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ABSTRACT. Necessary and sufficient conditions for geometric con-
vergence of the Metropolis—Hastings simulation algorithm with a
general generation function are established. If these conditions
are violated, then the algorithm does not in general converge. An
explicit expression for the convergence rate is found. The conver-
gence rate depends heavily on the size of the domain where the
generation function is positive, a lower bound of the ratio between
the generation function and the limiting function in this domain
and the number of jumps necessary to jump between two arbitrary
states. The results in the paper also give a qualitative understand-
ing of the convergence rate.

1. Introduction. This paper discusses the convergence rate for the
Metropolis—Hastings simulation algorithm proposed in Hastings (1970).
The algorithm is a generalization of the Metropolis—algorithm, see
Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953). Ripley
(1987) gives a good overview of this and similar simulation algorithms.
Meyn & Tweedie (1993) is a more technical and updated description
of Markov chain theory. Diaconis & Saloff-Coste (1995) present some
recent results on the Metropolis-Hastings algorithm.

The Metropolis—Hastings simulation algorithm is used for sampling
from a distribution f(z). It is only necessary to know f(z) up to
a constant, i.e. f(zr) = ¢- h(zx) where h(x) is known and ¢ is un-
known. The Metropolis—Hastings simulation algorithm is a Markov
chain Monte Carlo (MCMC) method. One starts with any initial value
7% and then a sequence of values z'™' = F(x2?) is generated. Let p‘(z)
be the probability distribution after i iterations. There are several dif-
ferent proofs that p‘(z) — f(z) as ¢ — oo: See for example Corollary
1 of Theorem 2.2 in Billingsley (1986) and Theorem 18.5.1 in Meyn &
Tweedie (1993) under different regularity conditions. Under stronger
assumptions the convergence rate is geometric with ratio equal to the
next largest eigenvalue of F'(-). This convergence has been studied
in Frigessi, Hwang, Stefano & Sheu (1993), for example. However, the
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size of this eigenvalue for a particular Markov chain is difficult to quan-
tify. Geometric convergence is proved in Mengersen & Tweedie (1994)
when the generation function satisfies ¢(z | y) = ¢(z) > a- f(x). In
Roberts & Tweedie (1996) it is proved geometric convergence in the
total variation norm if the tails of the limiting distribution is sufficient
light. In this paper necessary and sufficient conditions for geometric
convergence in the relative supremum norm for a general generation
function are established. An explicit formula for the convergence rate
which is not too conservative, and for some cases optimal, is proved.

There is currently a lot of interest in the theory and applications of
MCMC: See for instance Geyer (1992) and Geyer & Thompson (1995).
The Metropolis—Hastings algorithm is used in a large number of ap-
plications. For several years the present author has applied the algo-
rithm in the simulation of marked point processes including variable
number of points: See for example Skare, Skorstad, Hauge & Holden
(1996), where a complex marked point process model is described. The
Metropolis-Hastings algorithm is used for simulation from the model
by changing one point at a time. Traditionally, the position of a new
point is drawn uniformly. The position of the points in the posterior
distribution, given the seismic data, is far from uniform. Intuition told
us that the convergence would improve considerably if the generation
function was close to the limiting distribution. Hence, much effort
was spent in finding an ad hoc generation function which satisfied the
following three criteria:

e it is possible to simulate from the generation function

e it is possible to calculate the probability for generating a particular
realization

e the generation function generates realizations with high probabil-

1ty.

The first two assumptions are needed, and the last was believed to
be critical for the convergence. The results in this paper show that
the convergence rate depends critically on how close the generation
function is to the limiting distribution.

The relative supremum norm is used in the convergence results. The
theorem and the results show that this is a natural norm for proving
convergence. The algorithm also converges in other norms but this may
be much more difficult to prove and the convergence rate may not be
as good. In some cases the algorithm converges in other norms, such
as T.V., Ly or L., and not in the relative supremum norm because of
properties in a domain A C Q where [, f(z) dx is small. If the tails of
the distribution are not important, other norms may be better.

