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LINEAR DISCRIMINANT ANALYSIS OF MULTIVARIATE
SPATIAL-TEMPORAL REGRESSIONS

JURATE SALTYTE-BENTH AND KESTUTIS DUCINSKAS

ABSTRACT. We consider classification of a realization of the multivariate spatial-temporal
Gaussian random field into one of two populations with different regression mean models
and factorized covariance matrices. Unknown means and common feature vector covari-
ance matrix are estimated from training samples with observations correlated in space
and time, assuming spatial-temporal correlations to be known. We present the first-order
asymptotic expansion of the expected error rate associated with linear plug-in discrimi-
nant function. Our results are applied to (ecological) data collected from the Lithuanian
economical zone in the Baltic sea.

1. INTRODUCTION

Ordinary discriminant analysis (DA) assumes that observations of feature vectors at
different locations are independent and, most often, identically distributed. However, in
practical situations it is usually not so. Data that are close together in time and/or space,
are likely to be correlated. Thus, the classification problem, with both temporal and spatial
dependencies, is very important. For example, in weather prediction the weather may be
divided into three classes: fair, rain and possible rain. Then the problem is to classify
tomorrow’s weather into one of these three classes on the basis of data from satellites,
where weather masses are observed. This is an example of DA which is often used in, for
example, pattern recognition.

When classes are completely specified and feature vectors are independent, an optimal
classification rule in the sense of minimum misclassification probability is the Bayesian
classification rule (BCR) (Anderson, 1958). In practice, however, the complete description
of classes is usually not possible and for the estimation of probabilistic characteristics
of each class training samples are required. When estimators of unknown parameters are
used, the expressions for the expected error rate are very cumbersome even for the simplest
procedures of DA. This makes it difficult to build some qualitative conclusions. Therefore,
asymptotic expansions of the expected error rate are especially important.

Date: 21 July 2003.
Key words and phrases. Asymptotic expansion, Bayes classification rule, error rate, spatial-temporal.
We are grateful to the Center of Marine Research (CMR) in Klaipéda (Lithuania) for kindly providing
us with data. Rasa Jokubauskaite, head of Ecotoxicological Department at CMR, and Ovidijus Stulpinas,
head of Hydrological Department at CMR, are thanked for consultations. Jiratée Saltyté-Benth is sup-
ported by the Norwegian Research Council under grant NFR: 155120/432.
1



2 SALTYTE-BENTH AND DUCINSKAS

Many authors have investigated the performance of the plug-in version of the BCR when
parameters are estimated from training samples with independent observations or time
series observations (see, e.g., Okamoto, 1963; Lawoko and McLachlan, 1985; Ducinskas,
1997). A good review of works in this field can be found in McLachlan (1992). The
pioneering work on the classification of spatial data is Switzer’s (1980) paper. An extension
of Switzer’s work is presented in Mardia (1984). However, neither of these authors analyse
the error rate of classification. The asymptotic expansion of the expected error rate in
spatial context was investigated in, e.g., Saltyté (2001), Duéinskas and Saltyté (2002).

In this paper, we consider the performance of the plug-in linear discriminant function
(LDF) when the parameters are estimated from training samples being realizations of
spatial-temporal Gaussian random field. We use the maximum likelihood (ML) estima-
tors of unknown means and common feature vector covariance matrix assuming spatial-
temporal correlation function to be known. We find an asymptotic expansion of the ex-
pected error rate associated with linear plug-in LDF up to the order O (N~?), where
N = Ny + Ny and N;, [ = 1,2, is the size of training sample. Also we apply the classifica-
tion procedure and obtained asymptotic expansion of the expected error rate to (ecological)
data collected in the Lithuanian economical zone in the Baltic sea.

