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Multicritical bifurcation and first-order phase transitions in a three-dimensional
Blume-Capel antiferromagnet
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We present a detailed study by Monte Carlo simulations and finite-size scaling analysis of the phase diagram
and ordered bulk phases for the three-dimensional Blume-Capel antiferromagnet in the space of temperature
and magnetic and crystal fields (or two chemical potentials in an equivalent lattice-gas model with two particle
species and vacancies). The phase diagram consists of surfaces of second- and first-order transitions that enclose
a “volume” of ordered phases in the phase space. At relatively high temperatures, these surfaces join smoothly
along a line of tricritical points, and at zero magnetic field we obtain good agreement with known values for
tricritical exponent ratios [Y. Deng and H. W. J. Blöte, Phys. Rev. E 70, 046111 (2004)]. In limited field regions at
lower temperatures (symmetric under reversal of the magnetic field), the tricritical line for this three-dimensional
model bifurcates into lines of critical endpoints and critical points, connected by a surface of weak first-order
transitions inside the region of ordered phases. This phenomenon is not seen in the two-dimensional version
of the same model. We confirm the location of the bifurcation as previously reported [Y.-L. Wang and J. D.
Kimel, J. Appl. Phys. 69, 6176 (1991)], and we identify the phases separated by this first-order surface as
antiferromagnetically (three-dimensional checker-board) ordered with different vacancy densities. We visualize
the phases by real-space snapshots and by structure factors in the three-dimensional space of wave vectors.
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I. INTRODUCTION

The spin-1 (three-state) Ising model with bilinear and
single-ion anisotropy is known as the Blume-Capel (BC)
model. It was introduced independently in 1966 by Blume [1]
and Capel [2] to describe certain magnetic phase transitions.
Over the ensuing six decades, the complex phase behavior of
the BC model (often in an equivalent lattice-gas formulation
with two particle species and vacancies, or in generalizations
to various lattices and with additional interactions [3–5]) has
been used to explore critical and multicritical properties in
a variety of physical systems. Among these applications are
the λ transition and phase separation in He3-He4 mixtures [3],
dielectric properties of nanowires [6], phase behavior of su-
perionic liquids in nanoporous media [7–9], two-component
adsorption from liquids or gases [4,5,10,11], ternary steel
alloys [12], and exotic “nuclear pasta” phases thought to exist
in neutron stars [13], to mention just a few.

The rich phase diagram of the BC model, with surfaces
of first- and second-order transitions that are smoothly joined
along lines of tricritical points [14], or along lines of critical
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endpoints where the second-order surface meets the first-order
surface at a finite angle [15,16], has also served as a test bed
for many theoretical and numerical techniques. These include
mean-field approaches, finite-size scaling, and various Monte
Carlo techniques in two and three dimensions. Several of these
studies are relevant to the present work and are cited below.

In three dimensions (3D), the antiferromagnetic (AFM) BC
model on a simple cubic lattice presents an intriguing feature:
the line of tricritical points decomposes at low temperatures
into a line of critical endpoints and one of critical points.
These lines of critical endpoints and critical points are con-
nected by an extension of the first-order transition surface
into the ordered-phase region of the phase diagram. This
phenomenon was first observed by mean-field theory [17] and
Monte Carlo simulations [18]. However, finite-size scaling
analyses of data from large-scale numerical transfer-matrix
calculations and Monte Carlo simulations conclusively show
that it does not occur in the 2D, square-lattice version of
the same model. Instead, the tricritical line in the 2D model
continues unbroken all the way down to zero temperature [19].
This qualitative difference between the behaviors in two and
three dimensions has been attributed to the presence of large
fluctuations in the 2D case [19].

Despite the enduring popularity of applications of the BC
model to various physical and chemical systems, ranging
from nuclear astrophysics to metallurgy, we are not aware
of any further study of multicriticality in the 3D, AFM BC
model. Therefore, we here present a comprehensive Monte
Carlo study on simple cubic lattices up to 323 sites of the
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phase diagram in the space of magnetic field, crystal field,
and temperature, both on a global scale and on a fine scale
in the phase region of the decomposition. This enables us to
detect and describe three distinct phases of different order and
density in the region of phase space beyond the decomposition
point.

