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Abstract

Observations by the Interface Region Imaging Spectrograph (IRIS) of the Mg II h & k spectral lines have provided
a new diagnostic window toward knowledge of the complex physical conditions in the solar chromosphere.
Theoretical efforts focused on understanding the behavior of these lines have allowed us to obtain a better and
more accurate vision of the chromosphere. These efforts include forward modeling, numerical simulations, and
inversions. In this paper, we focus our attention on the uncertainties associated with the thermodynamic model
atmosphere obtained after the inversion of the Mg II h & k lines. We have used ≈50,000 synthetic representative
profiles of the IRIS2 database to characterize the most important sources of uncertainties in the inversion process,
viz.: the inherent noise of the observations, the random initialization process, and the selection criteria in a high-
dimensional space. We have applied a Monte Carlo approach to this problem. Thus, for a given synthetic
representative profile, we have created five randomized noise realizations (representative of the most popular
exposure times in the IRIS observations), and inverted these profiles five times with different inversion
initializations. The resulting 25 inverted profiles, fit to noisy data, and model atmospheres are then used to
determine the uncertainty in the model atmosphere, based on the standard deviation and empirical selection criteria
for the goodness of fit. With this approach, the new uncertainties of the models available in the IRIS2 database are
more reliable at the optical depths where the Mg II h & k lines are sensitive to changes in the thermodynamics.

Unified Astronomy Thesaurus concepts: Solar chromosphere (1479); Radiative transfer (1335)

1. Introduction

The study of the chromosphere is critical to understand the
solar atmosphere (Carlsson et al. 2019). Although this region of
the solar atmosphere has been observed for decades, under-
standing it is still a challenge. This is due to several major
issues: (1) the complex coupling between the radiation field
and the local magnetic field and the thermodynamic conditions,
which means interpretation of the radiation must consider non-
local thermodynamic equilibrium; (2) the transitions from fully
ionized plasma to partially ionized and back to fully ionized,
and from domination by the plasma to domination by the
magnetic field; (3) the highly dynamic and highly structured
nature of the chromosphere on small spatiotemporal scales,
necessitating high-quality subarcsecond observations on time-
scales of seconds. During the last few decades, both theoretical
and observational improvements have allowed us to gain a
better knowledge of the chromosphere and the events that
occur in this region (e.g., Scharmer et al. 2008; Leenaarts et al.
2011, 2013a, 2013b; De Pontieu et al. 2014; Vissers et al.
2015; Quintero Noda et al. 2016; Carlsson et al. 2019; de la
Cruz Rodríguez et al. 2019; Centeno et al. 2021; De Pontieu
et al. 2021; Ishikawa et al. 2021; Trujillo Bueno & del Pino
Alemán 2022; Vissers et al. 2022).

The Interface Region Imaging Spectrograph (IRIS; De
Pontieu et al. 2014) has been providing high-resolution
observations (free from seeing effects introduced by the Earth’s

atmosphere) of the chromosphere through the near-UV (NUV)
spectral range around the Mg II h & k lines since 2013. The
IRIS wavelength range also contains the Mg II UV triplet lines
(hereafter denoted as Mg II UV2&3). The Mg II h & k lines are
optically thick lines, being sensitive to the conditions at the
high- and mid-chromosphere (Leenaarts et al. 2013a, 2013b;
Pereira et al. 2013), while the Mg II UV2&3 lines typically
form lower in the chromosphere (although under flaring
conditions the line formation may be different; Kerr et al.
2016; Rubio da Costa et al. 2016). The most reliable method to
derive physical information along the optical depth from these
lines is by the “inversion” of these lines. This involves an
iterative process in which, at first, an initial atmosphere is
assumed and radiative transfer equations are solved considering
non-local thermodynamic equilibrium and the partial frequency
redistribution of the radiation from scattered photons, leading
to a refinement in the underlying atmosphere, followed by
further iterations.
The state-of-the-art Stockholm inversion Code (STiC; de la

