Goodness of fit via nonparametric likelihood ratios

Gerda Claeskens and Nils Lid Hjort
Texas A&M University and University of Oslo

ABSTRACT. To test if a density f is equal to a specified fo, one knows by the
Neyman-Pearson lemma the form of the optimal test at a specified alternative f.
Any nonparametric density estimation scheme allows an estimate of f, that is,
of the proper location in the space of alternatives to fo. This leads to estimated
likelihood ratios. This article considers classes of goodness of fit tests constructed
in this fashion. Properties are studied of tests which for the density estimation
ingredient use log-linear expansions. Such expansions are either coupled with
subset selectors like the AIC and the BIC regimes, or use order growing with
sample size. OQur tests are generalised to testing adequacy of general parametric
models, and work also in higher dimensions.

The tests are related to but different from the ‘smooth tests’ which go back
to Neyman (1937) and which have been studied extensively in recent literature.
Our tests are large-sample equivalent to such smooth tests under local alternative
conditions, but different and often better under non-local conditions. A weakness
of the nested BIC scheme for choosing model order in this context is exposed.
KEY woRrDs: AIC, BIC, density estimation, goodness of fit, log-linear expansions,
nonparametric likelihood ratio

1. Background, motivation and summary

Let Xq,...,X,, be independent observations from a common density, and suppose it is
required to test whether this density is equal to a specified fy, against the nonparametric
alternative that it is not. Of course there is a number of tests available for this situation,
for example the Kolmogorov—Smirnov and Cramér—von Mises tests. This paper will discuss
density-based omnibus goodness-of-fit tests based on estimated versions of likelihood ratio
tests, incorporating nonparametric density estimation in a natural fashion. The methods
will also be extended to the case of testing adequacy of parametric models.

To explain the basic idea, suppose for a moment that one envisages a specific alter-
native f to fp. In that case the Neyman-Pearson lemma tells us that the optimal test

procedure consists in rejecting fo when the ideal likelihood ratio statistic

An(f) = Hf(Xi)/Hfo(Xi) (1.1)

is large enough. But nonparametric density estimation strategies are available for produc-
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ing an estimate f of the unknown f. Hence

An(f) :Hf(Xi)/fO(Xi) (1.2)
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is a natural estimate of the underlying optimal A, (f), constructed without prior assump-
tions. In other words, if the null hypothesis is not correct, then An(f) directs itself adap-
tively towards the test statistic which would have been optimal at detecting this. In this
light, An(f) appears to have a stronger omnibus motivation than other reasonable test

statistics that have been or could be constructed, like

/(f fo /|f foldz, maX|f f0|/ 1/2

and similar. Such tests have been worked with in previous literature, and then typically
employing kernel methods for estimation of the unknown f; see e.g. Bickel and Rosenblatt
(1973), Hall (1984), Bowman (1992), Bowman and Foster (1993), and Anderson, Hall and
Titterington (1994). Tests of the f(]?— fo)? dz type have been considered by Eubank and
LaRiccia (1992) with additive expansion estimators for f.

Different density estimation schemes lead to different tests. In (1.2), tests of interest
emerge by using a kernel estimate or a start-aided kernel type estimate of the Hjort and
Glad (1995) variety for f. Here we choose to focus on estimators constructed via log-
linear expansions, however, as they lead to a particularly revealing structure regarding

both construction of tests and limit distributions. Specifically, consider

fslwla) = fo(w)es(a)™ exp{ D ajirs(x) | (1.3)

jES

for  in the interval of interest, where the 1; functions are chosen so as to be orthogonal and
normalised w.r.t. fo, and also orthogonal to the function o = 1, that is, [ foijir da =
0k = I{j = k}. Also, S is a subset of the natural integers, like {1,...,m}, and cg(a) =
[ fo eXp(ZjES a;v;)dz. Employing this model, the natural test statistic becomes

7

_221 fS* X |G) —Zn{z aﬂzj—logcsz(a)}, (1.4)

JES,,

where @ is arrived at via maximum likelihood in the particular model indexed by the
selected set S, and where v»; = n=! 3" 1;(X;). Note that the density estimator involved
is really nonparametric in situations where the index set S is allowed to grow in size with
n.

To make this operational one has first of all to decide on a practical sequence of
; functions, which of course can be done in several ways. The requirement besides
orthogonality and normalisation w.r.t. fy is also, importantly, that [ fo exp(zj a;v;)de
is finite for all sets of a;s in a neighbourhood of zero. Secondly an integral part of the
problem is to decide on a suitable index set selector. It is to be noted that once such
an index selection mechanism for S} has been decided on, like the one following Akaike’s

information criterion (Akaike, 1974), the execution of the test is in principle an easy matter,
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in that the required null hypothesis distribution can be obtained by simulation under fg.
This would be as easy and satisfactory as the alternative solution of determining the exact
limiting distribution and then making a table based on simulations from this.

An alternative to the likelihood-ratio inspired test statistic Z is the score test, which

here takes the particularly simple form

Tr= > nys. (1.5)

JES,,

This type of test has its origin in Neyman’s 1937 paper on ‘smooth tests’. The score test,
in conjunction with the so-called Bayesian information criterion BIC for nested subsets
(see Schwarz, 1978 and Rissanen, 1987), has been proposed by Ledwina (1994) and has
been studied extensively since; see for example Inglot and Ledwina (1996) and references
therein.

This article reports on a broad investigation into goodness-of-fit statistics of the type
(1.4) and (1.5), including generalised versions useful for testing fit of parametric families.
We might stress that our theoretical investigations are motivated not out of necessity for
carrying out the tests as such, but to learn about performance properties and for purposes
of comparison with other procedures.

Section 2 sets the local alternatives framework inside which our test statistics and
several of their competitors may be studied, and provides initial large-sample results. It
is proven there that Z} and T} are asymptotically equivalent tests, but only under local
alternatives circumstances. The behaviour of Z* and T, is further studied in Sections 3
and 4, where the index set S} is chosen in data-driven ways. We single out for special
scrutiny the index set selectors of the AIC and BIC type, along with some other natural
strategies, like that of searching for the most important coefficients. Our horizon is broader
than that of the traditional setup of only nested submodels; specifically, we allow index
sets to be chosen among all subsets within a given range. A strength of our framework
and analysis is that quite general subset selection methods are allowed; we are able to
characterise the limit behaviour of statistics Z and T, not only for AIC and BIC type
selected subsets, but for much broader classes.

Section 5 considers the situation in which there is a fixed alternative f to fo. Here
the Z} and T statistics have different performances, and in fact the Z} test can often be
expected to perform better. Section 6 discusses extension of ideas to the case of testing

adequacy of parametric families fo(x, ), with test statistics of the type

—QZIOg fS* X“9|CL)‘
i=1 fO(Xlae)

The machinery is amenable to testing any parametric model satisfying the usual conditions

of regularity, also in higher dimensions. The structure of the tests and results about



them are particularly simple when testing adequacy of location and scale families, like the
normal. The applications of the general theory to specific models in Section 7 include
testing for multivariate normality. Finally in Section 8 a list of concluding remarks is
offered, some pointing to further research work.

In the related context of lack of fit tests in regression, omnibus tests based on orthog-
onal series expansions are proposed by Eubank and Hart (1992) (see also Hart, 1997) and
further generalised by Aerts, Claeskens and Hart (1999, 2000).

2. A nonparametric local alternatives framework

Below we establish a natural framework of local alternative densities, where it is possible
to accurately determine the large-sample behaviour of several goodness of fit tests. In
particular we shall see that the tests (1.4) and (1.5) are essentially equivalent for large n,
under circumstances local to fy. Some introductory results are also reached here that will

be used in later sections.

2.1. Local alternatives. Suppose the real density at play is of the form

£ = foelb/n'?) exp{ (b /)05 } (2.1)

i=1

for certain constants b;, defined for all b for which the integral c(b/nl/Q) is finite, writing

c(B) for [ fo exp{zjil B¢ }. We work first with a fixed finite set S and consider

— 221 og — fS X |a QTL{Z&\]’QEJ — 10ch(/CL\)} (22)
JES

Here a maximises the likelihood under the model indexed by S, that is, it maximises
Z]‘es ajij —loges(a). This function is concave, and the maximiser is also the unique
solution to the equations
;= p,(a) for j €S,

where p;(a) = 0logcs(a)/0a; is the theoretical mean of 1;(X) when X comes from the
fs(-|a) model.

Thus Z, s is the classic log-likelihood ratio statistic for testing fp, inside the paramet-
ric family indexed by a;s for 7 € S. It is known that Z,, s tends to a noncentral chi-squared
when the parameters of the model are O(1/ n'/ ) away from their null values, as they are

1/2

here, but there is an additional complication here in that all the b;/n'/* parameters for

J ¢ S are present, i.e. the true density is outside the finite-parametric model in question.

Nevertheless, we will prove the following.

LEMMA 1. Let S be a specified finite set of indexes. Under the local sequence of

alternatives (2.1),
J€S €8



Here the Njs are independent and standard normal, and |S| denotes the number of j in S.