The remainder of this paper is organized as follows. In
Sec. II we define the model, describe the Monte Carlo method,
and define the order parameters and other quantities that
are extracted from the simulated time series and used in
our finite-size scaling analysis. In Sec. III we discuss the
phase diagram on a large scale, including the ground-state
diagram (Sec. III A) and the finite-temperature phase diagram
(Sec. III B) that consists of second-order (Sec. III B 1) and
first-order (Sec. III B 2) transitions and the line of tricritical
points (Sec. III B 3). In Sec. IV we study the bifurcation
region in detail, including second-order (Sec. IV A) and first-
order (Sec. IV B) transitions and the decomposed region
(Sec. IV C). The structures of the distinct phases identified in
the phase region beyond the bifurcation point are investigated
in Sec. V with snapshots (Sec. V A) and static structure factors
(Sec. V B). A summary and our conclusions are given in
Sec. VI.

II. MODEL, SIMULATION, AND ANALYSIS METHODS

The Blume-Capel model is defined by the Hamiltonian,

HBC = −J
∑

〈i, j〉
sis j + D

∑

i

s2
i − H

∑

i

si, (1)

where the “spin” variables si ∈ {−1, 0, 1}, ∑
〈i, j〉 runs over

all nearest-neighbor (nn) pairs, and
∑

i runs over all lattice
sites. J is the exchange parameter, here chosen negative to
favor AFM (checker-board) ordering on two interpenetrating
sublattices. D is the “crystal” field that distinguishes between
si = 0 and ±1, and H is an external “magnetic” field. For sim-
plicity, we define the dimensionless parameters, d = D/|J|,
h = H/|J|, and t = T/|J| and take Boltzmann’s constant as
unity. The general three-state Ising model can be equivalently
formulated as a lattice-gas model with the two nonzero val-
ues of si representing two different particle types, A and B,
and si = 0 representing vacancies. The transformation equa-
tions can be found in, e.g., Refs. [10,15]. They yield the
lattice-gas interaction energies, φXY, for the BC model as
φAA = φBB = J and φAB = −J .

We perform equilibrium Monte Carlo simulations in 3D
on a simple cubic lattice of size V = L × L × L with L
between 12 and 32, with periodic boundary conditions. To
facilitate equilibration, direct transitions are allowed between
all three spin states at randomly chosen lattice sites. The
acceptance probability of a proposed transition, si → si

′, is
given by the corresponding energy change, �E = E ′ − E , by
the Metropolis algorithm [20],

P(si → si
′) = Min[1, e−�E/T ]. (2)

The order parameters of interest are the staggered magneti-
zation ms, the magnetization m, and the density ρ, all per unit

volume:

ms = 1

V

∑

i

(−1)isi, (3)

with i even on one sublattice and odd on the other,

m = 1

V

∑

i

si, (4)

ρ = 1

V

∑

i

s2
i . (5)

Monte Carlo time series of up to 9 × 106 Monte Carlo steps
per site (MCSS) for the largest systems, with the first third
used for equilibration and averages calculated over evenly
spaced samples from the remaining two thirds. The results
were analyzed with standard methods [21], including finite-
size scaling [22] for the susceptibilities associated with each
order parameter O [21],

χ (O) = V

T
〈(O − 〈O〉)2〉, (6)

and fourth-order Binder cumulants [23],

U4(O) = 1 − 〈(O − 〈O〉)4〉
3〈(O − 〈O〉)2〉2

. (7)

In both cases, the angled brackets indicate averages over
samples.

The Binder cumulant measures the non-Gaussianity of the
probability distribution of an observable, and it is a valuable
tool to find critical points and to characterize the nature of
a phase transition. In the proximity of a second-order phase
transition, as the system goes from the ordered to the dis-
ordered phase, the two peaks of the probability distribution
merge. At the critical point, U4 approaches a fixed value,
U ∗

4 � 2/3, as a function of L. Therefore, the critical point can
be identified as the crossing point of the Binder cumulants for
different system sizes. The value of U ∗

4 is weakly universal in
the sense that, for a transition in a given universality class, it
may depend on the boundary conditions and any anisotropy of
the interactions [24]. Reference values quoted in the present
paper are those appropriate for the 3D Ising class on the
simple cubic lattice with periodic boundary conditions and
isotropic interactions.

For more accurate location of first-order phase transitions,
we also consider probability distributions P(O) and their asso-
ciated free-energy densities [25,26]. Ordered and disordered
phases at low, finite temperatures are investigated with snap-
shot images and 3D static structure factors. Further details of
the various methods are given below as needed.