2. MODEL AND DEFINITIONS
Spatial-temporal data can be considered as a realization of a random field
{Z (s;t):s€ D,t €[0,00)},

where s and ¢ define spatial and temporal coordinates, respectively.
Suppose that the model of Z (s;¢) in population §; is

Z(s;t) = Bllz (sit) + e (s31),

where z (s;1) = (2 (s;t),..., 24 (s;t))T is a ¢ x 1 vector of nonrandom regressors and By,
[ =1,2, is the unknown parameter matrix of order ¢ x p. Assume that

{5l(s;t):s eDCR, e [0,00)}

is a p-variate zero-mean intrinsically stationary spatial-temporal Gaussian random field
with stationary (in space and time) spatial-temporal covariance function defined by a
parametric model

cov{e;(s;t),e1(s+hg;t + hy)} = o (hg, hy; 0;) = 07 (h)
for all s,s+hs € D, t,t + hy > 0, where h = (hg, k)7, 6, = (65,6007 € O isak x 1

parameter vector, © being an open subset of R*, and 6%, 6! subvectors of parameters
of spatial and temporal covariance function components, respectively, [ = 1,2. Here we
restrict our attention to the homoscedastic models, i.e. to models with o;(0) = ¥ for each
0, € ©,1=1,2. Then, in ; the mean function at location s and time ¢ is

i (s;t) = Bl z (s;1)
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and the spatial-temporal covariance function is
g (h) = (h) E,

where ¢; (h) = ¢ (h;6,) is the spatial-temporal correlation function, [ = 1,2. It is assumed
that the function ¢ (h) is positive definite (Cressie and Huang, 1999).
Assume that, for all s,s + hg € D, ¢t,t + h; > 0, hg # 0, hy # 0,

(2.1) cov{ey (s;t),e2(s+ hs;t + hy)} = 0.

Consider the problem of classification of p-variate observation vector Z° = Z (s¢;t0)
with sg € Dy C D, tg > 0, into one of two populations specified above. Denote by 7
and 79 the prior probabilities of populations Q; and €, respectively (70 + 79 = 1). Here
the superscript 0 is used to emphasize that prior probabilities can depend on the position
(in space and time) of the observation to be classified. Under the assumption that the
populations are completely specified and for known prior probabilities, the BCR dp (+)
minimizing the probability of misclassification (PMC) is

(2.2) dp (2°) = arg nax, mp (),

0 is a realization of Z° and

P (ZO) = (271')_5 |E|_% exp (—% (ZO — ILL?) B (Z — MZ))

where z

is a probability density function (p.d.f.) of Z%in Q, [ = 1,2. Here u? = p; (so;to) = B 2°,
with 2% = x (so; o), is a p-variate mean vector and ¥ is a covariance matrix of Z°.

Denote by Pg the PMC of BCR, which is often called Bayes error rate.

In practical applications the parameters of the p.d.f. are usually not known. Then the
estimators of unknown parameters can be found from training samples 77 and T, taken
separately from €}y and )y, respectively. When estimators of unknown parameters are
used, the plug-in version of BCR is obtained.

Suppose that the spatial-temporal random field is observed at N = N; + N, spatial-
temporal coordinates in region Dy C D, i.e. we observe the training sample T' = (TIT, TQT)T,
where T} is the N; X p matrix of N; observations of p-variate 7 (s, t) from ©;, [ = 1,2. Then
T is the N x p matrix.

Assume that D; is beyond the zone of influence of Dy. Then Z° is independent on 7.

Let El, B, and 3 be the estimators of Bi, By and ¥, respectively, based on T', and
let 71 (s;t) = EZTLE (s;t), I = 1,2. Similarly, g} is the estimator of pf, I = 1,2. Put

U = (40,43, %) and ¥ = (ﬁmg,z)
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The plug-in rule dp (20; @) is obtained by replacing the parameters in (2.2) with their

estimators. Then the corresponding sample LDF is defined as
~ 1 T _
w(20) = (-5 @) S @ -+
7\"0
where v = In .
2

Definition 2.1. The actual error rate for dg (zo; \/I}> is defined as

P(0) =St [ (15 (1 (58) ) (2w a2,
where 4 (-, ) is the Kronecker delta.