PROOF. The essence of the proof is that nl/Qaj is close to nl/%Z], that these tend to
independent normals (b;, 1), and that nlog cs( ) is close to % Z]ES n¢2
More formally, observe that cg(a) =1+ 5 E]es : (2]65 laj|*) for small a, and

define the function

= 3 flog F(X; [u/n'/?) ~log f5(X; 0)}

= H{Z(Uj/n1/2)77/;]‘ — loch(u/nl/Q)}
JES
=Y (2055 — Juf) + ra(u) = Knol(u) + ra(u),
JES
say, in which r,(u) goes pointwise to zero. The K, function is concave, and the n'/24
variable is bounded in probability. It follows from results in Hjort and Pollard (1994)
that the maximiser of K,, which is n'/2@, is only o0p(1) away from the maximiser of K, o,
which is @1/2775; that is, n'/2(d; — ;) —p 0 for each j. And it is not difficult to prove
that n1/277/)]- —q bj + N; under (2.1) conditions, with independent N;s, via the Lindeberg
theorem. These matters combine to give
Zus =203 (4] = 397) +0p(1) = 3 _(n'/25)° + 0y (1),
JES JES

with the required result. m

Under the null hypothesis the distributional limit of Z,, is a X|25|7 of course, and this
can be used to test f = fy, provided the set S is selected in advance. Our tests are intended
to be more genuinely nonparametric, however, and need the possibility of growing or data-
driven subset selectors; see Sections 3 and 4. When the set S is pre-determined, the score
test statistic (1.5) takes the simple form T, g = E]‘es mzf, and it is clear from the proof
of Lemma 1 that Z,, g and T}, ¢ are asymptotically equivalent under (2.1) conditions. We
also need to show that the two tests are close under broader (but still local) circumstances.

The somewhat technical proof required for the following result, in which
Mo = mac 4, with 1] = mae [0 (o), (2.4)

is placed in the Appendix.

LEMMA 2. Consider local alternative densities of the form (2.1), and assume that
Z;’il |b;|[%;]| is finite. Let m grow with n slowly enough to have My,m?/n'/? — 0. Then
Zn,s —Tns —+p 0 for all subsets S contained in {1,...,m}.

3. Behaviour of tests using the AIC regime
The Akaike information criterion (AIC) method amounts to computing

AIC, 5 = Zn,s — CIS| = 20{ > @, — loges(@) } - €S| (3.1)

JES



for each of a list of sets S of interest, and then stay with the submodel indexed by the set
S» which maximises the criterion. Here C' is a constant bigger than 1. Akaike’s johoryo-
tokeigaku in its traditional form uses C' = 2. This section studies the behaviour of tests of
the type (1.4) and (1.5), when the set is selected by the AIC or closely related criteria.

3.1. AIC with all subsets within a finite horizon. Assume that at the outset all subsets
S of {1,...,mg} are allowed consideration, where mg is fixed. In addition to AIC,, s we

study its closely related score test version

AIC) = Th s — C18| =Y (ng? - O). (3.2)
JES

From Lemmas 1 and 2 it is clear that both AIC versions will tend in distribution to

AlICs =) {(bj + N;)* = C} = Zs — C|S]| (3.3)
JES

under local alternatives (2.1). Let S} and S:(T) be the sets chosen by the AIC, g
and AICELST) criteria, respectively, with corresponding test statistics Z; = Z, s+ and
T, = T, 5= (1) as in (1.4) and (1.5). The empty set is also allowed here, with correspond-
ing AIC, 3y = 0 = AICp and Z; = 0. Define correspondingly S* and Z* for the limit
experiment versions, in terms of the 1.1.d. sequence Ny, N,, ... of standard normals.

It is now not difficult to derive the limit distribution of Z} under (2.1) circumstances.
In fact,

Zy =Y ZnsI{AIC, s bigger than all other AIC,, o'}
S

—4 ¥ ZsI{AICs bigger than all other AICs }

S
=3 |t = sE Y + V)| = 2,
S JES
say. This happens since there is simultaneous convergence in distribution of all the finitely
many Z, s variables to the corresponding collection of Zg variables, and Z is here being
expressed as a finite sum of functions that are almost continuous in these variables, that
is, the set of discontinuities has zero probability for the limit variables. There is also
convergence Sy —4 S*.

Note that Z* is a mixture of X|25|(Z bf) variables, with probabilities

JES
ps(b) = Prp{S* = S} = Pr{Zs — C|S] bigger than all other Zs: — C|S’|}.

These are 2™° complicated but well-defined probabilities defined in terms of b; + N; for

7 =1,...,mg. In particular there is a point-mass at zero. That Z* = 0 is equivalent to
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having 0 bigger than all 2" — 1 sums that can be formed of (b; + N;)? — C summands. But
this is the same as having 0 bigger than each of the mg variables (b; + N;)* — C. Hence

Pry{Z* =0} = py(b) = H 'y (C,b3), (3.5)

featuring the cumulative non-central X%(b?) distribution functions.

There are at least two ways of constructing tests for f = fy based on the machinery
developed. A deceptively simple-looking option is to reject the hypothesis if Z* > 0, with
the threshold parameter C' = Cj adjusted to lead to a required significance level. By
the arguments above, in concert with Lemma 2, one sees that not rejecting f = fy then
is equivalent to having nLEJZ < Cy for each 5 < mg. The probability of this happening
converges to (3.5), and with Cy chosen such that T’y (Cp,0)™° = 0.95, for example, the
asymptotic level of the test becomes 0.05. It is also clear that the test for large n becomes
equivalent to rejecting when max;<m, |n1/2@/;]‘| > C'S/Z. The limiting local power, under
(2.1) conditions, is 1 — H;n:OI Iy (Co, b?)

A second approach is to operate with a fixed C, like the value 2 from the original
AIC, and reject when Z) > zo, with this positive constant appropriately adjusted. It is
not difficult to simulate from the limiting null distribution, which is that described in (3.4)
but with the b;s set to zero, to find an appropriate zg, for a fixed mg. Limiting local power
functions can also be studied via simulations from the (3.4) distribution, to compare with
the 1 — H;TL:OI 'y (Co, bf) found above for the first type of est.

The two types of test given here have certain parallels to ideas worked with earlier,
but only in regression contexts and with a nested sequence of models, rather than as here
where all submodels inside a certain range are allowed consideration. See comments in the

following subsection.

3.2. AIC with the sequence of nested models. It is not generally possible to reach
limit distribution results for Z if the set S} in question is allowed to be picked from all
possible finite subsets. This is because there will always be infinitely many indexes j at
which (b; + N;)? — C is bigger than any given constant, so that the intended AIC s number
becomes unlimited.

If one wishes to allow subsets of {1,...,mg} with a growing mg, therefore, the list of
subsets allowed must be restricted. The traditional and simplest solution is to work with

the sequence of nested subsets, say {1,...,m}. Thus consider
AIC, = Zpm —Cm = Qn{zaﬂﬂj —log cm(&\)} —Cm form=1,...,mq,
j=1

along with its sister version AICg,)n =Thpm—Cm= Z;n:l(m/;? — C). The test statistics

are Z} = Zp mx and Ty = Ty, 5 (1), where mj, and m,(T) maximise the criteria AIC, ,,
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and AIC{T) respectively. Let m = 0 correspond to the empty set and denote by m* the

n,m?

maximiser of the limit experiment version AIC,, = Z,, — Cm for m = 0,1,..., where

To state the next result we need to start with a general approximation lemma, found

*9

via results of Gotze (1991) and supplementary analysis as in the proof of Lemma 6 below,

see our Appendix. The result is that

Pr{(n'/%¢y,...,n" %, ) € BY = Pr{(Ny + by,...,Npy + bm,) € B}

+ O3/ ) >0

for all measurable convex sets B, provided mg > 6.

LEMMA 3. Study local alternative densities of the form (2.1), where Z;’il 1551 1145l

is finite, and assume that m8/4/n1/2 — 0 as mg grows with n. Then the probabilities

pm(b) = Pr{m* = m} = Pr{AIC,, bigger than all others} are well defined, and

o0

Z} = Znms —d Z{Jm i(bf +Nj)2},
m=0

where J,, is indicator for the event that Z,, — Cm is bigger than Z,,, — Cm/' for all other
m' # m.

ProOOF. We first note that if m < mg with a fixed mg, then arguments above easily
lead to

Zy —a Z*(mo) = Y Jm(mo)Zm,
m=0
where J,,(mo) is indicator for the event that Z,, — C'm is bigger than Z,,, — Cm' for all
other m' inside {0, 1,...,mg}. The limit is again a mixture of )&?n(z;n:l b%) variables. The
same result holds for the score test version 7).
For the growing mg case it follows from (3.6) that Pr{AIC,, ,, bigger than all others}
converges to p,,(b). Since C' > 1 the limiting probabilities are well defined. It follows from

Lemma 2 that the limiting distribution of Z is as claimed. m

Note that the probabilities p,,(0) for the null case may be obtained explicitly via the
generalised arc-sine distribution (Woodroofe, 1982), see Aerts, Claeskens and Hart (1999).

As in the previous subsection one can construct at least two different types of tests.
The first test takes the simple form of rejecting if Z} > 0, with C properly adjusted.
Non-rejection of the null hypothesis in the limit experiment means observing Z* = 0,
which is equivalent to having all successive sums Z;n:l{(bj + N;)? — C'} smaller than zero.
The limiting local power function is 1 — pg(b), which may be computed by simulation for
different b = (by,bs,...) of interest. The score test version takes the form of non-rejection

only if all successive sums Z;n:l(mﬂ? — C) are smaller than zero.
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The above test is similar to a method used in Hart (1997) in a traditional regression
model and for more general regression contexts in Aerts, Claeskens and Hart (1999). Table
7.1 of Hart (1997) may be consulted for choices of C' to attain a specified level of the test;
in particular, C' equal to 3.221, 4.179 and 6.745 corresponds to levels of respectively 0.10,
0.05 and 0.01. The typically used Akaike value of C' = 2 corresponds in this special context
to a significance level of 0.29. This type of test is referred to as an order selection test,
which in this case is equivalent to rejecting when 7 = max;>1 Zn,;/j > C. The score
version is denoted by T.

The second type of test keeps a fixed C value and rejects when Z exceeds a positive
constant zg, and is similar in spirit to tests used in regression models by Aerts, Claeskens
and Hart (2000). For a fixed C it is not difficult to find zg via simulations from the limiting
null distribution Y °_, Jm Z,,. For example, for C' = 2, zy values 8.606, 13.829 and 27.234
correspond to levels of 0.10, 0.05 and 0.01 respectively.

