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This work presents a lossy partial differential acoustic wave equation including fractional deriva-
tive terms. It is derived from first principles of physics (mass and momentum conservation) and an
equation of state given by the fractional Zener stress-strain constitutive relation. For a derivative
order a in the fractional Zener relation, the resulting absorption ak obeys frequency power-laws
as ak ! x1þa in a low-frequency regime, ak ! x1–a/2 in an intermediate-frequency regime, and ak

! x1–a in a high-frequency regime. The value a¼ 1 corresponds to the case of a single relaxation
process. The wave equation is causal for all frequencies. In addition the sound speed does not
diverge as the frequency approaches infinity. This is an improvement over a previously published
wave equation building on the fractional Kelvin–Voigt constitutive relation.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3631626]
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I. INTRODUCTION

This theoretical paper is concerned with lossy acous-
tical wave equations derived from mass and momentum
conservation and constitutive relations between material
stress and strain or the related pressure and density val-
ues. Such relations can be generalized by inclusion of
fractional derivative orders instead of common integer
derivatives.

Viscous acoustic wave absorption may be derived from
the Kelvin–Voigt constitutive relation, leading to power-law
frequency-dependent absorption proportional to x2 in the
low-frequency regime, where x denotes the angular fre-
quency. This power-law is in accordance with what is com-
monly assumed in the acoustical community regarding
absorption in, e.g., water and air. Above a certain frequency
limit, the absorption will grow with

ffiffiffiffi
x
p

.1

As compiled in Ref. 2, experimental absorption data in
many different media for both compressional and shear
waves follow power laws. The observed frequency depend-
encies sometimes follow x2 or

ffiffiffiffi
x
p

; but more often the
absorption grows almost linearly with frequency. This dis-
crepancy motivates a search for wave equations, which apart
from obeying the laws of mass and momentum conservation,
also give rise to absorption models that agree with measure-
ments. This has led to three different approaches to deriving
wave equations. All three result in equations that include the
d0Alambertian linear propagation terms r2u# c#2

0 @2u=@t2

plus some terms corresponding to absorption and dispersion
combined.

For the first class, the lossless part of the wave equation
is derived from a Hooke’s law constitutive relation which
relates stress, r(t), and strain, e tð Þ: r tð Þ ¼ j#1

0 e tð Þ; where j0

is compressibility. The absorption part of the wave equation
is derived independently and heuristically to fit experimental

observations. Such approaches will not ensure that the result-
ing total wave equation is causal, although it may be
adjusted to fulfill causality by use of Kramers–Kronig rela-
tions. Fractional derivatives in the absorption terms is a par-
simonious approach to enable arbitrary frequency power
laws for absorption over a wide range of frequencies. One
example is the fractional Laplacian wave equation developed
by Chen and Holm.3 The existence of fractional spatial
derivatives is intuitively appealing as it points to spatial
properties of the medium as a possible cause of absorption.
However, the wave equation is not causal as it does not
model sound speed dispersion properly. This drawback was
recently amended by Treeby and Cox through application of
Kramers–Kronig analysis in the low-frequency regime,
resulting in addition of an extra absorption term.4 Although
this class of wave equations may successfully be applied for
wave propagation description and simulation, they are never-
theless derived through ad hoc procedures that are not
directly linked to first physical principles.

The second class relies on multiple relaxation,5 where
the assumed constitutive relation for each relaxation process
is a Zener model. By adjustment of the relaxation times and
the compressibilities per process, the frequency-dependent
absorption may then be fit to an arbitrary power-law, for
example ak ! x, which, however, becomes valid only
within a certain frequency interval.6–8 The resulting wave
equation is causal. Some Zener model characteristics are
considered in Sec. III A.

