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Precise measurements of gravity waves with very small wave slope in a physical wave tank are
compared with an explicit linear inviscid wave maker theory. The main purpose is to measure the
speed of the physical waves relative to those computed. We find that the wave speed in the physical
wave tank 1s slightly less than in the computations. The small difference in the wave speed leads to a
relative phase difference between the real waves and the inviscid computations of about 0.01£0.006
radians per wave length (0.16%+0.1%), which is comparable to an estimated phase delay due the
boundary layer at the tank walls. In this result, the estimated effects of weak nonlinearity and
surface tension in the experiments are subtracted. This relative phase difference 1s significantly
smaller than what previous investigations in wave tanks of sitmilar size have indicated.

1 Introduction

Several recent papers concern the development of a numerical wave tank which is the
theoretical-numerical counterpart of a physical wave tank. The purpose may be a detailed
study of e.g. strongly nonlinear gravity waves. Another objective may be to simulate the
forces acting on a body exposed to a wave field. Such a numerical wave tank was developed
by e.g. Dommermuth et al. (1988) several years ago who implemented an improved
version of the algorithm due to Vinje and Brevig (1981). They succeeded in modeling a
breaking wave up to re-entry. Moreover, they compared the numerical simulations with
laboratory experiments by Melville and co-authors, see e.g. Melville and Rapp (1985).
The comparison between the numerical and physical waves was rather good, apart from
a small phase difference between the real waves and the numerical simulations. It was
tentatively speculated in Dommermuth et al. (1988) that the cause was dissipation in the
physical wave tank. Later, Skyner (1996) performed a similar investigation comparing PTV
measurements of a breaking wave with the theoretical-numerical model of Dold & Peregrine
(1986). Skyner noted a rather significant phase difference between the experiments and
the theoretical model. Such a phase difference was also noted between some previous
laboratory experiments carried out at the University of Oslo and a numerical code for
analyzing nonlinear wave loads on large volume marine structures, described by Cai and
Mehlum (1996). It turns out that the phase difference noted in these examples is an order
of magnitude larger than can be explained by physical effects like dissipation and surface
tension, where the former effect is expected to reduce the wave speed while the latter may
increase the wave speed.



From the above examples one may question: should a rather significant phase difference,
which is increasing in time, between waves in a physical wave tank and precise theoretical
inviscid simulations be expected? This question has motivated the present study. We shall
perform precise measurements of waves with very small wave slope in a physical wave tank
and compare with an explicit linear inviscid wave maker theory. Input to the latter is the
motion of the physical wave maker. The ultimate goal is precise measurements of the phase
of the physical waves relative to the theoretical model which produce numerical results to
desired accuracy.

2 Experiments and theoretical model

The experiments are carried out in a wave tank in the Hydrodynamical Laboratory at
the University of Oslo. The wave tank is 24.6m long, 0.5m wide and the water depth is
0.6m. In one end of the tank there is a hydraulic piston wave maker. At the other end
there is an absorbing beach to damp the waves. Measurements of the wave elevation are
performed at several positions of the tank. The measurements are terminated before any
(small) reflected wave has returned to the measurement position. The wave tank and the
motion of the wave maker are very precise. Documentation of the accuracy of the wave
tank complementary to this description may be found in Huseby and Grue (1999).

For controlling and monitoring the wave maker and to record the surface elevation we
use a computer with the data acquisition cards AT-MIO-16E-1 and AT-MIO-64E-3 from
National Instruments. The update rate of the wave maker and the sampling rate of the
data acquisition is 1000Hz. (Some experiments using a sampling rate of 100Hz were also
performed, but results are not shown here. The results of these experiments were not
sufficiently accurate. We have found that a sampling rate of 1000Hz was needed to get
conclusive results of the investigation.) The motion of the wave maker is measured with a
magnetic digital scale system with accuracy about 4+ 0.1mm. These measurements are used
for input to the linear theoretical model (see below) that we compare with experiments.
Thus it is important that the position of the wave maker is determined with high precision.

Relevant to the previous experiments we compare with, a group of transient waves
focusing at a certain distance from the wave maker is investigated. The input signal to the
wave maker is given by
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where 7 is a constant for the calculation from volt to cm, 7, is the length of the time series
of the wave maker, « is a constant, wy is frequency and V4 is the amplitude in volt. We
perform a total of sixteen experiments with a = 0.3, wg = 27 - 2.0s™" giving a focusing of
the waves at 11.5m. The amplitude V4 is either 0.04V or 0.06V. Four wave gauges are used
to measure the surface elevation in each run. The resolution of these gauges is 0.1mm.
They are static calibrated.



