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STOCHASTIC MODELLING OF TEMPERATURE VARIATIONS WITH

A VIEW TOWARDS WEATHER DERIVATIVES

FRED ESPEN BENTH AND JŪRATĖ ŠALTYTĖ-BENTH

Abstract. We model the daily average temperature variations with a mean-reverting
Ornstein-Uhlenbeck process driven by generalized hyperbolic Lévy process and having
seasonal mean and volatility. It is empirically demonstrated that the proposed dynamics
fits Norwegian temperature data quite successfully, and in particular explains the season-
ality, heavy tails and skewness observed in the data. The stability of mean-reversion and
the question of fractionality of the temperature data are discussed. We apply our model
to derive explicit prices for some standardized futures contracts based on temperature
indices and options on these traded on the Chicago Mercantile Exchange (CME).

1. Introduction

Financial derivatives contracts based on weather conditions have gained increasing pop-
ularity over the recent years as a tool to manage risk exposure towards unfortunate weather
events. Standardized futures contracts written on temperature indices have been traded
on the Chicago Mercantile Exchange (CME) since October 2003, together with European
call and put options written on these futures. The temperature indices are based on mea-
surement locations in the US and Europe. To understand the risk involved in such trading,
confident pricing models of both futures and options are called for.

In this paper we will study the mean-reverting Ornstein-Uhlenbeck stochastic process
proposed by Dornier and Querel [16], and suggest some extensions of this motivated from
an empirical investigation of more than 13 years of daily average temperature measure-
ments at 7 locations spread over Norway. Based on our suggested Ornstein-Uhlenbeck
model, we will derive a pricing dynamics for the futures and options commonly traded in
weather derivatives markets like the CME. Furthermore, we will evaluate other versions
of the Ornstein-Uhlenbeck model (see Alaton, Djehiche and Stillberger [3], Campbell and
Diebold [13] and Brody, Syroka and Zervos [12]) in view of the Norwegian temperature
data.
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The literature suggests different types of stochastic mean-reversion models for the time
dynamics of temperature extending that of Dornier and Querel [16]. In this paper we pro-
pose an Ornstein-Uhlenbeck model with seasonal mean and volatility, where the residuals
are generated by a Lévy process rather than a Brownian motion. In particular, we suggest
to use the class of generalized hyperbolic Lévy processes, a flexible class of Lévy processes
capturing the semi-heavy tails and skewness which we observe in some of the Norwegian
temperature data. The density and characteristic function of the generalized hyperbolic
distribution is explicitly known, making it a convenient class of distributions for empirical
study and derivatives pricing. Furthermore, it has the normal distribution as a limiting
case.

The Ornstein-Uhlenbeck process of Dornier and Querel [16] models the temperature
fluctuations as a regression between daily deseasonalized temperatures. We estimate the
regression parameter, and evaluate the stability of this for the Norwegian temperature ob-
servations. The question of stability is of importance for derivatives pricing. Furthermore,
we propose to model the temperature variance (or volatility) as an empirically based func-
tion estimated from the daily observed variances. This model for the variance function
explains quite successfully the observed seasonality in the empirical correllograms for the
squared residuals. After dividing by the square-root of this variance function from the
residuals, we find that for some locations the normal distribution is rejected as a model,
and other, more heavy-tailed and skewed distributions are called for. Hence, Lévy pro-
cesses enter as a natural modelling tool for the dynamics of these residuals. In our empirical
studies, we also address the question of spatial correlation between measurement locations
and the fractional behaviour of temperature data.

Since our stochastic dynamics for temperature variations is a continuous-time diffusion
model, it lends itself to the arbitrage theory for pricing of derivatives. In the classical Black,
Merton and Scholes framework (see Black and Scholes [7] and Merton [20]), derivatives are
assumed to be perfectly replicable, a natural condition for options written on tradeable
assets like stocks. However, for futures written on temperature indices, we can not any
longer base our valuation on hedging principles, since the underlying can not be traded.
Thus, in modelling the pricing dynamics of futures on temperature, it is natural to include a
parameter measuring the “market price of risk”. We will do so using the Esscher transform,
a convenient approach in the context of Lévy processes. For futures contracts based on
cumulative temperature we will be able to derive an explicit pricing dynamics expressed
in terms of the market price of risk, temperature volatility and the characterstic function
of the Lévy process. Furthermore, in the special case of Brownian motion, we can derive
an expression for price of a call option written on such temperature futures. Numerical
procedures are outlined for the general case.

The paper is organized as follows: in Section 2 we present our stochastic model for the
daily temperature variations, together with a discussion of existing models which has been
used for pricing weather derivatives. Our proposed Ornstein-Uhlenbeck model is fitted to
Norwegian temperature data in Section 3, where we discuss the potentials and shortcomings
of the model compared to other Ornstein-Uhlenbeck dynamics. In particular, we emphasize
the seasonality of volatility, heavy tails of residuals and the question of fractionality in the
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temperature data. In Section 4 we discuss pricing of futures and options on these based
on our dynamical model for temperature. The paper ends with concluding remarks and a
discussion of topics for further research in Section 5.

2. Stochastic dynamics of temperature variations

In this Section we discuss different stochastic models for temperature variations. We
suggest an Ornstein-Uhlenbeck process driven by Lévy noise to model temperature fluctu-
ations, but also present in detail other models proposed in the literature.

Let (Ω,F , P ) be a complete probability space equipped with a filtration {Ft}t≥0 sat-
isfying the usual hypotheses (see e.g. Karatzas and Shreve [19]). Introduce a Brownian
motion B(t) and an independent Lévy process L(t). The Lévy process is assumed to be a
pure-jump square-integrable process, and we choose to work with the version of L(t) being
right-continuous and having left-hand limits (the so-called cádlág version). The Lévy mea-
sure of L(t) is a σ-finite measure on the Borel sets of R\{0} denoted by `(dz) and satisfies
the integrability condition ∫

�
\{0}

1 ∧ z2 `(dz) <∞ .

Here, a ∧ b denotes the minimum of the two numbers a and b. The Lévy-Kintchine repre-
sentation of L(t) is

L(t) =

∫
�
\{0}

zÑ (dt, dz) ,

with N(dt, dz) being the homogeneous Poisson random measure associated to L(t) and

Ñ(dt, dz) := N(dt, dz)− `(dz)dt its compensated (Poisson) random measure. Throughout
this paper we denote T (t) the temperature at time 0 ≤ t <∞.

2.1. Discussion of existing mean-reversion models. Dornier and Querel [16] and
Alaton et al. [3] suggest the following Ornstein-Uhlenbeck dynamics for temperature vari-
ations:

(2.1) dT (t) = ds(t) + κ (T (t) − s(t)) dt+ σ(t)dB(t),

where s(t) = A + Bt + C sin(ωt + φ) describes the mean seasonal variation (frequently
referred to as the annual cycle or seasonality of the temperature) and the constant κ is
the speed the temperature reverts to its mean. The volatility σ(t) is assumed to be a
measurable and bounded function. The model (2.1) regresses the change in deseason-
alized temperature against deseasonalized temperature. As pointed out by Dornier and
Querel [16], this model will tend towards a historical mean s(t), which is not the case if
the term ds(t) on the right-hand side of (2.1) is left out, a highly undesirable property
according to Dornier and Querel [16]. Even though Dornier and Querel [16] allow for a
varying volatility function σ(t), they assume it constant in their analysis of 20 years of
daily average temperature data recorded in Chicago (US).

