objective 2: Investigate the performance of general and domain-specific
pre-trained transformer models.

2https://www.graphcore.ai/products/ipu
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Objective 3: Explore the impact of advanced learning methods, such as
deep ensemble methods and multi-task learning, on the best-
performing model from Objective 2. Additionally, assess the
effects of augmented techniques on the datasets.

Objective 4: Develop deep learning models on IPUs and measure their
training and prediction times. In addition, run the inference
on big data.

1.3 Main Contributions

This thesis contributes to the field of fake news and conspiracy theory
detection. We proposed four research objectives to answer the research
questions. In section, we will briefly describe the main contributions
behind this thesis by sequentially repeating and explaining how these were
met.

Objective 1: Investigate the performance of keyword-based methods on the
COCO dataset, including TF-IDF and BOW approaches.

We support this objective by analyzing the dataset that was initially
scraped tweets using COVID-19-related and was annotated with conspir-
acy theory-related synonyms, resulting in specific keywords in certain con-
spiracy categories. Given a category, discussing it without mentioning its
name is nearly impossible. For instance, it isn’t easy to discuss the New
World Order category without referring to it directly. Similarly, discussing
the Population Reduction category, which supports the conspiracy theory
that COVID-19 was created to decrease the world’s population, usually re-
quires mentioning Bill Gates and George Soros. As a result, we believe that
word count-based methods, such as TF-IDF and BOW, can help establish a
robust baseline model for the COCO dataset.

Objective 2: Investigate the performance of general and domain-specific pre-
trained transformer models.

This objective aims to investigate the performance of pre-trained trans-
former models on the COCO dataset and identify the top-performing
model. We have chosen two general pre-trained models and four domain-
specific ones pre-trained on similar data to achieve this. We assess the
models using two evaluation approaches, One-for-All and One-for-One.
Furthermore, we conduct experiments with various loss functions to refine
our evaluation of the best model.

Objective 3: Explore the impact of advanced learning methods, such as deep
ensemble and multi-task learning, on the best-performing model
from Objective 2. Additionally, assess the effects of augmented
techniques on the datasets.
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The primary goal of this endeavor is to enhance the model’s performance
beyond its previous achievements. To accomplish this, we employ
sophisticated machine-learning strategies, including multi-task learning
and deep ensemble techniques. Additionally, we are exploring using
augmentation methods and a fine-grained version of the dataset. Upon
completion, we will have refined our model to its optimal performance on
the dataset, making it ready for large-scale data inference.

Objective 4: Develop deep learning models on Graphcore’s IPUs and measure
their training and prediction times. In addition, run the inference
on big data.

Ultimately, we implement the selected model on Graphcore’s IPUs to
assess their training and prediction times. This objective aims to construct
an equivalent model on Graphcore’s IPUs for large-scale data inference.
Additionally, we compare the inference time of the IPUs with that of
other state-of-the-art GPUs used for deploying deep learning models. We
will have inferred big data and their corresponding predicted labels upon
achieving this objective.

1.4 Outline

This thesis is divided into eight chapters. The following summary gives a
brief introduction to the next chapters.

Background Chapter 2 presents the background, describing the theoretical
framework and previous work supporting this thesis’s methods.

Dataset Chapter 3 introduces and discusses the COCO dataset, where we
will present the conspiracy categories in detail and, in addition, provide
the labeling instruction used to label those categories. We will also discuss
Matthews correlation coefficient (MCC) as the evaluation score of the dataset.
Finally, we present the alternative versions of the dataset by feature engi-
neering of the labels and other COVID-19-related open-source datasets.

Experiments with classical approaches Chapter 4 describes the execution,
results, and discussion of the classical approaches such as the TF-IDF, BOW,
and N-gram.

Experiments with transformer-based approaches Chapter 5 describes the
execution, results, and discussion of the transformer-based approaches.
Here we also introduce the One-for-All and One-for-One approaches. In
addition, we also experiment with different activation functions.

Experiments with other datasets and advanced learning techniques
Chapter 6 is about further experimenting with the best model with more
advanced techniques such as deep ensemble learning, data augmentation

5



techniques, alternative versions of the dataset, and more advanced multi-
task learning.

Experiments on intelligence processing units Chapter 7 introduces
Graphcore’s IPUs and motivates why these processing units are a good fit
for machine learning. This chapter also gives an overview of implement-
ing deep learning models on IPUs. Finally, we also describe the setup of
the BERT model and the time comparison of IPUs with GPUs.

Inference on big data Chapter 8 details big data and motivates the reason
for inference. Furthermore, this chapter provides results and a discussion
of the inference.

Conclusion & Future work The results from the previous chapter are put
into context, and final conclusions are drawn. The results were inter-
preted considering the known information, and connections between re-
search questions and the results are also provided. Finally, the results were
also discussed in a broader context and a discussion regarding future work
is provided.
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Chapter 2

Background

Fake news is a term used to describe false stories that appear to be news
spread on the internet or through other media to influence political views
or as a form of amusement. However, fake news can take on various forms.
The four most common subcategories are:

• Political misinformation: False or misleading information about
political candidates, elections, or policies. An example of this
category is the 2016 United States presidential election, where it was
found a large amount of fake news on Twitter [37].

• Health misinformation: False or unverified information related to
health, such as cures or disease treatments. The use of hydroxychloro-
quine as a cure for COVID-19 is an example of this category [44, 108].

• Financial fraud detection: Financial scams and get-rich-quick
schemes deceive individuals with fraudulent promises of substantial
and effortless financial gains. Examples include pyramid and Ponzi
schemes, forex and crypto scams, work-from-home frauds, and fake
investment programs. [55, 63, 105].

• Scams: False or misleading information designed to deceive people
into giving up their personal information or money.

This thesis will broadly study COVID-19-related conspiracy detection.
Conspiracy theories can range from mildly implausible to entirely absurd
and are typically spread through social media platforms. This chapter
will provide an overview of previous work on fake news and conspiracy
detection, as well as machine learning and NLP-based methods used to
detect and combat them.

2.1 Previous work

This section will provide an overview of the various types of fake
news detection. We will first present the general types of fake news
detection and subsequently provide a more detailed discussion of domain-
specific types, such as Twitter-based COVID-19-related fake news and
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conspiracy theories. However, it is essential to note that this section does
not comprehensively explain the machine learning and natural language
processing algorithms used in fake news detection but briefly mentions
them. The subsequent section will elaborate on the technical details of
these algorithms. Within the general realm of fake news analysis, we will
examine fact-checking-based, source-based, and context-based fake news
analysis. We will discuss the differences between these analyses and the
methodologies employed to combat them.

2.1.1 Fact-checking-based fake news

Fact-checking-based fake news analysis is one of the most studied fields
of all fake news analyses. This analysis adopts a knowledge-based per-
spective to verify the accuracy of claims presented in a news article. It
involves cross-referencing the claims with multiple sources to ensure their
factual correctness. By comparing the information with reputable and reli-
able sources, one can assess the validity and reliability of the claims made
in the article. This method promotes a more accurate understanding of the
news and helps to identify and combat misinformation or fake news. Fact-
checking can also involve identifying sources of misinformation or pro-
paganda. This method was initially developed in journalism. Journalists
aimed to assess news authenticity by comparing the knowledge extracted
from to-be-verified news content (e.g., its claims or statements) with known
facts [114].

Fact-checking can help identify false or misleading claims and provide
readers with accurate information. Fact-checking has traditionally been
performed with two common methodologies; manual and automatic fact-
checking. Trained fact-checkers typically do manual fact-checking. Among
the trained fact-checkers, there exist two different parts. The first part con-
sists of experts, relying on domain experts as fact-checkers to verify the
given news contents. Expert-based fact-checking is often conducted by a
small group of highly objective fact-checkers. However, despite this highly
accurate method, it is costly and poorly scalable. Lately, many websites
have emerged to allow expert-based fact-checking better serve the public.
Some of these websites are PolitiFact1, The Washington Post Fact Checker2,
FactCheck3 and Snopes4. Common for these websites is that they comment
on American politics and verify statements, claims, speeches, and news. In
contrast to expert-based fact-checking, which is a highly costly procedure
and not scalable, crowd-sourced fact-checking solves the problem by being
more affordable and scalable by having a team of average-level domain-
expert to annotate the news. Fiskkit5 is an example of this category, where
users can upload articles, provide ratings for sentences within articles, and

1https://www.politifact.com/
2https://www.washingtonpost.com/news/fact-checker/
3https://www.factcheck.org/
4https://www.snopes.com/
5https://fiskkit.com/
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choose tags that best describe the articles.

With the rise of machine learning and natural language processing, fact-
checking-based analysis has been converted into an automatic procedure.
Due to the huge amount of newly created information available on the in-
ternet, especially on social media, having good language models is neces-
sary to tackle scalability. Traditionally, fact-checking analysis has been per-
formed with Information Retrieval (IR) [62, 103]. IR is a field of study that
deals with searching for and retrieving relevant information from large col-
lections of unstructured or semi-structured data, such as text documents,
images, or videos. It uses various techniques and algorithms, such as in-
dexing, querying, ranking, and relevance feedback, to effectively search
and retrieve information based on user queries. IR techniques can be used
to quickly search through large amounts of data to find evidence that can
be used to verify or refute claims made in a news article.

Despite the utility of IR in fact-checking tasks, transformer models have
emerged as prominent candidates, seeking to boost the performance in
these domains. Transformer models like BERT [23] have shown promise
in fact-checking tasks [100, 107]. In fact-checking tasks, BERT can be
used to identify the claims made in a news article and evaluate their
accuracy by comparing them to relevant information from other sources.
The standard way to use BERT for fact-checking is by fine-tuning the model
on a large dataset of labeled articles and then predict on unseen articles.
Another approach is to use BERT to identify key phrases and entities in a
news article, then cross-reference them with other sources to verify their
precision.

Fact-checking COVID-19

One example of fact-checking tasks based on COVID-19 is the FakeCovid, a
dataset containing 5182 fact-checked news articles for COVID-19 collected
from 4th of January 2020 to 15th of May 2020 [87]. The articles were
collected from 92 different fact-checking websites, where each has been
manually labeled into 11 different categories, and the whole dataset is in
40 languages from 105 countries. Typical for these websites is verifying
the correctness of misinformation spread across several topics. As for the
fact-checking process, they manually verify the news article’s authenticity
and perform a contextual analysis. The fact-checking website assigns a
class for each fact-checked article. Each fact-checking website has a set of
classes designed by them; for instance, the classes may be "true", "false",
or "partially false". In addition, each data sample has been manually
annotated into different categories describing several topics, for example,
origin, virus, or international response. The category attribute has been
used to denote the article’s topic. The dataset consists of the following
attributes:

• FCID The identifier of each data sample.
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• Source of articles.

• Title from the collected link.

• Published Date

• Content of articles The content of the articles in text form.

• Class from the fact-checking website

• Social media link

• Fact checking website

• Country of the post.

• Category Manually labeled category describing the topic.

• Language of the content.

2.1.2 Style-based analysis

Style-based fake news analysis is an approach to identifying fake news that
relies on analyzing the writing style of a news article or social media post.
The intuition and assumption behind style-based methods are that mali-
cious entities prefer to write fake news in a special style to encourage oth-
ers to read and convince them to trust. The idea behind style-based fake
news detection is that fake news spreaders often use a different writing
style than real news spreaders, which can be used to identify them. One
advantage of style-based fake news detection is that it can be effective even
when the content of a news article is difficult to verify or there are no exter-
nal sources of information available. Style-based detection can also identify
patterns of language use that suggest an article is fake or misleading. How-
ever, style-based fake news detection has some limitations, e.g., some fake
news articles may be written in a similar style to real news articles, mak-
ing them difficult to detect using this approach alone, and it also requires a
large dataset of labeled articles for training, which can be difficult to obtain
for certain languages or domains.

The traditional method for detecting fake news based on their style is
to extract stylometric features such as sentence length, word frequency,
and punctuation usage. These features are used to create a profile of the
writing style of each news article. These features are then driven through
the traditional machine learning models, such as XGBoost, random forest,
etc. One example of this approach is based on training two classifiers, a
neural network and a model based on stylometric features, on a corpus
of 103,219 documents from 223 online sources labeled by media experts,
devising realistic evaluation scenarios [81].
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2.1.3 Source analysis

Source analysis is an approach to detect fake news that involves evaluating
the credibility and reputation of the source of a news article or social media
post. The idea is that reputable sources are more likely to publish accurate
information than less reputable sources. Source analysis can involve
several different factors, such as the history of the source, the editorial
policies of the source, and the expertise of the authors. For example, a
news article from a well-established and reputable news organization like
The New York Times or BBC is generally considered more trustworthy than
an article from a relatively unknown website or blog. Source analysis can
be a helpful approach to detecting fake news, as it can help identify articles
that are likely to be inaccurate or misleading based on the reputation of
the source. However, it is important to note that even reputable sources
sometimes make mistakes or publish inaccurate information. Therefore,
source analysis should be combined with other approaches, such as fact-
checking, to improve the accuracy of fake news detection.

2.1.4 Context analysis & Social Media

Lastly, we present fake news analysis based on the context of news articles
or social media posts. It involves analyzing the context in which a news
article or social media post is posted to identify patterns or inconsisten-
cies that suggest it is fake or misleading. Context analysis considers factors
such as the language used and the targeted audience. The language used in
a news article can indicate its accuracy or bias. For example, sensational or
hyperbolic language may suggest that the article is intended to manipulate
or mislead the reader.

Social media platforms present unique challenges for detecting fake news
because of the large volume of content and the rapid speed at which it can
be shared. Context analysis can be helpful because it allows for evaluating
patterns and trends in the information shared on social media. Over recent
years, the growth of online social media has dramatically streamlined how
people communicate. Social media users share information, connect with
others, and stay informed about trending events. Nevertheless, much re-
cent information on social media is doubtful and, in some cases, intended
to mislead.

One example of fake news on social media is the 2016 US presidential elec-
tion. Twitter was heavily used as a platform for sharing news and opinions.
One study found that 25% of 171 million tweets spread either fake or ex-
tremely biased news [13]. Many of these fake news stories were designed
to be sensational or to play to people’s fears and biases, and they often
spread quickly through social media networks. Twitter and other social
media companies have since taken steps to combat the spread of fake news
on their platforms, including implementing fact-checking tools. However,
the influence of fake news on social media remains a concern, and it will
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likely continue to be a topic of study and debate in future elections.

To combat the spread of fake news, various efforts have been made.
One such effort is the Fake News Challenge (FNC-1)6, which brought
together academic researchers and industry professionals to explore and
develop techniques for automatically identifying fake news articles. FNC-
1 involved a dataset of news articles labeled as either fake or real, and
participants were tasked with creating machine learning models that could
accurately distinguish between the two. The challenge gained significant
attention from the NLP community, with 50 academic and industry teams
participating. Another approach to tackling the fake news problem is
a multimodal attention network proposed by Vo et al. [104]. Their
framework aims to prevent the spread of fake news by ranking fact-
checking documents based on relevancy. By considering the content of
an original tweet that may contain misinformation, their algorithm can
directly warn fake news posters and online users, including the poster’s
followers, about the misinformation and discourage them from spreading
fake news. The framework uses text and images to search for fact-checking
articles and promotes verified content on social media.

2.1.5 COVID-19 fake news on Twitter

Till now, we discussed the non-COVID-19 fake news strategies. This sec-
tion will dive deeper into previous work on COVID-19-related fake news
analysis. The common theme in tweets during the pandemic were fake
news narratives, conspiracy theories, and hate speech toward a political
entity and country. The term infodedemic was used by researchers in this
period to describe the overload of misinformation that makes it difficult
for people to find accurate and trustworthy information. Infodemics can
be harmful because they can spread false information and conspiracy theo-
ries, undermining public trust in science and public health interventions.
Several works have been released during the pandemic to combat info-
demics. The FakeNews: Corona Virus and 5G Conspiracy task at MediaEval
20207 introduced another dataset that focused on the classification of tweet
texts and retweet cascades for the detection of fast-spreading misinforma-
tion on Twitter [78, 79].

El-Patwa et al. [74] introduced the Fighting an Infodemic, an annotated
dataset of 10, 700 social media posts and articles of real and fake news on
COVID-19. Das et al. [20] proposed a heuristic-driven ensemble frame-
work at the CONSTRAINT8 COVID-19 Fake News Detection in English
challenge. Their suggested model was based on an ensemble model con-
sisting of pre-trained Transformer models. In addition, Glazkova et al. [31]

6http://www.fakenewschallenge.org/
7https://multimediaeval.github.io/editions/2020/
8First Workshop on Combating Online Hostile Posts in Regional Languages

during Emergency Situation Collocated with AAAI 2021: https://www.lcs2.in/
CONSTRAINT-2021/
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deployed CT-BERT [69] and various ensembles of it in the same challenge.

Elhahad et al. [25] introduced a misleading-information detection model re-
lated to COVID-19 that relied on the World Health Organization, UNICEF,
and the United Nations sources of information, as well as epidemiological
material collected from a range of fact-checking websites. Their proposed
model is based on data validity since the data were obtained from reli-
able sources and consisted of ten distinct machine learning algorithms with
seven feature extraction techniques. TF-IDF was used to embed the textual
data into numerical data. The final prediction was based on a voting ensem-
ble of these machine learning models: whether a tweet is real or mislead-
ing. Like this work, Al-Rakhami et al. [83] proposed an ensemble-learning-
based framework for verifying the credibility of tweets. The proposed ap-
proach classified the tweets into categories of credible or non-credible and is
based on various features, including tweet- and user-level features.

Efforts were made to automate COVID-19 fake news detection by design-
ing a pipeline based on fact-checking algorithms and textual entailment
[101]. Their approach consists of two models; the first model leverages
a novel fact-checking algorithm that retrieves the most relevant facts con-
cerning user claims about particular COVID-19. The second model veri-
fies the claim’s truth level by computing the textual entailment between
the claim and the true facts retrieved from a manually curated COVID-19
dataset. The dataset they used is based on a publicly available knowledge
source of more than 5000 COVID-19 false claims and verified explanations,
a subset of which was internally annotated and cross-validated to train and
evaluate our models.

Despite limited resources in other languages, Kar et al. [49] proposed
an approach to detect fake news about COVID-19 early on from social
media, such as Twitter, for multiple Indic-Languages except for English.
In addition, they also proposed a BERT-based model augmented with
additional relevant features extracted from Twitter to identify fake tweets.
To expand the approach to multiple Indic languages, the alternative to
mBERT [58] based model is fine-tuned over a created dataset in Hindi and
Bengali. In addition to the Indic Languages, several efforts were made
for the Arabic languages [39]. Alqurashi et al. [2] proposed the largest
Arabic Twitter Dataset on COVID-19. Haouari et al. [39] proposed the
ArCOV19-Rumors dataset, a COVID-19 Twitter dataset for misinformation
detection, collected from 138 verified claims, mostly from popular fact-
checking websites, and identified 9.4K relevant tweets to those claims.

2.2 Classical Approaches

This section will discuss the traditional techniques used in conspiracy de-
tection tasks. These methods are called classical because they depend on
text vectorization approaches that do not involve deep learning or pre-
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trained language models. Text vectorization is vital for various natural lan-
guage processing (NLP) tasks, including text classification, sentiment anal-
ysis, and language translation. Vectorization entails transforming text into
a numerical format that machine learning algorithms can process. This pro-
cedure, also known as feature extraction or feature representation, requires
the conversion of text into vectors or sequences of numbers that correspond
to different linguistic properties of the text. We will present and explore
two widely utilized text vectorization techniques: Bag of Words (BoW)
and Term Frequency-Inverse Document Frequency (TF-IDF). The standard
features utilized in these vectorization techniques are either indicators or
counts. An indicator feature signifies the presence of a specific word in the
text by assigning a value of 1 or 0. In contrast, the value of a count feature
is contingent upon the frequency of occurrence of a specific word within
the text. The works by Baarir et al. [5] and Poddar et al. [76] exemplify the
application of these text vectorization methods for creating machine learn-
ing models aimed at detecting fake news.

Typically, machine learning models are used to learn text vectorization for
various labels. These machine learning algorithms learn a set of weights
for each feature and combine them into a linear function to predict the
probability of a text belonging to a specific class. The weights indicate the
importance of each feature in predicting the outcome. The support vec-
tor machine is among the popular machine learning models, which seeks
to find a hyperplane that maximally separates the texts into their respective
classes. A set of weights defines the hyperplane, and the SVM algorithm
learns these weights by finding the optimal margin between the classes.

While the TF-IDF and BoW methods are effective for certain NLP tasks,
they have several limitations. The primary drawback is their disregard
for word order, which hinders the capture of context and semantic rela-
tionships between words. This can adversely affect the performance of
machine learning models in tasks demanding linguistic context compre-
hension. Additionally, BoW is highly sensitive to frequently occurring yet
potentially uninformative words. Although TF-IDF tries to counteract this
by down-weighting common words across text samples, it may still strug-
gle to fully recognize the significance of rare, informative words. More-
over, since both techniques depend on a predefined vocabulary from the
training corpus, they cannot process words absent from the training set,
leading to reduced performance when encountering new or unseen words.
Despite these shortcomings, these methods serve as baseline models in var-
ious studies. In this section, we will explore these methods in greater de-
tail, along with other machine learning models, such as support vector ma-
chines and logistic regression, while also discussing the technical aspects
of machine learning.
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Figure 2.1: Graphic illustration of BoW; converting text samples into a list
of word features. Note that the sentences used in this example are not real
tweets.

2.2.1 The Bag of Words (BoW)

The BoW is a standard feature extraction method based on representing a
text document as if it were a bag of words, i.e., an unordered set of words.
This approach treats each word count as a feature. In order words, this
method is based on counting the occurrences of each word in the text, and
each data sample gets assigned a vector based on all of the word features.
Each text sample is represented as sparse vocabulary vectors where the core
elements of this representation are words.

A worked example

Figure 2.1 shows a simple example of the BoW representation, where it has
three text samples that are being converted into a list of words. This process
is known as tokenization, separating the words in a text. Furthermore, in
such a process, the vocabulary is defined as the unique set of all tokens. The
vocabulary in the example in Figure 2.1, is

V = [it’s, disinfectants, covid-19, just, or, spread, 5g, networks, bleach’,
’other, covid-19, hoax, mobile, cure, a, the, can, is, flu, drinking’]

(2.1)
The length of the vocabulary vector V is 20, and each text sample will
be converted to a vector of the size. The final BoW representation of the
samples in Figure 2.1 becomes

1 = [0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1]
2 = [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
3 = [0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

The first element in all vectors represents the word can, and this word is
only present in the second sample. Therefore, the second sample has been
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assigned 1 on the first position, while the other vectors have been assigned
0s. Note that the representation, in this example, has been performed with
an indicator not count.

2.2.2 The TF-IDF-based method

In this section, we present the utilization of TF-IDF weightings, a prevalent
approach for assigning weights to word counts in term-document matrices.
This technique employs the following equation to calculate the significance
of a word within a text:

tf-idf = t f (t, d) · id f (t, D) (2.2)

The first term in Equation 2.2 describes the term frequency of a word in a
document and is calculated by counting the raw instances of a word in a
document.

tf(t, d) = log(1 + count(t, d)) (2.3)

The second term in Equation 2.2 describes the inverse document frequency
of the word across a set of documents. In other words, it explains how
rare a word is in the entire document set. This metric can be computed by
dividing the total number of documents by the number of documents in
which a specific word is contained.

idf(t, D) = log
(

N
count(d ∈ D : t ∈ D)

)
(2.4)

The TF-IDF value will be in the range of 0 and 1, where zero indicates that
a word is significant and vice versa for the value of one.

2.2.3 Support Vector Machine

Support vector machine (SVM) is one of the most elegant methods for
classification problems because of its robust and adaptable features. The
SVM algorithm as we know it today was introduced in 1992 [12, 98]. The
SVM algorithm performs the classification by constructing a hyperplane that
separates the features. A hyperplane is a straight line in 2D and a plane
in 3D. Theoretically, there could be infinite ways to separate the features;
the SVM finds the optimal hyperplane, maximizing the distance between
categories. This distance is called the margin. The data points on the margin
are called support vectors (see Figure 2.2). With different kernels, SVMs can
handle linear and nonlinear classification problems and are particularly
helpful for classifying problems involving massive datasets. The SVM
model finds the hyperplane in p-dimensional space, where p is the number
of features. In such dimensional space, a hyperplane is called an affine
subspace of dimension p− 1 [94, p.13]. The support vectors are, in practice,
the most difficult to classify and are the critical elements of the training set.
Optimizing the hyperplane is an optimization problem that optimization
techniques solve.
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Figure 2.2: A straightforward hyperplane dividing the two classes serves
as an example of an SVM model.

The simplest SVM

The most basic SVM is a linear classifier that employs a linear hyperplane.
The hyperplane is defined by a weight vector w and an intercept term b,
representing the variables we wish to optimize.

wTx + b = 0 (2.5)

where x is the training dataset with N samples. The hyperplane, in this
case, separates the data points into two regions, one region for wTx+ b > 0
and the other for wTx + b < 0.

The SVM model optimizes the hyperplane by maximizing the margin,
which is the as minimizing [65, p.172]

min
w,b

1
2
||w||2 subject to y(i)(wTx(i) + b) ≥ 1 for all i = 1, · · · , N (2.6)

where ||w|| is the Euclidean norm of w. x(i) and y(i) are the sample i
from the training data. The y(i)(wTx(i) + b), is known as the functional
margin [26], represents the condition that the data points are correctly
classified. The term 1

2 ||w||2, which is the same as 1
2 wTw, is a regularization

term that penalizes large values of w and helps prevent overfitting. The
optimization problem above can be solved using Lagrange function. We
introduce a set of non-negative Lagrange multipliers λi for each constraint
y(i)(wTx(i) + b) ≥ 1, and form the Lagrangian [65, p.174]:

L(w, b, λ) =
1
2
||w||2 −

m

∑
i=1

λi[y(i)(wTx(i) + b)− 1] (2.7)

The Lagrange multipliers λi are only nonzero for the data points that lie
on the margin or are misclassified. By differentiating Equation 2.7 with
respect to the elements of w and b and setting equal to zero, we can obtain
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the optimal values of w and b.

∂L(w, b, λ)

∂w
= w−

m

∑
i=1

λiy(i)x(i) = 0

∂L(w, b, λ)

∂b
= −

m

∑
i=1

λiy(i) = 0
(2.8)

The equations above result in the saddle points of the 2.7.

w =
m

∑
i=1

λiy(i)x(i)

b = y(j) −wTx(j)

(2.9)

where j is the index of any support vector with 0 < λj < C, i.e., any support
vector that lies on the margin boundary. This leads Equation 2.7 to

L (w∗, b∗, λ) =
n

∑
i=1

λi −
n

∑
i=1

λiyi −
1
2

n

∑
i=1

n

∑
j=1

λiλjyiyjxT
i xj, (2.10)

Once the expression of 2.9 is learned, this expression is used to predict on
a new point z [65, p.175]

w∗Tz + b∗ =

(
n

∑
i=1

λitixi

)T

z + b∗ (2.11)

In other words, the inner product between the new data point and the
support vectors must be computed to categorize a new point.