For the third class, the wave equation is derived from a
lossy constitutive relation between stress and strain in com-
bination with conservation laws for mass and momentum.
As reviewed in Sec. II, Holm and Sinkus applied a fractional
Kelvin–Voigt constitutive relation.1 They showed that it
results in power-law absorption characteristics that can
model arbitrary frequency dependency, while the wave equa-
tion is causal. This is a fractional extension to the viscous
absorption model. Recently, this wave equation has been
extended to nonlinear acoustics.9
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A more detailed discussion of approaches 1 and 3 is
given in Ref. 1. The developments of the present paper build
on approach 3. Fractional calculus appears in a wide range of
science and engineering applications, including viscoelastic-
ity.10 Reference 11 gives a review of the historical progress
within the research on fractional calculus in solid mechanics,
and Ref. 12 presents a comprehensive list of major documents
and events in the area of fractional calculus up to the present
date. Moreover, Mainardi has recently published a monograph
that covers several aspects of the research field.13

This paper primarily considers the fractional Zener
model for material stress-strain relations, as further dis-
cussed in Sec. III B. This paper can be regarded as an exten-
sion of the work presented in Ref. 1, where a fractional wave
equation was developed based on the fractional Kelvin–-
Voigt model. To avoid the c ! 1 artifact for x ! 1 that
arises for that model (as further explained in Sec. II), a wave
equation is here instead derived from the more general frac-
tional Zener model.

The analysis of fractional wave equations, including some
based on the fractional Zener model, has previously been pub-
lished with a more mathematical standpoint and notation, see
e.g., Refs. 13 and 14. An additional aim of the present work is
to make the acoustical research community aware of these
developments as well as fitting the concepts into a framework
and a notation that is more accessible to this audience. Further-
more, an intention is to shed light on various fractional stress-
strain relationships described in the fields of rheology and
solid mechanics and show that they may be applied to derive
wave equations and the connected absorption and sound speed
dispersion models by following the approaches used here.
Especially results obtained in rheology, where liquid and soft
solid materials are modeled, are relevant for precise descrip-
tion of biological matters where acoustic imaging is done.

This paper is organized as follows: Sec. II explains why
both the standard and the fractional Kelvin–Voigt models
give unphysical sound speed for high frequencies. Section
III starts by discussing the Zener model stress-strain relation
and its fractional derivative generalization as well as its rele-
vance for viscoelastic materials. Then physical constraints
on the model parameters are lined up.

Section IV presents one of the main contributions: the
derivation of the fractional wave equation based on conser-
vation of mass, conservation of momentum, and the frac-
tional Zener model. In Sec. V, expressions for absorption
and dispersion based on the fractional Zener wave equation
are developed for a low-frequency regime, an intermediate
regime, as well as high-frequency approximations. The three
regimes present different frequency power-laws where the
exponents depend on the fractional derivative order in the
fractional Zener model.

II. REVIEW OF THE FRACTIONAL KELVIN–VOIGT
MODEL

In Ref. 1, the fractional generalization of the Kelvin–-
Voigt constitutive stress-strain relation was the starting point

r tð Þ ¼ E0 e tð Þ þ sa
r
@ae tð Þ
@ta

" #
; (1)

where E0 is the Young’s modulus at zero frequency, which
equals the reciprocal of the zero-frequency compressibility
j0. The order of the fractional derivative, a, is in the range
from 0 to 2, where the standard viscous case is a¼ 1. The pa-
rameter sr is a time constant that characterizes the medium.
The fractional Kelvin–Voigt relations was used to derive the
fractional wave equation first given by Caputo15

r2u# 1

c2
0

@2u

@t2
þ sa

r
@a

@ta
r2u ¼ 0; (2)

which has the frequency domain representation

k2 # x2=c2
0 þ srixð Þak2 ¼ 0: (3)

By separation of the wavenumber k into real and imaginary
parts, k¼x/c(x) – iak, the absorption ak is plotted in Fig. 1
over a wide range of normalized frequency decades. The sig-
nificance of the equation is that a in the range 0–0.5 gives an
absorption that varies as x1 to x1.5 in the low frequency
(low x & sr) regime. This can be used to model absorption
encountered in medical ultrasound in the 1–50 MHz range.
The high-frequency range can model absorption in dynamic

FIG. 1. (Color online) Frequency-dependent absorption (top pane) and dis-
persion (bottom pane), as predicted by the fractional Kelvin–Voigt model.1