Alaton et al. [3] model σ(t) as a piecewise constant function representing a monthly vari-
ation in volatility. Considering a data series covering 40 years of daily average temperatures
from Bromma (nearby Stockholm, Sweden), Alaton et al. [3] fit the Ornstein-Uhlenbeck
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model. They observe that the quadratic variation σ2(t) is nearly constant over each month
in the data set, validating their choice of volatility function. Their argument for using
a Wiener process as the driving noise in the Ornstein-Uhlenbeck process comes from the
observation that the temperature differences are close to normally distributed. However,
a statistical test for normality is not provided, and the authors admit that the empirical
frequency of small temperature differences are higher than predicted by the fitted normal
distribution. For the Norwegian temperature data, the normal hypothesis is rejected in
several locations, and thus other, non-normal models are called for.

In neither of the two papers mentioned above there is a study of the possible time-
dependencies in the residuals observed from the regression model. This time risk is the
subject of investigation in Brody et al. [12], where a fractional Ornstein-Uhlenbeck process
is suggested1:

(2.2) dT (t) = κ (T (t) − s(t)) dt+ σ(t)dBH(t),

with BH being a fractional Brownian motion (see e.g. Shiryaev [22] for a definition). In
(2.2) the change in temperature is regressed against previous day’s deseasonalized tem-
perature. However, following the arguments of Doernier and Querel [16], one should add
the changes of seasonal variation ds(t) on the right-hand side in order to have a consistent
mean-reversion model.

Based on a data series of daily temperatures from central England recorded from 1772
up to 1999, Brody et al. [12] found clear signs of a fractional behaviour in the temperature
fluctuations after the annual cycle s(t) was removed. However, they do not perform the
same fractional analysis for the residuals in their regression model. In fact, they do not
use their data to fit the model (2.2) at all. It is not clear if the time-dependencies of the
residuals (even after including a non-constant volatility σ(t)) will follow the characteristics
of a fractional noise. As we shall see, a fractional Brownian dynamics does not seem to be
an appropriate model when considering the Norwegian temperature data.

Campbell and Diebold [13] propose an autoregressive time-series to model temperature
variations. Their model does not have any natural continuous-time analogue, but we
include it here since Campbell and Diebold [13] report some very interesting results in their
analysis of temperature data from the US. Let Tt evolve according to the autoregressive
time series

(2.3) Tt = mt + st +
L∑

l=1

ρt−lTt−l + ε̃t, t = 1, 2, . . . ,

where the trend mt is linear and the seasonality st is modelled by a finite sum of sines
and cosines. Note that we will use time t as a sub-index when considering time series, and
reserve the notation T (t), s(t), ... etc. for the continuous-time models. Before presenting
their choice of residual model, we want to comment on the structure of this temperature
dynamics. It deviates significantly from the Ornstein-Uhlenbeck model (2.1) since the

1In their model, Brody et al. [12] allow the speed of mean-reversion κ to vary with time. However, they
do not discuss the modelling this any further and we find it most natural to leave it constant.
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latter is only a first-order autoregression, whereas (2.3) regresses today’s deseasonalized
(and de-trended) temperature against the temperatures observed over the last L days.
There is, however, one more major difference. If we put L = 1 in (2.3), we do not recover
the Ornstein-Uhlenbeck models discussed above. In (2.1) we regress on daily temperatures
after subtracting seasonality, while in (2.3) one is regressing deseasonalized temperature
on previous day’s absolute temperature. As we have already mentioned, Dornier and
Querel [16] argue against this modelling perspective.

When analysing data from several cities in the US, Campbell and Diebold [13] find that
the squared observed residuals ε̃2t have a very dominant seasonal variation over lags up
to 800 days, while the residuals itself appear to be uncorrelated. To explain this phe-
nomenon in terms of a statistical model, they suggest to use an autoregressive conditional
heteroscedastic (ARCH) dynamics2 ε̃t = σtεt, where εt are iid and

(2.4) σ2
t =

Q∑

q=1

{γc,q cos(2πqd(t)/365) + γs,q sin(2πqd(t)/365)}+

R∑

r=1

αr ε̃
2
t−r.

Here, d(t) is a repeating step function that cycles through 1 to 365. As we are going to
see, the Norwegian data possesses similar seasonality features as observed by Campbell
and Diebold [13]. However, we will suggest a much simpler model than (2.4) to explain
this variation.

2.2. A Lévy-based Ornstein-Uhlenbeck model. We propose the following generaliza-
tion of the Ornstein-Uhlenbeck model (2.1) for the time evolution of temperatures:

(2.5) dT (t) = ds(t) + κ (T (t) − s(t)) dt+ σ(t) dL(t).

The only difference from (2.1) is the inclusion of a Lévy noise L(t) rather than Brownian
motion. We suggest to use a Lévy process with marginals following the class of generalized
hyperbolic distributions. This is a very flexible family of distributions which can model
skewness and (semi-)heavy tails. Furthermore, its density and characteristic (moment
generating) functions are explicitly known.

The generalized hyperbolic distributions is a familiy of infinitely divisible distributions
with density function

fgh(x;λ, µ, α, β, δ) = c
(
δ2+(x− µ)2

)(λ− 1

2
)/2

exp
(
β(x− µ)

)
×(2.6)

Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
.

Here Ks is the modified Bessel function of the third kind with index s (see e.g. [1], Section
9.6), and the normalizing constant c is given as

c =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ

(
δ
√
α2 − β2

) .

The parameter α controls the steepness (or the fatness of the tails) of the distribution, µ
the location of the distribution, β the skewness and δ is the scaling. The distribution is

2We believe there is a small misprint in Eq. (2) and (2c) in [13] in the presentation of the ARCH model
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symmetric when β = 0. Finally, the parameter λ is identifying the sub-family within the
generalized hyperbolic class. Two special cases of the generalized hyperbolic distribution
which have been much studied in a financial context are the hyperbolic distribution with
λ = 1, and normal inverse Gaussian distribution with λ = −0.5. The hyperbolic distribu-
tion was suggested by Eberlein and Keller [17] as a flexible model for financial logreturns,
while Rydberg [21] and Barndorff-Nielsen [8] considered the normal inverse Gaussian (NIG)
distribution. The generalized hyperbolic family has the normal, Student T and the Cauchy
distributions as limiting cases.

