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Solitary waves of depression propagating horizontally in a stratified fluid are investi-
gated. The fluid has an upper shallow layer with linear stratification and a lower deep
layer with constant density. The investigation is both experimental and theoretical. In
the experiments, detailed recordings of the velocities induced by the waves are facilitated
by recent developments of particle tracking velocimetry (PTV) and particle image ve-
locimetry (PIV). Particular focus is paid to the role of wave breaking which is observed
in the experiments. Incipient breaking is found to take place for moderately large waves
in the form of generation of vortices in the leading part of the waves. The maximal fluid
velocity close to the free surface, introduced by the waves, is then comparable to the
linear long wave speed of the two-fluid system, and the wave amplitude is about half of
the depth of the upper shallow layer. Wave amplitude is defined by the maximal nega-
tive excursion of the upper layer. The breaking increases in power with increasing wave
amplitude and serves to limit the magnitude of the induced fluid velocity, the amplitude
and the propagation speed. The breaking also introduces a broadening of the waves. A
theoretical fully nonlinear two-layer model is developed in parallel with the experiments.
In the theoretical model the fluid motion is assumed to be steady in a frame of reference
moving with the wave. The Brunt-Vaisala frequency is constant in the upper layer and
zero in the lower layer. Mathematical solution is obtained by means of integral equations.
Results from the experiments, among others the vorticity induced by the waves, are com-
pared with the theory. The effect of wave breaking is clearly seen in the experimental
vorticity, particularly when compared with the theory, where in the latter wave breaking
is not included. The theory does not predict the limiting amplitude, the limiting wave
speed and the broadening of the waves. While the experiments are always run with a
lower layer with depth iy being 4.13 times the depth hy of the upper, the results from
the theoretical model show that the velocity field induced by the waves is similar for all
depth ratios hy/hy larger than about 3. This indicates that wave breaking and the effect
of wave breaking is the same for all depth ratios hy/hy larger than about 3.

1 Introduction

This study concerns solitary waves of depression propagating in a stratified fluid. The
study has several motivations. One is a recent concern about the possible effect of internal
waves on compliant offshore units for extraction of hydrocarbons in deep layered oceans.
Such offshore units may be floating platforms or ships at the sea surface with connecting
risers and cables to wells and equipment at the sea floor. The concern is the possible
loads and induced vibrations of the risers and cables caused by internal waves. Another
problem relates to a proposed submerged floating tunnel across Hggsfjorden in Rogaland
in Norway. Internal waves may be generated and propagate in the layered fjord, and both
the wave environment and the induced loads on such a tunnel are not yet sufficiently
known. The dynamics of internal waves and their effects also represent other challenges.
There are still several unsolved problems relating to the generation of internal waves, the



propagation properties and the break-up of internal waves entering a shore. Yet another
aspect 1s that internal solitary waves may transport mass over long distances when the
amplitude is sufficiently large. This is the case for the waves in the present study. Wave
induced mass transport has implications among others to sediment transport in the ocean
(geology) and to transport of larvae (biology). Some of the recent developments of the
study of internal solitary waves and their effects may be found in Duda (1998).

We shall here be concerned with properties of solitary waves of depression propagating
in a stratified fluid. The investigation may be relevant to the applications just mentioned,
among others. The investigation combines experiments and theory. The experiments are
performed in a wave tank with a two-layer fluid with a shallow upper layer of brine of
linear stratification and a deep lower layer of brine of homogeneous density. The shape of
the density profile is motivated by conditions in nature where solitary waves are observed,
see figure 1. We generate solitary waves of mode one which propagate along the wave
tank, see figure 2. The amplitude of the waves, defined by the maximal negative excursion
of the upper layer, is in a rather large range. Particle tracking velocimetry (PTV) and
particle image velocimetry (PIV) is applied to make detailed recordings of the induced
velocities due to the waves.

Surprisingly, we shall find that wave breaking occurs for rather moderate amplitude.
The breaking takes place by formation of small vortices in the leading part of the waves
(for illustration, see e.g. figure 13). Further, we shall find that the breaking serves to limit
the amplitude, the propagation speed and the magnitude of the induced fluid velocity.
Also, broadening of the waves takes place when the volume of the wave exceeds a certain
value. We shall in the paper pay much attention to the wave breaking and the effect of
wave breaking.

With the purpose of providing a thorough understanding of the experiments and to
interpret the results, we develop a theoretical model of the experiments. We consider
steady wave solutions in a two-layer fluid, where the Brunt-Vaisala frequency is constant
in the upper layer and zero in the lower layer. (The theoretical model does not include
transient effects like wave breaking.) The equations of the fully nonlinear model are
derived along the lines of previous studies (Long, 1958; Yih, 1960; Tung, Chan & Kubota,
1982; Turkington, Eydeland & Wang, 1991). We have found it advantageous to solve the
the mathematical problem by means of integral equations. This solution procedure is well
suited to the present two-layer model, where the Brunt-Vaisala frequency is discontinuous
at the transition between the upper and lower layer. We compare several quantities from
the experiments with the theory, among others the vorticity induced by the waves. The
effect of wave breaking is clearly seen in the experimental vorticity, particularly when
compared with the theory where wave breaking is not included.

In a recent study, Derzho & Grimshaw (1997) develop a long wave model of solitary
waves with a vortex core propagating in a shallow layer of stratified fluid. They give
numerical results for a linear stratification of the total fluid layer, finding that the vortex
core in their model introduces a broadening of the waves. Furthermore, they find that the
propagation speed increases somewhat less than linearly with the wave amplitude, close
to a saturation. The results by Derzho & Grimshaw are in principle somewhat related to
ours. Their numerical values of the broadening effect and the nonlinear wave speed are
small, however, and may be difficult to observe in experiments like e.g. those we describe
here. Furthermore, their vortex core, with constant vorticity, is rather different from what
we observe in the experiments for the large waves. These waves, in the experiments, have
an upper region containing pronounced vorticity with rather strong oscillations about a
nonzero mean. The velocity field in our experiments for the large waves is clearly three-
dimensional.