Non-linear classification and kernels

In many real-world problems, the data is not perfectly separable employing
a hyperplane, i.e., the dataset is not linearly separable. The SVM model
is, therefore, modified to allow some misclassifications by introducing the
concept of so-called slack variables ηi ≥ 0, and the constraints become
yi(wTxi + b) ≤ 1 − ηi. Slack variables are non-negative variables that
represent the degree of misclassification of each training example by
allowing the SVM algorithm to find a hyperplane that still separates the
classes but with some margin of error, but for the data points that are
correct slack variables are set to be zero. The idea is to allow some examples
misclassified while penalizing them for being on the wrong margin or
hyperplane. The amount of penalization is controlled by a hyperparameter
called C, which determines the trade-off between maximizing the margin
and minimizing the misclassification; small C means we prize a large
margin over a few errors, and large C means the opposite. Adding all these
new components, the function that is minimized to obtain the ideal weights
is [42, p.420]

min
w,b

1
2
||w|]2 + C

n

∑
i=1

ξi (2.12)
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where ∑n
i=1 ξi is the distance of all misclassified points from the correct

boundary line.

At this point, the data is still not linearly separate, and that is when a kernel
comes into the picture. A kernel K(xi, xj) is a mathematical function that
transforms the input data into a higher-dimensional feature space. In other
words, kernels allow SVMs to effectively solve non-linear classification
problems by implicitly mapping the input data to a higher-dimensional
space where a linear separation boundary can be found. The kernel
function represents a similarity measure between two input data points xi
and xj in the original input space. It computes the dot product between the
transformed feature vectors ϕ(xi) and ϕ(xj) in the high-dimensional space.
The choice of the kernel function depends on the specific problem and the
characteristics of the data. Some standard kernel functions are polynomial,
radial basis, and sigmoidal [4, p. 174]. More details regarding the difference
between these kernels can be found on the same page.

2.2.4 Logistic Regression

Logistic Regression (LogReg) stands out as a simple yet powerful machine
learning algorithm, frequently serving as the fundamental classification
method in various natural language processing tasks. Moreover, it can be
thought of an simplied version of neural networks, by featuring a single layer
that performs a linear transformation followed by a non-linear activation
function. Functioning as a discriminative model, Logistic Regression prior-
itizes class differentiation and directly computes the class with the highest
probability based on the provided textual features.

Logistic regression comprises N features or nodes. Throughout the training
process, these nodes are multiplied with a weight matrix. The primary
objective of the training is to learn the weights and the bias. Each weight
signifies the importance of a feature by assigning it a positive value if
it is crucial and a negative value if it is not essential. By employing the
multiplication layer, we derive the following equation:

z =

(
N

∑
i=1

wixi

)
+ b = W · X + B (2.13)

where the X is the input features, e.g., TF-IDF representation of the textual
data, W and B are the weights matrix and the bias term learned through the
training. Depending on the number of classes in the dataset, the z is driven
through different functions. In the case of the binary classification, the z is
driven through the sigmoid function

σ(z) =
1

1 + e−z (2.14)

The output of the sigmoid function is between 0 and 1, and the sigmoid
function separates the classes with of threshold of 0.5. For multinomial
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logistic regression or multi-class problems, the z is driven through the softmax
function. In this case, the dimension of Z is the same as the number of
classes (K). Each of these components is then driven through the softmax
function

softmax(z) =

[
exp(z1)

∑K
i=1 exp(zi)

,
exp(z2)

∑K
i=1 exp(zi)

, ...,
exp(zK)

∑K
i=1 exp(zi)

]
(2.15)

The softmax function, like the sigmoid, squashes the values toward 0 or 1.
Among the K classes, the class with the highest probability will have the
value of 1 and therefore be the most likely.

Learning logistic regression aims to approximate weights and bias values
to fit the annotated classes. While training the LogReg, we encounter
two components highlighting how well the model matches. The first
component shows how close the predicted label is to the gold label,
typically done by accuracy or F1 scores. The second component measures
the loss, i.e., the distance between the predicted value and the gold label.
Different loss functions exist, but the most common is cross-entropy loss.
While training the logistic regression model, we want the loss function to
minimize to its minimum by using optimization functions. The job of the
optimization function is to update the weights iteratively to minimize this
loss function. We will discuss the loss and optimization functions more
in-depth in Section 2.3 when we will introduce neural networks.

2.2.5 Bias and Variance

The generalization errors of machine learning models can be characterized
by the concepts of variance and bias. The expected prediction error, or
sometimes called test error, of any machine learning model, is given by
[42, p.37]

E
[
(Y− f̂ (X))2

]
= σ2︸︷︷︸

irreducible error

+Var( f̂ (X))︸ ︷︷ ︸
variance

+ (E[ f̂ (X)]− f (X))2︸ ︷︷ ︸
bias 2

(2.16)

Equation 2.16 signifies the total expected prediction error, which consists
of an irreducible error, variance, and bias. The expected prediction error
always will have an irreducible error which cannot be controlled. However,
the variance and the bias can be controlled. The bias term refers to
the error that occurs when a model is not complex enough to grasp the
genuine underlying relationship between the input features X and the
target variable Y. Conversely, variance refers to the error that occurs
when a model is too complex and has learned too much from the training
data, including noise or random instabilities. In other words, the bias and
the variance are inversely proportional, i.e., one cannot simultaneously
minimize both. This leads to the well-known term bias-variance tradeoff.
It is conceivable to swap bias and variance, resulting in a model with
low bias but high variance or vice versa; nevertheless, it is not feasible to

20



Figure 2.3: Sketch of the cross-validation process9.

have both at zero because each model involves a tradeoff. However, this
tradeoff is helpful for training machine learning models as we need to find
a balance between them that gives us the best generalization performance.
By understanding the bias-variance tradeoff, we can select the proper
machine learning algorithm and optimize its parameters to achieve the
best generalization performance. We can also use techniques such as
regularization and cross-validation to balance bias and variance and prevent
overfitting.

2.2.6 Cross-validation

Cross-validation, or k−fold cross-validation, is a method for dividing the
training and test data into k folds with approximately the same size [48,
p.71]. The key concept is to use the k-th fold for testing, while the other k− 1
folds are used to train the model and compute the error rate on the test set.
This procedure is repeated with another fold as the test set, again training
on the other k− 1 folds. The previous sampling process is repeated k times
and averages the test set error rate from these k runs to get an average error
rate. More precisely, the average error is given by [42, p.212]

CV( f̂ ) =
1
N

N

∑
i=1

L
(

yi, f̂−k(i) (xi)
)

(2.17)

where f̂−k(i) is predicted response with observation i in the k fold. There is a
bias-variance tradeoff in choosing the number of folds k. A smaller number
of k results in a minor variance but a more significant bias. A larger number
of k results in a more negligible bias but a larger variance [42, p.243].

9The image is taken from Qingkai’s Blog: http://qingkaikong.blogspot.com/2017/02/
machine-learning-9-more-on-artificial.html.
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2.2.7 Hyperparameter tuning and model selection

Every machine learning algorithm has hyperparameters that must be tuned
to attain optimal performance. Some examples of hyperparameters include
kernel functions, the regularization parameter C for SVM, and the learn-
ing rate and number of iterations for LogReg. Additionally, each machine
learning model must be tuned for each fold in k-fold cross-validation. Un-
fortunately, this tuning process can be computationally intensive and time-
consuming, but it often results in only marginal improvements.

The tuning of the hyperparameters can be seen as an optimization
problem, and the so-called search algorithms can be useful [111]. Grid
search and random search are two examples of these search algorithms [9,
10]. Both search algorithms are decision-theoretic approaches. The grid
search searches exhaustively for a fixed domain of hyperparameter values.
The random search randomly selects hyper-parameter combinations in the
search space, given limited execution time and resources. More details
regarding the comparison and performance of these algorithms can be
found at [111].

2.3 Deep learning

Deep Learning is a subset of machine learning focusing entirely on deep
neural networks. Different variants of deep neural networks have been de-
veloped to solve various problems. Some examples are graph neural net-
work (GNN) that has been designed for solving graph-related problems,
recurrent neural network (RNN) to solve sequential data-related problems,
and convolutional neural network (CNN) for solving image and video
recognition-related tasks.

Recent advancements in natural language processing have been driven
by deep learning techniques, particularly recurrent neural networks, and
transformer models. RNNs, including advanced variants like LSTMs and
GRUs, handle sequential data and improve models’ ability to capture con-
text and temporal dependencies [89]. Pretrained embeddings, such as
word2vec, GloVe, and FastText, revolutionize word representation by cap-
turing semantic and syntactic relationships. Together, RNNs and pre-
trained embeddings have significantly enhanced the performance of NLP
models across various tasks. However, with the introduction of the trans-
former model, the RNNs have somewhat been overshadowed. Transform-
ers have emerged as a highly effective and scalable architecture for NLP
tasks. Unlike RNNs, transformers rely on self-attention mechanisms to
capture dependencies within a sequence, enabling parallelization of com-
putations and overcoming the limitations of RNNs in capturing long-range
dependencies.

This section presents an overview of the widely-used neural network
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Figure 2.4: A simple feedforward neural network with an input layer, two
hidden layers, and one output layer.

architecture, the feedforward neural networks, along with a comprehensive
discussion of its components. We will delve into the details of critical
elements in neural networks, such as activation functions, loss functions,
optimization functions, and practical aspects concerning the training of
these models. Additionally, we will briefly introduce advanced learning
techniques, including multi-task learning and ensemble learning. While this
section does not directly address conspiracy detection, it establishes a
solid theoretical foundation for understanding transformer-based models,
which will be discussed in the subsequent section.

2.3.1 Feedforward neural network (FFNN)

FFNN is the simplest form of a neural network and consists of multiple
layers. A layer is a group of interconnected nodes or neurons that per-
form a specific computation on their inputs. The layers in an FFNN are
acyclic, i.e., the outputs from nodes in each layer are passed to units in the
next higher layer. There are three kinds of nodes in a simple FFNN: input
nodes, hidden nodes, and output units (see Figure 2.4). The hidden layer
takes a weighted sum of its inputs and then applies a non-linearity func-
tion. This kind of neural network is often called fully connected, i.e., each
node within a layer receives the output of the preceding layer as its input.
In addition, there is also a connection between all of the nodes of the last
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layer to the current layer. As discussed in the section of LogReg, a single
hidden layer has a weight vector W and a bias term b as its parameters.
Since the FFNN is typically larger and contains more nodes than LogReg,
we represent the weights as a matrix and the bias term as a vector. Each
element in the weight matrix represents a weight between two connections
from two nodes, e.g., the ji-th in W represents the weight between the ith
input node to the jth output node.

The first step in a simple FFNN is to compute the intermediate vector z
by performing a matrix multiplication between the weight matrix and the
input data and then adding the bias term

z = Wx + b (2.18)

The output of this computation is a linear vector which is worthless since
it cannot solve complex problems. To transform it into a non-linear vector,
we use an activation function, to help the network determine whether a node
should be activated. The following step applies the activation function

a = σ(z) (2.19)

where the σ is the activation function, W has the dimensionality of Rn1×n0 ,
x has the dimensionality of Rn0 , and b has the dimensionality of Rn1 . The
role of the output layer is to compute the final output layer by using the
current a, which is done the same way as the first output layer. In the final
output layer, we also have a weight matrix U, but it does not have any bias
term in the final output layer:

v = Ua (2.20)

where U has the dimensionality of Rn2×n1 , h has the dimensionality of Rn1 ,
and this leads to v having the dimensionality of Rn2 . The final output layer
is driven through another activation function, q, to convert the vector into
the most probable classes

ŷ = q(v) (2.21)

Note that the activation function in the hidden layers and the output is not
necessarily the same. For example, the standard technique uses the ReLU
in the hidden layers and softmax in the output layer.

2.3.2 Training of feedforward neural networks

The goal of training the neural networks is to approximate the true y vec-
tor by learning the weights matrix W and the b for each of the layers of
the neural networks. A neural network learns through forward and back-
ward propagation. One iteration of the forward- and backward propagation
is called an epoch.

Until now, we have only discussed a so-called forward pass in a neural net-
work, i.e., feeding input data into the network and computing the output of
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the network. The input data is multiplied by the weights of the network’s
neurons during a forward pass, and the results are then sent through an
activation function to determine each neuron’s output. But how does the
network update its weights using the loss function and optimization tech-
niques? The answer is backpropagation. The name arrives from the fact that
the output from a forward pass propagates backward in the network by
calculating the gradient of the network’s parameters.

Until now, our discussion has primarily focused on the forward pass in a
neural network, which involves feeding input data into the network and
computing its output. During this process, the input data is multiplied
by the weights associated with the network’s neurons, and the results are
passed through an activation function to determine the output of each neu-
ron. However, to update the network weights using the loss function and
optimization techniques, we employ a method called backpropagation. The
term backpropagation stems from the fact that the output from the forward
pass propagates backward through the network by calculating the gradient
of the network’s parameters.

The backpropagation mechanism moves through the network from the out-
put to the input layer in reverse order using the chain rule from calculus.
The method stores any intermediate variables (partial derivatives) needed
to calculate the gradient concerning a few parameters. To explain the for-
ward and backward propagation steps, we expand the feedforward neural
network to L layers, where the l-th layer has nl neurons. Furthermore, let
x ∈ Rn0 be the input vector, y ∈ RnL be the output vector, and θ be the vec-
tor of all weights and biases in the network. To compute the forward pass,
we first calculate the weighted inputs and activation function for each layer
l as follows:

z(l) = W (l)a(l−1) + b(l)

a(l) = σ(z(l))

Where W (l) is the weight matrix connecting layer l − 1 to layer l and b(l) is
the bias vector for layer l. Note that the activation in the index of 0 and L is

a(0) = x, a(L) = y

In addition, let the J(θ) be the loss between the network output ŷ and the
target output y. To backpropagate the loss, we start by calculating the error
in the last layer L

δ(L) = ∇y J(θ)⊙ σ′(z(L))

Where ⊙ denotes element-wise multiplication and σ′(·) is the derivative of
the activation function. Using the gradient of the loss function concerning
the output and the derivative of the activation function applied to the
preactivation data, this formula enables us to calculate the error term for
the output layer. Then we compute the backpropagate error for each
l = L− 1, L− 2, · · · , 1
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δ(l) = ((W (l+1))Tδ(l+1))⊙ σ′(z(l))

At this stage, we should have the error at each layer. By using an
optimization function, we can update the weights and biases in the
network by

W (l) ←W (l) − η∇W (l) J(θ)

b(l) ← b(l) − η∇b(l) J(θ)

Where η is the learning rate and ∇W (l) J(θ) and ∇b(l) J(θ) are the gradients
of the loss function concerning the weight matrix and bias vector for layer
l, respectively, this process is repeated for several amounts epochs or until
convergence.

2.3.3 Activation functions

Activation functions are critical to deep learning because they introduce
non-linearity into the neural network, allowing the model to learn and rep-
resent more complex relationships in the input data. Without activation
functions, a neural network would be a linear regression model. These
functions are applied to the output of each layer in the network. These non-
linear transformations help the network determine whether a node should
be activated.

The sigmoid function

One of the most used activation functions is sigmoid. This function is rarely
applied in the hidden layers; most of the time, it is applied in the last layer
for binary classification problems. Sigmoid transforms any number in the
domain of R into a domain of (0, 1) [112, p. 184]:

sigmoid(x) =
1

1 + e−x (2.22)

Due to this property, the sigmoid is a good choice for binary classifica-
tion. In addition, it is differentiable everywhere. The outputs domain of
(0, 1) also makes it easy to interpret it as probabilities. The sigmoid’s major
downside is the issue of vanishing gradient. Its gradient vanishes for signif-
icant positive and negative arguments. The network does not learn when
the gradient reaches 0.

The softmax function

Softmax is another popular activation function used in Neural networks
(NNs). Softmax takes a vector of real numbers as input and outputs a
probability distribution over the classes by squashing them into a (0, 1)
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domain for each vector element. The formula of softmax is given by [34,
p.24]

so f tmax(xi) =
exi

∑i exi
(2.23)

The sum of the produced output elements is always one, and the element
with the highest probability gets selected as the most likely class according
to ŷ. Like sigmoid, the softmax function is typically employed in the last
layer of a multi-class model. The softmax function appears in almost all the
output layers of many deep learning architectures [6, 60].

Rectifier activation function (ReLU)

The rectifier activation function, or ReLU, is another widely used activation
in neural networks. Despite its simple formula, this function has often been
shown to produce outstanding results. It performs well, especially when
combined with dropout regularization methods [34, p.46]. The formula for
ReLU is given by:

ReLU(x) = max(0, x) =
{

0 x < 0
x otherwise.

(2.24)

It returns 0 for negative values and the number itself for positive values.
Despite looking like a simple activation function, it can significantly
improve neural network learning. The reason is that ReLU produces sparse
activations, i.e., only a subset of neurons in a layer will be activated,
while the rest will be zero [33]. This helps the model avoid overfitting
and motivates it to learn more robust features. In addition, ReLU is
computationally more efficient compared to sigmoid since it avoids the
computationally expensive numerical operations, which are done by using
sigmoid or softmax. As mentioned above regarding the problem of
vanishing gradient when using sigmoid, the ReLU function manages to
overcome this problem. Sigmoid functions produce smaller gradients
for more significant inputs, leading to the model not learning. The
ReLU activation function has a simple derivative, meaning it has a large
gradient over a wide range of input values, making it more effective in
computations. The gradient does not vanish during backpropagation.

2.3.4 Loss functions

As discussed in the section of LogReg, the optimal goal of the training is to
approximate the ŷ. We want it to be as close to the actual y and have a min-
imized loss. This procedure uses a loss function, a mathematical function
designed for computing the distance between the output of the FFNN and
the actual gold label.
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Binary cross-entropy loss

Binary cross-entropy (BCE) is a simplified version of the cross-entropy
loss function. As the name suggests, the BCE loss function deals with
only binary classification problems. This function is based on conditional
maximum likelihood estimation, i.e., we choose the weight and bias term
parameters that maximize the log probability of the actual y labels given
the observations. Cross-entropy loss is the negative log-likelihood loss.
The expression for BCE loss can be easily derived by assuming that we
have classes 0 and 1. Since we have only two classes, it follows a Bernoulli
distribution, and we can express the probability that the model produces
one observation as the following

p(y|x) = ŷy(1− ŷ)1−y (2.25)

Working with small numbers has a big issue; the multiplication of small
numbers converges toward zero. A logarithmic operation is usually
performed on both sides to solve this problem.

log p(y|x) = y log ŷ + (1− y) log(1− ŷ) (2.26)

Inserting a negative sign in front of Equation 2.27 will give us the
expression for BCE loss.

LBCE = − log p(y|x) = −
[
y log ŷ + (1− y) log(1− ŷ)

]
(2.27)

Cross-entropy loss

Cross-entropy (CE) loss is the default choice for most classification
problems with neural networks. Furthermore, this loss function is
commonly used for multi-class classification problems and is a good choice
in natural language processing. The difference between BCE and CE loss is
that we deal with vectors, not scalars. Therefore, we obtained the following
expression for the CE loss for a single example.

LCE(ŷ, y) = −
K

∑
k=1

yk log ŷk (2.28)

2.3.5 Optimization functions

Most machine learning algorithms involve optimization techniques, and
optimizing neural networks involves a non-convex optimization problem.
The optimization aims to obtain the ideal weights or model parameters
while training the neural networks. Furthermore, such optimization mini-
mizes the loss function by altering the model’s parameters. Various meth-
ods do this. This section will introduce the common choices for the opti-
mization functions.
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Gradient Descent (GD)

GD discovers the minimum of a loss function by using the direction in
which the loss function’s slope rises the most steeply, then moves in the
opposite direction. More specifically, by starting with an arbitrary initial
weight vector, the algorithm computes a vector W that minimizes the loss
function LCE. Then, step by step, it tries to modify the loss. At each stage,
the weights vector changes in the direction that produces the most vertical
descent along the loss surface. The step-wise process can be expressed
mathematically as the following.

θt+1 = θt − η∇L( f (x; θ), y) (2.29)

The η is the learning rate determining the algorithm’s amount of move-
ment. The ∇L( f (x; θ), y) is the gradient of the loss function and is given
by

∇L( f (x; θ), y) =
[

∂

∂w1
L( f (x; θ), y) ,...,

∂

∂w1
L( f (x; θ), y)

]T

(2.30)

The gradient of a multi-variable function f is a vector in which each com-
ponent expresses the partial derivative of f with respect to one of the vari-
ables.

Stochastic Gradient Descent (SGD) and Mini-batching

Training a neural network on a large dataset can be computationally and
time inefficient. The data is typically divided into mini-batches, and the
parameters are updated after each mini-batch. Stochastic Gradient De-
scent (SGD) is a widely-used method for training neural networks on large
datasets. It calculates the gradient on a single batch of training data at each
iteration, resulting in greater computational efficiency. However, this also
means that the changes to the network parameters are often noisy and can
fluctuate significantly. To address this issue, the gradient is computed over
batches of training instances rather than a single instance.

In contrast, mini-batch training involves computing the gradient on a small
batch of training data, with standard batch sizes being powers of two and
ranging from 16 to 256 samples. While SGD can be viewed as a specific
instance of mini-batch training with a batch size of 1, their convergence
characteristics differ. SGD updates have greater variance than other algo-
rithms, which can hinder convergence but also help avoid local minima.
Mini-batch training is a trade-off between the stability of batch gradient
descent and the efficiency of SGD, making it the most widely used opti-
mization technique for neural network training due to its ability to strike a
good balance between speed and stability [40, 51].

SGD optimization often produces promising results, but more elegant and
advanced algorithms exist that optimize better. Most of these methods
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are based on so-called adaptive learning rates, meaning that the optimizer
automatically adjusts the learning rate during the training process based
on the characteristics of the gradients encountered. The first algorithm
that introduced adaptive learning rates was the delta-bar-delta algorithm
[47]. This algorithm was based on increasing the learning rate if the partial
derivative of the loss remains the same sign. Conversely, the learning rate
will decrease if the partial derivative changes sign. Throughout recent
years, it has been introduced many other adaptive optimizers which are
more effective.

AdaGrad

AdaGrad is an adaptive optimization algorithm that relies on stochastic
gradient descent (SGD). It adapts the learning rate of each parameter by
scaling them inversely proportional to the square root of the sum of all the
historical squared values of the gradient [AdaGradPaper]. This algorithm
treats the parameters with small partial derivatives of the loss to have a
relatively moderate decline in the learning rate. The parameters with the
largest partial derivative are treated with a rapid decrease in the learning
rate. The central concept here is to adaptively scale the learning rate for
each parameter depending on its gradient history, which aids in achieving
faster convergence and higher performance in some circumstances, espe-
cially for problems with sparse gradients.

AdaGrad uses an adaptive learning rate, meaning that the learning rate for
every parameter θi differs at every time step t based on the past gradients.
At each time step t, the parameters are updated by

gt = ∇θt J(θt),

θt+1 ← θt −
η√

Gt + ϵ
⊙ gt

(2.31)

The ∇θt J(θt,i) is the gradient of the loss function with respect to the
parameter θi at time step t. The Gt ∈ Rd×d is the diagonal matrix where
each diagonal element i, i is the sum of the squares of the gradients with
respect to θi and ϵ is a smoothing term that avoids division by zero [84].

Root Mean Square Propagation (RMSProp)

Despite having an adaptive learning rate, AdaGrad struggles with noncon-
vex settings. The accumulation of squared gradients in the denominator
is AdaGrad’s direct weakness [84]. The accumulated sum keeps grow-
ing during the training since every added term is positive. The result is
that the learning rate shrinks until it reaches a point where it becomes tiny,
leading to becoming too small before arriving at a convex structure. Root
Mean Square Propagation, or RMSProp10, solves this issue by decreasing

10RMSProp is an unpublished method proposed by Geoff Hinton in Lecture 6e of his
Coursera Class. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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its learning rate using an exponentially decaying average. The advantage
of this is that it discards the history from the extreme past so that it can
converge rapidly after finding a convex bowl [35, p.304].

The RMSProp method is based on removing the Gt in the dominator in
Equation 2.31 and replacing it with a leaky average [112, p.567]

st ← γst−1 + (1− γ)g2
t , (2.32)

where the γ is the decay rate and controls the grade of adjusting/scaling.
The final weight-updating equation becomes

θt+1 ← θt −
η√

st + ϵ
⊙ gt (2.33)

Adadelta

The AdaDelta is another optimization method based on AdaGrad.
Adadelta restricts the window of accumulated past gradients to a fixed size
to reduce its bold decreasing learning rate. Like the RMSProp optimization
function, Adadelta relies on a leaky average. The difference arises when
updating the weights, where Adadelta uses a rescaled gradient [112, p.572]

g
′
t =

√
∆θt−1 + ϵ√

st + ϵ
⊙ gt (2.34)

where ∆θt−1 leaky average of the squared rescaled gradients and is
updated by

∆θt = γ∆θt−1 + (1− γ)g
′2
t (2.35)

Finally, the equation for the parameters at time t is updated by

θt = θt−1 − g
′
t (2.36)

Adam

Adaptive Moment Estimation, or Adam, is yet another optimization func-
tion [50]. Adam can be seen as a combination of the RMSProp, and the mo-
mentum algorithm [80]. The momentum optimization approach employs a
momentum vector to consider prior gradients while calculating the current
gradient. Assisting models in navigating around loss surface plateaus and
ravines hastens convergence in gradient decline.

By using the features of the momentum and the RMSProp, it is possible to
combine their strengths and achieve better optimization performance. The
central part of Adam is that it uses leaky averaging to estimate both the
momentum and the second moment of the gradient [112, p. 575]

st ← β2vt−1 + (1− β2)g2
t

vt ← β1vt−1 + (1− β1)gt
(2.37)
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Both β1 and β2 are non-negative weighting parameters, often close to 1.
In some scenarios, Adam is biased towards zero when both st and mt are
vectors of zero and when the decay rates are low [84]. By creating first and
second-moment estimates that have been adjusted for these biases

ŝt =
st

1− βt
2

v̂t =
vt

1− βt
1

(2.38)

By using these equations, the weights can be updated by

g
′
t =

ηv̂t√
ŝt + ϵ

θt ← θt−1 − g
′
t

(2.39)

The gradient has been rescaled using the momentum v̂t, which is close to
the RMSProp method, but RMSProp used the gradient.

2.3.6 Practical techniques

Initialization of Neural Networks

To optimize a neural network, there is a possibility that we might get stuck
at a point where we are not able to improve the performance further. This
is because the optimization is not straightforward. Starting from different
initial points can result in different developments. Therefore, attempting
numerous initialization techniques and choosing the most satisfactory
technique is recommended. The variability in the results due to various
random starting points cannot be predicted and depends on the specific
neural network and data.
Constructing a neural network is necessary to decide the parameters for
the hidden layers. Some distribution typically initializes the weights. The
Xavier initialization suggests initializing a weight matrix [32] by

W ∼ U

[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(2.40)

where the weight matrix has the dimensions W ∈ Rdin ×dout and the U
represents the uniform distribution [11, p.161]. He initialization is another
famous technique [43],

W ∼ N
(

0,
√

2
din

)
(2.41)

whereN is the Gaussian distribution [11, p.179]. This method is initialized
by sampling from a zero-mean Gaussian distribution and works better than
Xavier initialization in an image classification task.
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Hyperparameter tuning

Hyperparameter tuning is one of the most important aspects of training
NNs. The parameters of a neural network are the weights W and biases b,
which are learned through the optimization algorithm. Optimal values are
tuned on an evaluation rather than the training set. In addition, we have
some other hyperparameters:

• The number of hidden layers

• The number of hidden nodes per layer

• The choice of activation functions

• The choice of an optimization algorithm

• The learning rate

• The size of mini-batch

Overfitting in Neural Networks

The concept of overfitting is a general issue in machine learning, which
occurs when the model parameters are adjusted to fit the training data too
closely and can cause the model to capture the noisy samples in the training
data. Consequently, an overfitted model will predict the training samples
extremely well but incorrectly on new, unseen samples.