The experimental results are compared with the linear transient wave maker solution
presented in Dommermuth et al. (1988). The free surface elevation 5 is in non-dimensional
form determined by

n = %Z Z(ki + k2 )7 cos kn:zj/o drU(7) cosw,(t —7) + %/0 drU(r), (2)

[
n=1 m=1

where k,, = (m +1/2), k, = nn/L, w? = k, tanhk, and L is the non-dimensional length
of the tank (with unit depth). U(7) is the input velocity from the time history of the wave
maker. Equation (2) is the version due to a tank of finite length, derived from the infinite

length case of Kennard (1949).

3 Results

In figure 1 we present the free-surface elevation at three different positions from the wave
maker at rest: 2.0m, 6.0m and 12.5m. Both theory and experiments due to four different
runs are shown. The experimental results compare excellent with the linear theory, apart
from a small reduction in the experimental wave elevation.

With the purpose of a closer investigation of the results we apply Fourier transform of
the measured and computed elevation n(?) in a time interval between Ty and Ty, i.e.

)= [ nean, ®)
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where w denotes frequency. The magnitude of F(w) is determined by |F(w)| and the phase
of F(w) by

argF(w) = Im(InF(w)). (4)

We first consider |F(w)|. Results due to four separate runs are displayed in each of
the figures 2a-b. The experiments are very repeatable. The comparisons between theory
and experiment show good agreement apart from a small continuous reduction of the
experimental |F(w)| as the wave group propagates along the tank. The damping rate due
to dissipation in the the boundary layer at the walls and the bottom of the wave tank
was studied by Mei and Liu (1973). From their egs. (2.11) and (4.19) the damping of the

amplitude of the waves, per wave length, is
exp(—2md/b), (5)

where § = /v/2w denotes the boundary layer thickness, b the half width of the wave
tank and v the kinematic viscosity. The damping rate given by (5) fits with the damping
observed in the experiments.

Before we consider the results for argF(w) we estimate the effects on the wave speed
due to the boundary layer at the tank walls, the weak nonlinearity and surface tension in
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the experiments. The former effect may be obtained from Mei and Liu (1973) eqs. (2.11)
and (4.19), giving a wave attenuation after a distance Az of

—(9/b) - (kAz), (6)

where ¢ and b are defined after (5), Ax denotes the travel distance of the wave and & the
wavenumber. With v = 107% m?s™" and w =7s7!, (6) predicts a phase delay of —0.007
radians per wave length A (Az = X), and —0.06 radians for the distance between the
recording positions at 2m and 12.5m. These estimates apply to the peak frequency of the
wave group.

The nonlinear dispersion relation for deep water gravity waves, w? = gk(1 + A%k?),
where A denotes wave amplitude and ¢ acceleration due to gravity, introduces an excess
speed of waves with a finite Ak as compared to waves with Ak = 0. This excess speed 1is
determined by ¢/ci, —1 = A%k?, where ¢, = ¢(Ak = 0). A corresponding phase difference
between nonlinear and linear waves traveling a distance Az then becomes

A% (kAx). (7)

We perform the experiments with two different small but finite amplitudes. For the smallest
waves with Ak ~ 0.025 at the peak frequency (figures 1, 2a, 3a), (7) predicts a positive
phase difference of 0.004 radians per wave length, and 0.03 radians when the waves travel
from the position at 2m to that at 12.5m. For the larger waves with Ak ~ 0.038 at the peak
frequency (figures 2b, 3b), the corresponding positive phase differences are 0.009 radians
and 0.08 radians.

A phase difference due to surface tension is

p—gk2 - (kAz), (8)

where (7/pg)"/? ~ 3mm. (8) gives approximately a phase difference of 0.001 radians per
wave length and 0.01 radians when the waves travel from the position at 2m to that at
12.5m. Thus, the estimated effects of a boundary layer, nonlinearity and surface tension
in the physical experiments nearly cancel.

We now consider the difference between the theoretical and the experimental argF(w).
When argFipeory(w) — argFerp(w) < 0 the computed waves are ahead of the the waves
in the physical wave tank. On the other hand, when argFipeory(w) — argFepp(w) > 0,
the physical waves are ahead of the computations. The results in figure 3 show that this
difference is close to zero. More precisely,

argftheory(w) - argfexp(w) ~ —0.05 £ 0.05 (9)

radians for most of the frequencies, for the smallest waves (Ak = 0.025), when the
waves have traveled the distance between the positions at 2m and 12.5m. This corre-
sponds to a phase delay of —0.006+£0.006 radians per wave length. We note in particu-
lar that argFipeory(w) — argFerp(w) =~ 0 at the recording position at 6m. Furthermore,
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argFineory(w) —argFe.p(w) is the same at the positions at 2m and 12.5m, for frequencies in
the vicinity of the peak frequency. This means that the dominant part of the wave group
travels with the same (average) speed in the computations and in the physical experiments
between the positions at 2m and 12.5m.

