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Summary 

Pharmaceutical pollution has been recognised as an environmental issue since the 1990s. A 

wide range of APIs (Active Pharmaceutical Ingredients) are in use in pharmaceutical products 

and have been found in the environment. However, a smaller body of supporting literature 

exists for this group of substances than for many other pollutants. The environmental risk 

assessment of pharmaceuticals must often be conducted with less data, and more uncertainty, 

than other groups of chemicals. To prioritise pollutants and manage risk in line with national, 

European, and international environmental goals, it is vital that we can forecast how 

pharmaceutical environmental risk will evolve in the future, as the range of stressors facing 

humans and the environment changes. However, this act of forecasting itself introduces 

uncertainty, and strategies better able to transparently process and display this uncertainty will 

increase the quality of forecast environmental risk assessment. 

In this PhD, emissions and risks of pharmaceuticals to the Norwegian environment are 

predicted. Using sales data from the Norwegian Institute for Public Health’s Drug Wholesales 

Statistics Database, and information on the API weight content of different pharmaceutical 

products, a dataset covering more than 800 APIs was created with wholesale records over a 

four-year sales period. By comparing predictions to similar data sources, the accuracy of the 

work could be evaluated. 

These predicted exposures were subsequently used, in combination with publicly available 

experimental and computation toxicity, persistence, mobility and bioaccumulation data to 

rank the risk of pharmaceuticals over four years. We compared our predicted values to 

measurements available for Norwegian wastewater treatment plants and found that 

predictions overestimated compared to measurements by a median of 20 times. While 

calculation of Risk Quotients (RQ) was only possible for a minority of APIs, more than 200 

APIs could nevertheless be ranked by RQ, identifying sex hormones as some of the highest 

risk APIs in the Norwegian environment. Effects of veterinary and non-prescription 

pharmaceuticals were examined for both API environmental exposure and risk and found that 

70% of exposure was attributable to only prescription medications, and 85% to only human 

medications. Little effect was seen on RQ prioritisation, though this was likely skewed by 

data availability. As pharmaceutical pollutant priority has been identified as a local (national) 

phenomenon, this work is important in improving the state of knowledge of pharmaceutical 

pollution in Norway. 

Finally, to address the uncertainty in the predictions of risk, a novel Object-Oriented Bayesian 

Network was developed to forecast the risk of a subset of high-priority APIs in 2020 and 

2050. Thirty-six plausible future scenarios were developed, covering variation in population 

growth, wastewater treatment removal efficiency, and three example Norwegian counties 

across the spectrum of urbanisation. For each scenario and API, the distribution of possible 

RQ values was predicted. A sum of RQs was subsequently calculated, as well as joint 

probability that any RQ would exceed a given threshold, across all APIs in each scenario. The 

highest overall risk was found in rural regions, especially under larger population growth 

scenarios. Improved wastewater treatment efficiency could mitigate risk.  
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Sammendrag 

Forurensing av legemidler i miljøet har vært anerkjent som et potensielt problem siden 1990-

tallet. Legemidler inneholder en rekke Active Pharmaceutical Ingredients (Aktive 

Farmasøytiske Ingredienser, API-er), og mange gjenfinnes i miljøet. Til tross for et økt fokus 

er det fremdeles mindre kunnskap om forurensning fra legemidler enn andre typer kjemisk 

forurensning. Miljørisikovurderinger må derfor ofte gjennomføres med begrenset datatilgang, 

og derved større usikkerhet, enn for andre grupper av kjemikalier.  

For å forvalte risiko på linje med nasjonale, europeiske og internasjonale miljømål, må vi 

forstå hvordan legemidlers miljørisiko kunne kommer til å utvikles i framtiden, etter hvert 

som omfanget av stressfaktorer for mennesket og miljøet endrer seg. Effektiv forvaltning 

kreves dermed prioritering av nåtids og framtidens miljørisikoer av legemidler. Prediksjoner 

av framtidsscenarier medfører i seg selv økt usikkerhet, og strategier som kan forbedre 

prosessen med risikovurdering og øke transparensen av usikkerheten vil gi oss en forbedret 

miljørisikovurdering. 

Fokus for denne doktorgraden er modeller for å forutsi utslipp og risiko av legemidler i norsk 

miljø. Vi har etablert et datasett som inkluderer flere enn 800 API-er ved å bruke salgsdata fra 

fire år fra Folkehelseinstituttets grossistbaserte statistikk over legemiddelforbruk og 

informasjon om den relative andelen API-er i ulike farmasøytiske produkter. Ved å 

sammenligne prediksjonene med lignende datakilder, har vi kunnet evaluere hvor presise 

estimatene er. 

Predikerte legemiddelkonsentrasjoner sammen med publiserte eksperimentelle og data-

baserte data for giftighet, nedbrytning i miljøet, bioakkumulering og mobilitet ble brukt til å 

rangere miljørisiko for legemidler over disse fire årene. Vi sammenlignet våre predikterte 

estimater med målinger fra norske renseanlegg og fant at våre prediksjoner overestimerte 

medianverdien relativt til målte verdier med en faktor 20. Selv om beregning av Risk 

Quotients (risikokvotientene, RQ-er) var mulig bare for en mindre andel av API-er, kunne vi 

allikevel rangere flere enn 200 API-er med tanke på RQ. Kjønnshormoner ble identifisert som 

API-er med den høyeste miljørisikoen. Den grossistbaserte statistikken over 

legemiddelforbruk inkluderer oversikt over bruk av veterinærlegemidler og reseptfrie 

legemidler, noe som mange land ikke har offentlig statistikk over. Resultatene viste at 70 % 

av total eksponering kunne tilskrives reseptpliktige legemidler og 85 % ble bruk av 

mennesker. Veterinærmedisin og reseptfrie legemidler hadde liten påvirkning på RQ-basert 

prioritering, men dette var trolig påvirket av fordelingen av data. Legemidler i miljøet har blitt 

identifisert som et miljøproblem, og dette arbeidet er derfor viktig som kunnskapsgrunnlag 

om legemiddelforurensing i Norge. 

For å vurdere usikkerheten i forventet risiko, ble et nytt objektorientert bayesisk nettverk 

utviklet for å predikere nåværende og fremtidig risiko for legemidler med høy miljørisiko i 

2020 og 2050. Trettiseks plausible framtidsscenarier ble utviklet. De inkluderte variasjon i 

befolkningsvekst og effektivitet av avløpsrensing, og viste risiko i tre norske kommuner med 

ulike nivåer av urbanisering. For hvert scenario og API, ble fordelingen av mulig RQ-verdier 

predikert. Til slutt ble en sum av RQ-er beregnet, og i tillegg en samlet sannsynlighet for at 

noen RQ-er var høyere enn en gitt grenseverdi. Den høyeste totale risiko ble funnet i 

distriktene, spesielt under en forventning om høyere befolkningsvekst. Forbedret 

avløpsbehandling ble vist å redusere miljørisiko.  
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1. Introduction 

1.1 Background 
Earth and humans today face a complex, dynamic landscape of interlinked environmental 

issues that represents a severe threat to health. In the World Economic Forum’s 2023 survey, 

roughly 1200 academic, business, government, international and civil groups, and experts 

were asked to rank the top ten global risks facing humanity. Six of the top ten global risks 

selected were environmental: failure to mitigate climate change, failure of climate-change 

adaptation, natural disasters and extreme weather events, biodiversity loss and ecosystem 

collapse, natural resource crises, and large-scale environmental damage incidents (World 

Economic Forum, 2023). Likewise, the World Health Organisation (WHO) has identified 

climate change as the top risk to human health (WHO, 2021), while the Lancet’s Pollution 

and Health commission has found that pollution is the world’s single largest environmental 

risk factor for disease and premature death (Fuller et al., 2022) 

 

In her list of priorities for 2019-24, the President of the European Commission, Ursula von 

der Leyen placed in number one position (of six) the agreement of a European Green Deal, 

under which Europe will, by 2050, “become climate-neutral”, “move towards a zero-pollution 

ambition”, and “present a Biodiversity Strategy for 2030” (von der Leyen, 2019). Likewise, 

on an international scale, the increasing importance of environmental agreement is illustrated 

by the growing pace of climate change and biodiversity agreements, such as the UN 

Environment Programme’s COP 15 and the United Nations Framework Convention on 

Climate Change COP 27 conferences, both in 2022. 

 

To support its ambitious environmental goals, the European Union (EU) funds research 

through Horizon Europe. As part of its last programme, Horizon 2020 provided €80 billion of 

funding to address societal challenges including health and environmental issues. One such 

funded project was the Innovative Training Network ECORISK 2050, designed to train early 

career researchers to address critical questions surrounding how pollutant risk will evolve by 

the year 2050 (Welch et al., 2022a). 

 

ECORISK 2050 encompassed four primary work packages – Scenarios, Exposure, Effects, 

and Risks & Mitigation, and aimed to assess global change’s impact on the scenarios of 

chemical emission and consumption, the environments exposure to chemicals, changes in the 

effects of chemicals, and the overall risk landscape. The EU and European Free Trade Area 

(EFTA) are by environmental convention divided into three regions, North (from Denmark to 

Finland), Central (from the UK to Romania), and South (France and below). This PhD project 

was planned with the original title “Assessing the combined toxicity, cumulative hazard, and 

cumulative risk of PPCP in wastewaters in the future”, with a principal focus of 

pharmaceutical pollution in Norway.  

 

1.2 Pollution, Risk, and Uncertainty 
 

Society and industry’s widespread recognition of the universal importance of environmental 

issues is a marked improvement from the 20th century (World Commission on Environment 

and Development, 1987). However, rapid development in environmental pressures has far 

outstripped our ability, as a society, to understand, assess, mitigate, and adapt to the changes 

we have, are, and will continue to create in the environment. 

 

Environmental issues are complex, and dynamic, and do not conform easily to human-

imposed distinctions between, for instance, economics and ecology. The term “wicked 
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problems” is often applied to environmental issues – they are difficult define neatly and 

precisely, and surrounded by a network of dynamic social, economic and environmental 

factors (Kreuter et al., 2004; Levin et al., 2012).  

 

The aim of governments and legislative bodies is to address a variety of concerns, of which 

environmental issues are a subset. Balancing the environmental costs of pollution against the 

benefits provided by whatever industry produces said pollution is a complex and highly 

values-driven process. Management of pollution on a national and global scale can be 

attempted by a variety of formal and informal means. A key tool intended to systemically 

assess the likely risk of existing or new substances is Environmental Risk Assessment (ERA). 

In Europe – and around the world – environmental risk assessment is one of the principal 

regulatory tools used to assess risks posed by pollution. 

 

The regulatory management and assessment of environmental risks has evolved since its 

inception in the late 20th century, but due to its political nature, requiring political consensus 

and subject to strong pressures from industry, regulatory techniques struggle to keep up to 

date with the latest science. Different groups, industry, NGOs, and academics have criticised 

various aspects of contemporary European environmental risk assessment and management of 

pollutants in general, and pharmaceuticals in particular (Ågerstrand et al., 2015; Backhaus 

and Slunge, 2021; Jager et al., 2001; Landis and Chapman, 2011; Ragas, 2011).  

 

One particular criticised aspect in contemporary environmental risk assessment (ERA) is its 

ability to handle uncertainty (including a lack of knowledge) in a transparent and quantitative 

fashion. A more in-depth discussion of uncertainty is made later in this thesis, but in general, 

existing ERA guidelines make great use of rules-of-thumb and large safety or assessment 

factors to build in uncertainty in the assessment of risk. Different forms of uncertainty – 

variability and, especially, lack of effect data – have been repeatedly highlighted as issues in 

ERA, particularly among less studied, more diverse groups of pollutants, such as 

pharmaceuticals (Ågerstrand et al., 2015; Verdonck et al., 2007). 

 

Against this backdrop of issues, the output of the ERA process has been criticised for not 

fully expressing and quantifying uncertainty (Maertens et al., 2022; Verdonck et al., 2007). 

To this end, a contingent of the ecotoxicology community has long recommended the greater 

exploitation of probabilistic techniques to enhance existing ERA (Jager et al., 2001; Maertens 

et al., 2022; Moe et al., 2022). However, more development of techniques, case studies and 

stakeholder buy-in (EUFRAM, 2006) appears needed before probabilistic approaches can 

move beyond their existing foothold (EFSA, 2012; Landis, 2021; Mitchell et al., 2021) in 

ERA. 

 

As a part of addressing these issues, this thesis will predict and assess the recent 

environmental risks of APIs (Active Pharmaceutical Ingredients) in Norway, explore future 

risk under various plausible scenarios, and develop a Bayesian network model as a 

probabilistic approach to characterising this risk and associated components of uncertainty 

towards 2050. 

 

1.3 Research Objectives 
 

This thesis and its component papers address the scientific challenges and methodology of the 

risk assessment, both conventionally deterministic and probabilistic, of pharmaceuticals in 
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Norwegian surface water under current and future conditions. The goal of this PhD project 

was broken down into subtasks, which are treated in the included papers. 

 

• To predict the recent exposure of pharmaceuticals pollutants in Norway from 

wholesales data (Paper I) 

• To characterise the recent risk of these pollutants from toxicity and physicochemical 

properties (Paper II) 

• To develop a probabilistic model for predicting combined risk of pharmaceutical 

mixtures, and forecast how future pharmaceutical risk may change under plausible 

population and wastewater treatment scenarios (Paper III) 

 

2. State of the Art 
 

2.1 Pharmaceuticals and the Environment 
 

History of Pharmaceuticals and the Environment 

Sola dosis facit venenum - “only the dose makes the poison” – is an oft-repeated maxim in 

ecotoxicology, taken from the works of the renaissance polymath Paracelsus (1493 – 1541). 

Paracelsus worked in his time primarily as an itinerant physician, prescribing tonics of herbs, 

oils, spirits, and opiates to patients (“Paracelsus,” 2023). In this era, medicine was a rather ad 

hoc process, treatments being made up in apothecaries’ shops. 

 

Three hundred years after Paracelsus’ death, as the second industrial revolution kicked off in 

the mid-19th century, modern industrial pharmacy was born, as the converging interests of 

apothecaries and chemical and dye companies drove the mass production and marketing of 

early pharmaceuticals (Daemmrich and Bowden, 2005).  

 

Since the heady days of the early pioneers, the development, manufacture and consumption of 

conventional medicines has surged – although difficult to qualify, we can observe that the 

value of the pharmaceutical market has more than tripled between 2001 and 2019 alone 

(González Peña et al., 2021). Through sickness and health and war and peace, reliance on 

manufactured medicines has become a core paradigm of treatment in Western medicine. 

Since the beginning of the 20th century, child mortality has dropped from more than 30% to 

less than 4% (Roser et al., 2013b) life expectancy has more than doubled (Roser et al., 

2013a), and the global population grown from 1.7 to 7.1 billion (Roser et al., 2013c).  

 

When, in the wake of Rachel Carson’s Silent Spring (1962), a wave of popular concern 

gathered over humans’ pollution of the environment, pharmaceuticals were largely omitted 

(Daughton, 2016) from public, scientific or regulatory attention. As awareness and 

understanding grew, supplemented by concern over issues such as endocrine disruption and 

antimicrobial resistance, pharmaceutical pollution grew as an issue in the minds of scientists, 

governments, and the public, but is still often eclipsed by concern for other environmental 

issues such as climate change (Desai et al., 2022; Vatovec et al., 2017). 

 

Although isolated cases of pharmaceuticals poisoning people in the literature record date back 

to the 1940s, Daughton (2016) noted that disparate strands of analysis gathered steam in the 

1970s-80s and coalesced in the mid-1990s into a field of research often shortened to PiE, for 

Pharmaceuticals in the Environment. 
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Exposure, Effects, and Issues 

Today, pharmaceuticals have been detected in the environment on every continent (Beek et 

al., 2016; González-Alonso et al., 2017; Kallenborn et al., 2008; Wilkinson et al., 2022). 

Particularly heavy contamination has been detected in less economically developed nations in 

Africa and Asia, driven by manufacturing sites, insufficient wastewater treatment 

infrastructure, and arid climates (Wilkinson et al., 2022). However, the vast majority of 

research to date on environmental emissions and exposure has occurred in the developed 

West (Wilkinson et al., 2022). 

 

The discovery of widespread sexual disruption of fish downstream of Wastewater Treatment 

Plants (WWTPs) in the UK due to contamination with pharmaceuticals sex hormones was one 

of the earliest findings of significant environmental impact (Jobling et al., 1998; Mills and 

Chichester, 2005). Famously, the human and veterinary analgesic (painkiller) diclofenac has 

been responsible for local vulture population extinctions via contaminated cattle carcasses in 

India and Pakistan (Cuthbert et al., 2016; Oaks et al., 2004). Likewise, antimicrobial 

resistance – an issue big enough to get its own awareness week (WHO, 2023) – is driven in 

part by antibiotic contamination in wastewater from dwellings, hospitals (Rodriguez-Mozaz et 

al., 2015) and manufacturing (Larsson et al., 2007; Lübbert et al., 2017).  

 

A broad range of pharmaceuticals across many therapeutic classes have been identified as 

adversely affecting the behaviour (Brodin et al., 2013), growth (Yan et al., 2016), 

reproduction (Han et al., 2010) and survival of different wildlife (Fong and Ford, 2014; 

Świacka et al., 2023; Yan et al., 2016). However, the existence and availability of toxicity 

data and ERAs of pharmaceuticals remains extremely inconsistent, especially where older 

APIs are concerned (Ågerstrand et al., 2015). Consequently, moving from the characterisation 

of individual pharmaceuticals in the environmental to an understanding of global risks now 

and in the future remains difficult (Sumpter et al., 2022). 