One of the most effective methods to prevent overfitting in Neural network
(NN) is to deploy the dropout strategy during the training [45, 93]. The main
idea of using dropout is to prevent the network from relying too much on
specific weights. The dropout‚ as the name suggests, is based on dropping
out of some of the nodes using the Bernoulli distribution [11, p.98]. The
benefit of this distribution is that it randomly returns 0 and 1, which enables
the network to cancel out some of the nodes. More specifically, the dropout
is applied in each layer after the activation layer [34, p. 48]:

z = Wx + b
a = σ(z)

m ∼ Bernouli (r)
h = a⊙m
v = Uh
ŷ = q(v)

(2.42)

where m is masking vectors and r is the parameter of the Bernoulli distribu-
tion.

Early stopping is another strategy to control overfitting in neural networks
during training. The fundamental idea is to observe the validation loss
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((a)) ((b))

Figure 2.5: a) This figure illustrates the common situation where the tasks
share a common input but involve different target variables. This approach
is based on training one model to solve multiple tasks. b) The simplest
scheme of an ensemble method, combining N models to decrease the
variance of the model and obtain better performance.

while training the model and stop the training process before the model
overfits the training data. The validation loss is calculated after each
training epoch, and the training process is stopped when the loss quits
enhancing after patience criteria, which is some small amount ϵ number
of epochs. The motivation behind early stopping is that the validation
loss will typically decrease during the initial training steps as the model
learns to generalize. However, after some epochs, the validation loss
may increase as the model overfit. Therefore, we may avoid the model
overfitting by ending the training process before this occurs, enhancing the
model’s capacity to generalize to new, untried data. Another advantage
of early stopping is the time saved on an accelerator, which may improve
generalization in the case of noisy labels.

2.3.7 Advanced Learning Techniques

In this section, we will discuss two new advanced learning concepts that
will help the learning of neural networks and make them generalize better.

Ensemble Learning

Till now, we have discussed the standard approach to model selection
which consists of training a bunch of models based on the hyperparameters
and evaluating each of these on the development set. Then, the model with
the best evaluation metric is chosen, and the rest are discarded. However,
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this approach does not work well in practice, and the model performing
well on the development dataset does not necessarily perform well on the
held-out dataset. Neural networks are a nonlinear method, meaning they
can learn complex and nonlinear relationships from the input data. The dis-
advantage is that these models are liable to initial conditions, such as the
terms of the noise in the training dataset, which may lead to overfitting.
Generally, the neural networks have high variance and low bias, which is
strange given that most of the NNs are trained on large datasets.

An effective way to tackle the very high variance is to deploy ensemble
methods, also known as ensemble learning [38]. These methods are based
on combining multiple models to obtain better performance and have been
shown to perform better than any single classifier [24]. The difference in
the models can be the model architecture, the use of different training data,
different training regimes, different initialization schemes, etc. There are
several methods for combining their predictions, such as boosting [30] and
bootstrap aggregating [14].

The models, or the base learners, are generated sequentially in the boosting
algorithm, where each model is trained to correct the errors of the previous
model. The ensemble is built incrementally by training each model to
emphasize the training instances misclassified by the previous models.
The predictions are combined through a weighted majority vote. On the
other hand, Bootstrap aggregating (bagging) is based on generating the
base learners independently. This method creates multiple instances of the
training data by sampling with replacement and training a separate model
for each. The predictions are combined by voting.

Multi-task Learning

Multi-task learning (MTL), almost the opposite of ensemble learning, is
based on training one model to solve multiple tasks [15]. Each task has
its loss function, but the model weights are shared. Multi-task learning is
usually deployed for closely related tasks such as PoS-tagging in Natural
Language Processing (NLP) [72]. Similarly, multi-task learning has been
applied to considerably fake news and misinformation detection tasks
since most of these consist of closely related tasks [54, 57, 110]. As figure
2.5(a) shows, the parameters in the upper part are generic and shared
across all the tasks, and the task-specific parameters are those in the figure’s
bottom. The multi-task learning method is built based on the assumption
that a common collection of factors explain the variations in the input
features. Each task is associated with a subset of these factors. This is why
the MTL results in better generalization. Of course, this will happen only
if some assumptions about the statistical relationship between the different
tasks are valid, meaning that something is shared across some tasks.
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2.4 Transformer

Recently, a novel model called Transformer has emerged, addressing
numerous challenges in natural language processing [99]. This model
has quickly gained traction and is now extensively utilized in the NLP
community. Transformers have shattered multiple NLP records, advancing
the state-of-the-art in various applications, such as machine translation,
conversational chatbots, sentiment analysis, and more. The Transformer
architecture relies exclusively on attention mechanisms to establish global
dependencies between input and output, effectively transforming the
landscape of NLP. A crucial aspect of text classification is ensuring that
machines can comprehend the content. To achieve this, models must
consider previous and subsequent inputs concerning the current input.
Traditional recurrent neural networks (RNNs) have been effective in this
task but are hindered by short-term memory limitations. This constraint
means that RNNs can only consider a limited number of previous inputs
when processing a current word. The Transformer addresses this issue
by considering the entire text input using the attention mechanism. This
enables Transformer to utilize the full context of a text when making
predictions. This model comprises an encoder-decoder architecture. At a
high level, the encoder maps an input sequence into a continuous abstract
representation containing the learned information from the input. The
decoder then processes this representation, generating a single output step
by step while incorporating information from previous outputs. In this
section, we dive further into the steps of the Transformer and explain
how it works. Furthermore, we will present the most common types of
Transformer, BERT and RoBERTa. Finally, we will also present the domain-
specific Transformer model for the task of COVID-19-related conspiracy
detection on Twitter.

2.4.1 The steps of the Transformer

In this section, we will describe each step of the architecture. Note that
name of each step is related to Figure2.7.

The first step: Input Embedding involves passing the input through a
word embedding layer. This layer is a lookup table to obtain a learned
vector representation for each word. Since neural networks process infor-
mation numerically, each word is mapped to a continuous-valued vector
that captures its representation.

The second step: Positional Encoding involves incorporating positional
information into the embeddings. Since the Transformer encoder layer
does not contain recurrent networks, adding positional information to the
embeddings is essential. This is achieved using positional encoding. The
makers of Transformer devised an innovative method using the following
functions:
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Figure 2.6: Left: Scaled dot-product attention computes the dot product of
query and key matrices, scales it by the square root of the key dimension,
and applies the softmax function to obtain weights. These weights are then
used to compute the weighted sum of the value matrix. Right: Multi-
Head Attention performs parallel attention computations, called heads,
over different linear projections of the input queries, keys, and values.

PE(pos, 2i + 1) = cos

(
pos

10000
2i

dmodel

)
(2.43)

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
(2.44)

These functions generate vector representations based on whether a word
is in an odd or even time step. These vectors are then combined with the
embedding vectors through an addition operation. Consequently, this pro-
cess facilitates the flow of information about word positions, helping the
network understand the input order.

The third step: Encoder layer This layer, displayed as the left block
of Figure 2.7, maps all input sequences into a continuous abstract
representation that holds the learned information for that entire sequence.
This layer contains two sub-module; multi-head attention followed by a
feedforward network, as shown in Figure 2.6. There are also residual
connections around each sub-module, followed by a layer normalization.
The multi-head attention module applies a specific attention mechanism
called self-attention. This mechanism allows the model to associate each
word in the input with other words. To achieve self-attention, we feed
the information into three distinct fully-connected layers to create the query
(Q), key (K), and value (V) vectors. These vectors are then driven through
the following equation to achieve attention:
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Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (2.45)

The query and key vectors undergo a dot product matrix multiplication
to produce a scoring matrix. The higher score, the more the focus, and
in this way, the queries are mapped to keys. Then the scores get scaled
down by dividing by the square root of the dimension of the queries and
the keys. This allows for more stable gradients, as multiplying values can
have exploding effects. Next, these values are driven through a softmax
function to get the attention weights. By doing the softmax, the higher
scores get heightened, and the lower scores get depressed, allowing the
model to be confident about which words to attend to. These attention
weights are then multiplied with the value vector to an output vector.
The final output vector is then driven through a linear layer to process. To
make this a multi-head attention computation, we must split the query, key,
and value vectors into adding vectors before applying self-attention. The
following equation does this.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (2.46)

where
headi = Attention(QWQ

i , KWK
i , VWV

i )

These split vectors go through the same self-attention process individually.
Each self-attention process is called a head, and each head’s output vector
gets concatenated into a single vector before going through the final linear
layer.

The output vector of the multi-head attention module is added to the origi-
nal input. This is called residual connection. The output of the residual con-
nection goes through layer normalization. The normalized residual output
gets fed into a pointwise feed-forward network for further processing. The
pointwise feed-forward network is a couple of linear layers with a ReLu
activation function in between the layers. The output of this feed-forward
model is attached to the input of the same model. The residual connections
help the network train by allowing gradients to flow through the networks
directly. The layer normalization stabilizes the network, substantially pro-
ducing the necessary training time. Finally, a pointwise feed-forward layer
is used to process the attention output further, potentially giving it a richer
representation.

The fourth step: Decoder layer The main job of the decoder, the right block
of Figure 2.7, is to focus on the appropriate words in the input during the
decoding process. We can stack the encoder N times to further encode the
information where each layer can learn different attention representations.
Therefore, potentially boosting the predictive power of the Transformer
network. The decoder has the types of modules as the encoder. It has one
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Figure 2.7: The Transformer model’s architecture: an encoder and a
decoder, which contain multiple layers of self-attention and feedforward
neural networks.

Masked multi-head attention, one multi-head attention, a pointwise feed-
forward layer with residual connections, and layer normalization after each
sub-layer. These sub-layers behave similarly to layers in the encoder, but
each multi-head attention layer has a different task. It is capped off with a
linear layer that acts as a classifier and a softmax function to get the word
probabilities. The decoder is autoregressive; it takes in the list of previous
outputs as inputs, and the encoder outputs contain the attention informa-
tion from the original input. The decoder stops decoding when it generates
an end token as output.

The input goes through an embedding layer in a positional encoding layer
to get the positional embeddings. The positional embeddings get fed into
the first multi-head attention later, which computes the attention scores for
the decoder’s input. This multi-headed attention layer operates slightly
differently since the decoder is autoregressive and generates the sequence
word-by-word; we need to prevent it from being conditioned into future
tokens. Therefore, we apply a look-ahead mask to prevent the decoder
from looking at future tokens. The mask is added before computing the
softmax and after calling the scores. In this case, the mask is a matrix the
same size as the attention scores filled with values of zeros and negative
infinities. Taking the softmax of this matrix removes the scores for the fu-
ture words and leaves us scores for the previous words. This masking is
the only difference in how the first multi-head attention is in the decoder.
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Other than that, we still have multiple heads to which the masks are be-
ing applied before getting concatenated and fed through a linear layer for
further processing. The output of the first multi-head attention layer is a
masked vector with information on how the model should attend to the
inputs of the decoder.

In the second multi-head attention, the output of the encoder is the queries
and the keys, and in the first multi-headed attention layer, outputs are the
values. This process matches the input of the encoder to the input of the
decoder allowing the decoder to decide which encoder input is relevant
to put focus on. The output of the second multi-headed attention goes
through a pointwise feed-forward layer for further processing. The output
of the final pointwise feed-forward layer goes through a final linear layer
that accesses a classifier. The classifier is the most significant number of
classes you have defined. The output again gets fed into a softmax layer.
The softmax layer produces probability scores between 0 and 1 for each
category, and the class with the highest probability gets picked out. The
decoder can be stacked in N layers, where each layer takes inputs from the
encoder and the layers before it by stacking layers. The model can learn to
extract and focus on different combinations of attention from its attention
heads, potentially boosting its predictive power.

2.4.2 The BERT model

Bidirectional Encoder Representations from Transformers (BERT) is a pre-
trained language model based on the transformer architecture [23]. The
Transformer was initially created for the task of neural machine transla-
tion. The encoder tries to understand the sentence and the words. The
decoder aims to generate an output sequence that maintains the linguistic
coherence and context required for the given task. Both of these units have
some understanding of a language; these can be separated, and we can
build different models. The GPT model is based on stacking the decoder
modules [82], while the BERT is based on a stack of encoders [23]. BERT
considers both the left and right context of each word in a sentence, while
other transformer-based models may be unidirectional, meaning they only
consider each word’s left or right context. In contrast, BERT employs bidi-
rectional self-attention, and the GPT Transformer uses constrained self-
attention where every token can only attend to the context to its left. This
bidirectional approach allows BERT to capture a broader understanding of
the context.

Pre-training of BERT

There are two main steps in the BERT framework; pre-training and fine-
tuning. The pre-training of BERT is done by training the model on unla-
beled data over different pre-training tasks. Two unsupervised learning
tasks have accomplished the pre-training of BERT; masked language model
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(MLM) and next sentence prediction (NSP). MLM is based on randomly
masking a percentage of the input tokens, simply replacing the words with
a [MASK] token. The goal is to predict the original vocabulary id of the
masked word based on its context. The 15 percent of all tokens have been
preprocessed, where 80 percent are masked, 10 percent are left unchanged,
and a randomly selected vocabulary token replaces 10 percent. On the
other side, the goal of the NSP task is to train a model that understands
sentence relationships. A binary classification did this, choosing two sen-
tences A and B; the goal was to predict whether sentence B follows sentence
A.

The architecture of BERT is based on a multi-layer bidirectional transformer
encoder based. The common sizes of BERT are:

• BERT BASE (L = 12, H = 768, A = 12, Total Parameters=110M)

• BERT LARGE (L = 24, H = 1024, A = 16, Total Parameters=340M)

Note that the L stands for Transformer blocks, H stands for hidden size and
A stands for numbers of attention heads. The pre-training was done using
data from the BooksCorpus (800M words) [116] and English Wikipedia
(2,500M words), which totals 16GB of uncompressed text.

Fine-tuning

During the fine-tuning, the BERT model is started with the parameters
learned from the pre-training. Then, these parameters are fine-tuned
using labeled data from specific tasks. Fine-tuning is simple since the
self-attention mechanism in the transformer allows BERT to model many
downstream tasks by swapping out the appropriate inputs and outputs.
The updated parameters for each task have separated fine-tuned models
even though they were initialized with the same pre-trained parameters.

2.4.3 The RoBERTa model

Robustly Optimized BERT Approach (RoBERTa) is an extension of the
BERT model [61]. The authors of RoBERTa intended that the BERT was
significantly undertrained and, therefore, proposed suggestions to improve
the BERT model. The most significant differences between these models are
pre-training corpus, training duration and strategies, and masking strategy.

Larger pre-raining copus BERT is pre-trained on the corpus of text data pri-
marily sourced from the BooksCorpus and Wikipedia. On the other hand,
RoBERTa was pre-trained on a much larger and more diverse corpus of
text data, which totaled over 160GB of uncompressed text, while the train-
ing data of BERT was at a total of 16GB. The RoBERTa is also trained on
the BooksCorpus. However, in addition, it was trained on the CC-NEWS,
which was collected from the English portion of the CommonCrawl News
dataset [CommonCrawl-News-dataset], OpenWebText which is an open-
source recreation of the WebText corpus[OpenWebText] and Stories which
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is a dataset containing a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas [Stories].

Training procedure RoBERTa modifies the pre-training process used by
BERT in several ways, including dynamic masking. In the original BERT
model, the input text is randomly masked during pre-training, and the
model learns to predict the masked words based on the context delivered
by the surrounding words. In RoBERTa, a different masking strategy is
used, where the text is masked dynamically during pre-training. BERT
uses a static masking strategy, where the masked tokens stay the same
throughout training. The model has to predict the original word based
on the context provided by both the surrounding words and the unmasked
words within the same training example. Secondly, there was no NSP pro-
cess. RoBERTa removes this task, as researchers found it did not contribute
significantly to downstream performance. Lastly, the hyperparameter op-
timization was done differently. The RoBERTa employs a more exhaustive
search for optimal hyperparameters than BERT. This includes larger batch
sizes, longer training (more steps), and adjustments to the learning rate.
These training strategies help improve the efficiency and effectiveness of
the pre-training process, allowing RoBERTa to learn more detailed and nu-
anced language representations.

Performance Due to these differences, RoBERTa generally outperforms
BERT on various natural language understanding benchmarks like GLUE,
SuperGLUE, and SQuAD. In addition, the improvements in RoBERTa lead
to better performance on downstream tasks, such as sentiment analysis,
question-answering, and named entity recognition.

2.4.4 Domain-specific pretrained models

Fake news and conspiracy detection are essential topics, which is why it
has been developed and pre-trained various models that make these types
of detection easier. In our case, the unique dataset is based on COVID-
19-related tweets. Firstly, it has a lot of COVID-19-related abbreviations
which can only be understood by pre-trained language models that
are pre-trained on similar datasets. Secondly, the datasets contain
tweets with typically short lengths, frequent use of informal grammar,
and irregular vocabulary, e.g., abbreviations, typographical errors, and
hashtags. Therefore this might lead to a challenge in applying existing
language models pre-trained on large-scale conventional text corpora with
formal grammar and regular vocabulary to handle text analytic tasks on
Twitter data. To tackle both of these challenges, we are obligated to deploy
domain-specific pretrained models. Therefore, we are interested in models
pre-trained on large-volume datasets on general and COVID-19-related
tweets. This section will present the most popular pre-trained models
trained on COVID-19-related tweets. Most of these models are based on
bidirectional Transformer models such as BERT and RoBERTa.
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COVID-Twitter-BERT

CT-BERT11 is a pre-trained model that was trained on 22.5 million unique
COVID-19 related tweets, which resulted in 0.6 billion words [69]. The base
model on which CT-BERT is based is the BERT-Large uncased. Note that
the BERT-Large has two different versions. The first one is trained with
text and is processed in its original case, meaning that uppercase and low-
ercase letters are preserved. Reversly, the second is uncased, where all text
is converted to lowercase before processing. This means that the distinc-
tion between uppercase and lowercase letters is lost, and the model would
treat words such as "Car" and "car" as the same token. As mentioned in the
sections above, the BERT is trained on Wikipedia articles and book corpus,
and it still contains little information about any domain-specific knowledge
about COVID-19 or tweets.

The CT-BERT is trained on a corpus of 160M tweets related to COVID-19
collected between January 12 to April 16, 2020. Before training, the original
corpus was cleaned for retweet tags. Furthermore, each tweet was driven
through a preprocessing process that included replacing all Twitter user-
names with a common text token, the URLs with a common URL token,
and all emoticons with textual ASCII representations. Finally, the retweets,
duplicates, and closely duplicate tweets were removed from the training
data. These abbreviations of the data resulted in almost 1/7 of the training
data of BERT. Furthermore, the training process was carried out with a dis-
tributed training system on a TPU v3-8 (128GB of RAM) for 120 hours.

According to the authors of CT-BERT, the re-training, or domain-specific
training, of BERT-Large resulted in improvements in previous datasets.
The CT-BERT overtook the performance of the BERT-Large in various tasks
such as Twitter Sentiment SemEval (SE) [70], Stanford Sentiment Treebank
2 [92], and additional COVID-19 classification tasks. In addition, CT-BERT
has outperformed the BERT-Large, and RoBERTa-Large models on other
COVID-19-related classification problems [31].

BERTweet

BERTweet12 is a pre-trained language model for English Tweets, which is
based on the original BERT model but has been trained with the RoBERTa
pre-training procedure [71]. According to the authors, BERTweet was the
first large-scale language model for English Tweets, trained on 850 million
tweets (16 billion tokens).

The training dataset of BERTweet is a concatenation of two corpora. The
first is a 4 TB of tweets streamed from January 2012 to August 2019 on

11The CT-BERT model is available at Hugging Face: https://huggingface.co/
digitalepidemiologylab/covid-twitter-bert-v2

12The BERTweet is available at Hugging Face. Note that BERTweet has a general and a
COVID-19-related model. All of them are available here: https://huggingface.co/vinai
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Twitter and has been preprocessed through the same techniques as for
CT-BERT; converting usernames and URLs into their respective standard
token, converting emojis into their textual meaning and filtering out
retweets. Additionally, tweets with less than ten tokens and more than
64 tokens were removed. This preprocessing technique resulted in the first
corpus of 845M English Tweets. The second was streamed from January
2020 to March 2020 and was explicitly related to COVID-19. This dataset
ended up with 5 million tweets after the processing techniques. In total,
BERTweet was trained for four weeks on 8 V100 GPUs. Similar to CT-BERT,
the authors of BERTweet show that the BERTweet model outperforms
models like RoBERTa-Base on various NLP tasks such as POS-tagging,
named-entity recognition, and text classification.
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Chapter 3

The datasets

3.1 The COVID-19 Conspiracy dataset

The COCO is a manually annotated dataset concerning conspiracy cate-
gories. The dataset was proposed by Langguth et al. [52] and contains
twelve categories, but due to the limited samples, we have decided to work
with nine of these categories. Despite category descriptions in the paper,
we include them here for clarity and to ease the discussion in the following
chapters.

1) Suppressed Cures This category collects narratives proposing that
effective medications for COVID-19 were available but whose exis-
tence or effectiveness has been denied by authorities, either for finan-
cial gain by the vaccine producers or some other harmful harm intent,
including ideas from other conspiracy categories listed below.

2) Mind Control and behavior control In this category, we collected
narratives containing the idea that the pandemic is being exploited
to control the behavior of individuals, either directly through fear,
through laws that are only accepted because of fear, or through
techniques which are impossible with today’s technology, such as
mind control through microchips.

3) Anti Vaccination We collect all statements suggesting that the
COVID-19 vaccines serve some hidden nefarious purpose or can kill
people to control the population numbers. This category does not
include concerns about vaccine safety or efficacy or concerns about
the trustworthiness of the products since these are not conspiracies,
even though they may contain misinformation.

4) Fake Virus One of the prominent narratives early in the pandemic
was that there is no COVID-19 pandemic and that reports about it are
meant to deceive the population either to hide either death caused by
5G wireless equipment or later by vaccines or that the pandemic is
just an over-dramatization of the annual flu season with the intent of
controlling the behavior of the population.
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5) Intentional Pandemic This straightforward narrative posits that the
pandemic results from purposeful human action pursuing some illicit
goal. The actor and the goal vary widely, but they all share the ability
to produce a perceived culprit for the situation. Note that this is
distinct from the assertion that COVID-19 is a bio-weapon or was
created in a laboratory since this does not preclude the possibility of
it being released accidentally.

6) Harmful Radiation or Influence This class of conspiracy theories
bundles all ideas that connect COVID-19 to wireless transmissions,
especially from 5G equipment. This was done by claiming, for
example, that 5G is deadly and that COVID-19 is a cover-up or that
5G allows mind control via microchips injected into the bloodstream.
As 5G misinformation has already been studied separately, it was not
the focus of this dataset.

7) Population Reduction Often linked to statements by Bill Gates,
conspiracy theories on population reduction or population growth
control suggest that either COVID-19 or vaccines are used to reduce
population size by killing people or rendering them infertile. In some
cases, this is directed against specific ethnic groups. These narratives
often use the term" population control" in the sense of population
size control, which must be distinguished from population behavior
control covered in other conspiracy theories.

8) New World Order (NWO) is a preexisting conspiracy theory that
deals with the secret emerging totalitarian world government. In the
context of the pandemic, this usually means that COVID-19 is being
used to bring about this world government through fear of the virus,
taking away civil liberties, or some other implausible ideas such as
mind control.

9) Satanism This category collects narratives in which the perpetrators
are some kind of Satanists. Such conspiracy theories may involve
harm or sexual abuse of children, such as the idea that global elites
harvest Adenochrome from children. Many of these ideas predate
COVID-19, but they have been reinterpreted in the new context of
the pandemic.

Each category has three subcategories, meaning the total number of distinct
categories is 27 (see Table 3.2). These three subcategories are:

• Promotes/Supports Conspiracy class contains all tweets that pro-
mote, support, claim, insinuate some connection between COVID-
19 and various conspiracies, such as, for example, the idea that 5G
weakens the immune system and thus caused the current coronavirus
pandemic; that there is no pandemic and the COVID-19 victims were
harmed by radiation emitted by 5G network towers; ideas about an
intentional release of the virus, forced or harmful vaccinations, the
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vaccine contains microchips, or the virus is a hoax, etc. The crucial
requirement is the claimed existence of some causal link.

• Discusses Conspiracy class contains all tweets that mention the
existing conspiracies connected to COVID-19 or negate such a
connection negatively or sarcastically.

• Non-Conspiracy class contains all tweets not belonging to the
previous two classes. Note that this also includes tweets that discuss
the COVID-19 pandemic itself.

3.1.1 Data Exploration

The training dataset consists of 1913 tweets, while the test dataset consists
of 830 samples. The dataset is heavily unbalanced regarding the number
of samples per class, reflecting the distribution of tweet topics and people’s
opinions. Figure 3.1 demonstrates the class distribution for each category,
which shows that all categories contain a low percentage of 2’s and 3’s.
Most samples are 1’s, whereas in most cases, the percentage of 1’s is more
than 90 percent.

The dataset’s top 10 bigrams and trigrams can be seen in Table 3.1. Some
N-grams, such as "bill gate" and "new world order", could be essential for
classifying the conspiracies. Based on this, it is crucial to consider N-grams
when constructing the TF-IDF and BOW! (BOW!) approaches.

((a))

Bi-grams
deep state 215

world order 101
new world 100
bill gates 97

population control 78
corona virus 56

false flag 45
covid 19 41

covid vaccine 40
mark beast 33

((b))

Tri-grams
new world order 99

population control bill 8
bill gates wants 7
qr code system 6

deep state conspiracy 6
soros bill gates 6

create new world 5
one world government 5

new covid cases 5
bring population control 5

Table 3.1: Top 10 most common bigrams and trigrams in the training data
of COCO dataset. These sequences have been generated after the removal
of stopwords.

3.2 Evaluation metrics

The dataset is highly imbalanced, as shown in Figure 3.1, and therefore
we must consider a powerful evaluation metric when building machine
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Figure 3.1: The class distribution of the nine conspiracy categories
demonstrates the highly imbalanced number of samples per class in COCO
dataset. Note that the 1’s, in the x-axis, stands for Non-Conspiracy, 2’s
stands for Discusses Conspiracy and 3’s stands for Promotes/Supports
Conspiracy.
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learning models on this dataset. The evaluation metric has to be insensitive
to the imbalance of the categories. A solution to this is the Matthews
correlation coefficient (MCC), first introduced in 1975, which is suited
for multi-class classifiers for balanced and imbalanced datasets [36].
The reason why MCC is a good evaluation metric is that it constructs
a high score when the prediction obtains good results concerning all
four categories of the confusion matrix, such as the true positives (TP),
false negatives (FN), true negatives (TN), and false positives (FP) [17].
Furthermore, it is proportionally both to the size of positive and negative
elements in the dataset. The equation of MCC is given by

MCC =
TP · TN − FP · FN√

(TP + FN)(TP + FN)(TN + FP)(TN + FN)
(3.1)

Note that Equation 3.1 has some excellent properties, such as if the model
predicts wrong all of the time, i.e., TP = TN = 0, the output becomes −1.
While, in the case of a perfect model, where FP = FN = 0, Equation 3.1
outputs a value of 1. In addition, the 0 indicates that the model is no better
than a random flip of a fair coin. MCC is also perfectly symmetric, so no
class is more important than the other; switching the positive and negative
will still get the same value.

