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Abstract

Cancer is an incredibly complex and diverse disease. Therefore, medical
treatment preferentially should be tailored at the level of individual patients.
There exists a vast amount of knowledge related to cancer biology, diagnosis, and
treatment, and an extensive amount of measurements can easily be performed
on each patient. A key challenge is to utilize such large amounts of information
to design the most precise treatments.

This thesis addresses this problem by analyzing data from a clinical trial
on breast cancer treatment. The trial investigated a combination of hormone
therapy with a targeted drug that specifically inhibits CDK4/6, a protein
involved in estrogen-stimulated cell proliferation. The trial included 49 patients,
with measurements of 771 gene expression levels. The outcomes were two
continuous scores which aimed to quantify cancer cell proliferation and long-
term prognosis.

We have compared various machine learning models, both alone and in
combination with domain biological knowledge, to assess their predictive power
for cancer treatment outcomes. Furthermore, we evaluated the integration of
machine learning models with a mechanistic mathematical model characterizing
the mechanisms of action of the targeted drug. Finally, we explored the use of
domain knowledge in a novel model approach.

Among the standard model classes - ridge regression, lasso, elastic net, and
boosting with stumps as base learners - ridge demonstrated the best predictive
performance. Feature selection revealed high overlap between lasso and elastic
net, while boosting showed an overlap of approximately half with the two linear
models. The integration of mechanistic and machine learning models did not
improve upon the standard models.

To leverage biological knowledge, the gene set was divided into smaller
subsets based on each gene’s involvement in different aspects of breast cancer
biology, such as regulation of cell proliferation, estrogen signaling, immune
system activity, and DNA repair mechanisms. The smaller gene subsets
underwent feature engineering through principal component analysis, and the
resulting components were used as covariates in the standard machine learning
models. This led to a slight improvement in predictive power and offered some
insights into the importance of different aspects of breast cancer biology. We
also included interaction terms between principal components from different
gene sets, which further improved predictive performance.

In a second attempt to utilize biological knowledge, we employed a stacking-
like approach by first training models on the gene sets individually, and then

iv



using the predictions of these models, each representing a gene set, as input
features for a new machine learning model. This method did not outperform
the best standard model.

Lastly, inspired by the potential of modeling interactions between functional
units of cancer biology, we attempted a novel iterative approach focusing on
these interactions. This method showed promising results on simulated data
with more observations than features but faced challenges when the number of
observation became too small.
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CHAPTER 1

Introduction

The primary aim of this thesis was to explore the potential of combining machine
learning and domain knowledge to develop predictive tools for cancer treatment,
using data from a specific clinical trial. A secondary goal was to evaluate
the predictive performance achieved by integrating an established mechanistic
model with machine learning models.

1.1 Cancer

Cancer is a severe global health problem. Estimates suggest that 19.3 million new
cancer cases and almost 10 million cancer-related deaths occurred worldwide
in 2020 (Bray et al. 2018). Female breast cancer was the most commonly
diagnosed cancer, with an estimated 2.3 million new cases. This makes cancer
the second leading cause of death globally, after cardiovascular disease. In
some developed countries, cancer has become the leading cause of death in
recent years. Prevention and treatment of cancer is in general more challenging
than for cardiovascular diseases as cancer is more complex, less dependent on
lifestyle dependent risk factors, and cancer is most often diagnosed later in
disease progression (Sung et al. 2021).

Although cancer is primarily considered to be a genetic disease it is a
highly diverse and heterogeneous condition, encompassing numerous types,
subtypes, and developmental stages. As a result, a variety of different treatment
approaches is required. For instance, breast cancer cells are sometimes sensitive
to estrogen, which determines whether hormone therapy should be included as
part of the treatment plan (Waks and Winer 2019).

In addition to the effect of treatments on the tumor, side-effects must be
considered. Side-effects of cancer treatment can be severe and persist, affecting
patients for the rest of their lives. Moreover, there are multiple patient specific
factors that also should influence the choice of treatment, including cancer
stage, overall health, patient demographics and genetics. Another challenge
is that cancer cells typically change during the progression of the diseases.
Both mutations of their genome and changes in their metabolism lead to
transformation of the cells. This causes diversification of the cancer cells and
may lead to development of resistance to ongoing treatment. Consequently,
it becomes difficult to effectively eliminate all cancer cells and prevent the
disease from recurring. Economic factors can have a significant impact on
availability of treatment. Cancer treatment can be very expensive and in
national health systems the cost of a treatment is weighted against the clinical
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1.2. Precision medicine - a high dimensional problem

benefit. Considering all these factors makes determining the ideal cancer
treatment for an individual patient challenging. Therefore, tailoring cancer
treatment to the individual patients remains one of the most pressing global
health issues today and in the foreseeable future.

1.2 Precision medicine - a high dimensional problem

An approach addressing the tailoring of disease treatment and a goal in modern
healthcare systems is the development of precision medicine. Precision medicine
represents a shift in how medical care is provided where the aim is to move
away from a one-size-fits-all approach towards a more tailored and personalized
approach that takes into account the unique needs and characteristics of each
patient. In cancer treatment, precision medicine typically involves analyzing
the genetic compositions of a patient’s cancer cells and in combination with
demographic factors tailor treatment to specifically target the characteristics of
the present cancer cells.

A major challenge in developing the precision approaches is the high
dimensionality of the available research data. High-dimensional data refers to
situations where the number of features, or dimensions, is close to or larger
than the number of observations (Hastie, Tibshirani and J. Friedman 2009). A
typical human cell expresses around 5000 genes and although not all of these
genes are necessarily relevant to cancer biology a substantial number of them
have the potential to be of importance as a diagnostic marker. In addition,
other diagnostic and demographic variables will be part of the feature space.
Since clinical studies often are limited to a couple of hundred patients, or less,
and often distributed across various treatments strategies, the development of
precision based cancer treatment will typically give a high dimensional problem.

1.3 Importance of machine learning in cancer medicine

Artificial intelligence refers to the idea of using computer-based systems to carry
out highly complex and advanced analytical and decision-making processes.
Machine learning is among the most successful part of artificial intelligence.
Machine learning can be dived in two categories: traditional machine learning
and deep learning, the latter involves the use of artificial neural networks.

In recent years, deep learning has proven to be highly successful in various
fields and in many problems surpassing traditional machine learning, particularly
in prediction tasks. However, deep learning requires a large amount of training
data, thus traditional machine learning models are still useful, particularly for
data-limited or tabular data problems. In this thesis, the available data is
insufficient for deep learning, making machine learning the method of choice.
Traditional machine learning includes a variety of algorithms which primarily
are designed to analyse tabular data. These algorithms are construct to solve
unsupervised and supervised learning with continuous and classification outcome,
often involving numerous features. Prediction and feature selection are common
objectives in traditional machine learning applications.

In recent years, advancements in processing the biomolecular composition
of tumor samples have generated large datasets, which give opportunities for
improved molecular cancer diagnosis, prognosis, and treatment (Hanahan 2022).
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1.4. Tumor ecosystems - impact on cancer treatment

However, the often small sample size is then becoming more challenging by
the high-dimensional data structure. Machine learning models have played an
important role in utilizing these datasets for precision medicine, uncovering
patterns, predicting outcomes, and identifying important features, ultimately
enabling the development of more personalized and effective treatment strategies
(Azuaje 2019; Swanson et al. 2023). While blood sample-based methods
are being developed for diagnostics, molecular analysis of the tumor samples
provides the ultimate information to characterize cancer prognosis. Through
tumor monitoring, machine learning have shown great promise for selecting
cancer treatments and predicting responses. The standard in current treatment
selection is determined by clinical guidelines and trials that typically use a few
clinical features. In contrast, molecular profiles of cancers generate a much larger
number of features that can inform cancer treatments. For instance, Sammut
et al. (2022) predict chemotherapy response by incorporating clinical, genomic,
transcriptomic, pathology and treatment information into an ensemble model
that averages the predictions of logistic regression, support vector machine and
random forest models.

These machine learning algorithms reflect significant advances in the research
landscape. However, before the algorithms can be used to treat patients, they
generally require regulatory approval, which involves more rigorous clinical trials
and validation than what is usually presented in academic work. Consequently,
only a small proportion of the algorithms end up being used in the clinic (Wu
et al. 2021). In conclusion, although machine learning is increasingly important
in cancer detection, prognosis, and treatment planning, it is likely that machine
learning algorithms have far from reached their full potential.

1.4 Tumor ecosystems - impact on cancer treatment

A tumor is not just a mass of cancer cells. It is regarded as a complex ecosystem
that consists of both cancerous and non-cancerous cells, as well as a network of
blood vessels, immune cells, and many other components (Marusyk, Janiszewska
and Polyak 2020). The development and growth of a cancer is a complex process
that involves not only the cancer cells but also the surrounding environment.
The interactions between the cancer cells and the environment, and furthermore,
the interactions between different parts of the environment can play critical
roles in the responses to different types of treatments. Despite the importance
of the tumor ecosystems, few efforts to predict treatment response have taken
these factors into account (Sammut et al. 2022). Therefore, there is likely a large
potential for developing precision medical approaches by integrating data that
represents different parts of the tumor ecosystem in order to accomplish more
accurate predictions and optimal treatment decisions. In this thesis, we have
incorporated domain expertise of the tumor ecosystem into machine learning
models.

1.5 Main findings

In this thesis, data from a clinical trial study using targeted drug therapy
against breast cancer was analyzed. The primary aim was to evaluate the
potential of predictive models as tools for selecting patients who would benefit
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from the tested drug combination. The predictors included 771 gene expression
measurements, and 49 patients received the particular drugs.

Among the standard machine learning model classes, ridge regression
demonstrated the best predictive performance. We managed to enhance the
performance by introducing domain knowledge, particularly when incorporating
interactions between smaller groups of genes based on each gene’s involvement
in different parts of the cancer biological ecosystem. In a novel model approach
proposed in this thesis to leverage domain knowledge, we achieved success
with high-sample-size simulated data but faced challenges when the number of
observation became too small. As a result, the model proved to be ineffective
when applied to the dataset from the clinical trial.

The three genes LEFTY2, GATA3, and HDAC2 were consistently selected
in various model scenarios. LEFTY2 is known to be involved in the regulation
of cell growth, and its dysregulation has been implicated in tumor development
and progression (Saito et al. 2013). GATA3 is a transcription factor that plays a
role in cell differentiation. Abnormal expression of GATA3 has been associated
with tumor progression and poor prognosis in breast cancer patients (Yoon
et al. 2010). HDAC2, a histone deacetylase enzyme, has been implicated in the
regulation of gene expression, cell cycle progression, and cellular differentiation,
with its altered expression linked to various cancers (Li, Tian and Zhu 2020).
To the best of our knowledge, no association of these genes with response to
the drugs used in the clinical trial has been previously described.

All code scripts used throughout this thesis can be downloaded from a
GitHub repository (https://github.com/akielland/Cancer).

1.6 Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 offers an overview
of the biological and clinical background of the treatment regime used in the
clinical trial and the study design of the trial. In this chapter, we also review
relevant details of the trial’s dataset, including the division of genes into smaller
gene sets based on cancer biology domain knowledge.

Chapter 3 introduces standard statistical terminology and covers the
standard machine learning models ridge regression, lasso, elastic net and
boosting. In Chapter 4, we conduct an analysis comparing the performance of
these standard models on the trial data.

In Chapter 5, we examine the integration of a mechanistic model with
machine learning models to enhance their predictive capabilities.

Chapter 6 investigates the benefits of incorporating cancer biology domain
knowledge into statistical methods with the goal of guiding the application of
principal component regression, a two-stage model and interactions.

Finally, chapter 7 presents a novel modeling approach that incorporates
group interactions, discussing its characteristics, algorithm, and performance
on simulated data and the clinical trial dataset. The thesis concludes with a
summary of the findings, implications and suggestions for future research in
chapter 8.
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CHAPTER 2

The patient data of the
CORALLEEN trial

2.1 Breast cancer

Breast cancer is the most common cancer type in women and the second cause
of cancer-related mortality (Sung 2020). The breast cancer subtype addressed in
the thesis is luminal B by the so-called PAM50 classification (Perou et al. 2000;
Wallden et al. 2015). The other four subtypes are luminal A, HER2-enriched,
basal-like and normal-like. Luminal B tumor cells are characterized by the
expression of the estrogen receptors, being HER2-negative and showing high
levels of proliferation markers. The latter refers to genes that are stimulating
cell division. Increased expression of these proliferation genes in tumor cells is
associated with poor prognosis in cancer patients. The prevalence of luminal
B is approximately 15% of all breast cancer cases and while prognosis varies
substantially between individual patients luminal B is generally accepted to
have a middle prognostic outcome.

2.2 The targeted drug

The clinical trial utilized a combination of the drugs letrozole and ribociclib for
treatment. Letrozole is a well-established hormone therapy for breast cancer
that has been in use for a long time. It functions by blocking estrogen production
in the body, which in turn inhibits the growth of hormone-sensitive breast cancer
cells. Ribociclib, the primary drug of interest in the trial, is a targeted drug.
A targeted drug is generally defined as a pharmacological treatment designed
to specifically interfere with a distinct molecule to regulate its role in cellular
functions. In the last few years, ribociclib, along with two other similarly acting
drugs (palbociclib and abemaciclib), has been approved for concurrent use with
hormone therapy in hormone-receptor-positive/HER2-negative breast cancer,
which account for 65-70% of the breast cancer cases. This development have
considerable changed the clinical practise for this type of cancer (Burstein et al.
2021).

Here, we give a simplified overview of the biological mechanisms underlying
the therapeutic effect of ribociclib (for thorough description see Goel, Bergholz
and Zhao 2022 and Fassl, Geng and Sicinski 2022). The target molecule of
ribociclib is cyclin-dependent kinase 4 and 6 (CDK4/6), which play crucial
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2.3. Measuring gene expression

roles in regulating the cell cycle and, consequently, cell proliferation. The cell
cycle progresses through different phases, and the transition between these
phases is strictly regulated. A hallmark of cancer is the loss of control over this
regulation. CDK4/6 regulates the transition from the growth 1 phase to the
synthesis phase, where DNA replication occurs. Cyclin D, a protein, binds to and
activates CDK4/6. This complex then modifies (i.e., phosphorylates) another
protein called retinoblastoma protein 1 (RB1). In its unmodified state, RB1
blocks a transcription-regulating factor (E2F) that, when active, stimulates the
expression of the genes necessary for DNA replication. When RB1 is modified
by the CDK4/6-cyclin D complexes, it releases the transcription factor, which
subsequently promotes the expression of the genes required for transitioning the
cell into the synthesis phase of the cell (a schematic representation is presented
in Figure 2.1).

CycD

CDK4/6

RB1

E2F

P
RB1

E2F

CycD

CDK4/6

RB1

E2F

P
RB1

Cancer CDK4/6 inhibition

Inhibitor

Healthy

Figure 2.1: Schematic representation of the molecular mechanisms of the
targeted drug CDK4/6 inhibitor.

In cancer cells, this signaling pathway can be overactive, leading to
uncontrolled cell proliferation. The mechanism of ribociclib is not fully
understood, but there are indications that it blocks the activity of CDK4/6
either directly by binding to CDK4/6 or through other more indirect ways
(Goel, Bergholz and Zhao 2022; Fassl, Geng and Sicinski 2022). However, the
downstream effect appears to be the prevention of CDK4/6 from activating
RB1, thereby down-regulating signaling that promotes the transition to the
synthesis phase.