We further note a rather fundamental difference between our study and that of Derzho
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Figure 1: Examples of density profiles in large scale where internal solitary waves are
observed. (a) and (b) at the Knight Inlet (Farmer and Smith, 1980, figure 2), (c) in the
Sulu Sea (Apel et al. 1985, figure 3).
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and Grimshaw. In our, we consider waves in a two-layer model which provides a wave
guide. We study how the breaking determines the wave properties when the amplitude
is large. The model of Derzho and Grimshaw has, on the other hand, no wave guide
when they apply a linear stratification and the vortex core is absent. A direct experi-
mental verification of the theoretical examples given by Derzho and Grimshaw would be
interesting.

We note that vortex cores in internal solitary waves of mode 2 have been previously
described in experimental works by Davis & Acrivos (1967), Maxworthy (1980), Stamp &
Jacka (1995), however without giving detailed results for the velocity fields, the breaking
and the broadening of the waves. Further, we note that the theoretical fully nonlinear
models predict internal waves containing a region of recirculating fluid when the ampli-
tude increases beyond a certain value. The (theoretical) fluid velocity at the free surface
above the centre of the wave becomes equal to the propagation speed when the recircu-
lating region appears (critical speed), indicating that breaking should occur for realistic
waves. We find that breaking of the waves appear rather different in the experiments
from what can be anticipated by theory. Further, incipient breaking occurs for waves
with considerably smaller amplitude than indicated by theory.

The paper is organized as follows: §2 describes the experimental arrangements and
the PTV and PIV techniques. §3 describes the theoretical two-layer model, the integral
equation method and the numerical procedure. In §4 results for the propagation speed
of the waves are given. Results for waves with small amplitude are given in §5. Detailed
results of incipent breaking, in terms of velocity and vorticity plots, are given in §6. The
wave amplitude is then moderate. In §7 results for waves with limiting amplitude and
propagation speed, and broadening of the waves are given. Finally, §8 contains concluding
remarks.

2 Experiments

2.1 Calibration of the two-layer model

The experiments are carried out in a wave tank in the Hydrodynamical Laboratory at
the University of Oslo. The wave tank is totally 25m long and 0.5m wide. We have found
it convenient to perform experiments in sections of the wave tank being either 12.3m or
18.4m long. To calibrate the two-layer fluid we first prepare a lower homogeneous layer
of brine with density po = 1.022...gcm™> and depth h;. A layer of fluid with depth h,



Figure 2: Sketch of the experiment.

and linear stratification is then very gently filled on top of the lower layer. The density
of the upper layer varies from py = 1.022...gcm™ at the bottom of the layer to p; at the
top. pi is in the interval 0.999...gcm™ to 1.004...gcm™>. We use fleets with sponges to
calibrate the upper layer. The time period of the filling can be several hours. The density
profiles are recorded by a Yokogawa SC12 meter, which determines the density from the
local conductivity of the fluid. Complementary density measurements are obtained by
a Mettler-Toledo DA-300M density meter which determines the density from the weight
of the water with an accuracy of five significant digits. The values of py and p; may
vary somewhat from run to run due to practical reasons. Such a variation is, however,
unimportant to the results when the linear long wave speed, ¢q, is used as reference speed.
The latter is in all cases determined theoretically by equation (18).

To generate waves we gently add a volume of fresh water (of density 0.999...gem™?)
behind a gate which is lowered at one end of the tank. A corresponding mass of the lower
fluid then slowly moves to the other side of the gate such that hydrostatic balancy is
maintained. The depths of the layers in the main part of the tank are in each experiment
hy = 62cm and hy =15cm, while the initial volume of fresh water behind the gate is
varied. By removing the gate a solitary depression wave is generated, propagating along
the wave tank. A sketch of the experiment is given in figure 2.

2.2 Particle tracking and particle image velocimetry

Particle tracking velocimetry (PTV) and particle image velocimetry (PTV) represent pow-
erful experimental techniques to quantify the velocities and the underlying dynamics of
the waves observed in the wave tank. We shall here use both methods. In the PTV method
individual particles are traced in sequences of images. This method is ideal when the local
fluid accelerations are relatively small, which is the case in the present experiments when
the wave amplitude is small or moderate. In the PIV method the spatial cross-correlation
between the position of groups of particles at two subsequent time-instants is evaluated
to estimate the local fluid velocity. We analyze the motion due to the moderate waves
using both PTV and PIV. For the larger waves, indroducing rather rapid fluid motion and
strong variations of the vorticity, we find that PIV is required for precise measurements
of the fluid motion.

Recordings are made in vertical sections of the wave tank by three monochrome COHU



4912 CCD cameras with a resolution of 575x560 pixels. The cameras are placed at
positions 6.95m, 10.63m and 15.31m from the wall at the upper end of the tank where
the wave begins. A light sheet with thickness 5¢cm and distance of 10cm from the glass
wall of the tank is created in each section. The light sheets are vertical and parallel to the
side of the tank. Powerful overhead projectors are used as light sources. The illuminated
sections are seeded with particles of pliolite VTAC with diameter in the range of 0.8-1mm.
The particles are treated in wetting agent for some time to obtain an effective neutral
bouyancy for the range of the density profile.

The recording section seen by each camera is 50cm long and 40cm high. This means
that a particle at rest normally is covered by four pixels in the CCD-chip in the camera.
Fach cell in the CCD-chip is charged for 1/50s. The transmission of the even and odd
lines of the CCD-chip is sequential, however, giving an effective exposure time of 3/100s.
In the experiments with small to moderate wave amplitude we observe a maximal velocity
up to about 10cms™!, giving as result exposures of the pliolite particles covering up to
about eight pixels. For the largest waves, velocities up to about 20cms™!
in the fluid. In these runs we use a mechanical shutter in front of the cameras with the

are introduced

purpose to enhance the accuracy. The effective exposure time then becomes 1/100s. The
time between each frame is 1/25s.

The video recordings are digitized by a frame grabber card for subsequent analysis.
Typically we identify a number of 1200-4000 particles in each frame. For the PTV we
trace particles during five frames using the Diglmage program developed and described by
Dalziel (1992). In an earlier work, Grue et al. (1999), we used this method to analyze the
velocities induced by internal solitary waves in a two-layer fluid with homogeneous density
in each of the layers. The measurements were compared with theoretical computations.
We found in that investigation that the error in the measured velocities, relative to the
linear long wave speed, was less than about 7-8% in all cases. That investigation includes
further details details of the PTV method used here.