 

In 2012, pharmaceutical pollution researchers identified 20 key questions about the effects 

and risks pharmaceuticals in the environment (Boxall et al., 2012). Despite a great deal of 

work and research in the intervening decade (Maack et al., 2022), a considerable uncertainty 

remains (Sumpter et al., 2022), and progress on protecting the environment from 

pharmaceutical pollution has proven slow (Souza et al., 2021). 

 

2.2 Environmental Risk Assessment of Pharmaceuticals 
 

Principles of ERA 

The concept of Risk, as used and understood in contemporary environmental protection, owes 

a lot to boats. The words origins may (sources differ) be traced back to the Ancient Greek 

ῥίζα (rhíza, “cliff”) in reference to the dangers of steering ships across rocky shores. The 

modern science of risk assessment developed under similar conditions, in the coffeehouses 

and underwriters of 17th century London, as insurers sought to understand and quantify the 

uncertain outcomes of their policies (Bernstein, 1996). In the intervening centuries, 

formalised risk assessment has developed and expanded, being applied to practically all 

processes with uncertain and potentially negative outcomes. 

 

In its simplest form, traditional, risk assessment is the assessment of hazards – bad outcomes 

– and their probabilities, multiplying one by the other to obtain a single value for each 

outcome that can be compared (Equation 1, Figure 1). This format is ideal for comparing and 

managing the risk of discrete, obvious events with quantifiable impacts (such as a ship full of 

4



5 

 

pre-assessed trade goods sinking), but faces challenges when adapted to fuzzier, less 

quantifiable outcomes. 

 

 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑃(𝐻𝑎𝑧𝑎𝑟𝑑) (Eq. 1) 

 

 
Figure 1: Comparing and ranking risks is trivial when adverse outcomes can be measured in directly 

comparable impacts. When endpoints are extremely different, ranking them is a more complicated and 

value-driven undertaking. 

Environmental risk assessment itself grew from the field of occupational exposure, assessing 

toxicity from raw materials and pollutants in industrial workers (Ragas, 2011). Driven by the 

needs of resource extraction and manufacture, occupational hygiene committees set 

“threshold limits”, concentrations of toxicants to which workers could be exposed daily and 

repeatedly without adverse effects (ACGIH, 2022). Over time, the concept percolated into 

public health, food sciences, and ecotoxicology, and thresholds were developed for a wide 

range of toxicants, media and protection endpoints (Ragas, 2011). The No Observed Adverse 

Effect Level (NOAEL) or No Observed Effect Concentration (NOEC), a dose or 

concentration below which adverse effects would not be expected to occur, became, and 

remains a central pillar of toxicological risk assessment.  
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Figure 2: Diagram of dose-response relationships of theoretical non-threshold (red) and threshold (orange) 

contaminants. Below the no observed effect threshold contaminants produce no biological response. 

Adapted from Ragas (2011). 

Simultaneously, it was recognised that not all stressors were subject to threshold effects 

(Figure 2). Certain stressors, such as genotoxins and ionising radiation, were hypothesised to 

have no safe threshold (Arora and Gardner, 1994), and parallel tracks of risk assessment were 

developed for these. The majority, however, were assessed under the dose threshold 

contaminant paradigm. 

 

Extrapolating from limited, controlled lab toxicity tests – for instance, on rats – to derive a 

NOAEL protective of the broad and varied human population was not an easy task. Lehman 

and Fitzhugh (1954) proposed that a human dietary NOAEL should be set at 100 times the 

maximum safe dose in experimental animal studies. As the number’s roundness implies, it 

was selected “not as an absolute yardstick”, but to be “high enough to reduce the hazard of 

food additives”, but “low enough to allow the use of some chemicals which are necessary in 

food production.”  

 

Regulatory environmental risk assessment (Figure 3) was first formalised and applied in the 

1970s. This set of tools was developed by the newly-founded US Environmental Protection 

Agency (EPA), based on the concepts of human health risk assessment, to understand the 

impacts of proposed development and construction projects. In the 1980s, the EPA 

commissioned a set of ERA methods for synthetic fuels (Barnthouse et al., 1982) which were 

later generalised into a framework for use across the agency (Suter, 2008; US EPA, 1992). 

 

In the European Union (EU) and European Economic Area (EEA), a framework for ERA was 

laid down in the Technical Guidance Document (TGD) on Risk Assessment (De Bruijn et al., 

2002). The TGD lays out a process for assessing the exposure and potentially toxic effects of 

pollutants in a variety of environmental compartments, at a local and regional scale. The TGD 

was subsequently used to develop more specific risk assessment protocols for subsets of 

pollutants. In particular, the methods used in the TGD incorporate a safety factor or margin, 

known as an Assessment Factor (AF). Conceptually, AFs are variously also known as  

Safety Factor or Uncertainty Factors (Chapman et al., 1998), depending on geographical 

region and precise application.  

 

According to the EU’s technical guidance document on environmental risk assessment of 

biocidal products, AFs are intended to account for variation in and between laboratory 

toxicity studies, variation within and between species, extrapolation from short-term to long-
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term studies and extrapolation from laboratories to impact in the field, possibly including 

interactive effects between pollutants (De Bruijn et al., 2002). Depending on the availability 

of data, especially long-term studies (i.e., NOEC vs Effective Concentration (ECx)) and more 

sophisticated experimental ecosystems, lower assessment factors are used (Equation 2), 

increasing the Predicted No Effect Concentration (Table 1). Thus, in addition to accounting 

for uncertainty (including lack of knowledge), the AF provides a financial incentive for 

parties seeking authorisation to fund toxicity studies, as broader studies will reduce the AF 

and most likely the predicted risk. 

 

 𝑃𝑁𝐸𝐶 = 𝐿𝑜𝑤𝑒𝑠𝑡 𝑁𝑂𝐸𝐶 𝑜𝑟 𝐸𝐶50 ÷ 𝐴𝐹 (Eq. 2)  

PNEC: 
Predicted No-Effect Concentration 

(g/L, prefixed as appropriate) 
NOEC: 

No Observed (Adverse) Effect 

Concentration (g/L, prefixed as 

appropriate) 

EC50: 
Effective Concentration 50% (g/L, 

prefixed as appropriate) 
AF: Assessment Factor (unitless) 

 
Table 1: Summary of typical Assessment Factors used in the calculations of Predicted No Effect 

Concentrations (PNECs) for aquatic environments. Adapted from the EU Technical Guidance 

Document on Risk Assessment (De Bruijn et al., 2002) 

Available Data AF Comments 

At least one short-term 

LC50/EC50 for fish, 

Daphnia, and algae 

1000 Can be lowered on a case-by-case basis, but not 

below 100 

One long-term NOEC of 

fish or Daphnia 

100 1000 if LC50/EC50 not also available from study 

Two long term NOECs for 

two of fish/Daphnia/algae 

50 Or LC50/EC50 ÷ 50, if lower than NOEC. 

Three long term NOECs 

for fish, Daphnia, and 

algae 

10 Normally fish, Daphnia, and algae, but if it can be 

demonstrated that the most sensitive species has 

been tested, its NOEC ÷ 50 can be used. 

Species Sensitivity 

Distribution (SSD) 

1 – 5  

(Case-

by-case) 

Minimum 10 NOECs from 8 taxonomic groups.  

Field Data, Mesocosms, or 

Model Ecosystems 

Case-by-

case 

 

Freshwater to Marine 

Extrapolation 

(×10) A separate set of AFs is used to calculate 

PNECmarine values, but a rule of thumb for 

extrapolation from only freshwater data is that the 

factor must be further multiplied by 10, to account 

for longer food chains and higher biodiversity in 

marine environments. 
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Figure 3: Environmental Risk Assessment's core paradigm, using paracetamol as an example. 

Prospective risk assessment (a-d) starts with an identified stressor (a), determines the levels wildlife 

are exposed to it (b) and the levels at which it has adverse effects (c), so that the risk can be 

characterised (d) and managed if beyond a societally acceptable level (e-g). Retrospective risk 

assessment (h) is typically carried out to aid risk management, by assessing risks to a given monitored 

ecosystem. Adapted from Leeuwen (2007). 

Pharmaceutical ERA in the EU 

Modern regulatory risk assessment runs along a continuum. Potentially toxic chemicals are 

typically first risk assessed prospectively to determine their impact on the environment 

(Figure 3a-g). They are then risk assessed retrospectively (Figure 3h) in specific ecosystems 

and/or media to determine if they pose an ongoing risk. 

 

In the EU, prospective risk assessment of human pharmaceuticals is the responsibility of the 

European Medicines Agency (EMA) (and national equivalents) under the Community code 

relating to medicinal products for human use (European Parliament, 2001). Veterinary 

pharmaceutical prospective ERA guidelines are also regulated by the EMA under the 

Veterinary Medicines Product Regulation (European Parliament, 2019), in line with 

internationally harmonised procedures (VICH, 2004, 2000). In addition, the REACH 

(Registration, Evaluation, Authorisation and Restriction of Chemicals) regulation requires any 

substance manufactured or imported into the EU annually in quantities greater than 1 tonne to 

undergo a separate risk assessment (European Parliament, 2006) (Figure 4). 
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Figure 4: Points where a pharmaceutical may be prospectively or retrospectively environmentally risk 

assessed and relevant European Union literature. Icons courtesy of Freepik. 

 

As a consequence of veterinary medicines’ more recent legislation and the requirements of 

international harmonisation, its regulatory ERA requirements tend to be more up to date than 

human medicines’. Despite the EU’s intention to revise human medicinal product legislation 

by 2022 (European Commission, 2021) and an accompanying draft proposal for the updating 

of ERA guidelines (EMA CHMP, 2018), this inequality remains at the time of writing. 

REACH, meanwhile, sets significantly more stringent requirements for the ERA of chemicals, 

and further bans import or manufacture of chemicals without a satisfactory ERA available – 

the so-called “no data, no market” requirement (ECHA, 2011).  

 

Perhaps the most important difference between the two areas is the statement that “Where 

applicable, applications for marketing authorisations shall include a risk assessment 

overview evaluating possible risks to the environment due to the use and/or disposal of the 

medicinal product and make proposals for appropriate labelling provisions.”, found in the 

human medicine ERA guidelines (Ågerstrand et al., 2015; European Parliament, 2001). This 

means, in short that the outcome of human medicine ERA is largely advisory, and there is no 

requirement that retailer or regulator implement mitigation. By contrast, Fabrega and 

Carapeto (2020) identified in a recent study that under the previous veterinary medicinal 

regulations, 19 products triggered a referral for review due to a negative overall balance of 

risk to benefit, and two were even withdrawn from the market. Furthermore, veterinary 

antimicrobials are, as of the new legislation, required to consider environmental antimicrobial 

consequences in the overall risk-benefit analysis of a product (European Parliament, 2019).  

 

Tiered ERA of Pharmaceuticals 

European ERA of human and veterinary pharmaceuticals is built around a tiered system 

(called “Phases” in guideline documents) (Figure 5). Firstly, “exempt APIs” – those with 

APIs assumed to have no or negligible environmental impacts, such as vitamins, vaccines, 

and proteins, are excluded. Then, a prediction of exposure (Predicted Environmental 

Concentration, or PEC), is calculated from projected market share (using a default value of 

1% of the population. This value is then compared to an exposure action limit of 0.01 µg/L. 
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Although nominally a conservative approach that assumes worst-case scenarios, if 

pharmaceuticals are used by more than 1% of the population, or if APIs have effects below 

0.01 µg/L (Grung et al., 2008), this first step may be insufficiently protective (Gunnarsson et 

al., 2019). 

 

APIs with no evidence of non-threshold effects that are below this limit are exempt from 

further assessment, while those above the limit are re-assessed with a less conservative model. 

Should an API (Active Pharmaceutical Ingredient, the ingredient of a drug responsible for its 

therapeutic effect) still show potentially high exposure, its effects and physico-chemical 

properties are quantified to determine its toxicity, persistence in the environment, and 

potential to bioaccumulate in biota. 

 

Beyond toxicity, a substance’s behaviour and fate in the environment, driven by its physico-

chemical properties, may significantly affect its overall hazard profile. Persistent chemicals – 

those that are slowly degraded by biotic and abiotic processes – may pose chronic exposure 

risks to organisms. Bioaccumulative substances, which accumulate and/or biomagnify up the 

food web from producers to apex predators can also result in much higher organismal 

exposure to toxicants than might be expected simply by assessing concentrations in 

environmental compartments (Traas and Leeuwen, 2007). According to the TGD, substances 

that are persistent, bioaccumulative and toxic (PBT) cannot reliably have a safe concentration 

determined, and should be regulated accordingly (De Bruijn et al., 2002). 

 

Within the human pharmaceutical ERA paradigm, substances are screened for potential 

Persistence, Bioaccumulation and Toxicity (PBT) by first determining the substance’s 

hydrophilicity. A more hydrophobic substance – i.e., one with a greater affinity for lipids – is 

more likely to sorb to organic matter in the environment and accumulate in lipids, including 

living organisms. Should a substance have more than 104.5 times more affinity for n-octanol 

than water (Log Kow > 4.5), a PBT screening is triggered. 

 

Substance persistence is generally determined as half-life (or halving time) in relevant media, 

under lab conditions. Persistence is a particularly worrying phenomena in pharmaceuticals, 

which are frequently designed to have therapeutic effects at low concentrations (Brodin et al., 

2013), as this raises the possibility of chronic non-target exposure. Examples of persistent 

drugs include tetracycline antibiotics (Daghrir and Drogui, 2013) and endocrine disruptors 

such as ethinylestradiol (Miettinen and Khan, 2022; Porseryd et al., 2017). Substances that are 

rapidly broken down by biota and therefore not persistent are classed as “readily 

biodegradable”, which typically corresponds to 60-70% breakdown of substance carbon 

within a 10-day window (OECD, 1992). 

 

Bioaccumulation is assessed by the calculation of a Bioconcentration Factor (BCF), which 

can be predicted from Log Kow values or determined experimentally using the ratio of 

pollutant in fish or mussel to water in an experimental study (De Bruijn et al., 2002). 

Bioaccumulation of a pharmaceutical in prey species can lead to exposure to high 

concentrations at high trophic levels (“biomagnification”), and where a BCF is sufficiently 

high (>500) exposure to predators via the food chain must be assessed (De Bruijn et al., 

2002). In particular, veterinary product guidelines can also require an assessment of exposure 

to scavengers of treated livestock carcasses (EMA CVMP, 2018), and to dung-dwelling 

organisms via excretion (EMA CVMP, 2016a). 
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Figure 5: A diagram of the Environmental Risk Assessment Process from the EMA’s guidelines on 

marketing authorisation for human pharmaceutical products. Modified from Welch et al. (2022b), 

originally after EMA CHMP (2006). 

An assessment of the mobility of substances – their ability to move freely in the aquatic 

environment – is not yet part of any European ERA guidelines. However, the German 

Environment Agency (UBA) has identified that persistent, mobile and toxic substances 

(PMT) may not have their risk profile well assessed by only comparing exposure to effect 

thresholds (Berger et al., 2018). Based on this and earlier work, consideration of PMT and 

very persistent, very mobile (vPvM) properties has been announced for planned updates to 

both REACH and the Classification, Labelling and Packaging (CLP) regulation (Arp and 
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Hale, 2022). However, no requirement to assess mobility currently exists for either human or 

veterinary pharmaceutical products (EMA CHMP, 2006; EMA CVMP, 2016b). 

 

PNECs are derived for a substance following the guidelines discussed earlier in this chapter. 

The earlier calculated PEC is then divided by this PNEC to give a unitless Risk Quotient (RQ) 

or Risk Characterisation Ratio (RCR) (Equation 3). RQs are designed, and often used, to rank 

the risk of substances driven by exposure/effect ratios, with the aim of, for instance, allowing 

the selection of less risky chemicals during risk management (Leeuwen, 2007). However, it is 

widely accepted that RQs provide no information on the actual magnitude or probability of 

risk occurring (Jager et al., 2001; Raimondo and Forbes, 2022). 

 

 𝑅𝑄 =
𝑀𝐸𝐶 𝑜𝑟 𝑃𝐸𝐶

𝑃𝑁𝐸𝐶
 (Eq. 3) 

    

RQ: Risk Quotient (unitless) MEC: 

Measured Environmental 

Concentration (g/L, prefixed as 

appropriate) 

PEC: 
Predicted Environmental Concentration 

(g/L, prefixed as appropriate) 
PNEC: 

Predicted No-Effect Concentration 

(g/L, prefixed as appropriate) 

 

Retrospective risk assessment relevant to this thesis in the EU is instantiated by the Water 

Framework Directive (WFD), which regulates the chemical and environmental quality of 

surface and ground waters (European Parliament, 2014) and the Environmental Quality 

Standards Directive (EQSD) (European Parliament, 2008), which sets legal limits on certain 

substances under the WFD. A further potential future consideration is the proposed revision to 

the Urban Wastewater Treatment Directive (UWWTD), which would require an average 

removal rate of a panel of 12 easily treated or easily disposed of chemicals – including 10 

pharmaceuticals – of 80% or higher in all plants treating the waste of 10,000 or more person-

equivalents (European Commission, 2022a). However, the UWWTD update is currently in 

review, and it remains uncertain when and in what form it will come into force. 