III. LARGE-SCALE FEATURES OF THE PHASE DIAGRAM

A. Ground-state diagram

We first construct the ground-state diagram, which can be
thought of as the foundation of the finite-temperature phase
diagram. It is obtained by calculating all the configurations of
the unit cell for the different sets of parameters and selecting
the ones with the lowest energy in each case. The equations for
the boundaries between phase regions are found by pairwise
equating the ground-state energies of the adjoining phases.
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FIG. 1. The ground-state diagram for the 3D, AFM Blume-Capel
model in the (h, d ) parameter plane. The insets show 2D slices in
the crystallographic (100) plane of the 3D ground states. Red (blue)
points indicate +1 (−1) spins, and si = 0 is represented by empty
sites. At nonzero temperatures, the yellow, solid line continues as a
surface of first-order phase transitions, while the black, solid lines
continue as tunnel-shaped surfaces of second-order transitions, as
shown in Fig. 2. The dashed lines continue as noncritical crossovers
between the corresponding pairs of ordered phases [15,27].

This diagram is shown in Fig. 1. Except for numerical con-
stants in the equations for the phase boundaries, it is identical
to the one for the 2D version of the model [10,19].

B. Finite-temperature phase diagram

To facilitate the further reading of this paper, we show
in Fig. 2 a large-scale view of the finite-temperature phase
diagram. The yellow points represent a surface of first-order
phase transitions, which smoothly joins a surface of second-
order transitions represented by blue points. The line, along
which these surfaces join smoothly, consists of tricritical
points [14], indicated in red. How these surfaces and line were
determined from our Monte Carlo data is outlined below.

At this large scale, the phase diagram appears topologi-
cally identical to that for the 2D version of the model [19].
The decomposition of the tricritical line, mentioned in Sec. I
and discussed in detail in Secs. IV and V, is confined to
the phase region of |h| ∈ [2.94, 3], d ∈ [+2.98,+3], and t <

0.57, which is too small to be visible on the scale of this figure.

1. Second-order transitions

The points on the large, tunnel-like surfaces of second-
order phase transitions in Fig. 2 were located in standard
fashion [21]. One of the three fields was scanned through the
expected transition while the other two were kept constant.
The transition point along the scan line was located by max-
ima of the susceptibility χ (ms) and/or χ (ρ) and crossings
of Binder cumulants for different L in the range 12,...,32.

D
/|J

|

4

2

0

−2
−4

−7−654−3−2−10

T
/|J

|

0

1

2

3

4

FIG. 2. A large-scale view of the finite-temperature phase dia-
gram, shown in the {h, d, t} space. The “tunnel” formed by blue
points and lines represents a surface of second-order phase tran-
sitions, which smoothly joins a surface of first-order transitions
(yellow) along a line of tricritical points (red). Phase boundaries from
the ground-state diagram in Fig. 1 (T = 0) are shown in purple. To
clearly display the first-order surface and tricritical line, this image is
viewed in the positive h direction and the negative d and t directions
from a phase point near (h, d, t ) = (−8,+6, +3). At this scale, the
decomposition of the tricritical line in the limited parameter range
|h| � 3, d � 3, t < 0.57 is not visible. It is discussed and shown in
detail in Sec. IV C.

Even without L-extrapolations, this method yielded error bars
smaller than the symbol size in Fig. 2. The order of the
transition was ascertained by checking the power-law diver-
gence of χ ∼ Lγ /ν for compatibility of the observed γ /ν

with the expected value of approximately 1.964 for the 3D
Ising universality class [28,29]. The weakly universal [24]
Binder-cumulant crossing values were also checked to be in
the vicinity of the expected value of 0.466 [28,30,31].

2. First-order transitions

The surface of first-order transitions is confined to a narrow
range in d between 2.84 and 3 [32–34]. We therefore located
the points on this surface by scanning d in this range at
constant h and t . As seen from their definition in Eq. (6), the
susceptibilities are proportional to the variance of the corre-
sponding order-parameter distribution. When this distribution
becomes sharply bimodal with L-independent peak separation
as L → ∞ at a first-order transition, the only remaining L-
dependence in the susceptibilities is contained in the prefactor,
V = L3. We found the observation of this divergence in χ (ρ)
sufficient to locate these points with an accuracy smaller than
the symbol size.

3. Tricritical line

At h = 0, the tricritical points for the ferromag-
netic and the antiferromagnetic BC models coincide
by symmetry. For the ferromagnet, this point has
been estimated by Monte Carlo simulations to be at
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FIG. 3. Dependence on d at constant h = 0 and t = 1.402 of the susceptibilities for L = 12, . . ., 32. (a): χ (ms) and (b): χ (ρ ). (c): Scaling
plots of the susceptibility maxima vs L. The estimated values of the scaling exponents, γ /ν, are 1.98(2) and 1.07(2), respectively. These are
close to the expected tricritical values of 2 for ms and 1 for ρ [33]. Dashed lines in the background are guides to the eye of form a + bL2 and
a + bL, respectively. See discussion in the text.