In the considered case the actual error rate for dp <ZO; {I\/) can be rewritten as

0_ 170 7o\['§-1(70 _ o0
~ _1 3 _
p (ql) _ 2 :’/T?(I) (_1)1 (/M 2 0y + :“2)) (17 —13) +
0 AT O e (0
V@ — 397 S EE (30 - )

where @ (+) is the standard normal distribution function.

Definition 2.2. The expectation of the actual error rate with respect to the distribution of

T, designated as Kt {P (ﬁ\/) }, is called the expected error rate (EER) for the dp (zo; {I\/)

In the following section we find the ML estimators for means and covariance matrix and
derive the asymptotic expansion for the EER.

3. MAIN RESULTS

Denote by C) the spatial-temporal correlation matrix of order N; x N; with elements
¢; (h) and suppose that C; is known, [ = 1,2. Let X; be an N; X ¢ regressor matrix of the
training sample T;, [ = 1,2. Then for [ = 1,2 the model of T} is

Ty=XiB + Ep,

where F; is the N; X p matrix of random errors that are distributed according to a ma-
trix multivariate normal distribution Ny,x, (0,C; ® ¥) (see Kai-Tai and Yao-Ting, 1990,
chapter 3). So we can write T; ~ Ny,x, (XiB;, C; ® X).

Lemma 3.1. Forl = 1,2, ML estimators of B; and ¥ based on T are

(3.1) BMY = (X[cr'x) T X[ e

and
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2

. 1 o NT N
(3.2) Sw = (17— X:BM") ot (- xi B
=1

Proof. The log-likelihood of T} is

1
L (B, X) = const — 5 (pIn|Ci| + NiIn |X]) —

1
—5tr (crt(m=-xiB) == (T - XiB)") .

After setting the partial derivatives of L (B, ¥) with respect to B; equal to zero we obtain
normal equations

xrertx gyt = xtertny T,
[ =1,2, which lead us to (3.1).

Now solving the matrix equation 212:1 SI;ELZ = 0 we obtain (3.2). Taking matrix deriva-
tives we used results from chapter 9 in Magnus and Neudecker (2002). O
Corollary 3.2. The ML estimator EML 15 a biased estimator and

& N -2
(3.3) E{EML} - I,

Proof. The estimator S given in (3.2) can be rewritten in the following way
2
S 1 T T ~-1
Sur = ;Tl (I-P) C7Y(I-P)T,,
where .
p=Xx/(X'cr'x) x/ ot
is an idempotent matrix, [ = 1,2. Using properties of idempotent matrices and Gaussian

random vectors (see, e.g., Magnus and Neudecker, 2002), we obtain (3.3). Thus, further
we will use the bias adjusted estimator

S =

Y ML-
N —2q ML

O

Put Apd = @ — ) = (EZML - B;)TJ;O, [ =1,2, and AS = ¥ — 3. Let ¢ (+) be the
standard normal p.d.f. Denote by Pl(l) = 0P (ﬁ\/) Jon?, Pl(,i) = %P (@) ey, (ﬁg)T,
P = 0P (0) (05, P2, = 0P (9) (05,05, and P = 0*P/ (¥) 075,06,
the partial derivatives up to second order of P <\/I}) with respect to the corresponding

parameters evaluated at @9 = u9, 19 = p§ and S = ¥, where i~ denotes the m component

of the vector ¥ and @;; is 77 element of the matrix i, LLk=1,2,2,7,m,n=1,..,p.



6 SALTYTE-BENTH AND DUCINSKAS
Let Aw, (C)) be the largest eigenvalue of C, [ = 1,2. We make the following assumptions:
(A1) (J;O)T (XI'X))2"=0 (N%>, as N} — oo.
(A2) Ay, (C)) < v, v < 0o, as Nj — 00, [ =1,2.
(A3) %—;—H),asNl,N2—>oo,0<v<oo,l:1,2.