For PIV analysis we have implemented the method outlined by Willert and Gharib
(1991). In addition, we employ interrogation window shifting as proposed by Westerweel,
Dabiri and Gharib (1997). The images are interrogated in three steps where the two
first steps are used to estimate the window shift with integer accuracy. In the final
step the displacement is estimated to sub pixel accuracy using a three point gaussian
peak fit. Images are interrogated using interrogation windows 32x32 pixels. In a few
experiments we have also used 64x64 pixels due to insufficient particle seeding. The
final velocity vectors are validated using a signal to noise ratio filter, where the signal
to noise ratio is determined by the highest peak in the correlation plane divided by the
second highest peak. For intermediate waves we normally require that this ratio is larger
than 1.3, while for the large waves we use a value of 1.05. This less stringent value
has to be applied mainly due to the turbulent character of a kernel of the large waves,
with an accompanying increase of noise and decrease of peak height in the correlation
plane. Vectors not satisfying this threshold are rejected and replaced by the mean of the
surrounding vectors. Finally we apply a global histogram operator that effectively removes
vectors that are significantly different from their neighbours. By using a relatively large
threshold value for this filter we are usually able to remove most of the spurious vectors
present in the field. The PIV-algoritm may be found in Sveen (1998).



3 Theory

3.1 Two-layer model

As noted in the Introduction, we develop a theoretical model in parallel with the experi-
ments. The equations of the fully nonlinear model are derived along the lines of previous
studies (Long, 1958; Yih, 1960; Tung et al. 1982; Turkington et al. 1991). Coordinates
O — zy are introduced, with the z-axis horizontal and the y-axis vertical, and with unit
vectors 1 and j accordingly. We consider motion in two dimensions where waves of perma-
nent form is propagating with speed ¢ horizontally in the fluid. Viewing the problem in a
frame of reference which follows the waves, the motion becomes steady, with a horizontal
current with speed ¢ along the negative x-axis in the far-field. The undisturbed fluid has
a vertical density profile p(y). We assume that the fluid is incompressible and inviscid.
The former means that V-v = 0 where v = (u, v) denotes the fluid velocity. Conservation
of mass, V- (pv) = 0, then gives that v - Vp = 0. Following the procedure of Yih (1960)
we introduce pseudo velocities by ' = (p/po)'/?u, v' = (p/po)'/*v, where py is a reference
density. Furthermore we introduce a pseudo stream function ¥’ such that v/ = V¥’ x k
where k =1 x j. It follows that p = p(¥’). From the equations of motion the following
relation may be derived (Yih, 1960)

dp  dH(V')
2 ! _
PNV 9y =

= h(V'), (1)

where V2U' determines the pseudo vorticity and H = p+ %,o(u2 +v?) 4 pgy is the Bernoulli
constant being conserved along a streamline determined by W’ = constant. Furthermore,
p denotes pressure and ¢ the acceleration due to gravity. dH/dW' is determined in the
far-field, giving
dH dp dy  ¢* dp dp
- (22 — : 2
40 (dy +09) TN T TRELT )
The vertical component of the equation of motion becomes in the far-field p, + pg = 0,
which means that the first term on the right of (2) is zero. The pseudo stream function

is then decomposed by W' = W+ o', where U’ _ satisfies

e ) 1/2
=—c|— (3)
dy Po
giving
2 d
v, = = 4
o0 on dq}/ ( )
Since dp/d¥’ is constant along each streamline, (1) becomes
v? /! dp . 0 5
PoN Y+ gy = Yoo ) 7 = (5)

where y and vy, are vertical coordinates on the same streamline, with y., in the far-field.
From now on we apply the Boussinesq approximation, i.e. exploit that Ap/p is small.

Integrating (3) we find W/ = —cy[l + O(Ap/p)], giving
Y= Yoo =/, (6)

Furthermore we have

gdp gdpdy _N?
o U pody AU 7[1 + O(Ap/p)], (7)
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where N? = —(g/po)(dp/dy) determines the Brunt-Vaiséla frequency. Within the Boussi-
nesq approximation we may also replace the pseudo stream function by the stream
function ¥ such that v. = VWU x k. Correspondingly, W/ and ' are replaced by
V., and ), respectively. The motion is thus governed by the Helmholtz equation, i.e.
Vi + (V)i = 0.

Relevant to the experiments we consider a two-layer model where the undisturbed fluid
has an upper layer with linear density profile and a lower layer with constant density, i.e.

_ po— Apy [he, for 0 <y < hy,
ply) = { 00, for —hy<y<0, (8)

such that the line y = 0 separates the two layers. The upper layer extends in the interval
0 < y < hy and the lower layer in the interval —h; < y < 0. The Brunt-Vaisala frequency
becomes a constant in the upper layer, and is there determined by NZ = (Apg)/(poh2).
In the lower layer the Brunt-Vaisala frequency becomes zero. Let 1b = 1 in the upper
layer and @ = 1, in the lower. Then 1, satisfies the Helmholtz equation in the upper
layer, i.e.

N2
Vi, + —20@/)2 =0. (9)
c
Yy satisfies the Laplace equation in the lower layer, i.e.
v2¢1 =0. (10)

The upper boundary of the upper layer is a free surface. With Ap/p small this boundary
may be approximated by a horizontal rigid lid. We assume that the bottom of the lower
layer is horizontal at y = —hy. Thus,

77Z)2 :0 at y:hg, (11)

¢1 = 0 at Yy = —hl. (12)

The two layers are separated by the streamline with vertical coordinate n where n — 0
for x — +o00. The kinematic boundary condition between the layers gives that

Oy on _

E—Cg—o at y=n, (13)
Oy n . .
E—Cg—o at y=mn, (14)
O Oy B
- on at y=m, (15)

where s denotes the arc length of the streamline y = n and n the normal, pointing out of
the lower fluid layer.