(dt , tt ) = (2.84479(30), 1.4182(55)) [32,34] or (2.848(1),
1.4019(2)) [33], respectively. To verify our ability to reliably
locate tricritical points and to “anchor” the tricritical line
for h 
= 0, we performed scans in d at constant h = 0 and
t = 1.402. In Fig. 3 we show the susceptibilities, χ (ms) and
χ (ρ), and scaling plots of their maxima versus L. The slopes
of the fitted lines are 1.98(2) and 1.07(2), respectively. These
values are close to the theoretically expected values of 2
and 1, corresponding to γ /ν for perturbations nonparallel
and parallel to the critical surface, respectively [33]. To
account for relatively large, L-independent background
terms, the fits were performed as weighted, nonlinear
3-parameter fits with error bars estimated as proportional
to the variables. Extrapolations of d (L) with respect to
1/L yield dt = 2.849(1), in good agreement with [33]. The
fourth-order Binder cumulant for ms is shown versus d in
Fig. 4. The observed crossing values, dt = 2.84760(5) and
U ∗

4 = 0.325(5) are close to the expected tricritical values
from Ref. [33].

For the tricritical line at h 
= 0, we identify tempera-
ture regions where lines through nearby points identified as
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FIG. 4. Dependence on d at constant h = 0 and t = 1.402 of
the fourth-order Binder cumulant U4(ms ) for L = 12, . . ., 32. The
crossing value of the three largest systems, U ∗

4 = 0.325(5), is in
excellent agreement with the expected tricritical value of 1/3 [33].
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FIG. 5. Projections of the lines of tricritical points and critical endpoints onto (a) the (−h, t ) plane and (b) the (−h,−d ) plane. The lines
connecting the numerically calculated points are guides to the eye. At this large scale, error bars would be smaller than the symbols. Note that
the signs used in the description of the projection planes refer to the directions of the figure axes, relative to the corresponding coordinate axes
in the (h,d,t) space. The same notation is also used in describing projections shown in Figs. 10 and 11.

critical and first-order, respectively, join smoothly to-
gether [14]. Within this range, the tricritical point is then
identified by a scaling procedure analogous to the one shown
for h = 0 in Fig. 3. The resulting, estimated tricritical line
is shown in Fig. 5, projected onto the (−h, t ) and (−h,−d )
planes, respectively. The approximate locations of the bifur-
cation point and the line of critical endpoints shown in this
figure are based on results discussed in Sec. IV.

IV. DETAILED STUDY OF THE BIFURCATION REGION

As mentioned above, the two phase regions where decom-
position of the tricritical line might be found are restricted
to approximately |h| ∈ [2.94, 3], d ∈ [2.98, 3], and t < 0.57.
Our approach is therefore to perform scans in h or t at fixed
values of d in this range.

A. Second-order transitions

In this region of the phase diagram we also used suscepti-
bility maxima and crossings of Binder cumulants for L in the
range 12,. . ., 32 to locate points on the surface of second-order
transitions. The only difference is that we used scans in h or t ,
instead of scans in d .

B. First-order transitions

1. Susceptibilities

As seen from their definition in Eq. (6) and already noted
in Sec. III B 2, the susceptibilities at a first-order transition
should be asymptotically proportional to L3. Plots of the sus-
ceptibilities for ms and ρ versus t at the same values of d and h
as in Figs. 8 and 9 below are presented in Figs. 6(a) and 6(b).
As expected, the susceptibility peaks grow larger and sharper
as L increases. In Fig. 6(c) we show scaling plots of their
maxima versus L3. The scaling exponents of the fitted curves
are 2.74(2) and 2.80(2), respectively, close to the theoretically
expected value of 3.

2. Order-parameter distributions and free energies

The probability distribution of an order parameter, P(O),
has a very distinctive behavior that can be used to characterize
the type of phase transition. As a first-order transition cor-
responds to a finite order-parameter discontinuity, P(O) has
two well-defined peaks of equal area [35–38], as illustrated
in Fig. 7(a). Therefore, the free energy obtained from the
probability distribution,

F (O) = −T ln P(O), (8)

has two valleys representing the distinct phases, separated by
a local maximum representing the interface between them [see
Fig. 7(b)]. The height of this maximum is given by

�F (L) = F (ρmax, L) − 1
2 [F (ρ1, L) + F (ρ2, L)]. (9)

Here, the relevant order parameter has been chosen as the
density, ρ, and ρ1, ρ2, and ρmax refer to the two minima
and the maximum in Fig. 8(a), respectively. For sufficiently
large systems, the locations of the free-energy minima become
independent of L, while their magnitudes continue to be size
dependent. Since the free-energy maximum corresponds to an
interface of dimension d − 1, the asymptotic size dependence
of �F is given by the finite-size scaling relation [25,26],