Cruz Rodríguez et al. 2016, 2019) is the only available code
capable of inverting these lines under these conditions.
However, the inversion of a single Mg II h & k profile is
computationally expensive (2.5 CPU hours per observed
profile). To minimize this burden, we created the IRIS
Inversion based on Representative profiles Inverted by STiC
(IRIS2; Sainz Dalda et al. 2019). This technique is based on the
inversion of the representative profiles (RPs) of a broad
selection of observations taken by IRIS of the Mg II h & k
lines. An RP is the averaged profile of those profiles belonging
to a data set that share the same shape, i.e., a similar
distribution of the intensity over a given spectral range. This
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shape—or profile—is the signature of the conditions in the
solar atmosphere where the radiation originates. Therefore, the
RP is the average of those profiles sharing similar conditions in
the Sun. It is natural to define a representative model
atmosphere (RMA) for the atmospheric conditions associated
with an RP, which is obtained from the inversion of the RP.
The core of IRIS2 is the IRIS2 database, which has three
components: (i) synthetic RPs (RPsyn), i.e., the best synthetic
profile that is the best fit to the observed profile; (ii) their
corresponding RMAs obtained from the inversion of the
observed RPs; and (iii) the uncertainty of the thermodynamics
variable p, σp, of the RMA associated with the RPsyn. The
IRIS2 database consists of ≈50,000 items, obtained from (1)
clustering 312 data sets on different targets (observed by IRIS)
by using the k-means technique (Steinhaus 1957; MacQu-
een 1967); (2) inverting each RP with STiC; and (3) obtaining
the RPsyn, RMA, and σp. The physical information relies on the
relationship between the RPsyn, the RMA, and the uncertainties
of the latter (σp), while the statistical significance of IRIS2 is
given by the selection of the data sets considered in the
database, which takes into account different solar features,
exposure times, and locations on the solar disk.

In the first publicly released version of IRIS2 , the
uncertainty of a physical variable σp was obtained using the
expression5 (see and del Toro Iniesta & Ruiz Cobo 2016):
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with i= 0, K, q the sampled positions in the wavelength λi,
wi their weights, σi the uncertainties of the observation (e.g.,
photon noise), m the number of physical quantities in model M
evaluated in n grid points along the solar atmosphere, r the
number of physical quantities considered constant along that
atmosphere, and Rp the response function (RF) of a Stokes
parameter to the physical quantity p (Mein 1971; Landi
Degl’Innocenti 1979; Ruiz Cobo & del Toro Iniesta 1992). The
RF provides the sensitivity of a wavelength sample in a Stokes
profile to changes of a physical quantity. In this study, we only
consider the intensity Stokes parameter, I.

The expression above is valid to calculate σp; however,
practical cases using IRIS2 show an underestimation in σp in
those regions where the line is sensitive to changes in the
physical variable p, and an overestimation of σp where the line
is not so sensitive to those changes. This is due to the fact that
Rp is calculated considering all the optical depths (or nodes) of
the model M, while for MI ;i syn RP@STiC( )l only variations in a
selected number of nodes in model M are considered. That
means, Rp encodes the information at all optical depths, while
the RPsyn comes from a model evaluated in selected optical
depths. Thus, in particular nodes where a line is more sensitive
to changes in p, Rp will be larger than in those nodes where it is
less sensitive, making σp ( Rp

1~ - ) smaller in regions where the
line is more sensitive and larger in regions where the line is less
sensitive. This is the expected behavior, but in practice, in
many cases, the obtained σp is unrealistically very low (high)
for optical depths where the line is (not) sensitive to changes in
the physical variable p.

In this paper, we present a new approach to calculate the
uncertainties of the RMAs in the IRIS2 database initially
presented by Sainz Dalda et al. (2019). In Section 2, we explain
how these new uncertainties have been calculated using a
Monte Carlo simulation approach. The criteria used to
determine the uncertainties are presented in Section 2.2. In
Section 3, we evaluate the results obtained with the new
version of IRIS2 with those obtained from inversion using
STiC. Finally, in Section 4 we present the main conclusions
and limitations of the new IRIS2 database.

2. Methodology

When we invert an observed profile there are several factors
that introduce a randomness to some key elements in the
inversion. First, the noise inherent to an observation, both the
one associated to the distribution of photons detected by the
instrument (i.e., Poisson noise for our NUV photons), and the
one associated to the readout or other electronic variations in
our detector.
In addition, the initialization of the iterative inversion

process is usually randomized. Thus, the path started and
followed during an inversion of an observed profile may be
different from another independent inversion for the same
profile, which may yield different results. To understand the
impact of this randomness in the initialization of the inversion
better, we can invert the same profile several times with
different initializations. This Monte Carlo inversion approach
to quantify the uncertainty was used for the first time, to the
best of our knowledge, by Westendorp Plaza (1999). Another
source of possible variability in inversion results comes from
the initial atmosphere model. To minimize this, the inversion
code DeSIRe (Ruiz Cobo et al. 2022) uses several initial guess
models to invert the same profile independently, selecting the
best fit of all the fits produced by each inversion. We have not
considered this case in our study since the IRIS2 database was
built with the results from the inversion of RPs using an unique
initial guess model (FALC; Fontenla et al. 1993), and that is the
one we only consider in our Monte Carlo approach.
One other aspect to consider when estimating uncertainties is

that the inversion technique is based on the minimization of:
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with i= 0, K, q the sampled wavelengths, wi their weights,

σi the uncertainties of the observation (e.g., photon noise),6 and
ν the number of observables, i.e., the spectral samples. This is
the weighted Euclidean distance between the observed (input)
and the synthetic (output) profile, with the weight higher for
those wavelengths in which we are more interested. However,
as we will see below, this metric is not optimal for those cases
where the dimension of the observation, i.e., the number of
observed wavelengths, is high.
The method that we have used to estimate the uncertainties

associated with the RPsyn-RMA takes into account all these
issues.