The horizontal axis represents normalized frequency. The fractional deriva-
tive order a has values 0.1, 0.3, 0.7, and 1. For visualization convenience,
each absorption curve is normalized to ak ¼ 1 at xsr ¼ 1.
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elastography, where frequencies are only in the 10–500 Hz
range, but sr is so much larger that x & sr ' 1: Asymptoti-
cally, the absorption is also in accordance with the findings
of Weaver and Pao, who state that causality restricts absorp-
tion to have a slower than linear rise with frequency in the
high-frequency limit.16

However, the corresponding phase velocity c(x) asymp-
totically approaches infinity for large frequencies as illus-
trated in Fig. 1. This effect is also predicted directly from the
constitutive relation [Eq. (1)], which has the frequency do-
main representation

r xð Þ ¼ E0 1þ srixð Þa½ )e xð Þ; (4)

which for high xsr becomes r(x)*E0(srix)ae(x). With
increased frequency, there is thus a growing coupling
between strain and stress, implying that a sudden change in
stress is felt instantaneously all over the medium. This was
pointed out in the geophysics literature a long time ago for
the non-fractional Kelvin-Voigt stress-strain relation.17 Mei-
dav suggested that by using the more general Zener model,
this problem may be avoided.18 This preferred high fre-
quency behavior motivates why the wave equation derived
and analyzed in the present paper is based on the more gen-
eral fractional Zener model.

III. STRESS-STRAIN CONSTITUTIVE RELATIONS

A. The Zener model

The Zener model, sometimes denoted the Standard Lin-
ear Solid model or the Standard Viscoelastic Body, describes
the following constitutive strain-stress relation, presented by
Zener for metals19

r tð Þ þ se
@r tð Þ
@t
¼ E0 e tð Þ þ sr

@e tð Þ
@t

" #
: (5)

The parameter sr¼ g/E0 is the creep or retardation time,
where g is the viscosity. The relaxation time is denoted se.
See also the next section where an account is given of physi-
cal constraints on the physical parameters. For the case se¼ 0,
the Zener model equals the Kelvin–Voigt model. The use of
mechanical analogs for the acoustics of fluids was also treated
in Ref. 20, where the Maxwell model, the Kelvin–Voigt
model (there denoted the Stokes model), and the combination
of them as the Zener model of Eq. (5) were investigated.

B. The fractional Zener model generalization

Fractional constitutive stress-strain relations have been
studied in mechanical engineering for several decades. In
comprehensive review papers,21,22 Rossikhin and Shitikova
summarize research on fractional calculus in dynamic prob-
lems of solid mechanics. The reviews analyze a comprehen-
sive number of constitutive relations, of which the fractional
Kelvin–Voigt model and the more general fractional Zener
model are among the more straightforward.

In the following is a representation of a fractional Zener
model similar to the formulation introduced by Bagley and
Torvik in Eq. (3) of Ref. 23:

r tð Þ þ sb
e
@br tð Þ
@tb

¼ E0 e tð Þ þ sa
r
@ae tð Þ
@ta

" #
: (6)

In this paper, it is assumed that the that the medium is
isotropic so that the time constants, the Young’s modulus, and
the fractional derivative orders are direction independent.

Parameter fits to experimental measurements indicate that
this model is applicable to a wide range of materials, e.g., arte-
rial viscoelasticity,24 brain,25–28 doped corning glass,23 rock,18

liver,27 metals,29 polymeric materials,30–33 and rubber.34

It should be noted that even more general fractional
stress-strain relations may be used to describe material
response, as stated in, e.g., Ref. 22. One example is the five-
parameter approach described in Ref. 35. This and other gen-
eralized models could equally well be applied in the wave
equation derivations in the following text.