�F (L) ∼ Ld−1. (10)

The scaling behavior of �F provides a sensitive method to
locate a first-order phase transition. First, the transition point
in the (h, d, t ) space for a given value of L is identified from
order-parameter histograms of several long simulation runs as
the one that provides a pair of peaks of equal area. Repeating
this procedure for a range of L, one can confirm the transition
as first-order. Examples of the scaling plots corresponding to
Eqs. (8)–(10) for one particular point on the first-order surface
are shown in Figs. 8(a) and 8(b), respectively. This method
was also used, together with susceptibility scaling, to obtain
the yellow points representing the first-order surface at higher
temperatures in Fig. 2.
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FIG. 6. Details of the susceptibilities for L = 12, . . . , 32, plotted vs t across the surface of first-order transitions for d = 2.9855 and
h = −2.960. Sharp maxima are seen at t ≈ 0.472. (a) χ (ms ). (b) χ (ρ ). (c) The maximum values of the two susceptibilities, plotted vs L3. The
fitted scaling exponents are 2.74(2) for χ (ms ) and 2.80(2) for χ (ρ ), close to the expected value of 3. The dashed lines in the background are
guides to the eye of form a + bL3. (The location of this phase point is shown as a green × in Figs. 10 and 11.)

FIG. 7. Normalized histogram with L = 20, representing P(ρ ) (a) and the free energy F (ρ ) obtained from the histogram by Eq. (8) (b),
representing a first-order transition at d = 2.9805, h = −2.9394, and t = 0.52. The areas under the histogram peaks are equal to within ±2%.
(The location of this phase point is shown as a red + in Figs. 10 and 11.)
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FIG. 8. (a) Free energy F vs density ρ at d = 2.9855, h = −2.9600, and t = 0.475 with L = 12,. . ., 32. This phase point lies close to the
susceptibility peaks in Fig. 6, which are shown as a green × in Figs. 10 and 11. (b) Free- energy difference �F vs L2. Particularly for the
larger systems, �F grows linearly with L2 as expected at a first-order phase transition.

3. Binder cumulant

The Binder cumulant [Eq. (7)] also displays characteristic
features at a first-order phase transition. Here, the cumulant
shows a peak that becomes sharper at the transition as L
grows, and also reaches negative values on both sides, as
shown in Fig. 9. Both behaviors are indications of a first-order
transition [39,40]. This method is particularly useful when no
symmetries are available to help locate the transition [41].
The peak positions for the largest values of L lie close to the
susceptibility peaks shown in Fig. 6.

C. Decomposition of the tricritical line

In Fig. 10 we present sections of the phase diagram for con-
stant values of d , slightly below 3. The first-order lines were
obtained from histograms, Binder cumulants, and susceptibil-

0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51
−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

U
4
(ρ

)

L=12

L=16

L=20

L=24

L=28

L=32

L=12

L=16

L=20

L=24

L=28

L=32

FIG. 9. Binder cumulant, U4 vs t , at different system sizes at
d = 2.9855, h = −2.960. It is negative around the sharper peaks that
characterize the transition temperature at t = 0.474(2). (The location
of this phase point is shown as a green × in Figs. 10 and 11.)

ities, while the second-order lines were obtained from Binder
cumulants and susceptibility maxima. Tricritical points at par-
ticular values of d were identified as those where the first- and
second-order lines join smoothly with a common slope. The
order parameter selected was the density ρ. As d increases,
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FIG. 10. Sections of the phase diagram at constant values of d ,
projected onto the (−h, t ) plane and shown at intervals of �d =
0.001 between 2.980 and 2.986. The lines connecting the data points
are guides to the eye. Solid lines with error bars in the h direction rep-
resent second-order transitions. Dashed lines with error bars in the t
direction represent first-order transitions. Projection of the estimated
bifurcation point (see Fig. 11) is shown as a large, magenta ×. Blue
stars in the background mark tricritical points, critical endpoints, and
the critical points that terminate the lines of first-order transitions
beyond the bifurcation point. Projections of the first-order transition
points considered in Fig. 7 and in Figs. 6, 8, and 9 are shown as a red
+ and and green ×, respectively. See discussion in the text.
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FIG. 11. Lines of tricritical points (red), critical endpoints (green), and critical points (turquoise). The bifurcation point at (h, d, t ) =
(−2.9523(1), 2.9825(3), 0.540(1)) is indicated as a magenta square. Data and error bars extracted from twelve data sets at constant values of
d , seven of which are shown in Fig. 10. This figure shows detail of the decomposition region of the phase diagram, not visible on the scale
of Fig. 5. Phase points considered in Fig. 7 and in Figs. 6 and 9 are shown as a red + and and green ×, respectively. (a) Projection onto the
(−h, t ) plane. (b) Projection onto the (−h, −d ) plane.

