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ABSTRACT. A variety of model selection criteria have been developed, of general
and specific types. Most of these aim at selecting a single model with good overall
properties, e.g. formulated via average prediction quality or shortest estimated
overall distance to the in some sense true model. The Akaike, the Bayesian
and the deviance information criteria AIC, BIC, DIC, along with many suitable
variations, are eminent examples of such methods, and are in frequent use. These
methods are however not concerned with the actual use of the selected model,
which varies with context and application.

The present paper takes the view that the model selector should instead
focus on the parameter singled out for interest; in particular, a model which gives
good precision for one estimand may be worse when used for inference for another
estimand. We develop a method which for given focus parameter estimates the
precision of any submodel-based estimator. The framework is that of large-sample
likelihood inference. Using an unbiased estimate of limiting risk, we propose a
focussed information criterion for model selection, the FIC. We investigate and
discuss properties of the method, establish some connections to the AIC, and
illustrate its use in a variety of situations.

KEY WORDS: Akaike’s information criterion, bias and variance balance, the fo-
cussed information criterion, logistic regression, moderate misspecification, vari-
able selection

1. Introduction and summary

Central to any statistical data analysis is the idea of selecting an adequate model. This se-
lection process might involve mathematical deduction from assumptions about the physics
of the underlying data generation mechanism, comparisons with models used on previous
but similar occasions, and sometimes ad hoc arguments which perhaps have to do with
tradition or convenience. The process is sometimes complex and difficult to formalise or
specify a priori, as it might involve informal checks of residuals and other diagnostic plots.
Among the more formalised techniques used by statisticians as ingredients of this endeavour
are goodness-of-fit tests and model selection using established model information criteria.
This article is concerned with the latter, but deviates from mainstream in that we allow
different models to be selected for different parameters of interest. This reflects the view
that one model might be best for inference about say the mean structure while a different
one might be preferable for analysing the variance structure. In this section we first give
a brief review of popular model information criteria, before presenting motivation and a

guidemap for the rest of the article.

1.1. Model information criteria in popular use. One popular and well-studied method
is Akaike’s information criterion, the AIC (Akaike, 1973). As an estimated expected
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Kullback—Leibler distance, it aims at finding, amongst the set of models under considera-
tion, the best approximating model to the unknown true data generating process. Using
a principle of parsimony, Akaike’s method will select the model with the fewest param-
eters which fits the data well. For any model S, AIC is defined as twice the maximised
log-likelihood for model S, penalised with twice the number of parameters in S. Its ap-
plications abound, ranging from multiple regression (Shibata, 1981, Nishii, 1984) to the
well-studied selection of the order in autoregressive time series (e.g. Shibata, 1976) and
neural networks (Murata, Yoshizawa and Amari, 1994), to name a few. For more infor-
mation and worked out examples we refer to the monographs Linhart and Zucchini (1986)
and Burnham and Anderson (2002). See also Sections 5.6 and 6.1 below.

A related model selection mechanism, the Bayesian information criterion BIC of
Schwarz (1978) penalises instead with the logarithm of the sample size; see also Rissanen
(1989) for additional arguments and results. Although this leads to a consistent model
selector if the true data generating model belongs to the finite-parameter family under
investigation, as shown by Haughton (1989) for exponential families, BIC selected models
tend to underfit if this assumption does not hold. See also Wei (1992), who develops Ris-
sanen’s predictive least squares principles further and suggests a related criterion based on
Fisher information. A recent Bayesian development is the deviance information criterion
DIC proposed and discussed in Spiegelhalter, Best, Carlin and van der Linde (2002), based
on adjusting the posterior mean deviance with a penalty term for complexity. It is well
fitted to those models where analysis is being carried out via Markov chain Monte Carlo
to assess the posterior distributions. Other recently developed criteria include covariance-
based and adaptive penalties, see Ye (1998), Tishirani and Knight (1999), Shen and Ye
(2002), and George and Foster (2000).

Several model choice criteria become equivalent when the sample size grows. Stone
(1977) obtains equivalence between cross-validation and AIC. See Stone (1974) for a more
detailed account on cross-validation model choice. Nishii (1984) shows that AIC, finite
prediction error (Akaike, 1970), Mallows’s (1973) C, and the prediction sum of squares
(Allen, 1971) are equivalent in having the same risk function in the limit. For a further
overview of model selection methods, see Shao (1997) and McQuarrie and Tsai (1998).

Several other variations on the AIC theme exist. Takeuchi (1976) constructs an asymp-
totically unbiased estimator of the relative Kullback—Leibler distance by choosing the pe-
nalisation term equal to twice the estimated trace of a matrix product Q(6).J(6)~! where
Q represents the variance matrix of the first order derivatives and .J minus the expected
value of the matrix of second order derivatives of the log likelihood with respect to the
parameter vector 6. The resulting model information criterion is sometimes called the
TIC. Note that in case the true data generating model is a member of the model class
under investigation, the matrices J and {2 coincide and the criterion simplifies to AIC.
A similar construction is used for the network information criterion in neural networks

(Murata, Yoshizawa and Amari, 1994, Ripley, 1996), giving the so-called NIC. Basu, Har-
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ris, Hjort and Jones (1998) and Jones, Hjort, Harris and Basu (2001) develop a certain
robustification of the maximum likelihood estimation method for general parametric fam-
ilies, and inside that framework supplement fitted models with a robustified information
criterion, say the RIC, which has the AIC as a limit when a certain algorithmic parameter
governing the degree of robustification is sent to its null value. Other adjustments include
finite sample corrections and extensions to quasi-likelihood (Hurvich and Tsai, 1995) and
semiparametric and additive model selection (Simonoff and Tsai, 1999). Issues of model

selection in so-called data mining are addressed by Chatfield (1995) and Ye (1998).

Model selectors are not only used for mere model selection; regularly they are the core
of formal lack of fit tests, see e.g. the AIC-based order selection tests of Eubank and Hart
(1992) and Aerts, Claeskens and Hart (1999, 2000), the BIC-type test statistic of Ledwina
(1994), and the general goodness-of-fit tests of Claeskens and Hjort (2003).

1.2. The FIC and the present paper. The idea of finding a single satisfactory statistical
model for one’s data, perhaps aided by model information criteria as above, is a central
one in statistics, and carries with it considerable intellectual and conceptual appeal. The
chosen model is fitted to data and is seen as the statistician’s best approximation to the
real data generating mechanism used by nature, and secures a coherent view of statistical
analysis of a data set. In this article we carefully extricate ourselves from this classic point
of view; that a single model should be used to explain all aspects of data or to predict all
types of future data points seems to us a little too constrained. Our view is that such a

‘best model” should depend on the parameter under focus.

In practice, model selection is often only a first step in statistical analysis. All of the
above mentioned model selectors essentially sidestep this fact of statistical life and provide
us with one single ‘best’ model, regardless of the purpose of the selection, irrespective
of the inference to follow. This is our main motivation for constructing a more focussed
information criterion, the FIC, tailored to the parameter singled out for interest. Such a
parameter, say p, must have a definition making it meaningful across competing models.
In Section 2 we set up a broad framework for comparing competing parametric models, in
particular encompassing the model choice problems associated with covariate subset selec-
tion in regression models. Our framework uses general parametric models and maximum
likelihood as the estimation method of choice, and is amenable to analysis by general large-
sample theory, as developed in Hjort and Claeskens (2003). In particular, an expression
is derived for the limiting risk of any submodel-based estimator of the p parameter. The
focussed information criterion FIC emerges in Section 3 as the result of establishing an un-
biased estimate of this limiting risk; the candidate model with the smallest value of FIC is
chosen. The FIC values are easily obtained via standard statistical software. We illustrate
their use in Section 4 in a list of general and specific applications. One of these concerns
determining factors influencing the probability of a child being born with low birth weight.

It is seen that for different natural estimands, different subsets of the regressors are singled
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out as most important. This conflicts with the ‘one single model is used to explain every-
thing’ tradition, but is not a paradox as such: two different estimands might simply be
associated with two different influential subsets of covariates. There might be conflicting
aims regarding interpretation and transparency on one hand versus prediction quality and
estimator precision on the other, depending on the context and problem formulation, see
e.g. the discussion in Breiman (2001), but here our methodology is geared by the logic of
prediction and precision of estimators.

Section 5 provides several remarks and viewpoints pertaining to the FIC, including
various connections to the AIC, which therefore is afforded additional insight. Precise
large-sample results for the behaviour of the FIC and AIC selected estimators are reached
and compared in Section 6. Further developments are then discussed in Section 7, including
natural empirical Bayesian versions of the FIC. An assumption underlying the development
of the FIC is that the true data generating mechanism is contained in the largest parametric
model considered. Certain amendments are called for when this assumption is not deemed
viable, as explained in Section 8. Finally proofs of two technical results are provided in

Section 9.

2. Estimators in a model choice framework

Our aim here is to study model selection schemes based on behaviour of the resulting
estimator-post-selection. Such estimators are special cases of the more general classes of
compromise methods studied in our companion paper Hjort and Claeskens (2003), where
a general machinery is developed. To make the present article self-contained we need a

concise summary of the other paper’s Sections 2 and 3, including basic notation.