In Hektoen & Holden (1996) there is a similar theorem on the conver-
gence rate for the sequential importance resampling (SIR) algorithm.
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2. The Metropolis—Hastings simulation algorithm. Let 2 C R”
be a Borel measurable state space and f(x) a probability density which
is positive in Q. The densities p°(z) and q(z | y), =,y € Q are positive in
Q2 or a subset of €2. All the densities are assumed absolutely continuous.

METROPOLIS-HASTINGS ALGORITHM. To generate a sample from
the probability density f(z):
1. Generate an initial state z° € Q from the density p°(z).
2. Fori=1,...,n:
(a) Generate an alternative state y from the density ¢(y | ).
(b) Calculate

oy, o) = min{L ' | y) }

f(@)q(y | 27)
(c) Set

i1 {y with probability a(y, x?)
T =

x'  with probability 1 — a(y, z°).

In this paper it is assumed that ¢(y | z) > 0 implies that ¢(z | y) > 0
for all z,y € Q since states proposed by ¢(y | z) > 0 will not be
accepted if ¢(x | y) = 0. The following definitions are needed:

Q(y) ={z € A q(z | y) > 0},
hz,y) = min{f(z) q(y | =), f(y) a(z | v)},

0oy — M) F()

(o :min{q<x|y>,q(y|x>m}.

Notice that ©(y) may have lower dimension than €. Integration over
Q(y) or a subset of Q(y) is with respect to the Lebesgue measure in
this dimension.

3. An expression for the probability density. Let p‘(z) be the
probability density after ¢ iterations of the Metropolis—Hastings simu-
lation algorithm. The following lemma is crucial for the later theorem
since it formulates the probability density for p'™!(x) as a function of
p'(z) in a compact formula.

LEMMA. The probability density of the Metropolis—Hastings simula-
tion algorithm satisfies

i1\ i M_pi(y) - "
s+ [ (5 - e

e G ) 0 [ aeo)
+

and
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where fﬂ(y) Q(x,y)dz < 1.

PROOF. The definition of the Metropolis—Hastings algorithm gives
P = [ a0 a(e) s
Q(y)
+ [ a9 - at) d=
Q(y)

Using that h(z,y) is symmetric and that a(x,y) = h(z,y)/(f(y)q(z |
y)) gives

P =W+ [ (Pt a0
—(y)alx | y) alz,y)) de

_ i i) ol | 2y —tEY)
—p(y>+/9(y) <p< Jalo | 9) 55

ot T h(iE,y) T
Pl Fes o] y>> !

v [ (56 - i) e

This proves the first part of the lemma. Further,
i+1
PRy / < ) o1
f () f (v)

p'(x)
+ 1
<f@)
Finally, [o, Q(z,y)dz < [, a(z | y)dz < 1, which proves the rest
of the lemma. O

4. Convergence for positive generation function. If the genera-
tion function is positive, it is possible to move between any two states
in one jump. This makes the convergence faster and the result less
technical.

PROPOSITION. Assume that

q(z |y) > af(z)

is satisfied for all x,y € Q where the constant a € [0, 1]. Then the prob-
ability density of the Metropolis—Hastings simulation algorithm satisfies

foryeq: |
oo )

f(y)

—4g(y—@mm{

zeQ
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The proposition states that [p'™!(y)/f(y) — 1| does not increase and
that the Metropolis—Hastings simulation algorithm converges if a > 0.
The convergence is fast if ¢(z | y) = f(x) and immediate if ¢(z | y) =
f(z). An example which shows that there may be equality instead of
the < sign is given after the proof.

PrROOF. The assumptions in the proposition imply

= mi M af(x
Qe,y) = mm{q(x ) aly | 2) f(y)} > af(2).

In order to simplify the notation we introduce

Ri(z) :]}jg)) ~1 and RJM:T;E{ %—1‘}.

The lemma gives

R (y < —/Q T,y d:z:) /Ri(x)Q(I,y) dx
<R / O,y dz+/Rl( ) O, y) da
A

=R,

SR}/,—CL/Q< M—R’(x))f(x)d:z;

=R, <1 — a/ f(z) d:v) —|—a/(pi(x) — f(x))dx

. Q Q
= R, (1 —a).

Define p‘(z) and the corresponding RZN(ZE) such that Ri(z) = —R'(x).