The family of generalized hyperbolic distributions admits an explicit moment generating
function. If a random variable X is distributed according to a generalized hyperbolic
distribution, the moment generating function is,

(2.7) E
[
euX

]
= eµu

( α2 − β2

α2 − (β + u)2

)λ/2Kλ

(
δ
√
α2 − (β + u)2

)

Kλ

(
δ
√
α2 − β2

) ,

whenever |β+u| < α. Hence, this family of distributions have finite moments of all orders.
We call L(t) a generalized hyperbolic Lévy process if L(t) is a Lévy process with the

marginals L(1) being distributed according to the generalized hyperbolic family. In this
case the Lévy measure is given explicitly by

(2.8) `GH(dz) = |z|−1eβz

{
1

π2

∫ ∞

0

exp(−
√

2y + α2|z|)
J2

λ(δ
√

2y) + Y 2
λ (δ

√
2y)

dy

y
+ λe−α|z|

}
dz,

when λ ≥ 0, and

(2.9) `GH(dz) = |z|−1eβz 1

π2

∫ ∞

0

exp(−
√

2y + α2|z|)
J2
−λ(δ

√
2y) + Y 2

−λ(δ
√

2y)

dy

y
dz,

when λ < 0. Here Jλ and Yλ are the Bessel functions of the first and second kind, respec-
tively, with index λ (see e.g. [1], Section 9.1.). The generalized hyperbolic Lévy processes
L(t) are pure-jump processes with paths of infinite variation. For more theory on the
class of generalized hyperbolic distributions and the associated Lévy processes we refer the
interested reader to Barndorff-Nielsen and Shephard [10].

A straightforward application of the Itô Formula for semimartingales (see e.g. Ikeda and
Watanabe [18]), leads to an explicit solution of (2.5):

(2.10) T (t) = s(t) + (T (0) − s(0)) eκt +

∫ t

0

σ(u)eκ(u−t) dL(u) .

Furthermore, the cumulative temperature over a time interval [τ1, τ2] is easily calculated:

Lemma 2.1. If the temperature T (t) follows (2.5), the cumulative temperature over the

time interval [τ1, τ2] is explicitly given by
∫ τ2

τ1

T (t) dt =

∫ τ2

τ1

s(t) dt+ κ−1 (T (0) − s(0)) (eκτ2 − eκτ1)(2.11)

+

∫ τ2

0

σ(t)κ−1
{
eκ(τ2−t) − 1[0,τ1](t)e

κ(τ1−t) − 1[τ1,τ2](t)
}
dL(t) .



STOCHASTIC TEMPERATURE MODELLING AND WEATHER DERIVATIVES 7

Proof. Let T̃ (t) = T (t) − s(t) be the deseasonalized temperature. From (2.5) we find

T̃ (τ2) = T̃ (τ1) + κ

∫ τ2

τ1

T̃ (t) dt+

∫ τ2

τ1

σ(t) dL(t) .

Combining this with the explicit dynamics of T (t) in (2.10) yield the Lemma. �

The explicit form in (2.11) is useful in connection with derivatives written on the cumu-
lative temperature as underlying (see Section 4).

We end this Section by deriving a time-discrete version of (2.5): letting time be measured
in days, say, we have the model

∆T (t) = ∆s(t) + κ(T (t− 1) − s(t− 1)∆t+ σ(t− 1)∆L(t)

with ∆t = 1 and ∆Y (t) = Y (t) − Y (t − 1), where Y (t) is short-hand for the processes
T (t), L(t) or s(t). After reorganizing, we reach the following time-series analogue of (2.5)

(2.12) Tt − st = (1 + κ)(Tt−1 − st−1) + σtεt, t = 1, 2, . . . .

This will be our basic discrete-time model when we analyse the Norwegian temperature
data in the next Section.

3. Analysis of Norwegian Temperature data

We analyse a dataset of daily mean temperatures (measured in centigrades) observed in
7 cities in Norway over a period ranging from 1990 01 01 to 2003 04 08, resulting in 7 data
series of 4846 observations each 3. The cities we consider are Alta, Bergen, Kristiansand,
Oslo, Stavanger, Tromsø and Trondheim, all being located along the coast of Norway.
Alta and Tromsø are the northern-most cities, while Trondheim is located in the middle of
Norway. Bergen and Stavanger are situated at the western coast of South-Norway, while
Kristiansand is the southern-most city. Oslo is placed in the eastern part of South-Norway.

In Table 1 we list descriptive statistics characteristics associated to the 7 measurement
stations (cities). In addition, we display the values of the χ2-statistics of Pearson’s criteria
of goodness-of-fit with the corresponding P -values. The mean, median, minimum and
maximum values of daily mean temperatures differ from city to city, but this is explainable
by quite distinct and wide-spread geographical locations. Standard deviations (std) are
not big, but also differ among the cities. The shape of the empirical distributions is not
symmetrical (values of skewness are different from zero) and has negative kurtosis; in some
cases we observe a multimodal pattern, being a clear sign of strong seasonality. Indications
about the non-normal shape of the empirical distributions are confirmed by the last two
rows in Table 1: the values of χ2-statistics are significant at the 1% level for all 7 cities.

Our proposed model (2.12) of the daily average temperature can be written as the
following additive time series

(3.1) Tt = st + ct + ε̃t, t = 0, 1, 2, . . . .

Here, Tt is the average temperature on day t, st the seasonal component, ct the cylical
component, and ε̃t the noise. In the rest of this Section we will discuss our choices for

3February 29 was removed from the sample in each leap year to have years of equal size
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the different components and fit the model to the observed temperature variations at the
different locations. The statistical analysis that follows revealed that the seven cities could
be collected into two groups, each with their typical pattern: Alta, Kristiansand, Stavanger,
Tromsø and Trondheim constitute one group, and Bergen and Oslo the other. Hence, we
shall frequently illustrate our findings using Alta and Bergen as typical representatives for
the two groups.

Table 1. Descriptive statistics for daily average temperature

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

Mean 2.01 8.29 7.43 6.75 8.02 3.21 6.07
Median 2.20 7.85 7.20 6.20 7.70 2.80 5.80

Mode 3.70 multiple 3.85 multiple 4.60 3.10 multiple
Std 8.60 5.77 6.76 8.09 5.75 6.51 7.23

Min. −30.80 −9.60 −16.50 −18.15 −10.60 −13.05 −22.45
Max. 25.80 25.10 24.60 24.00 24.15 20.50 26.45

Skewness −0.23 0.07 −0.20 −0.10 −0.04 0.03 −0.20
Kurtosis −0.36 −0.59 −0.46 −0.76 −0.39 −0.70 −0.16

χ2 217.55 240.57 390.27 517.60 227.43 347.97 176.63
P -value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.1. Trend. Alaton et al. [3], and Campbell and Diebold [13] observe that over several
decades there has been a clear increase of daily mean temperatures in Sweden and USA,
respectively. Such an increase in average temperature can be explained by global warming,
green-house effect, urbanization, or other phenomena. In our data analysis we did not find
any significant linear trend: the value of R2 associated with the regression line was below
0.21% for all 7 stations. The most likely reason for this is that our time series are too
short: they contain temperature data recorded for less than 14 years, while the datasets of
Alaton et al. [3] and Campbell and Diebold [13] range over approximately 40 years. Over
the considered time span, we conclude that there is no typical trend in the daily mean
temperatures in Norway, and assume this equal to zero in the rest of the paper.