Theorem 3.3. Suppose (A1)-(A3) hold for training samples Ty, Ty. Then the asymptotic
expansion of the expected error rate for the dg (ZO; @) is

2
SN 2
ET{P(Q)}_PB+;a1+N_2q+O(N ),
where
Pg = im% <—é + (—l)l“l)
=1 2 A
1 A v\ [A 41 7 —1y 7!
a=ggte (-5 -1) (B +0 L) @ (T,
Ay (Y
b= = — L — - 1A
7T199< 5 A><A+(p ) )
and

A= = 17 =1 (18 - )

is the Mahalanobis distance, [ = 1,2.

Proof. Since P (V] is invariant under linear transformations of data we use the more

convenient canonical form of

(3.4) =1,
where 1g is a p-variate vector of zeroes except first coordinate which is equal to 1,1 =1, 2.
Expand P (\I/) in a Taylor series about the point u{ = %10, pY = —%10, Y = [. Taking

the expectation with respect to the distribution of 7" and dropping the third order terms
we have

Er{P(¥)} = P+ 22: (PZ“))T Er{AR} + Xp: (Pafff)T Er{AG} +

t,5=1

3 (P,k Er {A (A7 k)T}) +

k=1

_|_

DO | =
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R T SR
(3.5) = (ngf]ﬁm) Er {AG; A%} +

2,7,m,n=1

1 T R
+52. 2. (P z(fi),aj) Er {AGi;Afiy, } -

lLk=11,7,m=1

Since P (ifl) is minimized at (3.4), then, for [ = 1,2,

(3.6) PV =0,
where 0, is p-dimensional vector of zeroes, and
(3.7) P =0.

Using Lemma 3.1 we get that, for [ = 1,2,

(3.8) Br {a (A7)} = ()" (X CrX) e %
From (2.1) it follows, that

(3.9) B { A (A7)} = 0,0,

where 0,5, is p X p matrix of zeroes. Also

~ A~ 1
(310) E (AO‘Z']‘AO'mn) = N — 2q (O'Z'ma'jn —|— Umajm)
and
(3.11) Er {AG; AL}, } =0,

because of the properties of Gaussian variables (Magnus and Neudecker, 2002).
Note that

0 A A E
o= (5-3) (e ((Gre3) ) i)

for i =1,2.
Using assumptions (A1) and (A2) and the inequality

(SIZO)T (XZTC'l_le)_l :L‘O < /\Nz (Ol) . (SIZO)T (XZTXZ)_l :EO,

we can conclude that a; = O (NLJ ,yas Ny — oo, [ =1,2.

Under assumptions (A1)-(A3) the residual term of (3.5) is of order O (N~?). Then
putting (3.6)-(3.12) into (3.5) we complete the proof of the theorem. O



8 SALTYTE-BENTH AND DUCINSKAS

As the contribution from higher order terms in the presented asymptotic expansion is
negligible, we use (for the evaluation of the performance of LDF) the asymptotic expected
error regret

AEER = Za; + 5 o

where a;, [ = 1,2, and b are defined earher. Minimum of AEFER could also be used as a
criterion for optimal training sample design.

Remark. In the case of (spatial) Gaussian random field with multivariate constant mean
the asymptotic expansion of EER is (Duéinskas and Saltyté, 2002):

Br{P ()} = PB+Z +—+0( ),

et (33) e (o)
oo (- G0

o 4T =1
Cl _1NZOI 1Nl7

here 1y, is Ni-dimensional vector of ones, [ =1, 2.

where

and

In the last section we apply the classification procedure used in this paper and calculate
AFFER values to a real data set.

4. APPLICATION

Many different factors affect the quality of water, and herewith the conditions for species
living there. Here we analyse quarterly data collected in the Baltic sea in Lithuanian eco-
nomical zone in the period 1994-2001. The factors we are interesting in are amount of
oxygen (ml/1), salinity (PSU) and activity of the hydrogen ions (pH) in the water. Accord-
ing to hydrological laws for coastal and open sea waters, it is reasonable to distinguish the
following groups of stations where measurements are performed: coastal zone, dumping
site and Klaipéda transect (map of stations can be found in, for example, Report, 2002).
Stations in the Klaipéda transect are between coastal zone and dumping site and are spread
in different distances towards the open sea. It may be interesting to see properties of which
zone are more common to them. Thus, we say that there are two classes of stations (coastal
zone and dumping site) at which the three mentioned above factors are measured.