A significant challenge in the therapeutic use of CDK4/6 inhibitors is the
considerable variability in patient responses to the treatment. This can be
observed by examining the markedly divergent response frequency in the clinical
trial analysis in this thesis (Figure 2.2). It is known that patients who initially
respond to treatment may develop drug resistance. Furthermore, tumors may
display cancer cells with preexisting, intrinsic resistance to CDK4/6 inhibitors.
One of the primary objectives moving forward is to prescreen patients to identify
those who are likely to respond well to these inhibitors. Investigating whether
machine learning can be a useful tool for this task is a goal of this thesis.

2.3 Measuring gene expression

The most common and simplest approach to assess gene activity in the cells
of an organism is to quantify the levels of messenger ribonucleic acid (mRNA)
molecules. mRNA is synthesized in the cell nucleus through a process called
transcription, where the genetic information encoded in the DNA is copied into
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Figure 2.2: Response variables in the clinical trial with 49 patients. a) shows
the proliferation score, while b) shows the ROR score.

the mRNA molecules. Following transcription, mRNA molecules migrate out of
the nucleus into the cytoplasmic area (i.e. the material within a cell besides the
nucleus), where they provide the genetic information to the protein building
machinery of the cells. Proteins determine the morphology and functionality
of a cell. Consequently, the cellular identity and functionality are dependent
on the expression of a particular set of proteins. Therefore, measuring protein
levels provide more accurate information about a cell’s identity then measuring
mRNA. However, it is considerably more difficult to measure protein than
mRNA. A challenge in using mRNA levels as a measure of cellular identity is
the transient nature of the mRNA molecules. While proteins directly represent
the identity and functionality of the cells, the role of mRNA is to transfer genetic
information from DNA. Once their role is accomplished, mRNA molecules are
degraded. Therefore, mRNA levels fluctuate over time and will not accurately
capture the snapshot of the actual cellular identity. Nonetheless, assessing
mRNA levels remains a widely used and valuable approach for studying gene
expression.

The study of the complete set of mRNA transcripts in a cell population (or
single cell) is called transcriptomics, and there are numerous techniques available
for carrying out such analyses. In this thesis, a variant of the microarray
technology called Nanostring is employed to analyze the dataset. Briefly,
Nanostring utilizes uniquely designed molecular probes to specifically bind to
each target mRNA of interest. These molecular probes consist of a pair for each
mRNA: a capture probe and a reporter probe. The capture probe immobilizes
the mRNA onto a surface, while the reporter probe carries a colour-coded
barcode that allows for the identification of the specific mRNA molecules. An
mRNA sample from a specific cell population (e.g., a sample from a tumor)
is mixed with these probes, and the target mRNA molecules bind to their
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respective probe pairs. Following binding unbound probes are removed. The
immobilized mRNA-probe complex are counted.

2.4 Study design

The dataset used in this thesis is from a clinical trial, named CORALLEEN,
which compared the response of combining a target drug with hormonal therapy
against a standard chemotherapy treatment for breast cancer (Prat et al.
2020). Briefly, this is a randomized, multicenter study where the patients
are postmenopausal women with the breast cancer subtype luminal B. The
cancer subtype diagnosis in this study was primarily based on a well established
weighted score of mRNA expression of 50 genes (PAM50 classification) (Wallden
et al. 2015; Sørlie et al. 2001). Further inclusion criteria in the study was that
the disease was in developmental stage I–IIIA and the tumors were confirmed to
be operable. Stage I-IIIA refers to a maximum size of the tumors and whether
the cancer has not spread beyond the breast (distant metastasis) or the nearby
lymph nodes (draining lymph nodes). Randomisation was stratified to stage
I-II or stage IIIA using permuted blocks of 25 with allocation ratio of 1:1.

The tested drug combination, ribociclib and letrozole, is in biological
studies characterized to target the intracellular signaling pathway between the
estrogen receptor and regulation of the cell cycle (see section 2.2). The control
group received chemotherapy consisting of doxorubicin, cyclophosphamide and
paclitaxel. The duration of the therapy was 24 weeks and thereafter, within two
weeks, the patients went through surgical removal of cancerous tissue. Tissue
samples of the tumors were taken at screening, two weeks after the start of
treatment and at surgery. mRNA was extracted from the tissue in order to
measure changes in gene expression in response to the treatments.

2.5 Study Outcome

The clinical study operated with one primary outcome and multiple secondary
outcomes. Here, I present the two outcomes of interest to this thesis. The
primary outcome was a three level categorical variable. This were based on
an integer score ranging from 0-100, aiming to predict risk of relapse (ROR)
(Wallden et al. 2015). This score is reported as a secondary outcome, but we
have used this score as it increases the statistical power to detect a relation
between the features and the response variable (Altman and Royston 2006). The
score aims to predict a risk of less than 10 % of developing distant metastasis
at 10 years if treated with local therapy and 5 years of endocrine therapy
and without chemotherapy. The score is based on measurements of mRNA
expression level of a distinct gene set (the PAM50 genes) and tumor sizes.
We also analysed the an outcome named proliferation score. This score was
calculated using the mRNA expression level of a subset of the 50 genes that
are associated with the cell cycle. From the frequency distribution, we observe
that the ROR score is dense around score of 20 while there are few observation
above a score of 40 (see Figure 2.2). This compactness of the distribution can
potential create a challenge for predictive models. The proliferation score have
similar distribution.
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2.6. The dataset

2.6 The dataset

In the clinical trial, chemotherapy and targeted drug therapy were compared,
however, in this thesis we have only utilized the data from the targeted drug
therapy group. In the trial 51 patients receiving chemotherapy and 49 patients
receiving the targeted drug therapy had mRNA samples at start and end of the
study of high enough quality for adequate analysis. However, 10 patients in the
chemotherapy group and 8 in the targeted drug therapy group did not receive
the full treatment. In the dataset provided for this thesis that information was
not given. Therefore, all patients were processed equally.

2.7 Major findings in clinical trial

At surgery, 24 (46·1% [95% CI 32·9–61·5]) of 52 patients in the chemotherapy
group and 23 (46·9% [95% CI 32·5–61·7]) of 49 patients in the ribociclib plus
letrozole group showed low-ROR (Prat et al. 2020). Thus, the current effect
measurement on cancer outcome is not significantly different between the two
treatments. However, the side effect appeared to be lower in the ribociclib plus
letrozole group compared to the chemotherapy group.

2.8 Features in the dataset - the signature gene sets

The dataset contains demographics, clinical parameters and mRNA expression
of 771 genes in the tumors of the patients at the above mentioned timepoints.
In this work the analysis is concentrated on the gene expression data. The genes
were pre-selected based on domain knowledge suggesting their involvement in
cellular processes relevant for the tumor ecosystem of breast cancer biology
(nCounter® Breast Cancer 360™ V2 Panel). More specifically, the total gene
set is composed of subsets of genes, where each of these subsets take part in
specific cellular functionality such as intracellular signaling, immune activity,
regulation of cell division and cell deaths, generation of blood vessels and
tumor metabolism. See table 2.1 for a full overview of the 25 gene sets and
the number of genes within each of them. From a medical perspective this
option for dissecting the role of the different parts of the cancer ecosystem
as described in the introduction. We have primarily included this biomedical
domain knowledge into the statistical models to reveal its predictive power.
However, as some of the methods conduct feature selection, insight into the
cancer biology of the tumor ecosystem is also feasible. The sub gene sets are
called signature gene sets and they are referred to by the name of the process
they are involved in or the name of the particular cells that express the genes.
We have studied the gene sets angiogenesis, antigen presentation, apoptosis,
cell migration, cytokine and chemokine signaling, DNA damage repair, estrogen
receptor signaling, immune infiltration, proliferation and tumor metabolism.
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2.8. Features in the dataset - the signature gene sets

Table 2.1: The signature gene sets

Name Number of genes
Cell Migration 83
Angiogenesis 34
Antigen Presentation 21
Apoptosis 9
Cytokine and Chemokine Signaling 50
DNA Damage Repair 143
EMT 85
Estrogen Receptor Signaling 27
Epigenetic Regulation 18
Hedgehog 20
Immune Infiltration 34
Internal Reference Gene 18
JAK-STAT 47
MAPK 100
Notch 22
PI3K 96
Proliferation 144
Stromal Markers 6
Subtypes 70
TGF-beta 57
Transcriptional Misregulation 63
Triple Negative Biology 50
Tumor Metabolism 15
Wnt 51
Internal Reference Gene 18
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CHAPTER 3

Methods and theory of standard
statistical terminology and
machine learning models

In this chapter, we introduces standard statistical terminology and present
the linear regression model and its extensions ridge regression, lasso and
elastic-net. These models extend the standard linear model by incorporating
different penalty terms to control the model’s complexity, thereby improving
its generalization performance (Hastie, Tibshirani and J. Friedman 2009).
Furthermore, we outline the general notation, some standard definitions and
expressions used in this thesis.

We also review the non-linear ensemble model, boosting, with decision
stumps as the base learner. Collectively, ridge, lasso, elastic net, and boosting are
considered standard initial approaches for statistical analysis of high-dimensional
data (Hastie, Tibshirani and J. Friedman 2009).

Finally, the evaluation strategies we employed to compare the performance
of the models are described.

3.1 The linear regression model

Throughout this thesis, we will consider datasets containing a scalar outcome
variable yi and a vector of predictor variables xi = (xi1, · · ·xij , · · · , xip), where
i = 1, . . . , n corresponds to individual patients. Given a dataset of observations
(x1, y1), . . . , (xn, yn), the multiple linear regression model can be defined as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βjxij + · · ·+ βpxip + ϵi, (3.1)

where yi is a dependent variable and xij are the independent variables. The
p + 1 coefficients βj , j = 0, ..., p have to be estimated, which is a major goal
in this thesis. The last term, εi, is the error for the i-th observation. This is
a random variable that accounts for variations the model cannot explain and
is often placed under assumptions such as having a specific distribution and
an expected value equal to zero. The term "multiple" refers to a situation with
more than one independent variable. We will mostly use the terms features,
predictors and genes when we refer to the independent variables and response
or outcome variables when we refer to dependent variables. The matrix form of
the multiple linear regression model is given by
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3.2. Basic definitions and terminology

y = Xβ + ϵ, (3.2)

where y is the response vector, X is the design matrix, β is the coefficient
vector and ϵ is the error vector. This equation can can be written using the
notation above as


y1
y2
...

yn

 =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...
1 xn1 xn2 · · · xnp




β0
β1
β2
...

βp

 +


ϵ1
ϵ2
...

ϵn

 . (3.3)

The linear model can be expanded by introducing interactions to account for
non-additive relationships among the independent variables. In its simplest
form this concept can be exemplified as the situation where the effect of one
predictor on a response variable depends on the value of a second predictor. In
order to represent the interaction effect a new variable, known as the interaction
variable, is typically constructed as the product of the original variables. The
interaction variable is then added as an additional term to the linear regression

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + ϵi, (3.4)

where β3 represents the coefficient of the interaction. This equation can be
naturally expanded to cases with more than two explanatory variables of
interest by constructing multiple interaction variables, with pairwise products
representing pairwise-interactions and higher-order products representing higher-
order interactions. In general, interaction terms can be challenging to understand
and interpret, so they are rarely used with more than three original variables in
interaction terms, and most often only two are used (Aiken, West and Reno
1991).

3.2 Basic definitions and terminology

In this section, we present and define general statistical terminology and concepts
that are used throughout the thesis.

Mean Squared Error (MSE) is a metric we use to measure the differences
between predicted and observed values, in order to assess the quality of the
statistical models. MSE is the average squared distance between the predicted
values and the observed values. Given a set of predicted values ŷ1, ŷ2, . . . , ŷn

and corresponding observed values y1, y2, . . . , yn, the MSE can be calculated as

MSE = 1
n

n∑
i=1

(yi − ŷi)2. (3.5)

Loss functions are used to quantify discrepancy between the observed
values and the predicted values of a model, serving as a performance measure.
The goal in model training is to minimize the loss function by optimizing the
model parameters for the given data. Loss functions vary depending on the
model. For the ordinary linear regression model it is common to use the residual
sum of squares (RSS) as loss function
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3.2. Basic definitions and terminology

RSS =
n∑

i=1
(yi − ŷi)2, (3.6)

or in matrix form

RSS = (y − ŷ)⊤(y − ŷ). (3.7)

Finding estimates of the βs in the linear regression model, the β̂s, then becomes
the solution to this problem

β̂ = argmin
β

{
n∑

i=1
(yi − β0 − β⊤xi)2

}
, (3.8)

or in matrix form

β̂ = argmin
β

{
∥y −Xβ∥2

2
}

, (3.9)

The closed form solution to the optimization problem is given by

β̂ = (X⊤X)−1X⊤y.

High-dimensional data refers to datasets which contain large number
of feature variables relative to the number of observations. Mathematically it
is defined in Hastie, Tibshirani and J. Friedman 2009 as the situation where
p ≈ n or p > n.

Sparsity refers to the situation where only a small proportion of the
covariates contain significant or non-zero information about a dependent variable,
while the rest contribute with little to no information (Hastie, Tibshirani and
J. Friedman 2009).

In the context of high-dimensional modeling, the phrase "bet on sparsity"
refers to the assumption that the underlying true model is sparse. Assuming
sparsity suggests that only a minor subset of the features contributes significantly
to the prediction of the response variable and, thus, can be leveraged in model
building to simplify models and improve interpretability.

L1 norm is a measurement of a vector magnitude, sometimes called the
Manhattan distance or taxicab norm because it measures the distance between
two points in a grid-like pattern, where one can only move horizontally or
vertically, but not diagonally. It is defined as the sum of the absolute values of
its elements. Given a vector x = (x1, x2, . . . , xn), the L1 norm is defined

||x||1 =
n∑

i=1
|xi|. (3.10)

L2 norm, known as the Euclidean norm, is another measure of the size of a
vector. It is defined as the square root of the sum of the squares of its elements

||x||2 =

√√√√ n∑
i=1

x2
i . (3.11)

Overfitting occurs when a model is too complex and fits the training data
too close, capturing also noise instead of primarily focusing on the underlying
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3.3. Ridge regression

pattern in the data. As a result, the model performs poorly on new, unseen
data. Underfitting is the opposite of overfitting and occurs when a model is
too simple to accurately capture the underlying structure or patterns in the
data, leading to bias.

Regularization is a technique that controls a model’s complexity (encourage
sparse feature space), through the size and number of parameters in order to
prevent overfitting by incorporating a penalty term into the loss function. Two
prevalent methods include L1 regularization and L2 regularization, which use
the L1-norm and the squared L2-norm of the parameter vector as penalty terms,
respectively. These examples, known as lasso and ridge, will be discussed below.

Stability refers to the model’s sensitivity to small changes in the training
data. Stable models maintain consistent performance and similar parameter
estimates when conducted to minor perturbed training data. Stability can be
improved by employing regularization, which reduces the variance in model
estimates.

Reliability is the degree to which a model produces consistent and accurate
results when applied to various datasets. A reliable model exhibits both stability
and good generalization performance, making it suitable for use in practice.

Decision stump or just stump is the simplest form of a decision tree. A
decision tree is a hierarchical machine learning model. A decision tree consists
of nodes and branches, with each node representing a feature and each branch
representing a decision based on that feature. A split is the process of dividing
a node into two or more child nodes based on a threshold for a specific feature
value. A stump, in this context, is the simplest decision tree with only one split
for a single feature.

3.3 Ridge regression

In ridge regression, the objective is to minimize the RSS between the predicted
values and the true values of the training data subjected to a regularization
(Hoerl and Kennard 1970). The regularisation is defined by constraining on the
square of the L2 norm of the coefficient vector β. The constrain can be defined
as ∥β∥2

2 < s for some s, but it is most common to present the ridge regression
problem as the solution to

β̂ = argmin
β

{
n∑

i=1
(yi − β0 − β⊤xi)2 + λ∥β∥2

2

}
, (3.12)

or in matrix form

β̂ = argmin
β

{
∥y −Xβ∥2

2 + λ∥β∥2
2
}

, (3.13)

where λ > 0 is a hyperparameter controlling the strength of regularization.
The penalty term has the effect of shrinking the magnitude of the coefficient
estimates towards zero without setting them exactly to zero as in the case of
the L1 penalty in lasso (see next section). As λ increases, the magnitude of the
coefficients is shrunk towards zero. λ is typically tuned on a different dataset
as the one used to learn the model.