The above calculation is also valid for R'(z). Then |R*™(y)| < R%,(1—

a). We have a € [0, 1] since both f(-) and ¢(- | y) are densities. This
proves the proposition. ]

The following example shows that there may be equality instead of
the < sign in the proposition. The important properties in order to
get equality are that for the particular y chosen

Pl { pila) ‘}
T e
and that Q(x,y) = af(z) for =z €.

EXAMPLE 1. Let Q = (0,1), f(z) =1,

q(x|y):{a for < 1/2

2—a forx>1/2,

and
() — (14+¢€) f(x) forz<1/2,
Pi) {(1—e)f(:1:) for x > 1/2.
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Then

pi+1(

y) p'(x)

1| =0 1)

5. Vanishing generation function. In this section the proposition
is generalized in order to show convergence also for vanishing gener-
ation function. The assumptions made are necessary in order for the
algorithm to converge. However, first an example demonstrates why
several iterations may be necessary in order to get a reduction for a
relevant norm.

The proposition shows that sup,cq {|p'(x)/f(z) — 1|} does not in-
crease as the number of iterations increases. If ¢(x | y) = 0 for some
values, then ¢ = 0 and the proposition may not be used for proving
convergence. This is the case when Metropolis—Hastings simulates a
marked point process where only one or a few points are changed in
each iteration. It is easy to give examples where for some value of y
that p"*'(y)/f(y) = p'(z)/f(z) for x such that Q(z,y) > 0. Then
P (y)/f(y) = p'(y)/f(y), and the relative supremum norm does not

p'(z) 1‘ i

decrease.
/xEQ / (517)

The norm
may increase at least for some values of ¢ as the number of iterations
increases. This is shown in the following example. One important

property in the example is that
plx) 1‘}
f (@)

Ply)  _ {
flo) o
EXAMPLE 2. Let Q = (0,1), f(z) = 2=,

in areas where Q(x,y) > 0.

0 fOI'|ZE—y|Z/87
(x| y) = 1/20 for [x —y|<fand B<y<1-—0,
TV for -yl <Bandy <p,

1/(1—y+p) forjlx—y|<fandy>1-0,

where 0 < < 1/6, and

(f(x) for x < 243,
(14+¢€)f(x) for2f<az<~vy-—7p,
p'(z) = f(z) fory— <z <~vy+p,

(1—¢e)f(x) fory+p<z<1-20,
Lf(2) for x > 1 — 24,
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where v is determined such that [ p’(x)dxz = 1. This gives for 3 <y <
1-p
0 for |x —y| > 3,
Qzx,y) =¢1/26 for|z—y|<fand f<y<z<1l-0,
x/2yB for |z —y|<Pand f<ax<y<1-0.
The example is constructed such that the absolute value may be moved
and we may perform the following calculation:

[ = [ (290 (1= [ o)
" /we.n (2;:((9::)) a 1) Q(z,y) dx|dy

L e

P@ ot o) de
@) 1 Q(x,y) dx dy

N TR

— 1‘ Q(z,y) dy dx

yeN

LI T

P'(y)
—1|d
g /yeQ f(y) H
since [, Q(y,2)dz > [ _, Q(z,y) dx where [p’(y)/f(y) — 1] > 0.

When the generation function vanishes, several jumps {27} ;o ; where
2% = x and 2° = y, are necessary in order to jump between any states
z,y € Q. Let Dj(2™) be the domain of 2/ which is passed in the jumps
from z to y. The larger the domains D;(2’*!) are, the more probable it

is to jump from x to y. Hence, the integral ij (zi+1) f(x9)dz? is critical

for the convergence rate. If the space spaned by {Di(xi“)}‘zzo has

less dimension than the space spaned by {D;(z**!) ZIOI, then D;(x)
consists of one or a limited number of points. Then the integral
ij(xjH) f(27)da? is interpretted as 3-,;cp (1) f(27). This is illus-
trated in Example 8. In the following theorem a lower bound is nec-
essary both on the size of D;(27*1) and on the generation function
in D;(277). The properties of D;(z*!) are formalized in the follow-

ing deﬁnition' Define S = {SI}MEQ as a set of sequences SIO =

{D;(27%1)}124, where 2 =y, ; € D;(27*!) for all 27t € D; +1(IJ+2)
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Dy(z') = {2°} and D;(27*") C Q(a?*!) for j =0,...,5s— 1. Let S; be
the set which consists of element j in all the sequences in S?‘fo. Then
we have the following theorem.