Measurements are made at different depths. As in this paper the influence of depth on
factors is not investigated, we deal only with the observations made at 1 meter depth.

We have 32 time periods when measurements in each station were performed. In the
coastal zone (€) there are 10 stations, and in the dumping site (€23) only 3. In the Klaipeda
transect we have 4 stations; these are stations to be classified. Thus N; = 320, Ny = 96
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and p = 3. We assume that the data are realizations of the spatial-temporal Gaussian
random field.

In this paper we deal with a special case of regression mean model, namely the first-order
trend surface model (Haining, 1990). There was no temporal trend detected, so we say
that the regressor matrix for each time period is the same.

In our model we use the assumption of known spatial-temporal correlation matrices.
However, in practice this is usually not the case. Therefore, we perform further calculations
with correlation matrices obtained by using parametric spatial-temporal correlation func-
tions fitted to empirical ones. Fitting of correlation function in spatial-temporal context
is more difficult than in the spatial case. Thus, we consider spatial-temporal correlation
models which are separable in a multiplicative sense (Cressie and Huang, 1999; De Cesare

et.al., 2001), i.e.
C] (h) = (] (hs) C] (ht) 5

where ¢; (hg) = ¢ (hg; 0F) and ¢; (hy) = ¢(hs;0}), | = 1,2, are spatial and temporal correla-
tion functions, respectively.

According to our model, the multivariate structure of a set of features is independent
on the spatial correlation, which is the same for all features. This is a so called intrinsic
multivariate correlation, because the correlation between features does not depend upon
spatial scale (Wackernagel, 1995). This fact we use when estimating the spatial correlation
function for our data. We use the following procedure. For every pair of locations (stations)
in geographical space a correlation value between two time series can be calculated. This
we do for all three features separately. After plotting all obtained empirical correlations
vs. distance we easily fit parametrical model by using the nlinfit function in Matlab.

Here we consider the following spatial correlation functions (see, e.g., Journel and Hui-

jbregts, 1978):

Spherical
1’ |hS| = 07
65 hs he| )2 .
)= { 7l (13241 (%)), o<l <o,
) |he| > 65,,

where 607 is the nugget effect, 07, + 07, - sill and 67, - range of the spherical correlation
function.

Exponential
¢ (hs) = { 1767’1 1 h. =0,
o +o5, OXP (‘gM) , hg>0,
Gaussian
¢ (hg) = { 170151 L s , h, =0,
g €XP (—@ (h2, + azh52)> . hy>0,
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TABLE 1. Parameters of spatial correlation functions in £; and €,

Parameters S FE1 E G1 G
Foi—  0.6617  0.6731 07209 0.6202  0.6521

05, 34.3976  0.0546 02129  0.0057  0.1154

a - 1 0.0816 1 0.0520

MSE, 0.0720 0.0718 0.0711 0.0730 0.0719
it 0.9999 0.9659 0.9658 0.9596 0.9597

0% 07,
05, 0.4285 0.0319 0.0105 0.0336 0.0036
0 — 1 10.0502 1 10.3926

MSFE; 05539 2.41e — 04 2.40e — 04 2.4be — 04 2.44e — 04

where hgy = (hg, hsg)T, 07, and 67, + 07, are the nugget effect and sill, respectively, 67, in
the last two models is parameter describing the rate of change in spatial dependence, and
oy 1s the parameter of anisotropy, [ = 1, 2.