5 A formal derivation of this expression can be found by using the equations
of Section 2.3 in Sánchez Almeida (1997) and of Sections 6.2 and 6.3 in Bellot
Rubio (1998).

6 Formally, Equation (2) considers a weight and a noise value per spectral
position per profile. However, for computational reasons only one weight and
noise level per spectral profile is provided for all the profiles inverted in a
batch. In this study, a batch is all the RPt

syn

exp,noi

~
at a given texp at a given μ.
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2.1. Building a Noisy Database

As we have already mentioned the physical information in
IRIS2 is given by the relationship between the RPsyn and the
RMA. This information is determined by the physical
considerations made in solving the radiative transfer equation
for the Mg II h & k lines. Therefore, we can consider the
RPsyn–RMA pair as the ground truth. Keeping that in mind, we
have created a new noisy database using these pairs as guides.
The steps taken in this process are the following:

1. We applied Poisson noise to a RPsyn at a given texp
(exposure time). The values of texp are 1, 4, 8, and 30 s,
which are the most used in the IRIS observations. We
also add readout noise characterized by a Gaussian
distribution with a standard deviation of 18 (e−) (De
Pontieu et al. 2014). The result is a noisy synthetic profile
dependent on the exposure time, RPt

syn

exp,noi

~
.

2. We repeat the previous step five times considering a
different randomization for the same RPsyn each time.
Thus, we now get 20 noisy profiles associated with one of
the RPsyn in the IRIS2 database: five random realizations
in noise for each of the four exposure times considered.
We denote these profiles as RPt

syn

exp,noi

~
, with the ˜ indicating

the noisy nature of the profile for a given texp, with the
five randomizations in the noise (“noi”). Thus,
t s1, 4, 8, 30exp [ ]= , and noi= 1, K, 5.

3. Each RPt
syn

exp,noi

~
is independently inverted five times with

STiC, following the same inversion scheme as the one
used in IRIS2 . This Monte Carlo simulation tries to
characterize the impact of the randomness of the
initialization of the inversion. Hence, for each RPt

syn

exp,noi

~

we obtained five RMAt
MC syn

exp,noi

~
. The superscript “MC”

indicates the 1,K, 5 independent (initialization) inver-
sions. The superscript “syn” denotes that the associated
input profile in the inversion is not an observed profile
(“obs”), but a (noisy) synthetic profile.

4. At this point, for a given RPsyn at a given exposure time,
texp, we have 25 associated RMAt

MC syn

exp,noi

~
. Thus, each of

the 25 RMAt
MC syn

exp,noi

~
takes into account the random nature

of the noise (noi) for a given exposure time (texp), and the
random nature of the initialization of the inversion (MC).

The new noisy database consists of ≈1.25M (million)
RPt

syn

exp,noi

~
– RMAt

MC syn

exp,noi

~
pairs for each texp, or a total of 5M pairs

considering all the exposure times. Figure 1 shows two
examples of RPt

syn

exp,noi

~
. In both panels, the first row shows the

RPsyn as included in the IRIS2 database. The next four rows
show in black the five noisy profiles for t 1, 4, 8exp = , and 30
s, in violet the inverted synthetic profiles that fit the five
RPt

syn

exp,noi

~
with a χ2� 3 (“good” fits), and in orange those

inverted synthetic profiles that fit the RPt
syn

exp,noi

~
with a χ2> 3

(“bad” fits). Because noi= 1, K, 5, the total number of
inverted profiles displayed for a given RPsyn at a given texp is
25. The number of the good and the bad inverted synthetic
profiles is given in each panel in violet and orange font,
respectively. In the following section, we describe why we
have selected this threshold for χ2. Each line is plotted with a
transparency factor so that the intensity of the color expresses
the probability of signals. Thus, the common values in each

profile are more visible than those where the profiles are less
common. This effect can be seen in the wavelength range
between the two Mg II h & k lines (which we refer to as the
photospheric “bump,” since it is formed in the photosphere) for
theRPt