2.1. The i.1.d. setup. The start assumption here is that independent data Y7,...,Y,

come from a density of the form

ftrue(y) :f(y790770+5/\/ﬁ) (21)

Here 6 is p-dimensional and ~ is ¢-dimensional, the idea being to study perturbations of the
fy,8) = f(y,0,v) model around v = ~g. Thus 7 is known, determined by the statistical
problem of interest. Models are considered which include the full # but potentially only
some or none of the vy components. For a parameter p of interest, a function of the
underlying density, we may write pyrue = (6o, v0 + d/4/n). There are (at least) 27 model
subset estimators to consider, one for each subset S of {1,...,¢}. The maximum likelihood
estimator corresponding to having selected S is jig = M(é\s,/’y\s,’ymgc), where ((9\5,/’?5) are
maximum likelihood estimators in the model which contains 6 and then only ;s for 7 € S.
Let Jun be the (p+q) x (p+ ¢) information matrix of the full model, where S = {1,...,q},
assumed to be of full rank; this is the variance matrix of the score function, evaluated at the
null point (6o, 7o), with blocks Jog, Jo1, J10, J11. We shall also need projection mappings
ms of size |S| x ¢ which maps v = (v1,...,v4)" to vg, those v;s which have j € S; for
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the full model, 7g, is the identity matrix. Here |S| denotes the number of elements in S.
Let K = J'" = (Jy; — JloJO_OlJm)_l and Kg = (ms K~ '7%)~!. Two further quantities of

importance are

Hs = K~'PrsKsms K™% and w = JioJsy' 35 — 32, (2.2)

with the partial derivatives evaluated at the narrow model, where S = (), i.e. at (6y,70).
The Hg is a projection matrix (symmetric, idempotent, and orthogonal to I — Hg). For
completeness we let Hy be the null matrix of size ¢ x ¢. In order to state the result which

will be the basis for our focussed criterion, we first mention

Dy = dtant = v/n(Ftant — 70) —a D ~ Ny(8, K), (2.3)

see our companion paper for details and more discussion. We now have the following: The

maximum likelihood estimator of p in the S model has limiting distribution of the form
Vi(fis — piene) —a As = () o' M+ w'(§ — KY?Hs K12 D), (2.4)

where M ~ N, (0, Joo) is independent of D. See Lemma 3.3 of Hjort and Claeskens (2003).

Below we shall have occasion to use one more result from Hjort and Claeskens (2003,
Section 3). Consider the Akaike score AIC,, s for submodel S, which can be expressed
as twice the maximised likelihood for model S minus two times |S|. Then, under (2.1)

conditions,

AIC, s — AIC, g —4 AlICs = D'K~Y?HsK~'/*D — 2|S|. (2.5)

2.2. The regression framework. The above 1.i.d. setup needs to be generalised to cover
regression models, as explained and carried out in Hjort and Claeskens (2003). The point of
departure is that independent observations Y7i,...,Y,, are available, where Y; comes from
a density of the form fiire(y|zi) = f(y|zi,60,7% + 6/y/n). Here 6y typically consists
of a p-dimensional vector of regression coefficients 3, most often but not always with an
additional scale parameter o, and the model allows up to ¢ additional v; parameters. Let
S be any subset of {1,...,q}. Estimators of a focus parameter prue = (6o, v0 + §//1),
constructed in the submodel indexed by S by means of the maximum likelihood method,
take the form jig = /,L(é\g,fy\g, 70,5=). An analogue of the lemma above is reached in Hjort
and Claeskens (2003, Sections 2 and 3). To define the necessary quantities, introduce
U(y|z) and V(y | z), the partial derivatives of log f(y | z,80,v) w.r.t. § and v, evaluated at
the null point (6g,~v0). We need

o= () =t (513 (413 o

and an important matrix is

. n,00 Jn,Ol
n Sull = n- Z J — ( Jn,ll) 5 (26)
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say, where J,, oo 1s of size (p+1) x (p+1) and .J,, 11 of size ¢ X ¢. This matrix is assumed to
converge to a suitable positive definite Jp, as n increases. In many situations there would
be some ergodic phenomenon making it natural to postulate a covariate distribution ) for
the z;s, so that averages n™' >_""_| ¢g(z;) tend to expectations Egg(z) = [ ¢(z) Q(dz); in
this case, Jrun = [ J(z) Q(dz), and so on. The @ distribution would be the conceptual
limit of the empirical covariate distribution Q, = n™' Y.\, §(x;) as n grows; here §(z;)
is unit point mass at position z;. There are natural analogues of methods of results
summarised in Section 2.1, in particular of results (2.3)—(2.4). These extensions involve
matrices Ky, K, s, H, s constructed from J, run along with the vector w of determining
coefficients, found as with (2.2).

3. The FIC

The (2.4) result yields expressions for the mean squared error of the limit distribution of

s, for any S. Specifically, the limit distribution of v/n(fis — fitrue) has mean squared error
r(S) =18 +wt(I - K'?HsK~V))664I — K2 HsK'Y?)w + ' KYV?Hs K0, (3.1)

where 72 = (g—‘;)tJ&)lg—’;. The programme now is to estimate this limiting risk quantity,

for each S under consideration, thereby yielding a model choice criterion.

3.1. The FIC for the limit experiment. In (3.1) all quantities can be estimated with
precision corresponding to familiar \/n-rate consistency, with the crucial exception of 4.
It is convenient to first argue directly in the limit experiment, where only D of (2.3) is
random. We stress the simplicity and transparency of this limit experiment problem. In
a sense all aspects of the model choice problem have been reduced to a single simple-
structured problem: Which [is estimator should be used, when the risk r(S) of (3.1) is
associated with 1, where all quantities are known except for §, and when the single
informative quantity to guide us is D ~ N, (4, K')? The various specifics of the parametric
models being used and of the focus parameter, circumstances that will vary widely from
application to application, have been reduced to simple and interpretable quantities like
K, Hs and w.

To estimate the limiting risk (3.1), note that DD' has mean §§' + K, so we use

DD' — K as estimator for §6*. An unbiased estimator of limiting risk is therefore
P(S)=1+w'(I-K'?HsK™'?)(DD" — K)(I - K'?HsK'*)w + w'K'* Hs K'*w
=2+ {w'KY*(I - Hg)K™'/?*D}? 4+ 20' K'?Hs K'/?w — w'Kw.
Introducing qun = w'D for the full-model estimator of 1 = w'4, in the limit experiment,
along with g = W' K'"/?HgK~'/?D for the S-subset estimator, we see that the above is
the constant 7§ — w'Kw away from the quantity
FIC = (I — K'?HsK~Y/?)DDY(I — K'?HsK~V/*)tw + 2L KY? Hg K1/ 2w

TR (3.2)
= (Yran — ¥s5)” + 2wKsws.



As before, wg = msw. In other words, FIC is an unbiased estimator for r(S) plus an
additive constant not depending on S. The submodel with the smallest value of FIC is

chosen.

3.2. The real FIC. The FIC above was derived for the limit experiment, where only D
is random. For a real situation we must also estimate the w and Kg, Hs quantities from
data, and for D we must insert D,, = 5fu11 of (2.3). From (2.2), this requires a suitable j}un,
from which we compute Ix Ixs and HS, along with consistent estimates of 2 ¥l and 2 7
Such can be constructed by plugging in an estimate of 8 in explicit formulae, if available,
or via numerical approximations say {ILL(é\—I— nei,Yo) — ,LL(A 70)}/77 for the components of
%y and {,LL( Yo + ne;) — ,LL( ,70)}/n for the components Of , for a small n value, where
e; 1s the 7th unit vector.

Writing 'TZJ\fu]] = @tgfun and lZS = @tﬁl/Qﬁgﬁ_l/Q&un, the result is the ‘real’ focussed

information criterion
FIC =04 (I — K'Y HsK ') pudin(I — KY?HsK~'?)'G 4 204 K 505

A (3.3)
= (Y — ¥s5)” + 205K sWs.

We note that for & diagonal, matters simplify to

1*:16 = (Z&}]‘S\fu]]’j>2 —I—QZ(Z}??{?\] (34)
j¢s JES
Also note that computing the (3.3) quantities for all submodels S of interest is an easy
programming task, as long as estimates have been obtained for ~ (in the fullest model),
Jrun (consistency under narrow model circumstances suffices), and w.

There will typically be several estimation strategies for the key matrix Jyn (with
consequences for estimated K, Kg, Hg, w). One might often enough find explicit formulae
for the entries of the information matrix Jyu = J(6o,70), see examples of Section 4, so
that each entry may be estimated by plug-in, using either gnarr or é\fu]]. A simple and
satisfactory alternative is by calculating the variance matrix of say 10,000 simulated score
vectors at the estimated null model (this is sometimes much easier than from the estimated
full model), if no formula or Hessian matrix is available. Note that application of the theory
only requires estimators that are consistent under the narrow null model. We would often
nevertheless wish to use an estimator of Jpy constructed from the wide model f(y,6,~),
thereby securing some model robustness in that one then does not have to rely on ~ being

close to ~g.

4. Tllustrations and applications

This section provides a list of illustrations of the FIC apparatus, partly listed as general
recipes for models of interest, and partly in a specific logistic regression type application

concerned with the probability of low birth weights.
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4.1. A skewed regression model. For regression data (z;,Y;), let Y; ~ N(fBy,0?) be
the narrow model, around which we consider model departures in two directions, namely
in the mean and in skewness. Specifically, the fullest model has Y; = (g 4+ f1x; + o0&y,
where ¢; comes from the skewed distribution with density A®(u)*~1¢(u). Here ¢ and &
are the density and cumulative for the standard normal, and A is the skewness parameter
in question. Note that ¢ changes interpretation and value with 3y and A. In this situation
we consider different parameters of interest when (1, \) is in the vicinity of the narrow
model’s (0, 1), and are led to pigrue = (B0, 0, 81, A) = (B0, 0,01 /y/n, 1482 /y/n). There are
four model-selector estimator candidates, ranging from the simplest p(y,s,0,1) sticking in
ordinary sample mean and standard deviation, to ,LL(B\O@H , Ofull » Bl,full, Xfu]]) with estimates
from full likelihood in the widest model.