THEOREM. Let the state space ) be an open subset of R* and assume
that

1 inf/ flzx)ydx >0
(1) nf [
and that
sup/ f(z)dx
z2€Q J Q(2)

is bounded. Assume the set of sequences S; = {Dj(xj“)}j.;;, for all
x,y € Q satisfies

1.
(2) q(27 |27t > ajf(:z:j) and q(z?27) > ajf(xj+1)
for a7 € D;(x7*1),j=0,...,5— 1.
2.
b; = inf / ) dx? >0 forj=1,...,s—1.
J Di@)es; S, ait) f(z7) for j

If s=1, set ¢ =ag, and if s > 1, set ¢ = ag H;;}(ajbj). Then
P (y) pi(z)
@ 1| <a-om{fFE -1}

where ¢ € (0,1]. If such a set S, does not exist for all x,y € Q, then
there exists € > 0 and p°(x) such that

P (x)

/()

(4) sup

zeQ

—1‘26
for all 7 > 0.

In Examples 7 and 8 possible sets S are illustrated. This theorem
generalizes the proposition since if ¢(x | y) > af(z) for x,y € Q, s =1
and D;(y) = Qfor all z, y € Q. The critical assumptions in the theorem
is that it is possible to jump between any two states z,y € Q and (2).
The constants b; may always be made positive by assumption (1).

Normally one will choose D;(27%1) as large as possible. This makes
b; larger, but possibly a; smaller. The size of D;(z7"!) is therefore a
trade off between the size of a; and b;.

An often asked question is: How independent are two states gener-
ated by the Metropolis—Hastings simulation algorithm as a function of
the number of iterations between the two states? The theorem states
that the error in the relative supremum norm for the last state given
the first state decreases at least by a factor (1 — ¢) per s iterations. In
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addition, it is necessary to bound the probability of staying in the first
state in several iterations.

This theorem may be used for comparison between different genera-
tion functions. This is also possible if these generation functions have
different computational cost such that number of iterations varies.

PrROOF OF THE MAIN THEOREM. First the following lower bounds
on Q(-,-) are needed. Equation (2) implies that

(5) Q(z7,27™") = min {q(:ﬂj | 270), g | 2?) 25

for 27 € D;(2*"). Then the integral is bounded:

6) 1 2/ Q27,27 da? > aj/ f(2?)da? > a;b;
Dj(ai+t) Dj(ai+t)

for j =1,...,s — 1. This also shows that ¢ = ay H;:(ajbj) € (0,1]. In
order to simplify the notation introduce

Ri(z) = e -1 and RM:ilelg{p

The proposition implies that R7(z) < Ry for j = 0,...,s — 1 and
x € 2. The lemma gives

RITH (g = RI(277) <1 —/ Q27,27 dacj>
Q(zi+1)
+/ R(27) Q2,27 da?
Q(zi+1)

<Ry [ (B B6)) QW) do
Q(mj'i‘l)

Notice that the integration is with respect to Q(z*!) which may have
a lower dimension than €. If this equation is used for j =0,...,s —1
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iteratively, this gives

R (y) SRM—/IS / (Far — B (2))

x Q(2°, x )dlL’OQ(I %) dzt - Qx5 %) dat !

< Ry — //D /DNQ)Q(Q; Q@ 22) dat x -+
% Qo s)da: (R Rz ))dxo

<RM—a0// / Q(z', ) dat x - -
311'5 Dlxz)

X Q" )dazs’1<RM — Ro(xo)) f (%) da®

< Ry — ag H(ajbj) /Q(RM — Rﬂ(x0)> f(2) da®

J=1

— R — c/Q(RM . Rﬂ(xﬂ)) F(a°) dz”

= Ry (1 — c/ f(z°) dx0> +/R0(:E0) f (%) da®
Q Q
= RM(l - C).