3.2 The wave speed for long linear waves

Linear waves with wavenumber v and wave speed ¢y may propagate horizontally in the
fluid. The stream function ¢ in the upper layer then satisfies (9), with ¢ replaced by
co, while 1 satisfies (10). Looking for solutions on the form )y 2(z,y) = ;/3172(y) cos v
satisfying (11)=(12) and (13)—(14), the latter two at y = 0, we find in the long wave limit

sin(No(y — ha)/co)

¢2 - (@ SiH(Nth/Co)
1 = —aco(l +y/hi)cosva. (17)

cos v, (16)
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The wave velocity is determined using (15), i.e. putting 9y /dy = 0i2/dy at y = 0. This
gives
Noh Nohy h
02 cot 02—|——2:0, (18)

Co Co hl
where ¢ is obtained for Nohy/co in the interval (7/2, 7). For hy/hy — 0 the speed becomes
co = Noh2/(7/2). In our experiments, with hy/hy = 15/62, the linear long wave speed is
Cop = N0h2/1711

3.3 Solution by integral equations

We solve the nonlinear problem (9)-(15) by means of integral equations and introduce
two Green functions (G; and (5. The first Green function is a source at (x,y) = (2/,y’)
and satisfies the Laplace equation (10), i.e

Gi(z,y, 2" y") =1n (19)

.
1

The second Green function is a source at (z,y) = (2/,y’) and satisfies the Helmholtz

equation (9), i.e.

Golz,y, 2" y) = gm(m) — Yo(K7y)], (20)

where Yy denotes the Bessel function of second kind of order zero and K = Ny/c. Fur-
thermore,

— [(l‘ . $/)2 + (y _ y/)2]1/27 (21)
ro=[(x =)+ (y+y +2m)°7 (22)
ry = [(z — :1;’)2 +(y+y — 2h2)2]1/2. (23)

We let the stream functions be determined by source distributions, i.e.
W1 = / o1 ()G (2, y, 2/(s'), 4/ (5))ds (24)
T
s :/Uz(sl)Gg(:z:,y,x'(s’),y’(s’))ds’, (25)
T

where o1(s) and o3(s) denote source strengths, I denotes the contour y = n and s ar-
clength. We then consider the tangential and normal derivatives of ¢y and ¢, at I, finding

877/)172 aG1,2

b1 o Pv/lam(s’) 12! (26)

% = —rou(s) + [ 01(3')%615', (27)

% = roa(s) + [ az(s')%dsg (28)

where in (26) PV denotes principal value. The boundary conditions (13)—(15) then gives
PV/01 aGld’ gzzo, (29)

PV/0'2 aG?d’ gzzo, (30)

—rlon(s) + moals)] + [ al<s'>%—m< )

Choosing hs as length scale and ¢y as velocity scale (and hy/co as time scale) we deter-

)ds' =0. (31)

mine Nohs/co by (18). Then the nondimensional quantities Khs, o1/co, 02/co, n/h2 and
¢/co depend on the parameters hy/hy and 1,4 /ha, and not on Ap/p. Thus, within the
Boussinesq approximation, the actual value of Ap/p enters only in the problem through
Cp.



3.4 Numerical procedure

We look for symmetric solutions with respect to @ = 0 which means that 1y ; may be
expressed by

P12 = /OO o12(8)[Gra(z,y,2'(s)), ¥/ (") + Gra(x,y, —2'(s"),y'(s))]ds" . (32)

To discretize the equations we introduce a ¢-variable as coordinate along [ replacing the
arc length s as integration parameter. The collocation points £ = 1,2, 3, ..., N are equally
distributed in s which means that s¢ = As where s¢ = ds/d¢. Equation (32) then becomes

b= [ 1ol Gl (€ (€0) + Gualisys =), /(A . (3

It is convenient to introduce the complex variable z = x+iy and the complex functions
gi(2,2") and ga(2,2') by

€ €

91(272) = As (%_la_n) Gl(xvyvxvy): - ] (34)

z—z2 oz =24 2hy

/ . a a / /
g(z,2) = As (%_la_n) Gz, y,2y)

e . . ze
( [&rYl(]&r)Z_Z/ —I—IXTQK(IXTQ)Z_Z/*_%}LZ) : (35)

T
2

The integrals in (29)—(31) and (33) are evaluated by using the trapezoid rule, except in
the vicinity of the poles, where we adopt the procedure described by Dold and Peregrine
(1986). Expanding the integrands (in vicinity of the poles) in powers of (£ —¢') we arrive
at the following discretized equations

S A(E ) or(E) = ong(€) = ene(€)/As, k=1,2, (36)
é=1

N
w01+ 02) + O_[Bi(&, )1 (€) — Ba(&,E)oa(€)] = 0, (37)
=1
where the matrices Ag (&, &) and Bi(&,¢') read

91(272/)+gl(27_2/*)7 §/> 17 5/%5

N : 1(2,2), ¢=1,#¢
Al(f?f)_llgl(fvf): gLﬁ(_z)szhl—l_gl(Z — )7 §/>17 glig (38)

22'5
i_z—z j—?zhl 5/2521
92(272/)+92(27_Z/*)7 §/> 17 5/%5
. 92(272/)7 5/: 17 5/%5
A2(§7 5/) - Z82(§7 5/) - % —I_ %IX)TQK([X7TQ)Z—2*Z£2ih2 —I— 92(27 _Z*)7 5/ > 17 5/ = 5
% -I' %[er2)/1([(742)2_2*2522'h2 5/ = 5 =1
(39)
and an asterix denotes complex conjungate.
The equations are solved by considering ¢/co, n(1)/ha, o1(1)/co, o2(1)/co, x(€)e/ha,
n(&)e/ha, 01(&)e/co and o3(&)e/co for £ = 2,..., N, as unknowns. Furthermore, we require
that n(/N) = 0 and that the source strength is smooth at the truncation of I, i.e. oy ¢(N —
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1) =01¢(N) and o2¢(N —1) = 02¢(N). The system is solved by applying a variant of the
Newton-Rapson method for a prescibed amplitude a/hs, i.e. n(1)/hy = —a/hy. At each
iterative step, (&) /hz, n(&€)/ha, 01(£)/co and o4(€)/co are obtained from their respective
derivatives by the 4 point Lagrangian integration formula, i.e.