Since our view is towards modelling daily temperature variations for a short time horizon
(for e.g. up to one year) as a basis for analyzing weather derivatives, the trend will not
give any significant influence (see the results of Alaton et al. [3], which give a very small
contribution over the short time intervals we have in mind). Also, in the long run it is
questionable whether there will be a steady increase in temperature given by a linear trend.

3.2. Seasonality. It is natural to expect that temperature follows a certain seasonal pat-
tern: we always experience lower temperatures in the winter and higher in the summer.
We model this seasonal dependency (the annual cycle of temperature) with a simple cosine
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function

(3.2) st = a0 + a1 cos

(
2π

365
(t− t0)

)
,

where a0 and a1 are constants describing the average level and amplitude of the mean
temperature, respectively, and t0 defines a phase angle. In Table 2 we report the different
estimated parameters4 for each station. Figure 1 displays the average daily temperature
in Alta and Bergen along with their estimated seasonal component st.

Table 2. Estimated parameters for the seasonality function

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

a0 2.17 8.41 7.56 6.90 8.13 3.33 6.20
a1 −10.21 −6.91 −8.28 −10.28 −6.86 −7.73 −8.45
t0 20.79 21.64 20.08 15.31 24.43 22.99 17.68

3.3. Cyclicity and Regression Analysis. From (2.12), we model the cyclical component
by regressing today’s deseasonalized temperature against the deseasonalized temperature
recorded yesterday, resulting in:

(3.3) ct = α (Tt−1 − st−1) ,

where α = 1 + κ. Hence,

(3.4) Xt = αXt−1 + ε̃t,

using the notation Xt := Tt − st. The values of the fitted slopes α and the corresponding
R2 are given in Table 3 for all 7 cities. We see that the values of R2 are all reasonably good.
Campbell and Diebold [13] fit their model (2.3) to ten U.S. cities using 25 autoregressive

Table 3. Values of α and R2 in regression analysis

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

α 0.77 0.81 0.76 0.80 0.80 0.81 0.79
R2 59.0% 65.6% 57.1% 63.9% 63.6% 66.3% 63.0%

lags (L = 25) and 3 sine and cosine terms in st, and reach a fit with an R2 above 90%. We
tried the same model for the Norwegian data where we only reached an R2 of 40% (this was
done for Alta). As we see from Table 3, the R2 for our considerably simpler model (2.12)
with just one cosine function in st is 59% for Alta. Thus, we conclude that our regression
model performs much better for Norwegian data than (2.3). We believe that it is much
better to do regression on the deseasonalized temperatures, a claim that is supported by
looking at the scatter plots in Fig. 2 for the two regression models for Alta. We remark

4We used nlinfit in Matlab to perform this estimation.
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in passing that, as expected after deseasonalizing, the intercepts in the regression were
not significantly different from zero. This explains why we have not included them in our
regression model (3.4).

In Fig. 3 we plot the residuals and squared residuals for Alta and Bergen over the ob-
served time period. In almost all cities we find a clear persistent variation in the variance
of noise, a sign of seasonal heteroscedasticity. For Alta this is very apparent, especially
when we consider the squared residuals. For Bergen, however, the picture is not as clear,
although signs of seasonal heteroscedasticity in noise can be observed here as well. The
findings suggest that one should include a deterministic seasonality function when mod-
elling variance as a certain function of time.

Campbell and Diebold [13] observed that the squared residuals from their regression
model showed strong seasonality effects in its autocorrelation function (ACF). They suggest
an ARCH model for the residual dynamics where ε̃t = σtεt and σ2

t follows (2.4). We propose
a simpler and more intuitive model for σt as a seasonally varying deterministic function
estimated from the empirical variance. Our findings, that we discuss below, are in line with
those reported in Campbell and Diebold [13], and we see no reason to introduce an ARCH
dynamics in our case. We remark that Campbell and Diebold [13] do not investigate the
claimed normality of εt := ε̃t/σt (see below for a study of this for the Norwegian data).

The empirical densities of the residuals of Alta and Bergen are plotted in Fig. 4, and
Table 4 displays the descriptive statistics characteristics for all cities. The values of χ2

are again all significant at the level 1%, rejecting the normal hypothesis. This is evident
from Fig. 4, where we have plotted the density of the maximum likelihood fitted normal
distribution together with the empirical density. We note that the normal distribution
overestimates the probability for small variations and does not capture the tail behaviour
of the empirical density. The latter effect is highlighted by using a logarithmic scale on
the frequency axis in the plots. We observe that the signs of non-normality are much more
evident for Alta than Bergen. Noteworthy is that the kurtosis of the residuals for all 7
cities is now positive, while we recall from Table 1 that the daily average temperatures
had negative kurtosis. Also, the variability in residuals is much smaller than in average
temperature itself.

Modelling the residuals ε̃t by a normal distribution with constant variance (like in Dornier
and Querel [16]) will lead to a significant underestimation of large variations in the resid-
uals. In the next Subsection we will see that a seasonally varying variance in conjunction
with a heavy-tailed distribution explain the dynamics of the residuals ε̃t reasonably well.
We will argue for a simpler model than the one found in Campbell and Diebold [13], but
more sophisticated than the one in Alaton et al. [3].

In Fig. 5 we have plotted the estimated ACF for the residuals and their squares for Alta
and Bergen. The broken lines in the figure are the estimated 95% confidence intervals5

for having white noise residuals. We see that the autocorrelations for the residuals are
roughly within this band for nearly all lags, with the exception of lags 1 and 2. For all
cities we observed consistently that the ACF for lag 1 was positive, while ACF for lag 2 was

5The confidence band is given automatically by Splus
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Table 4. Descriptive statistics for residuals after regression

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

Mean 0.00 0.00 −0.00 0.00 0.00 0.00 −0.00
Median −0.07 −0.09 −0.05 −0.09 −0.08 −0.01 −0.08

Mode no mode no mode no mode no mode no mode no mode no mode
Std 2.92 1.79 2.20 1.79 1.85 2.04 2.46

Min. −12.98 −6.41 −11.10 −6.37 −7.83 −6.47 −15.55
Max. 15.97 7.15 8.47 7.21 7.44 7.83 10.30

Skewness 0.13 0.20 0.07 0.19 0.16 0.18 −0.01
Kurtosis 1.53 0.22 0.73 0.21 0.54 0.10 0.82

χ2 341.64 63.18 102.79 56.80 111.12 80.54 77.88
P -value 0.0000 0.0004 0.0000 0.0022 0.0000 0.0000 0.0000

negative. For both lags the 95% confidence band is violated, so these lags are significantly
different from zero. Unfortunately, we are not able to explain this in our chosen model.