 

Under the WFD and EQSD, the European Commission is responsible for selecting a watchlist 

of pan-European priority substances, in addition to those selected for local monitoring by 

national authorities (European Commission, 2022b). This watchlist is subject to review at 

least every 4 years, and was last updated in 2022, where 25 new substances were added, 

including five pharmaceuticals (European Commission, 2022c). In addition, a list of high-

priority pollutants was added via the daughter Directive on Priority Substances (European 

Commission, 2015), that requires states to act to progressively phase out the emission of said 

substances. The latest proposed update to the Priority Substances List includes nine 

pharmaceuticals, including the sex hormones estradiol, estrone and ethinylestradiol, the 

painkillers ibuprofen and diclofenac, an anti-convulsant, and a number of antibiotics 

(European Commission, 2022d). 

 

Watchlist and Priority substances have Environmental Quality Standard (EQS) values 

compiled by groups of experts: AA-EQS, derived from chronic toxicity data, which sets an 

Annual Average threshold, and MAC-EQS, which sets a Maximum Allowable Concentration 

derived from acute toxicity data, based on the type of water body monitored (European 

Parliament, 2008). Where concentrations are found to be in excess of EQSs, there is a legal 

requirement that authorities consider actions to mitigate exposure of these substances to an 
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acceptable level, based on the type of water body monitored (European Commission, 2011; 

European Parliament, 2008). 

 

Limitations of ERA 

Under present conditions, the same chemical can be assessed multiple times by different 

groups depending on its manufacturing circumstances, application, and whether ERA is 

retrospective or prospective (Figure 4). This has been identified by scientists (Ågerstrand et 

al., 2015; van Dijk et al., 2021) and government as a key impediment to fair and effective 

ERA. The implementation of a “one substance, one assessment” system has been made a core 

research (Marx-Stoelting et al., 2023) and legislative priority in the EU (European 

Commission, 2020a). Recommendations have also been made that prediction of 

environmental effects be more informed by knowledge of clinical effects in humans, 

especially where targeted receptors are shared between humans and, for example, fish 

(Gunnarsson et al., 2019) 

 

A further issue that regulatory ERA has yet to conclusively tackle is the interaction of 

multiple stressors, including chemicals. The recognition that stressors can interact to product 

unexpected effects is not a new one (Bliss, 1939; Loewe and Muischnek, 1926), but 

environmental study of the phenomena has exploded in the last few decades, along with the 

numbers of terms used to describe the phenomena, across the loose boundaries of ecology and 

ecotoxicology (Orr et al., 2020).  

 

Though an in-depth discussion of multiple stressors and mixture toxicity is beyond the scope 

of this work, it has been demonstrated that safe concentration limits set by the EU do not 

protect against mixture effects (Backhaus et al., 2000; Carvalho et al., 2014). The introduction 

of the Plant Protection Products Regulation (European Parliament, 2009) and Biocidal 

Products Regulation (ECHA, 2017) include provisions for the assessment of cumulative and 

synergistic effects, and EU’s Chemicals Strategy contains a commitment that the European 

Commission will introduce a mixture assessment factor to REACH and introduce 

combination effect provisions in “other relevant legislation” (European Commission, 2020b). 

However, no requirement to assess mixture toxicity has yet entered pharmaceutical ERA 

despite the considerable overlap in mode of action in many therapeutic classes (Backhaus, 

2014).  

 

Regulatory ERA’s treatment of uncertainty, a crucial aspect due to limited data availability, 

has also attracted scientific criticism (European Commission, 2017; Raimondo and Forbes, 

2022; Verdonck et al., 2007). As a tool for policy decisions, it is important that ERA is able to 

treat risk in as objective a manner as possible (Verdonck et al., 2007).  Uncertainty, though an 

intrinsic part of risk assessment, is often treated in a less transparent fashion through the use 

of thresholds and assessment factors.  

 

In the field of risk assessment, uncertainty is often broken down into two types: variability, or 

aleatory uncertainty and epistemic uncertainty, or incompleteness (Figure 6) (Sahlin et al., 

2021). Uncertainty can also exist as indeterminacy between how factors relate, and ambiguity, 

where certainties contradict each other (European Commission, 2017). 
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Figure 6: Uncertainty can be broadly divided into two types: a) things that we can only know to a 

probabilistic degree, and b) things we can directly measure, but haven’t. Both types of uncertainty are 

important when assessing risks, but are at times combined in communication of risk.  

Criticisms of how uncertainty in ERA relate principally to its lack of visibility, and its failure 

to consider “all sources of uncertainty” – covering known unknowns (variability) rather than 

unknown unknowns (epistemic uncertainty) (Verdonck et al., 2007). Many pollutant ERAs – 

and those of pharmaceuticals in particular – fail to transparently analyse the sources of 

uncertainty in their assessments (Verdonck et al., 2007).  

 

Probabilistic approaches have long been recommended for the better consideration, analysis 

and reporting of uncertainty, but are yet to see widespread inclusion in ERA (Jager et al., 

2001; Moe et al., 2022). Probabilistic approaches to ERA explicitly incorporate the 

probabilities of outcomes, rather than reducing uncertainty to thresholds, assessment factors 

and worst-case scenarios (Maertens et al., 2022). For instance, rather than assuming a worst 

case of pharmaceutical exposure and effects, probabilistic approaches would use the full 

distribution of these values to predict a probability distribution of possible risk (Mentzel et al., 

2022a).    
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2.3 Norway: A Case Study of Pharmaceutical Pollution 
 

Geography, Economy, and Legislation 

 

 
Figure 7: A map of mainland Norway and its county capitals. Data: Natural Earth and 

Simplemaps.com. 

Sparsely populated, oil rich, highly developed, and cold, Norway encompasses the 

mountainous west coast of the Scandinavian peninsula, stretching 1770 km from Agder in the 

south to Finnmark in the far North-East of the country (Figure 7). Norway’s population was 

estimated as 5.43 million at the start of 2022, roughly half of which live in Østlandet, the 

lower, South-Eastern region of the country. Norway’s most populous city is Oslo, population 

1.04 million. Norway’s population density is comparatively low at 17 people per km2, making 

it, next to Iceland and Finland, one of the least densely populated nations in Europe 

(Worldometer, 2023). 

 

Norway is a prosperous country by global and Western standards, 13th in the world for real 

GDP per capita (CIA, 2020), with an economy based largely on services (65%) and industry 

(34%), of which 12% is oil exports. Norway’s population have voted against joining the 

European Union in referenda in 1972 and 1994, but Norway is a member of the European 

Economic Area (EEA) and European Free Trade Association (EFTA), and a part of the 

European single market.  

 

All major pharmaceutical companies are represented in Norway, but manufacturing facilities 

in-country are limited, and the export of pharmaceuticals represents a small part of the 

national economy (Weise et al., 2018). Norway is a net importer of pharmaceutical products – 

in 2020, it exported $1.08 billion and imported $2.13 billion’s worth (OEC, 2020), although 

the nation’s per capita spending on pharmaceuticals is below the European mean at $470 
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(OECD, 2021), driven in part by strong government control over the setting of prices 

(Norwegian Medicines Agency, 2022). 

 

Norway’s environmental policy is set by its government, but the terms of its membership of 

the EEA require regulatory harmonisation with the EU on non-agricultural and non-fishery 

environmental policies (EFTA, n.d.). Norway is consequently subject to a number of 

European directives regulating pollution and environmental quality, which are implemented 

into Norwegian law by national legislation (Table 2). 

 
Table 2: Norwegian implementation of EU directives relevant to pharmaceuticals in the environment. 

(Lovdata, 2023)  

European Directive Norwegian Legislation Scope 

Water Framework Directive Vannforskriften (2007) 

“Water Resources Act” 

Retrospective risk 

assessment-based 

monitoring of water, biota, 

pollutants 

Urban Waste Water 

Directive 

Forurensingsforskriften 

(2004) 

“Pollution Act” 

Polluted material, 

wastewater treatment 

REACH REACH-forskriften (2008) 

«REACH Act» 

Production and use of 

chemicals above a defined 

annual tonnage 

Directive 2001/83/EC Legemiddelforskriften 

(2010) 

«Medications Act» 

Risk assessment of 

pharmaceuticals for human 

use 

Veterinary Medicines 

Product Regulation 

Forskrift om legemidler til 

dyr (2022) 

«Animal Medications Act» 

Risk assessment of 

pharmaceuticals for 

veterinary use 

 

Norway is, in the words of the OECD, an “environmental frontrunner”, with good air and 

water quality, advanced low-carbon energy, and extensive investment in green research and 

development. However, the same report also criticises its aging and often non-compliant 

wastewater treatment system, high material consumption, and limited protection of natural 

areas (“Norway’s environmental performance,” 2022; OECD, 2022).  

 

Norway’s economic strength supports a high standard of living for the majority of its citizens 

in the Nordic Welfare Model, with an extensive welfare state and access to universal 

healthcare. As part of this system, the Norwegian government collects extensive data on 

social, population, environmental, and medical statistics, including sales of medications. 

Available datasets stretch back far into the 20th century (Nordic Statistics, 2022; 

Sommerschild et al., 2021b; Welch et al., 2022b), and are made relatively openly available to 

researchers, providing a valuable case study for assessing the interactions between human 

populations and pharmaceutical pollution.  

 

Likewise, well-characterised potential scenarios of future national demographics and are 

valuable for bounding uncertainty over how the world and its people will develop in the 

future (Duinker and Greig, 2007). Norway’s relatively well-characterised existing scenarios 

provide, then, a useful resource for forecasting risk in various possible futures. 
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Demographics and Development 

Norway’s Statistics office (SSB) predicts the country’s population will probably rise to over 

5.9 million by 2050 and 6.2 million by 2100, driven mainly by positive net migration. 

Estimates are presented as three possible scenarios for population growth. The most plausible 

is “main alternative” (MMM), based on plausible assumptions for fertility, life expectancy 

and immigration. Two further scenarios, high growth (HHH) and low growth (LLL), are 

unlikely but provide a deterministic bounding of the uncertainty intrinsic in these projections 

(Thomas and Tømmerås, 2022). Historic pharmaceutical consumption and forecasting studies 

figures have shown growth in consumption of selected pharmaceuticals is likely to exceed 

population growth (Van Boeckel et al., 2014; van der Aa and Kommer, 2010), but population 

growth remains an important driver of consumption. 

 

Likewise, the number of elderly people (>70 years old) in Norway is expected to almost 

double by 2060, exceeding 25% of the total by 2100. An ageing population is likely to present 

more health issues and therefore consume more pharmaceuticals. van der Aa and Kommer 

(2010) in the Netherlands and Tränckner and Koegst (2010) in Germany predicted significant 

growths in API consumption and subsequent emission exposure due to population aging. 

Similarly, measured growth in consumption of prescription pharmaceuticals in Norway has 

been linked to an ageing population (Norwegian Pharmacy Association, 2023), so it seems 

likely future demographic change will drive some increase in overall consumption of 

pharmaceuticals. However, given the multi-dimensionality of population demographic 

structures, and the types and quantities of pharmaceuticals consumed by people of different 

ages and genders, relating consumption directly to demographics was omitted from this work 

(Welch et al., 2023). 

 

86% of Norway’s population is served by wastewater treatment plants (WWTPs) (SSB, 

2021), but the sophistication of treatment techniques follows a clear gradient between the 

urbanised south-east and rural areas in the west and north of the country. Cities generally have 

a number of more advanced plants, employing sequential mechanical, chemical and biological 

treatment to remove pollutants, but more rural areas use a simple mechanical filtration 

approach, partly due to concerns over efficacity in lower temperatures. 70% of total 

Norwegian WWTP capacity is discharged to fjords and the ocean via undersea pipes, where it 

is expected strong dilution will mitigate the risks of environmental impact; inland, however, a 

number of WWTPs discharge to rivers (Berge and Sæther, 2020).  

 

No study assessing the potential impacts of the new, recast Urban Wastewater Treatment 

Directive on Norway has yet been published. However, the proposal has been criticised by 

European water industry groups as potentially unrealistic, and placing excessive focus on 

“end of pipe” removal rather than tackling the source of the issue (EurEau, 2023). What the 

eventual revision will require, and the extent to which it will be complied with in Norway are 

yet uncertain, but it seems probable that investment in treatment will continue and removal of 

pollutants will increase, albeit unevenly.  

 

Norway’s development, climate, regulations, population demographics and minimal 

pharmaceutical manufacturing infrastructure limit its exposure to the extremely high 

environmental concentrations of APIs seen in some other nations (Welch et al., 2022b; 

Wilkinson et al., 2022). Likewise, Norway is among the countries least vulnerable to climate 

impacts and toxic pollution risk (Bouzas-Monroy et al., 2022; Marcantonio et al., 2021; 

Welch et al., 2022b). Although the need for adaptation and mitigation in Norway should not 

be understated, it can also provide a valuable test-case for environmental studies, thanks to its 
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developed environmental regulatory apparatus and high-quality open access governmental 

data (Norwegian Digitalisation Agency, 2022). As a developed nation with strong 

environmental regulation, Norway exports its environmental risks in some sectors to poorer 

nations (Abbasi et al., 2020). It is then only fair that Norway also export best practice in risk 

assessment. 

 

2.4 Pharmaceuticals Pollution, from the Present to 2050 
  

The Future of Pharmaceutical Risk 

The 21st century presents a series of unprecedented risks to human society (IPBES, 2019). 

Global environmental change (GCC) – chiefly climate change – is not a herald of the 

apocalypse. Nor, however, is it something we can just ignore. GGC’s consequences will be – 

and are currently being – felt around the world, across the anthroposphere and ecosphere. 

According to Persson et al.’s (2022) reassessment of the boundaries of safe human 

exploitation of the planet (Steffen et al., 2015), novel entities – including chemical pollutants 

such as pharmaceuticals – are now outside the planet’s safe operating space. How the 

transgression of this boundary will interact with increasing risk to other aspects of the 

environment is a critical but deeply uncertain issue. 

  

Pharmaceuticals in the environment – as a subset of the “novel entities” boundary – represent 

a fairly small portion of mankind’s overall impact on the environment (Persson et al., 2022; 

Steffen et al., 2015), but their effects – and their interactions with other biotic, abiotic and 

anthropogenic factors – are an important part of the risk profile faced by the earth’s 

ecosystems and wildlife (Côté et al., 2016; Reid et al., 2019). A full consideration is beyond 

the scope of this work, but a broad summary of potential effects, their drives, and possible 

outcomes relevant to pharmaceutical pollution is presented below (Table 3).  

 

To forecast the conditions that will drive future environmental risk, climate change 

researchers developed extensive scenarios that bound the likely development of global 

warming (IPCC, 2022, 2008; van Vuuren et al., 2012). Scenarios have subsequently been 

extended to cover socio-economic development (O’Neill et al., 2017), chemical emissions 

(Desrousseaux et al., 2022; Nagesh et al., 2022) and to the local Scandinavian scale (Pilli-

Sihvola et al., 2015), to name but a few. 

 
Table 3: Table of potential drivers of change in pharmaceutical risk in the future, adapted from Bunke 

et al. (2019). 

Driver Effect Possible Outcomes 

C
lim

ate C
h
an

g
e 

 Temperature stress Increasing stress may drive higher toxicity, increase 

incidence of health issues and drug consumption in humans 

Ocean acidification Ocean acidification may be additive/synergistic stressor 

Water scarcity Lower access to water may decrease dilution of APIs raising 

exposure, and increase health issues 

More extreme weather 

events 

Extreme weather may cause larger pulses in API exposure, 

damage infrastructure, increase health issues 

Migration of diseases Changes in climate envelope of pathogens and vectors (e.g., 

malaria and mosquitos) may drive increases in use of 

relevant APIs 

Changes in chemical fate Increases in temperatures and solar radiation may speed 

breakdown and metabolism of APIs into less or more 

harmful chemicals 
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D
em

o
g
rap

h
ics 

 Population ageing An ageing population will use, on average, more APIs, 

although consumption of other APIs may decrease 

Population growth A growing population will use more APIs 

Population health Worse health, driven by other factors, may drive 

consumption of APIs 

Urbanisation Urbanisation may increase access to WWTPs but will also 

concentrate API emission into smaller areas. More ground 

sealing will increase flooding and remobilisation of APIs. 

Increased food demand Increasing food demand from population growth may drive 

an increase in veterinary and agricultural API use. 

E
co

n
o
m

ic 

 Improved access to APIs Growth of the welfare state, cheaper APIs, or growing wealth 

of segments of the population may increase API 

consumption. 

Offshoring of 

manufacturing 

Offshoring of API manufacture to regions with cheaper costs 

and less effective regulation may increase manufacturing 

emission to the environment. 

D
ev

elo
p
m

en
t 

 Better WWT technology Better WWT technology may increase removal of APIs in 

treatment plants. 

Better manufacturing 

technology 

Better manufacturing technologies may reduce wastage and 

emission during API production 

Substitution of 

problematic APIs 

APIs may be substituted for similar APIs with lower 

environmental impacts 

Development of new APIs New APIs may be developed for existing or new 

applications, with different toxicity profiles. 

Better drug destruction Replacement of landfill of pharmaceutical waste with 

incineration may decrease emission 

S
o
cietal 

 Changes in societal values Changes in societal value of health, the environment, etc. 

may drive use of APIs and mitigation work 

Legislative changes Changes in legislation may affect any part of the source-to-

outcome pathway 

Development of/education 

on drug disposal pathways 

Better drug disposal pathways, and public education thereof, 

may reduce emission of APIs to the environment 

E
n
v
iro

n
m

en
t 

 Changes in levels of other 

pollutants 

Through mixture effects, increasing/decreasing levels of 

other pollutants will affect indirect pharmaceutical toxicity 

Other ecosystem stressors Ecosystem collapse, changes in land use, etc.  