syn

exp,noi

~
#1619 (second panel from the top in Figure 1) for

t 1 sexp = , where the four “bad” inverted profiles (in orange )
show a contribution located at a range of different intensity
values. As a result, the colored lines look rather faded in that
spectral region. In contrast, the “good” inverted profiles (in
violet) overlap in this wavelength range, and also in the Mg II h
& k lines and in the Mg II UV2&3 lines. If we now look at the
profiles for t 4 sexp = , we can barely distinguish the “good”
inverted profiles (12) from the bad ones (13), since they mostly
contribute equally in the same spectral region with similar
values, resulting in a brownish profile quite well defined in the
photospheric bump and the Mg II UV2&3 region but slightly
blurred or dispersed in the Mg II h & k lines. With this
visualization we want to illustrate how various spectral regions
contribute (or not) to the nature of the fit (“good” or “bad”), and
thus to the uncertainty associated with the RMA. In Section 3
we discuss these inverted profiles, but we have to first answer
an important question: when do we consider a fit to be good
or bad?

2.2. Selection Criteria

The next step is to calculate the uncertainty associated with
the RPsyn–RMA pair. We use Monte Carlo simulations to
calculate the uncertainty for a physical variable as the standard
deviation of all the Monte Carlo experiments; that is, the
standard deviation of the 25 RMAt

MC syn

exp,noi

~
associated with an

RPsyn. In this context, we refer to a Monte Carlo simulation as
the exercise of calculating the 25 inversions for a given RPsyn

(five times for each of the five RPt
syn

exp,noi

~
associated with that

RPsyn) , and to a Monte Carlo experiment as one of these 25
inversions (or experiments).
In an ideal scenario, we would need a large number of Monte

Carlo experiments for each Monte Carlo simulation: this means
a large number of independent inversions considering several
random initializations of the noise for a given exposure time. In
this fashion, the impact of statistical outliers would be reduced
compared to our approach with just 25 experiments. However,
such an approach is computationally very expensive and not
practical. Our current approach to build the “noisy” database
required roughly 10M CPU hours executed in the NASA
Pleiades supercomputer. A larger number of Monte Carlo
experiments or simulations would provide more statistical
samples (e.g., ≈100), but would require many more CPU hours
—in the example given 40M CPU hours. Such a large number
of computational resources is beyond the scope of the current
investigation.
As has been mentioned, the standard procedure would be to

consider all (25) RMAt
MC syn

exp,noi

~
to calculate the uncertainties (by

determining the standard deviation of the physical parameters
determined by the inversions in each experiment). However,
due to the limited number of simulations, in some cases, only a
few fits out of the 25 fits between the RPt

syn

exp,noi

~
and the resulting

inverted profile are “good.” In these cases, the standard
deviation of these 25 RMAt

MC syn

exp,noi

~
may be very large, since it

takes into account a large number of bad fits. Therefore, we
adopt a more empirical approach in which the selection of the
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Figure 1. Top panel: RPsyn #1619 is shown in the first row. The four following rows show their corresponding RPt
syn

exp,noi

~
(in black) for t 1, 4, 8exp = and 30 s, and the

“good” and “bad” MC fits in violet and orange, respectively, (the colored numbers indicate the number of “good” and “bad” MC fits). Bottom panel: the same for
RPsyn #6395.
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RMAt
MC syn

exp,noi

~
considered for calculating the uncertainties is

based on the goodness of fit between the RPt
syn

exp,noi

~
and its

corresponding inverted profile, i.e., on the value of χ2:

I
w1

RP ; RMA 3
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q

t i i t
i

i

2

0
,noi

syn MC syn 2
2

2exp exp,noi
[ ( ) ( )] ( )åc

n
l l

s
= -~ ~

=

,
with ν the number of observables. Note that we are now

quantifying the fit between the noisy RPt
syn

exp,noi

~
and its inverted

profile I, which is the resulting radiation at λi from the model
RMAt

MC syn

exp,noi

~
. Thus, for a given RPt

syn

exp,noi

~
, we have 25 values of

χ2 corresponding to the fits associated between the RPt
syn

exp,noi

~
and

the 25 inverted profiles I generated by the 25 RMAt
MC syn

exp,noi

~
.