The stress-strain relation model used in Ref. 23, which
has a structure corresponding to Eq. (6) here, is further ana-
lyzed in Ref. 34. There, constraints on the model parameters
are derived based on thermodynamic considerations founded
on the principle of nonnegative rate of energy dissipation
and on a nonnegative internal work. Converting the parame-
ters in the stress-strain relation of Bagley and Torvik into the
format of Eq. (6) results in the constraints that E0+ 0 and
sa
r + sb

e > 0: They also argue that to get a monotonically
decreasing stress relaxation function for positive time, the
fractional derivative orders must be equal, a¼ b. A slightly
looser criterion is to require that the stress relaxation func-
tion only should be asymptotically monotonic; in this case, it
is sufficient with a + b.36 Based on these arguments the sub-
sequent discussion in this paper will mainly treat situations
when a¼b.

IV. WAVE EQUATION, DISPERSION RELATION, AND
COMPRESSIBILITY DERIVATIONS

A. A fractional Zener wave equation

In the following is a deduction of a wave equation based
on the fractional Zener model of Eq. (6). Due to the conser-
vation of mass principle, strain is related to displacement in
isotropic media by

e tð Þ ¼ ru tð Þ !F e xð Þ ¼ #iku xð Þ; (7)

where u(t) is the displacement vector. The right-hand side of
the expression is the Fourier-domain formulation, which is
for assuming a harmonic plane wave u¼ exp[i(xt – kx)],
where the wavenumber vector is k, the angular frequency x,
and x the spatial coordinate vector.

Insertion of e(t) from Eq. (7) into the Zener model [Eq.
(6)] and application of the r operator on both sides gives

1þ sb
e
@b

@tb

" #
rr tð Þ ¼ E0 1þ sa

r
@a

@ta

" #
r2u tð Þ: (8)

Furthermore, following the principle of conservation of
momentum, Newton’s second law may be formulated as

rr tð Þ ¼ q
@2u tð Þ
@t2

 !F #ikr xð Þ ¼ q ixð Þ2u xð Þ; (9)
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where q denotes the medium density. Insertion of the rela-
tion for the spatial derivative of r(t) into Eq. (8), and the
sound speed definition c2

0 ¼
D

1= qj0ð Þ ¼ E0=q; then leads to
the fractional Zener model wave equation

r2u# 1

c2
0

@2u

@t2
þ sa

r
@a

@ta
r2u# sb

e

c2
0

@bþ2u

@tbþ2
¼ 0: (10)

The two final terms are the loss terms, which will be inter-
preted in terms of their effect on absorption and sound speed
dispersion. The first one contains a second order spatial de-
rivative and a fractional time derivative, whereas the second
term contains a higher order fractional time derivative. This
wave equation is also a generalization of the fractional wave
equation of Eq. (2), which is obtained by setting se¼ 0. A 1-D
medium will be assumed subsequently without loss of gener-
ality, so from now on k is a scalar wavenumber.

B. Fractional Zener model dispersion relation and
compressibility

The frequency-domain representation of the fractional
Zener model [Eq. (6)] is

1þ seixð Þb
h i

r xð Þ ¼ E0 1þ srixð Þa½ )e xð Þ: (11)

Substitution of e(x) in the preceding equation by use of Eq.
(7), solving the result for r(x), and insertion of the result
into Eq. (9) leads to

q ixð Þ2u xð Þ ¼ #ikE0
1þ srixð Þa

1þ seixð Þb
#iku xð Þð Þ; (12)

which can be solved to give a dispersion relation between k
and x

k2 ¼ x2

c2
0

1þ seixð Þb

1þ srixð Þa
: (13)

Note that when se¼ 0, the fractional Zener model dispersion
relation [Eq. (13)] equals the fractional Kelvin–Voigt model
dispersion relation [Eq. (3)]. From Eq. (11), the compressi-
bility j xð Þ ¼D e xð Þ=r xð Þ may be expressed as

j xð Þ ¼ 1

E0

1þ seixð Þb

1þ srixð Þa
¼ j0

1þ seixð Þb

1þ srixð Þa
; (14)

which leads to a common expression for dispersion

k2 # qj xð Þx2 ¼ 0: (15)

V. FRACTIONAL ZENER ABSORPTION AND
DISPERSION

The frequency dependency of the sound speed c(x) (dis-
persion) and the absorption ak may be extracted from the
real and imaginary parts of the complex wavenumber

k ¼ x
c xð Þ

# iak: (16)

The wavenumber k may be solved from the dispersion rela-
tion, Eq. (13), by taking the square root and identifying the
imaginary and real parts. This gives ak(x) and c(x), which
is interpreted in the following text in terms of asymptotic
values in three distinct frequency regimes.