REMARK. There is no reason to limit study to only the two strategies above; in partic-
ular the restriction to nested sets {1,...,m} only may be too severe. An extension which
is simple in practice and promising in potential, but leads to somewhat more complicated
mathematics when it comes to analysing its behaviour, is to use (3.1) or (3.2) again, but
searching through all subsets S € S(myg), say. This is the set of all subsets of {1,...,mq},
where mg perhaps is small, plus all nested sets {1,...,m} for m > mg. This could be
particularly useful for alternatives that in addition to low order deviations also exhibit

some higher order non-zero coefficients. m

4. The BIC, the BIG, and growing sets

A competing model selection criterion to the AIC, also in the testing context, is the so-

called Bayesian information criterion which in the present case takes the form
BICmS = Zn75—(10gn)|5|. (41)

This section studies the behaviour of tests using the BIC criterion to select the set S. We
discover that the BIC applied to nested models only, as commonly done, has disadvantages,
and on the other hand that the ‘all subsets’ version of the BIC turns out to behave just
as the different-looking ‘all subsets’ version of the AIC, for large n.

4.1. BIC with all subsets within a finite horizon. Because of the consistency of BIC
as a model selection criterion, Ledwina (1994) proposed to exclude the empty set to avoid
having the level of the test tending to zero for growing sample size; we also follow this
approach.

Suppose as in Section 3.1 that all (non-empty) subsets inside {1,...,mg} may be con-
sidered, where my is fixed. Let S} be the subset with maximal BIC,, 5. Define analogously
BICS;F; = Th s — (logn)|S| and S%(T) as the winning subset for the T}, tests. The test
statistics in the end are Z) and T, as in (1.4) and (1.5), with sets S} and S} (7). As a

9



consequence of not allowing the empty set, asymptotic distribution theory for tests where

the model has been selected by BIC is quite different from that in the previous section.

LEMMA 4. Under local conditions (2.1), the probability that a set S with two or more

elements will be chosen by the BIC goes to zero asn grows. This is valid for both the BIC,,
and the BIC%T; criteria. Also, both Z and T tend in distribution to max;<m,(b; + Nj)Q.

PrOOF. We give the demonstration in terms of the BICE::F; criterion; that the same
result then must hold also for the Z,, g tests follows from Lemmas 1 and 2.
Let S be a non-empty set not containing the index m. We shall show that {m} U S
will lose against {m}. This is because
(T) (T) _ 72
BIC, /., —BIC, [ s =[S|logn =) ni3,
JES
which has no choice but to go to infinity in probability. This proves the first assertion.
The implication is that only the singletons {1}, ..., {mg} can survive the BIC scrutiny
when n grows. And of these the index m* = m is chosen with largest value of (b; + N;)?.

Thus

* * " 2
n = %:Z”’SI{STL =5} 2 2_:1 ZgmyI{S™ = {m}} = max(b; + Nj)*.
It is also clear that both Z7 and T} are asymptotically equivalent to the test statistic

MaX;<mg mE]Z, in the local framework (2.1). =

REMARK. The model selection criteria AIC and BIC are at the outset quite different
in spirit and execution, and in most situations give different results. But, surprisingly, in
the present context of all possible subsets inside a limited horizon, the first type of AIC-
based test (see Section 3.1) and the BIC-based test give exactly the same results for large
n. Both schemes lead under local alternatives to test statistics asymptotically equivalent

to max;<m, |n1/2$j|. The limiting local power is given in Section 3.1. m

4.2. BIC with a sequence of nested models. Consider nested models {1,...,m} inside
a limit mg which now is allowed to grow with n. The submodel with the largest BIC,, ., =
Zn,m —mlogn is chosen, with accompanying test statistic Z = Z,, mx, say. Analogously
we define T = E?::‘I(T)
later ‘simplification’ inside the BIC scheme is commonly employed, see for example Inglot,
Kallenberg and Ledwina (1997) and Bogdan (1999). It is formulated in these papers for

use inside parametric families, but originated merely as a practical computational issue.

n@E]Q, where m? (T) maximises BICE;% = Ty,m — mlogn. This

LEMMA 5. Assume f is of type (2.1), and let mg grow with n slowly enough to have
m8/4/n1/2 — 0. Then, with probability converging to 1, the BIC criterion for both Z}
and T} picks out the first component only.

PROOF. Let By, be the event that BIC, ; is bigger than all the other BIC,, ,,, numbers
for m = 2,...,mg, and let correspondingly C, be the event that BICEfl) is bigger than the

10



other BICE}Q2 numbers for m = 2,...,mg. The task is to prove that Pr(B,) and Pr(C,)
both go to 1. The strategy is to accomplish this via approximation to the simpler Pr(C?),
where C? is the limit experiment version that BIC; is bigger than all the other BIC,,
numbers for m = 2,...,mg. Here BIC,,, = 27;1 W;, with W; = (b; + N;)? —logn.

It follows in fact from the uniform approximation results of Goétze (1991), as further
discussed and worked with in the course of proving Lemma 6 below, in our Appendix, that
Pr(C,) = Pr(C%) + pn, where |p,| = O(mg/4/n1/2). It also follows from approximations
arrived at in the proof of Lemma 2 that Pr(B,) and Pr(C,) are close. By our growth
restriction on my it therefore suffices to prove Pr(CY) — 1. We shall see that this takes
place under the milder restriction mg/n'/? — 0.

We are content to show that Pr(D%) — 1, where D? is the event that each of the
Wy, ..., W, variables are negative, since D% implies C. But a lower bound for Pr(D?)
is (1—=X,)™ 1 where 1 — X\, = Pr{(b+ N)? < logn}, in terms of a constant b bigger than
all of the |b;|. Analysis involving a classic approximation to the normal tail now leads to

1— X, = ®((logn)'/? —b) + &((logn)'/? +b) — 1
L Ly {e0lonn)! ) | exp(Cbogn) /)y
(27)1/2 /2 (logn)/2 —b (logn)'/2 +b
where @ is the cumulative standard normal. It follows that (1 — )\n)mo_l

172 50, m

indeed travels to

1 as long as mg/n

An important consequence of Lemma 5 is that Z} —; x7(b}) under local alternatives
(2.1). For the class of densities f where by = 0 but some of the other b; are nonzero, the
power of the deduced test is equal to the significance level. Since the probabilities p, (b)
are non-zero for dimensions m > 1, the AIC based test is likely to outperform the nested
sequence BIC for a large class of alternatives.

It is important to note that the performance of tests using BIC as a model selector
can be drastically improved by not restricting attention to only nested model sequences,
but rather allowing all subsets within a fixed dimension mg. The fact that mg is fixed is
not disturbing for practical matters, since it would correspond to typical use, and since it
can be allowed to be arbitrarily large. Note that also here the mixture construction of all
subsets of {1,...,mg} (where myq is fixed) followed by a sequence of nested models is a

worthwhile strategy.

4.3. The BIG criterion. As long as we work under local alternatives, the estimates
a; of the model parameters are approximately independent with N(a;,1/n) distributions.
When trying to test whether all of them are zero it makes sense to hunt for and use the few
coefficients with most influence. One strategy is therefore to compute a@; for j = 1,...,mo,
and use as test statistics
BIGym = Zn,B, ,n = Qn{ Z a5 — log/fo exp( Z Eﬂ/ﬁ) d;z:},
JEBn m JEBn, m

where B,, ,, is the set of the m indexes j with biggest values of |a;].
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The behaviour of this test statistic can be understood using Lemma 2, which implies
that BIG, » is equivalent to the simpler version ZjEBn,m n@/;f for large n, under local
conditions (2.1). When my is fixed,

BIGmm —d Z(b] + N]‘)Z,
B,

where By, is the random subset of {1,...,mq} with the m biggest values of (b; + N;)?.
With m = 1 this actually again reproduces the test statistic max;<m, In'/24);| which was
seen to be large-sample equivalent to the tests using either the first type of AIC or the
BIC inside all subsets within a finite mg-horizon. With m = 2 the test used becomes for
large n the same as looking at the sum of the two largest n@ZJZ contributions, and so on.

There is no limit distribution if mg here is allowed to grow beyond bounds. In that
case some modifications would be needed for the test statistic, like tapering off higher order

terms.

4.4. Local power for tests using growing m. One way of ensuring that the density esti-
mators at work in (1.4) are really nonparametric, in the sense of being able to consistently
estimate also densities that cannot be described by finitely many a; parameters in (1.3),
is to let the index set S = {1,...,m} grow slowly with n, without applying any further
subset or order selector as in Sections 3.2 and 4.2. Thus let in this subsection

m

Zr = zn{Zaﬂz}j - 1ogcm(a)}, (4.2)

j=1
where ¢im(a) = [ foexp(dD.'r, ajpj)dz, and the a;s are found by maximum likelihood
inside the (al, cey ) model. To properly understand its behaviour, and to give rec-

ommendations for the choice of m as a function of n, we need to find its limiting null
distribution and its local power characteristics. We also take an interest in the score test
version T = E;n:l mZJZ

By Lemma 1 we expect Z* to be approximately a x2, (B,,) under local alternatives
(2.1), where B,, = E] L b5, With growing m this would lead to limiting normality for
(Zr—m—By)/(2m+4B,,)"/?; this can indeed be proved under the condition M,,m?/n —
0. However, this leads to a trivial asymptotic local power, since Z;’il b? is finite; in
situations with a x2 (\), where one tests \,, = 0, one is only able asymptotically to

1/2 away from zero. In other words, in the present

1/2

detect alternatives which are at least m

situation, one would need B,, to grow like m'/#, in order to have a non-trivial limiting

local power result. These considerations lead us to study alternative densities of the form

o0

£ = foc((m™ i 12)8) ™ exp{ S (m 4 0t 205} (43)

J=1

The proof of the following result is found in the Appendix.
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LEMMA 6. Study local alternative densities of the form (4.3), where Z;’il |b;| max,
1b;(x)| is finite. If m grows with n slowly enough to have M,m®/*/n'/? — 0, then

(Z¥ —T2)/m'/? =, 0. If furthermore M, m'°/3 /n'/? — 0, then

Z¥ —m —m'?B, g I —m —m'/?B,
all
(2m—|—4m1/2Bm)1/2 (2m—|—4m1/23m)1/2

where B,, = z;n:l b?.