Alternative to the MCC is the F1-score, a popular choice for most
classification problems, and is the harmonic mean of precision and recall.
The general expression of the F1-score is given by

F1 = 2 · Precision · Recall
Precision + Recall

(3.2)

Precision is the proportion of true positives (TP) out of all detected
positives, and recall is the number of true positives (TP) correctly classified.
More specifically, they are defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

In a general setting, there exist different variants of the F1-score. Some pop-
ular examples are micro, macro, and weighted F1-scores. The micro version
computes F1 scores considering total TP, TN, and FB and uses Equation 3.2
directly. On the other hand, the macro version computes F1 scores for each
class and then computes their total average to represent the overall score.
Note that the micro version does not consider the proportion for each label
in the dataset. The weighted version modifies the micro version by com-
puting F1 scores for each class and then averaging them by considering the
proportion for each class in the dataset. Although the micro and weighted
versions of the F1-score can be good evaluation metrics, both neglect the
true negatives (TN) when computing the scores, which can be inaccurate
when working with an imbalanced dataset.
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In summary, the MCC and F1 scores serve as performance metrics
for classification tasks, yet their distinct characteristics make one more
appropriate than the other in specific situations. In some instances, the
MCC score is considered superior to the F1 score because it accounts for all
four confusion matrix values (true positives, false positives, true negatives,
and false negatives). In contrast, the F1 score only considers true positives,
false positives, and false negatives. Consequently, the MCC score offers
a more balanced assessment of a classifier’s performance, particularly in
imbalanced datasets. Furthermore, with a range from -1 to 1, the MCC
score allows for a more straightforward interpretation than the F1 score,
which ranges from 0 to 1. Additionally, the MCC score is more sensitive to
the classifier’s performance across positive and negative classes, unlike the
F1 score, which can be biased toward a specific class.

3.3 The alternative versions of the dataset

The dataset, introduced in the section above, consists of 9 categories, each
containing three subcategories. The total number of classes is 27, which can
be pretty significant. In this section, we will introduce two new versions of
the dataset, which can be taught as a fine-grained version of the dataset.
These new dataset versions are based on the same dataset, but we are
feature-engineering the categories.

3.3.1 Misinformation Detection

We call the first version of dataset misinformation detection dataset. This
version has converted all nine conspiracy categories into a single category
called misinformation, and the goal of this dataset is to train and predict
various COVID-19 Conspiracy theories by building a multi-class classifier
that can flag whether a tweet promotes/supports or discusses at least one
(or many) of the conspiracy theories. An example of this transformation
can be:

1, 1, 3, 1, 3, 1, 1, 1, tweet-text =⇒ 3, tweet-text
1, 1, 1, 1, 1, 1, 2, 1, tweet-text =⇒ 2, tweet-text
3, 1, 1, 1, 3, 1, 1, 1, tweet-text =⇒ 3, tweet-text
1, 1, 1, 1, 1, 1, 1, 1, tweet-text =⇒ 1, tweet-text

Note that the 1, 1, 3, 1, 3, 1, 1, 1 corresponds to the nine conspiracy categories
in the order as mentioned in Section 3.1. Therefore, all data samples with
at least one 2 or 3 value among the nine categories have been transformed
into 2 or 3.

3.3.2 Conspiracy Recognition

We call the second version of dataset conspiracy recognition dataset. This
dataset aims to offer a recognition dataset that can be used to build a
detector that can detect whether a text in any form mentions or refers to
any predefined conspiracy topics; in other words, detect the 2’s and the 3’s.
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This dataset was constructed by recasting these, 2’s and 3’s, into values of
1’s and the original 1’s into 0’s. An example of this transformation is:

1, 1, 1, 1, 1, 1, 1, 1, 1, tweet-text =⇒ 0, 0, 0, 0, 0, 0, 0, 0, 0, tweet-text
2, 1, 1, 1, 1, 1, 1, 1, 1, tweet-text =⇒ 1, 0, 0, 0, 0, 0, 0, 0, 0, tweet-text
1, 1, 1, 1, 3, 1, 1, 1, 1, tweet-text =⇒ 0, 0, 0, 0, 1, 0, 0, 0, 0, tweet-text
1, 1, 1, 1, 3, 1, 1, 1, 2, tweet-text =⇒ 0, 0, 0, 0, 1, 0, 0, 0, 1, tweet-text

Labels Tweet Text
1,1,1,3,1,1,1,1,1 COVID-19 is a hoax, it’s just the flu.
3,1,1,1,1,1,1,1,1 Drinking bleach or other disinfectants can cure COVID-19...
1,1,1,1,1,3,1,1,1 5G mobile networks spread COVID-19.
1,1,1,1,1,2,1,1,1 no, I don’t think that 5G mobile networks spread COVID-19.

Table 3.2: Illustration of the data format in the COCO dataset. The Labels
consists of nine integers, each representing the nine conspiracy categories.
Their order is identical to the numbering in Section 3.1. Note that the text
samples shown here are made-up, not real tweets.

3.4 Other COVID-19 related datasets

This section introduces other datasets that tackle the fake news and
conspiracy related to the COVID-19 pandemic. According to the author’s
knowledge, three openly available datasets exist regarding this topic.
Typical for these datasets is that they are extracted from social media
platforms or fact-checking websites and are more or less related to the type
of language and content.

3.4.1 Fighting an Infodemic: COVID-19 Fake News Dataset

The COVID-19 Fake News Dataset was created in 2021 with the aim of
fighting an infodemic [74]. This dataset consists of 10700 text samples
obtained from social media and articles labeled as real and fake news
on COVID-19. The social media platforms used for the data collection
were selected to be the ones actively used for social networking for
counterpart communication and forwarding details, such as news, events,
social phenomenon, etc. Real news and false statements on COVID-19
subjects that appeared on social media were collected. Fake claims were
collected from various fact-checking websites, while the real news was
collected from Twitter using verified Twitter handles. The creators of this
dataset collected the data using the criteria of language that had to be
English, and the content had to relate to COVID-19. The most frequent
words in this dataset are:

• Fake coronavirus, covid19, people, will, new, trump, says, video,
vaccine, virus.
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• Real covid19, cases, new, tests, number, total, people, reported,
confirmed, states.

• Combined covid19, cases, coronavirus, new, people, tests, number,
will, deaths, total.

More details can be found in the dataset’s paper [74].

3.4.2 The COVID-19 Category dataset

The COVID-19 Category dataset1 is developed by the team of CT-BERT [69]
and is a sub-sample of the data used for training CT-BERT. Like the rest of
the training data, this sub-sample was collected between January 12 and
February 24, 2020. This dataset is a binary set with the following labels

• category_personal describing a tweet text as a personal narrative.

• category_news describing a tweet text as actual news.

The annotation of the dataset was accomplished with Amazon Mechanical
Turk service 2. The final class distributions ended with 33.3 % (personal
narrative) and 66.7% (news). However, the dataset is available in the form
of tweet IDs and their labeled class, meaning to use the data, one must use
the Twitter API to gather the tweets based on the IDs. Therefore, Tweepy
3, which is a Python library for accessing the Twitter API, was deployed
to gather the tweets. Unfortunately, the majority of these tweets were
removed and did not exist. In total, 3888 of 5157 was removed from Twitter.

1The dataset is available here: https://github.com/digitalepidemiologylab/
covid-twitter-bert/tree/master/datasets/covid_category

2Amazon Mechanical Turk: https://www.mturk.com/
3https://www.tweepy.org/
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Chapter 4

Experiments with classical
approaches

In this chapter, we explore classical approaches, including Bag-of-Words
(BOW), TF-IDF, and N-grams, to establish baseline models that will be
compared with Transformer-based models in the subsequent chapter. Our
primary objectives are to:

• Assess the performance of these classical approaches on the dataset.

• Identify the conspiracy categories that are most easily predicted using
simple, non-neural text representation techniques.

We begin by outlining the experimental methodology, followed by a
detailed presentation of the experiments conducted using all methods.
Finally, a comparative analysis and discussion of the results are provided
at the end of the chapter.

4.1 Experimental setup

This section contains the elements and descriptions of all the tools used to
perform the experiments. In addition, we have the software, hardware, and
various methods used among the tools.

4.1.1 The software

The programming language used in the whole thesis is Python. However,
the version of Python differs from different chapters because of dependen-
cies in various Python packages. In this chapter, we have used the version
of 3.11.21. According to the documentation, this version of Python is be-
lieved to be 10-60% faster than Python 3.10, and on average, we measured
a 1.25x speedup on the standard benchmark suite. The fact that Python
3.11.2 is the fastest version made it quite reasonable to execute all of the
methods in this version since we obtained optimization of the running time

1The documentation of Python and different versions can be found here: https://docs.
python.org/3/.
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concerning pre-processing and running of the models without any effort.

The machine learning framework used in this chapter is scikit-learn
[75], with the version of 1.2.1, a free software machine learning library.
This framework supports various classification, regression, and clustering
algorithms and is designed to interoperate with the Python numerical and
scientific libraries NumPy [41], SciPy [102], and Pandas [67]. In addition,
scikit-learn also supports text vectorization methods such as BoW and TF-
IDF.

4.1.2 The hardware

All experiments have been performed on Experimental Infrastructure for
Exploration of Exascale Computing (eX3) 2 has more than 40 nodes with
different hardware. The use of which nodes, or hardware, depends on the
machine learning framework. We have implemented various algorithms
from different frameworks in this thesis, which have required different
hardware. In the case of scikit-learn and the classical approaches, we have
deployed these algorithms on a single AMD Epyc 7302P that has 256 GB
RAM.

Data split

The COCO dataset consists of one dev set, used to train and validate the
model, and a holdout set. The holdout (test) set is not used for anything
except to check the performance of the models when the models are fin-
ished training. To train a model, we divide the dev set into a training set, a
validation set, and a test. We applied cross-validation methods to split the
data.

Before applying the cross-validation method, we ensured a test dataset by
splitting the dev set into a temporary training set and a test set using the
train_test_split class from scikit-learn. We specifically applied the split with
stratification to ensure that the temporary train and test set had the same
number of categories. This test set was used to evaluate each model. The
temporary training set was then driven through the 9-fold cross-validation
method. The reason why we applied specific 9-folds was that we wanted
to split data into seven equal folds. We used the StratifiedKFold to ensure
each set in each fold has the same category distribution.

Evaluation metric

In both cases of the One-for-All and One-for-One, we apply the MCC3 to
evaluate the predictions on the category level. To obtain the performance of

2eX3 is an experimental cluster owned by Simula Research Laboratory. The official web
page: https://www.ex3.simula.no/

3We used the matthews_corrcoef from scikit-learn to compute MCC: https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html.
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Figure 4.1: The steps of the classical approach; preprocessing, feature
extraction, and machine learning model.

the whole approach from every category, we use the mean of every single
MCC score.

MCCModel =
MCC1 + MCC2 + · · ·MCC9

9
(4.1)

For the rest of the thesis, any mention of MCC will be in reference to
MCCModel, indicating a specific type of MCC and avoiding any potential
confusion with other types.

4.2 Applied machine learning models

This section introduces the machine learning models executed to learn the
text representation and their tunable parameters. As described in Section
2.2, machine learning (ML) models such as LogReg and SVM are popular
choices. Note that every ML introduced here have implemented with the
scikit-learn package. In addition, there following models were employed:

• Logistic regression (LogReg)

• Support vector machine (SVM)

• Feedforward neural networks (FFNN)

The SGD Classifier is a linear classifier with SGD-based learning imple-
mented in scikit-learn. The backend models of this implementation consist
of LogReg and SVM. The loss gradient is estimated for each sample at a
time, the model is updated with a decreasing strength schedule, and SGD
allows minibatch learning.

Table 4.1 displays the tunable and chosen parameter values. Note that the
SGD classifier with hinge loss is equivalent to linear SVM, SGD with log
loss is equivalent to LogReg, etc. The only difference between SVM, Lo-
gReg, and the SGD classifier is that the SGD classifier is implemented with
the SGD algorithm.

These machine learning methods were executed in a One-for-One manner,
executing nine different models for the nine categories. We consider every
category to be completely independent of the other. For the prediction
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Model Parameter Parameter values

LogReg penalty L1 , L2, Elastic net
LogReg optimizer lbfgs, liblinear, newton-cg, saga
LogReg maximum iterations 100, 500, 1000

SVM C 0.1, 1, 10
SVM kernel linear, poly, RBF, sigmoid

FFNN number of layers 2,3,4,5
FFNN hidden layer sizes 50,100,150
FFNN activation function identity, logistic, ReLu
FFNN optimizer SGD, Adam

SGD Classifier loss hinge, log, modified_huber
squared_hinge, perceptron

SGD Classifier penalty L1 , L2, Elastic net
SGD Classifier alpha 1e− 3, 1e− 4, 5e− 4, 1e− 5, 5e− 5

Table 4.1: The chosen tuning parameters for the four machine learning
models for learning text representation.

part, we combine the prediction of each model to achieve labels from every
category.

4.3 Experiments with unigrams

This section introduces the baseline line of the text vectorization ap-
proaches,i.e., the BoW and the TF-IDF approaches. The experiments in
this section have been performed with unigrams, the simplest form of N-
grams, which are contiguous sequences of N items. An item can be a word,
a character, or a part of a word. The unigrams are the simplest form of
N-grams, but we still believe they can provide valuable information for
conspiracy detection tasks. They do not capture any information about the
order or sequence of words, which can limit their usefulness in certain con-
texts. Higher-order N-grams, such as bigrams, trigrams, or higher, can be
more useful, as they can capture more complex patterns and relationships
between words. We will study the higher N-grams in the next section.

Note that, in this section, the only preprocessing technique performed is
the removal of the stopwords for both the BoW and TF-IDF approaches.

4.3.1 The BOW approaches and results

The BoW approach is implemented with CountVectorizer class from scikit-
learn, which transforms a collection of text samples into a matrix of token
counts. This implementation creates a sparse representation of the token
counts. The representation created from this method is then fed to the
machine learning models described in the section above. The benefit of
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Category SGD Classifier SVM FFNN LogReg
Suppressed cures 0.440 0.327 0.333 0.239

Behaviour and Mind Control 0.454 0.377 0.421 0.349
Antivax 0.455 0.482 0.398 0.379

Fake Virus 0.351 0.400 0.312 0.308

BO
W

Intentional Pandemic 0.285 0.247 0.232 0.231
Harmful Radiation/ Influence 0.689 0.622 0.581 0.541

Population reduction 0.648 0.582 0.565 0.491
New World Order 0.715 0.727 0.681 0.654

Satanism 0.444 0.384 0.312 0.257
Average 0.498 0.461 0.432 0.383

Suppressed cures 0.759 0.394 0.362 0.00
Behaviour and Mind Control 0.483 0.374 0.222 0.094

Antivax 0.526 0.455 0.412 0.250
Fake Virus 0.322 0.366 0.332 0.017

TF
-I

D
F Intentional Pandemic 0.271 0.131 0.211 0.082

Harmful Radiation/ Influence 0.638 0.552 0.510 0.00
Population reduction 0.713 0.561 0.540 0.183

New World Order 0.70 0.711 0.690 0.306
Satanism 0.465 0.445 0.378 0.00
Average 0.542 0.443 0.380 0.104

Table 4.2: The MCC scores of the BoW and TF-IDF approach per category
on the holdout dataset. These scores were generated after training
the ML models from Section 4.2 with unigrams BoW and TF-IDF text
representation. The scores have been rounded up to three decimals.

using CountVectorizer is its excellent properties, such as N-gram ranges.
For example, the N-gram ranges vary in the range of n-values for different
word N-grams, and the values of N must be between the minimum and
maximum of N.

4.3.2 The TF-IDF approaches and results

Like the BoW approach, the TF-IDF approach was implemented with
scikit-learn’s TfidfVectorizer class. In addition, we implemented the TF-
IDF approaches with the same N-gram ranges described in 4.3.1, and the
stopwords were removed from the textual data.

4.4 Experiments with N-grams

Table 3.1 shows the ten most common bigrams and trigrams in the training
data of the COCO dataset, and it is evident that N-grams such as "world
order order", "population control," and "soros bill gates" are essential for
classifying several categories. Therefore, to improve the results from
previous sections, we experimented with different N ranges, such as
unigrams, bigrams, and trigrams. In addition to that, we also experimented
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Figure 4.2: Comparison of the performance of the BOW and TF-IDF
approaches with various N-grams.

with combining these N-grams, such as a combination of bigrams and
trigrams. That was done by forwarding the ngram_range parameter to the
CountVectorizer and similar to TfidfVectorizer. More specifically, we used
the following N-gram ranges to work with:

• (1,2) Combination of unigrams and bigrams.

• (1,3) Combination of unigrams, bigrams and trigrams.

• (2,3) Combination of bigrams and trigrams.

• (1,4) Combination of unigrams, bigrams, trigrams, and four-grams.

• (1,5) Combination of unigrams, bigrams, trigrams, four-grams, and
five-grams.

• (2,2) Bigrams.

• (3,3) Trigrams.

Furthermore, before executing these experiments, we removed the stop-
words. No other preprocessing was done on the textual data.

4.5 Enhancing Text-based Model Performances: Strate-
gies and Techniques

All of the experiments till now have been executed with no preprocessing
of the textual data. In this section, we will introduce and explore
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Figure 4.3: The TF-IDF performance comparison with the SGD classifier on
different N ranges.

different preprocessing techniques to improve the performance of the
models. We are working with the dataset from Twitter, which contains
considerable noise. The most common type of noise is spelling errors,
a common challenge when building NLP models based on tweets. Due
to the character limit in tweets, people often use abbreviations, slang,
and informal language, leading to misspellings and typos. In addition,
the speed at which people write and send tweets can also contribute
to spelling errors. Furthermore, people may use different dialects and
accents, resulting in spelling and word usage variations. As a result, tweets
can often contain misspellings and grammatical errors, making natural
language processing tasks more challenging. This section will deploy
different preprocessing techniques to tackle these challenges.

4.5.1 Spelling correction

There exist several open-source packages that tackle the issue of spelling
correction, such as textblob 4 and pyspellchecker5. However, these packages
are trained or based on general data, not specifically on Twitter data, lead-
ing to wrong word recommendations. In addition, the essential words in
our case are the COVID-19-related conspiracy words such as plandemic,
qanon, bioweapon, etc., which these packages failed to classify the correct
words. To solve this issue, we built our spelling correction tool trained on

4https://textblob.readthedocs.io/en/dev/
5https://pypi.org/project/pyspellchecker/
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a COVID-19 dataset.

The solution is based on Peter Norvig’s work on spelling correction6.
Norvig outlined a simple but effective approach to spelling correction
using a probabilistic model based on word frequency and edit distance.
Given a misspelled word, the model generates a list of candidate correc-
tions by applying a series of edit operations to the misspelled word. For
each candidate correction, the model calculates a score based on the fre-
quency of the candidate word in a reference corpus and the edit distance
between the candidate word and the original misspelled word. The model
then selects the candidate word with the highest score as the most likely
correction for the misspelled word.

We used the BERTweet dataset7 as the corpus for the spelling correction
model. This model was deployed for each training and test sample to check
for every word and correct if it was misspelled.

4.5.2 Emojis to text

The tweets in the dataset also contain a lot of emojis. Therefore, we convert
the emojis into their textual meaning to make the ML better understand the
tweets. This is done by using the emoji 8.

4.5.3 Word segmentation

Another challenge regarding the noise in the dataset is the augmented
words in hashtags or any other misspelling forms. Some examples are
"PlandemicHoax" and "democRatsAreTheVirus". To separate these words,
we deploy word segmentation techniques. Word segmentation is divid-
ing a continuous sequence of text into individual words. It is an essen-
tial preprocessing step in many natural language processing (NLP) tasks.
In addition, accurately segmenting text into individual words is essential
for many downstream NLP tasks that rely on word-level features, such as
word frequency, part-of-speech tags, or word embeddings. There are dif-
ferent techniques for word segmentation depending on the language and
the type of text being analyzed.

The word segmentation process was performed with ekphrasis9 package,
which was first introduced in 2017 [8]. This package provides word statis-
tics (unigrams and bigrams) from 2 big corpora, the English Wikipedia and
a collection of 330 million English Twitter messages. The word segmenta-
tion implementation uses the Viterbi Algorithm [29], requiring word statis-
tics to identify and separate the words in a string. We performed the word
segmentation on every hashtag and replaced the segmented version.

6http://norvig.com/spell-correct.html
7https://github.com/VinAIResearch/BERTweet
8https://pypi.org/project/emoji/
9ekphrasis’s Github page: https://github.com/cbaziotis/ekphrasis
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4.5.4 Word normalization

Word normalization is a preprocessing technique in natural language
processing that involves transforming words into their base or canonical
form to reduce text complexity and improve the performance of NLP
models. The process typically includes stemming, lemmatization, and
case folding, with stemming removing suffixes to extract the root form of
words, while lemmatization maps words to a standard dictionary form.
By making text data more consistent, word normalization can enhance
the performance and efficiency of text-based models. In our case, we
performed the lemmatization of the text with the spaCy [46] package in
Python.

4.5.5 Experimenting with the enhanced methods

We found that the TF-IDF approach with an N-range of (1, 3) performed
best among all other options, and this performance was achieved with the
SGD classifier. We will integrate this approach with the suggestions in
Section 4.5, aiming to improve the results from previous sections.

4.6 Results & Discussion

In this chapter, we conducted several experiments with non-deep learning-
based approaches for COVID-19 conspiracy detection. The experiments
were based on training classical machine learning models with word
count-based methods such as BOW and TF-IDF. The first rounds of the
experimentations were conducted with unigrams representation, but in
later rounds, we also expanded the N-gram ranges to bigrams, trigrams,
etc. Lastly, we carried out investigations with methods that would enhance
the models’ performance. In this section, we will discuss the results of all
experiments.

4.6.1 Experiments with unigrams

The initial phase of experimentation focused on unigrams, with each ma-
chine learning model fine-tuned based on the parameters detailed in Table
4.1. The results for both vectorization methods are presented in Table 4.2.
It was observed that the SGD Classifier yielded the most favorable results
for both BOW and TF-IDF techniques, while the Support Vector Machine
(SVM) emerged as a strong runner-up. In contrast, Logistic Regression (Lo-
gReg) exhibited the least desirable performance. Additionally, the TF-IDF
method achieved the best overall MCC score of 0.542, outperforming the
highest BOW score of 0.498.

Notably, the TF-IDF approach with the SGD classifier demonstrated
excellent results for the Suppressed Cures, Population Reduction, and
New World Order categories, with all of these categories achieving an
MCC score higher than 0.700. This indicates that these models are primarily
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keyword-based. However, the models faced difficulties in the Fake Virus
and Intentional Pandemic categories, where the best MCC score obtained
was approximately 0.322 or lower.

4.6.2 Comparison of N-gram ranges

Referring to Table 3.1, we hypothesize that expanding the N-gram range
for text vectorizers may enhance the models’ performance. With this con-
sideration, we conducted experiments using various N-grams as detailed
in Section 4.4. The results are presented in Figure 4.2. The TF-IDF method
outperforms the BOW approach for every N-gram range, except for (1, 5),
which can be disregarded due to the marginal difference. The highest over-
all MCC score across all categories was 0.585, achieved using the TF-IDF
method with an N-gram range of (1, 3).

Based on the same figure, incorporating unigrams in the text vectorization
process appears crucial; otherwise, the models’ performance declines sig-
nificantly. The combinations of (2, 2), (2, 3), and (3, 3) yielded an overall
MCC score lower than 0.320. The performance of the TF-IDF method in-
creases with the N-gram range until it reaches (1, 4). The combination of
(1,3) includes unigrams, bigrams, and trigrams. The TF-IDF approach faces
challenges with the (1, 4) range, as the dataset contains a limited number of
four grams. The best BOW method registered an MCC score of 0.520, while
the top-performing TF-IDF approach achieved an MCC score of 0.585.

Further examining the MCC scores, we analyzed the TF-IDF performance
for each category. Figure 4.3 offers insights into the MCC scores presented
in Figure 4.2 by displaying the individual category MCC scores. Our
hypothesis was confirmed as the Population Reduction, and New World
Order categories were comparatively easier to predict and are depicted
in darker blue, except for the N-grams that exclude unigrams. Moreover,
the Harmful Radiation category demonstrated relative ease in prediction,
achieving an MCC score of 0.731 for the (1, 3) range. Conversely, the
Suppressed Cures category encountered challenges with higher N-gram
ranges, leading to diminished performance. Finally, as anticipated, the
Fake Virus and Intentional Pandemic categories fared worse among all
categories, but their performance improved slightly with the increase in
the N-gram range.

4.6.3 Improving the model performances

To enhance the performance of the TF-IDF approach, we employed var-
ious techniques, including emoji-to-text conversion, word normalization,
spelling correction, and word segmentation. However, implementing these
methods did not significantly improve the TF-IDF performance. Table 4.3
reveals a slight decline in the performance of the original best model, TF-
IDF, with a (1,3) N-gram range. The spelling correction and word segmen-
tation techniques were the least impactful, suggesting that our dataset con-
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Prepossessing method MCC scores

Original (1,3) 0.585
Emojis to text 0.541

Word segmentation 0.527
Spelling correction 0.529

Word normalization 0.545

Table 4.3: The comparison of TF-IDF with (1,3) with different preprocessing
methods.

tains distinct COVID-19 and Twitter-specific terminologies that traditional
probabilistic correction models struggle to handle accurately.

4.7 Conclusion

This study explored various non-deep learning-based approaches for
COVID-19 conspiracy detection, employing classical machine learning
models alongside word count-based methods such as BOW and TF-IDF.
Initial experiments using unigram representations demonstrated that the
SGD Classifier performed best for both BOW and TF-IDF techniques, with
the TF-IDF method achieving the highest overall MCC score. Subsequent
experiments with varying N-gram ranges confirmed our hypothesis that
expanding the N-gram range could improve model performance, with
the TF-IDF method outperforming the BOW approach in most cases.
The analysis of individual category performance revealed that specific
categories, such as Population Reduction and New World Order, were
comparatively easier to predict. In contrast, others, such as Fake Virus
and Intentional Pandemic, struggled. However, an increase in the N-gram
range led to slight improvements in these more challenging categories.
In conclusion, our investigation of non-deep learning-based approaches
for COVID-19 conspiracy detection highlights the importance of selecting
appropriate N-gram ranges and vectorization techniques. While the TF-
IDF method with the SGD Classifier performed best overall, understanding
each category’s unique challenges and characteristics is essential for
optimizing performance across diverse conspiracy theories.
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Chapter 5

Experiments with
Transformer-based approaches

In this chapter, we are implementing Transformer-based approaches. The
goal of this chapter is to answer the following questions:

1) How do the Transformer-based models do compared to the classical
approaches?

2) Do the classical approaches outperform the Transformer models in
some categories?

3) Among the pre-trained Transformer models, CT-BERT is the one that
has been trained on domain-specific data and is known to perform
best. Can the other models outperform CT-BERT?