The log-density for Y; becomes

<yi — 500— ﬂlxi> “logo — l(iyi — o — »31:1:1‘)2 B %10g(27r),

2 o

logA+ (A —1)log®

and after some algebra one finds that the score vector of partial derivatives, evaluated

at the narrow model, has components ¢; /o, (¢ — 1)/0, ¢;z;/0, 1 + log ®(s;), with ¢; a

standard normal. This leads with further analysis to

/e 0 z/o? clo

g B 0 2/0? 0 d/o

mhll T 262 00 (VR 422)/0? cifo
c/o djo czt/o 1

Here 7 and v? are the empirical mean and variance of the z;s, while ¢ = cov{e;,log ®(¢;)} =
0.9032 and d = cov{e? log ®(&;)} = —0.5956. Inverting this matrix shows that K, = J!!
is diagonal, with elements k, 1 = o?/vZ and kp,o = 1/(1 — ¢* — %d2) = 12.0877%. The

general focussed information criterion becomes
— ~\ 2 ~
FIC = (3.5,0,) +2) &%k, (4.1)
j¢s jes
where 3\1 = \/ﬁﬁl,fun and 3\2 = \/%(:\\fu]] — 1), while &y and &y are estimates of

—z 2 on — o2 1,08 _ O
w1 =T G- = 5 and wg—caaﬁo—l—ZdaaU o -

The partial derivatives are evaluated (and estimated, when necessary) in the narrow model
where (81,A) = (0,1). The submodel is chosen with smallest value of

(&318\1 + &3232)2 for the narrow model,

FIC = @333 + 2&7k;  for including (1, not A, (4.2)
0167 + 203k, for including A, not i,

2(D%ky + ©3ky)  for the full model.

We give four brief examples.



Example 1: Let g be the mean of Y = 3y + 12 + o¢ for some given covariate value
z, i.e. By + Bz + oe(N), where e(\) = [ul®(u)*"'é(u)du. Here one finds wy = 7 —
and wy = 0, using the derivative result e’(1) = ¢. For this mean estimand there is no
award in involving the A\ aspects of the data, as the added complexity does not alter the
large-sample performance of estimators, hence the question is reduced to choosing between
the narrow (fy,0) model or the broader (fy, o, 1) model. If \/ﬁ|//3\17fu11|vn/3 < V2, then
we leave out 31, otherwise, we include it.

Example 2: Let p instead be the median at covariate value z, i.e. p = Gy + frz +
oc®1((3)/*). Here wy = 7 — z and wy = o{c — 1(log2)/¢(0)} = 0.1313 5. Model choice
proceeds using (4.2).

Example 3: Consider the third central moment y = E(Y — EY)? = 0®E{e — ¢()\)}3.
Here wy = 0, signalling that the inference is not touched by inclusion or exclusion of the
(31 parameter, while some work yields w, = —0.2203 03, If \/E|/Xfu]] - 1|/k,11{22 < /2 the
narrow model suffices; otherwise we include A. There is a similar conclusion when the
focus parameter is the skewness E(Y — EY)?/{E(Y — EY))?}3/2.

Example 4: Look at the cumulative distribution function Pr{Y < y} = ®((y — 8o —
Biz)/o)* associated with a given z value. Computing the derivatives w.r.t. 3o, 0, 31, A one

finds

5, = ;z:—xqé(y—y)’ 5y = _<%dy—y +c>¢<y—y) —<I><y_y>log<1><y_y>,
s s s s S s
in terms of average y and standard deviation s for the Y; sample. Again model selection

uses (4.2).

The situation considered here can be generalised to one with say Y; = (g + zi31 +

ulfs + o¢;, where the x;s are always to be included in the model whereas the u;s are extra
candidates, along with the extra A\ parameter for skewness of the noise part.

As mentioned at the end of Section 3 we would perhaps wish to use a wide model
based estimator of Jp,), for reasons of model robustness. The theory applies, but with
less clear-cut formulae for FIC than in (4.1), in that the K matrix involved would not be

diagonal.

4.2. Variable selection in the linear normal model. Let Yy, ...,Y, be independent and
normal with the same variability, where it is not clear a priori which of several covariates
to include in the model. For the N(z!3 + ul~, 0?) model, where the intention is to always

include x; whereas components of u; may or may not be included, one finds

En,OO 0 En,Ol
Tnful = —5 o 2 0 ;
Zn,lO 0 Zn,ll

_ -1t ot I I oY 1Nt .
where ¥, 00 = n Zi:l Ty, Xpot =N Zi:l ziu;, and ¥, 11 = n Zi:l w;u;. This

leads to w = EnJOE;})Og—g — %. For the parameter u = z*3+u'~y, for example, the mean of
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Y at position (z, u), this gives w = Emlozg’hox—u. Ingredients in the general recipe include
§ = \/n7 in the full model, the matrix K,, = 0?L,, where L,, = (En’n—En7102;7%02n701)_1,
the full estimator ¢, = w'd along with the submodel estimators ¢)s = th}l/zﬂn,gL,Zlﬂ&
where H,, ¢ = L;1/27T:59Ln75775L;1/2 and L, s = (rsL,;'w%)~". This leads to

m = (@qull — 72)\5')2 + 26'\2(4}%1/”75'(.05‘.

Thus the FIC depends in this case on the covariate position (z,u) via w = w(z, u), indicat-
ing that there could be different suggested covariate models in different covariate regions.
This is not a paradox, and stems from the wish of estimating E(Y | z,u) with optimal
precision, for each given (z,u). See also Section 5.5, where it is seen that the general
large-sample risk approximations used here actually match exactly the appropriate mean
squared errors.

Sometimes interest focusses on the impact of a particular covariate on the mean struc-
ture. This fits in with p = {(x +eg, u) — (x, u) = B, writing &(z, u) for E(Y |z, u) and ey
for the kth unit vector. The FIC machinery can then be set to work, with w = Z‘loz‘o_olek
etc.

Let us illustrate the variable selection method in a situation where one considers
augmenting a linear regression trend with a quadratic or cubic term. This fits the above
with a N(Bg + B12; + B22? + B32?, o) model for data Y;. Assume without loss of generality
that the x;s have mean zero, and let m; =n=' 3", a:f for j = 2,3,4,5,6. Let furthermore
3\2 = \/ﬁ@ and 3\3 = \/533 in the full model. For estimating p(z) = E(Y |z) one finds
that w has the two components wy = mg — 22 + (m3/ma)z and w3 = m3 — 2 + (my/m2)x,

along with

2

-1

2 2

I my —ms5 —m3/ma, ms — mamg — mgmy/ms

n = 2 .
ms — mamg — mgmy /ma, me —m3 — my/mo

The four FIC signals read

1:/*IEO(SIC) = (w232 +w33\3)2,

FIC,(2) = {(ws — waLn 11285} + 26%w2 L, 1,

FIC;(z) = {(ws — w3 Ly 2L10)8,}% + 26%w2 Ly, 5,

ng(m) = 262w Lyw,
representing respectively the narrow model, the model which includes 35, the model which
includes (3, and the fullest model with both [, 3s, where we use LY/ to indicate the
elements of L', Also, L, 1 = (m4 —m3 —m3/m2)~" and L, 2 = (mg — m3 —m3/m2)~".
The method consists in choosing for each given x the submodel with smallest observed
FIC(z) value, with the consequent estimate or predictor for E(Y | z). One may rule out
the model which uses 5 but not (33, if one wishes; this corresponds to ignoring FIC;3(z).
The method gives ji(z) estimators of different form over different intervals of x, according
to which of the FIC(z) monitors is smallest.
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The above method may be contrasted with e.g. the AIC strategy, which is to select
the model with smallest value of say Cy = nlogdy using variance estimate for the narrow
model, C3 = nlogay + 1 with estimate from the model with (35, C3 = nlogas + 1 with
estimate from the model with 3, and finally Cs3 = nlog 23 + 2 with estimate from the
model including both 33, 35. Analysis along the lines of Section 6 will indicate that the

FIC strategy often will lead to more accurate final precision than the AIC scheme.

4.3. Two model departures from linear regression. Around the traditional linear
normal regression model, in which Y; ~ N(8g + 312;,0?), we now build model extensions in
two directions, the mean and the variance. Specifically, take Y; = Go + 12 + Bou; + 05e4,

where the ¢;s are independent and standard normal, and o; = oexp((v;). One might

2

e.g. have u; = z7, if parabolic behaviour of the regression curve is anticipated, and v; =

x; — x, if there are indications that the variance might be log-linear in x.