This result, which also implies that (Z* —m)/(2m)'/? and (T* — m)/(2m)/? tend
to N(Bs/V2,1), where By, = Z;’il b?, is similar in spirit to Theorem 1 in Eubank
and LaRiccia (1992). They worked with a different class of test statistics and considered

additive expansions of densities, where we use the perhaps more appealing multiplicative

both tend to N(0,1),

expansions and the estimated likelihood ratio tests. It is fair to point out that the technical
obstacles we encounter for Lemma 6, tackled in the Appendix, are by necessity more
difficult than those met with Eubank and LaRiccia’s additive expansions.

A test based on Z; with significance level o must asymptotically be equivalent to
rejecting when Z* > m + (2m)1/220, where zg is the appropriate upper point of the
standard normal. It follows from Lemma 6 that the limiting detection power against the
(4.3) alternative becomes CID(BOO/\/i — 29).

Comparing Z;} and T tests using AIC or BIC (Section 3, Section 4.1-2) with those
using growing m (this subsection) is not an easy task. The former are able to detect alter-

1/2 away) than those alternatives

natives a little bit closer to the null hypothesis (order 1/n
which are detected by the latter (order m'/* /nt/? away). The submodel selector versions
of the tests must downweight higher order components in order to obtain the 1/n'/? detec-
tion abilities, just as for Kolmogorov—Smirnov and Cramér—von Mises tests. The ‘growing
m tests’, however, can often beat the former ones by converging more slowly but spreading
out their power more evenly. A more careful analysis of this phenomenon, in a different

but similar context, can be found in Eubank (2000); see also Inglot and Ledwina (1996).

5. Power at a fixed alternative

Assume now that the data come from a fixed density f # fo. We shall study the approxi-
mate power of our various test statistics. Let £ = Ef¢;(X) be the true mean of ¢;(X),

and write nl/Q(;Ej — &) —a V;, where these are multinormal with covariance structure say
kji = covp{e;(X), (X))}

5.1. Tests with fixed index set. Consider first the situation where Z, s of (2.2)
and T, g of (2.4) operate with a fixed index set S. These are equivalent under the null
hypothesis for large n, and in particular both tend to a X|25| distribution under fy.

For the T, s test, under f, it is clear that T, ¢/n —, ar = z]‘es 5]2, and it 1s not
difficult to establish that

n'2(Tys/n —ar) —a Y 26V ~ N(0,77),  where 77 = 45 Ks€s,
JES
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where the subset involved is indicated in the notation. Analysing the Z,, s test is somewhat
more demanding. The estimators @; aim at certain least false parameter values ag ; defined
as those making fs(z|a) closest to the f in question in the Kullback—Leibler sense. In
other words, ag ; for j € S are those maximising E]‘es a;&; —loges(a). Let 2275 be the
magical test statistic 23 log{fs(Xi|ao)/fo(Xi)} which ‘knows’ these ag j values. Then

one may show that

n'*(Zns/n— 29 s/n) =n"1?2 log{fs(Xi|a)/fs(Xilao)} — 0,

=1

using the facts that n=™' """ dlog fs(X; | ag)/da vanishes in probability and that n'/2(a—

ag) has a limiting distribution. Hence

Zus/n —p oz =2 [ Flog(fao/fo) do = 2{ 3 06, ~loges(ao) }

JES

and

n1/2(Zn7S/n —ay) 4 N(O,T%) where 75 = 4(1875]{5&075.

These arguments and results lead to various power approximations for the two tests.

The simplest of these takes the form
Pr{Z, s > v} = Pr{n1/2(Zn7S/n —az) > nl/Z(yo/n —az)} = <I>(n1/2aZ/TZ),

with a similar expression for the T}, s test. Hence the Z,, 5 test is asymptotically stronger
than the T, s test when az /77 > ar /77, and vice versa.

A simple check was carried out for the case of f = f, with a = (a1,...,an) of finite
dimension, where in the above notation ag ; is a; for j < m and zero for 7 > m. We used
Yi(x) = /2cos(jmz) for testing uniformity on (0,1) and could compute the necessary &
and K for given a. It was quickly revealed that both cases p > 1 and p < 1 occur often,
where p is the determining ratio (az/77)/(ar/7r); in particular there can be no universal
dominance of one test over the other.

Three simple experiments were performed in order to assess how relatively likely it
is to encounter densities for which the Z test can be expected to outperform the T test.
Simulation results are based on 1000 replications each. (i) With m = 2 and ay, ay inde-
pendently generated from the standard normal, giving a fair range of mostly unimodal
densities on (0, 1), the Z test was better than the T test in about 38% of cases, with about
15% of p ratios falling inside (1.0,1.1) and about 23% above 1.1. (ii) For the broader class
represented by m = 5, and again with the a;s drawn independently from the standard
normal, the emerging densities are much more varied with up to three peaks or valleys.
Inside this more varied class the p ratios also vary more, and the Z test wins more often,

in fact in about 75% of the cases. These wins are often very clear, with about 20% of the
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p values exceeding 2 and about 3% exceeding 3. (iii) Finally we investigated the case of
independently drawn coefficients a; ~ N(0,1/5%) for j = 1,...,10. This produces densities
with some wiggliness to them but otherwise not with exaggerated freakish behaviour; in
other words, varied densities that arguably may be considered ‘not unlikely’ for statistical
practice outside the major parametric families. And in such cases the Z test was found to
win asymptotically over the T' in as much as about 93% of the cases. Most of these wins
are also rather clear-cut, with about 27% of the p values above 2.

The precise proportions here are not important; the main point is the message con-
veyed that the Z test quite often can be expected to outperform the T' test for large n, for
densities likely to occur in practice. It is also comforting to observe that quite comparable
results were reached for the case of the normalised Legendre polynomials as basis func-
tions. The important consequence is that many of the score type ‘smooth tests’, whose
theoretical properties have been investigated and found favourable in recent literature, see
Ledwina (1994), Inglot and Ledwina (1996), Inglot, Kallenberg and Ledwina (1997) and

references therein, often can be outperformed by their likelihood-ratio sister versions.

5.2. Growing or random index sets. Our general test procedures have been motivated
by the hope that An(f) of (1.2) will be close to the Neyman—Pearson ratio A, (f) of (1.1).
Various versions of this statement can be proved, under suitable assumptions, depending
on the estimating strategy for ]/C\ A natural result to strive for would be closeness in the

sense of
n"log An(f) —n M log Ap(f) =n"" Zlog{f(Xi)/f(Xi)} —p 0, (5.1)
=1

when data come from f. Note that n™'log A, (f) =n~' Y1 log{f(X;)/fo(X;)} goes to
[ flog(f/fo)dx, the Kullback-Leibler distances from f to fo. Thus (5.1) says that the
test statistic (1.2) succeeds in being close enough to the invisible Neyman—Pearson ratio
to recover the same Kullback—Leibler distance for large n. One is not always guaranteed
(5.1), since it requires stable closeness of f/f to 1 also in areas where f is small, where
e.g. kernel estimators might have problems. For expansion estimators, however, we have

the following positive result.

PROPOSITION. Assume f has a representation foc(a)™! exp(ziil a;v;), for a fixed set
a = (a1,as,...). Consider the mth order estimator fy ,, which is the maximum likelihood
density estimator based on X1, ..., X,, inside the model f,, = focm(b)™! exp(z;nzl bjv;),
where ¢, (b) = [ fo exp(z;nzl bji;)da. Then (5.1) holds for the f, , sequence, under the

minimal condition that m goes to infinity with n and m < n.

PROOF. Let @ = (a1,...,am,0,...) be the maximum likelihood estimates inside the

mth order model. These exist, with probability 1, provided only n > m; see comments

in Crain (1977) and Barron and Sheu (1991). For sequences b = (by,bs,...) in the set B
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where L(b) = Zjil |b] ||| is finite, consider the function K, (b) = Y., b;1; —log cyn(b),

=1
where m = m,, < n climbs towards infinity when n does. Note that

n™ Y log{ fam(Xi)/ fo(Xi)} =D @0 — logem (@) = K,(a).
=1 Jj=1

The K, function is concave, and by dominated convergence its mean goes to K(b) =
Z;’il b;&; — log c(b) for each b € B. Also, its variance is bounded by L(b)?/n. Hence K,
goes pointwise to K in probability as n grows. Via concavity this is sufficient to guarantee
uniform convergence in probability on compact subsets of B, under the Z;’il b5 — bl [[45l
metric. Note next that the maximiser of K (b) is b = a. The maximiser a of K, goes
in probability to the maximiser a of K, see convexity lemmas in Andersen and Gill
(1982, Appendix) and Hjort and Pollard (1994). It follows from these facts that also
the maximum of K, must go in probability to the maximum of K. But K,(a) —,
K(a) is seen to be equivalent to n=' > " log{ﬁum(Xi)/fo(Xi)} having the same limit
asn~ 'Y " log{f(Xi)/fo(Xi)}. This proves (5.1). =

One might similarly work towards proving (5.1) under suitable conditions with various
subset selectors employed in (1.4), like with the AIC or BIC. Further results on the closeness
of log An(f) to log A, (f) can be reached via a careful study of approximation precision
of the best finite-parametric Kullback—Leibler approximation f,, to f; see Crain (1977),
Barron and Sheu (1991) and Inglot and Ledwina (1996) for results of relevance. We do

not pursue these themes further here.