 

In general, however, the potential for these effects to influence the overall pharmaceutical risk 

landscape introduces a many-dimensional aspect to any assessment. In such a context, where 

many uncertainties are interacting, the ability to quantify them is more important than ever 

(Maertens et al., 2022). Probabilistic risk assessment provides that facility. 

 

Bayesian Networks for Environmental Risk Assessment 

Thomas Bayes (1701 – 1761) never lived to see a field of statistics take on his name. 

Bayesian probability is built around the practice of interpreting probability as a degree of 

confidence in an outcome, rather than a random frequency. This systemisation and transparent 

display of uncertainty has many potential applications in ERA, a pragmatic discipline that 

relies on an element subjective judgement of probabilities and hazards.  
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Bayes’ most famous contribution to statistics is Bayes’ theorem (sometimes law, or rule), 

which states that the conditional probability of an event A occurring given that B is true (the 

posterior probability) is equal to the conditional probability of B occurring given that A is 

true, multiplied by the probability of A occurring, divided by the probability of B occurring 

(Equation 4). 

𝑃(A|B) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
(Eq. 4) 

A: An event. B: A different event. 

P(): 

The probability of a 

given event or events 

occurring 

A│B: 
An event conditional 

on an earlier event. 

In the 1980s, the computer scientist Judea Pearl developed the Bayesian network (BN). 

Bayesian networks (Figure 8), also known as Bayesian belief networks, are a graphical 

representation of the probabilistic relationships between variables that allowed the probability 

of a set of variables to affect the probabilities of the remaining sets (Pearl, 1985). Technically 

described, a BN is a directed acyclic graph (DAG), that is, a graph where nodes (sometimes 

vertices) are connected by edges (or arcs) representing directional relationships. Acyclic refers 

to the fact that a Bayesian network cannot contain any directed closed loops. 

The relationships between nodes are described by Conditional Probability Tables (CPTs), that 

set the probabilities of each state of a child node (here Node 2) depending on the state of its 

parent nodes (here only Node 1). CPTs can be constructed based on expert input, generated 

following an equation, or fitted to data.  

Figure 8: A diagram of a simple Bayesian network, consisting of two nodes linked by an edge 

representing a conditional probability distribution. The Conditional Probability Table (CPT) gives the 

probabilities of each state of Node 2, given the state of Node 1. When the network is compiled, the 

probability of each state of Node 2 is calculated based on the CPT and the probability distribution of 

Node 1. 

Bayesian networks’ applications in the assessment of environmental risk were, according to a 

recent review (Kaikkonen et al., 2021), first exploited in 2007 for the assessment of risks to 

freshwater fish (Pollino et al., 2007). Although BNs have seen some case-by-case in ERA in 

the US (Johns et al., 2017; Landis et al., 2017a, 2017b; Mitchell et al., 2021), they have yet to 

become more broadly accepted by regulators (Kaikkonen et al., 2021). Today, Bayesian 
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network approaches represent a considerable fraction of implementations of probabilistic 

environmental risk assessment (Maertens et al., 2022). 

 

Bayesian networks present a number of methodological advantages which predispose them to 

use in ERA. As probabilistic representations of the possible states of different variables, they 

are intrinsically well-equipped to deal with variability, and force the user to make explicit 

decisions about how uncertainty will be quantified in the model (Hart and Pollino, 2008). 

Likewise, BNs are well-equipped to handle uneven data availability (Hamilton and Pollino, 

2012) as is frequently an issue in pharmaceutical ERA (Ågerstrand et al., 2015), and can 

incorporate expert opinions where empirical data is not available (Pitchforth and Mengersen, 

2013). 

 

Bayesian networks may also improve on a tradition of threshold-based interpretation of 

environmental risk assessment. Although used throughout ERA – including in this thesis – the 

use of a risk score or quotient representing the exceedance of a threshold concentration, rather 

than ecotoxicological assessment endpoints and cause-effect relationships has often been 

criticised (Landis and Chapman, 2011; Mentzel et al., 2022a). Where data is available BNs 

can be integrated with more developed ecotoxicological approaches, such as Species 

Sensitivity Distributions (SSDs) (Wepener and O’Brien, 2022). Better integration of these 

richer datasets and better-defined relationships may also allow more nuanced retrospective 

assessment of risk based on site and species vulnerability (Andres, S. et al., 2022). This could 

avoid the current one-out, all-out approach to classifying the chemical quality of water bodies 

under the WFD. Such an approach classifies a water body with high levels of one pollutant as 

a body with higher levels of many pollutants (Loga and Przeździecki, 2021) – i.e., as “not 

good”. This has been criticised for creating a “perverse incentive” (Water UK, 2014) for 

managers to avoid mitigating individual risks, as doing so will not stop a body from “failing” 

(Latinopoulos et al., 2021). 

 

The advantages of BNs in considering multiple stressors and endpoints have also been 

highlighted (Landis, 2021; Sperotto et al., 2017), well-suiting them to the multi-scenario, 

multi-stressor approach envisioned by the ECORISK 2050 project (Welch et al., 2022a). 

 

Bayesian networks applications to environmental issues, including risk assessment, have 

however identified some limitations. Bayesian network design is vulnerable to a number of 

quandaries (Marcot, 2017), including high sensitivity to state discretisation. 

 

Bayesian networks are also limited by an inability to represent cyclic phenomena or dynamic 

relationships (Hamilton and Pollino, 2012). However, some techniques have been developed 

to bypass this issue, such as the use of Object-Oriented Bayesian Networks (OOBNs) for 

iterating a value by using multiple linked instances of the same BN to represent slices of time 

(Korb and Nicholson, 2010). 

 

Although Bayesian networks can be an extremely intuitive way to communicate causal 

relationships between different environment variables with uncertainty (Sperotto et al., 2017), 

ERA stakeholders have previously communicated that in order for BNs to receive more 

acceptance, they must model ERA using a framework similar to what assessors are already 

familiar with, and produce outputs that can be easily compared to deterministic methods 

(EUFRAM, 2006).  
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The application of BNs to pharmaceutical ERA has so far been limited. To the authors’ 

knowledge, only one BN has to date been developed assessing the issue. Brandmayr et al. 

(2015) address emissions of metformin (a common anti-diabetes drug) and metoprolol (a 

common beta blocker) in Germany under a detailed range of health and prescription 

scenarios. This suggests that pharmaceutical ERA could be fertile territory for the further 

development of BNs, particularly if lessons learned from their use in other fields can be 

incorporated. 

 

3. Data and Methods 
 

Papers I-III represent a workflow for the processing and analysis of data to support the 

characterisation of environmental risk posed by pharmaceuticals to the environment (Figure 

9). In Paper I, a method is developed for calculating PECs for roughly 800 APIs. In Paper II, 

these PECs are matched with toxicity and physico-chemical property data, allowing for 

ranking, comparison with MECs, and the assessment of the inclusion of wholesale and 

veterinary sales compared to OTC and human medications only. Finally, in Paper III, a 

probabilistic method is developed for the assessment of risk of six high-priority APIs selected 

from Paper III. The effects of various scenarios are compared, using individual API RQ, as 

well as summed RQ and joint probability of any API RQ exceeding a given threshold.  

 

3.1 Statistical and Graphical Software 
 

The calculation of API sales weights from product wholesales was conducted in Microsoft 

Access. With this exception, data processing, cleaning, visualization, GIS, and deterministic 

statistics were conducted in the programming language R. Adobe Illustrator, Inkscape, and 

Microsoft PowerPoint were also used in the creation of graphics. 

 

 
Figure 9: Graphic summary of data and methods used across Papers I - III. Icons courtesy of Freepik. 

3.2 Prediction of Exposure from Wholesales Data (Paper I) 
 

The keystone of this thesis is the Norwegian Institute of Public Health’s Drug Wholesales 

Statistics Database (DWSD), a dataset of the retail of pharmaceutical products to pharmacies, 

merchants, hospitals, and other medical institutions collected since the 1970s (NIPH, 2019). 

Although similar pharmaceutical datasets are available across Europe, Norway’s is relatively 

unusual in its extensive history and coverage of not only prescription but also over-the-

counter (OTC) and veterinary products (Ballarín et al., 2015). Conversely, by comparison to 
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Europe’s larger nations, publicly available data on levels of pharmaceuticals in the 

environment is limited (Welch et al., 2022c), making sales-based approaches to prediction 

appealing as a cost-effective adjunct to analytical chemistry studies.  

 

In Paper I, we lay out the methods for predicting environmental concentrations of 

approximately 800 APIs from Norwegian pharmaceutical wholesales weights between 2016 

and 2019 (Figure 10) (Welch et al., 2022c), based on methods developed by Grung et al. 

(2008). We further compare the resulting wholesales weights and PECs to other literature on 

the study area to evaluate the agreement between the datasets. 

 

Starting with a dataset of all medicinal products sold in the period, products were first 

associated with APIs. APIs not of environmental concern (e.g., vitamins, vaccines) were 

omitted, as were gasses and products with extremely low wholesales. Product API weights 

were matched from databases or manually determined from documentation online. Product 

API weight was then multiplied by the quantity of a given product sold to obtain a weight 

sold per API, per year. Next, the sales weight is multiplied by (1 – WWTP Removal). In the 

case of this work, no removal from treatment was assumed.  

 

The effective dilution of this weight of APIs in the aquatic environment was calculated by 

determining the total yearly wastewater production for the population of the studied area (in 

this case, the whole of Norway). As PECs were calculated on a national basis, per year, 365 

days and Norway’s population in the given year were used in the denominator. The 

denominator was also multiplied by a default dilution factor of 10, corresponding to a 1-in-10 

dilution of wastewater entering the environment. Solving this equation gave a Predicted 

Environmental Concentration of each API in the Norwegian surface water environment 

(Welch et al., 2022c). 

 

 𝑃𝐸𝐶𝑠𝑤 =
𝐴𝑃𝐼 𝑠𝑜𝑙𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 × (1 − 𝑊𝑊𝑇𝑃 𝑅𝑒𝑚𝑜𝑣𝑎𝑙)

365 ×  𝑊𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ×  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×  𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 (Eq. 5)  

    

PECsw: 
Predicted Environmental Concentration in surface water (g/L, prefixed as 

appropriate) 

API sold per 

year:  

Weight of API sold in 

one year 
WWTP Removal 

Removal of API in WWTPs. Default 

0 

365: Days in one year 
Wastewater 

production 

Wastewater produced per person, 

per day (L) 

Population 
Population of studied 

area 
Dilution factor: 

Dilution of wastewater upon 

entering environment. Default 10 

 

Trends in calculated wholesales weights were examined to detect any extreme changes (any 

year’s wholesales weight greater or smaller than 10 times the mean) in order to internally 

assess our calculations. PECs or wholesales weights, depending on data availability, were 

compared with similar figures from Felleskatalogen, Grung’s 2005 data, and wholesales of 

products published in NIPH reports (Felleskatalogen, 2022; Grung et al., 2008; Sakshaug et 

al., 2018, 2013; Sommerschild et al., 2021a). Finally, the dataset of pharmaceutical PECs was 

made available via an online repository (Welch et al., 2022c). 
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Figure 10: Conceptual diagram of Paper I data sources, workflow and calculation of Predicted 

Environmental Concentration in surface water. Pharmaceutical produce wholesales (a) are combined 

with information on product (a) content to (c) predict sales weights. Sales weights are then combined 

with population (e) – derived yearly water consumption (d) to calculated Predicted Environmental 

Concentrations in Surface Water (g, Equation 5), assuming no removal by WWTPs (f) and a fixed 

dilution factor of 10 (h). Icons courtesy of Freepik. 

 

3.3 Assessing Risk (Paper II) 
 

Paper II’s estimated PECs were subsequently used to characterise environmental risks posed 

by the roughly 208 of the roughly 800 non-exempt APIs to the Norwegian freshwater 

environment (Figure 11). Adapting the regulatory guidelines for API environmental risk 

assessment in the EU (EMA CHMP, 2006), Risk Quotients were calculated for roughly 200 

APIs with publicly available toxicity data (PNECs) sourced from FASS, AstraZeneca and the 

Joint Research Centre (AstraZeneca, 2017; FASS, 2019; Loos et al., 2018). Likewise, public 

data on persistence, bioaccumulation, and mobility (experimental if available, otherwise 

QSAR) was appended to APIs, and the potential for hazard via these properties assessed. Risk 

Quotients were also calculated with QSAR PNECs from the NORMAN database (provide 

reference to wen page), but these were not used further in the work due to substantial 

disagreement between predicted and experimental values. 

 

PECs were compared with publicly available Measured Environmental Concentrations 

(MECs) compiled by the German Environmental Agency (UBA)’s Pharmaceuticals in the 

environment database (Graumnitz and Jungmann, 2021), to validate predictions against 

measured values, and detect any overall trends. 

 

PNECs were compiled from the Norwegian Pharmaceutical Specialties website 

(Felleskatalogen, 2022), AstraZeneca’s public environmental data (AstraZeneca, 2017), and 

the EU’s Joint Research Centre (Loos et al., 2018), and used to calculate RQs for the roughly 

25% of substances with both an available PEC and PNEC. Computationally modelled PNECs 

from the NORMAN Lowest PNEC database were also used to calculate an alternative set of 

RQs (Aalizadeh et al., 2017; NORMAN, 2022). These Provisional PNECs (P-PNECs) were 

compared to experimental PNECs by calculating Pearson’s R (correlation coefficient) and 

Spearman’s rho (rank correlation coefficient).  

 

Persistence and bioaccumulation hazard statements (“low/moderate/high/data deficient”) from 

FASS were also appended to APIs and used to compare their potential hazard driven by 

factors other than toxicity. Quantitative Structure-Activity Relationship (QSAR) predictions 
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of persistence, bioaccumulation and mobility were also derived using OPERA (Open 

(Quantitative) Structure-activity/property Relationship App) where hazard statements were 

unavailable (EPA, 2018). 

 

 
Figure 11: Diagram of workflow, output, calculation of Risk Quotient and Provisional Risk Quotient, 

additional analyses, and data sources of Paper II. Predicted Environmental Concentrations (PECs) in 

Surface Water (a) from Paper I are first, with their dilution factor removed (b) to produce PECs in 

effluent (c), compared with Measured Environmental Concentration data for effluent (d). Then, 

experimental (e) and provisional (h) toxicity data is used to calculate Risk Quotients (f) and 

provisional Risk Quotients (g). Subsequently, Risk Quotients are matched with experimental (i) and 

predicted (j) information on physico-chemical properties to determine an overall risk and hazard 

profile. Finally, Risk Quotients and Surface Water PECs are compared with and without the addition 

of veterinary and Over-the-counter (OTC) sales to determine the effects of their inclusion. Icons 

courtesy of Freepik. 

 

3.4 Forecasting Risk with Bayesian Networks (Paper III) 
 

In order to develop a probabilistic approach to pharmaceutical environmental risk assessment, 

a Bayesian network was developed to predict toxicity-driven risk, present and future, to 

Norwegian surface waters (Figure 12). Historic pharmaceutical wholesales for the period 

1999-2018 were used following the protocol in Paper I (Welch et al., 2022c) to estimate the 

relationship between weight sold, population and calendar year for six APIs with high 

predicted RQs. 

 

An OOBN was constructed in HUGIN Researcher, a Bayesian network development package 

(HUGIN Researcher 9.3, 2023), to predict risk. Three classes of a framework for calculating 

wholesales weights and influent, effluent and surface water PECs were created, discretised 

respectively for low, medium, and high sales weight APIs, to mitigate sensitivity issues. 

Linear models were fitted to sales data, population, and year, per API. Within each class, the 

previously fitted linear models were then used to estimate sales of the six APIs in 2020 and 

2050, relative to population.  

 

Three population growth scenarios from Statistics Norway were applied in 2050 to three 

example counties representing rural, semi-urban and urban areas. This resulted in twelve 

potential sales weight scenarios for each of the APIs, which were subsequently used to predict 

environmental concentrations, based on an extended version of Paper I’s equation (Welch, 

Grung, et al., 2022) (Equation 2). PEC distributions were first calculated for WWTP influent. 

PECs in effluent were subsequently calculated based on heavily abstracted removal rates 
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under existing treatment, and two upgrade scenarios (upgrade of existing worse-than-

secondary to secondary, while leaving secondary and tertiary untouched; or full tertiary). 

Then, receiving water PECs were calculated based on a flat dilution factor from effluent, and 

RQs calculated per API for these waters.  

 

 
Figure 12: Diagram of data sources, workflow, equations, and output of Paper III. Historic 

pharmaceuticals sales (a) for 6 Active Pharmaceutical Ingredients (APIs) and population (b) are fitted 

to a linear model (c), which is then used (d) with a range of population forecast scenarios (e) to 

predict sales weights (f). These sales weights are subsequently used to calculate Predicted 

Environmental Concentrations (PECs) in influent (g), based on 2020 water consumption figures (h). 

PECs in effluent (i) are calculated across various wastewater treatment upgrade scenarios (k) using 

abstracted removal rates (j), and a PEC in surface water is calculated (l) using a fixed dilution rate of 

10 (m). Risk Quotients (RQs) are then predicted, per API and scenario (n), using externally sourced 

toxicity data (o). Finally, a predicted sum of RQs (p), and the joint probability of RQs exceeding 

various thresholds (q) were calculated across the APIs for each scenario. Reproduced from Welch et 

al. (preprint, 2023) 

 

A distribution of Sum of Risk Quotient (ΣRQ) was calculated across the 6 APIs; following 

Backhaus’ assertion (Swedish Chemicals Agency, 2015, 2021) that the assumption of 

concentration addition (shared mode of action) is a valid, if conservative assumption, even 

across APIs with different modes of action, no distinction was made across these categories.  