In the calculation we have used the lower bound on Q(-,-) from (5),
changed the order of integration using the fact that S spans {2 and
the properties of the sequence D;(a/*!). Before the order is shifted
it is integrated over all possible sequences {x]}gig fixing only z° = y.
After the integration order is shifted it is only integrated over the sets
D;(27*1) with both 2* = y and 2° fixed. Notice that the integration
domain D;(2/*!) depends on both z¥ = y and 2°. Then (6) is used.
Define p'(x) and the corresponding R'(x) such that R'(z) = —R'(x).
The above calculation is also valid for R'(z) so that |R™**(y)| < Ry (1—
¢). This proves that the existence of a set of sequences Sy forall z,y €
Q, implies (3). It is left to prove the implication in the other direction.

Choose a € (0,1) and 5 > 0. Define Sj»* such that each D;(27"") is
as large as possible satisfying the first half of (2) and for any 2° € Q,
ie.

D) = {7 € Q@*); g’ |27) > af(a) }.
Using only half of (2) makes D;(z/*!) larger. Define
Aj® = span(S,%)
={z € z € Dy(z')where Dy(z') is in a sequence in Sp°}.

Assume AJ* has positive measure in R™. If this is not the case, y is
replaced by another state in Q. Let 4, = sup, ,{span(S3*)}.
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Assume first A, # Q. Let

0(p) — (1+¢) f(z) forzeQ\ A,
v {(1—66)1”(96) else,

where 3 is determined such that [, p°(z)dz = 1. A chain with 2° €
Q\ A, does not join 4,, and a chain with 2° € A, does not join Q\ A, for
any s. Then according to the lemma p/(x) = (1+¢) f(z) for z € Q\ 4,
and all 7 > 0, which implies (4).

Assume then A, = €. For a given 6 > 0, there exist a and s such
that the probability of a chain with 2° € Q\ Aj® entering Aj® is less
than o. This is proved as follows: In order to enter Aj** it is necessary
to pass a domain D;; C Q(z7) for any 27 such that

q(z7 | 27 < a f(27) for 2/t € D; 4.

The probability for both generating and accepting a point z/™ € D; 4
is bounded by

J+1 I g+l . ) ) . .
[ e ey et < [ ant,
Dj1 D

J(27) q(a7+ )

which may be made arbitrarily small by choosing a small since the
integral is bounded by the assumptions in the theorem. Let

PAz) = {(l—i-e)f(x) for z € Q\ Ap*,

Jj+1

(1—Pe) f(x) else,

where  is determined such that [, p°(z)dz = 1. Then p/(z) > (1 +
€) (1 =6) f(z) for v € Q\ A} and j < s. This implies that

P () ‘
sup —1 €
z€N f(:L’)
for all j > 0, which proves the theorem. O

6. Some examples. It is recognized in practical applications that
the Metropolis—Hastings simulation algorithm does not work satisfac-
tory without the assumptions in the theorem. The two assumptions
regarding the construction of the set S are critical. The following
two examples demonstrate why convergence is not achieved if either of
these two assumptions is violated. Two additional examples are given.
These further examples show why the additional assumptions in the
theorem, not connected to the construction of S, are necessary. In the
first example there is not a finite number of jumps between any states
x,y € ) independent of z, y.

ExamMpPLE 3. Let 2 = R, let f be a normal distribution with ex-
pectation p, and let ¢(z | y) = 0 for |x — y| > ¢ for a constant c.
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If

ooy [0+ Tor<p
p()_{(l—e)f(x) for z > p,

then sup,cp [p*(2)/f(x) — 1| = € for all s > 0, since p’(z) will not be
changed for sufficiently large values of |z| in a finite number of jumps.
Hence, the algorithm does not converge in this norm. However, the
algorithm converges in both L; and L.,. This example also violates the
assumption inf, fQ(y) f(z) dx > 0 by setting |y| sufficiently large.

The other critical assumption is (2). The following example demon-
strates that we may not in general get convergence if this assumption
is violated.

EXAMPLE 4. Let Q = (0,1), f(z) =1, ¢(z | y) = 2z, and

0(p) — (14+¢€)f(x) forz<1/2,
P )_{(l—e)f(x) for o> 1/2.