Taking the derivatives of the log-density of Y; w.r.t. Go, 81,0, 32,(, one finds ¢;/a;,

eixifo;, (€2 —1)/o, eiuifoq, (2 — 1)v;. At the null model, where o; = o, calculations give

1/0? z/o? 0 u/o? 0
z/o? (2% + s2)/0? 0 n'Y " wiui/o? 0
Jn7fu]] = 0 0 2/02 0 2?7/0
ufo? n7tY T wwuifor 0 (u? 4 s2)/o? 0
0 0 20/c 0 2(v? + 52)

for the full model information matrix. Here ¥, u,v are the means of z;, u; and v;, while

2 =n7t Z?:l(:z:i — :E)Q and similarly for s, and s,. To calculate the K, matrix that

drives the FIC and its properties, let det; ; be the determinant of the submatrix where
line 7 and row j are omitted. Some algebra yields dets 5 = (2/0%)s2s2(1 — p2), dets 3 =
—(20/07)s252(1 — p2) and dety 4 = (4/0%)s252, where p, = (n™! Yo Tiu; — TU) /Sy Sy 18

r-uv

the empirical correlation between z; and u; values. This gives det = (4/0?%)s2s2s%(1 — p2)

for the full information matrix, along with
_ detyy 1 dets 5 1

kn = d knpa= = —.
! det s2(1—p2) o 2 det 252

Also, dety s = 0, which means that K, = diag(kn1,kn2). For any given estimand
1(Bo, 1,0, 02, C) of interest, we also find its determining coeflicients, from w = .J;, o1 J,;(l)o

Op  Op OpNt _ ¢ Op Opt
Y
( )6 — (2, %), namely

8807 961 do 9827 8¢
z? o T Ou T Ou 1 Ou o
{0k o) e () -
w1 u{<3§,+ 26y 52 08 + (T + pnSzSu) Siaﬁo—l_Siaﬁl 95,
_ =0u op
(.()2—0"05—8—4”

The story continues, for each given u in focus, as in (4.1)—(4.2) above, with 3\1 = \/EBQ,M
and d2 = /n(mn. For p equal to a general quantile of the distribution of ¥ for given z,u,
ie. 8o + Brx + Bau + qo exp((v), some algebra leads to

w1 = (& — T)pnsu/ss — (u—1u) and wy = —qgo(v —0).
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4.4. Selection in logistic regression models. We consider the data set given in Appendix
1 of Hosmer and Lemeshow (1989), which concerns a study of n = 189 women with newborn
babies and factors potentially associated with low infant birth weight, there taken to mean
less than 2500 gram. Covariate information for the mothers were available as weight just
prior to pregnancy (z2, in pounds), age (z3), indicator for race ‘black’ (z4), and indicator
for race ‘other’ (z5). Women with z4, = 0 and 25 = 0 are of race ‘white’. For the full
logistic regression model, where also the constant z; = 1 is included, estimates are equal
to 1.306, —0.014, —0.026, 1.003, 0.443, and the corresponding 3;/se(3;) ratios are 1.226,
—2.215, —0.770, 2.020, 1.233. For this illustration we take the view that

exp ('8 + u'y)

p(z,u) = Pr{low birth weight | z,u} = T+ exp(e B4 ut)’

where z = (1,22)" is always in the model while subsets of u = (z3, 24, 5)" are considered
for possible inclusion. Label for simplicity the submodels in question ‘0°, ‘37, ‘47, ‘5°, ‘34’,
‘357, ‘457, ‘345’, corresponding to inclusion or not of x3, 4, 5. An AIC analysis, calculating
twice the maximal log-likelihoods penalised with twice the number of parameters, indicates

that the best submodel is ‘4’, followed by ‘45’; see Table 4.1.

In this situation

o+ Lt

n ot g
T gun =n " z;l?i(l — pi) (izif ii) ;
with p; = L(z!3 + uly) and L(u) = exp(u)/{1 4+ exp(u)}. We estimate this matrix and
the consequent K, K¢ and Hg matrices using the estimates for the five parameters given
above, that is, in the full model; we could also have estimated J, fun1 using estimators from
the narrow model, where v = 0. It is also instructive to perform a test for v = 0 inside the
extended model, where the natural approximative x3 test statistic is SRS = 5.927, in
terms of the departure indicators §= \/n7, which here are equal to —0.351,13.799,6.096.
Thus these, which are also needed with each FIC application, do not as such indicate any
strong evidence against simply sticking to the zq, 2y model. We shall see that the FIC
nevertheless advocates including further covariate information, for some natural estimands.
A natural focus parameter is p(z,u) itself, for different (x,u) corresponding to dif-
ferent strata of mothers. For each representative woman we may search through the
eight submodels for v and compute FIC values, using the estimated version of w =
plz,u){l — p(;r;,u)}(JnJOJ,;(l)ox — u). We first consider women of race ‘white’ and let
r = (1,132.05)" and u = (24.29,0,0)", corresponding to average weight and age in that
group. Here the estimated low birth rate probability varies from 0.230 (model ‘345’) to
0.298 (model ‘0’), and & = (—0.245,0.032,0.065)". The FIC is found to recommend model
‘34’ for making the best prediction, followed by model ‘4’; see Table 4.1. The final estimate
1s 0.2638.
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model —AIC white w-FIC black b-FIC other o-FIC ratio r-FIC

0 232.691 0.298 0.860 0.256 5.099 0.334 0.158 0.861 291.806
3 233.123 0.288 0.654 0.272 4.171  0.337* 0.140* 0.945 231.353
4 231.075* 0.269 0.375 0.412* 2.813* 0.310 0.694 1.533 110.376
5) 234.101  0.279 0.695 0.242 6.481 0.369 0.797 0.868 272.466
34 232.175  0.264* 0.315* 0.413 2.813* 0.314 0.625 1.564* 106.519*
35 234.677  0.272 0.573 0.259 5.373 0.368 0.796 0.950 218.330
45 231.259 0.231 0.383 0.414 2.813* 0.368 0.795 1.794 110.938
345 232.661 0.230 0.385 0.414 2.813* 0.367 0.796 1.801 111.016

TABLE 4.1. For submodels corresponding to inclusion or not of covariates x3, x4,

x5, the table lists the minus AIC, along with estimates and FIC values for four

estimands of interest. These are the low birth weight probabilities p(white),

p(black), p(other) and the ratio p(black)/p(white). The asterisk indicates the
selected model and the consequent final estimates.

Next consider women of race ‘black’, letting x = (1,146.81)" and u = (21.54,1,0)"; the
average woman here is younger but a bit heavier than in the previous group considered.
Here estimates of p(z,u) range from 0.242 (model ‘5’) to 0.414 (model ‘345’), and & =
(0.429,—0.185,0.073)t. The FIC is nearly undecided between models ‘34’, ‘4’, ‘45’ and
‘345°. It is comforting to see that the four estimates in question are close. Similarly, for
women of race ‘other’, we let x = (1,120.01)" and v = (22.39, 0, 1)*, corresponding again to
average weight and age in that group. Here probability estimates range from 0.310 (model
‘4’) to 0.368 (model ‘45’), and & = (0.045,0.032, —0.135)". The FIC recommends model
‘3’ ahead of model ‘0’. Again, these two estimates, between which FIC finds it difficult to
make up its mind, are very close, 0.337 and 0.334, respectively.

To demonstrate the versatility of the FIC we include a final example of a different
nature. It appears from the estimates above that black mothers have a chance perhaps 1.5
times higher than white mothers of having a low birth weight for their child. To examine
this, focus on p = p(z',u')/p(x,u) for suitable (z,u) and (2',u’), for which we find

! /
o= BT [0 e, )} (rodggle! — o) — {1~ pla )} (o o'z — )]
p(z, u)
from (2.2). For (z',u’) corresponding to the average black and (z,u) to the average white
mother, one finds & = (3.783, —1.058, —0.190)*, and the FIC recommends ‘34’ followed by
‘4’ and ‘45’ for making the best ratio estimation.

The low birth weight data application is further discussed in Section 7.1.

4.5. An extended binary regression model. In applications like that above, one is
often geared a little too strongly by tradition towards using the exact logistic transform,
which however has no a priori reason to be close to the ‘true’ probability function. It is
therefore of interest to consider classes of models which generalise the logistic one. One

relatively simple such is to use

plx,u) :Pr{Y:1|$7u}:{ exp(ztf + uty) )}K

1+ exp(xt( 4 uty
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This model, which adds asymmetry to the logistic transform, is briefly discussed in Hosmer
and Hjort (2002). In general terms, p(z,u) = He(L(z'3 + u'~)), where H, is a function
which for a kg value is equal to the identity function, and L is as above. In the low birth

weight application, this would mean working with a 6 x 6 information matrix

n [ pi(l—pi)zizt  pi(1— pi)zut H(pi)z;
Togan =n"" Y| pi(l = piuirt  pi(1—piuat  H(pi)u; )
i=1 H(pi)z] H(pi)u; H(pi)/(pi(1 —pi))

evaluated under the null model xk = kg, where p; = L(2!8 + uly), and where H(v) =
O0H(v)/0k evaluated at the null point kg. For the departure function H(v) = v* sug-
gested above, one has H(v) = vlogv.

In this situation one needs maximum likelihood estimation of all six parameters, and
the four departure indicators S\j = /n7; for j =1,2,3 and 4 = vn(k — 1). For the focus

parameter p(z,u), the coefficients of the crucial parameter ¢ = w'§ are

_ 1 —pu
w=p(l-— p)Jn,lojm(l)OJ? — (p(H(pZ;) ) where p = p(x, u).

For the low birth rate application mentioned above we carried out such analysis, employing
a Newton type iteration algorithm to maximise the extended likelihood. The log-likelihood
did not climb with a sufficient amount for inclusion of « in the model to be advantageous,
however, in this particular example. Such one-parameter extensions of the logistic regres-
sion model have a better chance of being effective in situations with fewer covariates, say

one or two.

4.6. Generalised linear models. Our methodology finds easy applications in most of the
traditional regression models where variable selection is among the problems considered.
It is for instance easy to apply the machinery for direct variable selection in generalised
linear models such as Poisson regression. We choose to illustrate the methods here in
a situation where the extra variables that might be included reflect quadraticity. More
general departures are also handled with similar efforts.

Consider a model framework for independent response variables Y; in terms of regres-
sors x; = (x41,%i2)" for i = 1,...,n. For a known link function g, let the narrow model
be that of £(z;) = g7 (Bo + B1wi1 + B22i2), and consider as wide extension that of

2 2
€(zi) =g (50 + ) Biwii+ ) Svigvi+ 71,2%1%,2)-

This amounts to anticipating perhaps modest degrees of quadraticity and interaction for
covariate influence. Thus there are three extra parameters in the extended model, and
at the outset eight different submodels to consider. Context information might reduce

this number by disallowing certain subsets, for example the interaction effect. It is now
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not difficult to implement the FIC strategy, for each focus parameter of interest. In this

example there is a 6 X 6 information matrix

n t
_ yAYA Z: U
o gun =n " g EDIN T
— w2t usut
1=

L ek

7

which is easily estimated, where z; = (1,$i71,$i’2)t contains the covariates which are
always present while u; has the two squared terms and the product term. This leads
to all necessary K, s and H, s matrices. In the specific example of Poisson regression,
the AIC chooses the submodel with largest value of 23 1 {V;via — exp(via)} — 2#(a),
writing v; for any appropriate extension of z; with some of the u; elements and « for
the corresponding parameter vector, while the FIC has different intentions, which depend
on the focus parameter. For {(x) = exp(Bo + '3 + %xt%{;), for example, one has w =

2
would work as for the logistic regression example, or other examples of generalised linear

f(a:){JmlOJ;(l)oz — ¢g(x)}, where ¢(z) has two la:? elements and one z;x; element. This

models, with different submodels being recommended for different areas in the covariate

space.