J5 O = S = FE+ D+ 13O + 136~ )~ flE=2)] . (40)

The second derivative zg¢ is found by using the 4 point Lagrangian difference formula.

The differentiations for obtaining the Jacobi matrix in the secant method are approx-
imated using first order discrete differences, with the matrices Ay and By considered as
constants during the differentiations. This procedure increases the number of iterations
somewhat as compared to using the full Jacobi matrix, but leads to a relatively faster
scheme.

4 The propagation speed of solitary waves

Internal depression waves are generated in the wave tank as described in §2.1. Immediately
after the gate is opened, the fluid motion is locally rather violent at the position of the
gate. After a while, however, the initial disturbance develops into a solitary depression
wave propagating along the tank, and the initially violent motion disappears. The wave
has quite distinct properties, among others a clearly defined propagation speed, which is
the first quantity we measure. To do so, we measure the (horizontal) speed of a vertical
line through the centre of the wave, or almost the centre of the wave, which is characterized
by a vanishing vertical fluid velocity. This line corresponds to the symmetry line in the
theoretical model (see eq. (32) with = 0). More specifically we proceed as follows:

1. The experimental velocity matrix is obtained in the coordinates (,,y,), m =
l,.... M,n=1,...,N. In a frame capturing the centre of the wave, we search in the
velocity matrix for the intervals (2, 241 )n, m = 1,.., M, (1 < M), n =1,..., N,
where the vertical component of the velocity changes sign.

2. The position of the vertical line is determined by the median of the endpoints of the
intervals, with smallest vertical velocity.

The propagation speed ¢ is estimated by the travel distance of this line between two
cameras divided by the elapsed time. The method is carefully checked and is found to be
robust.

The waves in the experiments have no clearly defined amplitude. For example, we are
from the measured fluid velocities unable to identify a sharp boundary between the upper
stratified layer and the lower homogeneous layer. (Measurements of the actual density
profile would perhaps resolve this problem.) The theoretical model may be applied to
define an amplitude of the wave, on the other hand, since the boundary between the two
layers there is sharp. We therefore define the amplitude of the experimental wave from
the theoretical model by fitting the experimental and theoretical velocity fields. For the
largest waves the experiments exhibit a region with strong mixing close to the free surface
above the centre of the wave. In such cases we compare the experimental and theoretical
velocity fields below the region with mixing. This way of estimating the experimental
wave amplitude is about as accurate as the PTV and PIV techniques.

In figure 3 is shown the measured and theoretical speed of the solitary waves as function
of the wave amplitude. Generally, the agreement between experiment and theory is good
for all wave amplitudes. There is particularly good agreement between the experiment
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and the theory for small wave amplitude. This is true not only for the propagation speed,
but also for the entire velocity field induced by the wave. (Results for the latter are given
in §5.) This good agreement between the measured and computed ¢, for small a/hs,
illustrates the usefulness of the method of extracting ¢ in the experiments, among others.

The measurements of the propagation speed exhibit some scatter for wave amplitudes
in the range a/hy ~ 0.5 — 0.8. Furthermore, it is rather evident that the experimental
¢ exceedes the theoretical one in this amplitude range. We observe in these experiments
that localized regions with strong variations of the vorticity develop in the fore part of
the wave and above the center of the wave. The presence of these regions represent a
qualitative difference between the experiments and the theory, since they are not present
in the latter.

By generating waves increasing the initial volume, we encounter a maximal speed and
a maximal amplitude of the waves. The maximal observed propagation speed is about
1.8 times the linear long wave speed, and the maximal amplitude is about 1.25 times the
depth of the upper shallow layer. We note that the results exhibit a good correspondence
between the measured and computed propagation speed even for the large waves. This
is rather surprising, since the theory does not capture several effects observed in the
experiments, when the wave amplitude is large. The most visible difference is the rather
dominant region with strong mixing which takes place above the centre of the wave in
the experiments. Furthermore the theory does not predict the maximal values of the
amplitude, the propagation speed and the fluid velocities observed in the experiments.
The theory predicts instead a continuous growth of the amplitude and wave speed beyond
the experimental maximal values. The theory also predicts a region of recirculating fluid
above the centre of the wave when the theoretical amplitude exceeds a/hy =0.855. In this
region the fluid velocity at the free surface becomes larger than the propagation speed,
indicating that breaking should occur for realistic waves. This is true, as the experiments
show. The wave breaking in the experiments occurs rather different than what can be
anticipated by theory, however, with incipient breaking for wave amplitude as small as
a/hy about 0.5 (see §6).

The results in figure 3 show that the propagation speed is a linear function of the
amplitude, practically speaking. This means that weakly nonlinear theory, which is valid
for small a/hy, should predict a propagation speed that fit with the measurements and
the nonlinear theory even for amplitudes which are not small.

5 Properties for waves with small amplitude

The velocity field induced by the waves is then examined. First we study waves with small
(finite) amplitude. We find good agreement between experiment and theory (figures 4—
8). This good agreement shows that the theory provides a useful description of the
solitary waves under consideration, for small (finite) amplitude. Moreover, this agreement
documents the usefulness of the way of generating the waves in the wave tank, with
the purpose to investigate the properties of solitary waves in a fluid with a continuous
stratification.

The results exhibit that the fluid velocities close to the free surface, induced by the
waves, become comparable with the linear long wave speed even for rather moderate
wave amplitude. More specifically, the maximal horizontal velocity is about 65% of ¢q for
a/hs = 0.4 (figure 6).

The smallest waves exhibit a decay in the amplitude during the propagation along the
tank, as visualized in figures 4-5. Such a decay is, however, less pronounced for the larger
waves, to be discussed in §§6-7.
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Figure 4: Velocity profile at the maximal depression of the wave. PTV: squares (camera
1), dots (camera 2), stars (camera 3). Initial volume: 10 dm?®. Theory with a/hy = 0.1
(solid line).