Then sup,cq, |[p°(z)/f(z) — 1] = € for all s > 0, since the algorithm
never leaves a state with arbitrarily small values of x. Hence, also in
this example the algorithm does not converge in the relative supremum
norm. The algorithm converges in L; but not in L.

The following example demonstrates why sup, fQ(y) f(z)dx is as-
sumed bounded.

EXAMPLE 5. Let x = (11, 29) € R?,
Q= {(Il,IQ) eER? z>land0< a2y < :El_Q}.
and f(z) = 3 for all z € Q. Further let

1/2x% if x1 =1,
Q((%,JCZ) | (yl,y2)) =< 1/2(z3 —1) if 3y = yo,
0 else,

and

0(y) — (1+e)f(z) ifx >2,
p) {(1 ~8)f(z) clse,

where 8 is chosen such that [,p°(z)dz = 1. A chain starting with
sufficiently large values of x; has arbitrarily small probability of enter-
ing the region with 2, < 2. Hence, sup,cq [p/(2)/f(z) — 1| = € for all
j=0.

The following example shows why €2 must be open. The theorem
is also valid for closed €2, but this necessitates additional technical
assumptions which exclude the following and similar examples.
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EXAMPLE 6. Let z = (z1,...,2,) € R*, Q = [0,1]" U [1,2]", and
f(z) = 1/2. Further let

1/n if z; = y; for at least n — 1 values of i = 1,...,n,
q(z | y) =
0 else,

and

(1—¢)f(z) else.

Then sup,cr [p"*(x)/f(x) — 1| = e for all s > 0, since it is necessary to
pass through a subspace with n — 1 coordinates equal to 1 in order to
jump from one half of the state space to the other half. This subspace
has measure 0 in R” and, more important, also has measure 0 in Q(x)
for points x which are not already in the subspace.

p(2) = {(1+6)f(37) if x; <1,

The following examples illustrate the theorem in two cases where
convergence is obtained. In the first case the same integration measure
is used for both f(x) and ¢(x | y) and in the second case different
measures are used.

EXAMPLE 7. Let 2 = (0,1), f(z) =1 and
0 for |z —y| > B,
1/25 for |z —y|<pfand f<y<1-—20,

1/(y+p)  forfr—y|<fandy<p,
1(1—y+pB) forjJr—y|<PBandy>1-7,

where 0 < # < 1/2. This gives

q(z |y) =

0 for |':E - y| 2 ﬁa
_ J 1/ (max{z,y} + B) for z,y <,
Qy) = 1/(max{l —z,1 —y}+B) forz,y>1-7,
1/2p else.

Set
: Y- Y-
Dj(IHl) = <]yT+:L’—%]yT+I+7>

where 7 is chosen as large as possible, but such that it is possible to
jump from any position in D;(z!) to any position in D;(z772) for
all states z,y € €2. This is not an optimal choice of Dj, since that is
more technical. This choice gives v = (3 — (1/s))/2 where s > 1//3.
Then we may calculate

, . 1
bj:/ fl@?)dx) =2y =p5——.
D(;L‘j"rl)

S



14 LARS HOLDEN

It is easily seen that a; = 1/28. The bound on the error is then

pi-l-s (y) 1\° 1\ ! pz(x)

o 1< (1‘ (25) (-2) )p{ )
B 1 /1 1\ pi(z)
() )l

Notice that choosing s as small as possible but larger than 1/ gives
an upper bound on when the reduction in the relative supremum norm
starts. However, choosing s larger will give a better bound on the
convergence when the number of iterations is larger.

EXAMPLE 8. Let x = (21,...,2,) € R", Q= (0,1)", and

v ife; <pBfori=1,...,n,
flz)=<u ife; >1—pfori=1,..,n,
(1= (v+p)pm)/(1—=26") else,

where § < 1/2 and v > p > 1. Further

1/n if z; = y; for at least n — 1 values of i = 1,...,n,
q(z | y) =
0 else.