The ACF in Fig. 5 for the squared residuals, on the other hand, reveals a clear seasonal
pattern for both cities. The estimated 95% confidence band for white noise is violated for
basically all lags, and the wavy form of the ACF is a clear sign of seasonal heteroscedasticity
in the residuals. Admittedly, the picture is more clear for Alta than Bergen.

3.3.1. Stability Analysis of the Regression Model. It is of interest to understand how sta-
ble the regression parameter α is over time, and whether or not it varies with season.
From Alaton et al. [3] we know that certain derivatives based on temperature are highly
dependent on the mean-reversion parameter, and the variability of this will thus have a
significant influence on the derivatives prices. To investigate this, we looked for possible
yearly or seasonal variations in the estimates of α. Firstly, we estimated the regression
parameter based on data from one year only, repeating this for every year untill the end
of the data sets. Secondly, we investigated the seasonal structure in α by estimating the
regression parameter for each month individually, that is, we considered data for January
only, then for February, and so on. In Tables 5-6 we report the obtained average α for each
city together with the standard deviation for this. We also include the variation coefficient
V (the std relative to the average) in percent, to illustrate the normal variations of α
around its mean. Table 5 contains the figures for the yearly study, while the numbers for
monthly study are displayed in Table 6. The variation of α is rather small over the years,
with an exception of Alta which has a variation close to 6% of the average. The monthly
variations of α are bigger for all cities (with Tromsø as the exception). Kristiansand is
most prominent, with more than 9% variation over the year. From the investigations we
could not observe any clear seasonal pattern for α in any of the cities, nor could we see
any specific pattern over the years 6.

6Admittedly, this can not be seen from the tables. The estimated numbers can be obtained from the
authors by request
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Table 5. Values of average α estimated for each year together with the std
and variation coefficient

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

average α 0.76 0.81 0.75 0.80 0.79 0.79 0.78
std 0.045 0.019 0.017 0.018 0.027 0.020 0.028
V 5.94% 2.41% 2.26% 2.29% 3.46% 2.58% 3.55%

Table 6. Values of average α estimated for each month together with the
std and variation coefficient

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

average α 0.75 0.80 0.72 0.78 0.79 0.79 0.79
std 0.037 0.021 0.066 0.042 0.027 0.020 0.014
V 4.94% 2.57% 9.12% 5.37% 3.46% 2.58% 1.82%

Our conclusion is that the regression parameter α is modestly stable over years and
months for most locations, and that no seasonality can be observed for this parameter.
The latter implies that there is no reason to letting α be dependent on time.

3.4. Seasonality in the residuals ε̃t. Next we discuss modelling of the residuals ε̃t.
Inspecting the time series of ε̃t for Alta and Bergen (see Fig. 3), one observes a seasonality in
the residuals with bigger variation in the winter season than in the summer. After applying
Bartlett’s test (see, e.g. Aivazian and Mkhitarian [2]) we reach the same conclusion: daily
mean temperatures are heteroscedastic since the values of Bartlett’s statistics are significant
for all 7 cities at the level 1%. Hence, we propose a multiplicative time series model for
the residuals ε̃t given by

(3.5) ε̃t = σtεt,

where σt is a deterministic function and εt has zero mean and standard deviation equal to
one. Since σ2

t = E[ε̃2t ], the function σ2
t will describe the seasonal variation, of the residual’s

variance.
We describe how to fit σ2

t to the observed residuals ε̃t = (Tt − st)−α(Tt−1 − st−1) which
we obtained from the regression described in the Subsection above: first, we organize the
observed residuals into 365 groups, one for each day of the year. Finding the average of
the squared residuals in each group, we obtain an estimate for the expected daily squared
residual. This estimate is based on 13 observations only7, and hence the estimates become
very noisy. We suggest to smoothen the daily estimates by taking the logarithm and then
use a three-day moving-average. After exponentiating, we obtain a fitted (and smoothed)
σ2

t as graphed in Fig. 6 for Alta and Bergen. The smoothing procedure decreases the scale

7Recall that we had approximately 13 years of observations, which means that each group will constitute
of 13 residuals for each particular day of the year.
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of the squared residuals and smoothens the variations, that is, we obtain a more regular
estimate of σ2

t . Note that we assume σ2
t to be a periodic function such that σt = σt+k·365

for t = 1, . . . , 365 and k = 1, 2, 3, . . ..
We note in passing that we tried to fit a Fourier series like the first sum in the ARCH-

model (2.4) of Campbell and Diebold [13] (using Q = 2). The results were not particularly
promising, and from the shape of our suggested σ2

t depicted in Fig. 6 one can see the reason
why: one needs a large number of sines and cosines in order to explain this shape of the
seasonality function.

The observed εt := ε̃t/σt and their squares are displayed in Fig. 7 for Alta and Bergen.
The ACF for the observed εt and ε2t of Alta and Bergen are plotted in Fig. 8. It is evident
that the cyclical variation is removed completely for the squared residuals of Alta. For
Bergen the cyclical pattern was not so obvious, but still one can see that introducing
σt made some positive impact. From the plots we note that the ACF of the squared
residuals are roughly within the 95% confidence interval for independence. However, it
is worth observing that for all 7 cities the ACF for the squared residuals at lag 1 has a
positive value in the interval from 0.05 to 0.09. Furthermore, for some cities it seems to
fall exponentially down before it randomly fluctuates around 0.

We remark in passing that, as for ε̃t, we consistently have a negative correlation at lag 1
and positive correlation at lag 2 for the residuals εt, which are not explained by introducing
a seasonality function σt.

3.5. The residuals εt modelled by the generalized hyperbolic distribution. In all
the papers we have referred to above on temperature modelling (Doernier and Querel [16],
Alaton et al. [3], Campbell and Diebold [13] and Brody et al. [12]), it is assumed that
the residuals (after possibly modelling the variance) are iid normally distributed. In this
Subsection we argue statistically that this is not always the case, and propose a flexible
class of distributions for modelling of the residuals.

The values of the χ2-statistics and the corresponding P -values for the observed residuals
εt are presented in Table 7. As we see from the results, we can reject the hypothesis that the
residuals of Alta, Bergen and Oslo follow the normal distribution at a 1% significance level,
while normality for Kristiansand is rejected at the 2% level. The residuals of Stavanger,
Tromsø and Trondheim, on the other hand, can be confidently modelled by a normal
distribution.