5.3. Results of a simulation study. Below we illustrate certain aspects of the finite
sample behaviour of several proposed tests for uniformity; see Section 7.5 for performance
of tests for bivariate normality. The test statistics under comparison are the BIC data-
driven likelihood ratio and score statistics Z*, T, and the order selection statistics Z and
T . We consider both a nested model sequence, where the number of added terms is allowed
to grow to 10, and the all subsets version, with a maximum of 5 added terms to the null
model. The particular choices of where to cut off the series are not of much importance
for power behaviour (see also Ledwina, 1994). Critical values at 5% are obtained by
simulation of 30,000 datasets under the null model. The simulated power has for each case
been calculated from 5,000 generated data sets under the alternative model in question.

In our first setting (a), we generated data from model (1.3), where fg is the uniform
density on the unit interval, S = {1,2,3}, a = (—1.2,—-0.7, —0.6), and v, is the jth order
Legendre polynomial. We considered tests employing the Legendre polynomials, and a
cosine system () = v/2 cos(mjz). The sample size was either 25, 50 or 100. As expected
for this setting, the polynomial basis functions perform better than tests using the cosine
basis. Since the alternative function concentrates on the first three dimensions in the
alternative models’ space, in Table 5.1 we observe that the all subsets version slightly loses

power in comparison to the nested sequence tests. In this setting, the AIC based order
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selection tests have higher power than the BIC based tests, and the likelihood ratio test
has higher power than the score test.

One should be careful to generalise these conclusions. In setting (b) the data are
generated according to a %% mixture of a Beta(0.5,1) and a Beta(1,0.5) distribution.
Here the score test has higher power than the likelihood ratio test, and the BIC based test
is more powerful than the order selection tests. Differences in power are more pronounced
for the Legendre basis than for the cosine system. It is interesting to observe that the
all subsets version gives an improvement in power for the order selection tests, while the

nested sequence here is preferred for the BIC based tests.
Nested sequence All subsets

Z*(bic) T*(bic) Z T  Z*(bic) T*(bic) Z T

(a) poly n=25 83.94 7433 86.30 8243 80.67 74.90 67.31 66.85
n=50 99.86  99.42 99.98 99.90 99.78  99.38 99.30 98.94

n=100 100.0  100.0 100.0 100.0 100.0  100.0 100.0 100.0

cos n=25 50.26 44.48 57.48 55.44 48.12 41.88 36.54 34.50
n=50 89.48 88.76 95.38 94.86 87.86 86.04 85.10 84.68

n=100 99.80  99.74 100.0 99.98 99.74  99.56 99.64 99.66

(b) poly n=25 54.04 65.78 37.84 4880 4826 61.32 49.34 52.80
n=50 76.84 84.46 66.32 74.92 7346 81.10 75.98 78.22

n=100 96.30 97.62 93.62 96.16 95.68 96.98 96.44 96.86

cos n=25 42.06 44.20 25.24 26.48 36.84 40.54 33.00 31.90
n=50 61.58 65.50 47.16 49.32 56.84 60.66 57.16 57.02

n=100 88.58 89.88 82.76 83.60 86.68 88.48 87.96 88.10

(c) poly n=25 33.72 36.52 13.92 16.26 29.76 40.10 29.88 33.52
n=50 49.18 52.78 29.80 33.96 53.44 61.88 58.52 61.46

n=100 82.56 84.28 76.38 79.38 88.20 90.86 90.86 91.82

cos n=25 46.88 44.30 17.92 16.74 53.64 54.88 51.76 50.08
n=50 70.18 68.88 46.68 46.92 85.10 86.20 87.08 86.98

n=100 95.86 95.44 92.18 92.48 99.36  99.42 99.54 99.56

TABLE 5.1. Simulated power results (as %) for uniformity tests. Estimated
likelihood ratio (Z) and score tests (T ), with order selected via AIC (Z,T) or

BIC (Z*,T*) using either a nested model search or all subsets selection. Basis
functions are Legendre polynomials or a cosine system.

In our third setting (¢), data are generated according to the function 1+0.7 cos(4rz).
Cosines are the best choice here. Powers of the likelihood ratio test and score based tests
are comparable. Especially for the order selection tests, the all subsets version is definitely
preferred to the nested sequence. The last two settings are taken from Ledwina (1994)
where the score based BIC test is found to be superior to a variety of other classical tests
for uniformity, such as Anderson and Darling’s statistic and tests by Stephens (1974) and
Neuhaus (1987, 1988).

The main conclusion is that the all subsets version improves on a nested model search
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for several alternative densities, and does not lose much in situations where a nested model

search is better.

6. Testing a parametric family

The hypothesis to be tested is that the density belongs to a parametric family fo(z,6),
where 6 i1s p-dimensional and traditional regularity conditions apply. In particular the
family admits two continuous partial derivatives in 6 in a neighbourhood around a focal

point 6g.

6.1. General two-stage approach. To describe our test statistics, let functions v;(z, 6)
be orthonormal w.r.t. fo(z,6), and for bounded index sets S consider the extended para-
metric model

fs(z.61a) = foz,8)exp{ Y a;05(,6)} [es(a,6), (6.1)

JES

for (6, a) around (6y,0), where cs(a,8) = [ fo eXP(E]‘eS a;v;)dz. It is also a requirement
of the basis functions that this integral is finite for all 8 in a neighbourhood of 8y and for
all @ in a neighbourhood around zero. There are now several available options. In this
subsection we consider the simplest one, at least from the point of view of implementation,
which is to start with the maximum likelihood estimate 6 inside the fo family, and then
proceed with finding the maximum likelihood estimators @ in the (6.1) family considered
as a model in a with given 6. This leads to a two-stage likelihood ratio statistic of the

form

Zups =23 logl fs(X:,01@)/ fo(X0,8)} = 20{ 3" @0,(0) ~ loges(@d) ). (62)

i=1 jES

This is as in (2.2), but with ¢;(8) = n~' S°1_ ¥;(X;, 0) and with @ computed conditionally

on . Also consider the simpler score type test statistic
JES

Assume that the real density takes the form

F() = folw, 8o exp{ 3" (b;/n" /)i (w,60) } [ e(b/n'/2. bo), (6.4)

i=1

where c(a,8) = [ fo exp(z;ﬁl a;v;)dz for coefficients for which the integral exists. Let
G be the p x |S| matrix of elements g¢; j(60) = Eoui(X,6p)¢;(X,60), where u(z,6) =
0log fo(x,6)/06 is the score function of the model and Eg indicates that X comes from fo.
Taking the derivative of [ foo; dz = 0 leads to [ fo(z,0)0¢;(x,6)/06 dz = —g;, where g;
is the jth column of G.
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PROPOSITION 1. Let J = J(6y) be the information matrix of the fo model, and let
(Uo, N) be a zero-mean p + |S|-dimensional normal vector with Var Uy = .J, independent

standard normal N;s, and cov(N;,Up ;) = ¢i j(6o). Then, for local alternative densities

(6.4),

2
Znis and Ty1.s —a Z1.5 = Z(bj — g5 I begr + Nj — g;.f—on) : (6.5)
JES kES

PrRoOOF. Consider & = n~! Yo, u(X;,6p). The mean of u(X,6) under (6.4) condi-
tions is n~1/2 E]‘es b;g; plus smaller order terms, and use of the Lindeberg theorem leads
to n/2u —d E]‘es
b+ N;, where the N;s are as described above, with and cov(N;, Ug ;) = Eouivo; = gi ;(60).
This leads first to n1/2(9 —6p) being well enough approximated with J™'n'/24, which goes
to J1 E]‘es bjgj + J 'Uq, and next to

bjg; + Up. There is also simultaneous convergence with nl/zﬂj(eo) —d

n'24,(8) = n'2p(60) + (n M)tnlﬂ(é— 60) + 0p(1)

4 o6
=1 (6.6)
—d b]‘ —I—N]‘ —g;J_l (Z bkgk + U())
keSS

This gives the claimed limit distribution for T, ; 5. One may also show that Z, ;¢ —

Thi,s —p 0, as with the convexity arguments of Lemma 1. m

REMARK. The limit variable (6.5) has a much simpler structure when the g; vectors
are zero. Such an orthogonality of basis functions w.r.t. the score functions can actually
always be achieved. One uses a Gram—-Schmidt procedure to make from the original
1 (x,0), 2 (2, 0),... functions another sequence v (z,6), ¥} (z.6),... functions which are
orthogonal to the u;(z,8) functions, w.r.t. fo(z,0). When test statistics (6.2) or (6.3) are
to be computed, one uses such LZJ;(:C, ) functions constructed around the estimated point
6. This would be similar to a method invented in a different context by Khmaladze (1979).
In this case, therefore, the limit distribution (6.5) reduces to the much simpler non-central

x? distribution (2.3). Another construction of tests with x? type limits is given below. m

6.2. Second general approach. A computationally more involved but nevertheless
quite natural strategy is to use the full maximum likelihood solution (6, @) inside the (6.1)
family. This leads to

Zuzs =2 log{fs(X:,0]a)/fo(X;,0)}

= i (6.7)
= 2n{§£amj<5> ~loges(@,0) | +2) log{fo(X,.8)/ fo(X..6)}.
1€ =1
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The limiting distribution must be a non-central x?, by classical theory, if b; = 0 for j
outside S in (6.4). We wish to assess the distribution of Z, 5 ¢ also in the wider local
case, however, and also need more informative approximations in order to study the be-
haviour when the S set is growing or arrived at via a data-based selection criterion. This

necessitates work summarised by the following In addition tou =n~' Y1, u(X;,6y) and
p=n"" Yo (X, 60), define v = v — G*J~1a, a variable becoming independent of % in
the limit.