With the purpose of a closer comparison between the experimental and theoretical
results, we evaluate the vorticity, w = du/dy — dv/dz, from the PTV analysis using a
standard difference method, and from the theory by (5). The vorticity at a position of the
tank is initially zero, and reduces to zero when the wave has disappeared. The vorticity
during the passage of the wave is illustrated in figures 7 and 8. We observe again the
good correspondence between experiment and theory at the first camera position (figure
7). At the second camera we note that a somewhat different behaviour of the vorticity
takes place in the experiments than in the theoretical model. This difference is visible
only in the leading part of the wave rather close to the free surface, as illustrated in figure
8. This difference becomes more pronounced for the larger waves.
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Figure 5: Same as figure 4, but initial volume: 20 dm?®. Theory with a/hy = 0.3 (solid
line) and a/hy = 0.25 (dashed line).
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Figure 6: Time series at camera 1 of the horizontal velocity u (abcissa) vs. vertical
coordinate y (ordinate). Time increment 2 sec. between each picture. Initial volume: 30

dm?®. PTV (dots) and theory with a/hy = 0.4 (solid line).
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Figure 7: Time series at camera 1 of the vorticity w = du/dy — dv/dx (abcissa) vs.
vertical coordinate y (ordinate). Time increment 1 sec. between each picture. Initial
volume: 30 dm?®. PTV (dots) and theory with a/hy = 0.4 (solid line with dots).
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Figure 8: Same as figure 7, but at camera 2.
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6 Waves with moderate amplitude

In the next experiments we generate waves with larger amplitude. Now the induced fluid
velocity at the free surface becomes about the linear long wave speed ¢, but significantly
less than the propagation speed ¢ of the wave. Examples of the velocity profile at the
maximal depression of the wave are displayed in figure 9. The results are obtained from
several runs with recordings at all the three camera positions. The theoretical and mea-
sured velocity profiles compare rather well. The comparison is particularly good below a
region close to the free surface.

It is, however, rather evident that small velocity fluctuations are present in the ex-
periments close to the free surface. These fluctuations may be investigated more closely
by examining the vorticity induced by the waves. The vorticity in the experiments is
evaluated from the PIV analysis by a least squares operator, i.e. (df/dz); = (2fiz2 +
fix1 — fiz1 — 2fi—2)/(10AX), Raffel, Willert and Kompenhans (1998, p. 159), while the
theoretical vorticity is given by (5). At the first camera we find, apart from some not very
pronounced fluctuations of the experimental vorticity, a relatively good correspondence
between theory and experiment (figure 10).

At the position of camera 2 we observe a behaviour of the flow which is different from
that at camera 1. Now rather pronounced vortices appear in the leading part of the wave,
approximately in the middle of the stratified layer. The vortices are visualized in figure
11 by a pronounced negative vorticity in the fore part of the wave for y/hy in the interval
about 0.5 —0.7 and an almost vanishing vorticity for y/hq about 0.2 —0.4. The formation
of the vortices are not described by the theory. We observe the appearance of the vortices
in several different runs. It turns out that they appear in the same manner each time,
as illustrated in figure 11, where results from two subsequent runs with almost identical
characteristics are shown. The vortices continue to develop during the propagation of
the wave, as found in the recordings of camera 3 further down in the tank (figure 12).
The results in the latter figure is due to a different run, where the density gradient and
the speed of the wave are somewhat smaller than for the runs in figures 10-11. The
results illustrate that a continuous production of vortices in the leading part of the wave
takes place in the experiments. The production of vortices seems to increase with time,
according to the development of the vorticity at the different camera positions (figures
10-12).

To visualize the vortices more directly we decompose the velocity field by v = v + v'.
Here ¥V denotes an averaged fluid velocity close to the free surface at the centre of the wave,
being approximately equal to cgi for the runs in figures 9b and 10-12. The perturbation
velocity field v/ contains local vortices in the fore part and in the centre of the waves
(figure 13). Similar results (not shown here) are also obtained for smaller waves, with
amplitude a/hy ~ 0.5 (figure 9a). The vortices are then somewhat less pronounced. We
note that separate recordings of the fluid velocities at the free surface from above show
that the motion is two dimensional.

The vorticity in the experiments exhibit some oscillations along the vertical coordinate
in addition to the pronounced vorticity in the leading part of the wave already described.
The oscillations is present both in the upper and in the lower fluid, where in the latter
the density is constant. An explanation of these oscillations is uncertain, but we may
speculate if they are due to inaccuracies in the recording technique. A high resolution
PIV system would perhaps provide better evidence on this point. The oscillations of the
vorticity is, on the other hand, much less than the pronounced vorticity caused by the
vortices in the fore part of the waves.

The vorticity at the free surface extracted from PIV analysis is almost always rather
large and positive (figures 10-12). Truncation effects may, however, distort the velocity
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and vorticity estimation close to the boundaries of the pictures. The vorticity obtained
from the experiments at the free surface, or in close vicinity of the free surface, may
therefore not be accurate.

7 Waves with largest or almost largest amplitude

We have performed several experiments by gradually increasing the initial volume above
the levels already described. As already noted, the experiments are calibrated such that
only a single solitary wave is generated. This is achieved by appropriately adjusting the
position of the gate. An increased initial volume leads to an increased amplitude and
propagation speed of the wave, until limiting values are reached (§4). The same is true
for the induced fluid velocity which magnitude becomes saturated. The breaking of the
waves, taking place in the form of generation of vortices, increases in power when the
waves become larger. In this section detailed results for the velocity profiles and the
vorticity in two different runs are presented, one for the almost largest wave, and one for
the largest. Furthermore, the issues of limiting fluid velocity and broadening of the waves
are considered, with results from several runs.

7.1 Velocity profiles

Results for two typical runs are given. The initial volume of the first run is 100 dm?,
while the second is 200 dm?®. The time-history of the profile of the horizontal velocity
component u(y;t) is evaluated at the position of camera 3 (figures 14-15). The velocity
is scaled by the propagation speed ¢ of the wave. The nondimensional amplitude and
propagation speed, determined as described in §4, are a/hy ~ 1.0 and ¢/¢q ~ 1.6 for the
100 dm? wave, and a/hy ~ 1.2 and ¢/co ~ 1.7 for the 200 dm?® wave.