We have selected a criterion that considers a large enough
number of experiments to preserve some statistical meaning
from the Monte Carlo approach, and that also attempts to
minimize the impact of bad inversions in the calculation of the
uncertainties. To enable this, we always consider at least 10
Monte Carlo experiments. If the number of fits with a χ2 below
a given threshold ( threshold

2c ) is less than 10, then the

RMAt
MC syn

exp,noi

~
associated with the 10 best fits are used to

calculate the standard deviation of the model. If the number of
fits n with χ2� threshold

2c is larger than 10, then n RMAt
MC syn

exp,noi

~

are used to calculate the uncertainties of the asocciated RMA.
To justify this empirical approach, we have analysed the
distribution of the number of inversion fits with a χ2 below
different thresholds. Each row of Figure 2 shows the
distribution of the number of fits n with a χ2 below a threshold
( threshold

2c indicated in the top left corner in the first column) for
each texp (column) for the case of 0.8� μ< 0.9. The threshold
values are threshold

2c = 2, 3, 3.5, and 4. In each individual panel,
the percentage of the total number of n> 10 with with χ2�

threshold
2c is indicated in the top right corner, while in the bottom

right corner of the last column the average of these values for

all the texp at a given χ2� threshold
2c is indicated. Figure 3 shows

the behavior of the latter average with respect to μ. In this
figure, we can see that for χ2� 3, except for μ= 0.55 and
μ= 0.75, the averaged-in-texp percentage of the Monte Carlo
experiments (inversions) for a given RPsyn with at least 10 fits
with χ2� 3 is larger than 50%, and for the values mentioned
before the percentages are very close to 50%. Therefore, we
consider threshold

2c = 3 and n� 10 to be good criteria to ensure a
Monte Carlo simulation with a well-balanced number of good
and bad fits at (almost) any μ and texp value.
In summary, the uncertainty of the physical variable p in the

RMA is calculated as the standard deviation of the set of the
RMAt

MC syn

exp,noi

~
corresponding to the n best fits of the Monte

Carlo experiments, with N determined by:

N n nmax with 3, 10 42( ) ( )c= =

.Therefore, the uncertainty of physical variable p is:

standard deviation RMA 5p
N

t p,
syn

exp,noi
( ) ( )[ ]s =
~

.For instance, if a RPt
syn

exp,noi

~
has 16 fits with χ2� 3, then σp will

be calculated considering their 16 associated RMAt
MC syn

exp,noi

~
, i.e.,

RMAt
16 syn

exp,noi

[ ]~ . But, if it has only three fits with χ2� 3, then σp

will be calculated considering the corresponding RMAt
10 syn

exp,noi

[ ]~

to the 10 best fits, including seven “bad” fits, which will result
in a larger uncertainty. We believe this approach captures the
impact of the uncertainties introduced by the inversion process.
Note that while MC takes values between 1 to 5, N in [N] may
take any value from 10 to 25.

3. Discussion

Let us now discuss the impact of these new calculations on
the uncertainties on the thermodynamic parameters from
IRIS2 , and in particular some cases that highlight the

Figure 2. Histograms of the number of Monte Carlo simulations (for all IRIS2 entries with 0.8 � μ < 0.9) for which χ2 � threshold
2c , with different values of

threshold
2c in each row (indicated in the upper left of each panel), and different exposure times in each column. Indicated in the top right of each panel is the fraction of

cases for which there are at least 10 Monte Carlo simulations with a goodness of fit better than χ � threshold
2c .
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difference between the previous and new approach, and the
limitations of any uncertainty calculation.

The first row of Figures 4 and 5 shows the RPsyn (first
column) and the associated RMAs for T, vlos, vturb, and ne (in
the second, thirth, fourth, and fifth columns, respectively) with
the uncertainties calculated using Equation (3) in Sainz Dalda
et al. (2019), i.e., using the RFs. In the following rows, the first
column shows RPt

syn

exp,noi

~
for RPsyn#1619 with t 1, 4, 8,exp = and

30 s, with the five noise randomizations over-plotted; from the
second to the fifth columns the same RMA thermodynamic
variables as in the first row, but now showing two types of
uncertainties. In blue, we show the uncertainties calculated
using the standard deviation of those RMAt

MC syn

exp,noi

~
associated

with the inverted profiles for RPt
syn

exp,noi

~
that satisfy condition (4).

In gray we show the uncertainties derived from all 25 Monte
Carlo experiments, i.e., RMAt

25 syn

exp,noi

[ ]~ . In each panel of RPt
syn

exp,noi

~

the number of profiles used to calculate the uncertainty is
indicated in black, and, as a reference, the number of profiles
that satisfies χ2� 3 when that number is less than 10, is
indicated in green.