5. Discussion of the FIC

Here is a list of relevant comments pertaining to aspects of the FIC, some of which shed
additional light on the AIC. See also Section 7 for further remarks.

5.1. Variance-bias balance. We see from (3.2) and (3.3) that the FIC balances mod-
elling bias versus estimation variability. With a small S the reward is a small variance
contribution thSKSwS but the penalty a bigger (tmn — ¢5)2 coming from modelling bias,
while the situation is reversed for a bigger S subset. This trade-off game has a particularly
transparent structure for the case of diagonal K, when the parameter-focussed information
criterion takes the form FIC = (Z]&S w;D;)*+2 Yies w3kj, as with (3.4); including more
components means more variance and lower bias, and vice versa.

It is important to realise that the FIC is sample-size dependent. From the (2.3)

representation of dpyy,

-~

FIC = n{G'(I — K'"?HsK"/*)BFtan — 7o)} + 204 K s0s.
Thus, for Fgun being bounded with an increasing n, the first term would eventually dom-

inate, giving large values of FIC, unless S is the full set, where ﬁs = I. In other words,

for all large n the data would sensibly select the widest model.

5.2. The one-dimensional case. When there is only one model departure direction to
consider, so that ¢ = 1, then FIC = w?D? for the narrow estimator while FIC = 2w? K for
the wide estimator. For the trivial case of a p parameter with w = 0, the two estimators

are large-sample equivalent. For the more interesting case w # 0, the FIC chooses the

15



narrow model when |D|/K'/? < /2 and the wide model when |D|/K'/? > /2. In this
one-dimensional case this is also equivalent to the AIC, as is seen from (2.5). We see
that the estimator used in the end is of the pre-test kind, with fif, if the test statistic
D?/K > 2 and [ipar if D?*/K < 2. The significance level indirectly preferred here by the
pre-test, by both the AIC and the FIC, is Pr{y? > 2} = 0.157.

5.3. Model averaging. In cases where two or models score similarly with the FIC, so
that there is no clear winner, one may consider compromising between models. This topic
of frequentist model averaging is dealt with in Hjort and Claeskens (2003). The theory
developed there is actually necessary to understand the behaviour of all inference-post-

selection estimators, including those aided by FIC or AIC; see Section 6 below.

5.4. A modified estimator for small D. The basis for the FIC construction is result
(3.1) for the limiting risk of arbitrary submodels, coupled with the unbiased estimate D D" —
K for the §§* quantity appearing there. One may also employ alternative estimators, which
would lead to modified versions of the focussed model information criterion. Empirical
Bayes constructions might be considered, as might the estimator ¢y DD' — ¢, K with ¢;
and ¢y chosen to minimise a suitable risk estimate. We do not pursue such alternatives
here, as we consider our FIC the canonical version, based on the natural unbiased estimate
of risk and having close connections to the AIC. A simple modification worth mentioning,
however, is to use 0 to estimate §6* in the case where DD' — K is negative definite.
This is equivalent to D' K~'D < 1. In such cases the smallest estimated version of (3.1)

corresponds to using the narrow model, which is sensible and does not conflict with using

(3.2).

5.5. Exact mean squared error in linear regression. Study the linear regression model
with p + ¢ covariables, with independent observations Y; having mean x!3 + uly and the
same standard deviation o for 4 = 1,...,n. For estimating y = 2*3 + u'~, the mean at
some fixed position (z,u), we consider submodel estimators of the form fig = :ctgg +utAs,
where ug = mgu and employing least squares estimators in the model which includes u; j
for 7 in the set S. The structure of this problem is sufficiently clear to allow an exact mean
squared error expression to be derived, with some algebra and patience. Also note that we
do not need to assume normal distributions. Let

-1 & ZT; Z; ' . . 1 _ ZT; ZT; '

Yo =n ; <u2> <u1> with sub-matrices ¥, ¢ =n ; <Uz‘,s> (W,S) )
Also, write ¥;; and ¥;; s for the appropriate blocks of the 3, and ¥, s matrices, and
Y% and B9 for blocks of their inverses, for 7,j = 0,1. Finally, partly suppressing ‘n’
in the notation, let L = ¥, Lg = (rsL7'x%)~! and Hs = L_1/27TtSLS7TSL_1/2, like
in Section 2. We avoid ‘.J and K’ notation here, since we operate without specifying a
parametric model, working only with the mean and variance structure. If we in addition
postulate normality, we would get a .J,, involving (1/02)%,,, then K, = 0L, and so on, in

the notation of previous sections.
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The variance matrix of (B\g,ﬁg)t is 022! which implies that n times the variance

t
X _ x _
0-2 <u5) En}S(uS) 202(It2001$+v)7

where the V term after some efforts is seen to be identical to w'L'/?HgL'/?w, where

of jig can be written

w = 210855« — u. Thus the variance part matches perfectly that of (3.1). To calculate

the bias part, we start from

3 e [z _ Yoo + D17
E és —_y-! 1 Ty t to) — 1 00/ 01
<,75) TuSn Z ui7S ($15‘|‘u17) n,S ZlO,Sﬁ‘Fﬂ'SZH’V

=1

and use this to derive an exact expression for the mean of fig. With some stamina one
finds that the bias is w'(I — L'/2HsL™'/?)~. This again matches result (3.1), and shows

that n times the exact mean squared error of [is is
o (2 S + W LYVPHSLY20Y) + nwt (I — LY Hs L™ ?)yy (I — L™Y2 Hg LV ?)w,

which is an exact match of the general large-sample result (3.1).

It 1s quite encouraging to see that the general large-sample apparatus we have devel-
oped gives recipes which for the case of mean parameters in the linear-normal model give
exactly correct results, with no further finite-sample modifications being necessary. Such

might be called for in other situations.

5.6. Understanding AIC from the FIC perspective. The classic AIC model selector,
in the transparent context of the limit experiment, is to choose the S for which AICg of
(2.5) is largest. We shall see that the FIC development and viewpoint are in harmony with
AIC for a certain specialisation.

Consider first the estimand u(y) = log f(y,6,~). Then w = Ji0J55 U(y)—V (y), where
U and V are the partial derivatives w.r.t.  and v, evaluated at the null point (6g,~o).
Thus, by (3.1), the limiting risk of the S-submodel estimator log f(y, é\s,:}/\g,’yo’gc) is

EAs(y)® = U(y)" Joo U(y)
+w(y){(I - K'?HsK~/?)56Y(I — K'*HsK~'?)" + K2 HsK'/*}w(y).

One may compute the FIC = FIC(y) to decide on the best model candidate, for each
given y, based on this quality measure. Consider instead the expected quality, when
the y comes from fo(y) = f(y,60,70); in other words, the average mean squared er-
ror risks = [ fo(y)EAs(y)? dy associated with submodel S. This is the limit version of
n [ firue(y)mse(y) dy, where mse(y) is the mean squared error of log f(y, é\s,/’y\g,’ymsc) for
estimating log firue(y). The following is proved in Section 9.
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REsULT. The average mean squared error in the limit experiment can be expressed

as

risks = p + ' K~V2(I — Hg)K /%5 + |5, (5.1)
and an unbiased estimator thereof is p — ¢+ D'K 1D — DIK-Y2HsK~1/2D + 2|5|.

The important consequence is that minimising estimated limiting risk is equivalent to
the AIC method, as is now clear via (2.5).

6. Performance analysis

We have given arguments for preferring the focussed johoryo-tokeigaku to other information
criteria, like the AIC, on the grounds of unbiased assessment of limiting risk. Since the
proof of the pudding is in the eating, we also ought to investigate the performance on
the resulting estimator, taking into account the variability involved in the model selection

step.

6.1. Limiting risk. Generally, a large class of selection-estimators are of the form
p=>.¢(S|Zy)iis, where ¢(S | z) is an indicator for z falling the region Rs where submodel
S is selected. Here Z,, = 1?_1/2/5}1111, see (2.3), with limiting form Z = K-1Y2D ~ Ny(a,I),
where a = K~'/2§. In Hjort and Claeskens (2003) it is shown that a general compromise
estimator of the type Y ¢ ¢(S | Zy)fis has a limiting distribution A for «/n(fi — ft¢rue) With
risk EA? = 72 + R(a), where

R(a) = BE(w'd — w'6)? = B{w'K/2G6(Z) — ' K'/2a}?,

in which @(Z) = Y s¢(S|Z)HsZ is the corresponding estimator of a based on Z ~
N,(a,I). Of course R(a) can also be represented as a function of § = K'/2a.