For p large this example is similar to a Strauss process with strong
attraction; see for example Ripley (1987). The movement of a chain
between domains with high density is only possible by passing through
domains with low density. The movement of a chain between two of
the opposite corners in this example is similar to the movement of a
cluster in a Strauss process. In a Strauss process the cluster may also
move slowly. This problem is known to converge very slowly.
Let x,y be in opposite corners. Choose the set of sequences S with
s = n as follows. Let D;(z7"!) be the j + 1 states sequentially deter-
mined by j coordinates equal the coordinates of y and n—j coordinates
equal the coordinates of z. The j + 1 coordinates in D;q(27%?2), which
are equal to the coordinates of y, are the same as the coordinates as
D;(z7*1) have equal to the coordinates of y and one of the the other
coordinates. This gives
ajbj:aj/ f(:vj)dszm.
Dj(zi*t) n

It is easily seen that ag = 1/nv. Then the theorem states

S < () {7 )

which indicates very slow convergence for n large.

(7)
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If we set v = /2 and

z(x)_ (1—c¢) f(z) foraz; >1—p for all 4,
Tl (@46 f(z) else,

then the relative supremum norm does not decrease the first n — 1 iter-
ations and the theorem gives a good description of the convergence rate
the first n iterations. However, when the number of iterations increases
p'(z) — f(x) will change more gradually, moving from one corner to the
opposite one. The relative reduction in the relative supremum norm
will then increase. This is illustrated by assuming that = v = 1 and
p(z) = (1+¢(j — k)/n) f(x), where j is the number of z; < § and k
is the number of x; > 1 — 3. The lemma implies that

) poie) = (14 e (1= 1)) s

n n
it+1 i
p @f_4§<1_1>wp{p@)_4},
S () n) wea || f()
which is considerably better than (7). The critical difference between
these two cases is that in the first case p'(z) — f(z) is only positive for
x in a small corner while in the second there is a gradual change.
Equation (8) is proved as follows: Let

, _P(2) '
RZ, = — ]_ =

HT @ T
where j is the number of z; < # and £ is the number of z; > 1 — 3 in
x. By invoking the lemma, the calculation goes as follows:

%§23m+—7f—(fm—%ﬂ

This gives

U R 5 OB (i miy) + 20 (R )
+ M( ;‘,k+1 - ;k) + Jnﬁ( jLk+1 ;k)
+ %( §'+1,k—1 - R;',k)

| — 1
= ¢? k(l——).
n n

5. Closing remarks. In this paper geometric convergence of the
Metropolis—Hastings simulation algorithm is proved under weak as-
sumptions. If the assumptions for geometric convergence are not sat-
isfied, then in general the algorithm does not converge in the relative
supremum norm. The first assumption is that it is possible to jump
between any two states in the state space in a finite number of jumps
where the number of jumps is independent of the position. The second
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main assumption is that the ratio between the generation function and
the limiting function is bounded by a positive constant in a domain
with positive measure. The convergence rate depends heavily on the
size of this constant and the corresponding domain in addition to the
number of jumps necessary to move between the two different states in
the state space.

The results in the paper also give a good qualitative understanding
of the convergence. The lemma shows that the error in the relative
supremum norm in a point y in iteration ¢ + 1 is the average of the
error in iteration ¢ weighted by Q(z,y). Assume that = R and that
the change in each iteration is limited. Then the lemma states that
the high frequency error in p°(x)/f(z) is reduced quickly and the low
frequency error is reduced more slowly.

Let A= {z € Q;p’(z) > f(z)} and B = {z € Q;p°(z) < f(z)}. If
the probability of jumping from z* € A to 2t € B is high, then the
convergence is fast. On the other hand, if several jumps are necessary
in order to move from A to B, the convergence is slow, particularly to
begin with. This is illustrated in Example 8 where there is no reduction
in the relative supremum norm the first n iterations for a particular
p°(z). After several iterations there will be a gradual change in the error
such that p*(z)/f(x) will be quite similar at points where the proba-
bility density for jumping between the points in one or a few iterations
is large. Then the relative supremum norm decreases in each iteration
and the convergence is faster than the bound described in the theorem.
If s is small, the theorem describes this slow convergence since the
bound on the convergence rate in the theorem is independent of p(z).
A better bound on the convergence rate is found by increasing s and
choosing the set D; as large as possible. This gives a good estimate
for the convergence rate for the worst possible p°(z). Alternatively, the
lemma may be used as illustrated in the last part of Example 8. This
gives a good estimate for the convergence rate for a particular p°(z)
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