We start with a pretrained simple BERT model, bert-base-uncased, and fine-
tune this with a suitable neural network for conspiracy detection. Later on,
we will experiment with more extensive and more advanced pretrained
models, such as roberta-large, CT-BERT, BERTweet, and Twitter-RoBERTa-
Large. We first present the technicalities around the experiments and then
the experiments based on all methods. Finally, the results are compared
and commented on at the end of the chapter.

5.1 Tools for Reproducible Research: Hardware and
Software Considerations

This section contains the elements and descriptions of all the tools used
to perform the experiments, such as the software, hardware, and various
methods deployed.

5.1.1 The software

This section describes the software specifications and frameworks used to
produce this thesis’s results. Python 3.7.31 has been used to conduct all ex-
periments in this chapter. One can easily organize, preprocess and visual-
ize data, making Python a natural choice for many researchers. Combined
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with open-source machine learning libraries such as PyTorch [73] and Ten-
sorFlow [66], Python has become a powerful tool for deep learning tasks.

This chapter uses PyTorch and Transformer [109] to deploy and train the
selected models. PyTorch is an open-source machine learning library for
Python primarily used for deep learning applications. It is developed and
maintained by Facebook’s AI Research lab and is designed to be flexible,
fast, and easy to use. One of the critical advantages of PyTorch is its abil-
ity to work seamlessly with Graphical Processing Units (GPUs). PyTorch
allows developers to easily leverage the power of GPUs for deep learning
by providing GPU-accelerated tensor computations, which allow for faster
and more efficient model training and inference. PyTorch also supports
distributed computing, allowing developers to parallelize model training
across multiple GPUs or machines.

The pretrained models exist on Hugging Face’s website and can easily be
accessed with the Transformer library. The Transformer library provides
a high-level API for building, training, and using various deep learning
models for tasks such as text classification, named entity recognition,
question answering, and language generation. It is built on top of PyTorch
and TensorFlow and includes pretrained models for everyday NLP tasks.
In addition, the library is designed to make experimenting with different
models and techniques accessible and includes tools for fine-tuning pre-
trained models on new data.

5.1.2 The hardware

The experimentation in this chapter has been carried out with an Nvidia
Volta A100 on the eX3 computing cluster. PyTorch allows accelerating
performance with GPUs. GPUs are specialized hardware designed for
parallel processing. As a result, they are much faster than traditional CPUs
for running certain types of computations, such as matrix multiplications.

5.1.3 Reproducibility

All experiments were executed with a fixed random seed to ensure the
reproducibility of the results in this chapter and the rest of this thesis.
The exact sequence of random numbers will be generated each time the
code is executed, which leads to the same sequence of model parameters
being initialized and the same sequence of training, validation, and test
data being sampled. To seed everything, the following code was used:

def seed_everything(seed_value=2022):
os.environ[’PYTHONHASHSEED’] = str(seed_value)
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
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torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

This code sets the seed value for random number generators in various
libraries commonly used in deep learning, including Python’s built-in
random library, NumPy, and PyTorch. The results should be deterministic
and reproducible by setting the same seed value each time the program
is run. Additionally, it ensures that the CUDA backends in PyTorch are
deterministic by setting the deterministic flag to True and the benchmark
flag to False. All experiments were executed with a seed value of 2022,
including the scikit-learn modules used for data splitting and model
training.

5.2 The data split

The data split was performed using a 9-cross validation technique to split
the data into training, validation, and test sets. However, the cross-
validation technique was performed with a stratification method based on
all categories. Stratification refers to dividing a dataset into homogeneous
subgroups based on a specified criterion, which is all of the conspiracy cat-
egories in our case. Stratification ensures that each subgroup represents
the overall population’s attributes, making the sample more representative
and reducing bias. For example, when splitting a dataset into training and
testing sets, stratification ensures that each subgroup’s relative proportion
is maintained in both the training and testing sets. This is important be-
cause it can help reduce the risk of sampling bias, which can arise when
the training and testing sets do not represent the overall population.

As mentioned before, the COCO dataset contains two sets; a dev and holdout
set. The dev set is used to train and evaluate the modes, while the holdout
set is only used in the final stages of the pipeline. More specifically, the dev
dataset was splitted by the following points:

• Firstly, the dev set was splitted into a temporary training and test
set using the iterative_train_test_split class from scikit-multilearn 1

with stratification. The split ratio was 90 and 10, respectively, for
temporary training and testing sets.

• Secondly, the temporary training set was splitted into nine different
cross-validation folds. We chose the number 9 to ensure that each
split was almost the same size as the test set. Note that the test was
not utilized for anything else and was set aside for evaluating each
model’s performance.

This resulted in 9-folds of training and validation sets and one single test
set. The amount of samples in each category is shown in Figure 5.1.

1Scikit-multilearn is a library for multi-label classification that is built on top scikit-learn:
http://scikit.ml/
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Training (1505 samples) Validation (189 samples) Testing (189 samples)

Figure 5.1: The number of samples in training, validation, and test set after
8-fold cross-validation.

5.2.1 Challenges in dataset acquisition

The dataset acquisition presented two significant challenges during exper-
imentation with the COCO dataset. The first challenge pertained to the
training dataset containing duplicate samples. The original training dataset
had 1912 samples, of which 33 were duplicates. After removing the dupli-
cates, we were left with 1879 samples in the training dataset.

The second challenge concerned the holdout dataset, which contained 830
samples. The presence of special punctuation marks in the dataset file
posed a challenge while reading the data. The default pandas.read_csv
module could only read 823 samples, leading to the loss of some lines
during the file-reading process. To rectify this issue, we used the
error_bad_lines argument with quoting in the same module, as shown
below:

test_df = pandas.read_csv(
path_to_data,
quoting=csv.QUOTE_NONE,
error_bad_lines=False

)

Regrettably, these errors were only discovered after several rounds of ex-
perimentation, which necessitated restarting our work. These errors di-
rectly impacted the final MCC scores of the models, leading to relatively
lower MCC scores. This can be attributed to the model being trained on
multiple duplicate samples, which introduced redundancy and compro-
mised the diversity of the training data.

5.3 The chosen Transformer-based models

This section will introduce the Transformer-based models employed for
conspiracy detection, and we will motivate why these models are good
choices for the task of conspiracy detection. However, as shown in
Figure 3.1, the dataset is highly imbalanced, and there are exceptionally
few samples of 3’s and 2’s, meaning that the models have little data
to learn these categories from. In addition, many domain-specific
terminologies are used in these tweets, which could make the non-domain-
specific models struggle to perform well. Therefore, we need a big pre-
trained model that tackles the challenge of understanding the COVID-19-
specific terminologies usually used on Twitter, the language of fake news
spreaders, e.g., sarcasm, irony, hate speech, etc., in addition, to the standard
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language used in tweets. Based on these criteria, we have chosen three
types of pre-trained models for COVID-19-related conspiracy detection:
the general models trained on various corpus, the Twitter-based models
that have pre-trained on large amounts of tweets, and the models that
have pre-trained on COVID-19-related tweets. Based on these criteria, we
introduce the chosen pre-trained models for this task:

• BERT-Uncased-Base: This BERT model is relatively small, the
most common pre-trained model among all the text classification
problems, and serves as the baseline model for our case. Note that
this model is uncased, meaning it does not distinguish between the
words like "Car" and "car" and treats them evenly, which is a good
quality when working with Twitter data since the data contains a
significant quantity of capitalization errors, where words are not
capitalized correctly.

• RoBERTa-Large: The RoBERTa model used in this study is a sizeable
pretrained model trained on a diverse 160 GB text corpus. While it
was not explicitly trained on COVID-19-related tweets, its extensive
training corpus is expected to yield good performance. However, two
concerns arise: the model’s training data includes unfiltered internet
content with potential biases, and it is cased, distinguishing between
uppercase and lowercase letters, which can pose challenges when
working with Twitter data.

• BERTweet: The BERTweet has two versions of the models; the first is
a general BERT model trained on 850 million tweets, and the second
is trained on 23 million tweets. Both versions are important as they
could perform better with the COCO dataset because of their training
dataset.

• Twitter-RoBERTa-Large: This model, based on RoBERTa-Large, was
trained on a corpus of 154 million tweets.

• CT-BERT: This model was trained on 22.5 million tweets, which
contain the words "Wuhan", "ncov", "coronavirus", "covid", or "sars-
cov-2". Therefore, this model has shown good results in various
COVID-19 text classification tasks and is a solid choice for our case.

5.4 The methods

This section will present the methodologies used to build a Transformer-
based model for COVID-19 conspiracy detection. As discussed in
Background Section, the Transformer is a state-of-the-art model for most
NLP tasks. We will experiment with general pretrained models such as
BERT and RoBERTa and further investigate the domain-specific pre-trained
models such CT-BERT, BERTweet, and Twitter-Roberta.
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Figure 5.2: The One-for-All approach; training one Transformers-based
model to predict all nine conspiracy categories simultaneously. Each color
represents a conspiracy theory.

5.4.1 BERT-based Methods for Multi-Label Classification

Before setting up the experimentation on the dataset, the question of how
to deal with labels arises. The labels in the dataset consist of a matrix
rather than a single vector, making it a bit challenging to decide how to
deal with it properly. As introduced in Section ??, there are two common
ways of dealing with this. The so-called One-for-One approach is based on
building nine distinct classifiers for each of the nine vectors, i.e., conspiracy
categories. On the other hand, the One-for-All approach suggests building
one single model that is trained on all of the nine categories at once and
then is used to predict all of the categories.

5.4.2 One-for-All: One Model to Rule Them All

As shown in Figure 5.2, the One-for-All is an efficient BERT-based multi-
label multi-class classification model. This approach is based on training
one Transformer-based model for classifying all conspiracy categories
simultaneously. The model is fine-tuned for the nine categories with nine
Cross Entropy loss functions, and the weighted losses for each of the nine
categories are added to determine the overall loss, which is given by:

L =
1
N

N=9

∑
i

wiLi (5.1)

As shown in Equation 5.1, the final loss is the weighted sum of the nine
losses. The weights are computed by considering the number of samples
in a specific category and dividing it by the numbers of each subcategory
in that category. The advantage of such an approach is that a single model
is fine-tuned to perform all the tasks simultaneously. Furthermore, the
weights of all our loss functions are proportional to the inverse frequency
of each class or sub-class they are related to.
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Figure 5.3: The One-for-One approach; Nine Models for Nine Mysteries. In
contrast to the One-for-All approach, this method is based on training one
Transformers-based model for each of the nine conspiracy theories.

One-for-All training, or fine-tuning, has been performed as a usual fine-
tuning process but with minor modifications. First, each pre-trained Trans-
former model has been initialized with a superficial linear layer on the top
of the model. Then, depending on the size of the model, it has chosen to
give the linear layer a dimension of [512, Number-of-Classes] for the base
models and [1024, Number-of-Classes] for larger models. Furthermore, we
developed one separate class for each pretrained trained model, where
the number of classes was 27, the total distinct number of categories. As
briefly discussed above, for each of the nine categories, there is a single
cross-entropy loss function that computes the loss of each epoch. During
each epoch, the prediction and gold labels are extracted from the overall
prediction of BERT using a single Transformer model for each of the nine
categories. This extraction is performed where the corresponding logits
for each category are obtained from a larger tensor based on the interval
[3i, 3i + 3]. Furthermore, the label values for each category are retrieved
from a separate tensor.

Finally, the model was deployed with the following steps about the 8-fold
cross-validations set; note these steps are based on Figure 2.3:

For each fold in 9-folds:
1) Train a One-for-All approach.
2) At each epoch, evaluate the model on the

corresponding validation set.
3) Save the model with the highest MCC score

on the validation score.
4) Finally, evaluate the best model on the test dataset.

Among the 9-folds, the best model with the highest validation score was
chosen.
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5.4.3 One-for-One: Nine Models for Nine Mysteries

As shown in Figure 5.3, the One-for-One approach is based on consider-
ing each of the nine categories separately from each other and fine-tuning
nine separate Transformer-based models. The weighted loss is dropped
in this approach, and we are applying nine simple Transformers based on
three class text classifications. Besides these differences, we are applying
the methodologies introduced in Section 5.4.2 regarding the loss function
and optimizers. However, the data split is performed differently. Since we
are building nine separate models, the data has been divided differently
concerning the stratification strategy. In this case, we have divided the data
into 9-folds, where each fold has been stratified concerning each category.
We ended up with 72 folds (9 categories times eight folds).

The training of the One-for-One approach was performed in the same
manner as the One-for-All, but with small changes, and included the
following steps:

For each category:
For each fold in 9-folds for that category:

1) Train a One-for-All approach.
2) At each epoch, evaluate the model on the

corresponding validation set.
3) Save the model with the highest MCC score

on the validation set.
4) Finally, evaluate the best model on the test dataset.

Note this approach is more expensive in terms of computational power and
time to fine-tune the models.

5.5 Experiments: setup and execution

The One-for-All and One-for-One approaches were employed with the
same parameters except for the number of epochs. Since the One-for-All
is a much larger model with a 27 number of parameters, we chose to work
with 40 epochs. In contrast, we used only 20 epochs in the One-for-One
approach since it has only three number of parameters. Furthermore, Table
5.1 displays the selected parameters for the experiments. In addition, all of
the optimizers mentioned in Section 5.4.2 were implemented with the same
decay rate, but the SGD and the RMSprop were implemented with an ad-
ditional parameter momentum, which is used to accelerate the optimization
process by accumulating the past gradients and adding them to the current
gradient. The momentum was kept at 0.9 for all experiments.

All experiments were conducted with the torch.optim.lr_scheduler.Redu
ceLROnPlateau2 scheduler from PyTorch library. Generally speaking, a

2The scheduler can be found here. https://pytorch.org/docs/stable/generated/torch.
optim.lr_scheduler.ReduceLROnPlateau.html
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Parameters Values
Batch Size 16

Number of epochs 40 (One-for-All) | 20 (One-for-One)
Max length of tokens 128

Learning rate 2e−5

Weight Decay 0.001

Table 5.1: The table shows the chosen parameters to fine-tune the
Transformer-based models.

scheduler adjusts the learning rate at specific intervals during training to
influence the convergence rate toward the optimal solution and improve
the model’s overall performance. By gradually reducing the learning rate
as the model approaches convergence, precise parameter adjustments are
made to prevent the model from becoming stuck in sub-optimal or exceed-
ing the optimal solution. The ReduceLROnPlateau monitors the model’s
performance metric and reduces the learning rate when the performance
metric stops improving. The learning rate reduction occurs at predefined
intervals, and the reduction size is typically a multiplicative factor. In
addition, the ReduceLROnPlateau scheduler has the patience parameter,
which specifies the number of epochs to wait before reducing the learning
rate if there is no improvement in the validation loss. In other words, if the
validation loss does not improve after patience epochs, the learning rate is
reduced by a factor of a weight_decay. In our experiments, we chose the
patience to be four and the weight_decay to 0.003 and factor to be at 0.3.

5.5.1 Experimenting with all pre-trained models

The first experiment consisted of deploying all of the selected Transformer-
based models with the One-for-All approach. In this round, we used
the AdamW optimizers from PyTorch with the learning rate from Table 5.1.
This experimentation round aimed to determine which pre-trained model
performed best for the COCO dataset and achieved the best MCC score.

5.5.2 Experiments with different optimizers and learning rates

The CT-BERT performed best in the previous section and were selected for
further experiments with different optimizers and learning rates. Among
the chosen optimizers, we have the following:

• SGD

• Adagrad

• Adadelta

• RMSProp
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These optimizers, which were introduced in Section 2.3.5, have been im-
plemented with PyTorch 3. The optimal learning rate depends on various
factors, such as the problem’s complexity, the dataset’s size, the model’s
architecture, and the optimization algorithm used. In this case, we applied
the learning rates of 0.1, 0.01, and 0.001 to find the optimal performance.

The different learning rates affect optimizers differently. Based on some
experimentation, we found that for some of the chosen learning rates,
the model only learns a little. Therefore, we implemented the model
with early stopping to reduce the running time of the models. Early
stopping is a regularization technique used in deep learning to prevent
the overfitting of a model. It involves stopping the training process of
the neural network before it reaches the point of overfitting. The basic
idea behind early stopping is to monitor the model’s performance on a
validation set during training. As the training progresses, the model’s
performance on the validation set typically improves up to a certain point
and then starts to degrade due to overfitting. By monitoring the validation
performance, we can detect when the model starts to overfit and stop the
training process at that point. We implemented the early stopping with a
technique called patience. Patience is a hyperparameter that controls the
number of epochs the model can continue training without improving its
validation performance. Training is stopped if the model fails to improve
for several epochs. We chose the patience to be at 5.

5.5.3 Experiments with One-for-One

As shown in Figure 5.4, CT-BERT dominates all other pre-trained models
predicting all nine categories. To further experiment with it, we apply the
One-for-One method. Instead of training one model to predict all nine
categories, we will develop nine models, one for each category. To do so,
we neglect the weights, as earlier used in One-for-All, and the training is
performed on shorter epochs. The best model was selected based on the
overall mean MCC during One-for-All training. The problem with such an
approach is that the performance of every category is not considered but
rather the performance of every category. We, therefore, believe that by
using utilizing the CT-BERT, we can achieve improvement in performance.
Furthermore, we did not experiment with other models because the One-
for-One is more computationally expensive.

5.6 Results and Discussion

In the present chapter, we introduced Transformer-based models utilized
for conspiracy detection. Two distinct strategies were employed to imple-
ment these models: the One-for-All and One-for-One approaches. The for-
mer entails constructing a single model capable of predicting all nine con-

3The overview of all optimizers can be found here: https://pytorch.org/docs/stable/
optim.html
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Model Evaluation MCC Holdout MCC
BERT-Base-Uncased 0.654 0.660

BERTweet-Covid19-Base-Uncased 0.682 0.653
RoBERTa-Large 0.658 0.680

Twitter-RoBERTa-Large 0.723 0.713
BERTweet-Large 0.733 0.727

CT-BERT 0.753 0.765

Table 5.2: The evaluation and holdout MCC score achieved by all six
models with One-for-All.

spiracy categories, while the latter involves developing a separate model
for each category. These methodologies were executed using 9-fold cross-
validation sets, with a single model trained for each of the nine folds. Ad-
ditionally, a separate test set, excluded from the nine folds, was utilized to
assess each of the nine models. The model exhibiting the highest validation
Matthews Correlation Coefficient (MCC) score was subsequently deemed
the best among the nine folds and tested on the holdout set.

5.6.1 Comparison of the One-for-All approaches

Six pre-trained BERT-based models were implemented, as delineated in
Section 5.3. A comparison of these models, employing the One-for-All
approach, is presented in Table 5.4. Notably, these models enhanced the
baseline models from the preceding chapter, achieving the highest MCC
score of 0.765 on the holdout set using CT-BERT. Moreover, domain-specific
models outperformed general models, with Roberta-Large and BERTweet-
Large registering MCC scores of 0.680 and 0.727, respectively. How-
ever, the BERTweet-Covid19-Base model did not surpass the performance
of the BERT-Base model, an unexpected outcome considering BERTweet-
Covid19-Base is derived from the RoBERTa base model and additionally
trained on 23 million tweets [71].

Twitter-RoBERTa-Large and BERTweet-Large are both predicated on the
RoBERTa-Large model. The former is trained on 154 million tweets ac-
quired by filtering 220 million tweets through the Twitter Academic API.
The creators of Twitter-RoBERTa-Large assert that the training tweets were
collected between January 2018 and December 2022. BERTweet-Large was
trained on a substantial corpus of tweets (850 million), with five mil-
lion tweets about the COVID-19 pandemic. Despite BERTweet-Large be-
ing trained on 5.5 times more data than Twitter-RoBERTa-Large, it only
achieved a marginally superior MCC score of 0.014. This can be attributed
to approximately 99.4% (845 of 850 million tweets) of the training data
originating between January 2012 and August 2019 and is unrelated to the
COVID-19 pandemic. As anticipated, the highest MCC score was obtained
using CT-BERT, which has previously demonstrated exceptional perfor-
mance on other COVID-19 NLP tasks [1, 59, 97]. Although the total num-
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ber of tweets employed for CT-BERT training (22.5 million) is considerably
lower than that of Twitter-RoBERTa-Large and BERTweet-Large, the train-
ing data was amassed during the peak of the COVID-19 pandemic (January
2020 to July 2020) and exclusively comprised pandemic-related tweets.

Furthermore, domain-specific models were expected to surpass general
models, as they are already acquainted with COVID-19 terminologies
and phrases, thus facilitating accurate categorization. In addition, they
are specifically tailored to the nuances and context of the domain of
COVID-19 conspiracy categories. By being trained on a large corpus
of text related to a specific subject area, domain-specific models gain a
deeper understanding of the language patterns, common phrases, and
unique expressions prevalent within that domain. In contrast, general
pre-trained models are designed to capture a broader understanding of
language patterns across multiple domains. While they can provide a
solid foundation for various tasks, they might not possess the specialized
knowledge required to excel in a specific domain. More specifically, the
domain-specific models are trained on a corpus of text that contains a
higher frequency of domain-specific terms, enabling them to understand
better and process that domain’s unique vocabulary. In addition, these
models better understand the context in which specific terms and phrases
are used. They are often fine-tuned on a smaller dataset from the target
domain, enabling them to adapt to the target data’s specific language
patterns and nuances, resulting in improved performance.

5.6.2 Comparison of the categories

To further examine the MCC score of the One-for-All approaches, we re-
fer to Figure 5.4, which displays the MCC score obtained for each of the
nine categories. Note that the mean of each row from this figure corre-
sponds to the MCC scores in Table 5.4. We can observe that the cate-
gories such as Population Reduction and New World Order are relatively
easier to classify since these columns are relatively darker than the other
columns, and the smaller models, such as the BERT-Base and BERTweet-
Covid19-Base, are doing quite well. Conversely, CT-BERT performs ex-
tremely well on columns such as the Suppressed cures and Satanism,
thanks to its large domain-specific ability and outperforms other models.
The CT-BERT obtains an MCC score on 0.945 and 0.716, respectively, for
these categories. Other Categories include the Behaviour Mind control,
Antivax, and Harmful radiation are comparatively also easier to predict as
the performance gets better with bigger models.

The Heatmap in Figure 5.4 has the lightest color for the Fake virus and
Intentional pandemic categories, meaning that the models struggle most
with these two categories and brings down the overall MCC score. The
best MCC score for these categories was obtained at 0.615 and 0.585,
respectively, which are relatively lower than the mean score in Table
5.4. There could be several reasons why we obtain poor results in these
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Figure 5.4: Heatmap displaying the performance of the six models
evaluating all nine categories. The scores are given in MCC scores.

categories. These categories are typically more comprehensive than the
others; one can express their support or discuss them in various ways.
In addition, we also have a limited amount of manually labeled data
samples for these categories. As shown in Figure 3.1, the 85.3% and
84.0%, respectively, percentages of the data contains the Non-conspiracy
subcategories. A final reason could be that the data is noisy or has been
manually labeled in a way that consists of inconsistent labels.

5.6.3 Error analysis

To investigate some of the claims in the previous section, we refer to the
confusion matrix in Figure 5.5, which is the average of the normalized
confusion matrix of the CT-BERT with One-for-All approach. First, the
method can correctly classify the majority (97.3%) of the Non-Conspiracy
subcategory. Still, however, the method struggles with the Discusses and
Promotes/Supports subcategories. There is an overlap between the Dis-
cusses subcategory and the other two subcategories, where 17.9% of it has
been predicted as the Non-Conspiracy and 6.3% has been predicted as Pro-
mote/Support. This could be because there is an overlap between the labels
in these subcategories. On the other hand, 20.4% of the Promotes/Supports
samples has been predicted as the Non-Conspiracy, while 6.80% of it has
been predicted as Discusses.
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Figure 5.5: The average of normalized confusion matrix of One-for-All from
Figure 5.6.

Optimizer Evaluation MCC Holdout MCC
SGD 0.748 0.716

Adagrad 0.598 0.301
Adadelta 0.705 0.677
RMSProp 0.492 0.294
AdamW 0.753 0.765

Table 5.3: Effect of optimizers on CT-BERT with One-for-All, and compared
to AdamW.

The heatmap in Figure 5.6 displays the normalized confusion matrix
for each category. In general, the model struggles with predicting on
Discusses and Promotes/Supports subcategories, where six of the nine have a
comparatively low score on the Promotes/Supports. Furthermore, the model
performs best on the Suppressed cures, obtaining almost 100% for each
subcategory. Furthermore, categories such as Population reduction and
New world order obtain quite well scores. On the other hand, the Fake
virus and Intentional Pandemic scores a high level of confusion, where
almost a third of Discusses and Promotes/Supports have been classified as
Non-Conspiracy.

5.6.4 CT-BERT with different parameters

To continue our investigation of CT-BERT, we carried out additional
experiments utilizing various optimizers and learning rates. The result of
these experiments is shown in Table 5.3, and it was found that the AdamW
optimizer worked best for our case. AdamW incorporates weight decay,
a regularization technique, which improves generalization performance in
deep learning models and is well-suited for problems with sparse gradients
where only a small subset of parameters is updated in each iteration.
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Figure 5.6: The normalized confusion matrix of One-for-All with CT-BERT
for all categories. Note that 1, 2 and 3 relates to three subcategories, Non-
Conspiracy, Discusses Conspiracy and Promotes/Supports Conspiracy.

5.6.5 One-for-One vs One-for-All

The comparison of the One-for-One and One-for-All is shown in Table 5.4,
where the One-for-All completely surpasses the One-for-One. However,
the One-for-One performs better for some single categories and cannot
compete with One-for-All in the categories such as Suppressed cures and
Satanism, where the differences are pretty significant. This result shows
that training One-for-All with a weighted loss function and a multi-mask
manner works better. The One-for-All approach obtains good results
for some categories because there is a statistical relationship between
the different categories, which is not discovered during the One-for-One
approach.

5.7 Conclusion

This chapter presented the Transformer-based approach for tackling
COVID-19 conspiracy detection. We first introduced the tools used to con-
duct the experiments, such as the hardware, software, and how the seeding
was executed. The experimentation was executed in 9-fold cross-validation
sets with stratification. Furthermore, we introduced two different methods;
One-for-All and One-for-One. The One-for-All, implemented in a multi-
task manner with a weighted loss function, was deployed with general
and domain-specific pre-trained BERT- and RoBERTa-based models. Each
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Category One-for-All One-for-One TF-IDF
Suppressed cures 0.945 0.888 0.664

Behaviour and Mind Control 0.752 0.732 0.526
Antivax 0.770 0.728 0.557

Fake Virus 0.615 0.595 0.378
Intentional Pandemic 0.572 0.575 0.378

Harmful Radiation Influence 0.832 0.814 0.731
Population reduction Control 0.876 0.881 0.774

New World Order 0.809 0.812 0.767
Satanism 0.716 0.597 0.487
Average 0.765 0.736 0.585

Table 5.4: Comparison of the MCC scores achieved by One-for-All, One-
for-One approach and TF-IDF.

model was deployed for every nine folds, which resulted in nine in total
54 models (six models times nine folds), and the best model was selected
based on the validation set. As expected, the One-for-All approach with
the CT-BERT was founded to be the best model, thanks to its large domain-
specific training data, which is acquainted with COVID-19 terminologies
and phrases, thus facilitating accurate categorization.