 

As an adjunct to Sum of Risk Quotients, the joint probability of any API exceeding a given 

RQ threshold was also calculated and compared for each scenario (Figure 13). A low RQ, 

calculated deterministically, may indicate a low-probability but adverse impact, or a high-

probability of minimal impact (Fairbrother et al., 2016). Summed Risk Quotients are more 

appropriate for the latter scenario, but where ecosystems are exposed to a great many stressors 
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with a low probability of causing serious adverse effects, environmental degradation is likely 

to occur.   

Figure 13: (a) Example, with calculations, of a Bayesian network for calculating the joint probability of 

exceeding an arbitrary RQ threshold. (b) Graphical illustration of the individual and joint probabilities of an 

“adverse effect” of APIs 1 and 2 in (a). (c) Graph of the relationship between number of APIs and joint 

probability of threshold exceedance in (a). 

4. Results

4.1 Prediction of Exposure from Sales Data (Paper I) 

Roughly 6000 different human medical products and 600 different veterinary medical 

products were summarised each year, representing 870 unique APIs across the four-year 

period. In order to evaluate our results, we compared our data to other pharmaceutical sales 

datasets covering similar time periods in Norway.  

A Bland-Altman (or Tukey mean-difference) plot was used to compare our 2018 data to the 

predictions of the Norwegian pharmaceuticals specialities website Felleskatalogen 

(Felleskatalogen, 2022), based on commercially collected market data. Agreement between 

the two datasets was extremely high (mean log difference ≈ 0), although nine APIs fell 

outside of the 95% Confidence Intervals calculated for the mean difference.  
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A further Bland-Altman plot was constructed to compare predicted wholesales weights to 

prescription weights, obtained from the publicly assessable NorPD database, for a panel of 

seven high-consumption APIs. Overall, prescription data predicted lower sales weights, 

principally driven by the decongestant xylometazoline (wholesale ~1000 × prescription), but 

partly also by the OTC-and-prescription painkillers ibuprofen (2.3 ×) and paracetamol (1.5 ×). 

Conversely, the prescription-only APIs amoxicillin and progesterone predicted a lower 

wholesales than prescription weight (0.68 and 0.77 ×). Prescription data for these APIs did 

not distinguish between different routes of administration (oral, injected, vaginal), so we 

elected to use the highest defined daily dose (DDD) of each API. Amoxicillin had two 

possible DDDs, 1.5 g (oral) and 3.0 g (injected), while progesterone had three – 90 mg 

(vaginal), 30 mg (oral) and 5 mg (injected). Consequently, the sales weight derived from oral 

amoxicillin and oral and injected progesterone was over-estimated. 

 

Ibuprofen, paracetamol and ethinylestradiol wholesales weights were also compared to 2005 

predicted sales weights in Grung et al. (2008), and historical NIPH reports, using simple 

graphs of population-normalised consumption over time. Growth in paracetamol consumption 

since 2005 appeared plausible and followed NIPH-reported trends. Reported ibuprofen data 

was less complete, but where data was available for comparison trends appeared to roughly 

correspond. Ethinylestradiol consumption was less easy to compare due to its presence in a 

range of combined products, and no conclusion was drawn on agreement between the 

datasets. 

 

Lastly, 31 APIs were shortlisted as displaying unusual trends in wholesales weights, year-on-

year. Of these, plausible explanations – recorded shortages, new authorisations or 

deregistrations – were found for 26 APIs, leaving 5 unexplained. 

 

4.2 Assessing Risk (Paper II) 
 

MECs recorded in Norwegian WWTPs in 2015-2016 were compared to our PECs for 19 

substances in the period 2015-16. In seventeen of these cases, PECs were larger than MECs 

(by a median factor of 20), while in two cases (the stimulant amfetamine and the antibiotic 

ofloxacin) PECs were smaller, by a factor of 56 and 1.5 respectively. No significant 

Spearman rank-correlation was detected. 

 

RQs were calculated for 208 substances between 2016 and 2019. 17 substances were 

predicted to have an RQ in excess of 1. Seven of these substances were sex hormones, 

including the highest-risk substance (levonorgestrel), while three analgesics (painkillers), a 

statin, an antiseptic, an antifungal, and an immunosuppressant were also present. A number of 

these high-RQ substances also presented hazard due to their physico-chemical properties. 

Three such APIs had a high potential to bioaccumulate. Six substances had high and five 

moderate potential to persist in the environment. Four substances were estimated to be very 

mobile, and three mobile, in the environment.  

 

QSAR provisional-PNECs from NORMAN were available for 428 substances, including 78 

which also had experimental PNECs. However, agreement between the two datasets was 

poor. Provisional RQs were on average 50% higher than experimental values, although this in 

part may be explained by the static AF of 1000 applied to provisional-PNECs, compared to 

the more variable AF used for experimental PNECs. Likewise, correlation was low between 

values (Pearson’s r = 0.301) and ranking (Spearman’s rho = 0.493). 
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Of the 870 available sales weights, 42 substances were available both OTC and under 

prescription. When OTC sales were excluded, PECs were a mean of 68.5% (median 71.6%) 

the size of total sale PECs, though this was largely driven by only 8 common OTC 

medications. For 10 of the 42 APIs RQs could also be calculated and compared. Here 92% of 

total sales risk came from non-OTC and only six APIs saw RQ increase by more than 10%. 

Overall, the exclusion of OTC sales had very little effect on risk ranking (Spearman’s rho = 

0.99, P < 0.01). 

 

In 43 cases, human-only and veterinary-and-human (total) sales could be compared.  A mean 

of 84% (median 94%) of PEC value was contributed by human use, driven by only 5 APIs. 

RQs could only be compared for three APIs, with a mean human contribution of 94%. Here 

risk ranking was almost identical between the two sets (Spearman’s rho = 0.99. p < 0.01). 

 

4.3 Forecasting Risk with Bayesian Networks (Paper III) 
 

Discrete distributions of RQs were calculated under each combination of scenario, region, and 

API. Firstly, wastewater treatment was kept at contemporary efficiency to assess the impact 

of population growth over time. In an urban county, the distribution of the ΣRQ of all six 

APIs grew in magnitude between 2020 and 2050, though no variation was seen between the 

three population growth scenarios. However, in the semi-urban county risk not only grew 

from 2020 to 2050 under all scenarios but shifted upwards in magnitude from ~30% that RQ 

> 1000 to ~75% that RQ > 1000 under main and high growth. Meanwhile in the rural county, 

the highest risk of all population growth scenarios across the counties was predicted in 2050 

under high growth. Smaller but nevertheless still large ΣRQ distributions were observed under 

low and main growth in 2050. 

 

With time period and population growth fixed to 2050 and the main growth scenario (i.e., 

1.12 times 2020’s population), effects of varying the WWT scenario across the three counties 

were also modelled. Across all three counties, upgrading treatment to secondary or better 

produced only a very small reduction in the overall magnitude of the risk distribution. 

However, an upgrade of all WWT facilities to “best” (85% removal rate), saw a significant 

reduction in ΣRQ in all cases. 

 

ΣRQs were also compared to the joint probability that any API exceeded a set RQ threshold 

(of 100 or 500). Both indicators showed a similar pattern in increases with the number of 

pharmaceuticals contributing to the indicator. 

 

5. Discussion 
 

Pharmaceutical pollution occupies a crowded field of anthropogenic stressors and is part of a 

complicated interplay of environmental, human, and climatic factors. In this context, the rapid 

assessment of risk is essential to understanding and managing the problems we face today, 

and will face in the future (Welch et al., 2022a). The methods and data we present in this 

thesis are a contribution to ERA that is both cost-efficient, and more capable of reflecting the 

uncertainties present across the risk landscape. 

 

Our exposure assessment of pharmaceutical pollution is the first such wide-ranging (>800 

APIs) exercise Norway, and an unusually broad and longer-term assessment by international 

standards. PEC-based approaches such as ours are a valuable adjunct to MEC-based 

prioritisation. Although MEC-based approaches are important tool for assessing 
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environmental pollution, their cost and overall complexity are key limiting factors, and, 

particularly in Norway, available data is patchy (Graumnitz and Jungmann, 2021). Detection 

is limited to a subset of APIs, within certain limits of detection and quantification, and tends 

to skew towards substances already highlighted as being of concern (Burns et al., 2018b).  

 

The comparison of our approach with similar studies reveals a complicated picture of the 

technique’s use and results. The earliest sales-based exposure predictions for pharmaceuticals 

were carried out in the 1990s (Stuer-Lauridsen et al., 2000) and predicted generally low 

concentrations in the aquatic environment (0.5 ng/L – 3 μg/L). Due to limited data PNECs 

could only be derived for 6 pharmaceuticals, and the study found RQs greater than one for 

ibuprofen, paracetamol, and acetylsalicylic acid. A single RQ was calculated for “estrogen”, a 

grouping of various estrogens, but this value was below one, as were the remaining two 

API’s. 

 

Since then, similar studies have been conducted across the world, largely in the West. Burns 

et al. (2018b) identified 73 prioritisation studies in their recent review, the majority of which 

were conducted in France, the US and the UK. Substances identified as the highest priority – 

based either on exposure or risk – varied considerably between geographical regions. Many 

sales-based prioritisation studies limit their coverage to 100 or less APIs, and cover only a 

single year (Besse et al., 2008; Chen et al., 2015; Jones et al., 2002; Ortiz de García et al., 

2013; Riva et al., 2015; Schwab et al., 2005). In particular, many of the studies focused on 

antibiotics but omit estrogens, making a direct comparison difficult. However, Burns et al. 

(2018b) identified that across the 73 studies their review encompassed, diclofenac was the 

most commonly selected priority pharmaceutical, followed by ethinylestradiol, ciprofloxacin, 

paracetamol, ibuprofen, carbamazepine, clarithromycin, estradiol, erythromycin and 

amoxicillin. The methodology across these studies varied considerably. In particular, some 

studies derived PECs both with and without literature-based WWTP and human metabolic 

removal rates (Chen et al., 2015; Riva et al., 2015). In general, PECs were found to 

overestimate MECs of equivalent media, although the degree of overestimation varied 

considerably between papers (Besse et al., 2008; Burns et al., 2017; Ortiz de García et al., 

2013; ter Laak et al., 2010). However, these findings were not unequivocal. A similar 

comparison of 2016 PECs to MECs was conducted by Burns, Carter, Kolpin, et al. (2018a) in 

two UK rivers. They found that on an average annual basis, PECs calculated for 24 APIs (not 

including sex hormones) using experimentally-derived WWTP removal rates and river-

specific dilution rates underestimated MECs for the two rivers by 0.51 and 0.04 respectively.  

 

Perhaps the broadest sales-based risk prioritisation exercise was conducted by Gunnarsson et 

al. (2019), who carried out an analysis of API retail, prescription and hospital sales weights 

across 22 European countries. The study made similar assumptions of geographically even 

consumption, no wastewater or metabolic removal, and standardised wastewater production 

(200 L per person, per day) and dilution (1 in 10). In total, RQs were calculated for 138 APIs. 

The study found median RQs > 1 for seven APIs in at least one European country. Four APIs 

– levonorgestrel, ethinylestradiol, estradiol and abiraterone – had median RQs across the 

countries greater than 10. Three APIs – propranolol, fulvestrant and fluoxetine – had median 

RQs between 1 and 10. Eighteen APIs had median RQs greater than 1. Gunnarsson et al. also 

calculated PECs with country-specific dilution factors (Keller et al., 2014), typically higher 

than the (conservative) default value of 10. Under these conditions, only five APIs had a 

median RQ > 1 in at least one country: levonorgestrel, estradiol, ethinylestradiol, abiraterone 

and propranolol. A direct comparison to Gunnarsson et al.’s (2019) results is not possible, as 

data on PECs at the national level were not published. However, the list of APIs identified as 
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having the highest RQs was remarkably similar. Like Gunnarsson, we predicted 

levonorgestrel, ethinylestradiol, estradiol and abiraterone to be among the highest priority 

pharmaceuticals.  

 

Comparison between our priority substances and those identified by EU legislation-level 

screening is also enlightening. There was no crossover between our list of substances with RQ 

> 1 and the WFD’s latest watchlist for union-wide monitoring (European Commission, 

2022c). However, the pharmaceuticals in the latest proposed Priority Pollutants amendment 

(European Commission, 2022d), sets legally binding EQS values for nine pharmaceuticals - 

ethinylestradiol, estradiol, azithromycin, carbamazepine, clarithromycin, diclofenac, 

erythromycin, estrone and ibuprofen – four of which also appear on our list of high RQ APIs. 

Likewise, the recast UWWTD proposes monitoring of 10 pharmaceuticals, including, from 

our list, diclofenac (European Commission, 2022a). 

 

Although prioritisation at the European level is in itself a valuable guide, Burns et al.’s review 

(2018b) of global risk and exposure-based prioritisation studies concluded that risks are 

regionally specific, driven by national variation in relevant factors. Wilkinson et al.’s global 

study (2022) of pharmaceutical pollution (i.e. exposure) in rivers found significant, order-of-

magnitude variation in many API classes, with Bouzas-Monroy et al.’s follow-up study of 

risk (2022) identifying similarly uneven patterns of risk distribution across different 

continents. This national variation in risk is evidence of the need for national-level 

prioritisation exercises such as that conducted across our first and second paper (Welch et al., 

2021; Welch, Moe, et al., accepted, 2022). Furthermore, our coverage of APIs was unusually 

broad, as most PEC-based approaches cover 100 or fewer APIs in a single year, and are 

frequently based only on prescription data (Burns et al., 2018b). By assessing exposure for 

800+ APIs over a four-year period, we provide a far more comprehensive, top-down 

assessment of pharmaceutical pollution in a developed nation. In particular, such a 

comprehensive approach is less biased by the “Matthew Effect” (Daughton, 2014), the 

tendency of studies and experimentation to be conducted on known problem chemicals rather 

than unknown chemicals. Additionally, by calculating sales weights at the product, rather than 

DDD level, we were able to provide more a more accurate overall measure of pharmaceutical 

sales weights. This added significantly to the workload of exposure assessment, however. As 

Europe moves towards a one health paradigm of human and environmental health protection 

(One Health EJP, 2022), the integration of product API sales weights with existing national 

sales records could greatly reduce the barrier to more efficient, automated sales weight-based 

exposure prediction. Were a permanent partnership to be formed between environmental and 

public health agencies, this data could be published routinely alongside existing sales and 

environmental data for regulatory, scientific and public use. 

 

As with other studies (Burns et al., 2018b), risk could not be assessed across the roughly 75% 

of APIs without publicly available toxicity data. This is a commonly recognised limitation of 

both measured and predicted assessment of pharmaceuticals risk (Ågerstrand et al., 2015), 

and was not an issue we were able to directly address.  

 

A further limitation of our work was not including the consideration of WWTP removal rates, 

metabolic removal and conversion of APIs, and receiving-water specific dilution rates. 

Although in line with similar studies (Gunnarsson et al., 2019) and pharmaceutical ERA 

guidelines (EMA CHMP, 2006), this likely explained our overestimation of PECs compared 

to MECs in WWTP effluent (Welch, Moe, et al., accepted, 2022). Inclusion of API-specific 

removal rates has been shown in other studies to reduce the discrepancies between MECs and 
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PECs (Chen et al., 2015; Riva et al., 2015). However, disregarding these factors was 

appropriate at the scale and scope of our work, and produced an order of pollutant priority in 

line with many other global prioritisation exercises (Burns et al., 2018b).  

 

The inclusion of these removal rates could make prioritisation more accurately reflective of 

the risk management landscape in a given area. However, even these additions to modelling 

of environmental concentrations may fail to represent the overall risk situation. The 

assumption that metabolic processes in the body of target organisms or WWTPs simply 

remove hazardous chemicals is clearly an oversimplification. For example, APIs may be 

transformed into more toxic or otherwise hazardous products by these processes (Li, Sobek 

and Radke, 2016), or their “removal” may simply involve partition to biosolids that are 

subsequently released to the environment (i.e. ciprofloxacin in sludge applied to fields 

(Eriksen et al., 2021)). Under the circumstances, the exclusion of this modelling step 

remained the most practical and conservative approach, particularly given the additional 

workload associated with locating relevant figures in the literature for more than 800 APIs. 

Our final paper, with its reduced scope of 6 APIs, was able to include variations in WWTP 

removal. However, even here, finding adequate removal data for each of the APIs and 

treatment levels was not possible, and we elected to use a flat removal rate for each level of 

treatment across all of the APIs (Welch et al., 2023). Furthermore, the use of such an 

approach modelled after routes of exposure for human medicinal products may have been 

inappropriate for the veterinary products in the dataset. 

 

It should also be emphasised that the use of RQ as the primary measure of risk throughout this 

thesis is a choice of necessity rather than an uncritical endorsement. As stated in the section 

Tiered ERA of Pharmaceuticals RQs are tools for the prioritisation and comparison of risk – 

and a very specific ecotoxicological definition of risk, at that – across substances or scenarios. 

A RQ does not in isolation provide a measure of magnitude of effects on actual ecosystems or 

species (Leeuwen, 2007, Raimondo and Forbes, 2022). However, a large portion of regulatory 

ecotoxicology, especially in the EU, has been built around the use of RQs to assess pollution 

risks, which has shaped the data available. Data on pharmaceutical toxicity is particularly 

difficult to acquire, and more sophisticated approaches to mixture risk, such as Sum of Toxic 

Units, required information on toxicity tests that was not available during the literature search. 