Absorption and dispersion plots in the low- and high-
frequency regimes are seen in Figs. 2 and 3 where
sr=se ¼ 10 for a set of values of a¼ b between 0.1 and 1.
Note that the range is restricted to 0.1 because the equations
derived here have an anomaly as a approaches 0. As dis-
cussed in Ref. 1, this problem may be avoided by taking the
limit as a approaches 0. The intermediate regime covers a
greater frequency region as the ratio increases as may be
confirmed for the sr=se ¼ 1000 case.

The break-points between the three different frequency
regimes of Eq. (13) are determined by the relation between
xseð Þb and xsrð Þa. These regimes are denoted in the follow-

ing text as the low-, intermediate-, and high-frequency
regimes. Because the time constants se and sr are material-
dependent, the frequency intervals relevant for the respective
regimes differ between media.

FIG. 2. (Color online) Frequency-dependent absorption for sr ¼ 10se (top
pane) and sr ¼ 1000se (bottom pane) as predicted by the fractional Zener
model by taking the negative imaginary part of k calculated from Eq. (13).
The horizontal axis represents normalized frequency. The fractional deriva-
tive order a has values 0.1, 0.3, 0.7, and 1. For visualization convenience,
each absorption curve is normalized to ak¼ 1 at xsr¼ 1.
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A. The low-frequency regime xseð Þb , 1; xsrð Þa , 1

In the low-frequency interval where xseð Þb , 1 and
xsrð Þa, 1, the complex wavenumber may be approximated

by

k * x
c0

1þ 1

2
seixð Þb

" #
1# 1

2
srixð Þa

" #

* x
c0

1# 1

2
srixð Þa# seixð Þb

$ %" #
: (17)

For a¼b, the wavenumber then becomes

k * x
c0

1# 1

2
sa
r # sa

e

& '
ixð Þa

" #
: (18)

Utilizing the relation ia¼ cos(pa/2)þ i sin(pa/2) therefore
gives the absorption

ak xð Þ ¼ #Im k * x1þa

2c0
sa
r # sa

e

& '
sin

pa
2
; (19)

which is proportional to x1þa as exemplified in the top pane
part of Fig. 2. The real part of Eq. (18) similarly gives the
dispersion

Re k * x
c0

1# xsrð Þa# xseð Þa

2
cos

pa
2

" #
: (20)

As illustrated in Fig. 3, the sound speed c(x) is therefore
constant for very low frequencies.

B. The intermediate- frequency regime
xseð Þb , 1, xsrð Þa

The intermediate- frequency regime is distinguished by
xseð Þb , 1, xsrð Þa: Assuming that a¼b and rewriting

Eq. (13) to

k2 ¼ x
c0

( )2 1

srix

( )a 1þ seixð Þa

1þ srixð Þ#a ; (21)

then allows for approximating the wavenumber to

k*x1#a=2 srið Þ#a=2

c0
1þ1

2
seixð Þa

" #
1#1

2
srixð Þ#a

" #
: (22)

Because both srixð Þ#a and seixð Þa are small in the interme-
diate regime, k may further be approximated to

k * x1#a=2 srið Þ#a=2

c0
: 1# 1

4

se

sr

" #a" #
: (23)

The imaginary part of this gives the absorption coefficient

ak xð Þ * s#a=2
r

c0
sin

pa
4

1# 1

4

se

sr

" #a" #
x1#a=2: (24)

In Fig. 3, where sr¼ 1000se, the intermediate regime
approximation is valid in the normalized-frequency interval
srx 2 100; 103½ ):

The absorption described by Eq. (24) is proportional to
x1–a/2. This is equal to the high-frequency asymptote of the
absorption resulting from the fractional Kelvin–Voigt disper-
sion relation [Eq. (3)], as developed in Ref. 1. Actually, the
viscous absorption described by the Kelvin–Voigt and the
fractional Kelvin–Voigt equations may thus be interpreted as
the intermediate regime of the fractional Zener model being
extended to very large frequencies without the high-
frequency regime described in the next section.