The best One-for-All approach, which achieved an MCC score of 0.765, was
obtained with CT-BERT and was further studied. We found that the cate-
gories of the Fake virus and Intentional pandemic were challenging to
predict, so we achieved a low overall MCC score for each model. Fur-
thermore, by examining the confusion matrix of every category, we con-
cluded that one-third of these two categories for the second and third sub-
categories were confused with the subcategories. To further inquire about
the CT-BERT approach, we examined the different optimizers and learning
rates, which resulted in no improvement. Therefore, we concluded that the
AdamW worked best for our system. Finally, we compared the One-for-All
and One-for-One approaches. The One-for-One approach, built on devel-
oping nine separate models for each of the nine conspiracy categories, was
implemented with no weighted loss function and conducted with fewer
epochs. Based on our experimentation, we found that the One-for-All ap-
proach with CT-BERT and weighted loss function worked best for the task
of conspiracy detection.

The results presented in Table 5.4 compare the best TF-IDF approach from
Chapter 4 with the One-for-All and One-for-One approaches. While the TF-
IDF scores exhibit lower values than the One-for-All approach, they still
demonstrate the effectiveness of the model in capturing specific patterns
and correlations within the dataset. However, the TF-IDF approach falls
short of achieving comparable performance to the One-for-All approach. It
is worth noting that the performance gap between the TF-IDF approach
and the transformer-based approaches narrows for specific categories,
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namely Harmful Radiation Influence, Population reduction Control, and
New World Order. Nevertheless, the One-for-All approach outperforms
both the One-for-One and TF-IDF methods regarding average MCC scores,
making it the most successful approach.
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Chapter 6

Experiments with advanced
learning techniques

Building upon the insights gained in the previous chapter, we established
that the One-for-All approach utilizing CT-BERT outperformed all other
methods and pre-trained models. Therefore, this chapter delves deeper
into the One-for-All approach by exploring ensemble and multi-task
learning techniques and experimenting with related datasets and data
augmentation methods. Our goal is to ascertain whether these additional
experiments can enhance the performance of the One-for-All approach. To
this end, we seek to address the following questions:

• Will advanced techniques such as ensemble learning and multi-task
learning contribute to improving our model?

• Is ChatGPT a viable option for Text Data Augmentation in our
specific case?

• Can incorporating other language resources strengthen the ability of
One-for-All to detect COVID-19-related conspiracy theories?

We begin by outlining the experimental setup, followed by a comprehen-
sive analysis of the various methods employed. Ultimately, we compare
and discuss the results in the chapter’s concluding section.

6.1 Deep ensemble methods

Ensemble learning methods have significantly enhanced various NLP
tasks, including spam detection, fake news detection, and offensive lan-
guage detection [3, 27, 31]. Combining multiple models, ensemble methods
leverage their strengths and mitigate weaknesses, resulting in improved
performance. While ensemble methods offer benefits such as reduced over-
fitting, they can be computationally demanding and require additional
memory and storage resources.
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In Chapter 5, we trained multiple One-for-All approaches using different
pre-trained models and cross-validation folds. Based on the highest
validation MCC score, we selected the best model from the nine cross-
validation folds. This section delves deeper into these models and explores
their combined predictions to enhance the performance of the CT-BERT-
based One-for-All approach. Initially, we employed a primary ensembling
method outlined in Sub-section 5.5.1, where nine models were trained for
each pre-trained model using the One-for-All approach. The best model
was chosen based on the highest validation MCC score. However, this
approach may not yield the best result on the hold-out set. Therefore, more
advanced techniques that consider the collective knowledge of all models
are required.

6.1.1 Averaging ensemble method

The initial ensembling method employed was the averaging ensemble
method, which combines the outputs of multiple models to enhance predic-
tion scores and improve generalization. By leveraging the collective wis-
dom of the models, this method mitigates overfitting and achieves superior
performance on unseen data.

Given a set of M base models m1, m2, . . . , mM, each trained on a dataset
D of N samples (x1, y1), (x2, y2), . . . , (xN , yN), where xi represents the text
data and yi represents the corresponding conspiracy categories, the goal
of the averaging ensemble method is to create a single ensemble model
E that combines the outputs of the base models in a manner that improves
overall predictive performance. The averaging ensemble method computes
the output of E as the mean of the outputs of the individual base models.
Formally, for a given input x, the ensemble model E produces the output
E(x) as follows:

E(x) =
1
M

M

∑
j=1

mj(x) (6.1)

where mj(x) denotes the output of the base model mj for the input x, where
M represents the number of base models in the ensemble. The method
calculates the mean of the class probabilities predicted by the base models,
and the final class is assigned based on the highest mean probability. It
assumes that the base models are diverse and possess complementary
strengths, enabling the ensemble to leverage their combined knowledge
for more accurate predictions. This approach is particularly effective when
the base models exhibit low error correlation, as the ensemble can mitigate
individual model errors and decrease overall variance.

6.1.2 Max voting

Max voting, or majority voting, is a model aggregation technique that
harnesses the collective knowledge of multiple models to enhance perfor-
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mance and mitigate overfitting on unseen data. Like the averaging en-
semble method, the Max voting method aims to create a single ensem-
ble model E by combining the class predictions of a set of M base models
m1, m2, . . . , mM. These base models are trained on a dataset D compris-
ing N samples (x1, y1), (x2, y2), . . . , (xN , yN), where xi represents the input
features and yi represents the corresponding class labels. The Max voting
method computes the output of E as the class with the highest number of
votes among the individual base models. Formally, for a given input x, the
ensemble model E produces the output E(x) as follows:

E(x) = argmax c
(
∑ j = 1M I(mj(x) = c)

)
(6.2)

Where mj(x) denotes the class predicted by the base model mj for the input
x, I(mj(x) = c) is an indicator function that equals one if the predicted
class is c and 0 otherwise, and M represents the number of base models
in the ensemble. The Max voting method assumes that the base models
are diverse and have complementary strengths, which allows the ensemble
to exploit their combined knowledge to make more accurate predictions.
This method is particularly effective when the base models exhibit low
correlation in their errors, as the ensemble can cancel out individual model
errors and reduce overall variance.

6.1.3 Execution of the experiments

The experiments were executed with the same setup as in Chapter 5, and
all experiments were done with the One-for-All approach. Furthermore,
we applied the following models to achieve the ensemble methods:

1) CV-Based ensembles: here, we applied every nine models, which
were achieved from the nine cross-validation folds, for each of the six
chosen pre-trained models.

2) Optimal Model Ensembles: here we applied ensembling of the six
best models from 5.6.

3) Top Two Model Ensembles: ensembling of BERTweet-Large and CT-
BERT.

4) Top Three Model Ensembles: ensembling of BERTweet-Large,
Twitter-RoBERTa-Large and CT-BERT.

5) Top Four Model Ensembles: ensembling of RoBERTa-Large,
BERTweet-Large, Twitter-RoBERTa-Large and CT-BERT.

6.2 Data Augmentation techniques

Figure 5.4 shows that the Fake virus and Intentional Pandemic categories
are among the lightest colors, meaning that these categories are the most
difficult to classify. There could be various reasons for that. One of the
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Model Holdout MCC Max Voting Averaging
BERT-Base-Uncased 0.660 0.655 0.659

BERTweet-Covid19-Base-Uncased 0.653 0.664 0.674
RoBERTa-Large 0.680 0.712 0.718

Twitter-RoBERTa-Large 0.713 0.734 0.737
BERTweet-Large 0.727 0.728 0.734

CT-BERT 0.765 0.774 0.772
Optimal Model Ensembles X 0.735 0.746
Top Two Model Ensembles X 0.737 0.761

Top Three Model Ensembles X 0.751 0.758
Top Four Model Ensembles X 0.733 0.752

Table 6.1: The performance of the CV-based ensembles on holdout set.
In addition, the table also contains the result of the ensemble of the best
models.

reasons could be that the data has not been annotated so that there is a
clear difference between the subcategories in these categories, meaning
that there could be overlap among all subcategories. To investigate this
claim, we will apply several augmentation techniques to enrich these two
categories with more samples and then train several models on these sets.

6.2.1 Easy Data Augmentation (EDA)

The first augmentation technique is based on EDA1 [28], which is
an easy data augmentation technique initially constructed for boosting
performance on text classification tasks. According to the creators of EDA,
using EDA has shown improvements in five NLP classification tasks. EDA
consists of the following components:

• Synonym Replacement: Randomly choose words from the text
sample and replace each of these words with one of its synonyms
chosen at random.

• Random Insertion: Find a random synonym of a random word in
the text sample and insert that synonym into a random position in
the sentence.

• Random Swap: Randomly choose two words in the sentence and
swap their positions.

• Random Deletion: For each word in the sentence, randomly remove
it with a probability.

All these components, except the first, are repeated N times.

1The implementation is available here: https://github.com/jasonwei20/eda_nlp
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6.2.2 Augmentations with ChatGPT

Our second augmentation technique uses GPT-4 by Open-AI’s ChatGPT
services2. ChatGPT is a highly advanced language model developed by
Open-AI based on the GPT-4 architecture. It analyzes vast data, enabling it
to understand the context and respond to user inputs with coherent and rel-
evant information. The primary purpose is to assist users in various tasks,
such as answering questions, providing recommendations, generating text,
and facilitating engaging conversations. During the release of ChatGPT, it
has been used for several tasks and has been researched a lot. Due to its
text-generating capability has also been used for data augmentation and
has improved text classification for various problems [18].

In our case, we provided ChatGPT the description of the Fake virus and
Intentional Pandemic categories from Section 3.1 with the description of
the subcategories. Furthermore, we asked the chatbot to provide examples
of the different subcategories for each category. More specifically, we asked
ChatGPT the following queries after providing it with information on the
categories:

• Can you give more examples of the Promotes/Supports Conspiracy?

• Can you give more examples of the Promotes/Supports Conspiracy?
Please use more fantasy and dramatization.

• Can you give more examples of the Promotes/Supports Conspiracy?
Please use words such as [MOST OCCURRED WORDS]

This process was repeated with the Discusses Category, but we did not use
ChatGPT to make samples for the Non-Conspiracy. In the last question,
we asked ChatGPT to make samples based on the most occurred words.
Here we provided the chatbot with the most occurred words that were
found in each of the subcategories. Instead, we performed this process
independently and twice for both categories. We achieved roughly 40
samples for each subcategory and 160 extra samples in total, and these
samples were added to the training dataset, which was used to train new
models. We first a model based on the samples for the Fake virus category,
then we trained a model based on samples for the Intentional Pandemic.
Lastly, we trained a model with a combination of both augmented samples.

6.3 Experiments with the fine-grained version of
COCO dataset

This section presents experiments conducted on the fine-grained version of
the dataset, as described in Section 3.3. The fine-grained version comprises
two modified versions of the COCO dataset: the misinformation detection
set and the conspiracy recognition set. The goal of experimenting with these

2https://chat.openai.com/
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Figure 6.1: Heatmap displaying the performance of models trained with
augmented samples compared to the original dataset.

versions, rather than the original dataset, is to investigate their potential
for improving CT-BERT performance. This is achieved by training two
models—one for misinformation detection and another for conspiracy
recognition—and combining their outputs to predict the COCO dataset.
The conspiracy recognition set is employed to identify whether a tweet
mentions any of the nine conspiracies. The misinformation detection set
determines whether a tweet promotes/supports, discusses, or is unrelated
to a conspiracy. It is important to note that the misinformation detection set
does not consider any specific conspiracy; it will be detected as long as a
tweet discusses a conspiracy. By combining the predictions from these two
sets, we obtain predictions for the COCO dataset since we first recognize
the conspiracies and then detect the type of misinformation associated with
that conspiracy.

6.3.1 A simple example

To clarify this process, consider the following fictitious tweet that supports
the Suppressed cures conspiracy:

X = "I can’t believe the government is hiding the fact that there
are effective treatments for COVID-19. They’re just trying to make
money off vaccines".
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Applying the conspiracy recognition model to this sample would obtain
the first equation of Equation 6.3. This prediction indicates that the tweet
mentions the Suppressed cures conspiracy, but it does not reveal the type
of misinformation being spread. To ascertain this information, we apply the
misinformation detection model. By combining these outputs, we obtain
the final prediction for the COCO dataset:

ModelConspiracy-Recognition(X) = [1,0,0,0,0,0,0,0,0]

ModelMisinformation-Detection(X) = 3

ModelCOCO(X) = [3,0,0,0,0,0,0,0,0]

(6.3)

6.3.2 Setup and training

The configuration and training process for the misinformation detection
model is identical to those of the One-for-One approach, in which the
model is trained for text classification with three categories. The training of
the conspiracy recognition model is conducted similarly to the One-for-All
approach but with 18 output nodes instead of 27. Moreover, the training
employs the AdamW optimizer and the ReduceLROnPlateau scheduler, with
parameters consistent with those presented in Table 5.1. However, because
the conspiracy recognition set is binary, we deployed sigmoid as a loss
function.

6.3.3 Enriching our dataset with other datasets

Section 3.4 introduced the open-source COVID-19-related datasets devel-
oped to tackle fake news detection. This section will combine these datasets
to enrich the COCO with more data samples and aim to improve the overall
best model. Among the open-source COVID-19-related datasets, we have
the COVID-19 Fake News Dataset [74], a large dataset of 10700 social media
posts and articles of real and fake news on COVID-19. In addition, we have
the COVID-19 category dataset developed by the authors of the CT-BERT
[69] to evaluate and compare their model on it. The labels in this dataset
are either personal narratives or news.

The challenge when combining these datasets with the COCO dataset is
that the labels differ. As mentioned above, the label of the COVID-19 Fake
News Dataset is Real news and Fake news, and the labels of the COVID-
19 category dataset is Personal narrative and News. We have decided
to combine these new labels with the misinformation dataset, the fine-
grained version of the COCO. In the COVID-19 category dataset, the Fake
News is quite similar to the Promoting/Supporting Conspiracy category,
and the Real News is close to the Non-Conspiracy. Furthermore, we will
experiment with the following extension of the dataset:

1) The first experiment consisted of adding the COVID-19 dataset with
the following instructions:
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I) Fake news→ Promoting/Supporting Conspiracy

II) Real news→ Non-Conspiracy

2) The first experiment consisted of adding the COVID-19 category
dataset with the following instructions:

I) Personal narrative→ Promoting/Supporting Conspiracy

II) News→ Non-Conspiracy

Based on these new extended datasets, the misinformation detection model
was trained and used with the conspiracy recognition model to predict on
COCO, as described in the sections above.

6.4 Advanced Multi-Task Learning and Diverse Dataset
Integration

This section will continue experimenting with our One-for-All approach
with CT-BERT and the fine-grained version of the dataset. We aim to
improve the performance of the best model by enriching it with these
datasets and relying on them to share a typical statistical relationship.
To achieve this, we will build a new multi-task learning approach. This
approach is inspired by Dai et al. [19] where they proposed BERT-based
multi-task learning for offensive language detection at SemEval-20203

workshop. Their proposed approach consisted of training one primary
BERT model, which was then used to predict three tasks related to
offensive language detection. The benefit of such an approach is that it can
help the model generalize better because multiple tasks introduce more
noise and prevent the model from over-fitting. Additionally, there are
situations where learning features through one task may be challenging
but comparatively easier through another task. Ultimately, MTL offers
a valuable advantage by providing supplementary guidance for one
task while also allowing for the acquisition of additional information by
eavesdropping on other tasks.

6.4.1 The structure of the multi-task learning model

We attempted to adopt the Multi-Task Learning (MTL) method proposed
in [19] and adapted it to our specific requirements. The original approach
involved a shared BERT model for three sub-tasks, each having a separate
module comprising a Recurrent Neural Network (RNN) with Long-Short
Term Memory (LSTM) cells. The input X was first processed by the shared
BERT, followed by each sub-task module utilizing the contextualized em-
beddings generated by BERT to produce a probability distribution for its
target labels.

3https://alt.qcri.org/semeval2020/index.php?id=tasks
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Model Parameter Parameter values

LSTM dropout rate 0.1
LSTM number of layers 1
LSTM hidden size 100
LSTM Combining of hidden layers concat

FFNN Number of layers 2
FFNN Size of layers 1024, 512, 300

Table 6.2: The chosen parameters for LSTM and FFNN models in the MTL
approach.

In our scenario, the COCO is a multi-label multi-class dataset, necessitating
a different approach. Consequently, we developed the MTL model as
follows:

• A shared CT-BERT backbone is common among NTasks sub-tasks. We
will experiment with the COCO dataset and its two alternative vari-
ants; conspiracy recognition and misinformation detection datasets.
In other words, NTasks is three.

• Middle modules consist of either LSTM cells or a simple FFNN
model. These modules are built atop the shared CT-BERT model but
are specific to each task or dataset.

• Final modules are tailored to individual tasks.

The experiments were conducted with the same parameters as displayed in
Table 5.1, but we used additional parameters for the LSTM and the FFNN
models, as shown in Table 6.2.

6.5 Discussion & Results

In this chapter, we carried out several experimentation rounds to improve
the results from previous chapters. Among the chosen methods, we
experimented with ensemble methods, data augmentation techniques,
using the fine-grained version of the dataset, and other advanced methods
to enhance the performance of the previous models.

6.5.1 Deep ensemble methods

We utilized two sophisticated ensemble techniques, namely the averaging
ensemble and max voting methods, to harness the collective wisdom of
the "crowd" for predicting unseen data. These ensembles were executed
on nine training folds instead of the previous model selection approach
based on the potentially biased validation Matthews Correlation Coeffi-
cient (MCC) score. By aggregating the predictions of all models, ensem-
ble methods offer improved generalization. We applied these ensembles
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to the nine folds of each of the six chosen models, considering the opti-
mal, top two, top three, and top four best models. The results of these
runs are presented in Table 6.1, which shows that the deep ensemble of
CT-BERT, based on cross-validation folds, outperformed the others. The
highest MCC score achieved was 0.774 using the max voting method, and
except BERT-Base, the performance of all models improved when employ-
ing the cross-validation-based ensemble methods. However, combining
the top models did not prove advantageous and resulted in a lower MCC
score than the best individual model.

Ensemble learning, although powerful and effective in many scenarios,
and our case, does present certain drawbacks. The computational cost,
which encompasses the increased processing power, time, and memory re-
sources needed to train, validate, and make predictions using an ensemble
of models instead of a single model, is a crucial consideration. In our case,
we trained nine different models to attain an MCC score improvement of
0.774, compared to a single model that yielded an MCC score of 0.765. This
marginal improvement of only 0.009 raises questions about the trade-off be-
tween the benefits of ensemble learning and the associated computational
expenses.

In addition to the computational cost, there are other factors to consider
when evaluating the trade-off between ensemble learning and using a
single model. In our case, the marginal improvement in the MCC score
of 0.009 may not be substantial enough to justify the increased complexity,
reduced interpretability, and potential scalability issues associated with
ensemble learning. The increased complexity of ensemble learning can
make it more challenging to understand, implement, and maintain the
overall system. This, in turn, could lead to a higher likelihood of errors
and increased difficulty in troubleshooting and fine-tuning the models.
Scalability can also become an issue when dealing with large datasets.
Given these additional considerations, it is crucial to carefully assess the
benefits and drawbacks of ensemble learning about the specific problem at
hand.

6.5.2 Data augmentation

We are confronted with two primary obstacles. The initial challenge stems
from the uneven distribution of the COCO dataset, which complicates the
development of effective classification models (refer to Figure 3.1). The
second issue arises from the inextricable nature of certain categories, such
as Fake virus and Intentional pandemic, from their corresponding sub-
categories. Observing the heatmap in Figure 5.4, it becomes evident that
CT-BERT struggles to differentiate these subcategories from one another
in contrast to other categories, subsequently leading to a diminished MCC
score.

Using two distinct methods, we have enriched the dataset with augmented
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Model Holdout MCC
Misinformation detection 0.719

Original Conspiracy recognition 0.783
Combination of both 0.738

Misinformation detection 0.732
COVID-19 dataset Conspiracy recognition 0.783

Combination of both 0.747
Misinformation detection 0.729

COVID-19 Category Conspiracy recognition 0.783
Combination of both 0.742

Table 6.3: The result of the fine-grained version of the COCO dataset.

samples to address both challenges. The first employs Easy Data Aug-
mentation (EDA) [28], a straightforward tool for text classification data
augmentation. The second approach leverages ChatGPT based on the
GPT-4 model, wherein we requested examples for specific categories. The
heatmap depicted in Figure 6.1 reveals the One-for-All strategy’s perfor-
mance when incorporating samples from ChatGPT. The model demon-
strated a slight improvement in predicting the Fake virus and Intentional
pandemic categories when an additional Intentional pandemic sample
was provided. Nevertheless, the overall Matthews Correlation Coefficient
(MCC) score for the model decreased compared to the original model. This
may be attributed to the close relationship among the nine conspiracy cat-
egories. In comparison, the ChatGPT samples might have enhanced the
two selected categories, but they potentially had a detrimental effect on the
others.

6.5.3 Fine-grained version of dataset

The experiment of the fine-grained dataset version was conducted with
the motivation that perhaps the CT-BERT generalizes better with feature-
engineered categories. Table 6.3 shows the MCC scores for the holdout
dataset for each of the fine-grained versions of the dataset and their com-
bination MCC on the COCO holdout set. With an MCC score of 0.738, it is
clear that this type of future engineering of the categories in COCO did not
help the model to generalize, but it worsened the performance. However,
it is interesting to note that the model performs quite well on detecting the
type of conspiracy, i.e., conspiracy recognition task, where it achieved an
MCC of 0.783. Based on this, we can conclude that the reason for the One-
for-All approach struggle is that it blunders to distinguish between Dis-
cusses Conspiracy and Promoting/Supporting conspiracy subcategories.
Nonetheless, if we merge these two categories, we achieve a higher MCC
score, as shown in Table 6.4.

We also conducted experiments incorporating additional datasets into
the misinformation detection version of the COCO dataset and trained
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Category Conspiracy recognition Combination
Suppressed cures 0.950 0.799

Behaviour and Mind Control 0.733 0.702
Antivax 0.756 0.758

Fake Virus 0.612 0.590
Intentional Pandemic 0.586 0.558

Harmful Radiation/ Influence 0.884 0.856
Population reduction 0.907 0.869

New World Order 0.813 0.783
Satanism 0.805 0.723
Average 0.783 0.738

Table 6.4: Comparison of MCC score of categories from the conspiracy
recognition task and combination of it with misinformation detection task
to obtain predictions on COCO dataset.

the CT-BERT models using these new datasets. Table 6.3 presents the
MCC scores obtained with these new datasets. Integrating other datasets
contributes to better model generalization. Specifically, including both the
COVID-19 dataset and the COVID Category dataset, we have improved the
performance of the misinformation detection task. However, the difference
in MCC scores is not substantial enough. The combined performance of
misinformation detection and conspiracy recognition tasks yields an MCC
score of 0.747, which is still lower than the MCC score in the previous
chapter.

6.5.4 The result of advanced multi-task learning

The proposed multi-task learning model, incorporating a shared CT-BERT
backbone and task-specific middle and final modules, was evaluated on
the COCO dataset. The MTL model achieved an MCC score of 0.7047 when
utilizing a linear classifier, and when employing LSTM as the classifier, the
MTL model achieved an MCC score of 0.6123.

6.6 Conclusion

In this chapter, we have conducted several experiments to enhance the per-
formance of the One-for-All approach from the previous. The first method
was based on deep ensemble methods, specifically averaging ensemble and
max voting methods. By aggregating predictions from multiple models,
ensemble methods offered better generalization. In the study, the ensem-
ble of CT-BERT outperformed other models, achieving the highest MCC
score of 0.774. However, the improvement was marginal, raising questions
about the trade-off between ensemble learning benefits and computational
costs. Additionally, ensemble learning can increase complexity, reduce in-
terpretability, and present scalability issues. Thus, it is essential to carefully
assess the benefits and drawbacks of ensemble learning for a specific prob-
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lem.

In addition, we experimented with data augmentation techniques with
EDA and ChatGPT to tackle the challenges of uneven dataset distribution
and the difficulty in distinguishing between specific categories in the
COCO dataset. The One-for-All strategy’s performance improved slightly
in predicting Fake virus and Intentional pandemic categories when
additional samples were provided using ChatGPT. However, the overall
MCC score decreased, potentially due to the close relationship among
the conspiracy categories, indicating that augmentation may have had
a detrimental effect on other categories. Furthermore, a fine-grained
version of the dataset was used in an experiment to improve CT-BERT’s
generalization, but it resulted in a worsened performance. However,
the model performed well in conspiracy recognition tasks. Additional
datasets were incorporated for misinformation detection, improving model
generalization slightly but not substantially. The combined performance of
misinformation detection and conspiracy recognition tasks remained lower
than the previously achieved score.
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Chapter 7

Experiments on intelligence
processing units

We have analyzed NLP-based models and evaluated their performance
on the COCO dataset, identifying that the CT-BERT with the One-for-All
approach yielded the most promising results. These experiments used a
single GPU on an Nvidia Volta A100 within the eX3 computing cluster. As
machine learning has advanced in recent years, new processing units have
been designed to accelerate the training of large neural-based models. One
example is the Intelligence Processing Unit (IPU) developed by Graphcore,
a state-of-the-art High-Performance Computing processor tailored for AI
acceleration. In this chapter, we will investigate the performance of
large transformer-based pre-trained models in the context of conspiracy
detection tasks, emphasizing execution speed. By comparing the outcomes
of these models, we will examine the trade-offs between accuracy and
computational efficiency and assess the potential advantages of employing
sophisticated hardware like IPUs to boost the performance of conspiracy
detection models.

7.1 Intelligence Processing Unit

Deep learning has been developed and progressed rapidly in the last few
years. As a result, the models are getting smarter, bigger, and more com-
plex. Training such models is becoming more difficult and computationally
demanding, necessitating the development of specialized hardware and
optimizations to process and manage vast data efficiently. In response to
this challenge, companies like Graphcore have emerged, designing innova-
tive solutions such as Intelligence Processing Units (IPUs) to accelerate and
optimize the training and inference of deep learning models.

An Intelligence Processing Unit (IPU) is a specialized hardware accelerator
that accelerates machine learning and artificial intelligence workloads. It
is optimized for performing complex mathematical calculations required
for deep learning algorithms and is highly parallel and efficient in
performing matrix multiplication operations. Historically, GPUs have
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accelerated training times compared to CPUs but are limited by their
design for 2D matrices and dependency on large data batches, which can
impact model quality. With IPUs, one can overcome these constraints,
dramatically speeding up training and enabling the exploration of a more
comprehensive array of machine learning models and algorithms for more
flexible and powerful parallel computing.

7.1.1 The hardware

The Graphcore IPU comprises units known as tiles that process data simul-
taneously. Each tile consists of a core and a small amount of SRAM mem-
ory, a fast, reliable memory type. Each core operates six threads simul-
taneously using a technique known as temporal multithreading, enhancing
performance and resource use. This process differs from the simultaneous
multithreading common in CPUs and GPUs. The IPU’s unique thread ar-
rangement characterizes it as a barrel processor. IPU instructions, including
data loading and storage, take six cycles, eliminating delays for individual
threads.
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Figure 7.1: Tile layout on the GC200 IPU processor.