the tricritical points decompose into critical endpoints, where
the first- and second-order lines meet at a finite angle, and
critical points, separated by a line of first-order transitions.
[In the full (d, h, t ) space, this bifurcation would be seen as a
point where a “flap” of the surface of first-order transitions
(yellow in Fig. 2) “dives below” the second-order surface
(blue in Fig. 2).] Based on the data in Fig. 10 and additional
simulations, we estimate the bifurcation point to be at approx-
imately (h, d, t ) = (−2.9523(1), 2.9825(3), 0.540(1)). This
point is marked in the figure as a magenta ×. To within the
mutual error bars, it agrees with the bifurcation value of d ,
reported in Ref. [18].

The lines of tricritical points, critical endpoints, and critical
points are shown in Fig. 11 as projections onto the (−h, t )
plane (a) and (−h,−d ) plane (b). Extrapolations of the lines
of critical endpoints and critical points are based on the as-
sumption that the two lines remain separated until they meet at
(h, d, t ) = (−3, 3, 0). The data for these plots were extracted
from Fig. 10 and additional simulations at values of d , mid-
way between the ones shown in that figure.

In Fig. 12 we show in detail the phase diagram from Fig.
10 at d = 2.986, where we identify the lines of second-order
and first-order transitions, as well as the critical endpoint, at
which they meet, and the critical point that terminates the
first-order line inside the ordered-phase region. This result
agrees well with Fig. 3 of Ref. [18]. Here we emphasize that it
permits three different phases: a low-density disordered phase
(LDDP), which is separated from a low-density ordered phase
(LDOP) by the line of second-order transitions, and from a
high-density ordered phase (HDOP) by the line of first-order
transitions. The LDOP and HDOP phases are separated by the
section of the line of first-order transitions inside the ordered
region, between the critical endpoint and the critical point.
The degree of AFM ordering is represented by the staggered
magnetization ms and the density by ρ.

As the phase point is moved along the first-order line be-
yond the bifurcation, order-parameter histograms change from
bimodal, with one peak representing a low-density ordered

phase (LDOP) and the other a high-density ordered phase
(HDOP), through the critical point, to becoming a single peak
representing a single, ordered phase with values of ms and ρ

that vary continuously with fields and temperature.
At the end of the first-order line inside the ordered-phase

region, the distance between the two peaks should decrease as
�ρ ∼ L−β/ν [22,28,29]. In Fig. 13 we show a log-log plot of
�ρ versus L, at what we consider to be a good candidate for
such a terminal critical point at d = 2.986, h = −2.964, and
t = 0.477 (red star in Fig. 12). We estimate the slope of the
log-log plot of �ρ as −0.57 ± 0.05. Given the significantly
different slopes for phase points at slightly higher and lower
values of h, we consider this to be in reasonable agreement
with the expected value for the 3D Ising universality class,
β/ν ≈ 0.518 [28,29].

−2.970−2.968−2.966−2.964−2.962−2.960−2.958−2.9560.40

0.45

0.50

0.55

0.60

0.65

0.70

T
/|J

| Low-Density

Ordered phase

High-Density

Ordered phase

Low-Density

Disordered phase

Second-Order transtion line

First-Order transtion line

Critical Point

Critical End Point

HDOP

LDOP

LDDP

Second-Order transtion line

First-Order transtion line

Critical Point

Critical End Point

HDOP

LDOP

LDDP

FIG. 12. Enlarged section of the phase diagram from Fig. 10 at
d = 2.986. The HDOP, LDOP, and LDDP phases are labeled, as well
as the critical endpoint and the critical point that terminates the first-
order line.
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FIG. 13. Log-log plot at d = 2.9860 of the distance, �ρ, be-
tween the two peaks observed in the density histogram for L =
12, . . . , 32. Data for three phase points in Fig. 12 are included.
The red circles correspond to our best estimate for the critical point
(CP) that terminates the first-order line (red star in Fig. 12 at h =
−2.9640 and t = 0.4770). A weighted fit yields a slope of −0.57(5),
reasonably consistent with the expected value of −β/ν ≈ −0.518
for the 3D Ising universality class [28,29]. The blue squares cor-
respond to h = −2.9633 and t = 0.4733, marked with a vertical
bar on the order-order first-order line in Fig. 12. The magnitude
of the fitted slope is smaller, −0.47(3), which we interpret as in-
dicating an approach to an L-independent �ρ in the large-L limit.
The green diamonds correspond to h = −2.645 and t = 0.4800, on
the supercritical extension of the first-order line into the uniform
ordered phase. In this case, �ρ decreases rapidly toward 0 with
increasing L.