Parameters of fitted spatial correlation functions in €; and €, are presented in Table
1. We use the following abreviations: S for spherical, K1 for isotropical exponential, £
for anisotropical exponential, G1 for isotropical Gaussian and G for anisotropical Gaussian
correlation function. As criteria for choosing the function which fits best the empirical
data the mean square error is used. In Table 1 it is denoted by M SF; for ©; and MSFE,
for Qs.

As we see from the Table 1, the anisotropical exponential spatial correlation function
for both classes fits data best. Thus in the further analysis we use this function.

In order to fit a time correlation function we calculate autocorrelation functions up to
lag 12 for time series at each location. Then we average obtained autocorrelations over all
stations in certain class. We repeat this procedure for each feature separately. Plotting all
three obtained empirical autocorrelation functions and again using nlinfit function we find
the best fit. As the behaviour of the empirical autocorrelation function was very similar to
the exponential one, we will consider only the exponential temporal correlation function:

5 1, ht - 0,
¢ (he) = exp (—;—tht> , hy >0,
13

where 0] is parameter describing how fast the temporal correlation function decreases.

Fitted values of parameters for the temporal exponential correlation function are: 7 =
0.2796 and 6% = 0.0654.

Suppose we are interesting in classifying the observations made in spring 2001 at 4
stations in the Klaipéda transect. We denote these 4 stations by letters A, B, C' and D.
Mahalanobis distances denoted by Ax, K = A, B,C, D, between each of these stations
and classes €}y and ), are given in Table 2.
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TABLE 2. Mahalanobis distances

O Q,

Ay 3.5636 5.8857
Ap 3.7109 5.7976
Ac 3.8008 5.6678
Ap 3.8717 5.5021

TABLE 3. Classification results and values of AEER

Station A ¢ Class Ps AEFER AFEFER;,.;
A 1.2530 0.5 2 0.2654 0.1046 0.0931
B 43919 0.5 1 0.0140 0.0013 0.0009
C 11.4030 0.5 1 0.0011 0.0001 0.0000
D 20.5466 0.5 1 0.0000 0.0000 0.0000
A 1.2530 0.75 2 0.4657 0.0576 0.0490
B 43919 0.75 1 0.0212 0.0014 0.0010
C 11.4030 0.75 1 0.0018 0.0001 0.0000
D 20.5466 0.75 1 0.0000 0.0000 0.0000
A 1.2530 0.38 2 0.3085 0.4360 0.3912
B 4.3919 0.39 1 0.0153 0.0012 0.0008
C 11.4030 0.40 1 0.0001 0.0001 0.0000
D 20.5466 0.41 1 0.0000 0.0000 0.0000

In order to classify these stations, we use the plug-in Bayes classification rule. As we
don’t know true values of means of both classes and feature vector covariance matrix, we
will use their ML estimators from (3.1) and (3.2). The classification results and the values
of AEFER are given in Table 3. Here we consider different values of prior probabilities:

1) equal prior probabilities, i.e. 7¥ = 0.5; 2) the value of 7} = 0.75 was chosen as a
proportion of number of points in Qy; and 3) the value 7y proportional to the Mahalanobis
distance from the point to be classified to the ;.

As we see from Table 3 and as one can expect, the Bayes error rate Pg and AFER
decreases when the distance between classes increases. The smallest values (almost zero)
of Pg and AEE R are obtained in the case when a station D is classified. Such small values
correspond to the big Mahalanobis distance between classes. In other words, big distance
between classes means that it is very unlikely to make a mistake when station is classified.

In all considered cases of m) station A is assigned to the dumping site and the 3 other
stations to the coastal zone. In order to obtain the smaller AEE R value for the considered
data set one should not use the prior probabilities proportional to the number of points in
the corresponding class.

As it was expected, the AEER values in the case of independent (in time and space)
observations (denoted by AEE R;,,q) are the smallest ones. Thus, it is very important take
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into consideration the temporal and spatial dependency factor when practical problems
are solved.

The same calculations were performed for the observations made at the same 4 stations
in the autumn 2001. Even though the numerical values were slightly different, the general
tendencies remained the same.
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