PROPOSITION 2. Under local (6.4) conditions the test statistic Z, 3 g is only o,(1)
away from Z2,2,S = nov'(I — G*J7'G) ', and the limit distribution is a non-central XfS|

with excentricity parameter
t
(bs -y bjGtJ_lg]) (I-GI'e)" (bs -y b]-GtJ_lgj),
jeS jES
where bs is the vector with b; for j € S.

PrROOF. We rely on maximum likelihood asymptotics inside regular parametric fam-

ilies. The score function for the (6.1) model, when evaluated at the point (6p,0), is the
p x |S| vector (u(x,6p),v(x,60)). It has

Var wX.0o)\ _(J G with inverse J G B _ (Koo Ko
0 L/)(X, 90) o Gt I Gt I o Iﬁ—lo Iﬁrll ’

say; in fact, K11 = (I-G'J'G)™', Koy = —J'GKyy and Koo = J '+ J'GK1 G' T 1.
It is now the case that
6 — Oy = J 'u + op(n_1/2),

é\— 90 = I&FO()’& + 1{01772 + OP(TL_l/Q),

a = Iﬁyloﬂ + KH;E + op(n_l/Q).

These linearisation approximations lead to @ = K;;v and to 6 — O = J 'u — J'GKy, 0,

where the simplifying ‘=" notation indicates here and below that the differences in question

go to zero at the required speed. Also, by a Taylor approximation argument as with (6.6),
O _IZ%/J] X;,6) = g}(g—i%)—l-op(n_m),
which leads to LZ(@) = — G I N u— GKv) = (I + G I 1GKy)v.

We may now approximate the first term of (6.7), also using nlogecs(a, ) = n%’dt&\ +
0p(1), which is seen to hold under (6.4) conditions. We find

o~

Qn{Zaj;Zj(g) — log cs(a, 5)} = no' (2K + 2K G T GKyy — K)o = no' K2, .
jes
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For the second term one finds

2 log % = 2Z{U(Xi,90)t(§— b0) — u(X;,00) (6 — 6o)

i=1 o(Xi, 0 i=1

writing i(z, ) for the p x p second order derivative function of the log-density. In concert

with previous approximations this leads to the second term being approximated with
—nv* K11 GYJ1GK, ;9. Combining efforts,

Znas=nv" (K} — Ki1G' T 'GKyy)v = nv' K10,
the required approximation. Some analysis, assisted by the Lindeberg theorem, shows that

n'2o =0 — G T M) wa b= GUTTNY bigi + Nigy(0,1 - GHITIG).
JES

With the previously acquired approximation this implies the second part of the lemma. =

For basis functions orthogonal to the score functions at 6y, one has G = 0, and, again,
the test’s limiting distribution equals that of (2.3).

A score-type approximation to the full likelihood-ratio statistic (6.7) is available, via
the averages ¢](§) which rely only on the maximum likelihood estimates inside the fo(z,6)

family. We saw in (6.6) that 1/;(#) becomes first order equivalent to v; — g;J_lﬂ, in other
words, ©(6) is only o,(n™"/?) away from ¢ — G*.J~'4 = v. Thus

Thas=nb(@)(I—GJT'G)"y(h), (6.8)

employing ‘narrow’ estimates G = G(g) and J = J(g), is a computationally simple approx-
imation to Z, 2 g, valid under local circumstances (6.4). One may also use the é\computed
in the fuller model for the purpose of estimating G and .J here, and yet other variations for
these ingredients could involve jackknifing or bootstrapping. The (6.8) test should however
not use @ in the 1; averages, since the limit distribution then would be different from the
one given in the lemma.

The (6.8) statistic involves inversion of an |S| x |\S| matrix, but the matrix identity
Kn=I-GJ'G)"'=1+G"(J-GG")'G,

easily proved under the condition that J — GG" is positive definite, leads to a simpler

equivalent form,

Tops = Y nt;(0)? + n(Go(8)) (] — GG Gy (h), (6.9)
JES
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where only a p X p matrix inversion is involved. Note also that Ejes ni(6)? may serve as
a simple conservative test statistic. For basis functions resultingin G =0, T\, 1,5 = Ty 2,s.

For a data-driven choice of S, the asymptotic null distribution may be obtained along
the same lines as in Sections 2 and 3. Observe also that the Z and T tests, although
asymptotically equivalent under (6.4) conditions, will differ significantly under the fixed

alternative scenario, comparable to what we saw in Section 5.

7. Testing multivariate normality and other models

The apparatus developed in this article is very general, and can be applied to test the
adequacy of any parametric family, subject to the usual conditions of regularity, also in
higher dimensions. In this section the methodology is applied to construct explicit goodness

of fit tests for some families.

7.1. Testing normality. We wish to test the hypothesis that data follow the normal
density o~ '¢(c ! (x — u)), for suitable but unspecified (i, o), writing ¢ for the standard
normal density. Let ¢1,1,... be orthogonal and normalised w.r.t. ¢, and consider encap-

sulating models of the type

Fsta o) = ~o( T ) es(a) " exp{ 3 as (T 1)} (7.1)

o 4 o
JES

We focus first on the approach taken in 6.1, which is to keep (j,0) as the maximum
likelihood estimators of location and scale under normality and then calculate a; for j € S
in the resulting |S|-parameter model. This is a practical and immediately interpretable
solution, as one would see explicit corrections to the usual null model density estimate
516 (¢ — 7).

Note that the distribution of Z, 1 ¢ and T}, 1 of (6.1) and (6.2) do not depend on
(1, 0), since they only feature ¢; = n=1 > 1 ¥;(Yi), where YV; = (X; — fi)/5. It also
means that the actual null distribution of Z, ; s, or for that matter also Z, ;1 s+, where
a precise algorithm has been decided on for selecting the index set S*, can be found by
simulation of standard normal data sets alone.

In the present model, the 2 x |S| matrix G of Section 6 has elements ¢y ;/o and
g2,j/0, where g1; = [d(y)yy;(y)dy and g2 ; = [ d(y)y*¢,(y)dy. Also, J is diagonal
(1/02,2/0?). The limiting null distribution for Z, 1 s and T}, 1 s becomes that of

ZWJ‘ — gj1 U1 = 392,;02)%,
JES

where cov(N;,Uy) = ¢1,5, cov(N;,Us) = ga ;, while Var U; = 1 and Var U; = 2. The mean
of the limiting null distribution is |S| — Zjes(gij + %g;j). The more general limit under

local alternatives follows this pattern but with b; parameters entering as in (6.6).
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The second approach is as in Section 6.2, where Z,, 3 g of (6.7) can be used, in addition

to its simpler score test approximation

- » )
Tons=Y ni?+ <Zj91,j¢j> ( 132,97 —ngl,jgz,j> (ngl,j@/’j)‘
" —~ T\ 92,5 =2 91,392,5  2— 22,9 >, 92,595

This goes to a noncentral X|25| under local conditions. As explained in Section 6, there
are certain advantages to working instead with a revised set of basis functions, which are
orthogonal to the score function (y,y? — 1).

A simple technique for constructing orthonormal basis functions around a given fy is
to let v;(z) = v;(Fo(z)), where 1,71,72,... are orthonormal with respect to the uniform
distribution on (0,1). In addition to [ fovj¢x = &k, one has [ fo exp(zj a;v;)de =
fol eXp(Zj a;v;) dy, which makes it easier to check the requirement of finiteness of the
integral for a;s in a neighbourhood around zero. Choices for the v;s include the normalised
Legendre polynomials, employed for a similar purpose already in Neyman (1937), and the

cosine functions v/2 cos(jmz).

REMARK. For the particular case of the normal there is also another attractive possi-
bility, exploiting scaled and exponentially modified Hermite polynomials. Let Ho(z) = 1,
Hi(z) =z, Hy(z) = (2* — 1)/\/5, Hi(z) = (23 — 3;1:)/\/? and so on be the normalised
Hermite polynomials. They may not be used as 1; functions in the present context in that

[ pexp(a;jHj)dx too easily becomes infinite. But, for any ¢ > 0,

/cqb(c;z;)Hj(c;z;)Hk(c;z:) dz = /qb(:z:)cexp{—%(c2 — 1)2*}H,(cx)Hg(cx)dz = §, ,

which means that we are free to use ¢j(z) = ¢'/? exp{—1(c? —1)2?} H;(cz). For ¢ > 1 these
functions are orthonormal w.r.t. ¢ and bounded, which means that fqbexp(zj a;v;) de
will be finite as long as ) |a;| max, [¢;(x)] is finite. m

7.2. The multivariate normal. Suppose we wish to test whether the data are coming
from a d-variate normal distribution fo(z, u, 8) = (27)~%/2|8| 71/ exp{—3(z—p)' T (z—
()}, where ¥ is a positive definite d x d matrix. Basis functions for multivariate models may
easily be constructed as products of univariate basis functions. Alternatively, as above,
we might take v;(z, 1, ) = v;(®(y1),. .., P(ya)) where (y1,...,y4)" = S22 — p) while
the ~;s for example may be products of cosine functions.