The Ridge regression model can be fit using various optimization algorithms,
such as gradient descent, but it also has the closed-form solution. The optimal
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3.4. Lasso regression

value of λ can be determined using techniques such as cross-validation combined
with grid search. The closed-form solution to the optimization problem is given
by

β̂ = (X⊤X + λI)−1X⊤y,

where I is the identity matrix. However, it is not common to solve ridge by
closed form calculations in algorithms due to the computational complexity and
numeric instability of matrix inversion.

3.4 Lasso regression

Least absolute shrinkage and selection operator (lasso) is a linear regression
model that uses the L1 norm of the coefficient vector β as regularization
(Tibshirani 1996). Interestingly, this will in addition to penalize the size of the
β’s also cause selection of the β’s, which encourage sparsity in the feature space
of the learned model (discussed further below). The lasso optimization problem
is the solution to the problem

β̂ = argmin
β

{
∥y −Xβ∥2

2 + λ∥β∥1
}

, (3.14)

The equation is identical to ridge besides that the penalty terms is based on the
L1 norm instead of the L2 norm. The λ parameter enables a desired level of
sparsity and is typically tuned on a different dataset as the one used to learn the
model. Lasso introduces a bias in the estimates of the coefficients in exchange
for reducing the variance of the estimates. The strength of the regularization
determines the trade-off between bias and variance.

3.5 Elastic net regression

The elastic net model combines the L1 and L2 penalties and is thus a blend
between the lasso and ridge models (Zou and Hastie, 2005). It is often used
in situations where there are many features where some are highly correlated.
The elastic net problem has the following optimization problem

β̂ = arg min
β

{
∥y −Xβ∥2

2 + λ(α∥β∥2
2 + (1− α)∥β∥1)

}
. (3.15)

The first term in loss function is the well known RSS, the second term combines
the L2 penalty and L1 penalty. α ∈ [0, 1] is a hyperparameter which controls
the balance between the regularization terms. When α = 0 elastic net reduces
to lasso, and when α = 1, it reduces to ridge. In general, a large value of alpha
gives more weight to the L2 penalty, while a smal value gives more weight to
the L1 penalty. α is often selected using cross-validation combined with grid
search techniques, but sometimes it is just set, typically to 0.5.

3.6 Comparison of the ridge and lasso penalties

The choice between ridge and lasso penalty in linear regression analysis depends
on the specific characteristics of the dataset and the goals of the analysis.
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3.6. Comparison of the ridge and lasso penalties

The L1 penalty encourages the model to use only a subset of the available
features by setting some entries of the estimated β coefficients to exactly zero,
thereby performing variable selection. To understand how the L1 penalty
achieves this, we can visualize the loss function in a contour plot with two
features (see Figure 3.1). In this case, the β coefficients are on the x-axis and
y-axis and the contour lines represent regions with the same loss value. The
RSS term will create elliptic contour lines with center at its lowest value, with
gradually larger values as the ellipses increase in size. The L1 term will create
diamond shaped contour lines with center at the origin. For the β values to
be the same in the two terms the counter lines must intersect. Although the
contour lines don’t need to represent the same loss value where they intersect,
the objective of lasso is to minimize the sum of the contour values at the meeting
point. It is now possible to see that in a large part of the β space the contour
lines will intersect along one of the axes, giving zero value to the β coefficient
represented by that axis. In contrast, the L2 penalty produces circular contour
lines centered around the origin, with no corners protruding like those in the
L1 penalty. Consequently, the likelihood for the two sets of contour lines to
intersect along an axis is not higher than at any other location on the L2 penalty
contour lines.

Figure 3.1: Figurative visualization of the differences between the L2
regularization (left) and the L1 regularization (right). Modified from Hastie,
Tibshirani and J. Friedman 2009.

Lasso regression is often preferred when the number of predictor variables is
high, and many of them may be irrelevant or redundant (a "bet on sparsity"
situation). In such cases, lasso’s L1 regularization can effectively set the
coefficients of irrelevant variables to zero, resulting in a simpler and more
interpretable model. Moreover, when there is an absolute need to select a small
subset of important predictor variables for the model lasso is the obvious choice.
However, multicollinearity can be a challenge for lasso. Multicollinearity occurs
when the independent variables in a regression model are highly correlated,
making it challenging to distinguish the individual effect of each variable on
the dependent variable. In such situations, a lasso model will typically select
one among the correlated variables. This can lead to instability in model choice
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3.7. The glmnet package used for ridge, lasso and elastic net

and predictive power. In general, due to the encouragement of sparsity, lasso
performs well when a small number of predictors have large coefficients and
the remaining predictors have small coefficients. However, if all predictors have
relatively large coefficients, the lasso penalty can be too severe and randomly
selecting some predictors, which can lead to underfitting. In such cases a lasso
model may not capture the underlying relationships between the predictors and
the response variable adequately, resulting in poor generalization to new data.

On the other hand, ridge regression is often preferred when the goal is to
obtain the best prediction accuracy. This is particularly true when in scenarios
where all predictors have significant coefficients, but also even if some of them
are not important or relevant. Ridge’s L2 regularization shrinks the coefficients
of all variables towards zero, but not exactly to zero, which can help to prevent
both underfitting and overfitting and, thus, improve the stability of the model.
Specifically, ridge regression can be more stable than lasso when the predictor
variables are highly correlated. Ridge is suggested to be well adapted to handle
the problem of multicollinearity in high dimensional data (Hoerl and Kennard
1970). Ridge regression reduces the variance in the estimated coefficients, which
can lead to more stable predictions compared to other machine learning models.

What benefits do we get out of combining the two penalty terms in the
elastic net is a relevant question. Obviously, when there is a need for both
variable selection and accurate prediction, elastic net offers a balanced solution
by incorporating both types of regularization. Elastic net can handle highly
correlated predictors better than lasso as elastic net can shrinks the coefficients
of correlated predictors together. Thus, with respect to selection between
correlated features in elastic net the L2 term encourages highly correlated
features to be averaged, while the L1 term encourages a sparse solution in
the coefficients of these averaged predictors (Zou and Hastie 2005). Therefore,
elastic net can in some situations lead to more stable and interpretable models
than those produced by lasso or ridge alone.

In conclusion, statisticians commonly regard ridge regression as a safer
choice for prediction purposes as it generally increase the chance of prediction
accuracy. On the other hand, if the primary goal is feature selection and
interpretability, lasso is the preferred choice. However, when both prediction
and variable selection are of interest, elastic net emerges as a compelling and
relevant solution. In practice, it is often a good idea to try all methods and
compare their performance using appropriate evaluation metrics and cross-
validation techniques.

3.7 The glmnet package used for ridge, lasso and elastic
net

In the R-package glmnet (J. H. Friedman, Hastie and Tibshirani 2010; Tay,
Narasimhan and Hastie 2023), the coordinate descent algorithm is used to solve
a sequence of regression problems with different values of the regularization
parameter λ. The algorithm starts with a high value of λ, where all coefficients
are set to zero, and then gradually decreases λ, allowing the algorithm to
introduce more and more input features into the model.

The optimization problem of lasso is a convex problem and even though the
L1 penalty term is non-differentiable at zero it can be solved by gradient-based
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methods such as subgradient descent or proximal gradient descent. However,
non-gradient numerical optimization techniques also exist e.g. the LARS
algorithm. In my thesis I have used the R packed glmnet which uses a highly
optimized implementation of the coordinate descent algorithm for ridge and
lasso that was developed by J. H. Friedman, Hastie and Tibshirani (2010). It is
not strictly a gradient-based method, but it can be viewed as a generalization of
gradient descent that operates on a single coordinate at a time. In traditional
gradient descent, the algorithm updates the model parameters using the gradient
of the loss function with respect to all the parameters at once. In contrast, in
coordinate descent, the algorithm updates the model parameters one coordinate
at a time while holding all other coordinates fixed. At each iteration, the
algorithm identifies the coordinate that can be updated to achieve the largest
reduction in the loss function, and then updates that coordinate by a specific
amount. In the case of the lasso, where the L1 term is not differentiable at
zero, still as the function is convex the gradient exists outside zero and it is a
constant value of either -1 or 1, depending on the sign of the corresponding
coefficient.

The glmnet algorithm also employs a rule called the "strong rule" to remove
the coordinate from the active set of variables and thus avoid updating it in
subsequent iterations (Tibshirani et al. 2010). The strong rule works by checking
whether the absolute correlation between the response variable and the predictor
is less than a certain threshold value. If the absolute correlation is less than
the threshold, the coordinate is set to zero and removed from the active set,
and subsequent iterations of the algorithm do not update that coordinate. The
threshold value used in the strong rule can be chosen based on the numerical
precision of the computation and the desired level of sparsity in the solution.

3.8 Boosting with stumps

Boosting is an ensemble model which combines multiple weak learners to form
a strong model (Hastie, Tibshirani and J. Friedman 2009). An ensemble model
is an aggregate of several different models. A weak learner in this setting is a
model that perform just slightly better then a random guess. The weak learners
are often called base learners, or base models and are typically simple statistical
models.

The general idea underlying boosting is to iteratively train a set of such weak
base learners and then add them together in a final model. Within each iteration
higher weights are assigned to the data points that were less well learned in
the previous iteration steps. In this way, the subsequent base learner focuses
more on the data that were difficult to learn by the previous base learners.
Thus, each new base learner does not disturb the set of learners created in the
previous steps, but it transmits some more information from the data space
into the total model in order to reduce the error. Therefore, as the different
base learner focus on various aspects of the data the final model will capture
various patterns in the data space.

The weak base learners are simple models which most often only use a
subset of the feature space. In the simplest case there is one base learner for
each feature. Many different models can be used as weak learners, e.g. it can
be decision stumps or simple linear models, but also more flexible models as
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splines are sometimes used. However, to maintain a week learning model these
need to be defined with small degrees of freedom (Hofner et al. 2011). It is also
an option to combine different base learners, which in principle means that an
additive model is built iteratively. The final model is an average of the base
learners.

Each of the base learners has high bias but low variance, which causes them
to underfit the data. However, the combination of them reduces bias as they
handle various aspects of the data space. Furthermore, as boosting takes the
weighted average of many models the final model has lower variance than each
of the base models since the random errors in the individual models typically
are canceled out.

We have used regression stumps as base learners as this gives the opportunity
to learn non-linear data and then becomes a supplement to the other models
we have tested that focus on linearity.

In the algorithms of xgboost, the gradient of the loss function is used to
train new base learners (Chen and Guestrin 2016). In the case of regression,
where the loss function is the RSS, the gradient becomes the residual between
model prediction and the response in the training data. The iterative process is
outlined in Algorithm 1. To learn the set of base functions used in the model,
xgboost minimize the following loss function

L = RSS +
M∑

m=1
Ω(f (m)), (3.16)

where M is the number of trees in the ensemble. The term Ω(f (m)) represents
the regularization for tree m. The penalty term in xgboost is formulated as

Ω(f (m)) = γT + 1
2λ||w||22, (3.17)

where γ is a hyperparameter that controls the complexity of the tree structure
through the number T of terminal nodes. λ is the L2 regularization
hyperparameter and w is a vector of terminal node weights.
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Algorithm 1 Component-wise gradient boosting with stumps

1. Initialize with offset value f0(x) = 1
n

∑n
i=1 yi.

2. For m = 1 to M or early stopping criteria is met:

a) Compute the negative gradients ri of the loss function, L and evaluate
it at the previous iteration step, f̂

(m−1)
i (xi) (i.e. at the estimate of

the previous iteration).

r
(m)
i = −∂L(yi, f̂

(m−1)
i (xi))

∂f̂
(m−1)
i (xi)

.

b) For each j = 1, 2...., p features fit a stump h
(m)
j using ri as response

variable (xgboost also uses a stochastic feature selection process
here).

c) Select the stump that improves the model most

hm = arg min
h

(m)
j

n∑
i=1

L(yi, f̂
(m−1)
i (xi) + h

(m)
j )

d) Update the model by adding the new stump to the ensemble
f̂(xi)(m) = f̂(x)(m−1)

i + ηh(m)(xi) , where 0 < η ≤ 1 is learning
rate.

3. The final ensemble model becomes f0(x) +
∑M

m=1 ηhm(x).

3.9 Model comparison and assessments of predictive
performance

Unfortunately, the dataset is so small that we found it unfeasible to split it
into a training and a test set. To compare and evaluate the usefulness of the
different models, we instead utilized two resampling techniques: bootstrapping
and repeated cross-validation, which will be described in more detail below.
Moreover, in order to assess the accuracy of the predicted values ŷi in the test
set of size n, we employed the Pearson correlation coefficient to linearly compare
them with the true values yi

r =
∑n

i=1(ŷi − ¯̂y)(yi − ȳ)√∑n
i=1(ŷi − ¯̂y)2

√∑n
i=1(yi − ȳ)2

. (3.18)

where ȳ and ¯̂y are the mean of yi and ŷi, respectably.
Additionally, we used MSE to measure of accuracy of the models

Bootstrapping

In non-parametric bootstrapping, multiple random samples are drawn with
replacement from a dataset. Typically, each sample includes the same number
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of observations as in the original dataset. These samples are often used to
compute a statistic in order to acquire an empirical approximation of the
sampling distribution of that statistic. We have utilized bootstrap sampling to
generate multiple training samples for our models. Specifically, we learned 1000
fits of a model of interest by training on 1000 bootstrap samples from the original
dataset. Each model was evaluated on the original data set, which means that
the bootstrap samples acted as the training data and the original dataset acted
as the test data. With this approach training and test data will have common
observations, which typically can lead to overfitting. However, if assuming that
the structure in the dataset is an adequate representation of the population this
can be used to evaluate the relative differences in performance between models
(Hastie, Tibshirani and J. Friedman 2009). While this bootstrapping approach
can be useful in model selection it doesn’t give satisfactory information about a
model’s performance on future prediction.

Repeated cross-validation

In k-fold cross-validation the original dataset is first randomly split into k
subsets, called folds, of roughly equal size. A separate model is trained on
the data from k-1 folds, and tested on the remaining fold not used for the
model training. The process is repeated k times, with a different fold serving as
the test set each time. The overall performance measure is then calculated as
the average performance across all the k iterations. When splitting a dataset
into a learning and evaluation set, as in cross-validation, the results between
different splits will typically vary significantly when the dataset contains few
observations, as it becomes sensitive to the partition of the dataset. To address
this instability problem we repeated the cross-validation 200 times, when using
k=5.
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CHAPTER 4

Naive analysis

In this section we present the results from utilizing a set of standard machine
learning model classes often used to analyse high dimensional data. These are
ridge, lasso, elastic net and boosting with stumps as base learners as described
in chapter 3. All the 771 gene expression values in the dataset from the clinical
trial were used as predictors, while both the proliferation score and the ROR
score were used as response variable in separate analyses.

The standard approach for evaluating machine learning models involves
dividing a dataset into a training set and a testing set, fitting models on
the training set, and then evaluating the model performance on the test set.
However, in this thesis, we only have 49 patients in our dataset. With such a
small sample size, the model fit and the accompanied performance evaluation is
highly sensitive to the random split of data into training and test set. Therefore,
we have employed two evaluation approaches typically used with small datasets
(see Section 3.9).