The intermediate regime frequency-dependent sound
speed given by the wavenumber approximation [Eq. (23)] is

c xð Þ * x
Re k

* c0
sa=2
r

cos pa=4ð Þ
1# 1

4

se

sr

" #a" ##1

xa=2; (25)

as exemplified in the top pane of Fig. 3 for xsr 2 100; 101½ )
and in the bottom pane of Fig. 3 for xsr 2 100; 103½ ):

C. The high-frequency regime xseð Þb ' 1; xsrð Þa ' 1

The high-frequency regime is distinguished by
xseð Þb ' 1 and xsrð Þa ' 1: Assuming that a¼ b, and

rewriting Eq. (13) to

FIG. 3. (Color online) Normalized frequency-dependent sound speed for
sr¼ 10se (top pane) and sr ¼ 1000se (bottom pane) as predicted by the frac-
tional Zener model by taking the real part of k calculated from Eq. (13). The
horizontal axis represents normalized frequency. The fractional derivative
order a has values 0.1, 0.3, 0.7, and 1.
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k2 ¼ x
c0

( )2 se

sr

( )a1þ seixð Þ#a

1þ seixð Þ#a ; (26)

gives the wavenumber approximation

k * x
c0

se

sr

( )a=2

1þ 1

2
seixð Þ#a

" #
1# 1

2
srixð Þ#a

" #

* x
c0

se

sr

( )a=2

1þ ixð Þ#a

2
s#a
e # s#a

r

& '" #
: (27)

The negative imaginary part gives the absorption

ak xð Þ * se

sr

( )a=2

sin pa=2ð Þ s
#a
e # s#a

r

2c0
x1#a; (28)

as illustrated in the right-hand asymptotes of Fig. 2, while
the sound-speed dispersion is given from Eq. (27) by c(x)
¼x/Re k. The sound speed becomes frequency-independent
for very high frequencies:

c ¼ c0 sr=seð Þa=2; (29)

which is greater than c0 because sr > se; as put forward in
Sec. III B. The sound speed frequency-dependency is illus-
trated in Fig. 3.

D. Wave equation causality

Wave equation (10) has been found from the physical
principles of conservation of mass and momentum in combi-
nation with a constitutive equation and this should be enough
to ensure that it is causal. It can be verified by observing that
the frequency-domain compressibility as given in Eq. (14)
through the inverse Fourier transform gives a causal time-
domain compressibility:

j tð Þ ¼ j0ta#1

sa
r

H tð Þ
h
Ea;a # t=srð Það Þ

þ se=tð ÞbEa;a#b # t=srð Það Þ
i
; (30)

where H(t) is the Heaviside step function and Ea;b tð Þ here
denotes the two-parameter Mittag–Leffler function, which
may be regarded as a generalization of the exponential func-
tion. Its one-sided Laplace transform is given in Ref. 37,
from which the Fourier transform can be deduced.

In addition, by following the pattern of Kramers–Kronig
analysis in, e.g., Ref. 38 while choosing appropriate subtrac-
tion frequencies, causality for the low-, intermediate-, and
high-frequency regimes may be proven.

VI. DISCUSSION AND CONCLUDING REMARKS

The fractional derivative description of the loss terms in
the wave equation can be considered as a special case of a
general convolution operator. An advantage of the fractional
derivative is that its Fourier transforms give power-law func-
tions. For wave equations, this is consistent with power-law

absorption. Therefore one gets a description with fewer
parameters that may be considered as more parsimonious
than alternative approaches.

The acoustic wave equation derived in this paper has
several desirable properties. First, it is based only on first
principles of physics (mass conservation and momentum
conservation) and the fractional Zener stress-strain relation.
This relation is a constitutive equation experimentally shown
to be valid for a wide range of materials.