Limiting distributions of the likelihood ratio test for multivariate normality are given
in Sections 6.1 and 6.2. For this model we arrive at a (d*> + 3d) x |S| matrix G with
(i,7)th element g; ; = |21/ [ d(y)yipj(y)dy for i < d, and

gij = %/ytE‘l/ZEiE‘l/zysb(y)%(y) dy

for ¢ > d, where E; denotes a matrix of zeros, except for the (r,s) and (s, r)th elements,

which equal one. Here (r, s) refers to the row and column indices in the original matrix ¥
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of the (1 — d)th element of vech(X). The orthogonality of mean and variance components
results in a block diagonal Fisher information matrix J = diag(J,, Jx), where J, = 71
and (Jy);; = %tr(z_lEiE_lEj). Let g,,; and g% ; be the corresponding subvectors of g;.
The null distribution of Z,, ; g, for example, reduces to that of

Z(N gu JJulUOvN gtEJJE_lUOvE)Z’

JES
where (U} o Ut 5 )" is a mean zero normally distributed random vector with variance .J and
cov(Up,u, N) = Gu, cov(Upx, N) = Gy. Also, N is an |S|-dimensional standard normal
random variable with components N;, and the d x |S| matrix G, consists of the first d
rows of GG, the elements of which are explicitly given above. The remaining part of G is
Gy. The score test T}, 1,5 is simply as given in (6.3). The likelihood ratio statistic Zy, 5 g
can be readily computed, once a set S* is decided upon. Its score version T}, 5 s+, defined
n (6.8), is calculated as

Top,s0 = ndh(i, D) (1 = G4 T, G — G I3 Gs) 71 (1, 2.

In both matrices éu and ég, the variance matrix ¥ is estimated using the multivariate
normal density fo(z,p, X).

In multiple dimensions, for the nested sequence type of tests, the order in which the
terms enter the sequence becomes even more important. Taking all subsets up to a finite,
pre-specified number mgq is still possible, but this might lead to a very large number if
a reasonably large number in each direction is wanted. A compromise strategy between
the all subsets selection and a nested sequence, as already noted at the end of Section 3,
might be particularly advantageous. Still many other options exist. As in Aerts, Claeskens
and Hart (2000), one could construct a nested sequence of models, by adding not one, but

several components at a time. This slightly changes the asymptotic distribution results.

7.3. General location and scale families. Only minor changes to the results of Sections
7.1 and 7.2 apply for location-scale families more general than the normal densities, say of

the form fo(X7'/2(x — p))|S|~"/2. Formulae for J and G change accordingly, of course.

7.4. Testing a small smooth family. Let m be fixed and perhaps small, and let
Y1,...,¢¥m be orthonormal w.r.t. some density fo. The family of densities f,(z) =
fo(z)em(a)™! exp{zznzl a;v;(x)} is an attractive model of the exponential type. Our
machinery is now available to test whether data are adequately modelled in this way. Fill
in more orthonormal basis functions ; for ;7 > m. Test statistics Z, 1,5 and T} 1 5 of
Section 6.1, where S is a subset of {m + 1,...,}, are computed via likelihood estimates a
in the smaller model, and have the simple limit distribution Z]‘es(b]‘ + N;)? under local
alternatives (2.1). This follows from (6.6) in that the G matrix in question is equal to zero.

The same happens with test statistics Z,, 2 5 and T}, 2 5 defined in Section 6.2, and in fact
Ty 2,5 1s identical to T, 1 5 = E]‘es m/)(Zi)Z.
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7.5. Results of a simulation study. We will test for bivariate normality comparing
various versions of the score statistic: with order chosen by the classical AIC regime,
C = 2, by BIC, and via the order selection principle. Critical values at the 5% level are
obtained via a simulation of size 30,000 under the standard bivariate normal distribution.
Legendre polynomials are orthogonalised with respect to the score vector. Not only this
simplifies the test statistic, it also implies that there is no point in including basis functions
of order two or less. Bogdan (1999) already hints about excluding some of the lowest order
terms. Our model sequence starts with adding cubic terms, followed by interactions, up to
a total of 14 additional terms: z3, 23, 2229, 7122, 2%, 23, ... Of course, numerous different
variations could have been chosen. For comparison reasons, the simulation settings are
taken from Bogdan (1999), where she compares a large number of tests. Our test statistic
T*(bic) differs from her Wg(s) in that we do not need to include the interaction term
xr1%9, and we start penalising the smallest model with constant 1, instead of 5. In setting
(a), data are generated from a 3:1 mixture of a standard normal and two N(3,3) random
variables with covariance 2.7. Setting (b) chooses two independent Beta(2.5,1.5) random
variables, and in (c) the alternative consists of two independent uniform random variables
on the (0,1) interval. Results are shown in Table 7.1. As in previous cases there is no
clear winner among the tests studied, but simulated powers exceed those of classical tests
applied in the same situations; see Bogdan (1999). _

T*(C =2) T*(bic) T

nested all sets nested all sets nested all sets

(a) n=25 88.56 97.62 96.40 97.24 91.36 95.92
n=50 63.46 82.14 83.90 82.88 63.94 76.16

(b) n=25 2448 30.56 31.66 29.62 33.82 25.40
n=>50 22.88 24.00 2846 26.26 23.04 19.10

(¢) n=25 32.00 32.14 2816 32.06 21.82 30.50
n=50 27.10 25.96 28.16 27.52 17.56 20.78

TABLE 7.1. Simulated power results (as %) for bivariate normality tests. Order
selected via a nested model search, or all subset selection, employing AIC with
C = 2, BIC, or the order selection test T, using Legendre polynomials.

8. Concluding comments

8.1. Chi squared tests revisited. Our general strategy for testing f = fo has been
to use Z, =23 1, log{f(Xi)/fo (X:)}, for different choices of ]/C\ Consider the histogram
estimator based on cells Cq,. .., Cy,, which uses N;/(nh;) to estimate f in a cell C;, with
N; the number of points caught in C;. It is comforting to see that our general apparatus
then leads to statistics which are close approximations to well-known statistics.

To verify this, express Z, as 227:1 Ni{log(p;/h;) — log fo.;}, where p; = N;/n
and fo; is the geometrical mean of the fo(X;) for which X; € C;. When this is ap-
proximated with pg j/hj, where py; = fcj fodz, one finds that Z, is close to Z] =
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2 Z;n:l N;log(pj/po,;), the log-likelihood ratio statistic for testing whether the vector of
pjs is equal to that of pg js. As is well known, both Z] and its further approximation
Z!l = Z;nzl n(p; — po.j)?/po,; are asymptotically x2 _, distributed under the null hypoth-

esis.

8.2. Matching the performance of Cramér—von Mises tests. Under local alternative
conditions (2.1) and with appropriate growth conditions on m we have seen that the vector
of nl/Q@Ejs goes to that of b; + N; (with notation as in Lemma 1). In generalisation of
the plain score test (1.5), consider U, = >

these are chosen so as to converge to a sequence of A;s with finite sum, then U, —4 U =

m
i=1

)\mjmﬂf for suitable constants A, ;. If
Z;’il A;(b; + N;)? under mild conditions; see e.g. the strong approximation result (3.6)
above. This limit is precisely of the form reached for the Cramér—von Mises statistic,
and also for several related tests; see e.g. Shorack and Wellner (1986) and Hall (1985).
Hence any of these will have a competitor of our type U,, which will match it precisely in

large-sample performance.

8.3. Goodness of fit versus an infinite-dimensional normal testing problem. Consider a
statistical experiment where a full sequence of independent normal variables V; ~ N(b;,1)
is observed, and for which it is only known that Z;.i1 |b;| is finite. Assume that it is
required to test the hypothesis that every b; = 0 versus the alternative that at least one
of them is non-zero. Our article has demonstrated in various ways that the general large-
sample goodness-of-fit problem, with a nonparametric alternative to the null hypothesis,
must have precisely this structure. There might be precise formulations of this equivalence
statement in the tradition of comparison of experiments, e.g. in the style of Nussbaum’s
(1996) result comparing density estimation with GauBian white noise problems.

This asymptotic equivalence also invites performance comparisons between different
tests to be made directly in the limit experiment. This represents a significant simplifi-
cation. We have seen in Sections 3 and 4 that two rather different schemes, related to
respectively AIC and BIC, become equivalent to the test max;<m, |V;|, with power func-
tion 1 — H;n:OI Iy (Co, b?), with I'1(Cp,0)™° = 1 — « in terms of the wished for significance
level . The versions which use BIC with nested submodels have been seen in Section
4.2 to be equivalent to the potentially very weak test |V;]|. The BIG-related schemes of
Section 4.3 would correspond to tests of the form ZjEBm V]z, where B,, is the subset of
{1,...,mo} with the m biggest values of |V;|, and so on. Each subset selector corresponds
to a well-defined test rule in the (V3,V3,...) experiment, and power functions can be com-
puted and compared by simulation. For example, the nested AIC regime corresponds to
the rule >>>°_ Jn (Vi 4+ -+ + V;2), where J, is indicator for Z,,, — C'm being bigger than
all other Z,,, — Cm/, and Z,, = 27:1 VJZ.

8.4. Which basis functions? The apparatus we have developed works of course for
any sequence of orthogonal basis functions tq,%s,.... These might also be re-ordered,

though there is often a canonical way of listing them. In addition to the cosine and
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Legendre functions, used in our simulation studies, one might use splines with equally
spaced knots; see comments in Barron and Sheu (1991). Regarding the practical question
of which sequence to use, there can be no universal dominance result; tests using the
cosine functions will be stronger than those using the Legendre functions for one set of fs
and weaker for the complementary set. For envisaged alternatives, one may compute the
determining ratios az /77, see Section 5.1, for each of the basis systems. One may also
actually estimate this ratio, via a nonparametric density estimate, for each basis system

considered, and then in the end use the system which has the biggest ratio estimate.

8.5. Log-linear expansion density estimators. As a side product of our models and
methods, one may put forward the log-linear expansions as bona fide density estimators,

worthy of further separate study. For example,

flo) = 2o(5 ) ess @7 e{ 3 s (“21) )

JjES*

in the notation of Section 7.1, and perhaps with S* decided upon by AIC, would have

motivation and ambition similar to that of the multiplicative estimators developed in Hjort

and Glad (1995).