The results in figure 3 fit with the discussion above on the effects of boundary layer,
nonlinearity and surface tension, which, as noted, nearly cancel in the experiments. If
we subtract the effects of nonlinearity and surface tension in the experiments, we expect
a phase delay of —0.0140.006 radians per wave length between experiments with linear
waves without surface tension, and the computations.

We may now compare our results with those of earlier investigations, Dommermuth
et al. (1988) and Skyner (1996), both carried out in wave tanks of similar size as ours.
In Dommermuth et al. (1988) the wave group had a peak frequency of wpear = 5.53s7!
and a corresponding wave length of Ao = 1.93m. It was noted that the numerical
simulations were ahead of the physical waves with 0.06s after a travel distance of about
six wave lengths. This gives a phase difference (after six waves) of w,ear At ~ 0.34 radians,
or 0.06 radians per wave length. In Skyner (1996), with a peak frequency of the wave
group of wpear 2~ 5.1457! and a corresponding Ape.r = 2.26m, it appears that the numerical
simulations were behind the physical waves with 0.125s, or wye.; At ~ 0.63 radians, after
a travel distance of about 2.2 wave lengths. This gives a phase difference of 0.29 radians
per wave length. The results of our investigation, with wpe,r = 787" and Ajear = 1.25m,
are compared with the previous investigations in table 1. We obtain here a relative phase
difference between the experiments and the theoretical model which is significantly smaller
than indicated by the other investigations.

Our experimental results (both phases and amplitudes) were found not to be sensitive
to the presence of a surface film produced using a wetting agent (results not shown). This
effect can thus effectively be ruled out as an explanation for the large phase shifts reported

in Dommermuth et al. (1988) and Skyner (1996).

4 Conclusion

The purpose of the investigation has been to quantify the relative phase difference between
waves propagating in a physical wave tank and precise inviscid linear computations. We
have found that:

o The wave speed in the physical wave tank is slightly less than in the computations.
The small difference in the wave speed leads to a relative phase difference between
the real waves and the inviscid linear computations of about 0.0140.006 radians per
wave length (0.16%40.1%). In this result, the estimated effects of weak nonlinearity
and surface tension in the experiments are subtracted.

e This relative phase difference is significantly smaller than what previous investiga-
tions in wave tanks of similar size have indicated.



e The (small) relative phase difference is of the same size as the estimated effect of the
boundary layer at the tank walls (Mei and Liu, 1973).

e A data acquisition system with a high sampling rate (1000Hz) was crucial to obtain
precise results in the experiments.
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| [ A | B | ¢
Dommermuth et al. (1988) —0.06s | —0.34 —0.06 (-1%)
Skyner (1996) 0.125s | 0.63 0.29 (4.6%)
Present —0.01 £+ 0.006 (—0.16% + 0.1%)
Boundary layer (Mei and Liu, 1973) —0.007 (—=0.1%)

Table 1: Column A: Difference in time At at a recording position, between arrival of
waves in a physical and a numerical wave tank. Column B: wpear At (=argFineory(w) —
argFezp(w)). Column C: wpear At per wave length.
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Figure 1: Surface elevation (cm) vs. time (sec) at three different positions, from top:
r=2.0m, 6.0m and 12.5m. Four subsequent experiments (dashed lines) and linearized
theory (solid lines). Peak frequency wpear = 7571, Vo = 0.04V and nmankpear =~ 0.025. Note
the difference in horizontal scale between figures a and b & c.
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Figure 2: |F(w)| for four experiments at two positions and theory. Dashed lines are
experiments at @ = 2m (solid is theory) and dotted lines at @ = 12.5m (dash dot is
theory). a): Vo = 0.04V, nparkpear = 0.025. b): Vo = 0.08V, npaxkpear =~ 0.038.
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Figure 3: argFipeory(w) — argFezp(w). Dashed lines are at @ = 2m, dotted lines at © = 6m
and solid lines are at @ = 12.5m. a): Vo = 0.04V, npawkpear >~ 0.025. b): V5 = 0.08V,
Nimazkpear =~ 0.038.
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