Table 7. Values of χ2 statistics and corresponding P -values for residuals
after dividing out the seasonal variation

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

χ2 95.82 95.84 85.58 109.65 61.12 71.23 67.19
P -value 0.0017 0.0017 0.0134 0.0001 0.3996 0.1320 0.2169

Contrary to the conclusion in Alaton et al. [3] and Brody et al. [12], we can not always use
a normal distribution to model the residuals for Norwegian temperature data. We propose
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to apply the generalized hyperbolic family. The parameters of this family of distributions
were fitted using maximum likelihood estimation8, where the results are reported for Alta,
Bergen and Kristiansand in Table 8. We did not manage to fit the generalized hyperbolic
distribution for Oslo data, but report in Table 8 the estimates we obtained after fixing the
shape λ = 30 (which from Fig 11 seems to be a reasonable choice). The fitted general-
ized hyperbolic distribution together with the empirical distribution of Alta and Bergen
are depicted in Fig. 10. As we see, the fit in the tails are improved compared with the
normal distribution shown in Fig. 9. Furthermore, the skewness is now explained almost
perfectly. Figure 11 shows the corresponding plots for Kristiansand and Oslo, where the
same conclusions hold true.

Table 8. Estimates of the fitted generalized hyperbolic distribution

µ α β γ λ

Alta -0.35570 2.9633 0.32167 2.4899 1.3227
Bergen -3.5227 11.876 4.3875 0.019906 48.861
Kristiansand -1.4222 8.3041 1.4122 0.0012306 33.732
Oslo -8.6747 26.282 18.735 6.6839 30∗

3.6. Fractional analysis of temperature data. Based on measurements of daily tem-
perature in central England from 1772 to 1999, Brody et al. [12] investigate the fractional
behaviour of temperature fluctuations after the seasonality s(t) has been removed. We
now explain in more detail their approach (taken from Syroka and Toumi [23]) to estimate
fractionality, and apply this to our data sets: divide the daily data (deseasonalized tem-
perature) into N nonoverlapping bins of length K days, where N is greater than or equal
to 10. Average the data within each bin to obtain X̄i for all i = 1, . . . , N . Define the
statistics

f(K) :=

√√√√ 1

N

N∑

i=1

X̄2
i .

According to Syroka and Toumi [23], uncorrelated data will give ln f(K) ∼ −0.5 lnK,
while the existence of a persistent temporal correlation can be concluded when ln f(K) ∼
−(1 −H) lnK, for H ∈ (0.5, 1). The number H is frequently called the Hurst coefficient,
and was estimated in Brody et al. [12] to be H = 0.61 for the central England temperature
data, a clear sign of fractionality. In Table 9 we report the corresponding numbers for
the Norwegian data series together with the corresponding R2. As we can see, all the
estimated Hurst coefficients have a high R2. Moreover, with the exception of Kristiansand,
we find that the Hurst coefficients are greater than 0.5, indicating a persistent temporal
dynamics. Bergen, Kristiansand and Oslo all have Hurst coefficients close to 0.5, which
suggests temporally uncorrelated data, while the other cities show rather clear signs of
fractionality.

8This is efficiently done using the programming language Ox, see Doornik [15]
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Table 9. Values of the Hurst coefficient (H) and R2 in the fractional anal-
ysis of temperature

Alta Bergen Kr. sand Oslo Stavanger Tromsø Trondheim

H 0.638 0.518 0.495 0.516 0.550 0.728 0.543
R2 91.2% 91.0% 92.2% 91.0% 90.6% 89.8% 92.2%

When looking at model (2.2), one may argue that the fractionality is modelled in the
wrong place. The analysis of fractionality in Brody et al. [12] concentrates on the temper-
ature deviations away from the annual cycle, while the fractionality itself is modelled in
the residuals from the regression of temperature changes. The authors do not provide any
empirical study of the fractionality in the residuals.

If we consider carefully the autocorrelation function of the residuals εt obtained after
dividing out the seasonal variation σt for the Norwegian cities (see Fig. 8 for Alta and
Bergen), we do not observe any decay at a hyperbolic rate as predicted by the fractional
Brownian motion. We claim that the fractionality observed for the temperature data in
Norway can be better explained by a simple regression model for the deseasonalized tem-
perature in conjuction with a time-dependent variance function σt, rather than introducing
a fractional Brownian motion. Hence, a fractional model does not seem to be necessary
for the Norwegian temperature data.

3.7. The Correlation between cities. In this Subsection we discuss the correlations in
temperature between different cities. In table 10 the estimated correlations between the
residuals after removing the seasonality st from the average temperature are presented. All
cities are positively correlated, and we observe as expected that the correlation between
cities far away from each other are rather small, while cities closely located are strongly
correlated.

Table 10. Correlations between cities for the average temperature less seasonality

Alta Bergen Kristiansand Oslo Stavanger Tromsø Trondheim

Alta 1.000 0.269 0.242 0.279 0.242 0.845 0.433
Bergen 1.000 0.740 0.750 0.910 0.301 0.718

Kristiansand 1.000 0.860 0.823 0.265 0.624
Oslo 1.000 0.779 0.297 0.690

Stavanger 1.000 0.271 0.700
Tromsø 1.000 0.485

Trondheim 1.000

If we estimate the correlations among the residuals εt obtained after dividing out σt in
ε̃t, the conclusions remain the same, although with slightly different figures.
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Understanding the correlations among cities are of major importance for an issuer of
weather derivatives. It is not possible to diversify the risk by issuing temperature deriva-
tives in several different locations. On the contrary, the risk is increased by the positive
correlations observed. An investor with a portfolio of short positions in temperature op-
tions is likely to face liabilities from all the options, and not only some which can be
outweighted by no exercise of other options. The investigation of the spatial correlation
structure of temperature dynamics and its influence on derivatives written on temperature
is a topic for future research.

4. Derivatives on Temperature

Chicago Mercantile Exchange (CME) offers standardized trading on futures and options
written on temperature indices for several US and European cities9. The futures have
the number of Heating-Degree Days (HDD) 10 (or Cooling-Degree days (CDD)) over one
month or one season for 15 US cities as underlying. For 5 European cities one can trade
in futures written on the cumulative (average) temperature (CAT) over a season as well.
The options written on these different futures contracts are plain vanilla European call and
put options. We shall concentrate our considerations on the pricing of futures on CAT and
options written on these, since they admit more or less explicit expressions.

We note that several authors have studied the problem of pricing options on temperature.
In Alaton et al. [3] the fair value of a call option written on the number of HDD over a
period is derived using a numerical approach, while Brody et al. [12] find the price of
call options written on different combinations of HDD’s as the solution of certain partial
differential equations. Benth [4] generalizes the work of Brody et al. [12], and derives the
time dynamics of temperature options based on a fractional dynamics.

Let us consider the price dynamics of futures written on CAT over a specified period
[τ1, τ2], τ1 < τ2 (the summer season, say). We suppose that the temperature dynamics
follows (2.5) with L(t) being a Lévy process (where L(1) has finite exponential moments).
Assuming a constant continuously compounding interest rate r, the futures price at time
t ≤ τ1 written on the CAT is defined as the Ft-adapted stochastic process F (t, τ1, τ2)
satisfying

(4.1) 0 = e−r(τ1−t)
EQ

[∫ τ2

τ1

T (t) dt− F (t, τ1, τ2) | Ft

]
.

Here Q is a risk-neutral probability. From the adaptedness of F (t, τ1, τ2), we easily find
the futures price to be

(4.2) F (t, τ1, τ2) = EQ

[∫ τ2

τ1

T (t) dt | Ft

]
.