The measured fluid velocity at the free surface, or close to the free surface, is found
to have a maximal value which slightly exceeds the propagation speed of the wave. This
is true for both runs. The fluid motion exhibits fluctuations in the region above y = 0
which are due to the vortices induced in the leading part of the wave, see figure 18. Below
y = 0, there are only minor such fluctuations. The velocity profile u(y;t) is symmetric
with respect to the centre of the wave when the amplitude is small (§5). The large
amplitude waves, however, are not entirely symmetric. The deviation from symmetry is
obviously caused by the non-symmetric presence of the large number of small vortices in
the large waves.

While the two different runs have several features in common, there are also some
important differences to be noted. The most visible difference is the time period between
arrival and disappearance of the wave at a position of the tank. This is longer for the
larger wave than for the smaller, which means that the wave with the larger initial volume
is broader than the other. Secondly, the larger wave has a longer and somewhat thicker
region in the upper part of the wave where the horizontal velocity is approximately equal
to the propagation speed ¢. More presicely, the fluid velocity in this region is v = ci + v/,
where v’ contains small fluctuating velocities due to a number of vortices generated by
the flow.

7.2 Vorticity

The velocity fluctuations may be further examined by evaluating the vorticity component
w = Ou/dy — dv/dx (figures 16-17). This vorticity component exhibits rather strong
oscillations in the upper region of the wave where the velocity field has fluctuations. The

17



vorticity oscillates about a nonzero mean. The oscillations of the vorticity illustrate the
intensity and scale of the vortices which are generated in the leading part and above the
centre of the wave, see also figure 18.

While the motion is two-dimensional for waves with small and moderate amplitude,
three-dimensional effects take place for the largest waves. This is illustrated in figure
19 where the wave tank is seen from above. In this figure, recordings of the horizontal
velocity field v'i + wk = (u — ¢)i + wk right below the free surface, in the leading part of
the wave, are presented. (wk denotes the horizontal velocity component across the wave
tank.) Pronounced velocity fluctuations across the wave tank are found in the recordings.
The vorticity component dw/dx — du/dz, where z is the coordinate across the wave tank,
is also shown in the figure. This vorticity component exhibits oscillations which are of the
same order of magnitude as for w = du/dy — dv/dx. We have not been able to measure
the vorticity component dv/dz — dw/dy. This requires equipment for three-dimensional
PIV, which we do not have available.

7.3 Broadening

Figures 14-15 show that the waves broaden when the volume of the wave exceeds a certain
value. The broadening effect is further illustrated in figure 20, where the time history of
the horizontal fluid velocity close to the free surface is displayed as function of time for
several initial volumes. Since the experimental velocities contain fluctuations close to the
free surface, and since the velocity estimates from the PIV analysis at the free surface
are somewhat uncertain, we display the time history of the velocity averaged over a small
vertical distance close to the free surface, i.e.

0.9h5
wt)= [ uly,t)dy/(0.4h2). (41)
0.5hs
We find in these experiments that the waves begin to broaden for an initial volume of
approximately 70 dm?. The results further show that %,,,,, defined by the maximal value
of W(t) in each run, may become slightly larger than the propagation speed ¢ of the wave.
This is due to the perturbation velocity field v’ which is superposed on the velocity ci.
More presicely, we obtain that w,,../c ~ 1.03.
We may also evaluate the wavelength as defined by

1 00 1 00
A= / Tde = / a(t) edt | 42
Hmaav — 00 waer Hmaav — 00 U( ) ‘ ( )

The experiments show that the wave length decays with increasing wave amplitude (and

Umaz/¢), for small and moderate waves. The waves broaden, however, when W, /¢ ex-
ceeds the value of 0.8, approximately (figure 21). The corresponding nondimensional wave
amplitude is then about a/hy = 0.8. The wavelength estimated from both experiments
and theory is shown in the figure, with good agreement for w,,,, /¢ < 0.8 (and a/hy < 0.8).
The boadening effect seen in the experiments is not present in the theory, however.
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8 Concluding remarks

We have investigated the characteristic properties of solitary waves of depression propa-
gating in a stratified fluid. The fluid has a shallow upper layer with linear stratification
and a deep lower layer with constant density. The investigation combines experiments and
theory. The experiments are facilitated by the recent developments of particle tracking
velocimetry (PTV) and particle image velocimetry (PIV). These techniques able record-
ings of rather detailed behaviour of the induced velocities of the waves. We also determine
the propagation speed from the velocimetry techniques.

Particular focus is paid to the role of the breaking of the waves. Incipient breaking
takes place by formation of vortices in the leading part of the waves. When incipient
breaking occurs, the fluid velocity close to the free surface is comparable to the linear
long wave speed, and the wave amplitude is about half of the depth of the shallow layer.
The breaking increases in strength with increasing amplitude and serves to limit the
amplitude of the wave, the propagation speed and the magnitude of the induced fluid
velocities. The maximal amplitude in these experiments becomes 1.25 times the depth of
the upper layer, while the maximal propagation speed is 1.8 times the linear long wave
speed, approximately. A typical feature of the large waves is a region in the upper part
of the wave with pronounced local variations of the velocity field and the vorticity. For
the largest waves, the horizontal fluid velocity in this region is approximately equal to
the propagation speed ¢ of the wave. More precisely, the fluid velocity is v ~ 1 4+ v/,
where v’ describes the velocity field due to a number of vortices. In the observations |v/|
is significantly less than ec.

When the fluid velocity becomes approximately equal to the propagation speed of the
wave, the fluid particles may be transported over long distances by the waves. Knowledge
of mass transport due to internal waves may contribute to the general understanding
of transportation of water masses in the ocean. Moreover, it may contribute to the
understanding of specific geological and biological issues like how e.g. sediments or larvae
are transported in the ocean. Since solitary waves may occur in a similar way in a layered
atmosphere as in a layered ocean, we also expect that a similar mass transport may take
place in the atmosphere.