The first approach involves fitting models on 1000 bootstrap samples and
evaluating model performance using the full original dataset. The bootstrapping
method employed in this thesis will, on average, give bootstrap samples that
contain approximately 63.2% of the original dataset. Consequently, the models
are fitted on an average of 31 patients (49·0.632) and tested on all the 49 patients.
In the second approach, we preformed five-fold cross-validation, repeated 200
times. This results in the generation of 1000 models, which are trained on 39
patients and tested on 10 patients. Thus, the bootstrap method in addition, to
the overlap in training and test sets, providing a substantially larger number of
observations in the test set than for the repeated cross-validation. Due to these
factors, the repeated cross-validation method is a more conservative approach
and in addition may give higher variability in comparison to the bootstrap
method. The latter we did observe in our results.

During model training the hyper-parameters are selected with five-fold
cross-validation, which is built into the algorithm of these machine learning
classes. The models were chosen based on their specific hyper-parameters that
corresponded to the lowest MSE obtained during the cross-validation process.

4.1 Ridge regression

Ridge regression was fitted using both the bootstrap and the repeated cross-
validation methods. We utilized the proliferation score and the ROR score as
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4.1. Ridge regression

response variables, respectively. In this section, we first present the results
related to model coefficient sizes, followed by the performance measures of the
ridge models.

Coefficient sizes

To obtain an overview of the estimated coefficients’ sizes, we plotted a histogram
of the mean sizes over the model fits for all 771 coefficients (Figure 4.1). We
only display the histograms for the bootstrap approach, but similar distribution
were observed for repeated cross validation.
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Figure 4.1: Histogram of the mean of each coefficient’s size from 1000 bootstrap
models of the ridge regression using the proliferation score (left histogram) and
ROR score (right histogram) as response variables

Next, to gain information about the most important features estimated by
the ridge regression, we selected the 20 coefficients with the largest absolute
values. In Figure 4.2 a box plot of these coefficients for the bootstrap approach
with the proliferation score as response are show. This provides some insights
into the central tendency, variance and skewness of the estimated coefficient
values for the most important predictor variables. The distribution of the
coefficient values appears nearly symmetric for most genes, however, we observe
some variability in the standard error of the coefficients. Notably, none of
the genes show a substantially high coefficient value compared to the others,
indicating that no individual gene stand out with a particularly strong influence
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on the proliferation score, even though a couple of them seem to be significantly
different from 0.
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Figure 4.2: The distribution of the 20 largest mean absolute estimated coefficient
sizes across 1000 ridge models. The models are fitted using 771 gene expressions
values as features and the proliferation score as response variable. Bootstrapping
was used to generate training samples and the full dataset was used to test the
models. The horizontal axis contains the gene name abbreviations. The x-axis
represents the coefficient values for the corresponding genes. The boxes represent
the interquartile range, which contains the middle 50% of the data. The left
most edge of the box is the 25th percentile, and the right most edge is the
75th percentile. The horizontal line inside the box is the median. The whiskers
extend to the minimum and maximum data points within 1.5·interquartile range
outside the box. Any data points outside the whiskers are plotted as individual
points.

We also conducted box plots for the three other combinations of sampling
approaches and response variable (Figures 4.3, 4.4, 4.5). We observed similar
results as for bootstrap with proliferation score.
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Figure 4.3: The distribution of the 20 largest mean absolute estimated coefficient
sizes across the ridge models when using ROR score as response variable. The
bootstrapping sampling approach was used.
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Figure 4.4: The distribution of the 20 largest mean absolute estimated coefficient
sizes across the ridge models using the proliferation score as response variable.
The repeated cross-validation was used to generate 1000 training and test
datasets.
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Figure 4.5: The distribution of the 20 largest mean absolute estimated coefficient
sizes across the ridge models using the ROR score as response variable. The
repeated cross-validation was used to generate 1000 training and test datasets.

In Table 4.1, the 20 largest mean absolute estimated coefficient sizes across
1000 ridge models for the four different combinations of sampling approaches and
response variables are summarized. In total, 37 genes were selected, with seven
genes (CETN2, G6PD, HDAC2, MAPK1, NSD1, PMS2, and PSMB7) appearing
in all combinations. Importantly, when comparing the two different sampling
approaches with the proliferation score as the response variable, there was an
overlap of 18 genes. Similarly, for the ROR score, 14 genes overlapped. Thus,
we observed more overlap when considering the response variable than sampling
approach. This is of course expected, as different genes should have varying
effects on different outputs. In conclusion, the relatively large overlap between
the different sampling approaches for the same response lends confidence that
these genes are of significance for the response.

27



4.1. Ridge regression

Table 4.1: Coefficients of the ridge models
Gene Bootstrap (mean (SD)) Repeated CV (mean (SD))

Proliferation score ROR score Proliferation score ROR score
ACTR3B -0.464 (0.173) -0.297 (0.218)
ACVR1B 0.45 (0.2) 0.267 (0.233)
ADD1 -0.00775 (0.00319) -0.00712 (0.00308)
BAX 0.00786 (0.00547) 0.00705 (0.00363)
CETN2 0.00711 (0.00738) 0.563 (0.342) 0.00654 (0.00565) 0.352 (0.315)
DLL4 0.332 (0.143) 0.208 (0.158)
EIF3B -0.404 (0.206) -0.26 (0.201)
ERCC1 -0.00676 (0.00311) -0.00635 (0.00251)
FZD9 -0.361 (0.101) -0.222 (0.162)
G6PD 0.0092 (0.00357) 0.4 (0.186) 0.00843 (0.0033) 0.262 (0.195)
GATA3 -0.00757 (0.00181) -0.0068 (0.00224)
HDAC2 0.00878 (0.00311) 0.451 (0.159) 0.00756 (0.00288) 0.28 (0.193)
ITGB1 0.474 (0.131) 0.312 (0.196)
MAPK1 -0.00729 (0.00554) -0.382 (0.298) -0.00651 (0.00454) -0.224 (0.253)
MLH1 0.414 (0.293) 0.253 (0.239)
MTOR -0.0109 (0.00714) -0.0091 (0.00563)
NSD1 -0.0142 (0.00407) -0.52 (0.257) -0.0127 (0.00448) -0.333 (0.25)
NUDT1 -0.207 (0.151)
OAZ1 -0.00828 (0.00514) -0.00692 (0.00405)
PARP4 0.395 (0.157) 0.252 (0.177)
PCNA 0.00836 (0.00384) 0.00733 (0.00356)
PFDN2 0.00975 (0.00559) 0.00872 (0.00472)
PGK1 0.0061 (0.00245)
PIK3CA -0.00864 (0.00338) -0.00748 (0.00319)
PIK3R2 0.37 (0.19) 0.245 (0.185)
PMS2 -0.00862 (0.00443) -0.592 (0.208) -0.00819 (0.00389) -0.403 (0.289)
PPP2R1A -0.00649 (0.0027)
PRKACA -0.00994 (0.00662) -0.00837 (0.00494)
PSMB7 0.00838 (0.00389) 0.33 (0.22) 0.00748 (0.00343)
RBL2 -0.421 (0.158) -0.253 (0.217)
RPS6KA5 0.00685 (0.00331)
RPS6KB2 -0.34 (0.17) -0.207 (0.173)
SERBP1 -0.219 (0.18)
SKP1 -0.00755 (0.00431) -0.00657 (0.00328)
SP1 -0.00623 (0.00285)
TBP 0.4 (0.15) 0.253 (0.188)
WDR77 -0.566 (0.214) -0.369 (0.273)

Performance measure

To evaluate the performance of the models we analysed the correlation between
the predicted outcomes and the observed response values in the dataset, under
both the bootstrap regime and the repeated cross validation regime (see table
4.2). For the bootstrap regime, the mean correlation was 0.82 (SD = 0.071) for
the proliferation score and 0.78 (SD = 0.077) for the ROR score. The MSE
between predicted and observed response was considerably higher for the ROR
score than for the proliferation score, which is consistent with the different
scales of these two scores.

When we applied the repeated cross-validation approach the performance
of the models was lower. We obtained substantially lower correlation values
for both the proliferation (0.53, SD=0.207) and ROR scores (0.33, SD=0.262).
The MSE was also approximately three times higher.

The lower correlation and higher MSE for the repeated cross-validation
approach compared to the bootstrapping approach is as expected since there is
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4.1. Ridge regression

an overlap in training and testing data for the bootstrap method while this in
not the case for repeated cross-validation. Explaining the reduced performance
of the models when using the ROR score as a response variable in comparison
to the proliferation score is more difficult. However, the proliferation score
is based solely on transcriptomic data while the ROR score also incorporates
clinical findings. This difference in data types could potentially account for the
observed difference in performance. Furthermore, from a biological perspective,
cell proliferation is a less complex process compared to disease outcomes, were
cancer cell proliferation is just one of many contributing factors. This increased
complexity may make prediction more challenging.

0

50

100

150

200

250

−0.5 0.0 0.5 1.0

C
ou

nt

a)

0

50

100

150

200

250

−0.5 0.0 0.5 1.0

b)

0

25

50

75

100

−0.5 0.0 0.5 1.0
correlation

C
ou

nt

c)

0

25

50

75

100

−0.5 0.0 0.5 1.0
correlation

d)

Figure 4.6: The ridge model using 771 genes as features. The histograms
show the correlation between predicted response and the observed values in
test sets. In a) and b) bootstrapping is used to generate training samples and
the full dataset is used to test the models. In a) the response variable is the
proliferation score while in b) the ROR is the response variable. In c) and
d) repeated cross-validation is used to generate multiple training and testing
datasets. In c) the response variable is the proliferation score while in d) the
ROR is the response variable. When comparing the results of the two different
regimes for model evaluation it is important to have in mind that the test set of
the bootstrap method had 49 patients, while for the repeated cross-validation
it was only around 10 patients, and 10 is a rather small number to use for
correlations.
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4.2. Lasso regression

Table 4.2: Ridge performance summary

Model Correlations (SD) MSE (SD)
Proliferation (bootstrap) 0.82 (0.071) 0.057 (0.019)
ROR (bootstrap) 0.78 (0.078) 156 (44)
Proliferation (repeated cross-val.) 0.53 (0.207) 0.13 (0.070)
ROR (repeated cross-val.) 0.33 (0.262) 357 (150)

4.2 Lasso regression

Lasso regression was applied using both the bootstrap and repeated cross-
validation methods (section 3.9). We utilized the proliferation score and the
ROR score as response variables in separate analyses. In this section, we first
present the results related to the selection of the features (the genes) and then
discuss the performance evaluation of the lasso model.

Feature Selection

For the proliferation score, 67 genes were selected at least 10% of the time in the
1000 bootstrapped fitted models (Figure 4.2). The genes CACNA1H, EFNA3,
GATA3, and LEFTY2 were selected 50% or more of the times. The top 20 most
selected genes were LEFTY2, GATA3, CACNA1H, EFNA3, HOXA9, CAMK2B,
BMPR1B, NSD1, CA12, HOXA7, JAG1, APOE, PLA2G2A, TAPBP, S100A7,
CALML5, HDAC2, CHIT1, CBLC, and FGF13.
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Figure 4.7: Genes selected in more then 10% of the lasso bootstrap models
using proliferation score as response variable

The coefficient values for these 20 gene expressions are shown in figure 4.8.
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4.2. Lasso regression

We observe that GATA3, LEFTY2, HOXA9, and NSD1 have substantially
higher absolute median values compared to the other genes, suggesting a
significant effect of the genes on the proliferation score. However, NSD1 was
selected less than 40% of the time, while the other two were selected more than
70% of the time. HOXA9 was selected almost 50% of the time.
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Figure 4.8: The coefficient values of the 20 most selected genes by the lasso
models using the proliferation score as response variable (bootstrap sampling
technique).

For the ROR score analysis, 62 genes were selected at least 10% of the time
in the 1000 bootstrapped fitted models (Figure 4.9). Only one gene, CHIT1,
was selected more than half the time. Among the 20 most selected genes,
nine genes (CHIT1, LEFTY2, CA12, CACNA1H, HOXA7, EFNA3, APOE,
CETN2, HDAC2) overlapped with the top 20 most selected genes when utilizing
the proliferation score. Since the ROR score takes into account cancer cell
proliferation, these genes potentially play an important role in regulating cell
proliferation. In figure 4.10, a box plot of the coefficient values of the top 20
genes selected using ROR score are shown. The PMS2 gene had a substantially
larger coefficient (in absolute value) than the other genes. PMS2 was selected
in approximately one-third of the models (see Figure 4.9).
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Figure 4.9: Genes selected in more then 10% of the lasso bootstrap models
using ROR score as response variable
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Figure 4.10: The coefficient values of the 20 most selected genes by the lasso
models using the ROR score as response variable (bootstrap sampling technique).

Turning to the models fitted using the repeated bootstrap strategy and
utilizing the proliferation score as a response variable, five genes (BMPR1B,
CA12, CACNA1H, EFNA3, GATA3, HOXA9, LEFTY2) were selected more
than 50% of the time, and 45 genes were selected at least 10% of the time. The
top 20 selected genes included GATA3, LEFTY2, CACNA1H, HOXA9, CA12,
BMPR1B, EFNA3, NSD1, HOXA7, CAMK2B, APOE, THY1, JAG1, CBLC,
CHIT1, TAPBP, CALML5, RPS6KB1, PIM1, and EGLN2 (see Figure 4.11).
The coefficient values of these genes reveal that GATA3 has the clearly largest
absolute value (Figure 4.12).
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Figure 4.11: Genes selected in more then 10% of the lasso models achieved
through repeated cross-validation using proliferation score as response variable
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Figure 4.12: The coefficient values of the 20 most selected genes by the
lasso models using the proliferation score as response variable (repeated cross-
validation as sampling technique).

Finally, when using the ROR score as a response variable, no genes were
selected in more than half of the models, and only 16 genes were selected more
than 10% of the time (Figure 4.13). Upon examining the coefficient values,
PMS2 demonstrated substantially larger absolute values compared to the other
genes (Figure 4.14).
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Figure 4.13: Genes selected in more then 10% of the lasso models achieved
through repeated cross-validation using ROR score as response variable
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Figure 4.14: The coefficient values of the 20 most selected genes by the lasso
models using the ROR score as response variable (repeated cross-validation as
sampling technique).

Performance

When employing the lasso regression model class evaluated by the bootstrap
strategy, the proliferation score analysis exhibited a slightly higher correlation
between the predicted and observed proliferations than the corresponding
measures for the ROR score analysis (Table 4.3). The predictions of the
proliferation score had a mean correlation of 0.79 (SD = 0.090) with the
observations, while the ROR score analysis obtained a mean correlation of 0.70
(SD = 0.099). The ROR score’s MSE was notably larger, which is in agreement
with their different scales.

Using the repeated cross-validation approach resulted in a decline in
models performance, characterized by significantly lower correlation values
and heightened MSE for both scores, with the ROR score being especially
affected (Table 4.3). This pattern mirrors our observations in ridge regression
and likely shares similar explanations.
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Figure 4.15: The lasso model using 771 genes as features. The histograms show
the correlation between predicted response and the true values. In a) and b)
bootstrapping is used to generate training samples. In a) the response variable
is the proliferation score while in b) the ROR is the response variable. In c) and
d) repeated cross-validation is used to generate multiple training and testing
datasets. In c) the response variable is the proliferation score while in d) the
ROR is the response variable.