The uncertainties in T are relatively small between
6 log 3( )t- -  for all the texp in both examples (#1619

and #6395). When all the 25 Monte Carlo experiments are
considered (in gray), we see some differences, with the largest
difference at log 7( )t - and to a lesser extent around
log 5( )t = - . The former location is the region in the optical
depth where neither the Mg II h & k nor the Mg II UV2&3 are
sensitive to variations in the thermodynamic variables. The
latter is where the Mg II h & k lines are more sensitive to
changes in the atmosphere. Therefore, we should expect some
uncertainty in the atmosphere for inversion cases in which the
RPt

syn

exp,noi

~
values are not well fitted, and also where the Mg II h &

k lines are actually sensitive to variations in the thermodynamic

parameters. For 3 log( )t-  , the uncertainties are usually
larger, which makes sense since the IRIS Mg II h & k profiles
barely encode photospheric information, i.e., these lines are not
sensitive to variations in the thermodynamics at this optical
depth range.
It is important to distinguish how the uncertainties are

calculated in the considered methods. In the method using the
RFs, a small variation in the atmospheric parameter is
introduced at given optical depth, then the RF is obtained as
the difference between the synthetic profile from the atmos-
phere with the slightly modified parameter with respect to the
profile corresponding to the unperturbed model atmosphere (
i.e., without variation of any physical parameter). This process
is repeated for all the optical depths considered in the model
atmosphere. Let us now consider how the uncertainties are
determined in our new method. First, we note that during the
inversion of the profiles only some optical depths (nodes7) are
considered. In the Monte Carlo approach, five full inversions
for the five RPt

syn

exp,noi

~
are executed to evaluate the reproducibility

of the results, using the standard deviation of the resulting
models as the uncertainties for the original model. In the first
case (using the RFs), the synthetic profiles come from a model
atmosphere evaluated at all the optical depths with a small
variation, while this is not the case in our new calculations: the
variation of the model atmosphere during the inversion only
occurs in the nodes. In some cases, the inversion code may find
a good fit generating some variations in some nodes, and none
(or negligible) in other nodes because the code is able to fit the
input profile without variation in these nodes. This is why in
some cases the uncertainties at 2 log( )t-  are very small.

Figure 3. Histogram, as a function of the cosine of the viewing angle (μ), of the average (across all exposure times considered) fraction of IRIS2 database entries for
which there are at least 10 Monte Carlo simulations that meet the goodness-of-fit criterion χ � threshold

2c . The colors show different values of threshold
2c , while the ranges

shown indicate the standard deviation (across different exposure times) on the average fraction.

7 The cycles and nodes used in this study are the same as the ones used in
Sainz Dalda et al. (2019): the first cycle considers four nodes in temperature,
and three nodes both vturb and vlos. The second cycle uses seven nodes in
temperature, and four nodes both in vturb and vlos.
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This effect can be seen for vlos for RMAt
MC syn

exp,noi

~
#6395 with

t 1 sexp = in comparison with the other texp. For the latter, the
Mg II UV2&3 lines are more well defined (less noisy) and the
inversion code may be trying to introduce a variation in the
nodes at 3 log( )t-  . This effect is also noted in vturb, and in
ne at 1 log( )t-  . The conclusion then is that when assessing
the uncertainties, we have to be aware of the optical depths
where the observed lines are mostly sensitive to different
parameters. These regions are slightly different for different
solar features (e.g., umbra, penumbra, or plage), and different
between the physical parameters (e.g., see Figure 2 in de la
Cruz Rodríguez et al. 2016).

The first row of Figure 6 shows maps of the uncertainty
calculated using the RFs (σRF) of T, vlos, vturb, and ne at
log 4( )t = - . The second and the third rows show, respec-
tively, the uncertainties calculated using the selective Monte
Carlo experiments (σselMC), i.e., RMAN

t
syn

exp,noi

[ ]~ , and all 25

Monte Carlo experiments (σall25MC), i.e., RMAt
25 syn

exp,noi

[ ]~ . At this
optical depth, in the plage and the umbra and extended
penumbra or canopy T T T

RF selMC all25MCs s s< < < , while for vlos,
vturb, and ne σ

RF> σall25MC? σselMC. This situation is however
different at log 2( )t = - (see Figure 7), where

T T T
RF all25MC selMCs s s> , and for vlos, vturb, and ne

σRF? σall25MC? σselMC. These two figures illustrate what
we mentioned above. When we calculate the uncertainties from

the RFs (as in Sainz Dalda et al. 2019), the uncertainties may
be too low for those optical depths where the lines are sensitive
to changes in the thermodynamics (large RFs), while they may
be unrealistically high for those optical depths where the line is
barely sensitive to changes in the thermodynamics (small RFs).
We find that, for the Monte Carlo approach, the variation with
optical depth of the uncertainties is more moderated, and
typically smaller for the selective criterion than when
considering all 25 Monte Carlo experiments.

