A note on the contributions due to the steady second order potential in the slow-drift problem

John Grue
Mechanics Division, Department of Mathematics,
University of Oslo, Norway

This note is devoted to the role of the time-averaged second order potential in the slow-drift problem. The purpose is to describe some new relations, point out a simple procedure to evaluate the resulting formulae and give some illustrative examples that complement previous work, Grue & Palm (1993), where the effect of the time-averaged second order potential was pointed out.

We consider a floating body moving with slow velocities in the three horizontal modes of motion while responding to incoming monochromatic waves with amplitude A. The fluid has a mean depth h. We define a relative frame of reference $O - xyz$, with unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ accordingly, that follows the slow motion of the body. The z-axis is vertical, with $z = 0$ defining the mean free surface, and with $z = -h$ defining the bottom of the fluid. Let $U\mathbf{i} + V\mathbf{j}$ denote the slow horizontal velocity of the body and $\Omega \mathbf{k}$ its slow angular velocity about the vertical axis. Potential theory is applied to describe the motion of the fluid which is assumed to be incompressible and homogeneous. The fluid velocity \mathbf{v} in the relative frame of reference may be decomposed by $\mathbf{v} = \nabla \Phi' + \mathbf{w}$, where Φ' is a potential that governs the motion due to the presence of the waves and the oscillatory motions of the body, and \mathbf{w} denotes the velocity field when no waves are present. The potential Φ' may be decomposed by $\Phi' = \Phi + \psi^{(2)}$, where Φ contains the oscillatory parts of Φ', and $\psi^{(2)}$ denotes the time-averaged part of Φ'. The potential $\psi^{(2)}$ is proportional to the wave amplitude squared, to leading approximation.

We shall be concerned with the contributions from $\psi^{(2)}$ to the wave-drift damping matrix, which emanates from the time-averaged force and moment acting on the floating body. More precisely, let $F_x\mathbf{i} + F_y\mathbf{j}$ denote the time-averaged horizontal force and let $M_z\mathbf{k}$ denote the time-averaged moment with respect to the vertical axis. Expanding the force and moment in the slow velocities we obtain

$$
\begin{pmatrix}
F_x \\
F_y \\
M_z
\end{pmatrix} =
\begin{pmatrix}
F_{x0} \\
F_{y0} \\
M_{z0}
\end{pmatrix} -
\begin{pmatrix}
B_{11} & B_{12} & B_{16} \\
B_{21} & B_{22} & B_{26} \\
B_{31} & B_{32} & B_{36}
\end{pmatrix}
\begin{pmatrix}
U \omega / g \\
V \omega / g \\
\Omega / \omega
\end{pmatrix}
$$

(1)

where $\{B_{ij}\}$ denotes the wave-drift damping matrix and $(F_{x0}, F_{y0}, M_{z0}) = (F_x, F_y, M_z)$ for $U = V = \Omega = 0$. Furthermore, ω denotes the wave frequency in the fixed frame of reference and g the acceleration due to gravity. (F_{x0}, F_{y0}, M_{z0}) and $\{B_{ij}\}$ are proportional to the wave amplitude squared and are independent of U, V and Ω, to leading approximation. It may be demonstrated that the contributions from the potentials Φ and $\psi^{(2)}$ may be divided into two separate contributions, i.e.

$$B_{ij} = B_{ij}(\psi^{(2)}) + B_{ij}(\Phi)$$

(2)

where we primarily shall be interested in $B_{ij}(\psi^{(2)})$. References describing how to obtain $B_{ij}(\Phi)$ are given below.

Before we proceed by discussing the wave-drift damping matrix, we note that the velocity field \mathbf{w} is conveniently decomposed by

$$
\mathbf{w} = U \mathbf{w}_1 + V \mathbf{w}_2 + \Omega \mathbf{w}_6
$$

(3)

$$
\mathbf{w}_i = \nabla(-x_i + \chi_i), \quad i = 1, 2, \quad \mathbf{w}_6 = -\mathbf{k} \times \mathbf{x} + \nabla \chi_6
$$

(4)
The potentials χ_1, χ_2, χ_6 in (4) satisfy the Laplace equation in the fluid and

$$\frac{\partial \chi_i}{\partial n} = n_i \quad \text{at} \quad S_B \quad \text{with} \quad n_i = \frac{\partial \chi_i}{\partial n}$$

$$\frac{\partial \chi_i}{\partial z} = 0 \quad \text{at} \quad z = 0, -h \quad \text{for} \quad |x| \to \infty$$

where $n = (n_1, n_2, n_3)$ denotes the unit normal, pointing out of the fluid, at the mean position of the wetted body surface, S_B, and $n_6 = \chi_2 - \chi_1$.