Table 4.3: Lasso performance summary

Model Correlations (SD) MSE (SD)
Proliferation (bootstrap) 0.794 (0.090) 0.062 (0.024)
ROR (bootstrap) 0.697 (0.100) 203 (61)
Proliferation (repeated cross-val.) 0.474 (0.231) 0.138 (0.075)
ROR (repeated cross-val.) 0.081 (0.277) 393 (159)

4.3 Elastic net regression

Elastic net regression is a hybrid method combining ridge and lasso regression
techniques. We have employed an α-value of 0.5 to assign equal weight to
both ridge and lasso components (see 3.5 for a description of elastic net). We
also here utilized the bootstrap and repeated cross-validation regimes. We
analysed both the proliferation score and the ROR score. First, we present the
results of feature selection and coefficient estimation for the predictors (the
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4.3. Elastic net regression

gene expression values), followed by an evaluation of the elastic net model’s
performance on the clinical dataset.

Feature Selection

For the four different combinations of sampling approaches and response
variables, with the exception of the repeated cross-validation with proliferation
score as outcome, at least 10% of the samples selected all the genes. Applying
a selection frequency cutoff of 30%, the models still identified a considerable
number of genes (range 35 - 109, see table 4.4). Consequently, we focused
on features selected more than 50% of the time. In the case of the bootstrap
sampling with proliferation score as outcome, 16 genes were selected (Figure
4.16). For the bootstrap sampling and ROR score combination 26 genes were
selected (Figure 4.17). We observed that the genes CA12, CACNA1H, CAMK2B,
FGF13, HOXA7, and LEFTY2 were selected by both sampling methods.

In the case of repeated cross-validation, both the proliferation and ROR
score analyses yielded eight genes (see histograms in Figure 4.18 and 4.19).
Here, the common genes were CA12, CACNA1H, EFNA3, and LEFTY2.

When examining genes uniquely selected by the proliferation score across
the sampling methods, the following genes were identified: BMPR1B, GATA3,
and NSD1. Similarly, for the ROR score as response variable, CHIT1, E2F5,
and FZD9 were selected in more then 50% of the models in both sampling
methods.

Interestingly, the selection frequency appeared to be slightly higher for the
ROR score, which is consistent with the fact that this score considers not only
the proliferation of cancer cells but also other response variables (as described
in chapter 2).

Table 4.4: Selection frequency for the elastic net model class using different
cutoffs

Cutoff Bootstrap Repeated cross-validation
proliferation score ROR score proliferation score ROR score

10% 771 771 634 771
30% 58 109 35 74
50% 16 26 8 8
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Figure 4.16: Genes selected in more than 50% of the elastic net models achieved
through bootstrapping using proliferation score as response variable
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Figure 4.17: Genes selected in more than 50% of the elastic net models achieved
through bootstrapping using ROR score as response variable
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Figure 4.18: Genes selected in more than 50% of the elastic net models achieved
through repeated cross-validation using proliferation score as response variable
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Figure 4.19: Genes selected in more than 50% of the elastic net models achieved
through repeated cross-validation using ROR score as response variable

The coefficient values for the 20 gene expressions with highest selection
frequency are shown in four successive boxplots (Figures 4.20, 4.21, 4.22 and
4.23)

We noted that GATA3, LEFTY2, and NSD1 exhibit markedly more negative
median values for the models using proliferation score (in both sampling regimes)
in comparison to other genes, implying a negative impact of these genes on cell
proliferation. These genes all demonstrated a selection frequency above 50
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Figure 4.20: The coefficient values of the 20 most selected genes by the elastic
net models using the proliferation score as response variable (bootstrap sampling
regime).
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Figure 4.21: The coefficient values of the 20 most selected genes by the elastic
net models using the ROR score as response variable (bootstrap).
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Figure 4.22: The coefficient values of the 20 most selected genes by the elastic
net models using the proliferation score as response variable (repeated cross-
validation).

43



4.3. Elastic net regression

WDR77

TMPRSS2

RELN

PROM1

PMS2

LEFTY2

ITGB1

HOXA7

HDAC2

FZD9

FGF13

EIF3B

EFNA3

E2F5

CHIT1

CACNA1H

CA12

BBOX1

APOE

ACTR3B

−20 −10 0 10 20
Coefficient values

G
en

e

Figure 4.23: The coefficient values of the 20 most selected genes by the elastic
net models using the ROR score as response variable (repeated cross-validation).

Performance

In our evaluation of the elastic net models employing the bootstrap strategy, both
analyses with proliferation and ROR scores as responses exhibited comparable
correlations between the predicted outcomes and observations in the test dataset
(see Figure 4.24 and Table 4.5). The proliferation score had a mean correlation
of 0.81 (SD = 0.083), while the ROR score was 0.76 (SD = 0.089). The ROR
score’s MSE was notably larger, aligning with their different scales (MSE: 164
for the ROR and 0.056 for proliferation).

Using the repeated cross-validation regimes, the models demonstrated
reduced performance, with significantly lower correlation values for both scores
and an MSE larger. This is similar to what we observed for ridge and lasso
which is as expected.

Table 4.5: Elastic net performance summary

Model Correlations (SD) MSE (SD)
Proliferation (bootstrap) 0.81 (0.084) 0.06 (0.022)
ROR (bootstrap) 0.76 (0.089) 164 (52)
Proliferation (repeated cross-val.) 0.43 (0.264) 0.15 (0.082)
ROR (repeated cross-val.) 0.21 (0.311) 427 (186)
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4.4. Non-linear model: boosting with stumps

0

50

100

150

200

−0.5 0.0 0.5 1.0

C
ou

nt
a)

0

50

100

150

200

−0.5 0.0 0.5 1.0

b)

0

20

40

60

80

−0.5 0.0 0.5 1.0
correlation

C
ou

nt

c)

0

20

40

60

80

−0.5 0.0 0.5 1.0
correlation

d)

Figure 4.24: The elastic net model using 771 genes as features. The histograms
show the correlation between predicted response and the true values. In a)
and b) bootstrapping is used to generate training samples. In a) the response
variable is the proliferation score while in b) the ROR is the response variable.
In c) and d) repeated cross-validation is used to generate multiple training and
testing datasets. In c) the response variable is the proliferation score while in
d) the ROR is the response variable.

4.4 Non-linear model: boosting with stumps

In addition to the linear models examined above, we applied boosting using
stumps as base learners in order to reveal potential non-linear relationships
between features and responses in the dataset. We here also utilized the
bootstrap and repeated cross-validation strategies (Section 3.9), along with the
proliferation score and ROR score as two different response variables. First,
we present the results of gene feature selections, followed by the performance
evaluation of boosting on the dataset from the clinical trial.

Feature selection

The feature selection frequency of the four distinct combinations of sampling
approaches and response variables are shown in Table 4.6. Interestingly, for
the 50% and 30% cutoff, the proliferation score selected more genes than the
ROR score. This is surprising as the ROR score is based on more outcome
variables, and it was therefore expected that more genes would have a relevant
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4.4. Non-linear model: boosting with stumps

influence on the ROR score. We also observed a lower selection frequency for
the repeated cross-validation, as was the case for elastic net.

Table 4.6: Selection frequency for the boosting with stumps as base learner

Cutoff Bootstrap Repeated cross-validation
proliferation score ROR score proliferation score ROR score

10% 53 44 34 16
30% 10 6 15 6
50% 0 1 2 2

For the gene features selected 50% or more times, HDAC2 was selected for
the ROR score in both sampling approaches, while the repeated cross-validation
scheme additionally selected HOXA7. CALML5 and CHIT1 were selected in
the repeated cross-validation strategy with the proliferation score as response
variable (no genes were selected more than 50% of the times by bootstrapping
for the proliferation score).

Turning to the genes selected at least 10% of the times, we observed the
following. Examining the proliferation score in isolation, all genes selected
by the repeated cross-validation approach were also selected by the bootstrap
approach, besides three genes. The commonly seleted genes were: BMPR1B,
BTG2, CA12, CACNA1H, CALML5, CAMK2B, CD84, CDCA7L, CHIT1,
CKB, DKK1, EFNA3, EGLN2, EPAS1, ERCC1, G6PD, HDAC2, HIF1A, HK2,
HOXA7, IDO1, KIT, LEFTY2, MAP2K4, NEIL1, NSD1, OLFML2B, PMS2,
SFN, SFRP4, and ZFYVE9. For the ROR score, all the genes selected using
repeated cross-validation were also selected when using bootstrapping. These
genes were: ADCY9, APOD, APOE, CA12, CACNA1H, CHIT1, CYBB, E2F5,
ELF3, HDAC2, HOXA7, LEFTY2, PROM1, RELN, RPS6KB2, and SFRP4.

The selection frequency for the genes that were selected at least 10% of the
time is presented in the four histograms in the Figures 4.25, 4.26, 4.27 and 4.28.
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Figure 4.25: Genes selected in more than 10% of boosting models achieved
through the bootstrap regime using proliferation score as response variable
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Figure 4.26: Genes selected in more than 10% of boosting models achieved
through the bootstrap regime using ROR score as response variable
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Figure 4.27: Genes selected in more than 10% of boosting models achieved
through repeated cross-validation using proliferation score as response variable
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Figure 4.28: Genes selected in more than 10% of boosting models achieved
through repeated cross-validation using ROR score as response variable

Performance

Based on calculated correlations between predicted and observed responses,this
method performed at the same level as the elastic net (see Figure 4.29 and Table
4.7). Consequently, we were unable to observe non-linear relationship of some
genes with the responses in the data that could improve the the predictions.
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4.5. Comparison of the standard machine learning models ridge regression,
elastic net, lasso and boosting
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Figure 4.29: The boosting model using 771 genes as features. The histograms
show the correlation between predicted response and the true values. In a)
and b) bootstrapping is used to generate training samples. In a) the response
variable is the proliferation score while in b) the ROR is the response variable.
In c) and d) repeated cross-validation is used to generate multiple training and
testing datasets. In c) the response variable is the proliferation score while in
d) the ROR is the response variable.

Table 4.7: Summary results of the performance of boosting with stumps

Model Correlations (SD) MSE (SD)
Proliferation (bootstrap) 0.78 (0.083) 0.07 (0.021)
ROR (bootstrap) 0.75 (0.088) 165 (51)
Proliferation (repeated cross-val.) 0.24 (0.280) 0.17 (0.076)
ROR (repeated cross-val.) 0.17 (0.315) 394 (171)

4.5 Comparison of the standard machine learning models
ridge regression, elastic net, lasso and boosting

To assess the differences between the machine learning models ridge regression,
elastic net, lasso, and boosting, we compared their selected features and
performance on the dataset derived from the clinical trial.
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4.5. Comparison of the standard machine learning models ridge regression,
elastic net, lasso and boosting

Feature selection

We compared the feature selection of lasso, elastic net and boosting, as they
are specifically designed for feature selection. Our analysis concentrated on the
20 most frequently selected genes in each model. In a set of Venn diagrams of
results from the various combination of sampling approach and proliferation- or
ROR score as outcome, we observed that lasso and elastic net had considerably
more overlap compared to boosting (Figure 4.30). For the bootstrap approach
using the proliferation score these two models had 18 genes in common, while
boosting had 9 exclusively selected genes. Out of the total 31 genes, 10 genes
were selected by all models. See Table 4.8 for overview of the selected genes
for the combination of the proliferation score and bootstrap sampling. Similar
results were observed in the results of the other combinations (see the Tables
4.8, 4.9, 4.10, 4.11).

It is not surprising that lasso and elastic net behave so similarly, since they
are of the same family of models. Boosting with stumps is more adapted to
capture nonlinear relationships. Consequently, the non-overlapping genes likely
convey non-linearity with respect to the response variables.
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Proliferation (repeated CV)
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Figure 4.30: Venn diagram illustrating the degree of overlap in gene selection
between lasso, elastic net and boosting (all four analysis combinations are
presented.
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elastic net, lasso and boosting

Table 4.8: Genes selected in lasso, elastic net and boosting analysed with the
proliferation score as response variable in the bootstrap regime.

Gene Lasso Elastic net Boosting
BMPR1B X X X
CA12 X X X
CACNA1H X X X
CALML5 X X X
CAMK2B X X X
EFNA3 X X X
GATA3 X X X
HOXA7 X X X
LEFTY2 X X X
NSD1 X X X
APOE X X
CHIT1 X X
FGF13 X X
HDAC2 X X
HOXA9 X X
JAG1 X X
PLA2G2A X X
S100A7 X X
TAPBP X X
CBLC X
CD84 X
CDCA7L X
CKB X
DKK1 X
EGLN2 X
EYA2 X
FAM198B X
KIT X
OLFML2B X
SFRP4 X
ZFYVE9 X

Performance

The models exhibited differences in predictive power with respect to the
correlation between predicted and observed outcomes. In Table 4.12 the
performance values for all the models using the ROR score in combination with
the repeated cross-validation approach is shown for comparison purposes. This
combination is also used throughout the rest of the thesis. Ridge outperformed
lasso, while elastic net results fell between the two. Boosting, showed similar
correlation as elastic net. However, substantial variance was observed. In fact,
when comparing the MSE, we noticed minimal differences between the three
models. It is not feasible to conclude that any of the models is significantly
better than any of the others, however, ridge have the highest correlation and
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elastic net, lasso and boosting

Table 4.9: Genes selected in lasso, elastic net and boosting analysed with the
ROR score as response variable in the bootstrap regime.

Lasso Elastic net Boosting
APOE X X X
CA12 X X X

CACNA1H X X X
CHIT1 X X X

E2F5 X X X
EFNA3 X X X

FZD9 X X X
HOXA7 X X X

LEFTY2 X X X
RELN X X X

ACTR3B X X
ACVR1B X X

BBOX1 X X
CETN2 X X
FGF13 X X
IFT140 X X
ITGB1 X X
PMS2 X X

PROM1 X X
WDR77 X X

ADM X
APOD X

CCNA2 X
CYBB X
ELF3 X
EYA2 X

HDAC2 X
RPS6KB2 X

SFRP4 X

the lowest MSE. This is in accordance with ridge been the preferred model if
prediction is the only output of interests.

Table 4.12: Predictive performance of standard models using the ROR score
and the repeated cross validation approach.

Model Correlations (SD) MSE (SD)
Ridge 0.33 (0.262) 357 (150)
Lasso 0.08 (0.277) 393 (159)
Elastic net 0.21 (0.311) 427 (186)
Boosting 0.17 (0.315) 394 (171)
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elastic net, lasso and boosting

Table 4.10: Genes selected in lasso, elastic net and boosting analysed with the
proliferation score as response variable in the repeated cross-validation regime.

Lasso Elastic Net Boosting
BMPR1B X X X

CA12 X X X
CACNA1H X X X

CALML5 X X X
CAMK2B X X X

CHIT1 X X X
EFNA3 X X X
EGLN2 X X X
HOXA7 X X X

LEFTY2 X X X
NSD1 X X X

APOE X X
CBLC X X

GATA3 X X
HOXA9 X X

JAG1 X X
PMS2 X X
THY1 X X
CD84 X

CDCA7L X
G6PD X

HDAC2 X
IDO1 X

MAP2K4 X
OLFML2B X

PDGFB X
PIM1 X

PLA2G2A X
RPS6KB1 X

SFRP4 X
TAPBP X
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elastic net, lasso and boosting

Table 4.11: Genes selected in lasso, elastic net and boosting analysed with the
proliferation score as response variable in the repeated cross-validation regime.

Lasso Elastic net Boosting
APOE X X X
CA12 X X X

CACNA1H X X X
CHIT1 X X X

E2F5 X X X
HDAC2 X X X
HOXA7 X X X

LEFTY2 X X X
PROM1 X X X
BBOX1 X X
EFNA3 X X
FGF13 X X
FZD9 X X

ITGB1 X X
PMS2 X X
RELN X X

WDR77 X X
ACTR3B X

ADCY9 X
APOD X
CCL4 X

CCNE2 X
CYBB X
DLL4 X
EGF X

EIF3B X
ELF3 X

IFT140 X
IGF1R X

PIK3R5 X
RPS6KB2 X

SFRP4 X
THY1 X

TMPRSS2 X
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CHAPTER 5

Mechanistic model combined with
machine learning models

In the research group where this thesis is conducted, a mechanistic model
of cancer cell proliferation is being developed. The model encompasses the
intracellular signaling pathway between the estrogen receptor and a transcription
factor, RB1, which is involved in regulating the transition from the growth phase
1 to the synthesis phase of the cell cycle (see Figure 2.2 in Chapter 2). This
pathway is where CDK4/6 potentially have its target and the model includes
the response to estrogen based hormone therapy and the CDK4/6 inhibitor. We
have compared the performance of this model to machine learning models and
have also attempted to integrate the mechanistic model with machine learning
models for improved results.