We find that broadening takes place when the volume of the waves exceeds a certain
value. This effect is clearly documented from the experiments. The broadening is obvi-
ously caused by the wave breaking which serves to limit the magnitude of the induced
fluid velocity, the amplitude and the speed of the wave. More specifically, broadening
is found to take place when the maximal fluid velocity exceeds 0.8 times the speed of
the wave, approximately. The wave amplitude is then about 0.8 times the depth of the
shallow layer. The broadening effect found here is entirely different from the one which
takes place in a two-fluid system with constant densities in each of the layers. In the latter
case, the limited amplitude and wave speed, and thereby the broadening of the waves,
are determined by a finite total depth of the fluid (Amick & Turner, 1986; Turner and
Vanden-Broeck, 1988; Grue et al., 1997; 1999).

With the purpose of interpreting and providing a relief of the experimental results,
we develop a theoretical and numerical model of the waves. This is a two-layer model,
where the upper layer has constant Brunt-Vaisala frequency and the lower layer has zero
Brunt-Vaisala frequency. Wave solutions are obtained by means of integral equations.
Comparisons between the experimental and theoretical velocity fields exhibit relatively
good agreement for small and moderate waves. The intrinsic breaking of the waves is not,
however, modelled by the theory. This becomes most evident by comparing the vorticity
in the experiments and the theory. Since the wave breaking determines the limiting
amplitude, the limiting wave speed and the broadening of the wave, none of these results
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can be determined by the theoretical model applied here (nor in the models by e.g. Tung
et al., 1982; Turkington et al., 1991; Brown & Christie, 1998).

The theory may, on the other hand, be used to broaden the picture of the experimental
results. We have here so far performed a detailed experimental and theoretical investiga-
tion for only one ratio hy/hy = 4.13 between the depths of the layers. Now we may apply
the theoretical model to predict the velocity fields for other depth ratios. The intention
is to investigate if the velocity field induced by the waves, for other values of hy/hs, is
similar to that for hy/hy = 4.13. The results in figures 22-23 for hy/hy = 2,3,4.13,10, 100
show in fact that the velocities and shapes of the waves are rather similar when hy/hy is
larger than about 3. The same is true for ¢/cg, see table 1 below. Since the breaking of
the waves are caused by the intrinsic dynamics of the velocity field induced by the prop-
agating wave, the results here lead us to expect that breaking occurs in a same manner
as described in sections 6-7, beginning at a/hy about 0.5, for all depths hy/hs larger than
about 3. This also means that the wave amplitude and propagation speed have limiting
values being close to those we have found here, and that the waves broaden in a similar
way for all depth ratios hy/hy larger than about 3.

hi/hy 2 3 413 10 100
c/colalhy = 0.65) 1.33 1.36 1.38 1.39 1.38
c/eolalhy =0.8) 1.40 144 146 148 1.47

Table 1: Theoretical propagation velocity ¢/cg as function of layer thickness ratio hy/hgy
for waves with amplitudes a/hy = 0.65 and a/hy = 0.8.

This work was conducted under the Strategic University Programme ‘General Analysis
of Realistic Ocean Waves’ funded by the Research Council of Norway. The discussions
with professor Alexander Korobkin and the technical assistance by Mr. Arve Kvalheim
and Mr. Svein Vesterby are gratefully acknowledged.
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Figure 9: Same as figure 4, but (a) PTV, initial volume 40 dm?, theory with a/hy = 0.5
(solid line), (b) PTV and PIV, initial volume 50 dm?, theory with a/hy = 0.65 (solid
line), (c¢) PTV and PIV, initial volume 65 dm® and theory with a/hy = 0.8 (solid line).

(note the differences in scale.)
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Figure 10: Time series at camera 1 of the vorticity w = du/dy — dv/dz (abcissa) vs. ver-
tical coordinate y (ordinate). At =1 sec. between each picture. Initial volume: 50 dm?.
PIV. Two different runs. Run 1: po= 1.0226gcm ™, p;= 0.9989gcm ™2, ¢y =11.38cms™!
(dash-dotted line). Run 2: po= 1.0225gcm ™2, py= 0.9991gem ™, ¢y =11.36cms™") (dotted

line). Theory (solid line). ¢t = 0s means middle of the wave.
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Figure 11: Same as figure 10, but camera 2.
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Figure 12: Same as figures 10 and 11, but camera 3. Different run than in figures 10-11.
po= 1.0225gcm™ p;= 1.0040gcm™> ¢y =9.01cms™". PIV (dots with solid line), PTV (dots
with dotted line), theory (solid line).
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Figure 16: Time series of the vorticity w = du/dy—0v/dx (abcissa) vs. vertical coordinate
y (ordinate). PIV at camera 3. Time increment 1 sec. between each picture. Initial
volume 100 dm?.
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Figure 17

: Same as figure 16, but initial volmue 200 dm®.
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Figure 18: Velocity field v — ci. Close up of the region —10em < y < 15¢m below the
free surface (at y = 15em). (For reference: the depth of the upper layer at rest is 15¢m.)
Camera 3. Initial volume 200 dm?.

Figure 19: Horizontal velocity field ui 4+ wk — c1 at the free surface. Wave tank viewed
from above. Vorticity component (Ow/dx — du/0z)/(co/h2) in grey scale. Initial volume
200 dm?®. Recording section 50 cm x 35 cm. The position of the vertical light sheet in
the recordings, except this one, is between the positions of the grey boxes.
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Figure 20: Broadening of the waves. u(t)/c vertical line vs. ¢t horizontal line. Initial

volume: 10 dm?, 30 dm?, 50 dm?, 70 dm?, 150 dm?, 200 dm?®.
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Figure 21: Wavelength X as defined in eq. (42) vs. Upqax/c. Experiments (small circles)
and theory (solid line). Also theoretical A = [ wu(y = ha,t) cdt/u(y = h2)mar (dashed

line).

31



-15 -1 -0.5 0 0.5 1 1.5 2

u/ e

Figure 22: Theoretical velocity profiles at maximal wave depression. Depth-ratio hy/hs:
2 (thin solid line), 3 (dash-dot line), 4.1333 (thick solid line), 10 (dashed line) and 100
(dotted line). (a) a/hy = 0.65. (b) a/hy = 0.80.
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Figure 23: Same as figure 22, but depression of the line n separating the layers.
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