Conservation of linear and angular momentum in the far-field

The force and moment may be obtained either by integrating the pressure over the wetted body surface or by evaluating the linear and angular momentum flux at a control surface. By using the latter method at a control surface in the far-field we find (Grue & Palm, 1993; Newman, 1993; Grue & Palm, 1996; Finne & Grue, 1998)

$$B_{61}^{\text{far}}(\psi^{(2)}) = \frac{\rho g}{\omega} M_2$$

$$B_{62}^{\text{far}}(\psi^{(2)}) = -\frac{\rho g}{\omega} M_1$$

$$B_{66}^{\text{far}}(\psi^{(2)}) = \rho \omega \left(-\frac{\partial M_1}{\partial \beta} - M_2 \right)$$

$$B_{26}^{\text{far}}(\psi^{(2)}) = \rho \omega \left(-\frac{\partial M_2}{\partial \beta} + M_1 \right)$$

$$M_i = \int_{S_B + S_F} (x_i - x_i) \frac{\partial \psi^{(2)}}{\partial n} dS, \quad i = 1, 2$$

where ρ denotes the density of the fluid, β denotes the wave angle of the incoming waves, S_F denotes the mean free surface and super-index 'far' denotes that the far-field method is used. Otherwise $B_{ij}^{\text{far}}(\psi^{(2)})$ are zero. How to obtain $B_{ij}^{\text{far}}(\Phi)$ is described e.g. in the references cited previous to eq. (8).

Pressure integration in the near-field

Next we consider the contributions from $\psi^{(2)}$ when we integrate the pressure over the instantaneous wetted body surface. The pressure is given by

$$p = -\rho \frac{\partial \psi}{\partial t} + \mathbf{w} \cdot \nabla \psi + \frac{1}{2} |\nabla \psi|^2 + C(t)$$

where $C(t)$ is independent of \mathbf{x}, and gives rise to terms

$$\alpha \int_{S_B} \mathbf{w}_j \cdot \nabla \psi^{(2)} n_j dS, \quad i, j = 1, 2, 6$$

in the wave-drift damping matrix, where $\alpha = \rho g/\omega$ for $j = 1, 2$, $\alpha = \rho \omega$ for $j = 6$ and the integrals may be evaluated at the mean position of the body, S_B, within the present approximation. The case of a translation along the x-axis ($j = 1$) was considered by Grue & Palm (1993). Following their procedure also for $j = 2$ (w_2) we obtain

$$B_{ij}^{\text{near}}(\psi^{(2)}) = \rho g \int_{S_B} \mathbf{w}_j \cdot \nabla \psi^{(2)} n_i dS = \int_{S_B} \mathbf{w}_j \mathbf{n}_i dS \quad \text{with} \quad \mathbf{n}_i = \frac{\partial \psi^{(2)}}{\partial \mathbf{n}}$$

$$i, j = 1, 2$$

$$\quad i, j = 1, 2$$

$$B_{61}^{\text{near}}(\psi^{(2)}) = \rho g \int_{S_B} \mathbf{w}_1 \cdot \nabla \psi^{(2)} n_6 dS = \int_{S_B} \mathbf{w}_1 \mathbf{n}_6 dS \quad \text{with} \quad \mathbf{n}_6 = \frac{\partial \psi^{(2)}}{\partial \mathbf{n}}$$

$$i, j = 1, 2$$

$$B_{62}^{\text{near}}(\psi^{(2)}) = \rho g \int_{S_B} \mathbf{w}_2 \cdot \nabla \psi^{(2)} n_6 dS = \int_{S_B} \mathbf{w}_2 \mathbf{n}_6 dS \quad \text{with} \quad \mathbf{n}_6 = \frac{\partial \psi^{(2)}}{\partial \mathbf{n}}$$

$$i, j = 1, 2$$
where $\partial/\partial \theta = x \partial/\partial y - y \partial/\partial x$ and super-index ‘near’ denotes that pressure integration over the wetted body surface is used.