V. PHASES

A. Phase snapshots

Representative snapshots of the three phases, at phase
points marked in Fig. 12, are shown in Figs. 14–16, for HDOP,
LDOP, and LDDP, respectively. The blue spheres represent
s = −1, the red represent s = +1, while s = 0 (vacancies)
are represented by empty sites. The HDOP (Fig. 14) consists
mostly of s = −1 alternating with s = +1, with about 40%
of vacancies scattered throughout. The vacancy density is
clearly larger in the LD phases, Figs. 15 and 16, but it is
relatively difficult to distinguish the LDOP and LDDP from
the snapshots. Therefore, we next calculate the static structure
factor for each phase.

B. Static structure factors

To more clearly differentiate the phases, particularly the or-
dered and disordered low-density phases (LDOP and LDDP),
we calculate their static structure factors. These are the Fourier
transforms of the disconnected pair-correlation functions,

G(�r2 − �r1) ≡ 〈s(�r1)s(�r2)〉, (11)

where �ri are the 3D lattice coordinates of the spin si. Structure
factors are most easily evaluated as the square of the absolute
value of the complex Fourier transform of the real-space spin

FIG. 14. High-density ordered phase (HDOP), d = 2.986, h =
−2.963, t = 0.43, L = 24. This phase point is marked in Fig. 12
by a light blue star. Red points here represent s = +1, blue points
represent −1, and vacant sites represent 0. As h is negative, s = −1
(blue) is favored. This and the next two figures were created in
VisIt [42].

configurations [13,43],

S(kx, ky, kz ) =
∣∣∣∣∣∣

1

V

∑

x,y,z

s(x, y, z)e−i(xkx+yky+zkz )

∣∣∣∣∣∣

2

. (12)

Here, kx = 2πnx/L is the x component of the wave vector,
where nx is an integer that ranges from 0 to L − 1, and
analogously for ky and kz. The inverse volume, 1/V , is the
normalization factor, and i is the imaginary unit. The kx, ky,
and kz axes are plotted on [0, 2π ). The Fourier transform
is normalized such that S[�k = (0, 0, 0)] = m2. Also S[�k =
(π, π, π )] = m2

s if the system is in a pure AFM configuration.
A large and narrow peak represents a strongly AFM ordered
system.

FIG. 15. Low-density ordered phase (LDOP), d = 2.986, h =
−2.964, t = 0.51, L = 24. This phase point is marked in Fig. 12
by an orange star.
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FIG. 16. Low-density disordered phase (LDDP), d = 2.986,

h = −2.961, t = 0.50, L = 24. This phase point is marked in
Fig. 12 by a dark blue star.

The structure factors are shown in Figs. 17–19 for the
HDOP, LDOP, and LDDP, respectively. The large sphere at
�k = (π, π, π ) corresponds to AFM order. The sphere at the
origin, �k = (0, 0, 0), represents the magnetization peak.

In the HDOP, the static structure factor has the largest
AFM peak at �k = (π, π, π ) (Fig. 17), followed by the LDOP
(Fig. 18), and then the LDDP (Fig. 19). (Note that the color
scales in the three figures are different.) This is due to the fact
that the HDOP has the largest amount of AFM ordering. The
LDDP has the smallest and the most diffuse AFM peak of
all, which indicates that other modes are important beside the
AFM one. The clear difference between the structure factors
of the LDDP and LDOP shows that these are, indeed, two
different phases.

Finally, we present the histograms corresponding to the
staggered magnetization in Fig. 20(a) and the density in
Fig. 20(b) for the three phase points selected in Fig. 12, one

in each phase. The histograms are clearly consistent with
the phases indicated in the figure, and as we already no-
ticed in the snapshots there is not a big difference between
the low-density ordered and disordered phases. Dividing
the maximum-probability values of |ms| by those of ρ in
each phase, we obtain rough estimates of the proportions
of the occupied sites in each phase that are AFM ordered:
0.60/0.60 = 1.00 for HDOP, 0.25/0.30 = 0.83 for LDOP,
and 0.16/0.26 = 0.62 for LDDP.