As Predicted No Effect Concentrations remain the primary published data on pharmaceutical 

toxicity, their use was considered appropriate for the scope of our work. 

 

Our novel joint probability of any API RQ exceeding a given threshold approach inherits 

many of the flaws of the standard RQ approach. However, we believe it adds value to this 

conventional approach, while requiring no extra data and very little extra work. The joint 

probability approach is consistent with the Sum of RQs, but recognises the uneven 

contribution of APIs to overall risk. In particular, any given RQ score can represent a 

diversity of combinations of adverse event magnitude and probability (Fairbrother, 2016). 

However, two events from different ends of this spectrum (a high probability, low magnitude 

event, and a low probability, high magnitude event) would require different management 

strategies. Under these circumstances, a joint probabilistic risk metric communicates more 

clearly that adverse effects are likely to occur as the number of stressors increases. In our 

example (Paper III), our choice of high-RQ APIs made it more difficult to demonstrate a 

further advantage that would be more apparent with a wider number of lower-RQ APIs. In 

future work, we would like to address this in the design of our BNs, although the issue of 

computational complexity increasing non-linearly with number of APIs has yet to be solved. 
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Against this backdrop of regional variation and uneven ecotoxicological knowledge, BNs 

were an ideal tool to explicitly characterise uncertainty and explore how PEC-based 

approaches might be used to predict future environmental risks of pharmaceuticals. Using our 

deterministic ERA to identify high-priority APIs in Norway, a complex OOBN was 

constructed to probabilistically ERA these substances (Welch et al., preprint, 2023). 

Although not the first BN to address chemical ERA  (Kaikkonen et al., 2021), or the first to 

address pharmaceutical pollution (Brandmayr et al., 2015), the contribution is, to the authors’ 

knowledge, the most sophisticated BN for pharmaceutical ERA to date, covering exposure 

and toxicity-driven risk of multiple APIs in different spatial, temporal, population growth and 

WWT scenarios. 

 

Future Perspectives  

 

BN ERA is, at the present moment, a dynamic field, and in the past years alone a number of 

other studies presenting novel and innovative approaches have been published. In the field of 

pesticide ERA, where models are more easily available for predicting spatially and 

ecologically explicit patterns of risk distribution, a number of studies have predicted risk to 

different taxa at the sub-regional level (Mentzel et al., 2022b; Troldborg et al., 2022). 

Although perhaps too spatially explicit for our approach, the ability to determine the overlaps 

between the highest-risk areas of pollutant and the most vulnerable species would be a 

valuable approach for assessing risks to Norwegian nature. By comparison, Landis, Ayre, et 

al. (2017a) were able to model the effects of mercury, in combination with some other 

chemicals and abiotic factors, on specifically identified and prioritised species and human use 

endpoints, for the development of adaptive management strategies.  

 

In addition, for a subset of APIs with more readily available toxicity data, it may prove 

possible to move to a more probabilistic assessment of risk. Our PNEC-based prediction of 

RQ distributions was a pragmatic choice based on available data, but where probabilistic 

exposure and effect data is available, a fully probabilistic quantification of risk and its 

uncertainty may be possible (Mentzel et al., 2022a).  

 

In order to develop probabilistic ERA tools that can and will be used by regulators and 

stakeholders, it is important that they are comprehensible to those without a background in 

probabilistic ERA (EUFRAM, 2006), and ideally are developed in collaboration with these 

parties (Voinov and Bousquet, 2010). To date, as a software prototype, development of the 

OOBN described above has been a primarily internal exercise, but appropriately expanded it 

could be a useful tool for risk assessors. A number of studies across the environment fields 

have shown the value of exercises to develop BNs in partnership with experts and 

stakeholders (Adams et al., 2022; Kelly (Letcher) et al., 2013; Krueger et al., 2012; Laurila-

Pant et al., 2019), and this could be extended in the future to the ERA of pharmaceuticals.  

 

Further integration of scenarios for forecasting possible futures would also enhance the 

applicability of our work. Brandmayr et al.’s (2015) BN for emission prediction of metformin 

and metoprolol is likely too detailed for an ERA at the scope that is envisaged. However, if its 

consideration of factors influencing API emission and risk can be summarised into broader 

pharmaceutical consumption scenarios, such as those developed by Nagesh et al. (2022), it 

could prove a powerful tool for exploring the range of variation possible in future risk 

scenarios. 
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Although our consideration of only 6 APIs makes our assessment of mixture and joint toxicity 

of APIs comparatively small in scale, we believe the approach holds promise for future ERA 

of mixtures. Despite the considerably different risk profiles of the APIs – sex hormones with 

low sales weights but high toxicity, and NSAIDs with the opposite – it was possible, using an 

OOBN based design, to combine individual APIs’ RQ distributions. By subsequently 

calculating both a sum of RQs, and a joint probability of any RQ exceeding a given threshold, 

a model was developed that was capable in theory of providing both probabilities of a given 

region and species experiencing unacceptable risk, and a broad overview of how the 

pharmaceutical risk landscape may evolve under different scenarios. Although both these 

functionalities remain in an early developmental stage, where data for more APIs is available, 

they may be integrated in the future with current trends in ERA of multiple stressors. This 

includes the trend towards a Mixture Assessment/Allocation Factor approach, proposed by 

Backhaus and the Swedish Chemicals Agency (Swedish Chemicals Agency, 2021) and 

mentioned by name in the recent EU chemical strategy (European Commission, 2020b), 

which begins with a tier-one assessment of ΣRQ. Likewise, the European Environment 

Agency European Topic Centre on Health and the Environment (EEA ETC-HE)’s recent 

proposal for an indicator on chemical risks to ecosystems is built on similar principles to our 

joint probability of threshold exceedance approach (Andres, S. et al., 2022). With the most 

encouraging suggestion yet that EU legislation will expand to address mixture toxicity 

(European Commission, 2020b), the joint and mixture risk approach developed here may find 

use for probabilistically assessing future risks.  

 

Finally, the predictive approach (Welch et al., 2022c) could be refined to improve the time-

efficiency of the process so that future and past wholesales can be used to predict a larger 

number of MECs. Furthermore, by pairing this data with API-specific transformation and 

removal statistics, and Norway-specific dilution, it would be possible to reduce the 

overestimation of concentrations of substances such as paracetamol and diclofenac which are 

often well-removed by WWTPs (Izadi et al., 2020). 

   

The deterministic approach to the ERA of pharmaceuticals in Norway adds considerably to 

the state of knowledge on Norway’s risk landscape, and the role pharmaceuticals play within 

it. Furthermore, with the developed OOBN, we add to the evidence that BNs can be a 

valuable addition to the toolbox of environmental risk assessors, due to their improved ability 

to quantify and propagate uncertainty (Hart and Pollino, 2008; Moe et al., 2021), and intuitive 

depiction of relationships between relevant factors. More work is needed to bridge the lack of 

data, and data availability issues in the ERA of pharmaceuticals (Ågerstrand et al., 2015), but 

a truly comprehensive understanding of their role in global environmental risk is likely out of 

our reach (Daughton, 2016). In this context, robust, probabilistic models that treat uncertainty 

transparently and explicitly are an important tool for the ERA of pharmaceuticals (Hart and 

Pollino, 2008; Moe et al., 2021).  

 

6. Conclusions 
 

This thesis has developed a set of deterministic and probabilistic methods for the prediction of 

exposure and subsequent characterisation of pharmaceutical environmental risk, using 

Norway as a case study. It is shown that although toxicity data availability continues to impair 

the ERA of pharmaceuticals, calculations of PECs from sales weights can be an effective 

adjunct to analytical methods. We predict, based on the data available, the that highest RQ 

APIs in Norway are largely sex hormones and analgesics. Lastly, we forecast probabilistically 

the joint and combined risk of a subset of APIs under a variety of future scenarios.  
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The approaches in this paper are intuitive and can be applied in other nations and to other 

pollutants with similar or better data availability. Although this is hardly the first time 

pharmaceutical risk is predicted from sales weights, the development of the methodology 

enables a deterministic overview of pharmaceutical environmental risk in a highly-developed 

country. Furthermore, the OOBN developed builds a foundation for the Bayesian network-

based ERA of pharmaceuticals.  

 

Acceptance of probabilistic methods such as BNs in prospective, regulatory risk assessment 

of pharmaceuticals is likely to be a slow and complex process. However, the existing adoption 

of BNs for retrospective environmental risk assessment (Landis, 2021; Mitchell et al., 2021) 

shows that they can be a valuable tool in protecting real-world ecosystems. 

 

I hope that the work in this thesis will serve as a useful resource for the risk assessors of today 

and tomorrow. Earth’s uncertain future means the risk landscape of tomorrow may look very 

different to today’s, and a robust set of tools capable of handling the uncertainty intrinsic in 

such a forecast is urgently needed. 
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Abstract 
The regulation and monitoring of pharmaceutical pollution in Europe 
lag behind that of more prominent groups. However, the repurposing 
of sales data to predict surface water environmental concentrations is 
a promising supplement to more commonly used market-based risk 
assessment and measurement approaches. The Norwegian Institute 
of Public Health (NIPH) has since the 1980s compiled the Drug 
Wholesale Statistics database - covering all sales of both human and 
veterinary pharmaceuticals to retailers, pharmacies, and healthcare 
providers. 
To date, most similar works have focused either on a small subset of 
Active Pharmaceutical Ingredients (APIs) or used only prescription 
data, often more readily available than wholesale data, but necessarily 
more limited. By using the NIPH’s product wholesale records, with 
additional information on API concentrations per product from, we 
have been able to calculate sales weights per year for almost 900 
human and veterinary APIs for the period 2016–2019. 
In this paper, we present our methodology for converting the 
provided NIPH data from a public health to an ecotoxicological 
resource. From our derived dataset, we have used an equation to 
calculate Predicted Environmental Concentration per API for inland 
surface waters, a key component of environmental risk assessment. 
We further describe our filtering to remove ecotoxicological-exempt 
and data deficient APIs. Lastly, we provide a limited comparison 
between our dataset and similar publicly available datasets for a 
subset of APIs, as a validation of our approach and a demonstration of 
the added value of wholesale data. 
This dataset will provide the best coverage yet of pharmaceutical sales 
weights for an entire nation. Moreover, our developed routines for 
processing 2016–2019 data can be expanded to older Norwegian 
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wholesales data (1974–present). Consequently, our work with this 
dataset can contribute to narrowing the gap between desk-based 
predictions of exposure from consumption, and empirical but 
expensive environmental measurement.
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environmental concentration

 

This article is included in the Marie-Sklodowska-

Curie Actions (MSCA) gateway.

 

This article is included in the Horizon 2020 

gateway.

 

This article is included in the Earth and 

Environmental Sciences gateway.

Open Research Europe

 
Page 2 of 30

Open Research Europe 2022, 2:71 Last updated: 07 MAR 2023

mailto:sam@samwelch.co.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14129.2
https://doi.org/10.12688/openreseurope.14129.1
https://open-research-europe.ec.europa.eu/gateways/msca
https://open-research-europe.ec.europa.eu/gateways/msca
https://open-research-europe.ec.europa.eu/gateways/msca
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/gateways/earth-and-environmental-sciences
https://open-research-europe.ec.europa.eu/gateways/earth-and-environmental-sciences
https://open-research-europe.ec.europa.eu/gateways/earth-and-environmental-sciences


Plain English summary
Pharmaceuticals, by design, affect human or animal biology, 
targeting specific organs and biological systems to treat dis-
eases. Pharmaceuticals and their metabolites—partly degraded or  
transformed ingredients—that reach the environment may have 
unwanted and long-lasting biological effects on plants, ani-
mals, and microbes. This comes in addition to environmen-
tal footprint of chemicals that are used during the production of  
pharmaceuticals. In Norway, a coastal nation of more than five 
million people, the primary route of pharmaceuticals in the 
environment is via human consumption. Although some phar-
maceuticals can be metabolised in the body and degraded in  
sewage treatment plants, a proportion reaches rivers, lakes,  
fjords, and coastal zones.

A better overview of the types and amounts of pharmaceuti-
cals in the environment is important for assessing and man-
aging environmental risk, but measuring their presence  
everywhere can be resource-intensive and expensive. With  
limited funds for environmental monitoring and management, 
a rapid and cost-efficient method for predicting concentrations 
of pharmaceuticals in the environment should be used to screen  
for the substances most likely to pose a problem.

In this paper we present such an exercise: we worked with the 
Norwegian Institute for Public Health’s wholesale drugs data, 
adapting, and translating it from a medical resource to a set of 
sales weights for each pharmaceutical ingredient. These sales  
weights were in turn used to predict concentrations of drug 
pollution in receiving freshwaters. In total, we predicted 
sales weights and environmental concentrations for almost 
900 Active Pharmaceutical Ingredients, from abacavir to  
zuclopenthixol, sold between 2016 and 2019.

Introduction
Pharmaceutical consumption is widely recognised as an impor-
tant source of anthropogenic chemicals in the environment  
(European Commission, 2019; Richardson & Bowron, 1985). 
In much of the European Union (EU) and the European Eco-
nomic Area, prospective (prior) environmental risk assessments 
of pharmaceutical products begin with an exposure assessment.  
Conservative, or worst-case Predicted Environmental Concen-
trations (PECs) of active pharmaceutical ingredients (APIs) 
are calculated by extrapolating from the highest average  
daily dose of a pharmaceutical, and the proportion of a nation’s 

population taking said pharmaceutical – by default, 1%  
(EMA, 2006).

More recently, refined approaches have been suggested using 
pharmaceutical sales data collected by government agencies 
or market research agencies, to provide a more accurate and 
comprehensive prediction of environmental concentrations  
of APIs at the national (Grung et al., 2008) and European 
(Gunnarsson et al., 2019) level. In some cases, available data 
is limited to prescription sales, but where available whole-
sales data provides a far more complete picture of overall  
consumption.

In this paper, we present a dataset of predicted API consump-
tion PECs based on reported sales weights of pharmaceuti-
cals from a unique public sector source, the Drug Wholesale  
Statistics database of the Norwegian Institute for Public 
Health (NIPH, 2019). This source covers all sales of pharma-
ceuticals and medicines to pharmacies, supermarkets, hos-
pitals, and other healthcare providers, from the year 1974  
onwards. We describe (1) the sales data and additional infor-
mation on pharmaceutical API content for the years 2016–
2019, (2) the procedures for converting the sales data from 
number of packets per product to amount (kg) of each API, and  
(3) a final dataset of total amount of API sold per year, which 
can be used for prediction of environmental concentration. 
Although these methods have only been applied to and evalu-
ated for the years 2016–19, they may also be applicable to  
past data.

With this dataset, we aim to provide an accurate resource 
describing sales weights and predicted environmental concen-
trations of environmentally relevant pharmaceutical products  
sold across Norway, providing a useful snapshot of pharma-
ceutical pollution for our and others’ work. More advanced 
modelling approaches, such as ePiE (exposure to Pharmaceuti-
cals in the Environment) (Oldenkamp et al., 2018), have been  
developed, but are not yet available for Norway, and though 
prone to over-estimation our approach permits rapid prioriti-
sation of APIs without the need to gather a great quantity of  
further excretion and removal data.

In particular, it will provide a useful resource for the char-
acterisation of their environmental risk – on which our work  
is currently ongoing (ECORISK 2050 Deliverable D6.2).

Methods
Classifications and grouping of pharmaceuticals
The classification of pharmaceutical substances for human 
and veterinary use is standardised by the World Health  
Organization (WHO) under the Anatomical Therapeutic Chemi-
cal/Defined Daily Dose (ATC/DDD) code system (RRID:
SCR_000677). An ATC code (Figure 1a) is a seven or eight 
character tiered alphanumeric code based on the target organ, 
therapeutic indication and/or pharmacology, and chemical 
structure of substances, while a DDD is defined as the average  
maintenance dose for a drug used in its main indication  
in adults. The ATC system’s widespread global use since the 

     Amendments from Version 1
The paper has been updated based on the comments and 
feedback of reviewers. Changes include:
* Removal of the section on potential applications
* Clarification of the choice of model, matrices, and parameters
* Reorganisation of the background data and data availability 
statement

Any further responses from the reviewers can be found at 
the end of the article
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1970s make it a useful tool for the broad classification of drugs  
within the Norwegian Drugs Wholesale Database.

ATC codes serve principally as a tool for drug utiliza-
tion monitoring and research and are difficult to adapt to a  
substance-driven ecotoxicological approach. APIs are a 
more relevant entity for the characterisation of environmen-
tal risk, as ecotoxicological information is available for indi-
vidual APIs rather than pharmaceutical products or ATCs.  
Under the ATC system, a product is characterised by a single  
ATC code that can contain multiple APIs, which are taken  
as a cocktail in the same pharmaceutical product (Figure 1b).  
Conversely, one API can be used for treatment of diverse 
disorders of different organs and thereby be associated 
with different ATC codes (Figure 1c). This complex set of  
many-to-many relationships between APIs and ATCs poses a 
distinct challenge for their interconversion, requiring a great  
deal of manual cross-referencing of products.

Publications of pharmaceutical sales from WHO Collaborat-
ing Centre for Drug Statistics Methodology and the NIPH 
are given in DDDs, limiting their utility for ecotoxicology  
work. DDDs aid comparison between pharmaceuticals con-
sumption independent of price, package size and strength, 
but are impractical for ecotoxicological studies in which the 
weights of APIs sold are needed and are not always available  
for individual APIs or combinations of APIs.