5.1 Mechanistic pathway model of response to hormone
therapy and CDK4/6 inhibitors

We here give a brief description of the mechanistic model, the parameter
estimation and how it is used.

Model description

We employed a mechanistic mathematical model, based on the model developed
in He et al. 2020. This model describes protein-protein and drug-protein
interactions of the key protein signaling pathways affected by the treatment
with hormone therapy and CDK4/6 inhibitors (Figure 5.1A) and is based on
prior knowledge. We adapted the model from He et al. 2020 to also consider
mRNAs, which can be used to individualize the model based on gene expression
data. The model consists of a set of coupled ordinary differential equations
(ODE), which describe how the concentrations of the proteins and mRNAs
change over time after drug treatment. The ODEs can generally be denoted as

ẋ(t, θ, u) = f(x(t, θ, u), θ, u), x(t0, θ, u) = x0(θ, u).

x ∈ Rnx denotes the state vector, that describes the concentration of the
modeled species. In this case, these are the mRNAs, proteins and protein
complexes. θ ∈ Rnθ are parameters of the model, such as binding and
degradation rates. In total, the model consists of nx = 23 states and nθ = 64
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5.1. Mechanistic pathway model of response to hormone therapy and CDK4/6
inhibitors

Figure 5.1: (A) Schematic of the mechanistic model. E2i and CDK4/6i denote
the hormone therapy and CDK4/6 inhibitor, that bind and block the activity
of E2 and cyclinD1 respectively. The activated estrogen receptor (ER bound
to E2) increases the production of cyclinD1 and MYC. CyclinD1 and cyclinE1
phosphorylate RB1, resulting in hyperphosphorylated RB1 (pp-RB1), which
drives cell-cycle progression. pp-Rb1 is linked to cell proliferation, which is
used as readout for predictions. p21 acts as a natural inhibitor of cyclinD1
and cyclinE1 The dashed box in the lower part of the figure on p21 shows
that protein production is modeled in two steps by mRNA transcription and
protein translation. CDKN1A is the gene encoding the protein p21. (B)
Data used for parameter estimation. CCLE gene expression data is used to
individualize the model to different cell-lines. Protein timecourses for different
drug treatments measured in MCF7 cells and CDK4/6i drug response data
from GDSC measured in multiple cell-lines is used for estimating the unknown
parameters of the mechanistic model. (C) Overview of the general estimation
and prediction workflow. Parameters are estimated first in the training phase
using the previously described cell-line data. The finalized model is subsequently
individualized to patients using gene expression data from the six genes in the
model. Simulated response are then compared to the actual outcome after
treatment.

57
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inhibitors

parameters. u ∈ Rnu is an input vector, that denotes different experimental
conditions, which describe here the drug treatment. x0 ∈ Rnx are the parameter-
and condition-dependent states at initial time t0. In particular, gene expression
data is used here as initial conditions to individualize the model. f ∈ Rnx

determines the interactions of the states and their temporal changes. Complex
formations and drug inhibitions are modeled using mass action kinetics (Ingalls
2013) E.g. the differential equation describing the concentration of the E2:ER
complex is given by

d[E2:ER]
dt

= kbinding[E2][ER]− kunbinding[E2:ER]− kdegradation[E2:ER], (5.1)

with (un-)binding rates kbinding and kunbinding and degradation rate kdegradation.
Here, [x] denotes the concentration of the molecular species x. Phosphorylations
and transcriptional regulation are modeled using Hill functions (Ingalls 2013)
E.g. the phosphorylation of RB1 by cyclinD1 is described by

kRB1cyclinD1[cyclinD1] [RB1]p2

pp2
1 + [RB1]p2

(5.2)

with the phosphorylation rate kRB1cyclinD1 and parameters p1, p2 defining the
shape of the Hill function. Cancer cell proliferation is modeled assuming logistic
growth and is dependent on the levels of pp-RB1 via a Hill function. The ODE
is given by

d[proliferation]
dt

= k1

(
1 + kproliferationppRB1

[pp-RB1]p2

pp2
1 + [pp-RB1]p2

)
[proliferation]

(
1− [proliferation]

kcarrying

)
,

(5.3)

with carrying capacity kcarrying, Hill parameters p1, p2 and basal and pp-RB1
dependent proliferation rates k1, kproliferationppRB1.

Parameter estimation

The model consists of unknown parameters θ, which have to be estimated from
data. For this, publicly available data from breast cancer cell-lines were used.
To individualize the model to cell-lines, gene expression data from the Cancer
Cell Line Encyclopedia (CCLE) (Barretina et al. 2012) was used. These are
measurements in untreated cell-lines. Parameteres were then estimated based
on two datasets, resulting in 213 datapoints used for parameter estimation
(Figure 5.1B):

• Protein timecourse measurements taken from He et al. 2020, were different
proteins in the model were measured add multiple timepoints after drug
treatment in the MCF7 breast cancer cell-line.

• Drug response viability measurements from the Genomics of Drug
Sensitivity in Cancer (GDSC) (Yang et al. 2012), were cell viability
was measured after treatment, relative to the untreated control in 12
different breast cancer cell-lines
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5.2. Comparison of the mechanistic model with machine learning models

Parameters were estimated by minimizing the negative log-likelihood function,
assuming additive, normally distributed measurement noise, i.e. the optimal
parameters θ̂ are given by

θ̂ = arg min
θ

1
2

n∑
i=1

log(2πσ2) + (ȳi − yi(θ))2

σ2 (5.4)

with number of measurements n, standard deviation of the measurement noise
σ, measurements ȳ and model output y(θ). This was done using multi-start
gradient-based local optimization, were several local optimizations were initiated
from different randomly sampled starting points to find a global optimum (Raue
et al. 2013).

Model readout for patient predictions

The parameters of the model are estimated using the cell-line data described
above. Subsequently, the model is used to make predictions in patients by using
gene expression data as initial states (Figure 5.1C). As a readout of the model,
that is used to predict patient response to the here considered treatments, we
used the inhibition of proliferation induced by the drugs. To this end, the model
was simulated without and with treatment until T = 72h, i.e. we calculated
x(T, θ, 0) and x(T, θ, u) for each patient by using the gene expression data as
x0 and then considered the ratio of the proliferation state

ymm = [proliferation](T, θ̂, u)
[proliferation](T, θ̂, 0)

,

ymm becomes the response variable of the mechanistic model. This gives a
score between 0− 1, where 1 indicates no response and 0 is the best possible
response to the treatment. The final timepoint 72h and the drug doses u were
chosen to mimic the GDSC drug response experiments.

5.2 Comparison of the mechanistic model with machine
learning models

The mechanistic model utilizes mRNA expression data from six genes within the
dataset and the prediction of the proliferation score exhibits a correlation of 0.38
with the score in the dataset. We first employed a linear regression model on the
same six genes to see how a statistical model using the same amount of feature
information compared to the mechanistic model. The bootstrap approach gave
a mean correlation of 0.35 (SD=0.063), while the repeated cross-validation
approach produces a mean correlation of 0.09 (SD=0.31). As presented in
Chapter 4, using the full gene set results in correlations of approximately 0.8
and 0.5 for the different models using the bootstrap and repeated cross-validation
approaches, respectively.

However, these correlation values are not directly comparable. Since the
mechanistic model is not trained on the dataset, it can be considered as an
external dataset for this model. Therefore, it might be most appropriate to
compare the correlation values with those obtained through repeated cross-
validation. Nonetheless, for the statistical models, these values are based on only
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5.3. Integrating the mechanistic model with a machine learning model

10 patients, whereas the mechanistic model is based on 49 patients. Therefore,
to provide a more fair comparison between the models, we randomly sampled
10 patients 1000 times from the predictions of the mechanistic model and the
corresponding values in the dataset. We then calculated the mean correlation of
these samples, which yielded a value of 0.36 (SD=0.23). To sum up, it appears
the mechanistic model performs substantially better than a statistical model
when considering the amount of information it uses, but it is possible for a
machine learning model to do equally good or better if enough feature data is
provided.

5.3 Integrating the mechanistic model with a machine
learning model

Next, we wanted to see if it was possible to a make a combined mechanistic and
machine learning model. We explored two main approaches to integrate machine
learning and mechanistic models. In the first approach, as the mechanistic
model in addition to predicting outcome also estimates the concentrations of
protein complexes in the signaling pathway regulating proliferation, we utilized
these concentrations as features in a ridge regression model. This resulted
in a correlation of the proliferation score between predictions and observed
responses in the dataset of 0.41 (SD=0.064) in the bootstrap approach and 0.28
(SD=0.277) for the repeated cross-validation approach. Although these results
do not outperform the mechanistic model alone, they are noteworthy as the
prediction of protein concentrations is an intermediate step in the mechanistic
model. This indicates that these concentrations possess predictive power and
that the mechanistic model employs them in a reasonable manner.

In the second approach, our goal was to utilize a machine learning model
to capture information from the data that the mechanistic model did not use,
and then combine the predictions from both models. To achieve this, we used
the difference between the outcomes of the mechanistic model and the observed
values in the dataset as the response variable for training the machine learning
model. We used all the genes as covariates trying to explain the part of the
outcome that the mechanistic model did not take care of. We evaluated two
strategies based on different ways of computing the difference, denoted as di.

First, we considered the residuals, by simply subtracting the predicted values
from the mechanistic model ŷmm

i from the observed response variables yi in the
dataset. Second, we considered the fraction between the two, by dividing yi by
ŷmm

i , resulting in the two alternatives

di = yi − ŷmm
i

di = yi

ŷmm
i

Before computing di, we re-scaled both ŷmm
i and yi individually to have a min

value of 0 and a max value of 1, by subtracting the lowest value and subsequently
dividing by the max value. As we are interested in both feature selection and
prediction we applied the elastic net regression where the parameters are found
by optimisation of the loss function

β̂ = arg min
β

{
∥d−Xβ∥2

2 + λ(α∥β∥2
2 + (1− α)∥β∥1)

}
, (5.5)
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5.3. Integrating the mechanistic model with a machine learning model

where d is the vector of di’s. For the final results we either added the predictions
of the mechanistic model and the machine learning model d̂i or multiplied them
depending of whether the di was the residual or the fraction,

ŷi = d̂i + ŷimm

ŷi = d̂i · ŷmm
i .

(5.6)

We found that this approach improved the predictive power of the
mechanistic model to a level comparable to using the machine learning models
alone. For the bootstrap approach, the additive method gave a correlation
of 0.78 (SD=0.085), while the multiplicative method gave 0.73 (SD=0.089).
For the repeated cross-validation approach, the additive method resulted in a
correlation of 0.49 (SD=0.220), while the multiplicative method produced 0.40
(SD=0.230). Interestingly, upon examining the selection frequency of the genes
used to initiate the mechanistic model, we observed that with the standard
elastic net, they exhibited a selection frequency ranging from 10% to 20%.
However, in the combined mechanistic and machine learning scenario, their
selection frequencies dropped to below 0.3%. We notice that genes that were
highly selected for the machine learning model alone still have high selection
frequency in the combined model, suggesting no changes in the general selection
frequency (Figure 5.2).
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Figure 5.2: Genes selected in more than 10% of the models trained on the
additive residual between the mechanistic model prediction and response in the
training data
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CHAPTER 6

Integrating cancer biological
domain knowledge in machine

learning models

As detailed in the Chapter describing the medical data, the feature set can be
subdivided into subsets of genes based on cancer biological knowledge (Chapter
2). These subsets are referred to as signature gene sets, and each set is named
according to the specific part of cancer biology it represents. In this thesis,
various methods were investigated to leverage this domain knowledge. First,
we investigated feature engineering by principal component analysis (PCA),
followed by the ensemble model stacking. Finally, we assessed the effect of
including interaction terms between groups of features composed of the signature
gene sets. This was done as prolongation of the PCA. In contrast to what we
did for the naive machine learning models, we focused on the ROR score here
and consequently used a repeated cross-validation approach to fit 1000 models.

6.1 Group and sparse group lasso

Since the grouping of the features (the signature gene sets) is to be exploited
it would be beneficial to apply sparsity at group level. To achieve this, we
need models that provide regularization and selection at group level. In this
specific section, we discuss two penalized linear regression models that apply
regularization and selection at group level. These models could be natural
choices to address our problem. The group lasso accomplish this by penalizing
the features on a group-wise basis, i.e. the features within one group are
penalized collectively (Yuan and Lin 2006). This approach has the following
minimization problem

β̂„ = arg min
β∈Rp

{
∥y −Xβ∥2

2 + λ

K∑
k=1

√
pk∥β(k)∥2

}
, (6.1)

where y is the response variable, X is the design matrix, β is the coefficient
vector, pk is the number of predictors in each group k, β(k) represents the
coefficient vector for group k (i.e. a subvector of β) and K is the total number
of groups. The first term represents the standard RSS, while the second term
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6.2. Dimensionality reduction by domain knowledge guided PCA

is a penalty that encourages sparsity at the group level, where λ controls the
degree of regularization.

Sparse group lasso, is a refinement of group lasso, which also takes into
account sparsity within the groups (Simon et al. 2013). The model is defined by

β̂ = arg min
β∈Rp

{
∥y −Xβ∥2

2

+ λ

K∑
k=1

√
pk∥β(k)∥2 + γ

K∑
k=1

√
pk∥β(k)∥1

}
.

(6.2)

Thus, sparse group lasso is similar to the group lasso, but with an additional
penalty term that promotes sparsity within each group. The amount of
regularization is controlled by the parameters λ and γ. Typically λ and γ
sum to one. This approach addresses both group-wise sparsity and within-group
sparsity.

The signature gene sets contain overlapping genes, and both of these models
are designed for grouping by partitioning the feature set. Therefore, they are
not appropriate for addressing our problem (Park et al. 2015).

6.2 Dimensionality reduction by domain knowledge guided
PCA

In order to represent the data set in a lower dimensional space while retaining
as much of the predictive information as possible we applied PCA. However, we
did not do this on the full data set, but instead we applied the PCA separately
on the sub-feature spaces as defined by the signature gene sets. In this section
we first give a short review of the PCA method. Afterwards, we present the
results with respect to feature selection and in the end the performance measure
of using this approach.

The PCA

In brief, PCA involves projecting the original data points onto a set of orthogonal
vectors, known as principal components (PCs). By data points, we here refer
to the feature space. The PCs are oriented to capture the maximum variance
in the data. Mathematically, PCA is performed by computing the empirical
covariance matrix of the centered data with respect to the features. This matrix
becomes symmetric, which means its eigenvectors are orthogonal and can thus
be utilized as PCs. The corresponding eigenvalues indicate the amount of
variance captured by each vector and can thus be used to select a subset of
the PCs that explains most of the variability in the feature space. The PCs
create a new set of features which are linearly uncorrelated, and a selection of
these, typically much fewer than in the original data set, will capture most of
the variance in the data (Jolliffe 2002). From a practical point of view PCA
can filter out irrelevant features and aggregate correlated features. By selecting
only the PCs that explain the majority of the variance in the data, PCA
effectively filters out the feature directions with lower variance. Consequently,
only the information from the selected PCs, and thus, the information from the
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6.2. Dimensionality reduction by domain knowledge guided PCA

original features contributing to these PCs, is retained. The importance of less
informative or irrelevant features, which contribute less to the overall variance
will be reduced. Since the PCs are linear combinations of the original features,
they aggregate correlated features. Correlated features exhibit a high amount of
shared variance, which is identified by the PCs. Thus, highly correlated features
are combined into single components. Then by projecting the original data
onto the PCs, PCA represents the correlated features in a lower-dimensional
space. This can lead to less noise and reveal underlying patterns in the data
that are of relevance for predictive power. The PCA algorithm is outlined in
Algorithm 2.