The contributions due to the coupling between $\psi^{(2)}$ and w_6 may be obtained similarly. In the first step we make use of (see Finne & Grue, 1997, eqs. 3.25, 3.26, 5.10)

$$\int_{S_B} w_6 \cdot \nabla \psi^{(2)} n_1 dS = - \int_{S_B} \psi^{(2)} m_1 dS \quad (17)$$

where the generalized m_i-terms for the rotational mode, with $\nabla \times w_6 \neq 0$, are given by

$$(m_1, m_2, m_3) = -\frac{\partial w_6}{\partial n} - 2k \times n = -\frac{\partial}{\partial n} \chi_6 + n_2 \mathbf{i} - n_1 \mathbf{j} \quad (18)$$

$$(m_4, m_5, m_6) = -\frac{\partial}{\partial n} (\mathbf{x} \times w_6) - 2 \mathbf{x} \times (\mathbf{k} \times n) \quad (19)$$

We note that $m_6 = -\partial(\partial \chi_6/\partial \theta)/\partial n$. We then use Green’s theorem to χ_i and $\psi^{(2)}$, giving $\int_{S_B} \psi^{(2)} n_1 dS = \int_{S_B + S_F} \chi_i \partial \psi^{(2)}/\partial n dS$. Next, applying (17) and using Green’s theorem, similarly as in the derivations of (14)–(16), we find

$$B^{\text{near}}_{16}(\psi^{(2)}) = \rho \omega \int_{S_B} w_6 \cdot \nabla \psi^{(2)} n_1 dS = \rho \omega \int_{S_B + S_F} \left(\frac{\partial \chi_6}{\partial x} - \chi_2 \right) \frac{\partial \psi^{(2)}}{\partial n} dS \quad (20)$$

$$B^{\text{near}}_{26}(\psi^{(2)}) = \rho \omega \int_{S_B} w_6 \cdot \nabla \psi^{(2)} n_2 dS = \rho \omega \int_{S_B + S_F} \left(\frac{\partial \chi_6}{\partial y} + \chi_1 \right) \frac{\partial \psi^{(2)}}{\partial n} dS \quad (21)$$

$$B^{\text{near}}_{66}(\psi^{(2)}) = \rho \omega \int_{S_B} w_6 \cdot \nabla \psi^{(2)} n_6 dS = \rho \omega \int_{S_B + S_F} \frac{\partial \chi_6}{\partial \theta} \frac{\partial \psi^{(2)}}{\partial n} dS \quad (22)$$

We observe that $B^{\text{far}}_{ij}(\psi^{(2)})$ and $B^{\text{near}}_{ij}(\psi^{(2)})$ are different. Both matrices are, however, expressed in terms of integrals over S_B and S_F of products between $\partial \psi^{(2)}/\partial n$ and χ_i, and derivatives of χ_i. It suffices to determine $\partial \psi^{(2)}/\partial n$ from the nonlinear boundary conditions for $U = V = \Omega = 0$. The boundary conditions for $\psi^{(2)}$ are, to leading approximation, determined from the linear wave potential $\Phi^{(1)}$ at zero speed, which may be written

$$\Phi^{(1)} = \text{Re}\{A \text{ig}/\omega) e^{i \omega t}\} \quad (23)$$

where $\phi = \phi(x)$. We then have (Grue & Palm, 1993, eqs. 10–12)

$$\frac{\partial \psi^{(2)}}{\partial z} = -\frac{g A^2}{2 \omega^2} \text{Im}(\phi \phi^{*}) \quad \text{at} \quad S_F \quad (24)$$

$$\frac{\partial \psi^{(2)}}{\partial n} = \frac{g A^2}{2 \omega} \text{Im}\{B \cdot (n \cdot \nabla) \nabla \phi^{*} - C \cdot [(\omega^2/\gamma) \mathbf{B}^{*} - \nabla \phi^{*}]\} \quad \text{at} \quad S_B \quad (25)$$

where an asterisk denotes complex conjugate, $(\)_{zz} = \partial^2(\)/\partial z^2$, $B = [(\xi_1, \xi_2, \xi_3) + (\xi_4, \xi_5, \xi_6) \times x]/A$, $C = (\xi_4, \xi_5, \xi_6) \times n/A$, and ξ_i denote the complex amplitudes of the linear body responses at zero speed. (A denotes the wave amplitude.)