VI. SUMMARY AND CONCLUSIONS

We have explored in detail the finite-temperature phase
diagram of the 3D, antiferromagnetic Blume-Capel model on
a simple cubic lattice, using Monte Carlo simulations and
finite-size scaling analysis of susceptibilities, free energies,
and Binder cumulants. The study consists of two major parts.

First, we considered, on a large scale, the overall phase di-
agram consisting of surfaces of second- and first-order phase
transitions that join smoothly along a line of tricritical points
(Sec. III). At h = 0, we obtained the tricritical values of d
and t in good agreement with previous results for the 3D,
ferromagnetic BC model [32–34], as well as the tricritical
exponent ratios γ /ν in excellent agreement with the theoret-
ically expected values for the Ising universality class in three
dimensions [33].

Second, we considered, on much finer scales, the limited
regions where decomposition of the tricritical line has been
observed [18] (Secs. IV and V). In Sec. IV, surfaces of
second- and first-order phase transitions were identified by
finite-size scaling of data from scans in h or t on planes of
constant d . The bifurcation point of the tricritical line was
identified as the point where second- and first-order lines at
constant d changed from joining smoothly at the same angle
(points on the tricritical line), to where the second-order line
meets at a finite angle with a first-order line that continues
into the ordered-phase region (critical endpoints), as seen in
Fig. 10. The position of the bifurcation point in the (h, d, t )
space is in excellent agreement with the position reported in

(a) (b)

FIG. 17. Structure factor averaged over 30 independent snapshots at d = 2.986, t = 0.43, h = −2.963, L = 24 (HDOP). (a) The 2D
projected heat map, [S̃(kx, ky )]1/2 = [

∑
kz

S(kx, ky, kz )]1/2, and (b) the 3D heat map, [S(kx, ky, kz )]1/2. Note that the color scales are different

in the two heat maps. At �k = (0, 0, 0), the magnetization magnitude is |m| = 0.276, and at �k = (π, π, π ), the magnitude of the staggered
magnetization is |ms| = 0.60.
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(a) (b)

FIG. 18. Structure factor averaged over 30 independent snapshots at d = 2.986, t = 0.51, h = −2.964, L = 24 (LDOP). Otherwise, as
Fig. 17. (a) The 2D projected heat map and (b) the 3D heat map. At �k = (0, 0, 0), |m| = 0.253, and at �k = (π, π, π ), |ms| = 0.302. The spread
of intensity around the AFM peak indicates the reduced ordering, compared to HDOP.

(a) (b)

FIG. 19. Structure factor averaged over 30 independent snapshots at d = 2.986, t = 0.50, h = −2.961, L = 24 (LDDP). Otherwise, as
Fig. 17. (a) The 2D projected heat map and (b) the 3D heat map. At �k = (0, 0, 0), |m| = 0.232, and at �k = (π, π, π ), |ms| = 0.248. The strong
spread of intensity around the AFM peak indicates the further reduced ordering, compared to LDOP.
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FIG. 20. Normalized histograms of the staggered magnetizations (a) and densities (b) corresponding to the three phase points indicated in
Fig. 12. Red corresponds to the light blue point in the HDOP, blue to the orange point in the LDOP, and green to the dark blue point in the
LDDP.
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Ref. [18]. Each first-order line that continues into the ordered-
phase region in Fig. 10 terminates at a critical point. The lines
of tricritical points, critical endpoints, and critical points are
shown in projections onto the (−h, t ) and (−h,−d ) planes in
Fig. 11. The surface bordered by the line of critical endpoints
and the line of critical points is the “flap” of the surface
of first-order transitions that continues into the ordered-
phase “volume,” where it separates two different, ordered
phases that become indistinguishable along the line of critical
points.

Samples of these two ordered phases, as well as the disor-
dered phase, were further investigated in Sec. V. The clearest
differentiation between the three phases is shown by the struc-
ture factors plotted in Figs. 17–19. As the phase becomes less
strongly ordered, the antiferromagnetic maximum becomes
increasingly diffuse.

In this study we have constructed a comprehensive, multi-
scale picture of the topologically complex phase diagram of
the Blume-Capel model on a simple cubic lattice. Three-state
Ising or equivalent lattice-gas models with phase diagrams
that involve intersecting surfaces of phase transitions are
widely used to describe aspects of many physical and

chemical systems. We therefore believe our results may pro-
vide inspiration for further applications of such models to real
systems, introducing additional, local or long-range interac-
tions and lattices of different dimensionality and symmetry.
Beyond its interest as a study of static critical and multicritical
properties in a multistate spin model, our work may also
provide a starting point for dynamic studies of hysteresis and
phase ordering at first-order transitions between differently
ordered phases.
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