Second, it is causal for any frequency. There is thus no
need for ad hoc addition of some extra term to fulfill the
Kramers–Kronig relation.

Third, the attenuation follows a frequency power-
law ak xð Þ ¼ a0xy, with different y and a0 in the distinct
low-frequency, intermediate-frequency, and high-frequency
regimes.

Fourth, the high-frequency asymptote of the sound
speed is physical in the sense that it does not grow to infinity
with increasing frequency.

Fifth, the model can be considered to be a fractional
generalization of a single relaxation model, frequently used
for describing attenuation and dispersion in gases and
liquids.5 This can also be seen in Fig. I-4 of Ref. 20; this fig-
ure is comparable to our figures for a ¼ 1. In air, the two
main relaxation processes are due to nitrogen and oxygen.39

As an example the oxygen component at 0% relative humid-
ity, 20 -C and 1 atm causes a sound speed increase from
343.23 to 343.35 m/s in the transition region between 10 and
100 Hz.40 According to Eq. (29), this is equivalent to a ratio
sr=se * 1:0007. Another example is fluorine where the
speed of sound changes from 332 to 339 m/s between 5 and
200 kHz at 102 -C and 1 atm,41 resulting in sr=se * 1:043.
In the examples given here, we have on purpose exaggerated
this ratio as also done in Ref. 18. Otherwise the transition
region would not have been visible. Likewise, one usually
refers to the low-frequency attenuation as being proportional
to x2, and the high-frequency region as having constant
attenuation for the single relaxation process, as the transition
region is so narrow that it can be neglected.

In addition to applications in modeling of medical ultra-
sound as discussed in Sec. II, another area where the pre-
sented work may be significant is elastography where tissue
is excited by shear waves in the frequency range where the
Kelvin–Voigt stress-strain relation is valid.42,43 Dynamic
elastography typically falls in the intermediate-frequency
region discussed here. However, if the frequencies in these
applications were pushed up to the regime where the
Kelvin–Voigt model is no longer valid, i.e., for xseð Þb > 1,
the modeling presented in the present work could make tis-
sue classification more accurate.

Another field where accurate frequency-dependent
absorption and sound speed models are required to avoid
image distortion is photoacoustic imaging and tomography,
where laser pulses transmit into tissue interact to produce
ultrasound emission that is detected to form images.44 Simi-
larly, the accuracy of radiation force imaging of sound speed
dispersion depends on reliable tissue models.45,46

In second-order ultrasound field (SURF) imaging, trans-
mit pulses consist of an elasticity-manipulating low-
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frequency component in conjunction with a high-frequency
acoustic imaging component. The elasticity manipulation is
due to the medium nonlinearity. SURF imaging may be uti-
lized to, e.g., improve microbubble contrast agent imaging,47

suppress reverberations,48 and estimate local material nonli-
nearity.49 The total bandwidth of a SURF pulse complex is
wide. Therefore numerical propagation-simulation with such
pulses in lossy media could be more precise if the fractional
Zener all-frequency attenuation- and sound speed dispersion
model combined with nonlinear acoustics9 is employed.

This paper presents little theoretical justification for why
fractional derivatives occur in the constitutive models. How-
ever, there are papers which motivate their relevance from a
statistical point of view. Papoulia et al. have shown that rheo-
logical representations like a generalized Zener model where
the number of springs/dashpots tends to infinity, converge to a
corresponding fractional model.50 Adolfsson et al. have dem-
onstrated both numerically and analytically that a large number
of internal variables each representing a specific damping
mechanism converges to a fractional model with a single inter-
nal variable.51 Chatterjee has presented examples where visco-
elastic damping due to several simultaneously decaying
processes with closely spaced exponential decay rates are
shown to induce a constitutive behavior involving fractional
order derivatives.52 Machado and Galhano have shown that
averaging over a large population of microelements, each hav-
ing integer-order nature, gives global dynamics with both inte-
ger and fractional dynamics.53 Work is also under way to relate
the new model of this paper to the established multiple relaxa-
tion model of Ref. 5.
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