4. Conclusions

In this paper, we present and discuss a novel methodology
and the results of applying a selective Monte Carlo approach to
determine the uncertainties associated with the RMAs in the
IRIS2 database. These new uncertainties represent more
realistic values than the previously publicly released uncertain-
ties (Sainz Dalda et al. 2019) which were based on RFs. This is
because the uncertainties in our new approach have been
calculated from synthetic representative profiles (RPsyn)
considering the different sources of uncertainty in the whole
process, i.e.,: different exposure times, different noise rando-
mization, and different inversion initializations. We define the
uncertainty of a physical parameter associated with an
RPsyn–RMA pair as the standard deviation of this parameter
in the set of depth-stratified output models (from the Monte
Carlo experiments) that satisfy the ad hoc selection criterion

Figure 4. The first column shows RPsyn#1619 in blue, and in black its RPt
syn

exp,noi

~
for t 1, 4, 8,exp = and 30 s. The corresponding RMAs for T, vlos, vturb, and ne and

their uncertainties are shown from the second to the fifth columns, respectively. In the first row, the uncertainty is obtained from the RFs, while the ones from the
second to the fifth rows are obtained by using N Monte Carlo experiments as shown in RMAN

t
syn

exp,noi
[ ]~ , for t 1, 4, 8,exp = and 30 s, respectively.
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shown in Equation (4). The latter expression is used to
minimize the impact of the output models based on inversions
that produce a bad fit (with the noisy synthetic profile
associated with RPsyn). In general, at the optical depths where
the Mg II h & k and Mg II UV2&3 lines are sensitive to
variations in a thermodynamic parameter, the difference
between considering all 25 Monte Carlo experiments instead
of the number that satisfies expression (4) is very small. The
difference is larger for optical depths where the lines are not
sensitive to thermodynamic changes.

The new uncertainties will be available to the public in the
IRIS2 database, both for IDL and Python. The uncertainties
calculated from the 25 Monte Carlo experiments will also be
provided as an extra field in the new version of the IRIS2

database. Therefore, the new database will have the following
elements:

1. RPsyn: 472 wavelength positions, from 2794 to 2806 Å,
with a spectral sampling of ≈0.025mÅ

2. RMA: depth-stratified T, vlos, vturb, and ne, sampled at 39
optical depths (i.e., “heights” in the atmosphere)
with log 0.2( )tD =

3. σsel: depth-stratified , , ,T v vlos turbs s s and nes , sampled at 39
optical depths with log 0.2( )tD = , obtained from the
selected Monte Carlo experiments (selective mode).
These values are given for t 1, 4, 8,exp = and 30 s.
Therefore, 4× σsel values are in the database.

4. σall: depth-stratified , , ,T v vlos turbs s s and nes , sampled at 39
optical depths with log 0.2( ( ))tD = , obtained from the

25 Monte Carlo experiments (all-in mode). These values
are given for t 1, 4, 8,exp = and 30 s. Therefore, 4× σall
values are in the database.

5. μ: from 0 to 1, starting from μ= 0.05 at steps of 0.10, as
indicated in Table 1.

The different IRIS2 inversion tools that allow users to
interface with this database will use these database elements for
internal calculations. The inversion of an IRIS Mg II h & k data
set will only return the closest RPsyn to the observed profiles,
the corresponding RMAs, and the uncertainties taking into
account the μ and the texp of the observation and the uncertainty
mode (selective or all-in) chosen by the user.
We believe that the empirical methodology we have

developed for IRIS2 will be useful for understanding the
uncertainties associated with other or similar inversion
approaches.

IRIS is a NASA small explorer mission developed and
operated by LMSAL with mission operations executed at the
NASA Ames Research Center and major contributions to
downlink communications funded by ESA and the Norwegian
Space Agency. This work was supported by NASA contract
NNG09FA40C (IRIS). Resources supporting this work were
provided by the NASA High-End Computing (HEC) Program
through the NASA Advanced Supercomputing (NAS) Division
at Ames Research Center. The inversions were run on the
Pleiades cluster through the computing project s1061 from the
NASA HEC program. The authors are grateful to Andrés

Figure 5. Same as Figure 4 but for RPsyn#6395.
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Asensio Ramos and Jaime de la Cruz Rodríguez for insightful
discussions, and to Marc DeRosa for his improvements in
the text.

Software: IRIS2 , see https://iris.lmsal.com/iris2/.

Appendix
Limitations of the Inversion Approach

This appendix describes in more detail some limitations of
the inversion approach that has been used for the IRIS2

database.
As we mentioned above, Figure 1 shows the RPsyn (top row),

its five associated RPt
syn

exp,noi

~
(black) and its 25 associated inverted

profiles (violet and orange for good and bad fits, respectively)
for two cases of the IRIS2 database.