In order to derive a more explicit expression for the futures price, we need to specify
the risk-neutral probability Q. Since temperature is not a storable commodity, futures

9See http://www.cme.com/prd/wec/ for more information about this trading.
10The HDD index over the time interval [τ1, τ2] is defined in a continuous-time setting as

∫
τ2

τ1

max(18−
T (t), 0) dt. One considers 18◦C to be the limit for switching on heating, thereby the name HDD.
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contract can not be hedged at all and we have therefore an incomplete market. A risk-
neutral probability is by definition a probability measure QP̃ such that all tradeable assets
in the market are martingales after discounting. Thus, all equivalent probabilities Q will
become risk-neutral probabilities. Following the analysis in Benth and Saltyte-Benth [6],
we specify a sub-family of probability measures using the so-called Esscher transform.

Assume θ(t) is a real-valued measurable and bounded function. Consider the stochastic
process

(4.3) Zθ(t) = exp
(∫ t

0

θ(s) dL(s) −
∫ t

0

φ
(
θ(s)

)
ds

)
,

where φ(λ) is the moment generating function of L(t), e.g. φ(λ) = E[exp(λL(1))]. The
process Zθ(t) is well-defined under natural exponential integrability conditions on the Lévy
measure `, which we assume to hold. We skip the exact reference to these conditions since
they are rather technical and holds for all relevant models considered in this paper. The
interested reader is referred to Benth and Saltyte-Benth [6] for a precise statement of
the integrability conditions. Introduce the probability measure Qθ defined by the Esscher
transform:

Qθ(A) = E
[
1AZ

θ(τmax)
]
,

where 1A is the indicator function and τmax is a fixed time horizon including the trading
time for all relevant futures. This measure is obviously equivalent to P , and we denote the
expectation under the probability Qθ by Eθ [·]. By using time-varying θ’s we have a flexible
class of martingale measures Qθ that we easily can fit to the observed forward curve. We
call θ the “market price of risk”. Note in passing that if the Lévy process L is a Brownian
motion, then the Esscher transform corresponds to a Girsanov change-of-measure, which
in practice corresponds to a change of the drift in the temperature dynamics. We find the
following dynamics for the futures contracts based on CAT’s:

Theorem 4.1. The futures price F (t, τ1, τ2) at time t ≤ τ1 written on a CAT over the

interval [τ1, τ2] is,

(4.4) F (t, τ1, τ2) =

∫ τ2

τ1

s(t) dt+ κ−1
(
eκ(τ2−t) − eκ(τ1−t)

)(
T (t) − s(t)

)
+ Θ(t, τ1, τ2) ,

where Θ(t, τ1, τ2) is given as a function of the market price of risk and volatility as

(4.5) Θ(t, τ1, τ2) = κ−1

∫ τ2

t

σ(u)eκ(τ2−t)φ′(θ(u)) du− κ−1

∫ τ1

t

σ(u)eκ(τ1−t)φ′(θ(u)) du .

Proof. We prove first that for a real-valued measurable and bounded function f(t), it holds
that (for t < τ ≤ τmax∞)

(4.6) Eθ

[∫ τ

t

f(u) dL(u) | Ft

]
=

∫ τ

t

f(u)φ′(θ(u)) du .
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We calculate using Bayes’ Formula, the independent increment property of the Lévy process
and the definition of the moment generating function of L:

Eθ

[∫ τ

t

f(u) dL(u) | Ft

]
= E

[∫ τ

t

f(s) dL(s)
Zθ(τ)

Zθ(t)

]

= exp

(∫ τ

t

φ(θ(u)) du

)
d

dλ
Eθ

[
exp

(∫ τ

t

λf(u) + θ(u) dL(u)

)]
|λ=0

= exp

(∫ τ

t

φ(θ(u)) du

)
d

dλ
exp

(∫ τ

t

φ(λf(u) + θ(u)) du

)
|λ=0

=

∫ τ

t

f(u)φ′(θ(u)) du .

Thus, (4.6) holds.
We continue with deriving the futures dynamics: first, split the CAT to obtain

Eθ

[∫ τ2

τ1

T (u) du | Ft

]
= Eθ

[∫ τ2

t

T (u) du | Ft

]
− Eθ

[∫ τ1

t

T (u) du | Ft

]
.

Inserting the dynamics of the cumulative temperature (2.11) and using the adaptivity of
the Lévy process together with (4.6), we find for t < τ

Eθ

[∫ τ

t

T (u) du | Ft

]
=

∫ τ

t

s(u) du+ κ−1(T (0) − s(0))(eκτ − eκt)

+ κ−1

∫ t

0

σ(u)
(
eκ(τ−u) − eκ(t−u)

)
dL(u)

+ κ−1
Eθ

[∫ τ

t

σ(u)
(
eκ(τ−u) − 1

)
dL(u) | Ft

]

=

∫ τ

t

s(u) du+ κ−1(T (0) − s(0))(eκτ − eκt)

+ κ−1

∫ t

0

σ(u)
(
eκ(τ−u) − eκ(t−u)

)
dL(u)

+ κ−1

∫ τ

t

σ(u)
(
eκ(τ−u) − 1

)
φ′(θ(u)) du

Appealing to the explicit dynamics (2.10) for the temperature yields the result. �

A straightforward application of the Itô Formula for semimartingales (see Ikeda and
Watanabe [18]) gives that the dL(t)-term in the differential of F (t, τ1, τ2) is given by

(4.7) Σ(t, τ1, τ2) := κ−1
(
eκ(τ2−t) − eκ(τ1−t)

)
σ(t) .

The function Σ(t, τ1, τ2) can be interpreted as the volatility of the futures dynamics. In the
case of L = B, e.g., a Brownian dynamics, the Esscher transform coincides with a Girsanov
transform, and under the risk-neutral probability the futures dynamics will simply become
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an additive process without drift given by

(4.8) dF (t, τ1, τ2) = Σ(t, τ1, τ2) dW (t) .

Here W being a Brownian motion with respect to Q. Using the Gaussian structure of the
distribution of F , we can in this case calculate an explicit pricing formula for a call option
written on the futures contract having exercise date τ ≤ τ1 and strike price K.

Proposition 4.2. If L = B, then the price of a call option at time t on the futures contract

with exercise date t ≤ τ ≤ τ1 and strike price K is

(4.9) C(t) = e−r(τ−t) (F (t) −K) Φ(d) +
Σt,τ√

2π
e−d2/2 ,

where

d =
F (t) −K

Σt,τ

, Σt,τ :=

√∫ τ

t

Σ2(u, τ1, τ2) du ,

and Φ the cumulative probability function for the standard normal distribution.