The IPU comprises tiles grouped into islands and columns, forming the IPU
structure as shown in Figure 7.1. The number of cores varies with the IPU
model, and key features of the GC2 and GC200 IPUs are detailed in Ta-
ble 7.1. The IPU’s memory bandwidth is superior to CPUs or GPUs, as
all cores can access memory simultaneously. Still, non-local data transfer
necessitates moving it between tiles. A tile can transfer 4 bytes per cycle,
amounting to 5.3GB/s or 7.83TB/s for all 1472 cores of the GC200. The IPU
exchange network links the cores within the IPU, and the GC200 IPU can
reach DRAM memory at around 20GB/s.
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Chip GC2 GC200

Number of tiles 1216 1472
Number of threads 7296 8832

Memory per tile 256 KB 624 KB
Total SRAM memory 311 MB 918 MB
Memory bandwidth 46.6 TB/s 46.9 TB/s

Aggregate tile-to-tile bandwidth 7.78 TB/s 7.83 TB/s
Total chip-to-chip bandwidth 320 GB/s 320 GB/s

Clock frequency 1.6 GHz 1.33 GHz
FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s

Table 7.1: Key architectural features of GC2 and GC200 IPU.

The IPU-Link manages data transfer between IPUs, similar to PCIe and
Infiniband in CPU/GPU systems. Each IPU has 10 links, delivering a total
bandwidth of 320 GB/s. IPU pairs are connected with 12 links, providing
192GB/s bandwidth. The remaining links connect to other IPUs at 64GB/s.
Up to 32 pairs can link in a ladder setup, offering 128 GB/s bandwidth.
Forming a torus from the ladder doubles this bandwidth. Multiple groups
of 64 IPUs, known as PODs, can be linked via a Gateway Link. An
individual IPU has a 150 W thermal design power (TDP), around half that
of a comparable GPU. So, in power terms, an IPU pair matches a high-end
GPU like the NVIDIA V100 or A100.

7.2 Deep learning with IPUs

There are multiple ways to work with the IPUs. Deep learning on IPUs is
built on the Poplar framework, which follows a dataflow model. Programs
are structured using layered graphs, with vertices in each layer alternating
between representing states stored in multidimensional arrays called ten-
sors and subroutines (called codelets) that transition from one state to the
next. Each vertex in a computation layer has a codelet, and all codelets
within a layer can be executed in parallel without race conditions. Data is
distributed using the bulk-synchronous parallel (BSP) method, which em-
phasizes coordinated processing through distinct computational phases. In
BSP, multiple processors execute tasks concurrently, with synchronization
barriers ensuring the completion and consistency of results before mov-
ing to the next phase. This approach effectively balances computation
and communication while minimizing conflicts, providing a structured ap-
proach to parallel processing. Tensor sizes and communication in each step
are determined at compile time.

As of this date, various Python frameworks have been developed to facili-
tate deep learning on IPUs. One notable example is PopTorch1, a software

1https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
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library created by Graphcore. This library serves as an interface between
the widely-used deep learning framework PyTorch and IPUs. PopTorch
offers a collection of PyTorch extensions that enable seamless IPU integra-
tion within existing PyTorch-based workflows. By harnessing the IPUs’
massively parallel architecture, one can potentially enhance the speed and
efficiency of training and inference in deep learning models. Furthermore,
PopTorch compiles PyTorch models into Poplar executables while provid-
ing IPU-specific functions.

In addition, Hugging Face introduced the Optimum 2, which is an open-
source library that supports deploying pre-trained transformers models
on a variety of hardware platforms, especially on IPUs. Optimum offers
tools that facilitate model parallelization and loading on IPUs, support-
ing training and fine-tuning across tasks already compatible with Trans-
formers. Additionally, it seamlessly integrates with the Hugging Face
Hub, providing compatibility with all available models right out of the
box. Optimum is very similar to the built-in classes of Transformers, e.g.,
Trainer and TrainingArguments. However, the main difference is that to
train and predict a transformers model; one must use IPUTrainer, which
compiles the model to run on IPUs and performs training and evalua-
tion. In addition, one must also define a IPUConfig class that specifies
attributes and configuration parameters to compile and put the model on
the device. The complete list of IPU configurations is available at Hug-
ging Face website 3. We deployed the CT-BERT, a BERT-Large, using the
Graphcore/bert-large-ipu model. Finally, one must decide the PODs
type to run the IPUTrainer on, which can be POD4, POD8, POD16, etc.

Lastly, PyTorch Lightning is an open-source, high-level framework built
upon PyTorch that enables the deployment of deep learning models on
IPUs, CPUs, and GPUs. The framework is designed to streamline and ex-
pedite deep learning models’ training, development, and deployment pro-
cesses. PyTorch Lightning enhances code readability and maintainability
by providing a structured, modular approach to code writing. A significant
advantage of this package is its ability to allow users to explicitly designate
the number of IPUs they wish their models to run on. This feature sets it
apart from alternatives like Optimum, which only permits the selection of
the type of POD without the ability to control the number of IPUs utilized.

7.3 Experiments setup

Within this section, we shall provide an overview of the construction
process of our code utilizing the Optimum package and a comparative
analysis of prediction time.

2Optimum source code: https://github.com/huggingface/optimum
3IPU configurations: https://huggingface.co/Graphcore.
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Figure 7.2: Model parallelism of BERT-Large model on IPU’s POD4.

7.3.1 Building an NLP-model for conspiracy detection

To build an NLP model for conspiracy detection, a multi-class multi-label
CT-BERT classification model, we load the entire model’s parameters onto
the IPUs using the Optimum library. In this way, CT-BERT runs an effi-
cient pod by splitting the model across four IPUs and executing the model
as a pipeline during training. CT-BERT, a large BERT model, is shared be-
tween all four IPUs in a POD4. IPU-0 contains the embedding layer, pro-
jection/loss layers, and three encoder layers, and the remaining 21 layers
are evenly distributed over the other three IPUs, as shown in 7.2. To mini-
mize on-chip memory usage, the CT-BERT model is employed with recom-
putation [16], eliminating the need to store intermediate layer activations
for backward pass calculations. This technique is beneficial when train-
ing models. With multiple batches concurrently progressing through the
pipeline, the volume of stored activations can be considerable unless re-
computation is utilized. The optimizer state for the pre-training system is
stored in Streaming Memory and loaded on demand during the optimizer
step.

More practically, the CT-BERT model was deployed with the IPUTrainer
with 27 number of outputs, and Graphcore/bert-large-ipu as the IPU
configuration. Since the model runs on the entire IPU-POD4, we must de-
clare parameters specific to distributed training. We chose the following
per_device_train_batch_size=40 and per_device_eval_batch_size=40;
these parameters refer to the number of batch sizes that are processed on
each IPU devices. In addition, we also the gradient_accumulation_steps,
refers to the number of times gradients are accumulated before updating
the weights of the model, to be at 8. Despite these changes, they were built
similarly to NLP modeling Face’s Transformers for multi-label classification.

To compare the IPU’s training and evaluation time with GPU’s upgraded
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Hardware Training time

IPU-POD4 6317 seconds
Single GPU 1684 seconds
Dual GPUs 1121 seconds

Table 7.2: The training time for training the One-for-All approach on IPUs
and GPUs.

the code of the One-for-All approach from previous chapters to work
with multiple GPUs. We implemented data parallel executing distributed
data parallelism (DDP) [56], a technique to enable efficient training and
evaluation of large deep learning models across multiple GPU devices. In
a distributed data-parallel setup, the data is split into multiple subsets,
and each subset is processed simultaneously by different GPUs. GPUs
are particularly well-suited for this type of parallel processing because
they have many processing cores simultaneously executing many small,
parallel computations. Each GPU is assigned a subset of the training data
during training, and the model is replicated across each GPU. Each GPU
then computes the gradients for its subset of the data and sends those
gradients to a central node, which aggregates the gradients and updates
the model parameters. This process continues until the model converges to
a satisfactory solution.

7.3.2 Comparative Analysis of Time Performance

We designed a two-part experiment to evaluate the time performance
of IPUs and GPUs in the context of the large BERT NLP model. The
initial phase involves training the One-for-All approach using both IPUs
and GPUs, during which we record their respective time performances.
Subsequently, the second phase entails running inference on the trained
model using various data sizes. Specifically, we selected multiple tweet
counts from the extensive dataset discussed in Chapter 8 to perform these
experiments. The chosen tweet quantities for the inference tests are as
follows:

• Thousands of tweets: 1K, 5K, 10K, 50K

• Millions of tweets: 0.1 M, 0.5M, 1M

Each tweet was randomly selected from the more extensive dataset and
saved as a separate file.

7.4 Results & Discussion

In this section, we assessed the One-for-All approach on IPU-POD4, a sin-
gle A100 GPU, and a pair of A100 GPUs to evaluate their performance con-
cerning training and inference in NLP-based models. As illustrated in Fig-
ure 7.3, the IPU-POD, comprising four IPUs, significantly outperforms the
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Figure 7.3: Inference time comparison of IPU-POD4 with one, two and four
NVIDIA A100 GPUs on various amounts of dataset.

GPUs regarding inference time. As mentioned in Section 7.1.1, an individ-
ual IPU possesses a 150W TDP, roughly half the TDP of a competitive GPU
like the NVIDIA A100. Consequently, a duo of IPUs is comparable to a sin-
gle high-performance GPU in terms of power consumption. Nevertheless,
our results demonstrate that IPUs are more efficient and faster for inferenc-
ing on larger datasets. According to the same figure, the inference time for
GPUs increases linearly as the dataset size expands, while IPUs exhibit a
parabolic growth pattern with a slower rate of increase.

Based on Table 7.3, the IPU-POD4 showcases impressive performance com-
pared to one and two NVIDIA A100 GPUs across various dataset sizes. As
the number of tweets in the dataset increases, the IPU-POD4 maintains a
relatively low inference time while the speedup over single and dual GPUs
becomes more pronounced. The speedup is minimal for smaller dataset
sizes, such as 1,000 lines (0.25 and 0.27 for one and dual GPUs, respec-
tively). However, as the dataset grows, the IPU-POD4’s advantage be-
comes more evident. At 50,000 lines, the IPU-POD4 achieves a speedup
of 5.98 and 4.31 over one and dual GPUs, respectively. The performance
gap further widens with larger datasets. For instance, at 1,000,000 lines, the
IPU-POD4 demonstrates a remarkable speedup of 11.23 and 7.04 over one
and two NVIDIA A100 GPUs, respectively. These results indicate the supe-
rior efficiency and scalability of the IPU-POD4 in handling larger datasets
for inference tasks compared to single and dual NVIDIA A100 GPUs.

Despite the impressive, efficient inference of the IPUs on large datasets, it
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Number of lines IPU-POD4 Single GPU Dual GPU Four GPUs

1000 72.32 s 0.25 0.27 0.30
5000 75.67 s 1.03 0.84 0.56
10000 80.74 s 1.89 1.46 0.84
50000 126.72 s 5.98 4.31 2.24
100000 185.19 s 8.41 6.10 2.97
500000 814.26 s 11.33 7.36 3.48

1000000 1961.51 s 11.23 7.04 3.18

Table 7.3: The original IPU-POD4 inference time and speedup comparison
with one NVIDIA A100 GPU and two NVIDIA A100 GPUs.

struggles with the training time. As Table 7.2 displays, the training time of
the IPUs is much higher than for the GPUs. The IPU-POD4 requires 6, 317
seconds for training, while the single GPU takes 1, 684 seconds. In this sit-
uation, the single GPU performs better than the IPU-POD4, achieving a
notably shorter training time and a relative speedup of 3.7 times. While the
IPU-POD4 exhibits superior performance in inference tasks, as seen in the
previous table, the single GPU appears to be more efficient when training
the One-for-All approach based on the provided data. Table 7.3 compares
the inference time between IPU-POD4 and four NVIDIA A100 GPUs for
various numbers of lines. For 1000 lines, IPU-POD4 takes 72.32 seconds,
whereas four GPUs require only 0.30 times that duration. In this case, the
GPUs significantly outperform IPU-POD4. As the number of tweets in-
creases, the performance gap between IPU-POD4 and the four GPUs nar-
rows. For instance, with 100, 000 lines, IPU-POD4 takes 185.19 seconds,
while four GPUs need 2.97 times less time. The GPUs consistently offer
faster inference times than IPU-POD4, with four GPUs providing the best
performance for files up to 50,000 lines in size. However, at 1, 000, 000 lines,
IPU-POD4 outperforms the four GPUs, taking 3.18 times less time for the
task.

Graph compilation is the primary factor contributing to the extended
training time on IPUs. This process optimizes and translates high-level
machine-learning models into a format that can be efficiently executed
on IPU hardware. Graph compilation ensures that IPUs provide high-
performance computing and energy efficiency when running machine
learning workloads. However, frequently compiling and swapping graphs
between training and validation phases can result in longer training times.
To mitigate this issue, several strategies can be employed. One solution
is to pre-compile the graphs before executing the program and store
the corresponding executables on persistent storage, allowing subsequent
executions without impacting throughput. Storing relevant weights in
checkpoint files also enables separate validation after a run, minimizing
executable swapping. Alternatively, with some extra engineering effort,
training and validation can be performed using the same graph by

101



suppressing the training update, further optimizing the process.

7.5 Conclusion

In this chapter, we explored Intelligence Processing Units (IPUs) and per-
formed various experiments using them. We developed the One-for-All
model, a multi-class multi-label classification approach for conspiracy de-
tection, and trained it on IPU-POD4, a system comprising four intercon-
nected Graphcore IPUs. This model achieved an MCC score of 0.756. Ad-
ditionally, we conducted experiments comparing the training and inference
speed of IPUs and GPUs, where we found that IPUs are much slower when
fine-tuning large language models, as shown in Table 7.2, but they outper-
form GPUs in terms of efficiency, mainly when processing large datasets.
This investigation highlights the potential advantages of leveraging IPUs
for deep learning tasks in terms of performance and scalability. Building
on these findings, future research can explore the optimization and adap-
tation of other deep learning models and architectures for IPUs. Moreover,
it is essential to investigate techniques that minimize the impact of graph
compilation on training time, enabling more efficient utilization of IPUs for
training and inference tasks.
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Chapter 8

Inference on big data

In the preceding chapter, we discovered that executing inference on
IPUs using an NLP-based model yields superior performance compared
to state-of-the-art GPU accelerators. This outcome is highly beneficial,
enabling efficient inference on large-scale datasets and further enhancing
our capabilities in processing and analyzing big data. In this chapter, we
will present the details of the big data and outline the inference process.
This inference aims to determine the most widely spread conspiracies on
Twitter and identify those that generated the most discussion.

8.1 Motivation

As described in the introduction of the thesis, combating misinformation
and fake news is a critical challenge in this digital age, as spreading false
information can impact individuals and societies. Addressing misinforma-
tion involves promoting digital literacy, fact-checking, improving content
moderation, and engaging in public awareness campaigns. These efforts
enable informed decision-making and promote a fact-based society where
rational discourse thrives. Therefore, performing a large-scale NLP-based
inference for detecting COVID-19 conspiracy theories is essential. We can
effectively identify, analyze, and mitigate the spread of such conspiracies
by leveraging advanced NLP techniques and machine learning algorithms.

The end result of the inference is a large dataset of around 2.5 tweets with
nine COVID-19-related conspiracy theories. This dataset can help facilitate
research and more understanding of the COVID-19 conspiracies and
provide valuable insights into their origins, evolution, and societal effects.
By analyzing this dataset, we can identify common themes, patterns,
and factors contributing to the spread of COVID-19 conspiracy theories.
Furthermore, the dataset can be a valuable resource for advancing natural
language processing and machine learning techniques in the ongoing
research against misinformation and conspiracy theories.
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Figure 8.1: Former US President Donald Trump tweeting that he tested
positive for COVID-19, which led to a massive discussion on Twitter
regarding the virus, as shown in Figure 8.5.

8.2 Big data

The big data collection process comprised multiple stages, including ac-
cumulating tweets related to the COVID-19 pandemic between January
17, 2020, and November 30, 2021. A custom-distributed Twitter scraping
framework known as FACT (cited as [86]) was employed with the Twitter
search API, targeting specific COVID-19-associated keywords. Acknowl-
edging the rarity of conspiracy-related tweets, a keyword list linked to
conspiracy theories was used to perform a focused text search. In total,
6, 286, 886, 977 tweets were gathered. However, these tweets included du-
plicates, retweets, replies, and quotes. Furthermore, they contained identi-
cal content regarding tweets, retweets, replies, and quotes, albeit with dif-
ferent IDs and sources. Finally, the collection also encompassed general
retweets, such as when users retweeted pre-COVID-19 era tweets to con-
vey a particular message.

The first stage of preprocessing of this massive dataset was done by
removing the duplicates, which ended up with 2, 570, 581, 178 in tweets.
Among these tweets, we had retweets in general, replies, and quotes that
contained the same tweets with other tweet IDs. The final preprocessing
stage removed the retweets that resulted in 381, 136, 088 tweets. To perform
the inference, we worked with the 381 million datasets, not the 2.5 billion,
but we can track each of these back to their original form.

8.3 Running the inference

We ran the experiments by splitting the whole data into smaller chunks.
Each of these chunks, or files, contained around one million tweets, which
resulted in 382 separate files. The tweets were in their original format,
meaning that they contained URL links and user mentions, and due to
the scraping of the data, they also contained some unexpected HTML tags,
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Category Non-conspiracy Discusses Promoting or
conspiracy Supporting

Suppressed cures 99.034 % 0.034 % 0.932 %
Behaviour & Mind Control 99.906 % 0.047 % 0.047 %

Antivax 97.943 % 1.592 % 0.464 %
Fake Virus 98.776 % 0.623 % 0.602 %

Intentional Pandemic 99.517 % 0.135 % 0.348 %
Harmful Radiation 99.883 % 0.08 % 0.037 %

Population reduction 99.925 % 0.017 % 0.058 %
New World Order 99.928 % 0.006 % 0.067 %

Satanism 99.933 % 0.032 % 0.035 %

Table 8.1: The result of inference; the percentage of the total tweets in
the big data for the three subcategories for each of the nine conspiracy
categories.

e.g., xa0 and <200d>. Therefore, the tweets were driven by a preprocessing
function before feeding to the trained model. All the usernames were
replaced with a common username token @USERNAME, and all the URLs
were replaced with a common URL token URL. The preprocessing of each
file took around two minutes. The inference was initialized with the IPU-
POD4, resulting in around 35 minutes of prediction time for each file. The
whole time for inference of the big data took around nine days and nights;
however, we had to restart the prediction due to some minor errors caused
by the data.

8.4 Results & Discussion

The big data contained around 381 million unique tweets, and we can trace
all these tweets back to the 2.5 billion tweets, i.e., the inference covers much
larger tweets. The inference of the big data took around 223 hours. Among
the 381 million tweets, around 18, 627, 660 (4.89%) tweets were assigned
with at least one Discusses Conspiracy or Promoting/Supporting Conspiracy
subcategory.

Table 8.1 presents the analysis outcomes for each conspiracy category.
The most prevalent conspiracy topic on Twitter is Antivax, accounting
for 1.592% (6, 068, 439) of categorized tweets. It is important to note that
this category excludes concerns regarding vaccine safety, effectiveness, or
trustworthiness, as these are not conspiracy theories. Instead, the Anti-
vax category pertains to beliefs that COVID-19 vaccines serve a concealed,
malevolent purpose or can cause fatalities to manipulate population num-
bers. Numerous anti-vaccination demonstrations have occurred through-
out the pandemic for various reasons, such as the belief that vaccines are
unnecessary, ineffective, dangerous, or contain harmful substances like
mercury and aluminum. Despite the range of motivations behind the anti-
vaccination protests, the topic has become widely discussed on Twitter,
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((a)) Discusses conspiracy ((b)) Promoting/Supporting
conspiracy

Figure 8.2: The word cloud of subcategories Discusses conspiracy and
Promoting/Supporting conspiracy for the Suppressed cures. These word
clouds have been generated from one million tweets.

((a)) Discusses conspiracy ((b)) Promoting/Supporting
conspiracy

Figure 8.3: The word cloud of subcategories Discusses conspiracy and
Promoting/Supporting conspiracy for the Antivax.
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Most occurred words 30-th Septer 1st October 2nd October 3rd October
’hoax’ 49.91% 46.37% 79.52% 80.2%

’trump’ 33.02% 24.6% 57.88% 54.52%
’china’ 2.33% 1.38% 1.76% 1.93%
’tested’ 0.43% 0.89% 4.18% 1.66%

’positive’ 0.71% 0.86% 7.42% 3.35%
’fake’ 12.07% 9.49% 13.49% 11.24%

’democratic’ 2.53% 1.67% 3.8% 3.92%
’republican’ 2.3% 2.46% 2.02% 4.34%
’quarantine’ 0.45% 0.3% 4.77% 0.79%

’flu’ 6.25% 5.21% 3.7% 4.8%
Number of tweets 3522 2687 65110 19699

Table 8.2: The most occurred words during the start of October 2020 when
former US president Donald Trump tested positive for COVID-19. These
words are from the discussing subcategory of Antivax.

which is further supported by the results of our analysis.

Furthermore, the conspiracy category that achieved the highest percent-
age of Promoting/Supporting subcategory is the Suppressed cures, where
it got a 0.932%, which adds to a total amount of 3, 551, 862 tweets. This
category contains tweets based on the narrative that effective medications
for COVID-19 were available but whose existence or effectiveness has been
denied by authorities, either for financial gain by the vaccine producers or
some other harmful harm intent. Figure 8.2 shows the top 50 words for this
category, where terms like hydroxychloroquine, zinc, and chloroquine ap-
pear. Hydroxychloroquine and chloroquine are medications that have been
used for a long time, especially for treating malaria [90]. These chemicals
were explored as a possible treatment for COVID-19 early in the pandemic.
However, numerous clinical trials and systematic reviews have been con-
ducted to evaluate the effectiveness of hydroxychloroquine for COVID-19.
The results from these studies have mainly been inconsistent, and overall,
the evidence did not support its routine use for COVID-19 treatment [22].
Zinc is another medication evaluated as a potential cure for COVID-19 in
the early stages of COVID-19[91], and is still ongoing research and debate.
Still, hydroxychloroquine and zinc were believed to be a cure for COVID-
19 by a group of conspiracists [95]. In addition, words like ivermectin have
also been observed in the word clouds of Figure 8.2 and 8.3. Ivermectin
is an antiparasitic drug that has also been investigated for its potential use
in treating COVID-19. Although the role of ivermectin in treating COVID-
19 is still under debate, the drug has been widely used in some parts of
the world[64]. The interesting founding from the word clouds is that the
term "ivermectin" is not present in the training set of COCO dataset, and
the model was not trained with examples of this word. But still, the model
was able to understand the context of sentences and the meaning of iver-
mectin due to the similar language in these tweets and could draw a similar
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Figure 8.4: The number of tweets in various categories mentioning
ivermectin.

understanding as for zinc and hydroxychloroquine. Although hydroxy-
chloroquine became popular among the spreaders during the early stages
of the pandemic, ivermectin became famous at the end of 2021, as shown
in Figure 8.4. However, this term has been observed in tweets related to
Antivax; most occurrences were found in the promoting category of Sup-
pressed cures. The most occurrence was founded around September 2021,
with around 10000.

Over time, there has been a general trend in the number of conspiracy the-
ories, as shown in Figure 8.5. This figure shows the distribution of the nine
conspiracy theories from January 2020 to November 2021 for both the dis-
cussing and the promoting/supporting subcategories. Based on this figure,
the most discussed conspiracy category appears to be the Fake virus in the
first third of the COVID-19 pandemic. The number of discussing this cat-
egory exploded around the 2nd of October, marked with a star in Figure
8.5. This is the day when the former President of the USA, Donald Trump,
tested positive for COVID-19 (Figure 8.1), which led to a massive discus-
sion regarding the virus on Twitter. The interesting founding from this
period, early October 2020, is the number of curtain words used. Table 8.2
displays some of the most used words from tweets classified as discussing
Antivax, where the word hoax has been used around 80% of the time 2nd
October and 3rd October. This word had been used at least 51775 tweets
on the 2nd of October.

Pfizer announced that their vaccine candidate against COVID-19 suc-
ceeded on the ninth of November 20201 (marked as a dot on Figure 8.5),
which was the start of an almost continuous discussion regarding the An-

1https://www.pfizer.com/news/press-release/press-release-detail/
pfizer-and-biontech-announce-vaccine-candidate-against
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tivax category on Twitter. After this date, the Antivax became the most
discussed category on Twitter, in contrast to the other categories decreas-
ing around this date. The distribution of the tweets promoting/supporting
conspiracies differs from the discussing tweets. The conspiracy that has
been most spread is the Supperessed cures, where it achieved its highest
peak around April 2020. However, it remained low but increased again
around September 2021, when ivermectin became popular, as shown in
Figure 8.4. Other than Supperessed cures, Intentional Pandemic had a
high distribution around April 2020, but it decreased around June 2020,
and the Fake virus took over. Towards the end of 2021, Antivax became
the second most supported conspiracy.

The timeline of discussing and supporting conspiracy categories are
compared in Figure 8.6, 8.7 and 8.8. Based on these graphs, the categories of
Suppressed cures, Behaviour and Mind Control, Intentional Pandemic,
Harmful Radiation Influence, Population reduction Control, New World
Order and Satanism more promoted. Other categories, such as Harmful
Radiation, Fake virus, and Antivax, are among the categories that are
likely to be discussed and less spread. However, the most extreme cases
are with the categories of Suppressed cures, Population reduction and
New World Order since there is a massive gap between the discussing and
promoting graphs, which means that Twitter users accept, i.e., believe these
categories.

8.4.1 Tweets from before 2020

Out of the 18 million tweets with at least one discussing or supporting con-
spiracy category, 1106 was founded to be tweets from before 2020, as shown
in Table 8.4. These tweets were initially shared on Twitter before the on-
set of the pandemic. However, they gained visibility and were retweeted
by users during the pandemic. To give an overview of the topics in these
tweets, we have listed the most occurred bigrams and trigrams in Table
8.3. Like the COCO dataset, Bill Gates and New World Order are among
the biggest bigrams and trigrams. Bill Gates is typically combined with the
narrative that he is sponsoring some bioweapon to depopulate the world
through some bioweapon or vaccination. As we know, this specific conspir-
acy theory later became that Bill Gates sponsored and made the COVID-19
conspiracy theory to depopulate the world [88]. Based on our analysis,
these kinds of tweets date back to 2015.

Furthermore, within these tweets, there is a notable presence of mentions
about Robert F. Kennedy Jr. and autism. Upon analyzing the content
of these tweets, it becomes evident that the prevailing narrative revolves
around the assertion that vaccination causes autism among children. Ac-
cording to these claims, vaccines allegedly contain heavy metals and tox-
ins contributing to an "epidemic of autism" [21]. Robert F. Kennedy Jr.,
an American environmental activist, and author, has been vocal about his
concerns regarding vaccines and their purported association with autism.
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Figure 8.5: The distribution of various conspiracy theories on Twitter
during the COVID-19 pandemic is depicted in the graphs, which show how
these theories evolved over time. The plot was generated by analyzing one-
day intervals.

Figure 8.6: Comparison of Discussing and Supporting/Promoting subcate-
gories of Supperessed cures, Behaviour and Mind Control and Antivax
categories. These plots were made at one-week intervals.
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Figure 8.7: Comparison of Discussing and Supporting/Promoting subcate-
gories of Fake virus, Intentional Pandemic and Harmful Radiation In-
fluence categories. These plots were made at one-week intervals.