Computational procedure

It may be convenient to avoid evaluating the second derivative in the body boundary condition for $\psi^{(2)}$, i.e. the first term on the right of (25). By using a variant of Stokes’ theorem we may show that

$$\int_{S_B} \psi \frac{\partial \psi^{(2)}}{\partial n} dS = -\frac{g A^2}{2 \omega} \text{Im}\left\{ \int_{S_B} \nabla \Psi \cdot \nabla \phi^{*} \mathbf{B} \cdot n dS + \frac{\omega^2}{\gamma} \int_{C_B} \Psi \mathbf{B}^{*} \cdot n dl \right\} \quad (26)$$
where Ψ is an arbitrary function and C_B denotes the water line of S_B. The proof is given in Finne & Grue (1998, eqs. 7.9-7.12) and is not repeated here. Thus, the integrals in (12), (14)–(16) and (20)–(22) may be obtained by applying

$$\int_{S_B+S_F} \Psi \frac{\partial \phi_s^{(2)}}{\partial n} dS = -\frac{gA^2}{2 \omega} \text{Im} \left\{ \int_{S_F} \Psi \phi_s^{*} dS + \int_{S_B} \nabla \Psi \cdot \nabla \phi^{*} B \cdot n dS + \frac{\omega^2}{g} \int_{C_B} \Psi \phi B^* \cdot n d\ell \right\} \quad (27)$$

Numerical example

To illustrate the analysis we consider an example where a freely floating half-immersed sphere with radius R and center located in $x = y = 0$ is exposed to incoming waves with wavenumber k propagating along the y-axis. The wavenumber satisfies the usual dispersion relation $\omega^2 = gk \tanh kh$. In this example $\chi_3 = 0$, $\partial \chi_1 / \partial \theta + \chi_2 = 0$ and $\partial \chi_2 / \partial \theta - \chi_1 = 0$. (When $h = \infty$ we also have $\chi_1 = -(xR^3)/(2|x|^3)$ and $\chi_2 = -(yR^3)/(2|x|^3).$) The only nonzero components of the wave-drift damping matrix are B_{11} and B_{22}. Otherwise we have that $B_{ij} = B_{ij}(\psi^{(2)}) + B_{ij}(\Phi) = 0$.

The contributions from $\psi^{(2)}$ to the wave-drift damping matrix using the near-field method gives

$$B_{16}^{\text{near}}(\psi^{(2)}) = -\rho \omega \int_{S_B+S_F} \chi_2 \frac{\partial \psi^{(2)}}{\partial n} dS, \quad B_{ij}^{\text{near}}(\psi^{(2)}) = 0 \text{ otherwise} \quad (28)$$

Since $B_{16}^{\text{near}}(\psi^{(2)}) + B_{16}^{\text{near}}(\Phi) = 0$, we have that $B_{16}^{\text{near}}(\Phi) = -B_{16}^{\text{near}}(\psi^{(2)})$ in this example.

If we instead use the far-field method we obtain

$$B_{61}^{\text{far}}(\psi^{(2)}) = \frac{\partial \Psi}{\partial \omega} M_2, \quad B_{ij}^{\text{far}}(\psi^{(2)}) = 0 \text{ otherwise} \quad (29)$$

where M_2 is given by (12). Since $B_{61}^{\text{far}}(\psi^{(2)}) + B_{61}^{\text{far}}(\Phi) = 0$, the component $B_{61}^{\text{far}}(\Phi)$ has a value which equals $-B_{61}^{\text{far}}(\psi^{(2)})$. We then compute for the sphere $B_{61}^{\text{far}}(\psi^{(2)})$, using (8), (12), and $B_{61}^{\text{far}}(\Phi)$, using an expansion of eqs. (54)–(55) in Grue & Biberg (1993). The numerical results presented in the figure show that $B_{61}^{\text{far}}(\psi^{(2)})$ and $B_{61}^{\text{far}}(\Phi)$ both are large. Their sum is very close to zero, however. (In this example $B_{61}^{\text{near}}(\psi^{(2)}) = B_{61}^{\text{near}}(\Phi) = 0$.)

This work was conducted under the Joint Industry Project ‘The complete wave drift damping matrix and applications’ supported by Det Norske Veritas, Mobil, Norsk Hydro and Statoil.
Figure 1: Wave drift damping coefficient B_{61} vs. wavenumber kR. Far-field method. Freely floating half immersed sphere with radius R and mass equals its bouyancy. Center located in $x = y = 0$. Incoming waves propagating along the y-axis. Squares: $B_{61}^{\text{far}}(\psi^{(2)})$, triangles: $B_{61}^{\text{far}}(\Phi)$, Solid line without squares or triangles: total B_{61}^{far}. a) $h = \infty$, b) $h/R = 1.1$. The numerical results are extrapolated from computations using (784,3136) and (1600,6400) panels on (S_B, S_F). Outer discretization radius of S_F is $10R$.

a

b
References