Consider the AIC method first. It chooses Saic to maximise Z*HsZ — 2|S|, and the
limiting risk of [iaic = ,LLSM takes the form 72 + Raic(a), where the latter function can be
evaluated via simulation or numerical integration for any K and w. For the case of K
diagonal we may find an explicit formula. Then S is chosen to maximise ZIJES(Z]2 —2),

and is seen to contain exactly those j for which |Z;| > v/2. We find

Zw kiB(a; — a;)? + Y wiwik)* K PE(@; — a5)(@ — an),
71
where formulae for the moments of @; = Z;I{|Z;| > v/2} are found via the functions

Qm(a,b) f ™ ¢(x) dz for m = 0,1,2 and their cousins Qp(a) = Qm(—v2—a,v/2 —a).
i S S B S
Qo(a,b). This leads to

V2 - ~
Ed; =a; - /_ﬁzm'(z]‘ —aj)dz; = aj — a;Qo(a;) — Q1(a;),

\/5 — — —
Eaj =1+ a; —/ﬂzf'ﬁb(zj —aj)dz; =14 a5 — a5Qo(a;) — 2a;Q1(a;) — Q2(ay).

18



@i) (O]

FIGURE 6.1. Limiting mean squared error risk surface R(a) using (i) AIC and
(ii) FIC for ¢ = 2, wy = wy = 1 and K = diag(1,1). (iii) Risk difference
Rgc(a) — Raic(a). The smallest risk for FIC is in the centre stripe and in the two
side-lobes.

In particular, Rai.(0) = ;1-:1 w]zkj{l — @Q2(0)}, which is 0.572 times the constant risk
w'Kw of the full model procedure (corresponding to using ¢(S|z) = 1 for S equal to the
full set). On the other hand the risk function, while bounded, has maximum value clearly
exceeding the w'Kw level; the factor involved depends on w and K, but is for example
1.714 when wy = wy and K = diag(k, k).

Next consider the FIC, which leads to fig. with S = §ﬁc chosen to minimise FICg.
The limiting risk of jige. = ﬁé\f‘ic is 72 + Rﬁc(a) where the latter can be evaluated from the
above, via simulation or numerical integration, using the appropriate version of a@gc(Z).
For the diagonal K case, the region Rg where z € Rg determines that S is chosen, is that
where FICg is smaller than the others, where FICg = (Zjeswjk;ﬂZj)Q + 2 Ejesw]zkj-

Figure 6.1 depicts the risk surface Raic(a) in panel (i) along with Rgc(a) in (ii), for
the case of ¢ = 2 ~ parameters, where all submodels are under consideration. In this
setting wy = wy = 1 and K = diag(1,1). For AIC the risk values range from 1.116 to 3.421
with the minimum value reached at @ = 0. The range of Rg. values goes from 0.989 to
3.955, also with minimum at the narrow model corresponding to a = 0. To facilitate the
comparison of these surfaces, Panel (iii) shows contours of the risk difference Ric — Rajc.
FIC has smaller risk than AIC in the centre of the NW-to-SE oriented area, as well as
in the smaller side-lobes. AIC has smaller risk in the narrow areas right above and right
below the FIC-favourable regions, except for the centre part, see Figure 6.1(iii). Values of
the difference range from —1.390 to 1.341.

Qualitatively similar results can be found for ¢ > 3.
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FIGURE 6.2. For the case of K = diag(1,1), these figures relate to how successful

the FIC and the AIC strategies are for locating the optimal regions Ty, T1, Ty, Tt

in the parameter space of a = (ay1,ay). Figures (i) and (iii) show these ideal

regions for the cases w = (1,1)" and w = (1,—0.25)", respectively. These are to

be compared with deciding regions of z = (z1,z3) for the FIC, shown in figures

(ii) and (iv) respectively. The corresponding regions for the AIC, not shown,

remain the same for each w.

6.2. Is the right submodel being chosen? One way to appreciate the difference in
perspective and performance between the AIC and the FIC is to study the chances in-
volved of deciding on the ‘right’ submodel, defined as the one where the accompanying
risk function is smallest. For simplicity we limit this brief discussion to the case of a
diagonal K. Here the limiting risk for submodel S is a fixed value 7¢ plus the quan-
tity p(S,a) = (Zjeswjk;ﬂaj)Q + Zjeskjw]z- This defines optimal or ideal regions
Ts = {a:p(S,a) is smallest}; T is the parameter region where one ideally should have
used the narrow model, and so on.

With this perspective, model selection strategies like the AIC and the FIC may be
viewed as attempting to come close to the ideal Ts regions. The AIC does this via
Z]ES(Z]Z — 2), and in effect uses Ts equal to the set of z where |z;| > /2 for j € S
and |z;| < /2 for j ¢ S; when Z lands in Ts, estimator fis is being used. The AIC stands
by this decision regardless of which estimand is under consideration. The FIC is on the

other hand observant to the particular aspects of the p under foci, via the w coefficients,
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and uses fg equal to the set of @ where FICg = (Z]‘QS wjk‘;/zaj)2 +2 E]‘es w?kj is smaller
than all other FICgq:.

These matters are illustrated in Figure 6.2, which relates to two different estimands in
the situation where ¢ = 2 and K = diag(1,1). For given estimand, ideal parameter regions
To, Ty, Ty, Tho are found, corresponding to subsets @), {1}, {2}, {1,2}. One sees that the FIC
succeeds in emulating these underlying regions, in contrast to the AIC scheme, which uses
fixed sets in z-space. This also helps explain why the FIC estimator-post-selection scheme
often will work better than the AIC one, as measured also by resulting limiting risk. When
studying Figure 6.2, note that the decision regions for the AIC, not shown, remain the
same for each w, and are Ty = {z: 12| < V2 for j = 1,2}, Ty = {z:]z1] > V2, |z] < V2,
Ty = {z:]z1| < V2, |22 > V2}, Tha = {2: 2| > V2 for j =1,2}.

6.3. Risk comparison in a simulation experiment. We here compare simulated risk
values of the FIC to some other model selection practices. Next to the FIC, in the compar-
ison we have used the criteria AIC and BIC, the latter with |S|logn penalty for model S.
Furthermore, we included the adaptive model selection procedure by Shen and Ye (2002).
Instead of using the fixed value 2 for AIC, or log n for BIC, the adaptive selector estimates
a penalisation value from the data. Since this approach is computationally intensive, as
opposed to the other criteria in our comparison, we investigated a full comparison of the
mse results for two situations only.

Data are generated from a linear regression model Y; = 6 + ~'u; + &; where for
1 = 2,...,n the errors ¢; are independent with a standard normal distribution, and are
also independent of the 3-dimensional covariate vector u; = (u; 1,u; 2, ui73)t. These three
covariates are also taken independent and standard normal. In the simulation study the
intercept value § = 1, while v = §/y/n with § = (1,1,1)". The focus parameter for the
FIC equals ¢ = E(Y |u) where u = (0.3,—0.1,0.3)". In the comparison we considered all
eight possible models.

For sample size n = 50 we obtained the following simulated values for n mse for the
criteria FIC, BIC and AIC: 1.407, 1.457, 1.461 and for the adaptive selector the value 1.466.
For the bigger sample size n = 100, BIC gives a worse performance as compared to the
smaller sample size, as now the penalisation constant is bigger. The values ordered from
smallest to largest are 1.179, 1.194, 1.205 and 1.258 for FIC, AIC, the adaptive method and
BIC, respectively. Similar results are obtained for different focus parameters by specifying

different choices of u.

7. Further developments

The article has focussed on the motivation for and development of the FIC, along with its
application to a variety of situations and a brief investigation into its actual performance.
Below we offer further comments of relevance, some pointing to connections to the AIC
and some to competing selection strategies which also emerge from our general framework

and results.

21



7.1. Bayesian and empirical Bayesian model selection. To touch on problems and
solutions related to what may be thought of as ‘likely’ or ‘more important’ areas of §
values, we choose for clarity of presentation to discuss this inside the framework of the
limit experiment, where quantities are known except for 4, for which there is an estimator
D ~ N,(6,K). See the first paragraph of Section 3.1. Methods given and conclusions
drawn after working with the limit experiment may then be modified for real finite-sample
applications, in the way we went from FIC of Section 3.1 to its estimated version FIC of
Section 3.2.

We have determined that the limiting risk of using submodel S is the fixed amount
¢ plus the quantity

p(S,88Y) = W{(I — KM?*HsK~/*)§6"(I — K~'*HsK'?) + K'?*HsK'/? }w,

see (3.1). One wishes to pick the S with smallest value of p(.59,dd*). Our FIC solution has
been to estimate this unbiasedly, inserting DD' — K for §6*, and then pick the minimiser.
Other options might involve weighting the risk across the space of § values, in a suitable
fashion, which may or may not come from Bayesian considerations. We outline three such
solutions.

(1) One may weight the risk difference w.r.t. a suitable distribution d=(4), and then
minimise the resulting p(S,7) = [ p(S,86") dr(d) over submodels S. This is readily done
as soon as [ 66" dn(d) is specified. A natural choice is a N, (0,72K) distribution for §,
which corresponds to an isotropic N, (0,7%I) distribution on the canonical transformed
scale a = K~1/2§, with values closer to the null model more important than values further

away. In this case, one chooses the submodel S with smallest value of
p(8,66') = W' K'?*{r*(I — Hs) + Hs}K'w.

For 7 small the dominating term is the second, which hinges on estimation variability,
and one chooses the narrow model. For 7 large the first term dominates, coming from
modelling bias, and one selects the fullest model.

(ii) The above used the ‘likely average’ of all risk values to decide on S. This sidesteps
the perhaps more principled idea that what is at stake are the sizes of p(S,d4") for the
actual 4; it is for the underlying but unknown 4 that one wishes to find the best S. This

may be placed in a decision-theoretic framework using as loss function

L(5,8) = {0 if §= érgminp(.,d-(st),
1 otherwise

to represent the loss involved if choosing S when ¢ is the true value. One may indeed study

performances of model selectors in terms of the expected loss as a function of §, in other

words comparing the probabilities that e.g. the AIC and the FIC select the correct S. Here

we show how a natural Bayesian type strategy can be implemented. From a distribution
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7 for §, one wishes to construct a model selector S such that EL(9, §) is minimised. From
Bayesian theory, one should compute pr(S) = Pr{argmin p(.,36") = S| D} for each S, and
select the subset with largest such probability. This is readily done by simulation, when ¢
can be simulated given D. For the natural N, (0, 72K) distribution for § also used above,
one has § | D ~ N,(kD,xK), where k = 72/(7? + 1). For a large number of simulated J;
from this distribution, one computes vectors {p(S, %5}): S subset}. From these one may
read off the required pr(.S) probabilities.