For RPsyn #1619 (top panel), we can see an interesting
behavior: the number of good fits for t 1 sexp = is almost as
large as for t 8exp = and 30 s, and definitely larger than for
t 4 sexp = . At first glance, one would perhaps expect that for

longer texp finding a good inverted profile close to the RPt
syn

exp,noi

~

should be more difficult than for a profile with shorter texp.
However, the latter is noisier than the former, and thus it has a
larger variation in its values, making it easier to find a fit that is
good enough to end the iterative process of the inversion and
for the code to declare a “good fit.” This is easily visible in the
second row of the top panel: larger noise in the RPt

syn

exp,noi

~
allows

the inverted profile to fit more easily to the RPt
syn

exp,noi

~
. That

means, the difference between the RPt
syn

exp,noi

~
and the candidate to

the final inverted profile is less than the noise. The larger the

Figure 6. The uncertainties in T, vlos, vturb, and ne at log 4( )t = - when considering the RFs (top row), the selective Monte Carlo approach (middle row), or all the 25
Monte Carlo experiments (bottom row).

9

The Astrophysical Journal, 944:118 (11pp), 2023 February 20 Dalda & Pontieu

https://iris.lmsal.com/iris2/


noise, the easier expression (4) can be satisfied. However,
during the inversion process, the code may find a local
minimum in the search for the best fit, and therefore it may not
be able to find a better solution, and eventually reach the
number of maximum iterations allowed. On the other hand, it
can also occur that the code actually finds the best fit in all the
cases despite less noise, as seems to happen for t 8exp = and

30 s. This is even more evident for RPt
syn

exp,noi

~
#6395.

We now describe another peculiarity related to the inver-
sions. During the inversion, the code tries to minimize χ2,
which is basically the average of the ratio of the weighted
difference of the RPt

syn

exp,noi

~
and the fit from the inversion with

respect to the noise. As we have already mentioned, because of
computational constraints the inversion code only accepts a
single noise value for all the profiles considered in the
inversion. That means, the noise is the same at any wavelength.

And more importantly, it is the same for a profile where the
ratio between the line (peaks and the core) and the photospheric
bump (rl2b= Iline/Ibump) is large (e.g., a location with strong
chromospheric heating such as RPsyn #6385) as for a profile
with a small rl2b (e.g., a quiet Sun location such as RPsyn

#1619). Whether the core of the spectral lines (as opposed to
the wings or continuum) has a large impact on the χ2 value
depends on the value for rl2b, the noise value, and the number
of wavelengths sampled within and outside of the wavelength
range covered by the spectral lines.8

Thus, if the noise is large (e.g., for texp equal to 1 or 4 s) and
rl2b is small, the contribution of the lines and the bump to the
χ2 is very similar, since the difference between the RPsyn and

Figure 7. Same as Figure 6 for log 2( )t = - .

8 Both in the inversions used to build IRIS2 and the ones used in this current
work, the weights of the lines, photospheric bump, and wings are taken to be
the same.
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the RPt
syn

exp,noi

~
in the line and the bump are similar. For that reason

RPsyn #1619 has a large number “good” fits for short texp:
there are large number of RPsyn that on average fit the RPt

syn

exp,noi

~

within the (large) noise, even when the core of the lines is not
well fit, since the contribution of the small number of sample
wavelengths in the line to the χ2 is small. However, if there is a
lot of noise but rl2b is large, since the values in the line are
much larger than in the bump, they will have a significant
impact in the χ2. Therefore, χ2 will more easily consider as
“bad” fits those profiles that have a poor fit in the line (usually
in the core). This is the case for RPsyn #6385 for texp = 1 or 4
s. If the amount of noise is small, all the points both on the line
and the bump have to be fit more strictly, since the difference
between the RPsyn and the RPt

syn

exp,noi

~
should be comparable to the

small noise. In this case, since the noise is small, the inversion
will look for solutions that strictly fit all the sampled
wavelengths of the RPt

syn

exp,noi

~
both the line and the bump have

a similar impact in the χ2. This happens for RPsyn #1619 and
#6385 when texp is 8 or 30 s.

In summary, we can see that χ2 is not necessarily always the
best metric (or loss function) to quantify the quality of the fit of
RPt

syn

exp,noi

~
in the inversions. This is due to the high dimensionality

of the profiles (a large number of sampled spectral positions)
and the computational constraints that impose the same weight
and noise per spectral sample and per RPsyn and per data set in
IRIS2 in this study.
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