8.6. Mixing over candidate models. It is clear that our framework and methodology
allow quite general subset selection regimes when choosing the set S = S* for use in Z,, 5
or T}, 5, not only those selected via the AIC or the BIC. This may actually be generalised
further, to form sensible test averages of the type say Z?:l Wn,jZn,s;, over candidate
subsets S1,..., Sk, with weights wy, 1,...,w, ; dictated by the data. Theory developed in
Hjort and Claeskens (2003) and Claeskens and Hjort (2003) make this possible. Among
possible weight schemes are the ‘smoothed AIC” weights discussed in these papers.

Appendix

Here we give proofs of Lemmas 2 and 6. As a preamble to these, let f be a local alternative
density of the form (2.1), and assume that L = Z;’il 1b;]]|1¥]| is finite. Then

_bi/n'?+O(L?/n)

Ev;(X) = = b, /nl/? 1
§ix +O(L/n'/?)
cor{(15(X), vel(X)} = L bt O(1/n') = b4+ O(1/n'1%),
(A.1)
These are reached working with the integrals involved, one ingredient being that E;’il b?

is finite. This comes from Z;nzl b? =/ fo(z;nzl bj;)* dx < L? for each m, which shows
that the denominator ¢(b/n'/?) involved is 1+ O(L?/n) with O(L? /n) term smaller in size

than the O(1/n'/?) terms involved in the numerators.

1 : 1 2 _ 1,2
PROOF OF LEMMA 2. In Lemma 1 a crucial ingredient was the 5 Y ga; = 3llalg

approximation to log cs(a). Presently we need a somewhat more careful assessment of this
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approximation. Start out writing log(1l + z) = z 4 £(z), where an easily derived bound,

sufficient for our purposes, is |e(z)| < z* for |z| < 5. Thus

logcs(a) = log{l + %Za? + dg(a)} = %Ha”% + es(a),

JES

where eg(a) = ds(a) + 5(%”a”25 + dg(a)) and

/fo eXp aﬂ/}j) —1- (Z aj;/)j) — %(Z aj¢j)2} dz.

JES JES JES

Noticing that |exp(y) — (1 +y + %y2)| < é|y|3 exp(|y|), we derive

exp(‘ Zaﬂ/}] ) dz

exp(Z JWm|aj|) da (A.2)
JES

=+ My, Z |a;| Z a? exp (ﬂ/fm Z |aj|>.

JES JES JES

ds(a)] < 1 /ﬁ oty

ajp;

ﬁZMMJﬁZ
JES JES

This will help us pass two separate technical hurdles below.

First reconsider the concave function K, used in the proof of Lemma 1, which was
expressed as a simpler concave function K, o plus a remainder term r, = ry g, for which
we now need a more precise bound. One finds in fact that K, (u) = K, o(u)— neg(u/n1/2).
For reasons becoming apparent below we need rn75(n1/27§) to go to zero in probability,

which by the above translates into demonstrating that

nds() + ne(L11% + ds()) =, 0. (A3)

Write nlﬂij = b; + N, ;. It follows from (A.1) that the N, ;s have means of size
O(L?/n'/?), covariances of size O(L/n'/?) going to zero, and variances of the type 1 +
O(L/n'/?) and therefore going to 1. Hence Ry, 2 = > jes |bj + N, ;]? is such that R, 2/|S)|
has mean bounded in [S|, implying Rm 2 = Op(|S]). Similatly, Rm1 = 3 °;cq [bj + Najl
has E(Ry,,1/|S]) bounded in |S|, so that Ry, 1 = O,(|S]) too. For any S € {1,...,m} this

gives

2
A1 2 S S S ) - (A e (7))

JES JES

This takes care of the first term of (A.3), by the stipulated growth condition. As for the
second term, ;H;ZH% is of order O,(m/n) and ds(¢) of order O,(M,m?/n*/?), making
their sum less than § with probability going to 1, which means that the |e(z)| < |z]?
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inequality applies. The second term is therefore seen to be dominated by a variable of
order O,(m?/n + M2 m*/n*), which also goes to zero.

We are then in a position to accurately approximate Z, ¢ with T, 5. Write @; =
Vj +£n7]‘/n1/2 for 7 € S. It was a consequence of the proof of Lemma 1 that the ¢, ; —, 0
in case of a fixed m, but now the horizon is becoming broader with n. An application of

the nearness-of-argmax lemma of Hjort and Pollard (1994) yields

Pr{ZeiJ > 52} < Pr{A,(5) > 15°},
JES
in which A,(8) = max),|<s |rn(n'/?¥ + v)|. But by a slight extension of the arguments

above this variable goes to zero in probability. Combining this with

Zns= zn{Zaﬂ@ -3y @ - es(a)} =) i =) el —2nes(a),
JES JES JES jES
it remains only to show that the last term goes to zero in probability. By arguments used

above this is the same as showing

2nds(@) +2ne (1 3@ + ds(@)) =, 0.
JES

A bound on the first term is found to be

(M ' 72) 37 0 205 3 02, P exp{ (M /n'/2) Y 102351
JES JES JES

and this goes to zero in probability for precisely the same reasons as above. The second
term can also be handled by arguments parallelling those used in connection with the
j—p 0. m

PROOF OF LEMMA 6. The plan is to show that (i) (Z} — T7)/m"'/? —, 0 under the
M,m®/* /n'/? = 0 condition, and then demonstrating (ii) that T* can be approximated
with a non-central x? well enough to imply that (T* —m —m'/2B,,)/(2m + 4m'/?B,,)'/?
tends to the standard normal, under the M,,m'%/?/n'/? — 0 condition.

To the first end, write ¢, ; = n'/?(@; — ;) for j < m and note from the proof of
Lemma 2 that

second term of (A.3), again exploiting the fact that E]‘es 5%7

m
* * 2 -~
Z, =T, — g €n.; — 2nem(a),
J=1

where we write e, and d,, for the es and ds of the proof of Lemma 2 corresponding
to the full set S = {1,...,m}. It suffices for the first part of the proof to show that
lenl|?/m'/? =, 0 and that ne,,(a)/m'/? =, 0.

With a little work, the nearness-of-argmax lemma of Hjort and Pollard (1994) gives
m1/252},

1
2

Pr{zm:es?w-/mlﬂ > 52} < Pr{An(m'/*6) >

i=1
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where
An(m'48) = max |rn(n'/?) +v)|.
( ) lol[<mt/18 ( )
We must show that An(m1/45)/m1/2 —p 0. Using ry,(u) = —nem(u/n1/2) this translates

into showing
{ndum (¢ + /') +ne(5l10 + o/n'2)° + d (0 +0/n?)) }/m! 2 =, 0, (A4)

uniformly over ||v|| < m'/*§. This can be worked with using appropriate careful exten-
sions of arguments used to prove Lemma 2. Analysis parallelling the one that lead to
approximations (A.1) shows that if we write nl/QLEj = bjml/4 + Ny, ;, then N, ; has mean
O(L?*m"'/? /n'/?) and variance 1+O(Lm"'/* /n'/?) while the covariances are O(Lm'/* /n'/?).
These facts imply

S a2y v 02 = 3 b N 0] = Op(m/),
STnlgs 4 v /n 22 =N bim 4 N+ o2 = 0,p(m4),
Jj=1 j=1

for all v of length bounded by m!'/4§. Using the (A.2) bound,
|”dm(@z + U/n1/2)|/m1/2 = Op(-Z\Jmm5/4m6/4/nl/2)/ml/2 — Op(*/\lmm9/4/n1/2)7

which goes to zero by the stipulated condition. The second term of (A.4) can be dealt
with similarly, and is in fact smaller in size than the first one.
To show nen,(@)/m'/? —, 0 it suffices by arguments used to prove Lemma 2 to

demonstrate

nd(@)/m""? + ne( [l + dun (@) /m'> =, 0.

This is quite similar to the above. One may show that Z;n:l n'/?[a;| = Op(m3/*) and

™ na2 = 0,(mb%%), and via (A.2) the crucial condition for convergence to zero is again
Z]_l 7 p ) g g

Mm?/* n'? = 0.

We have therefore confirmed that Z; = T + n, with n, small enough, and it re-
mains to show that 7 has the required limit distribution. For this second part of the
proof, let ¢, and ¥, be the mean vector and variance matrix of the m-vector ¥ (X;) =
(V1(Xi)y ..o, ¥m(X5))Y, and consider i.i.d. vectors V; = 251/2(;/)()(1‘) — &n). By efforts
above, ¥, = I + O(m1/4/n1/2) and n1/2§n7]‘ = bjml/4 + O(m1/2/n1/2). We find from this

that
Y512 = ((X3) — &) 'S (0 (X0) — €n)

={1+0(m"* /') {4h;(Xi) = €n j}* = O(mM}),

i=1
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which implies

E||Yi||> = O(m'/?M,,) E||Y;||> = O(m®/* M,,).

Result (1.5) of Gotze (1991) for approximating the distribution of the normalised sum
n=1/2 Yo Y = Z;l/an/Q(;E — &,) with that of N = (Ny,...,Np)", where these are

independent standard normals, implies
Pr{S; /20?2y — €,) € B} = Pr{N € B} + pn1(B), (A.5)

where |p,.1(B)| = O(m/n'/?) for all measurable convex sets B, provided that m > 6. This
leads to

Pr{n'/?¢ € n'/?¢, + B} = Pr{N € £;"* B} + pu2(B) = Pr{N € B} +pu2(B) + pns(B),

where p,, 2(B) = pn’l(Zgl/ZB) and |pn 3(B)| < aLm5/4/n1/2, for a finite constant a, in

that the elements of E;l 2 are at most a finite constant times Lml/‘l/nl/2 away from those

of the m x m identity matrix. This further leads to Pr{n'/?¢) € C} = Pr{N +n'/%¢ €
C}+ pna(C), where p, 4(C) = O(m5/4/n1/2) forall C. m
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