(iii) Instead of the sharp 0-1 loss above, which penalises all non-optimal subsets with

the same Draconian sword, one may use
I’(57 S) = :0(57 55t) - I%lln :0(5/7 55t)

to better reflect the real loss in risk involved. Again one may, from a start distribution
7 over the parameter space, determine the optimal strategy, which is to let S minimise
MS) = E{L(6,5) | D}. This latter quantity may again be evaluated via simulations.
These three solutions rely of course on giving a distribution = for §, thought either
to reflect genuine prior knowledge about which ds are more likely than others, or to corre-
spond to ‘degrees of importance’ in the parameter space regarding performance of model
selectors. One strategy is to use the N, (0, 72K) distribution mentioned above, with a value
of 7 either picked from arguments of plausibility or importance, or from empirical Bayes
considerations. The variable Z*Z = D'K~'D has mean value q + ata = g + §* K16 for
given §, and under the described prior its marginal mean value is ¢(1 + 72). This invites
specifying 72 as max(D'K ~'D/q — 1); this also corresponds to using maximum likelihood
in the marginal model for D. In particular, when D'K~'D < g, one is content with the

narrow model.

model  p(white) p(black) p(other) ratio
pr(S) A(S)  pr(S) AS)  pr(S) A(S)  pr(S) A(S)

0 0.175 0.203 0.193 1.097 0.263 0.092 0.121 63.867
3 0.141 0.153  0.295* 0.872  0.399* 0.087* 0.117 49.205
4 0.170 0.089 0.132 0.561* 0.125 0.225 0.170* 19.919
5) 0.058 0.168  0.047 1.437 0.057 0.259 0.096 59.241
34 0.210* 0.075* 0.146 0.561* 0.056 0.208 0.159 19.021*
35 0.078 0.138 0.070 1.166 0.017 0.259 0.161 46.080
45 0.145 0.097 0.101 0.561* 0.072 0.258 0.150 20.253

345 0.024 0.097 0.017 0.561* 0.009 0.258 0.027 20.273
TABLE 7.1. For submodels 0, 3, 4, 5, 34, 35, 45, 345 the table lists model

information probabilities pr(.S) and model information scores \(S), corresponding
to loss functions discussed as (ii) and (iii) above, for the four estimands p(white),
p(black), p(other), and the ratio p(white)/p(black). 10,000 simulations were used
to find the pr(S) and A\(S) numbers. Asterisks indicate the selected models in
question. Results are in quite close agreement with those using the direct FIC,
see the corresponding Table 4.1, which also lists the ensuing final estimates.
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We carried out such analysis for the low birth weight application studied in Section
4.4 above. There §'K 16 = 5.927, leading to 7 = 0.9877. We could therefore simulate
10,000 versions of ¢ from N3(0.4938 8\, 0.4938[?) and estimate the pr(.S) and A(.S) quantities
needed for (ii)—(iii) above. Note that these again depend on the estimand under focus via
the & coefficients, but that the same computer programme otherwise may be used for all
estimands. Results are given in Table 7.1, which should be studied together with Table 4.1,
in that the final parameter estimates are found there after using Table 7.1 to determine the
most appropriate submodels. We note that interpreting pr(.S) numbers must be done with
some care, in that these sometimes may spread themselves across several equally promising
submodels. It may therefore be unwise to focus too quickly on the ‘winner’ with highest

pr(S) score.

7.2. Good regression models for given covariate regions. We saw in Section 5.6 that
the FIC is related to average quality of estimation of log-densities, which again is related to
average quality of predictions. This theme is even more important in regression contexts,
where the issues also become less clear-cut, in that prediction quality might differ from
one covariate region to another.

For the regression framework of Section 2.2, consider the estimand p = log f(y |z, 6,7).
Then w = JioJy5 Uy | z) — V(y|z), and the limiting risk of the S-submodel estimator

1ng(y | x7§57§57707sc) is

+w(e,y) {(I - K'V2HsK™'/?)86'(1 - K~ Hs K'/?)
+ K'PHsK'?}w(z,y),

by a parallel to (3.1). It follows that for a fixed z, the average estimation quality [ f(y|z)
EAs(z,y)? dy for estimating the log density is

risks(z) = Tr{J}' Joo(z)}
+Tr|{(I - K'?HsK'/*)66"(I - KT\ HsK'?) + K'?HsK'/?}

{JloJ()_()ljoo(.I)J()_()1J01 + J11(Ll?) — Jl()JO_Oljol(CL‘) — Jlo(CL‘)JO_Oljol} .

Furthermore, if this is averaged over some covariate distribution R of interest, to reach a

global performance criterion, the result is

riskg = /riskg(:r:) R(dx)
= Tr{Jog Joo} + Tr[{(I — K'?HsK~'/*)§6"(I - K™'?*HgK'/?) + K'?HsK'/?}

X {Jlojo_oljoojo_oljm +Jig — Jlojo_oljm — jloj()_()IJ01}]7
(7.1)
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in which Joo = [ Joo(z) R(dz) and so on. For the special case where the riskg(z) is
averaged w.r.t. the real covariate distribution ), see Section 2.2, then riskg, which is also
to be thought of as the limit of n™! Y1, riskg(z;), simplifies to

riskg = dim(0) + Tr{(I — K'/?HsK V) K~YI — KY?HsK~Y/?)66%) + 9],

just as in Section 5.6 above. Again, this leads upon estimating §6* with the unbiased
DD' — K to a criterion asymptotically equivalent to the AIC. Note, however, that for
some prediction situations it would be more natural to specify a different R distribution
than the full covariate distribution ); one might wish the best submodel for predicting YV
outcomes in a subregion of covariates, for example. This is easily accomplished with an
appropriate R distribution, which by insertion of DD*' — K for 46" in (7.1) leads to a tailor-
made model selection criterion different from the AIC. An interesting special construction,
when parameters of the type p(z) are considered, would be to employ a gliding window
for R around x values of interest; this would lead to a gliding estimate of u(z) which for

each = involves an appropriate model selection choice.

7.3. Minimising expected Kullback—Leibler distance. Arguably, a selected submodel
S is good if the distance from the true density to the estimated density f(y,fs,7s,70,s¢) is
small. A sensible exercise is to attempt to select the submodel with the smallest Kullback—

Leibler distance
KLn,S = /ftrue(y) log{ftrue(y)/f(ya é\g,fy\s, VO,SC)} dy,

where firue is as in (2.1). The following is proved in Section 9. The consequence, following
the Result of Section 5.6, is that minimising estimated Kullback-Leibler distance is yet

another strategy which becomes equivalent to the AIC scheme.

RESULT. Under standard regularity conditions, 2n KL, s —4 KLg, a variable with

mean value equal to risks of (5.1).

7.4. Minimising expected weighted ISE. Consider the weighted integrated squared

error quantity ISE, ¢ = f{f(y,é\s,/v\g,yoﬁc) — firue(¥)}?/ firue(y) dy. Efforts similar to
those exuded in Section 9.2, to prove the result of Section 7.3, lead to

nISE, s —4 ISES:/f(y,eo,'yo){U(y)tCS+V(y)t(<%s> —5)}2dy,

with (Cs, Dg) the limit in distribution of \/ﬁ(é\g —00,7s — Y0,5), see Hjort and Claeskens
(2003, Section 3). But from the proof in 9.2 this is seen to be the same variable as KLg,

with the same consequences for model choice.

7.5. Non-likelihood estimators and Cox regression. Our story or stories have been

told for the case of maximum likelihood estimators when comparing different submodels.
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In some situations there are reasons for choosing alternative ingredients when forming
say [is = p(gs,”?s), with perhaps more robust estimators for the parameters. One may
generalise our results to the case of robust M-estimators, and to the minimum density
divergence estimators of the Basu, Harris, Hjort and Jones (1998, 2001) variety. Results
will generally be less elegant and less concise than for maximum likelihood methods, and
will involve additional matrices and linear algebra. Our methods may also be generalised
to the semiparametric Cox regression model, with added efforts. This will be reported on

in forthcoming work.

7.6. Finite-sample corrections. Our theory has been developed exploiting the first-
order asymptotics properties of maximum likelihood estimators, leading to a precise de-
scription of the limit experiment and so on. For some classes of models there might be
a need for fine-tuning the FIC via appropriate sample-size dependent corrections. For
this one might draw on work pertaining to the AIC by Hurvich and Tsai (1989, 1995),
McQuarrie and Tsai (1998), Burnham and Anderson (2002) and others.

7.7. Generalised ridging when ¢ is big. Our framework has been the classic one for
large-sample likelihood analysis, where the number of data points grows and the number of
parameters, at most p 4 ¢, stays bounded. It is more challenging to develop safe methods
for model comparison and e.g. regressor subset selection when either p or ¢ is allowed to
become bigger with n. Some model choice methods are specifically constructed to do well
in such situations, like Breiman’s (1992) little bootstrap; see further references in his paper
and the recent paper of Efron, Hastie, Johnstone and Tibshirani (2003). A general idea
for coping with non-small g is to shrink estimators of the v part towards the ¢ position.
Several of the methods and results of this article may actually be generalised to encompass

such shrinking type estimators; see Hjort and Claeskens (2003, Sections 8-9).