Consequently, we elected within our dataset to calculate 
from scratch overall sales weights for each API, as a proxy 
of the emission of APIs. This required the assessment of each  
recorded sold product to determine the mass of each API in 
the product. The calculation of the total API emission per 
year is based on (1) the strength of the product (i.e., the API  
concentration in units such as mg/L, mg/g, or mg/pill), 
(2) the amount of the product sold in one package (in units 
such as L, g, or no. of pills per package) and (3) the number of  

Figure 1. Relationships between APIs and ATC codes. (a) An example of the ATC code for paracetamol taken as an analgesic (N02BE01), 
(b) one ATC code can represent multiple APIs – in this example, N02BE51 represents a combination of paracetamol and ibuprofen, (c) one API can 
have more than one ATC code, paracetamol is represented here by three codes—N02BE01, N02BE51 and N02BE71—corresponding to the forms 
and indications it is sold under in Norway. API, Active Pharmaceutical Ingredient; ATC, Anatomical Therapeutic Classification.
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packages sold per year. See Table 1 for a summary of product  
and API vocabulary.

Active Pharmaceutical Ingredients
Most—more than 50% in 2007—APIs are sold as pharmaceu-
tical salts, with positive or negatively charged ions appended 
to their structures to increase stability and solubility in water  
(Bastin et al., 2000; Paulekuhn et al., 2007). Where the given 
mass of API in a product in fact refers to the salt form, this 
can lead to over-estimation of the total volume of active sub-
stance sold, especially where the ion represents a substantial  

portion of the overall weight. Information on the salts used in 
each product was not always listed in the source data, and con-
sequently, we assumed the full given mass of API per prod-
uct referred to the active ion However, we aim to include an 
assessment of the effects of salts on PECs in future analyses of  
the data.

Data sources and management
Sales data for years 2016–2019 were extracted from the  
Norwegian Drugs Wholesale Database (Figure 2, Figure 3a,  
Sales data). By contrast to prescription-only records such as 

Table 1. Specific definitions of vocabulary used in this paper.

Vocabulary Definition

ATC code Anatomical Therapeutic Classification Code, a code classifying APIs or groups of APIs based 
on their medical use, target human organ, chemical structure, etc.

API Active Pharmaceutical Ingredient, the therapeutic chemical(s) in a pharmaceutical product

Combination drug A single product containing more than one API

Item The components of a package, such as individual pills, dispensed sprays of an inhaler, etc.

Package A single sold unit of product, such as a packet of multiple sheets of pills, a flask of liquid, etc.

(Pharmaceutical) Product A specific manufacturer’s pharmaceutical, as sold, by unique product ID

Strength The amount of a given API in an Item, Package or Product

Unit The unit assigned to a given Strength, such as mg L-1, mg pill-1, International Units, etc.

DDD Defined Daily Dose, “the average maintenance dose per day for a drug used in its main 
indication in adults” (WHOCC, 2018), a standardised unit per ATC code and route of 
administration used to give a rough estimate of consumption.

Figure 2. Diagram of information sources to NIPH Norwegian Drug Wholesale Statistics and Norwegian Prescription Database. 
Figure reproduced and adapted from Sommerschild et al. (2021a) with permission from the publisher. The Norwegian Prescription Database is, 
at time of writing, in the process of being renamed to the Norwegian Prescribed Drug Registry.
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NorPD (Norwegian Prescription Database) this covers all sales 
to pharmacies, hospitals, nursing homes, and non-pharmacy  
outlets licensed to sell drugs within Norway, including  
prescriptions, over-the-counter (OTC) sales, and procurement by 
medical establishments (NIPH, 2019). In its raw form this data-
set consisted of per-product sales, such as a packet containing  
multiple sheets of pills, or a suspension of liquid medicine.

The Norwegian health system distinguishes between three 
groups of human prescription medications. Group A and 
B cover drugs with potential for abuse, such as stimulants,  
opiates and strong painkillers, while Group C includes drugs 
minimal potential for abuse but that are still controlled, such as 
anti-depressants. All other products are available OTC. For the 
purposes of this analysis, Groups A, B and C were combined.  
Note that in some cases, an API may be available both 
on prescription and OTC – for instance, smaller doses of  
paracetamol can be bought OTC, while larger doses require 
a prescription (Helsenorge, 2020). The Norwegian Drug  
Wholesale Statistics and its output “wholesale data” covers both  
prescription and OTC sales of human and veterinary medications.

In adherence with NIPH’s commercial confidentiality require-
ments, sales in currency values, and commercially sensitive 
information on the sales of individual manufacturers’ products  
were removed from the final published dataset.

Additional information on individual products that was  
required for calculating the sales weight per API (Figure 3a, 
Product information), including number of items per package, 
strength (concentration of API per item), and associated unit 
were obtained separately from the centralised NIPH sales data-
base and matched to sales data using internal product codes. In  
a sizable number of cases, no additional data were available for 
given products, automatic matching failed, or the data avail-
able were inappropriate for use in our workflow. Here records 
were checked manually against product contents records 
online, principally the Norwegian pharmaceuticals specialties  

site Felleskatalogen, the UK Electronic Medicines Compen-
dium, and the US site Drugs.com. Cases where one product 
contained two or more APIs (combination drugs) were split into 
separate entries for each API to ensure substances were fully  
accounted for.

Although efforts were made to include the sales of as many 
products as possible, products with sales below 1000 packages 
over the four-year period, except for categories of special inter-
est (antibiotics, sex hormones), were excluded as a time-saving 
measure. Additionally, gas APIs (such as anaesthetic gases)  
were likewise excluded.

The two primary data sources, and supplementary product infor-
mation where gaps were present in the former, were imported 
into a Microsoft Access database and organised into a related  
set of tables. The main table types were data tables, conver-
sion tables, and code lists. The main data tables are shown in  
Figure 4 and described below.

1)  t_Product: the description of each pharmaceutical  
product (identified by product number), including infor-
mation on the product type and the product amount  
per package (Table 2)

2)  t_Product_API: the concentration of each API per 
item and the total amount of API per package of the  
product (Table 3)

3)  t_Sales_Product: the number of packages sold per  
product per year (Table 4)

Information on APIs in a given product was not available 
in the original data sources but had to be extracted from the 
ATC codes associated with the sales data (Figure 3a). In some  
cases, extracted data corresponded directly to an API, but for 
combination products, and ATC codes where the included APIs 
were not immediately interpretable, API content was deter-
mined, stored, and converted at the individual product level.  

Figure 3. Simplified diagram of data extraction and management pipeline. Sales and product background data (a) from NIPH 
(dashed blue box) and elsewhere was imported into an Access DB via a series of queries (b), cleaned with the addition of various conversion 
tables (c), and exported (d) into output spreadsheets (e). This data was then formatted for analysis in R (f) and PECs calculated, and the 
results output to foreground CSV files (g), both of which are available as part of this paper. NIPH, Norwegian Institute of Public Health.
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Figure 4. Simplified diagram of database structure: the main data tables. API, Active Pharmaceutical Ingredient; ATC, Anatomical 
Therapeutic Classification; PNEC, Predicted No-Effect Concentration.

Table 2. Field names, types, and descriptions for the Product Table t_Product.

Field name Data type Description

ProductCode Number Database internal unique product ID

ProductName Short Text Full product name from NIPH records

ProductName_short Short Text Product name with medium/dose removed

ATC_code Short Text Full ATC Code

ProductDetails Short Text Additional medium/dose data from ProductName

ProductType Short Text Standardised medium: pill, fluid, etc.

ProductGroup Number Formulation institution; 1 for manufacture, 2 for compounding pharmacy

DateStart Date Unused variable for product registration date

DateEnd Date Unused variable for product removal date

PackageQuantityValue Number Quantity of medium per package (number of pills, L of fluid, etc.)

PackageQuantityUnit Short Text Unit of medium per package

Item Short Text Unused variable from source data

ConversionFactor Number Unused variable from source data

NoOfAPI_PerProduct Number Number of APIs in a product

NoOfItemsPerPackage Number Unused variable superseded by PackageQuantityValue
NIPH, Norwegian Institute of Public Health; ATC, Anatomical Therapeutic Classification; API, Active Pharmaceutical Ingredient.

Ultimately, for each product (Table 2), the associated API 
names were extracted from the full ATC name and entered  
in the table t_Product_API (Table 3).

In most cases the information needed for calculating the  
amount of API per package (the concentration of API in the prod-
uct and the amount of the product per package) was available 
in the original data source (the product information table). In  
some cases, where this information was not provided, it was 

still possible to extract the information manually from the  
product name.

For products where API information could not be found in 
the included data, it was instead sourced for each individual  
product from the Norwegian pharmaceutical specialties website  
Felleskatalogen or Summaries of Product Characteristics (SPCs) 
from the pharmaceutical specialties websites of other nations 
(Electronic Medicines Compendium (UK), Pharmaceutical Spe-
cialties in Sweden, Medical Online Information Centre (Spain)). 
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This was also the case for combination products containing 
two or more APIs, which typically required further work to  
determine and confirm the APIs present.

The resulting many-to-many relationship between ATC and 
API (see Figure 1) is represented by the code lists and junction  
tables shown in Figure 5.

Finally, the information on yearly sales (number of packets) 
per product was stored in the table t_Sales_Product (Table 4). 
During data extraction (Figure 3d), this yearly sales informa-
tion was combined with the calculated amount of API per 
product package, to obtain the total amount of API per year  
from the sales data.

Data processing in R
Data extracted from the Access database (Figure 3d) were sub-
sequently exported into flat files (Figure 3e) for calculation of 
PECs and future analysis. For this purpose, the records were  
grouped by API and year and the calculated amount sold  

aggregated by sum. The exported dataset was prepared for anal-
ysis and publication in R version 4.1.2 “ Bird Hippie” (R Core 
Team, 2021; RRID:SCR_001905). A full list of the R packages  
used is available as Underlying data (Welch et al., 2022).

Sales weights per product per year were filtered to remove 
any zero values, and values for which no units were assigned, 
representing records for which the API amount could not be  
calculated. Sales weights were then summed by API, per 
year, and APIs were filtered according to a list of exemptions 
from risk assessment on the basis of non-toxicity (as applies 
to vitamins, vaccines, antibodies, etc. (EMA, 2006)). Unique  
products excluded at each state are illustrated in Figure 6, and 
the total number of entries input (unique products) and APIs 
output are summarised in Table 5. The final dataset is published  
as a comma-separated values (.csv) file.

Graphics. Graphs were rendered in R (see repository for 
code and packages used (Welch et al., 2022)). Diagrams were 
drawn in Adobe Illustrator (RRID:SCR_010279), with the 

Table 3. Field names, types, and descriptions from the API per Product Table t_Product_API.

Field Name Data Type Description

ProductCode Number Database internal unique product ID

API_name Short Text

StrengthValue Number Original strength information from NIPH (not standardised)

StrengthUnit Short Text Original strength information from NIPH (not standardised)

API_ConcentrationPerItemValue Number Converted API strength value (with standardised unit if possible)

API_ConcentrationPerItemUnit Short Text Standardised API strength unit (if possible)

API_AmountPerPackageValue Number Calculated API amount value (with standardised unit if possible)

API_AmountPerPackageUnit Short Text Standardised API amount unit (if possible)

Comment Short Text

Exclude Short Text Yes (if record should be excluded from extraction)
NIPH, Norwegian Institute of Public Health; API, Active Pharmaceutical Ingredient.

Table 4. Field names, types, and descriptions from the Product Sales Table t_Sales_
Product.

Field Name Data Type Description

sYear Number Sales year

ProductCode Number Database internal unique product ID

PackageAmountSoldValue Number Number of packages of a unique product sold

PackageAmountSoldUnit Short Text Helper variable used to record counting process
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exception of Figure 6, which was rendered by the website  
SankeyMATIC.

Data evaluation
The predicted sales weights in this dataset were compared 
to similar datasets gathered by both co-authors in NIPH and 
other Norwegian agencies (Table 6) in order to detect discrep-
ancies and assess the correspondence between independently  

calculated PECs. Although the primary output of this data paper 
is PECs, their limited availability made it more practical to 
carry out comparisons at the sales weights level, particularly as 
the choice of variables in the calculation of PECs is a question  
of judgement and conservatism as well as mathematics.

The choice of datasets for comparison and data evaluation was 
informed mainly by the scarcity of publicly available data in 

Figure 5. Diagram of code lists and conversion tables. Defines the many-to-many relationships between ATC and API in database. ATC, 
Anatomical Therapeutic Classification; API, Active Pharmaceutical Ingredient.

Figure 6. Records retained/removed at each stage of data processing. Count of unique products sold in 2019 retained and removed 
at each step of data processing (Figure 3f), categorised as human (upper) or veterinary (lower). Stages cover the removal of exempt product 
types (vaccines, vitamins, etc.), substances with sales recorded in non-mass units (e.g. international units), and negative sales corresponding 
to the return and disposal of products.
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Norway, compared to better studied nations such as Germany 
or Spain. The Grung dataset was chosen for comparison as  
the only previously published dataset using the same method.

The Norwegian Pharmaceutical Specialties website Felleskata-
logen maintains a rolling risk assessment on a yearly basis of 
pharmaceutical risk, using sales data from a private market  
research firm. In order to benchmark the completeness and accu-
racy of our dataset to another party’s measurement of the same 
values, we compared our calculated sales weights to theirs. Due 
to the data’s private ownership, Felleskatalogen’s PECs are 
not archived year-on-year or especially transparent; this makes 
them a useful resource for comparison, but not a permanent  
part of the scientific record.

Comparisons were performed using a Bland-Altman plot, also 
known as a Tukey mean-difference plot (Bland & Altman,  
1999), which allows for the visual comparison of two measure-
ments of a single parameter.

Further comparisons were conducted between our dataset and  
prescription data for a high-use subset of APIs. NorPD is a 
publicly available resource, comparable to those available in 
other nations, that can produce reports of drug consumption by  
age, region, sex, and year across Norway. However, as a record 
of prescription this database is necessarily more limited than 
the Drug Wholesale Statistics database; additionally, all sales 
are recorded only in DDDs, introducing inaccuracy compared 
to actual quantities sold, and excluding drug formulations  
for which no DDD has been assigned. A further Tukey mean-
difference plot (also known as a Bland-Altman)plot was cre-
ated to compare prescription and wholesales predicted  
sales weights.

Lastly, we compared our predicted sales weights to two fur-
ther analyses based on the same dataset. An analysis of 2005 
API sales weights for a panel of 11 APIs was conducted by  
Grung et al. (2008); we selected three high-use APIs with a  
wide range of constituent ATC codes—paracetamol, ethinylestra-
diol and ibuprofen—and compared these sales weights with  
our predictions for 2016–19.

To further benchmark trends in consumption, these sales weights 
were normalised by dividing the figures by the annual popula-
tion of Norway. They were then compared to wholesale data 
published by NIPH – available as PDF reports (Sakshaug et al.,  
2013; Sakshaug et al., 2018; Sommerschild et al., 2021b) 
of consumption in DDDs per thousand people per day for 
a limited range of substances. Although direct comparisons 
between normalised sales weights and DDD/1000 people/day 
were not possible, we were able to compare overall trends in  
consumption to look for disagreement.

Predicted Environmental Concentrations
PECs of individual APIs in the compartment Surface Water 
were calculated using a modified form (Equation 1) of the 
standard refined PEC

SW
 equation, with default variables  

(Table 7), outlined in the EMA’s guidelines for pharmaceutical 
environmental risk assessment (2006).

Table 5. Table of number of unique 
human and veterinary products 
input from starting dataset (Figure 3e) 
and number of unique API output 
(Figure 3g), by year.

Starting dataset  
entries

Unique  
APIs

Year Human Veterinary

2016 5,713 660 804

2017 5,904 655 820

2018 5,991 611 820

2019 6,034 597 831
API, Active Pharmaceutical Ingredient.

Table 6. Summary and labelling scheme for datasets used and referenced in this paper.

Label Source Type Output  
format

Years used 
(Total  
coverage)

Reference

Welch NIPH Wholesale g/API 2016–19 DOI: https://doi.org/10.17605/OSF.IO/GMX58 

Felleskatalogen FK Wholesale g/API 2018 Felleskatalogen, 2022

NorPD NIPH Prescription DDDs 2016–19 
(2004–20)

NIPH, 2021

Grung NIPH Wholesale DDDs &  
g/API

2005 Grung et al., 2008

NIPH NIPH Wholesale DDDs 2007–19 Sakshaug et al., 2013; Sakshaug et al., 2018;  
Sommerschild et al., 2021b

NIPH, Norwegian Institute of Public Health; NorPD, The Norwegian Prescription Database; API, Active Pharmaceutical Ingredient; DDD, 
Defined Daily Dose.
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As no specific bodies of water are specified in the guidelines, 
the model is assumed to apply to all relevant freshwater  
bodies, i.e., rivers and lakes. In Norway, where a significant  
proportion of WWTP (Wastewater Treatment Plant) outflow is to 
saltwater fjords, the omission of marine modelling is a limiting  
factor, but is in-line with current practice in Norway.

Likewise, metabolism of APIs in the human body was assumed 
to be 0 as a worst-case scenario for all APIs. Although this 
may overestimate PECs, the assumption that metabolism of 
an API intrinsically removes the overall volume of ecotoxico-
logically active substance entering the environment may also  
underestimate the effects of metabolites (Farré et al., 2008).

Equation 1.