Proof. This is a straightforward calculation using the properties of the normal distribution.
�

We note that the option value C(t) in Prop. 4.2 is independent of the market price of
risk θ as expected, since in the case of L = B we can completely hedge the option using
the underlying futures contract. If, however, we model the temperature dynamics using a
Lévy process, we are led to the calculation of the following expression:

(4.10) C(t) = e−r(τ−t)
Eθ [max (F (τ, τ1, τ2) −K, 0) | Ft] ,

which will depend on the specification of θ. In this case, the Lévy process introduces an
incompleteness of the market preventing the possibility to hedge the option. Thus, we have
many arbitrage-free prices, which we have parametrized by θ. This market price of risk can
be fixed from fitting the theoretical futures prices in Thm. 4.1 to the historical ones (see
Benth, Ekeland, Hauge and Nielsen [5] for similar considerations in the energy market).
The expectation in (4.10) can next be calculated using numerical integration or Monte
Carlo simulation. In order to do so, it is necessary to know the distributional properties
of the random variable T (τ), or, equivalently, the random variable

Y (τ) :=

∫ τ

0

σ(u)eκ(τ−u) dL(u)

with respect to Qθ. From Benth and Saltyte-Benth [6, Cor. 4.4], we have that the charac-
teristic function Ψ of Y (τ) is given by Eθ [exp(iλY (τ))] = exp (Ψ(λ)), where

Ψ(λ) =

∫ τ

0

ψ
(
λσ(t)eκ(τ−t) − iθ(t)

)
dt−

∫ τ

0

ψ(−iθ(t)) dt ,

and ψ is the characteristic function of L(1) and i =
√
−1. Note that for the case of the

generalized hyperbolic distribution we know the moment generating function φ, and thus
also the characteristic function ψ(λ) = φ(iλ). We can now find the distribution for a
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given model (for instance the generalized hyperbolic class) by numerical inversion of the
characteristic function Ψ.

5. Conclusions and topics for further research

We have suggested a non-Gaussian Ornstein-Uhlenbeck model (2.5) to describe the sto-
chastic dynamics of temperature. The model includes a seasonal volatility and a Lévy
process generating the innovations, slightly extending other Ornstein-Uhlenbeck models
proposed in the literature for describing temperature dynamics (Dornier and Querel [16],
Alaton et al. [3] and Brody et al. [12]), but much less parsimonious than the autoregressive
ARCH model of Campbell and Diebold [13].

An empirical study of Norwegian temperature data confirmed the mean-reversion prop-
erties of (deseasonalized) daily temperature data. After taking the squares of the residuals,
we observed that the correlogram had a wavy form clearly suggesting a seasonally varying
variance. We modelled this by an empirically based function. The obtained residuals after
dividing by the square-root of this variance function were not normally distributed for some
of the measurement stations. We proposed to use the generalized hyperbolic distributions,
which explained the skewness and (semi-)heavy tails in the empirical distributions rather
well. Introducing the generalized hyperbolic class led us to a Lévy process dynamics in
the stochastic model for temperature. We showed that the Norwegian temperature data
have fractional characterstics, but argued in favour of a model which is not based on an
Ornstein-Uhlenbeck process driven by a fractional Brownian motion.

We calculated an explicit arbitrage-free dynamics for futures prices based on cumulative
average temperature using our proposed model. The futures price dynamics will be gov-
erned by the market price of risk, which has to be estimated from historical futures prices.
Letting the Lévy process in the temperature dynamics be Brownian motion, we derived
an arbitrage-free price for a call option written on such futures. The general case must
be treated by numerical methods, and we provided a representation of the characteristic
function of the temperature dynamics under the risk-neutral probability, a key ingredient
to find the density function necessary for pricing.

The empirical studies revealed that the residual noise had positive correlation at lag
1, and negative correlation at lag 2, both being significant (see e.g. Subsection 3.4).
Our model was not able to explain this fact, which was observed for all measurement
locations. A moving-average time series model could, for instance, be used to capture
this effect, however, the corresponding continuous-time dynamics would become a delayed
stochastic differential equation. Furthermore, for the squares of these residuals, one could
observe a decaying autocorrelation function for small lags (see Subsection 3.4). Following
Bollerslev [11], one could try out a GARCH-model to capture this behaviour.

From a risk management point of view, it is of importance to have a multidimensional
model for temperature covering all locations of interest. One should here investigate dif-
ferent (possibly time dependent) models for a multidimensional residual model. From our
empirical studies we have an understanding of the marginal behaviour, but it is a challenge
to model the correlation structure and investigate possible time-dependencies in this.
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Appendix A. Figures
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Figure 1. Average daily temperatures with the seasonal component for
Alta and Bergen
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Figure 2. Scatter plot from regressing today’s deseasonalized temperature
against yesterday’s deseasonalized temperature (left), and today’s absolute
temperature against yesterday’s deseasonalized (right)
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0 350 700 1050 1400 1750 2100 2450 2800 3150 3500 3850 4200 4550

−10

0

10

Alta residuals

0 350 700 1050 1400 1750 2100 2450 2800 3150 3500 3850 4200 4550

100

200

Alta squared−residuals

0 350 700 1050 1400 1750 2100 2450 2800 3150 3500 3850 4200 4550

−5

0

5

Bergen residuals

0 350 700 1050 1400 1750 2100 2450 2800 3150 3500 3850 4200 4550

10

20

30

40

50

Bergen squared−residuals

Figure 3. The residuals and squared-residuals after linear regression of
deseasonalized daily temperatures. The plots show Alta and Bergen
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Figure 4. Empirical density (broken line) and fitted normal (complete line)
for the residuals after regression. The plots display Alta and Bergen, where
a logarithmic scale for the frequencies are used in the second and fourth plot.
The empirical densities are plotted using a Gaussian kernel smoother
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Figure 5. The empirical autocorrelation function for the residuals and
squared residuals after regression for Alta and Bergen
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Figure 6. The empirical and smoothed seasonal variability function. The
plots display Alta and Bergen
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Figure 7. The residuals and squared-residuals after dividing out the sea-
sonal variation component. The plots display Alta and Bergen
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Figure 8. The empirical autocorrelation function for the residuals and
squared residuals after dividing by the seasonal variation σt for Alta and
Bergen
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Figure 9. Empirical density (broken line) and fitted normal distribution
(complete line) for the residuals after dividing by the seasonality variation.
The plots display Alta and Bergen, where a logarithmic scale for the fre-
quencies are used in the second and fourth plot. The empirical densities are
plotted using a Gaussian kernel smoother
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Figure 10. Empirical density (broken line) and fitted generalized hyper-
bolic distribution (complete line) for the residuals after dividing by the sea-
sonality variation. The plots display Alta and Bergen, where a logarithmic
scale for the frequencies are used in the second and fourth plot. The empirical
densities are plotted using a Gaussian kernel smoother
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Figure 11. Empirical density (broken line) and fitted generalized hyper-
bolic distribution (complete line) for the residuals after dividing by the sea-
sonality variation. The plots display Kristiansand and Oslo, where a loga-
rithmic scale for the frequencies are used in the second and fourth plot. The
empirical densities are plotted using a Gaussian kernel smoother