8. The focussed robust information criterion

Our model compromise and model selection apparatus has been built under the key oper-
ating assumption (2.1), which in particular demands that the full p + ¢g-parameter model
is correct, for a 4 parameter not too far from ~g. It appears important to investigate what
might happen if this assumption does not hold. Assume, therefore, that the true data

generating mechanism takes the form

firue(y) = f(y,60,%0){1 +r(y)/vn} 4+ o(1/v/n) (8.1)

for a suitable r(y) function, with [ fo|r|dy finite and [ fordy = 0, where fo(y) =
f(y,60,7). Results derived earlier in our article have used (2.1), which corresponds to
the special case r(y) = V(y)', with V(y) = dlog f(y,60,7)/d7, cf. Hjort and Claeskens
(2003, Section 3). In this framework there are no ‘true parameters’ (6,~). Instead we
consider the least false parameter s = p(60,,v,), where (6,,~v,) are the least false pa-
rameters inside the f(y,6,~) family, defined as those minimising the Kullback—Leibler
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distance [ firue(y)log{ firue(v)/f(y,8,7)} dy. Those are the parameter values aimed at by
the maximum likelihood estimators in the full model.

Some analysis shows that, apart from remainder terms of size o(1/v/n), 6, = 6y +

no/v/n and v, = Yo + do/\/n, where

_ Urd
(2)- ()~ s JEr).

with notation as in Section 3 of Hjort and Claeskens (2003). The case (2.1) corresponds
to ng = 0 and §y = §. We may apply and generalise arguments used to reach Lemmas

3.1-3.3 in Hjort and Claeskens (2003) to show that

Vinljis — i) —+a As = (55)'Cs + (£)" Ds — (54)'no — (54)"do, (8.2)

(o) o (50) =7 (55 )

The vector with components M and N is as in Lemma 3.1 of Hjort and Claeskens (2003),
basically since the covariance matrix of (U(Y;),V(Y;)) converges to Jyn also under (8.1)
circumstances. With W = K(N — Jy0J5,' M) again, algebraic efforts lead to

where

Cs=Jyg M — J3 JnrmsKsns K7W + o + Jog Jor (I — n5 Ksms K1),
Dg = I(-Sﬂgfﬁ-_lw + I(sﬂ'gff_l&).

All this combines to yield

As = (2 T5g' M 4 w8y — K2 HsK~12(50 + W)} (8.3)

This is, amazingly, very nearly the same result as in Lemma 3.3 of Hjort and Claeskens
(2003). The point is that ny drops out and that the least false related parameter dy takes
the place of our earlier §. We also have D,, = S\fun —4 D = 0o + W ~ Ny(do, K), in
generalisation of (2.3). The consequence is that also the theory of compromise and post-
selection estimators goes through, with methods of Sections 3 and 4 still applicable. The
necessary modification is only that in (8.2), precision of jig is assessed and interpreted in
terms of nearness to the least false pjf rather than to the ‘true’ focus parameter.

The above may be generalised one step further. Assume, instead of (8.1), that

firae(y) = g(){1 +r(y)/Vn} + o(1/v/n), (8.4)

where ¢ is simply a fixed density, not necessarily belonging to the (p+ ¢)-parametric family.
We need to assume that ¢ has the property that if f(y,6’,~') is the least false parametric
approximation to firye, with the parameters selected to minimise the Kullback-Leibler

distance from fiye to the parametric approximation, then v = ~g9. Without such an
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assumption, there will not be convergence in distribution of v/n(Jtn — 70), for example,
and no fruitful local asymptotics theory can be worked out; indeed modelling bias will
then dominate, for all large n, making the wide model the winner in the end. But under
the assumption mentioned, one has not only [¢Udy = 0 but also [¢gV dy = 0, with
consequent generalisations of Lemmas 3.1-3.3 of Hjort and Claeskens (2003). We find that
algebraic results associated with (8.2) and (8.3) continue to hold, involving the least false
tir = p(0n,vn), with one crucial difference. Let JJ be minus the matrix of expected second
order derivatives of the log density, evaluated at density g, and let €2 be the variance matrix
of (U(Y),V(Y)), also evaluated at g. Under earlier assumptions, these two matrices have
been equal. Both may be estimated consistently from data. Under present conditions,
(M, N) have covariance matrix {2 rather than .J. In particular, M and W worked with
above are not necessarily independent now.

Consider the limiting risk r(S) = E/N\QS under the present agnostic circumstances. It
consists of a variance term r,(S) and a squared bias term r,(.S). The first involves the
variance of W and its covariance with M, and is found to be

ro(S) = T()2 + WtI{l/QHsGlHSI(lﬂw — 2(a_/;)tjo—olG2K-1/2HSAr1/2w’

in terms of

Gy = Kl/Q(Qn — Qlojo_oljm — J10J0_01901 + J10J0_01900J0_01J01)I&’1/2,

Gy = Qo1 — QOOJQ_QIJOI-
When J = , as under (8.1) conditions, Gy = I and G = 0. The second contribution is
rp(S) = {w' (I — I&’1/2H5K_1/2)50}2, which we estimate inserting DD' — K for dpd§, since
D,, —4 D ~ Ny(do, K) even under (8.4). This yields an unbiased estimator of limiting

risk, in the limit experiment. A little work leads to
F(S) = ro(8) + 7(S) = ro(S) + (thrun — ¥5)? — ' (K — K'?HsK'?)w,
which is a constant away from the focussed model-robust information criterion

FRIC = (gun — 05)? + W K2 Hg(Gy + HsK'?w — 2( %) o' G K2 He K/ 2w,

This generalises FIC of Section 3.1. For real data, estimation of the necessary matrices
can be carried out via natural empirical versions of .J and . Inserting also estimates of
partial derivatives, along with using ¢» = &'D,, and g = 3*K'?HsK~'/?2D,,, leads to a

natural FﬁC, in generalisation of Section 3.2.

9. Proofs of two results

9.1. Proof of Section 5.6’s Result. We find that w(Y") has covariance matrix K~! and

are led to
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riskg = Tr(JO—O1 / foUU* dy)
+Te|[{(1 - K2 HsKT/2)06 (1 - K™ Hs K2 + K1/2H5K1/2}/fowwt y|

=p+ 61— K V2HsK'Y)K~' (I — K'?*HsK~'*)§ + mg
=p+ 5tf{_1/2(1 — Hg)f{_l/25 +mg,

where mg = Tr(Hs). We have used the projection matrix property Hz = Hgs here.
Now estimate the above quantity by inserting the unbiased DD' — K for §§°, as with the
development that led to FIC of (3.2). This leads after further algebra to

risks = p+ Te{K~"/*(I — Hs)K~'/*(DD" - K)} + ms
—p+ D'K~YV2(I -~ H)K™'*D + ms — g+ ms
=p—q+D'K™'D—-D'K~"?HsK~'?D + 2ms.

It remains to show that mg = |S|. Let for the convenience of presentation S be the
first |.S| indexes of {1,...,q} and the complement set S¢ the ¢ — |S| last ones. Then, upon
decomposing K1 into blocks K", we find first that K defined before (2.2) is equal to
(K9)~1 and next that

He = K12 (Ufog)_l 8) K172

must have trace equal to | S|, as claimed. m

9.2. Proof of Section 7.2°s Result. By Taylor expanding log f(y,é\g,/y\s,ymgc) —
log f(y,60,70 4+ 6/+/n), one finds that KL,, s can be expressed as

5 3s — 0,5 — 0s/v/n
Uly,6 3/vn) (s — b0) + V(y. §/myt( 8T Tes oS )
(:80,%0 +8/v/n)' (85 = 80) + V(3 b0: 70 +6/v/n) (’YO,SC—’YO,Sc—&SC/\/ﬁ

Bs — 6, Bs — 6,
+2 | 3s =05 —68s/vrn | Wu,0,,7) | 3s — 105 —ds/vn |
—(Ssc/ﬁ —(Ssc/\/ﬁ

where U and V' are the partial derivatives of log f(y, 6,~) w.r.t. 8 and ~, where W(y, 6,,,~,,)

t

is the (p+¢) x (p+ ¢) matrix of second order partial derivatives of the log-density, evaluated
at a point sandwiched between (6y, v0+9//n) and (65,7s,70,5-). Under suitable regularity
conditions, [ firue(y)W(y,6.,,7,)dy —p —Jrn. Next note that

7

é\s—eo CS
Vv | As — 0,5 —ds/v/n | —a | Ds—3s
—(SSC/\/E —5Sc
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when n travels to infinity, using notation and results of Hjort and Claeskens (2003, Section

3.2). It follows that

CS ¢ CS
QNKLn’S—hiKLSZ <<D5>5> quH((DS)(S).
0 0

To evaluate the mean of the limit distribution, introduce first Pg = KY2H K12,
From the proof of Lemma 3.3 in Hjort and Claeskens (2003), one finds EC's = J5;' Jo1 (I —
Ps)é and

D KsngK™1§ ) KengK™1
E(< 05)—5):< s )—5:—(1—13;)5, mtth:( s )

while the variance matrix of (Cs, Dg) is Js_l. Following results at the end of 9.1 above

one sees that P{ = Ps. The mean of KLg is the sum of a variance contribution

Cs
Tr{quHVar Ds }:p+|5|
0

and a squared bias contribution
<J(;01J01(1 - 135)5>t S <J0_01J01(I - P5)5>
—(I — Ps)é " —(I — Ps)$
= §'[(I — Ps)"JioJy Jo1 (I — Ps) + (I — Ps)'Jy1(I — Ps)
— (I = Ps)' JyoJ55' Joi (I — Ps) — (I — Ps)'Jy0J55" Joi (I — Ps)]é
= 641 — Ps)' K~Y(I — Ps)é
= 'K~V I - Hs)K~'/?,

where we have used Ji; — JioJyg Jor = K7 =
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