Results of the PCA based approach for utilizing domain knowledge

We applied PCA to six signature gene sets, each representing different potentially
important functional units in breast cancer biology. These included regulation
of cell proliferation (2), cell migration (2), immune cell infiltration (2), DNA
repair (1), estrogen receptor signaling (1) and angiogenesis (2). The numbers
in parentheses denote the number of selected principal components (PCs) that
explained at least 90% of the variance in the data of each signature gene set.
Subsequently, we used the predictor values corresponding to each PC as features
in machine learning models. For both lasso and elastic net, all PCs were selected
in at least one model. The selection frequency is displayed in Table 6.1.

In both models, the two PCs from cell migration showed relatively low
selection frequencies. This suggests that cell migration may not have a significant
predictive effect on the targeted treatment. We observed that the estrogen
receptor signaling, the target of the drug, was selected approximately half of the
time. We, thus, could have anticipated a somewhat higher frequency for this.
Immune cell infiltration and angiogenesis (development of blood vessels) are
not specific targets of the drugs, but they exert substantial influence on tumor
growth and are therefore important predictors of cancer outcome in general.

Table 6.1: Selection frequency (in %) of PC’s for the various signature gene sets
in 1000 models fitted using lasso or elastic net

Lasso Elastic net
Angiogenesis 1 20.6 24.6
Angiogenesis 2 71.1 73.8
Cell migration 1 5.1 6.8
Cell migration 2 5.9 6.6
Cell proliferation 1 35.1 45.5
Cell proliferation 2 3.0 3.5
DNA repair 1 47.5 51.3
Estrogen receptor signaling 46.4 55.0
Immune infiltration 1 63.5 66.8
Immune infiltration 2 51.4 55.5
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6.2. Dimensionality reduction by domain knowledge guided PCA

Algorithm 2 Principal Component Analysis (PCA)
Given a data matrix X ∈ Rn×p and the desired number of principal components
k.

1. Standardize the data within each feature so that the data have zero mean
and unit variance. This ensures that all features are on a comparable scale
preventing a potential influence from differences in scales of the features
in the original data.

x̄ij = xij − µj

SDj
.

2. Compute the empirical covariance matrix C ∈ Rp×p of the standardized
data x̄ij . The covariance matrix is a p× p symmetric matrix, where the
entry cgj represents the covariance between the gth and jth features. Since
the data X̄, the matrix of the standardized data x̄ij , now is centred C
can be calculate by

C = 1
n− 1X̄T X̄.

3. Calculate the eigenvalues λi and eigenvectors vi of the covariance matrix
C using singular value decomposition,

Cvi = λivi.

4. Sort the eigenvalues in descending order, and select the top k eigenvectors
v1, . . . , vk corresponding to the top k eigenvalues λ1, . . . , λk.

5. Create a projection matrix V ∈ Rp×k with the selected eigenvectors as
columns

V =

 | | |
v1 v2 · · · vk

| | |

 .

The eigenvectors v are the PCs.

6. Compute the reduced data matrix X̃ ∈ Rn×k by projecting the
standardized data onto the k selected PCs in V

X̃ = X̄ · V

X̃ are now the PC based transformed feature data. X̃ has k linearly
uncorrelated features that capture most of the variance in the original
data.
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Performance of PCA-based models with signature gene sets

We examined the correlation between predicted and true values in the test sets
when using the 6 signature gene sets to generate PC’s. Ridge regression
demonstrated better performance than both lasso and elastic net, which
exhibited comparable results to each other (Table 6.2). However, all models
performed at a similar level as their corresponding naive models analyzed in
Chapter 4. Notably, the PCA-based models used a total of 332 genes, which is
fewer than the 771 genes used for the naive models.

To determine whether incorporating more information could enhance
performance, we added four additional groups of genes to the analysis: antigen
presentation, apoptosis, cytokines and chemokine, and tumor metabolism. This
addition led to a larger mean correlation for all models, however, the variance is
substantial, making hard to draw conclusions (Table 6.2). Furthermore, when
comparing the MSE we did not observe any significant reduction (Table 6.3).

In conclusion, we observed a tendency for improved performance by using
PCA guided by biological domain knowledge when using correlation as a
performance measure. Additionally, we gained insights into the predictive power
of genes related to different functional aspects of cancer biology, which may be
utilized in the development of more refined models.

Table 6.2: Predictive performance of PCA based on domain knowledge. Mean
(SD) correlation between prediction and observed values in test sets.

Model Naive analysis 6 groups 10 groups
Ridge 0.30 (0.278) 0.32 (0.302) 0.41 (0.240)
Lasso 0.08 (0.277) 0.14 (0.296) 0.32 (0.271)
Elastic net 0.20 (0.311) 0.15 (0.295) 0.43 (0.261)

Table 6.3: Predictive performance of PCA based on domain knowledge. Mean
(SD) MSE between prediction and observed values in test sets.

Model Naive analysis 6 groups 10 groups
Ridge 358 (150) 360 (148) 344 (154)
Lasso 394 (159) 388 (154) 373 (159)
Elastic net 427 (186) 385 (152) 366 (168)

6.3 Two-stage model based on domain knowledge

In another effort to include the domain knowledge of the signature gene sets
in a machine learning model, we explored a two-stage structure. This method
is based on the ensemble model often referred to as super learner, generalized
stacked models or simply stacking (Wolpert 1992; Breiman 1996; Laan, Polley
and Hubbard 2007). Most often in in this model type, multiple models are first
trained independently on the same dataset. The predictive outputs of these
models then serve as input features for a second-stage model. The function of
the second stage model is to merge the predictions from the first-stage models,
creating a single comprehensive aggregated prediction.
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6.3. Two-stage model based on domain knowledge

The idea behind stacking is that the different models will capture distinct
complexity in the data and that errors will be averaged out. It combines
the strengths of different models by leveraging their individual predictions to
enhance overall performance. In the second-stage individual weighting of the
prediction from the first-stage models is included, which potentially can reduce
overfitting. Therefore, diversity in the first models is important. This is typically
done either through utilizing various model types or varying hyperparameters.

However, rather than training various models on the complete data set at the
first stage, we trained models on different subsets of the dataset, specifically the
signature gene sets. In this way, each signature gene set provides a prediction
of the response and these are combined in stage-two to possibly enhance overall
performance. As diversity at the first stage is achieved by the varying data, we
could use the same model type for all the subsets at the first stage. We utilized
ridge regression at the first-stage, as predictive power is more critical at this
stage than feature selection. For the second-stage model either ridge regression,
lasso or elastic net was employed to combine the predictions from the first-stage
models (see Algorithm 3)

Algorithm 3 Two-stage approach for integrating feature groups based on
domain knowledge

1. First stage

a) Construct K groups of features (e.g. genes) based on domain
knowledge.

b) Regress outcome variable y on each group of features via a ridge
model separately.

c) Predict outcomes ŷ(k) (k = 1, · · · , K) based on each fitted ridge
model.

2. Second stage
Apply a machine learning model to regress the outcome variable y on
ŷ(1), · · · , ŷ(K).

In the two-stage approach, we did not observe any significant differences in
the performance of the three model classes when evaluating the correlation and
MSE between predictions and responses in the test sets (Table 6.4). Moreover,
the performance was on par with that of the standard ridge models. Nevertheless,
the model can potentially offer insights into the importance of various groups.
To explore this further, we assessed the selection frequency and estimated the
coefficient size at the second stage using lasso lasso. Here we included the same
six signature gene sets as in the PCA above (Table 6.4). We observed the
highest selection frequency for the groups representing cell proliferation, estrogen
receptor signaling and DNA repair mechanisms. This finding was encouraging,
as the target drug in the clinical trial aims to modulate the signaling pathway
between estrogen stimulation of the cell and the regulation of cell proliferation.
In terms of the coefficient sizes, the SDs were relatively high when compared to
the estimated values so it is difficult to interpreted the results.
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Table 6.4: Predictive performance of two-stage models using domain knowledge.
The models refer to the model used in the second stage

Model Correlation mean (SD) MSE mean (SD)
Ridge 0.363 (0.254) 367 (171)
Lasso 0.337 (0.261) 386 (179)
Elastic 0.342 (0.258) 383 (177)

Table 6.5: Selection frequency of the different groups of genes and their estimated
coefficient size of the two-stage model using lasso

Signature gene set Selection (%) Mean coefficient size (SD)
DNA repair 78.2 0.61 (3.02)
Immune infiltration 66.4 0.57 (1.02)
Proliferation 78.2 1.45 (2.99)
Estrogen receptor signaling 75.1 0.93 (3.38)
Antagonises 53.8 -2.97 (8.82)
Cell migration 50.2 -2.14 (5.28)

6.4 Interactions based on domain knowledge

In cancer biology different parts of the system interact in ways that cause more
complex effects than just additive effects. These effects are called synergistic
effects and can be implemented in regression models by introducing interaction
terms.

From a statistical point of view, this is challenging in high dimensional data
because the number of parameters to fit increases substantially. The number
of interaction terms of order k is calculated as

(
p
k

)
, where p is the number

of measured variables. For our dataset of 771 genes even if we focused only
on pairwise interactions (k = 2), the number of interaction terms amounts to
almost three hundred thousand. As a substantial amount of these interactions
is not relevant it would be natural to assume sparsity and employ the lasso
regression. However, the ordinary lasso treats main variables and interaction
variables equally and could potentially select an interaction term while ignoring
its corresponding main effects. E.g., if two variables are correlated, which
can happen between main terms and interaction terms when they effect the
response variable similarly, lasso tends to select one of them as they contain
similar information about the response variable. It is a well-established practice
among statisticians when fitting models to include an interaction term only if
the corresponding main effects are also present in the model. A solution to
this problem is outlined in the model called hierarchical lasso (Bien, Taylor
and Tibshirani 2013). This method is computationally super intensive and it
doesn’t handle high dimensional data well as our dataset is.

However, in the field of cancer biology assessing interactions between every
gene is not necessary constructive. As outlined in the introduction, cancer
biology can be partitioned into distinct functional units (see Chapter 1).
Therefore, it is more natural to investigate the interactions between genes
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within these functional units or examining the interactions between the units
themselves. As our objective is to explore prediction based on a dataset that
covers many such units we have focus on the latter. The signature gene sets are
designed to represent potential relevant functional units in breast cancer biology
and we have aimed to consider interactions between them using the condensed
feature produced by the PCA. Thus, the regression model based on dimension
reduction on the signature gene sets and including pair-wise interactions, can
be formulated

yi = β0 +
K∑

k=1

pk∑
j=1

βk
j x̃k

ji +
K∑

k=1

K∑
m>k

pk∑
j=1

pm∑
h=1

γkm
jh x̃k

jix̃
m
hi + εi, (6.3)

where x̃k
ji (x̃m

hi) is the value of the jth (hth) PC in the kth (mth) signature
gene set for observation i, pk (pm) is the number of PC chosen for the kth
(mth) group. The βk

j are the coefficients of the main effects and the γkm
jh are

the coefficients of the interaction effects.
We have also introduced penalization in the form of ridge, lasso, and elastic

net as was done when not including interaction terms.
With this approach, the predictions and response values of the test set showed

higher correlation and the MSE decreased for all models (Table 6.6). Although
the variance is large, this indicates that incorporating interactions between
cancer biological functional units can enhance the predictive performance of a
machine learning model.

Table 6.6: Predictive performance when using interactions between groups
defined by the signature gene sets based PC transformed features. The mean
(SD) of both correlation and MSE computed for the prediction and true values
over the test sets.

Correlation MSE
Model no interaction interactions no interaction interactions
Ridge 0.32 (0.302) 0.53 (0.246) 360 (148) 294 (158)
Lasso 0.14 (0.295) 0.43 (0.267) 388 (154) 339 (167)
Elastic 0.15 (0.295) 0.45 (0.265) 385 (152) 331 (166)

To interpret potentially interesting interactions, we performed the selection
models using only the first PC of each signature gene set. This revealed a
selection frequency of almost 100% of the interaction between cell proliferation
and estrogen receptor signaling (see Table 6.7). The coefficient size was also
substantially higher than the rest. Since the cancer treatment investigated
targets the intracellular pathway linking estrogen stimulation of the cells and
cell proliferation, this was an interesting observation.
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Table 6.7: Feature selection and estimated coefficient values of interaction terms
in the domain knowledge guided PCA approach.

Interaction Selection frequency Mean coefficient values
Lasso Elastic net Lasso Elastic net

DNA repair * immune infiltration 59.6 69.6 0.0631 0.0715
DNA repair * cell proliferation 30.1 37.5 -0.0294 -0.0307
DNA repair * estrogen receptor signaling 73.8 90.8 0.1301 0.1549
DNA repair * angiogenesis 2.7 3.8 -0.0004 0.0000
DNA repair * cell migration 73.9 83.8 0.0796 0.0845
immune infiltration * cell proliferation 1.8 2.9 -0.0029 -0.00398
immune infiltration * estrogen receptor signaling 11.8 13.2 0.0107 0.0099
immune infiltration * angiogenesis 17.5 22.6 -0.0299 -0.0321
immune infiltration * cell migration 7.4 9.3 0.0078 0.0089
cell proliferation * estrogen receptor signaling 96.1 97.6 0.3532 0.3167
cell proliferation * angiogenesis 10.0 14.6 -0.0078 -0.0099
cell proliferation * cell migration 21.7 32.4 0.0092 0.0125
estrogen receptor signaling * angiogenesis 2.9 3.1 -0.0147 -0.0148
estrogen receptor signaling * cell migration 54.3 74.3 0.1182 0.1427
angiogenesis * cell migration 3.0 3.7 -0.0007 -0.0004
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CHAPTER 7

Exploring a new approach for
group interactions

As elaborated in Chapter 6, in the classical linear regression framework a model
that includes interactions between groups can be relevant in cancer biology.
We utilized this in the PCA regression model, however, in that model learning
main effect of the single genes was not possible. In this chapter, we explore the
possibility of using a model approach which both consider interactions between
groups of features and also estimate coefficient for single features.

This work does not encompass a comprehensive model evaluation, but it
constituted a significant portion of the thesis work and brought some interesting
results.

7.1 The model

To formulate the model, we will use the following notation for the usual covariate
matrix X of a linear model

X = (1, x1, ...xp) ∈ Rn×(p+1) (7.1)

and for the coefficient vector β

β⊤ = (β0, β1, ..., βp) ∈ R1×(p+1) (7.2)

Let us call G the set of all gene sets

G = {Gk : k = 1, ...K}, (7.3)

where we define an index set Gk containing the qk indexes (i.e. gk
1 , · · · , gk

qk
) of

the genes in the kth gene set:

Gk = {gk
1 , ..., gk

qk
} (7.4)

Note that the gene sets are not disjoint in general, so there may exist k and l
for which Gk ∩Gl ̸= ∅. We further define a submatrix of X associated to the
index set Gk

XGk = (xgk
1
, ..., xgk

qk
) ∈ Rn×qk (7.5)

and a subvector of the coefficient vector β associated to the index set Gk

72



7.2. Characteristics of the model

β⊤
Gk = (βgk

1
, ..., βgk

qk
) ∈ R1×qk (7.6)

We propose the following model

Y = Xβ +
∑

{k,l:Gk,Gl∈G,k<l}

(XGk βGk )⊙ (XGlβGl)γkl + ε, (7.7)

where ⊙ denotes the Hadamard product, i.e., element-wise multiplication of the
two column vectors and γkl are the interaction terms between the groups. Note
that the model can include variables in the main effect term Xβ not assigned
to a specific group of features.