Figure 8.8: Comparison of Discussing and Supporting/Promoting subcate-
gories of Population reduction Control, New World Order and Satanism
categories. These plots were made at one-week intervals.
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Figure 8.9: Donald Trump in 2012 tweeting about people thanking him for
stating how dangerous multiple vaccines on children can be. This tweet
was classified as discussing Antivax by our model.

Notably, the earliest tweet within this context can be traced back to 2012
and was authored by Donald Trump (see Figure 8.9). Most of these tweets
fall under discussing or supporting the Antivax stance. Although these
tweets are not directly linked to COVID-19 conspiracy theories, our model
captures their relevance. In the COCO dataset, four samples establish a
connection between autism and the Antivax category.

The tweets around 2009 mainly concern the 2009 swine flu pandemic2. In
these tweets, COVID-19 has been swiped out with different synonyms of
the swine flu and H1N1 virus. In addition, some tweets consider the swine
flu as false, which falls under the Fake virus category. There are also some
examples of the Antivax and Suppressed cures in these tweets. Some
tweets attribute the same categories to ebola, stating that ebola is a fake
virus.

((a))

Bi-grams
bill gates 32

autism epidemic 27
new world 19

world order 19
population control 17

vaccine injury 14
climate change 14
child trafficking 13
sex trafficking 12

child sex 12

((b))

Tri-grams
new world order 16
robert f kennedy 7
need new plague 7

end autism epidemic 7
vaccine injury epidemic 6

f kennedy jr 5
vaccines cause autism 5
climate change hoax 5
child sex trafficking 5

swine flu vaccine 4

Table 8.3: Top 10 most common bigrams and trigrams in the tweets before
2020. These sequences have been generated after the removal of stopwords.

Table 8.3 highlights terms such as "children," "sex," and "trafficking."
Tweets containing these words are typically classified under the Satanism
category. However, a closer examination of these tweets reveals a familiar

2https://www.who.int/emergencies/situations/influenza-a-(h1n1)-outbreak
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Year Number of tweets
2006 1
2009 7
2010 10
2011 3
2012 11
2013 9
2014 32
2015 49
2016 55
2017 75
2018 203
2019 651
Total 1106

Table 8.4: The number of tweets from years before the COVID-19 pandemic
that was predicted as either discussing or promoting conspiracy theories.

narrative: children are trafficked, sold to pedophiles, and used in satanic
sacrificial rituals. The earliest tweets of this nature can be traced back to
2017. Additionally, the climate change conspiracy is among this dataset’s
most frequently occurring words, suggesting the climate change crisis is a
hoax and fabricated. Interestingly, most of these tweets are categorized
under the Fake virus category, which implies that our model perceives
climate change as COVID-19 and classifies it under this category due to
the similar language used in these tweets.

8.5 Conclusion

In this chapter, we presented the big data, which consisted of 2.5 billion
tweets. After preprocessing, cleaning, and removing the retweets from
the big data, the number of unique tweets ended at around 381 million.
We performed an inference on this dataset with Graphcore IPUs, which
lasted around nine days. Around 18 million tweets were founded to
discuss or promote the nine conspiracy categories. The most discussed
category is the Antivax, and the most promoted or supported category
were Suppressed cures. One of the exciting founding of the inference
was the term ivermectin, a drug promoted to cure COVID-19. Although the
model was not trained on samples with ivermectin, it could understand it.
Finally, we also provided the timeline of each conspiracy category. We also
saw how former US president Donald Trump testing positive for COVID-
19 affected Twitter and the conspiracy categories.
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Chapter 9

Conclusion

In this chapter, we outline the conclusions drawn from our primary
findings and address the problem statement outlined in Section 1.2, which
forms the basis for the critical contributions of this thesis. Additionally, we
share our perspectives on potential future research directions that can build
upon the work presented in this thesis.

9.1 Summary

In this thesis, we present several language-based models for COVID-19-
related conspiracy detection. We started with evaluating text vectorization
techniques to capture a baseline for COCO dataset, such as BOW and TF-
IDF. Our study of these methods emphasizes the significance of choosing
suitable N-gram ranges and vectorization techniques. We found that the
SGD Classifier with TF-IDF outperformed other approaches, particularly
when using expanded N-gram ranges. However, acknowledging individ-
ual conspiracy categories’ distinctive challenges and characteristics is cru-
cial for optimizing detection performance across various theories.

Upon further experimentation, we explored Transformers-based ap-
proaches, employing pre-trained BERT- and RoBERTa-based models with
One-for-All and One-for-One methods. Our results indicated that the CT-
BERT model, which has large domain-specific training data, performed
best in the One-for-All approach, achieving an MCC score of 0.765. How-
ever, some categories, such as Fake virus and Intentional pandemic,
proved challenging to predict. Lastly, we explored various techniques
to enhance the performance of One-for-All, including ensemble learning
and data augmentation techniques. While the ensemble of CT-BERT mod-
els achieved a slightly higher MCC score of 0.774, the improvement was
marginal, and the method introduced computational costs and complexity.
Data augmentation using EDA and ChatGPT yielded mixed results, with
slight improvements in certain specifics but decreased overall MCC score.
Experiments with fine-grained datasets, conspiracy recognition tasks, and
misinformation detection did not yield substantial improvements. Careful
evaluation of the benefits and drawbacks of these techniques is crucial for
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optimizing performance in conspiracy detection tasks.

To automate the detection of conspiracy theories on the large dataset from
Twitter, we introduced Graphcore’s Intelligence Processing Units (IPUs).
We gave an overview of how to run deep learning models on IPUs and
conducted several experiments to recreate our results from the other exper-
iments. Furthermore, we also carried out experiments regarding the speed
of training and inference and compared IPU-POD4 with multiple NVIDIA
A100 GPUs. IPU-POD4 is a system comprising four interconnected Graph-
core IPUs. The experiments demonstrated that IPUs are slower at train-
ing such models but outperform GPUs, mainly when performing inference
over large datasets. This investigation highlights the potential advantages
of leveraging IPUs for deep learning tasks in terms of scalability. Note that
a single IPU has 150 W thermal design power (TDP), approximately half of
a competitive GPU. Thus, concerning power, each IPU pair is comparable
to one powerful GPU, such as the NVIDIA A100. Despite that, the TDP,
when we compared IPU-POD4 with four NVIDIA A100 GPUs, the IPU-
POD4 was founded to be around three times faster than the GPUs (Table
7.3).

Building upon the results from experimentation with IPUs, we performed
the inference over big data, which consisted of around 2.5 billion tweets.
However, once the tweets were preprocessed and the duplicates and
retweets were removed, the number of unique tweets was around 381
million. The inference was initialized with the IPU-POD4, resulting in
around 35 minutes of prediction time for each file. The whole time
inference of the big data took around 223 hours, i.e., nine days and nights.
Among the 381 million tweets, around 18, 627, 660 (4.89%) tweets were
assigned with at least one Discusses Conspiracy or Promoting/Supporting
Conspiracy subcategory.

9.2 Research questions

We revisit the research questions in Section 1.2 by repeating and then an-
swering them.

RQ1 Which machine-learning model is best suited for creating a multi-class multi-
label conspiracy theory detection based on the COCO dataset?

Chapter 5 mainly deals with this research question, where we introduced
One-for-All and One-for-One approaches. Both of these approaches have a
BERT-based model in their backbone. Based on our experiments, the One-
for-All, a multi-class multi-label classifier, was the best performer on our
dataset. We experimented with different pre-trained models, such as BERT-
Base, RoBERTa-Large, BERTweet, and CT-BERT, where the last completely
outperformed the others thanks to its large domain-specific training data,
with an MCC score of 0.765. Chapter 6 contains more experimentation on
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this approach to enhance the performance. Most of it failed except the deep
ensemble methods, which achieved an MCC score of 0.774.

1a) Some conspiracy categories are known to be more keyword-based than others
in the COCO dataset. How big is the gap between the text vectorization methods
like the TF-IDF approaches compared to the large pre-trained models for these cat-
egories?

Table 3.1 shows the top 10 most common bigrams and trigrams in the
training data of COCO dataset, where the most occurred bi-grams and
tri-grams are mentioning terms that clearly describe Population Reduc-
tion and News World Order categories from COCO dataset. Chapter 4
mainly deals with this sub-question, where we performed BoW and TF-
IDF approach together with various N-gram ranges. Our findings indi-
cated that combining unigrams, bigrams, and trigrams yields the best re-
sults, as shown in Figure 4.2. Comparing Figure 4.3 and 5.4, it is clear
that Transformer-based outperforms TF-IDF for almost all of the categories.
Still, however, for the New World Order category, the MCC from both ap-
proaches come close, where the best TF-IDF approach gets 0.767. How-
ever, for the category of Population Reduction, the Transformer-based ap-
proaches outperform the TF-IDF approaches, despite this category having
the most occurred bigrams and trigrams.

RQ2 How does the performance of IPUs compare to other hardware solutions, such
as GPUs, when conducting large-scale inference tasks for conspiracy theory detec-
tion using large pre-trained models?

Chapter 7 mainly deals with this research question. This chapter describes
the experiment by comparing the speed time when conducting large-scale
inference tasks. We compared IPU-POD4, a system consisting of four IPUs,
with one, two, and four NVIDIA A100 GPUs. Figure 7.3 displays the ex-
periment result. The main finding was that single and dual GPUs are faster
at smaller inferences, but for significant inferences, typically in millions of
tweets, the IPUs turned out to be much fast. Our experiments show that
the IPUs were around 11, 7, and 3 times faster for half to one million tweets
than single GPU, dual GPUs, and four GPUs, respectively. The superior
speed of the IPUs in handling inference tasks allowedtweetsto successfully
execute the large-scale inference process, which required approximately
223 hours to complete. Comparatively, conducting the exact inference with
a single GPU would have taken approximately 2453 hours. Employing two
GPUs would have reduced the time to around 1561 hours, and utilizing
four GPUs would have further decreased it to approximately 669 hours.

2a) What is the distribution of conspiracy theories on big data? How do the differ-
ent conspiracy categories evolve through time?

Chapter 8 describes the result of the inference over big data. Among the
381 million unique tweets, at least 4.89 percent (18627660) discussed or
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promoted/supported conspiracy theories through their tweets. The most
discussed conspiracy topic on Twitter is Antivax, accounting for 1.592%
(6, 068, 439) of categorized tweets. On the other hand, the most promoted
or supported conspiracy theory was the Suppressed Cures, where it got a
0.932%, which adds to a total of 3, 551, 862 tweets.

9.3 Future work

In this section, we briefly present some directions into future work that can
help the field of fake news and conspiracy detection.

9.3.1 Further pre-training of CT-BERT

In this thesis, we experimented with BERT-Base [23], RoBERTa [61],
BERTweet [71], Twitter-RoBERTa-Large[7], and CT-BERT [69] on the COCO
dataset. Thanks to its large domain-specific training data, the best-
performing approach was the CT-BERT. A strong covariance exists between
larger domain-specific pre-trained models and their performance on NLP
tasks. The larger the models, the better their performance on NLP tasks.
Therefore, we believe further pre-training of CT-BERT can help progress
future work on COVID-19-related conspiracy theories and achieve better
scores. CT-BERT was trained on a corpus of 160 million tweets about the
coronavirus. However, in the end, all retweets, duplicates, and close du-
plicates were removed from the dataset, resulting in a final corpus of 22.5
million. The backbone of CT-BERT is BERT-Large [23], and the domain-
specific dataset consists of 1/7th the size of what is used for training the
main model. In our case, we worked with around 381 million unique
tweets, which can be used to train a much larger domain-specific pre-
trained model.

The total time of training CT-BERT was around 120 hours on a TPU v3-
8. TPU v3-8 is a Tensor Processing Unit (TPU) accelerator on the Google
Cloud Platform (GCP)1. It is a third-generation TPU chip with eight cores
to accelerate machine learning workloads. The time and text were around
5.33 per hour per million. Based on this time rate, training on our data
would take around 2000 hours.

9.3.2 Domain-specific pre-trained models for other languages

As the world’s most widely spoken language, English has benefited from
significant research and development in natural language processing.
Many resources exist for English, such as large language models, sentiment
analysis models, Twitter-based models, datasets, etc. We found CT-BERT
very helpful regarding fake news and COVID-19 conspiracy detection.
This model performed exceptionally well on the COCO dataset, despite the
dataset being highly imbalanced. In contrast, there exist limited resources

1https://cloud.google.com/tpu/docs/regions-zones
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in other languages. Other than English and Mandarin Chinese, languages
like Spanish, French, and Hindi are amongst the most spoken languages in
the world. According to the author’s knowlegde, no Twitter or COVID-19-
related pre-trained open-source Transformer exists for these languages. To
combat misinformation online, especially on social media platforms, it is
essential to have domain-specific models in their language. Therefore, we
believe that one of the future works can be based on training new language
models based on social media platforms, such as Twitter.

9.3.3 Augmentation and labeling with ChatGPT

In chapter 6, we used ChatGPT to construct samples for the Fake Virus and
Intentional Pandemimc categories to enrich the dataset and enhance the
performance of our model. As described in Section 6.2, we provided Chat-
GPT the description of the categories and asked it to provide samples in
three different stages. This process improved our model slightly, as shown
in Figure 6.1. However, our approach to making samples with ChatGPT
can be seen as naive, but it also opens the doors toward ChatGPT-driven la-
beling. Therefore, one of the future works could include using ChatGPT to
either make data augmentation or label tweets to improve the One-for-All
approach for the COCO dataset. This section will present works leveraging
ChatGPT services for data annotation and augmentation.

Since the release of GPT-4, several works have been done to use ChatGPT to
label data. One of the examples is the paper of Törnberga et al. [96], where
it was founded that ChatGPT-4 outperforms experts and crowd workers
in annotating political Twitter messages with zero-shot learning. ChatGPT
was compared to manual annotation by experts and crowd workers in this
work. The annotation was done on tweets from US politicians during the
2020 election, providing a ground truth against which to measure accuracy.
The paper finds that ChatGPT-4 has achieved higher accuracy, reliability,
and equal or lower bias than human annotators. In addition, we also in-
troduced AugGPT [18] in Section 6.2, where the authors of AugGPT had
achieved promising results by leveraging ChatGPT services for the aug-
mentation of text data. Zhu et al. [115] challenged ChatGPT to study
whether it was able to produce human-generated labels. Their results high-
light that ChatGPT does have the potential to handle data annotation tasks,
where ChatGPT obtains an average accuracy of 0.609.

To conclude, based on these works, ChatGPT-4 has the potential to
annotate or construct labels for NLP-based models. This capability could
significantly enhance the efficiency and accuracy of natural language
processing tasks and pave the way for more advanced AI applications
in machine translation, sentiment analysis, and especially in the battle of
misinformation.
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9.3.4 Graph-Based Source Detection

The result of the inference dataset, a large-scale Twitter dataset with nine
distinct conspiracy theories, can be used in various research areas. One
of the areas could be to convert the dataset into graphs [77] by using
the user IDs to detect the source of the conspiracy theories. The graph
representation could be an undirected graph, where the vertices are users
and the edges represent connections between them. Each vertex could
have a set of attributes, including location, number of followers, etc.
Such a classification problem would identify the misinformation spreader
based on the user’s network. The most significant advantage of such
an approach would be that one can develop robust models since the
dataset is enormous, which can help the battle against misinformation
and potentially be used to identify the spreaders in other types of
misinformation, e.g., the 2024 US presidential election. The 2016 US
presidential election was imprinted with considerable misinformation on
Twitter; using such graph-based conspiracy source detection, one could
explore misinformation in the next US presidential election.

9.3.5 In-depth time and evolution analysis of the conspiracies

Accessing the tweets along with their corresponding conspiracy categories
and posting timestamps makes it possible to examine the temporal patterns
and progression of the associated conspiracy theories. Langguth et al. [53]
studied the long-term observation of the COVID-19 and 5G digital wildfire.
This work discusses the origin and spread of 5G-COVID misinformation in
early 2020. Furthermore, it discusses the rapid growth of the topic from
obscurity to widespread discussion and the connection between misinfor-
mation and real-world consequences. Our inference results can contribute
to this type of study by providing an in-depth analysis of the time and
evolution of conspiracy theories, which are often tied to real events and in-
fluenced by various factors that play a role in their spread.

In addition to examining the temporal patterns and progression of con-
spiracy theories, our approach also allows us to investigate the factors
contributing to their proliferation. A future study could identify the key
drivers and catalysts that drive these theories into mainstream discourse by
analyzing the tweets and their associated conspiracy categories. To build
upon the work of Langguth et al. [53], we can also explore the role of social
media platforms and their algorithms in disseminating conspiracy theories.
By understanding how these platforms prioritize and distribute content,
we can shed light on the mechanisms that facilitate the rapid growth and
spread of misinformation. This insight may, in turn, inform policy and in-
terventions aimed at mitigating the impact of conspiracy theories on public
discourse and decision-making.

Moreover, our inference results can be used to assess the influence of
external events, such as political developments or public health crises,
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on the emergence and persistence of conspiracy theories. By mapping
the temporal patterns of these theories against the backdrop of real-world
events, we can gain a deeper understanding of how and why certain
conspiracy narratives take hold and persist in the public consciousness.
Finally, our approach can contribute to studying the psychological and
socio-cultural factors underpinning the appeal and resonance of conspiracy
theories. By examining the content and structure of these narratives and
the language and rhetoric employed by their supporters, we can gain
insight into the cognitive and emotional drivers that make these theories
compelling to specific individuals and communities.

9.3.6 IPUs for other artificial intelligence algorithms

In Chapter 7, we introduced the IPUs hardware and gave an overview of
how it can be used for NLP-based models. We conducted experiments with
these units and found them efficient for making large-scale inferences com-
pared to the GPUs. Although IPUs are relatively newer processing units,
more experimentation is needed to compare to the state-of-art processing
units for deep learning models. With the release of large language models,
such as ChatGPT, training sizeable deep learning models are more relevant
than ever. IPUs can help the research and industry community train and
deploy large models faster. Therefore, one possible future work could be to
experiment further with these units and compare them with GPUs.

As mentioned in Section 9.3.4, converting the inference dataset into
graphs is the one possible future direction for dealing with misinformation
spread. A typical way to work with these graphs is graph neural
network (GNNs)[113]. A combination of GNNs and IPUs can significantly
improve the efficiency and performance of graph-based machine-learning
tasks. Moe et al. [68] investigated the viability of the IPUs for efficient
implementation of Spatio-Temporal graph convolutional networks, and
their results showed that IPUs are well suited for this task.
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Appendix A

Source Code

The source code, dependencies, and other related material used in this
thesis are publicly available on the following GitHub repository: https:
//github.com/rohullaa/master-thesis. This includes the slurm files used to
execute the code on IPUs on ex3, preprocessing steps, code for each
experiment setup, and Jupyter Notebook for visualization.
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Evaluating TF-IDF and Transformers-based models for
Detecting COVID-19 related Conspiracies
Rohullah Akbari1,*

1Simula Research Laboratory, Norway

Abstract
The proliferation of misinformation and conspiracy theories on online social media platforms has become
a significant concern for public health and safety. To effectively combat this issue, a new generation of
data mining and analysis algorithms is essential for early detection and tracking of these information
cascades. In this paper, we employed a multifaceted approach for detecting and identifying conspiracy
theories and misinformation spreaders related to the Coronavirus pandemic. Specifically, we utilized
Text-Based Detection (Task 1) through a combination of TF-IDF-based and Transformers-based methods,
Graph-Based Detection (Task 2) through a graph convolutional network, and alternative Transformers-
based methods to improve the results of Task 1. Our efforts have yielded promising results, with our best
models achieving an impressive MCC score of 0.705 for Task 1, 0.041 for Task 2, and 0.698 for Task 3.

1. Introduction

The COVID-19 pandemic and the associated lockdown formed the basis for many false news
stories and conspiracy myths. Spontaneous and intentional digital FakeNews wildfires over
online social media can be as dangerous as natural fires. The FakeNews Task at the MediaEval
challenge 2022 targeted the detection of misinformation and its spreaders in tweets. More
precisely, this task focuses on analyzing tweets, public user properties, and their connections
related to Coronavirus conspiracy theories to detect conspiracies and misinformation spreaders.
The description of the task and more information about the dataset can be found in [1]. The
detection and verification of COVID-19-related misinformation using machine and deep learning
techniques have been addressed in a number of papers [2, 3, 4, 5, 6]. An overview of previous
work shows that COVID-Twitter-BERT (CT-BERT) is best suited for building the most successful
model for COVID-19-related misinformation and conspiracy detection [4, 7].

2. Text-Based Misinformation and Conspiracies Detection

2.1. The TF-IDF approach

In this section, we will create nine distinct TF-IDF models for each of the nine categories.
We are interested to see if the TF-IDF technique can outperform the CT-BERT model, and if
not, how close it can come. This approach is based on using TfidfVectorizer and Stochastic
Gradient Descent classifier (SGD) from the scikit-learn framework [8]. SGD is a simple but very
efficient approach to fit linear classifiers such as linear Support Vector Machines (SVM). SGD
does not belong to any particular family of machine learning models; it is only an optimization

MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen, Norway and Online
*Corresponding author.
†
These authors contributed equally.
$ rohullaa@uio.no (R. Akbari)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)



technique. Often, an instance of SGD Classifier has an equivalent estimator in the Scikit-learn
API, potentially using a different optimization technique. For example, logistic regression is
produced when SGDClassifier(loss=’log loss’) is used. The TF-IDF approaches in previous
works have been only executed with unigrams [7]. This leads to mislaid learning since there
could be important information in the bigrams and trigrams. We can see in Table 2 that N-grams
such as "bill gate" and "new world order" could be very important for the classification of the
conspiracies. Based on this, we have chosen to implement the TF-IDF with various N-grams
including unigrams, bigrams, trigrams, and other ranges. In addition to that, we have also
chosen to implement the SGD with different loss functions and penalties (see Table 1 for the
parameters).

Table 1
Chosen parameters for the TF-IDF approach.
Note that SGD with hinge loss is equivalent to
linear SVM, SGD with log loss is equivalent to
LogReg, etc.

Name of parameter Parameter values

Ngrams (1,1),(1,2), (1,3),(1,4)
(2,2),(2,3), (2,4), (3,4)

SGD loss hinge, log, modified_huber,
squared_hinge, perceptron

SGD penalty L1 , L2, Elastic net and none

Table 2
Top 5 most common bigrams and trigrams in the
dataset of Task 1. These sequences have been generated
after the removal of stopwords.

N-grams Occurences

deep state 222
world order 103
new world 102

bill gate 98
population control 78

new world order 101
years ago cbs 13
cbs show 60 13

interview retired cdc 13
qr code system 12

2.2. Transformers-based approaches

The first Transformers approach (One-for-All) is based on training one CT-BERT model for
classifying all of the conspiracy categories at once (see Figure 1). The CT-BERT is fine-tuned
with nine different weighted Cross Entropy loss functions. The weights are computed by taking
into account the number of samples in a specific category and dividing it by the numbers of
each of the subcategories in that category. The optimizer used in this approach is AdamW
[9]. Before feeding the text data into the model, we preprocessed it by converting the emojis
into their textual meaning. Furthermore, the training of the model was done with 5-fold Cross
validation and the model with the best test MCC score was chosen. The One-for-One approach
is based on training nine separate CT-BERT models for the nine categories (the approach is
shown in Figure 2). In this approach, we are not using any weighted loss function. Other than
that, we are applying the same loss function, optimizer, and preprocessing method. The training
of the model was done with stratified 5-fold cross-validation and the model with the best MCC
score was chosen.

3. Graph-Based Conspiracy Source Detection

For this task, we applied a simple node classification where the nodes are representing the
user’s label for whether they are a misinformation spreader or not. We created a network for
each of the users that had a label. The network consisted of all of the other users that had an



Figure 1:
The One-for-All approach for
Task 1.

Figure 2:
The One-for-One approach for
Task 1.

Figure 3:
The CT-BERT-Graph approach for Task 3.

edge directed to the main user and the users with low-weight values were removed. We chose
to work with graph convolutional network (GCN) [10]. The implementation was done by using
the GCNConv class from the torch_geometric library with PyTorch.

4. Graph and Text-Based Conspiracy Detection

In this section, we will examine whether we can improve the results from Section 2 by com-
bining the data from Section 2 and Section 3. The output of the classifiers will be enriched
by combining text with numerical features. We are proposing an approach that consists of
training the CT-BERT with the text data and concatenating the last layer of the CT-BERT
with the user information such as verified_account, description_length, num_favourites,
num_followers, num_statuses, num_friends and location_country. The concatenating
layer is then driven through a multilayer perceptron (MLP) and then processed into an output
layer (see Figure 3). Our second approach is based on extending the text data with tweeters’
statistics and then feeding it into the One-for-All approach 2.2. The numerical features that
have been inserted in the text are separated with [SEP] token, e.g.

Tweet_text [SEP] 0 [SEP] 159 [SEP] 2812 [SEP] 566
[SEP] 1426 [SEP] 1041 [SEP] 3

5. Results

As expected, the TF-IDF approach obtained a lower MCC score than the Transformers-based
approaches (see Table 3). The One-for-One approach achieved the best score from all submitted
runs. The TF-IDF approach does quite well for some of the categories, especially for the
Population reduction and the New World Order. Bigrams such as "population control" and
"bill gate" are very important for Population reduction, and "world order" and "new world"
are obviously talking about the New World Order category (Table 2). Furthermore, we can
see that the N-range such as (2,3), (2,4), and (2,4) did not do well and the dominating range is
(1,4) (Figure 4). As a result, unigrams are crucial for the classification of conspiracies since the
N-gram ranges without it performed poorly. We submitted only one run for Task 2 which
resulted in an MCC score of 0.041 and clearly states that our implementation was not successful.
The main reason for the poor performance could be the fact that we removed all the neighbors
of the main user node that had low edge values. The combination of CT-BERT with numerical



Table 3
Official MCC scores per category for Task 1 and Task 3. Note that the One-For-All (Task 3) is the same
as described in Section 1 but with extended data as described in Section 4.

Category TF-IDF One-for-All One-For-One One-For-All (Task 3)

Suppressed cures 0.484 0.737 0.793 0.563
Behaviour and Mind Control 0.504 0.698 0.700 0.706

Antivax 0.529 0.726 0.726 0.616
Fake Virus 0.378 0.644 0.628 0.628

Intentional Pandemic 0.353 0.545 0.592 0.616
Harmful Radiation/ Influence 0.617 0.723 0.729 0.695

Population reduction 0.710 0.825 0.795 0.887
New World Order 0.731 0.778 0.738 0.850

Satanism 0.414 0.638 0.663 0.715

Average 0.524 0.702 0.705 0.698

Figure 4: The plot is showing the performance of the different N-grams ranges. The MCC scores in this
plot are from the validation dataset.

features resulted in an MCC score of 0.423. This approach worsened the predictions, as the
test MCC score went below the scores of Table 3. The One-for-All with extended text features
achieved an MCC score of 0.698. None of the approaches in this task improved the outcome of
Task 1. However, the One-for-All technique in Task 3, was able to perform better for some of
the categories (see Table 3).

6. Discussion and Outlook

We successfully implemented three approaches for Task 1; one TF-IDF approach and two
Transformers-based approaches. We experimented with different N-gram ranges and found
out that the N-gram range (1,4) was best suited for most of the categories. The best MCC score
(0.705) was found with the One-for-One approach. We presented two approaches for improving
the Task 1 results but none of them improved the results from Task 1.
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