7.2 Characteristics of the model

To gain an understanding of the model, we examined it under the simplest data
configuration. Consider a scenario with features (e.g., gene expression levels)
from only two groups (e.g., representing two functional units in cancer biology)
and just two features within each group. Specifically, let XZ and XW be the
n × 2 matrices representing the features of the two groups. In this case, the
model is given in the following form

Y = XZW βZW + (XZβZ ⊙XW βW )γ + ε, (7.8)

where XZ and XW are merged into a single term by defining XZW = (XZ , XW )
and βZW is a concatenated vector consisting of both βZ and βW . γ is the
interaction coefficient between group Z and W (indexes is drooped since there
is only one interaction term in this model).

To uncover properties of the model, we computed the interaction term of
equation 7.8 for a single observation (xz1, xz2, xw1, xw2, y) where each element
represents either a feature or the response. The interaction term of equation
7.8 can then be expressed as

(xz1βz1xw1βw1 + xz1βz1xw2βw2 + xz2βz2xw1βw1 + xz2βz2xw2βw2)γ. (7.9)

This elucidate two properties of the model. First, we observe that the model
represents pairwise interactions between elements of the two groups, with a
shared interaction coefficient in γ. These interactions satisfy an hierarchical
structure. The hierarchical structure in statistical models refers to a model-
building approach where lower-order terms (e.g., main effects) are included in
the model before considering higher-order terms (e.g., interactions). Adherence
to the hierarchical structure is regarded as a best practice in the development of
models. Specifically, interaction terms should only be incorporated if the main
effects of the involved features are already present in the model. This practise
often ensures a more meaningful interpretation of the interaction effects and
helps in reducing potential biases in their coefficient estimates.

When utilizing a model class with feature selection in a model containing
interaction terms, it is possible for the model to select interaction terms without
selecting the main effect term with the corresponding features. This situation
can arise when interaction variables are correlated with the original variables
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from which they are derived. However, our model approach prevents this from
happening, as features that are not selected as main effects will not appear in
the interaction term.

The second notable property of the model involves the weighting of various
interaction terms by the main effects of the corresponding features. As a result,
the features with the largest main effects contribute the most to the interaction
effects. The relevance of such property has been emphasized by Cox (1984),
who asserted that "Large component main effects are more likely to lead to
appreciable interactions than small components." In simpler terms, Cox states
that if the main effects of two features are large, there is a higher chance that
their interaction is of significant importance. Taking this into account, the
weighting by the main effects incorporated in the interaction terms in our model
may enhance the statistical power in an analysis, making it easier to detect
significant interactions between features when they are present.

One limitation of our model approach is that the common interaction term
for all pairwise interactions is a rather strong constraint on the interaction
parameter. On the other hand, this also contribute with structural sparsity, a
desirable property. In scenarios where two features exhibit large main effects
but no interaction effects between them, the model may mask interaction effects
of features with smaller main effects. Nevertheless, this emphasize that the
model does not focus on single interaction between two features but rather on
group-wise interactions. In this model, the interaction effect is derived from the
sum of all quadratic main estimates multiplied by their corresponding quadratic
feature values.

7.3 The algorithm

The challenge with this model lies in its non-linearity with respect to the
parameters, as the interaction term contains the main effect and the interaction
effect parameters, causing identifiability issues. This makes it impossible
to uniquely estimate the values of the parameters in the interaction terms
simultaneously. To address this, we propose an iterative approach in which
the content inside the parentheses of equation 7.7 is treated as constant during
the actual fitting process. Consequently, only the β parameters inside the
main effect term and the γ parameters of the interaction term are estimated
in each iteration. The β values inside the interaction term are subsequently
updated iteratively after the fitting process, becoming the values of the main
effect βs from the previous iteration. This algorithmic approach is outlined in
algorithm 4.
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Algorithm 4 Synergistic learning model algorithm

1. Input: X, Y,G = {Gk}

2. Initialize:

• Initialize the main parameters β(0) using ridge regression on the
model without the interaction term:

β(0) = argmin
β

{
∥Y −Xβ∥2

2 + λ∥β∥2
2
}

• Initialize any interaction term fGk ⊙ fGj (k < j), where

fGk = XGk β
(0)
Gk ,

fGj = XGj β
(0)
Gj

3. For L-th iteration :

• Estimate main effects β(L) and interaction effects γ(L) using elastic
net

(β(L), γ(L)) = argmin
β,γ

{
∥Y −Xβ −

∑
{k,j:Gk,Gj∈G,k<j}

(fGk ⊙ fGj )γij∥2
2

+λ

(
α

∥∥∥∥[
β
γ

]∥∥∥∥
1

+ 1− α

2

∥∥∥∥[
β
γ

]∥∥∥∥2

2

)}

• Update the interaction terms

fGk = XGk β
(L)
Gk ,

fGj = XGj β
(L)
Gj

• Check for convergence criteria. If it does not converge, L← L + 1

4. Output: main effects β and interaction effects γ

We used the elastic net model with an alpha value of 0.5 to solve the
estimation problem in step 3 of the algorithm.

As stooping criteria we have used a combination of a maximum number of
iterations (100) and the stationarity of the model deviance.

7.4 Model testing on simulated data

To evaluate the model, we simulated datasets with three different sample sizes
(n = 50, 100, 500). The datasets each contained 120 features, where 20 had
effect on the response variable and 100 parameters did not. The 20 responsive
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7.4. Model testing on simulated data

parameters were divided into four groups of 5. X and β were generated from a
normal distribution and a uniform distribution, respectively

X ∼ N(0, 1)
β ∼ U(−1, 1)

The interaction effect γ between groups were set to 1. The simulated
response was generated by using an ordinary linear model. We considered two
scenarios as follows:

• Scenario I: Set one interaction fG1 ⊙ fG2 , where

fG1 = XG1βG1 ,

fG2 = XG2βG2 .

Simulate responses

Y = Xβ + (fG1 ⊙ fG2)γ12 + ε,

where the noise term is simulated from the standard normal distribution.

• Scenario II: Set three interactions fG1 ⊙ fG2 , fG1 ⊙ fG4 and fG2 ⊙ fG4 ,
where

fG1 = XG1βG1 ,

fG2 = XG2βG2 ,

fG4 = XG4βG4 ,

Simulate responses

y = Xβ + (fG1 ⊙ fG2)γ12 + (fG2 ⊙ fG4)γ24 + (fG1 ⊙ fG4)γ14 + ϵ.

Table 7.1 summarizes the selection frequency of the interaction terms in both
scenarios across 1000 simulations. At a low sample size, the model fails to select
interaction terms for both scenarios, suggesting that it may not perform well
in high-dimensional data settings. However, promising results were observed
for a sample size of 500. At an intermediate sample size (n=100), the model
effectively identified one interaction term, but the results for three interaction
terms were unsatisfactory.

In general, the model rarely selected incorrect interactions, resulting in high
specificity (Table 7.2). However, sensitivity was low for smaller sample sizes.
There may be an option to fine-tune the model for higher sensitivity, but this
would likely come at the expense of the specificity.

Table 7.1: Selection performance on the interaction terms in percentage using
simulated data

Scenario n fG1⊙fG2 fG1⊙fG3 fG1⊙fG4 fG2⊙fG3 fG2⊙fG4 fG3⊙fG4

I
50 4 2 0 2 1 1
100 78 11 12 14 14 8
500 100 0 0 2 1 1

II
50 1 1 0 0 0 0
100 18 10 17 2 16 3
500 100 15 100 5 100 12
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7.5. Testing the model on the dataset of the clinical trial

Table 7.2: Sensitivity and specificity of the selection of the interaction terms
with the simulated data.

Scenario n Sensitivity Specificity

I
50 0.04 0.98
100 0.76 0.88
500 1 0.99

II
50 0.003 0.003
100 0.17 0.95
500 1 0.89

Next, we evaluated the model using the repeated cross-validation method
to assess its performance in terms of prediction accuracy (Table 7.3). We
calculated the correlation of the test data, but only when the model selected
the interaction terms (as shown in the table 7.1). In this analysis, we employed
100 simulations. For the lowest samples size for scenario I few models were
fitted with the interaction term, but they performed rather good. The best
perdition performance was achieved with the highest sample size.

Table 7.3: Correlation of the models using simulated data

Scenario n Correlation (SD) MSE (SD)

I
50 0.59 (0.163) 0.96 (0.076)
100 0.64 (0.105) 0.76 (0.157)
500 0.93 (0.019) 0.16 (0.038)

II
50 - -
100 0.64 (0.181) 0.94 (0.111)
500 0.93 (0.020) 0.16 (0.650)

7.5 Testing the model on the dataset of the clinical trial

We attempted to apply the model to the dataset derived from the clinical
trial, including only the interaction term between the signature group sets
of proliferation and estrogen receptor signaling. However, the model did not
select the interaction term in any of the 1,000 models generated during the
repeated cross-validation process. This outcome is in accordance with the
findings from the simulated data, suggesting that the model may not be suitable
for high-dimensional datasets.
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CHAPTER 8

Discussion and further perspective

In this thesis, we analyzed a dataset composed of 771 features, representing gene
expression levels, and two response variables reflecting cancer development and
prognosis. The primary objective was to evaluate the performance of machine
learning models in such a setting, with particular emphasis on leveraging cancer
biology domain knowledge. Success in such endeavor would be of importance
for selecting individual patients for the most promising treatment regimens.

Initially, we evaluated standard model classes used for high-dimensional
data in machine learning, including ridge regression, elastic net and boosting.
In terms of predictive performance, ridge regression emerged as the most
successful. Next, we explored incorporation of domain knowledge in machine
learning models. The idea involved utilizing the genes belonging to functional
units within the cancer biological ecosystem of the tumor. This was achieved
by modeling gene expression in machine learning models that allowed grouping
structures. Performance-wise, we found the most success with PCA regression,
which outperformed standard ridge regression. However, we must be careful
with drawing conclusions, as the variability in our analysis is relatively high.
Nevertheless, the high-dimensional setting is generally challenging, and our
results suggest that the incorporation of domain knowledge is a promising
direction, although further studies is clearly necessary.

The PCA approach enabled us to introduce interactions between groups.
An interesting result was the strong effect between genes belonging to the
proliferation signature gene set and the genes of the estrogen signaling, as the
drug investigated in the clinical trial targets the signaling pathway between
the estrogen receptor and regulation of cell proliferation. It is not surprising
that genes within this pathway are important for the treatment effect of a drug
targeting this pathway, however, it is a confirmation of the model’s usefulness.
More importantly, this finding also suggests that it may be possible to identify
genes that can serve as markers in treatment selections.

When selecting PCs that explained at least 90% of the variance in the
predictors, typically between one and two components were chosen. This
suggests that the gene expression of many genes covaries. This finding implies
that selecting potential genetic markers may not necessitate involving too many
genes. However, a challenge with mRNA expression is the short and dynamic
levels within the cell, which further has an indirect contribution to the cell’s
functionality through the proteins. This means that at two different time
points of the same patient the mRNA level of a particular gene might be very
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different while the protein level is the same and it is the latter that directly
determines the cells response to a treatment. Therefor, it is difficult to use
single mRNA as markers, as the amount in a sample is dependent on the time
point of sampling. However, if multiple genes point in the same direction, their
aggregated measurement can provide a more reliable marker.

We also evaluated a two-stage model, which demonstrated prediction
performance comparable to ridge regression. We assessed its potential
for unraveling the underlying cancer biology, as this method provides the
opportunity to examine both the main effects of single gene expressions and
group effects. The analysis suggests a predictive contribution of genes involved
in cell proliferation and estrogen signaling mechanisms.

In an attempt to integrate both individual feature main effects and
interaction effects between the groups of features in a linear model, we
investigated the application of an iterative approach as described in Chapter 7.
The evaluation using simulated data demonstrated satisfactory results when
working with large amounts of data. However, challenges emerged when
the number of features surpassed the number of observations. Notably, in
comparison to the other models tested, this approach is unique in that it
incorporates both group interactions and main effects. Consequently, it offers
potential advantages beyond the capabilities of the other models examined,
and there is potential for further development of the model by extending the
algorithm, e.g., by integrating the adaptive lasso. This method can be used to
selectively penalize only the main effects, applying a reduced penalty on the
group interaction terms (Zou 2006). This technique can potentially accelerate
model convergence with respect to the coefficients, as smaller coefficients are
more heavily penalized and are more likely to shrink towards zero. Another
potential improvement is using alternative convergence criteria, such as directly
focusing on changes in coefficient size instead of model deviance as we did.

A limitation of our study is the lack of testing against an external dataset.
Additionally, our analysis with repeated cross-validation gave rather high
variability. This might be caused by the small test set of around 10 observations.
Consequently, we are far from being able to conclude that any of these model
approaches would be useful in clinical settings. However, as a comparison of
the model approaches, it suggests that incorporating domain knowledge could
benefit a prognostically useful model. Moreover, for research purposes, this
strategy gives promising opportunities for understanding cancer biology.

Finally, we would like to mention some of the genes whose expression was
consistently selected in many of the model analysis scenarios and also showed
values significantly distinct from zero in ridge regression. HDAC2 and LEFT2
were persistently selected in all model scenarios, while GATA3 was almost
exclusively selected in the analyses using the proliferation score as a response
variable. GATA3 (GATA Binding Protein 3) is a transcription factor that plays
a crucial role in cell lineage determination and differentiation. It belongs to the
proliferation signature gene set. In breast cancer, GATA3 is recognized as a key
regulator of luminal epithelial cell differentiation and is often used as a marker
for luminal breast cancer subtypes (Mehra et al. 2005). Abnormal expression of
GATA3 has been associated with tumor progression and poor prognosis in breast
cancer patients. LEFTY2 (Left-Right Determination Factor 2) is a member
of the signature gene set representing the transforming growth factor-beta
(TGF-beta) superfamily, which plays a role in many developmental processes
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in the body. In cancer, LEFTY2 has been implicated in the regulation of cell
proliferation and differentiation. Dysregulation of LEFTY2 expression has been
associated with various cancer types (Yue and Mulder 2001). HDAC2 (Histone
Deacetylase 2) is an enzyme involved in the regulation of gene expression
through regulating the chromatin structure and thereby repression of gene
transcription. Abnormal expression and activity of HDAC2 have been observed
in various cancer types, including breast cancer. Altered HDAC2 expression
has been linked to tumor progression and HDAC inhibitors have emerged as a
potential therapeutic strategy for cancer treatment (Huang et al. 2015).

The potential of these genes, along with other selected genes, could be
further evaluated by conducting similar analyses within the chemotherapy arm
of the clinical trial. This would enable the determination of whether some of
these markers are specifically important for the targeted drug treatment, rather
than merely exhibiting a general effect on cancer treatments that inhibit cancer
cell proliferation. Furthermore, since the mechanistic model using only six
genes has proven to be quite successful, and it is known that the targeted drug
influences more than just CDK4/6, there is potential for further development
of this model (Fassl, Geng and Sicinski 2022). Genes identified in our study
could serve as potential candidates for such advancements.

In brief, this thesis focused on the evaluation of machine learning models
for cancer precision medicine, with an emphasis on leveraging cancer biology
domain knowledge. In conclusion, our findings suggest that incorporating
domain knowledge related to the tumor ecosystem into the modeling process
has the potential to improve their prognostic utility and thereby assist in
the selection of individualized treatment regimens and contribute to a deeper
understanding of cancer biology.
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