(1 )

365SW
API sold WWTP RemovalPEC

Wastewater consumption Population Dilution factor
× −=

× × ×

PEC, Predicted Environmental Concentrations; API, Active  
Pharmaceutical Ingredient; WWTP, Wastewater Treatment Plant.

As mentioned, the standard equation estimates sales weights 
from the maximum dose of a given API and the proportion of 
people in a population taking that API. By contrast, by using  
our dataset of pharmaceutical wholesales we can input a 
more exact figure for consumption across the entire popula-
tion of Norway. Default values for removal in wastewater  
treatment plants (0% removal) and dilution factors (dilution to  
1 part in 10 upon entering receiving waters) were retained as 
worst-case assumptions, potentially contributing to overesti-
mation of PECs. In particular, the assumption of 0% removal 
biases the dataset towards overestimating concentrations of  
well-removed APIs.

In addition, the default dilution factor of 10 has been  
criticised as potentially not covering especially low-flow  
conditions in European rivers (Link et al., 2017). In Norway, 
the coast and sea are the primary receivers of Norwegian  
treated wastewater (Berge & Sæther, 2020); information 
on dilutionfactors is difficult to locate, but one report  

(Källqvist et al., 2002) suggested coastal WWTP outflow pipes 
are situated at sufficient depth and distance to achieve dilution  
rates of 50–75. 

PECs were individually calculated per API, per year, using  
information on yearly average wastewater generation and  
Norwegian population, obtained from Statistics Norway and 
included as Underlying data (Welch et al., 2022).

Identification and grouping of APIs
To aid in the contextualisation and machine reading of the data-
set, additional data were collected and appended to API sales 
data. Firstly, standard InChIKeys, a short, unique string based 
on molecular structure, were, where possible, found for all  
APIs (Heller et al., 2015) using the R package webchem (Szöcs 
et al., 2020) (RRID:SCR_017684) to look up API names via 
the Chemical Translation Service (Wohlgemuth et al., 2010)  
(RRID:SCR_014681).

Additionally, APIs were sorted into single categories based on 
function and/or target organ (antidepressant, respiratory, antibac-
terial, etc.), adapted from ATC classifications and sourced from 
Felleskatalogen, Drugs.com, and WHOCC for Drug Statistics  
records. A short description of the type and application of 
APIs was also included, based principally but not exclusively  
on use in Norway.

Data evaluation
Comparison with Felleskatalogen data
Figure 7 summarises agreement between the two datasets 
for the year 2018. A mean difference (blue line) extremely 
close to zero on the y-axis indicates little average difference  
between calculations. However, a number of substances 
below the lower red line (95% CI) indicate potential errors in 
either our or Felleskatalogen’s calculations (Table 6). In total,  
Felleskatalogen sales weights are available for 203 APIs, of  
which 193 have available toxicity data in the form of Predicted 
No Effect Concentrations (PNECs), while our dataset contains 
sales weights for 821 APIs, 255 of which have available  
PNECs.

Table 7. Table of PECSW equation default variables and parameters.

Component Unit Description

g of API sold g year-1 The total weight (g) of an API sold in a year

WWTP removal unitless The proportion of the API removed at WWTP (default of 0)

365 days year-1 The number of days in a year

Wastewater consumption L person-1 day-1 The average wastewater consumption (L) of the population of a given area per day

Population persons The population of a given area

Dilution factor unitless The ratio of dilution between WWTP effluent and receiving waters (default of 10)
PEC, Predicted Environmental Concentrations; API, Active Pharmaceutical Ingredient; WWTP, Wastewater Treatment Plant.
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Of these, discrepancies between figures for ethinylestra-
diol and levonorgestrel are due to the mistaken substitution of 
milligrams (mg) for micrograms (mcg or μg) for one combina-
tion product containing levonorgestrel and ethinylestradiol in  
Felleskatalogen’s data source and have consequently been 
excluded from summary statistics. Differences in sales of salicylic  
acid may be due to its presence in a number of non-medical  
skin products not included in NIPH data, and/or from the com-
bination of the weights of salicylic acid and 5-aminosalicylic 
acid, treated as separate APIs in our data. The discrepancy  
for levofloxacin between our data (5.4 × 10 g) and Felleskata-
logen (3.9 × 103 g) is likely due to the exclusion of eye drops  
containing the antibiotic from the NIPH source data, while 
no explanation was found for the difference in vildagliptin,  
3.7 × 104 g compared to 4.4 × 106 g.

Comparison with prescription data
To assess the value of our dataset compared to NorPD  
(Table 6), we compared predicted sale weights for six 
substances (Table 8) present in both datasets, a selection of 
common human, veterinary, over the counter (OTC) and  
prescription APIs, for the year 2019 (Figure 8).

Comparing wholesale and prescription sales weights for these 
substances (Table 8), it can be seen that on average, prescrip-
tion data predicted lower sales weights for APIs, but this  
was driven by the decongestant xylometazoline, whose sales 
weight was predicted to be around 1000 times higher than pre-
scription weight. The OTC and prescription painkillers para-

cetamol and ibuprofen had a sales weight of roughly 1.5 times  
and 2.3 times wholesale than prescription.

The prescription-only APIs metoprolol and atorvastatin 
showed strong agreement between wholesale and prescription 
weights (<10% difference), while amoxicillin and progesterone  
were predicted a 45% and 28% higher prescription weight  
than sales weight. In both cases, this is likely due to the  
difficulty of distinguishing the appropriate DDD to use with 
prescription data, as it does not distinguish between routes 
of admission at the ATC code level, and the highest DDDs  
for these substances are 2–3 times higher than the lowest.

Comparison with Grung et al., 2008 and NIPH 
Wholesale Report Data
Predicted sales weights, normalised by population, were also 
compared to earlier (recorded in 2005, published in 2008)  
(Table 6) predictions and (non-comprehensive) published trends 
in consumption by DDD. Comparing our predictions of para-
cetamol sales weights to those in 2005 (Figure 9) shows a 
plausible growth in normalised consumption, the majority of 
which is driven by growing consumption in plain paracetamol  
over time.

Consumption of ibuprofen (Figure 10) is also driven by the 
consumption of ibuprofen as a painkiller (variously classified 
as M01AE01 (oral/rectal/injected) and M02AA13 (topical)).  
Drawing direct comparisons between different combinations 
of the API is difficult due to changes in API encoding, patchy 

Figure 7. Comparison between NIPH-derived and Felleskatalogen Predicted Environmental Concentrations datasets, for sales 
in 2018. Bland-Altman or Tukey mean-difference plot of difference (y axis) and mean (x axis) of log10-transformed sales weight data from our 
and Felleskatalogen sources. Blue line marks mean difference, and red 95% Confidence Intervals. A substance with no difference between 
the two predicted weights would fall on the 0 line on the y axis. NIPH, Norwegian Institute of Public Health; API, Active Pharmaceutical 
Ingredient; PNEC, Predicted No-Effect Concentration.
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Table 8. Panel of human and veterinary drugs selected for comparison between our dataset and NorPD. Where 
multiple DDD values were possible for one ATC code, the highest value was used. Codes beginning with Q correspond to 
veterinary applications. Inj. refers to injected forms of drug, vag. to vaginal.

API Description Availability ATC Codes DDD Notes

Paracetamol Human painkiller OTC & Prescription N02AJ06 
N02BE01 
N02BE51

3.0 g (oral) 
3.0 g (oral) 
3.0 g (oral)

High consumption

Ibuprofen Human painkiller OTC & Prescription M02AA13 
C01EB16 
M01AE01

N/A 
0.03 g (oral) 
1.2 g (oral)

High consumption

Xylometazoline Human nasal  
decongestant

OTC & Prescription R01AA07 
R01AB06

0.8 mg 
(nasal) 

N/A

High consumption

Amoxicillin Human & vet.  
antibacterial

Prescription J01CA04 
 
 
 
J01CR02 
 
QJ01CA04

1.5 g (oral) 
3 g (inj.) 

1.5 g (oral) 
3 g (inj.) 

N/A

Significant consumption

Progesterone Human & vet.  
sex hormone

Prescription G03DA04 
 
 
QG03DA04

30 mg (oral) 
5 mg (inj.) 

90 mg (vag.) 
N/A

High consumption

Atorvastatin Human statin Prescription C10AA05 
C10BA05

20 mg (oral) 
N/A

2nd most used prescription

Metoprolol Human beta blocker Prescription C07AB02 0.15 g (oral) 9th most used prescription
NorPD, The Norwegian Prescription Database; API, Active Pharmaceutical Ingredient; DDD, Defined Daily Dose; ATC, Anatomical  
Therapeutic Classification; OTC, over the counter; N/A, not applicable.

Figure 8. Bland-Altman or Tukey mean-difference plot of difference (y axis) and mean (x axis) of log10-transformed sales  
weight data from our and NorPD sources for six selected APIs in 2019. Blue line marks mean difference, and red 95% Confidence 
Intervals. A substance with no difference between the two predicted weights would fall on the 0 line at the centre of the y axis. NorPD,  
The Norwegian Prescription Database; API, Active Pharmaceutical Ingredient; OTC, over the counter; PNEC, Predicted No-Effect 
Concentration.
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Figure 10. Comparison of predicted sales data sources for ibuprofen and ibuprofen-containing products. (a) Calculated sales 
weights, by ingredient, for products containing ibuprofen in 2005 and from 2016–19, normalised by annual population of Norway.  
(b) Consumption of ibuprofen-containing products by ingredient from NIPH published reports, in DDD per 1000 people per day. For a  
more complete description of data sources, refer to Table 6. NIPH, Norwegian Institute of Public Health; DDD, Defined Daily Dose.

Figure 9. Comparison of predicted sales data sources for paracetamol and paracetamol-containing products. (a) Calculated 
sales weights, by ingredient, for products containing paracetamol in 2005 and from 2016–19, normalised by annual population of Norway. 
(b) Consumption of paracetamol-containing products by ingredient from NIPH published reports, in DDD per 1000 people per day. The 
combination “paracetamol + non-psycholeptics” corresponds to combinations of paracetamol with caffeine, acetylsalicylic acid, or ibuprofen. 
For a more complete description of data sources, refer to Table 6. NIPH, Norwegian Institute of Public Health; DDD, Defined Daily Dose.
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data availability in Wholesale Reports, and the disappearance 
of dexibuprofen, an enantiomer of ibuprofen. Nevertheless, 
in overall trends, a similar pattern of overall decline offset by a  
small bump in 2017 can be observed.

Interpreting individual sales patterns for ethinylestradiol, also 
known as EE, is harder than the above due to the wide range of  
combination contraceptives and hormone therapies. An overall 
trend of decline in consumption in Figure 11a can be seen, 
driven by small decreases in constituent consumption, but in  
Figure 11b it is less apparent whether the trends of different 
compositions balance each other out. Historical data on  
ethinylestradiol consumption was largely absent in Wholesale  
Reports before 2016 (Sakshaug et al., 2013; Sakshaug et al., 
2018), except in the case of vaginal rings, where consump-
tion was given in units sold in one report and DDD in the next, 
making comparisons difficult. Nevertheless, trends for individual  
combinations that appear in both datasets – EE and levonorg-
estrel (in fixed static doses), vaginal rings containing EE and 
etonogestrel, and EE and cyproterone showing corresponding  
trends.

Checking for extreme changes
In addition to the above comparisons of our data with simi-
lar datasets, we elected to compare sale weights by API inter-
nally to detect outliers. Sale weights per year were compared 
to a mean weight over the sales period, and APIs for which at 
least one year’s sales weight was more than 10 times greater 

than the mean were highlighted. The substances are graphed in  
Figure 12.

This shortlist covered two APIs with exclusively veterinary 
use (altrenogest and toceranib) and 29 exclusively human 
APIs. All of the APIs were available exclusively via prescrip-
tion, except for cyclizine. Registration and deregistration dates 
were checked, across the APIs, to determine if changes in con-
sumption could be explained by regulatory status. As products, 
and therefore product API content tend to remain consistent 
over the 2016–19 period, the above changes are expected to  
represent actual changes in consumption. However, it was  
considered prudent to check medical and pharmacy literature  
for possible explanations, nevertheless (Table 9).

Stark changes largely corresponded with recorded changes 
in marketing authorisation (23 substances, 74.1%). Use in 
some APIs appears to result from shortages in supply (three, 
12.5%), while the remaining five (16.1%) were not immediately  
explicable. These latter substances were then re-checked in 
source data, no errors were found between years. In three 
cases, where 2018 sales weights were available from both our 
and Felleskatalogen data (osimertinib, gadobenic acid and 
edoxaban), both predictions were in close agreement (<10%  
difference between values). Beyond the (de)registrations and 
supply issues listed above, changes in use may be driven by 
public advertising campaigns, medical lobbying, or relevant  
press stories.

Figure 11. Comparison of predicted sales data sources for ethinylestradiol and ethinylestradiol-containing products.  
(a) Calculated sales weights, by ingredient, for products containing EE in 2005 and from 2016–19, normalised by annual population of 
Norway. (b) Consumption of EE-containing products by ingredient from NIPH published reports, in DDD per 1000 people per day. Fixed  
and sequential ingredients refer to a course of pills of either a fixed dose, or a changing (sequential) dose. For a more complete description 
of data sources, refer to Table 6. NIPH, Norwegian Institute of Public Health; DDD, Defined Daily Dose; EE, ethinylestradiol.
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Figure 12. Calculated sales weights 2016–2019 for APIs where at least one year’s weight is 10x bigger or smaller than the mean 
API sales weight. A total of 31 APIs were shortlisted under this criterion; see Table 9 for further details. Coloured by type. API, Active 
Pharmaceutical Ingredient.

Table 9. Shortlist of APIs where at least one year’s weight is 10× bigger or smaller than the mean.

API name Type Description Comments

altrenogest sex hormone veterinary birth control New formulation (“Altresyn Ceva” authorised in 
Norway 2018 (Statens legemiddelverk, 2022)

asenapine antipsychotic atypical antipsychotic for schizophrenia 
and bipolar disorder

Sole product (“Syncrest”) deregistered 2017 
(Felleskatalogen, 2022) 

carglumic acid metabolic carbamoyl phosphate synthetase 
inhibitor for hyperammonaemia

Two products, one of which (“Ucedane”) was first 
authorised in June 2017 (Felleskatalogen, 2022)

cefalotin antibacterial beta-lactam cephalosporin antibiotic Shortage of cefalotin in Norway recorded 2019 
(Antibiotika.no, 2019)

cladribine antineoplastic antimetabolite and immunosuppressant 
for multiple sclerosis and leukaemia

Authorised August 2017 (Felleskatalogen, 2022)

cobimetinib antineoplastic mitogen-activated protein kinase 
inhibitor for melanoma

Authorised November 2015 (Felleskatalogen, 2022)

cyclizine antiemetic piperazine antihistamine for nausea 
relief from motion sickness, vertigo

Cause of change unknown

dacarbazine antineoplastic alkylating agent for skin cancer and 
lymphoma

Authorised March 2017 (Felleskatalogen, 2022)

dasabuvir antiviral antiviral used in combination for 
treatment of hepatitis C

Manufacturer withdrew application for dasabuvir/ 
ombitasvir/paritaprevir/ritonavir in 2016 (Nye Metoder, 
2016); however, ritonavir is also available alone
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API name Type Description Comments

edoxaban antithrombotic Factor Xa inhibitor for clotting reduction 
for strokes, atrial fibrillation, DVT

Authorised June 2015 (Felleskatalogen, 2022)

eluxadoline antidiarrheal treatment for diarrhoea from IBS Authorised as reimbursable prescription 
2017, withdrawn from market 2019 (Statens 
legemiddelverk, 2017; Felleskatalogen, 2022)

fomepizole antidote antidote to methanol and antifreeze 
poisoning

Cause of change unknown

gadobenic acid diagnostic agent gadolinium contrast agent used for 
magnetic resonance imaging

Cause of change unknown

gadodiamide diagnostic agent gadolinium contrast agent used for 
magnetic resonance imaging

Deregistered 2018 (Felleskatalogen, 2022)

glecaprevir antiviral protease inhibitor used in combination 
with pibrentasvir for hepatitis C

Glecaprevir/pibrentasvir (“Maviret”) Authorised July 
2017 (Felleskatalogen, 2022)

ixazomib antineoplastic proteasome inhibitor for multiple 
myeloma

Authorised November 2016 (Felleskatalogen, 2022)

nitrofurantoin antibacterial antibiotic for bladder infections Shortage recorded from 2018–2021 (VG, 2019)

nystatin antifungal topical antifungal Cause of change unknown

ombitasvir antiviral antiviral taken with paritaprevir and 
ritonavir for hepatitis C

See dasabuvir

osimertinib antineoplastic tyrosine kinase inhibitor for non-small 
cell lung cancer

Authorised February 2016 (Felleskatalogen, 2022)

palbociclib antineoplastic selective cyclin-dependent kinase 
inhibitor for breast cancer

Authorised November 2016 (Felleskatalogen, 2022)

paritaprevir antiviral combination treatment for hepatitis C See dasabuvir

pibrentasvir antiviral antiviral used in combination for 
hepatitis C

See glecaprevir

prednisone steroid corticosteroid and immunosuppressant 
for many immune and allergic disorders

Shortage recorded 2019 (Statens legemiddelverk, 
2019)

safinamide dopaminergic MAO inhibitor for Parkinson’s Authorised February 2015 (Felleskatalogen, 2022)

toceranib antibacterial receptor tyrosine kinase inhibitor for 
canine cancers

Deregistered 2019 (Felleskatalogen, 2022)

tofacitinib immunosuppressant treatment for arthritis, ulcerative colitis Authorised March 2017 (Felleskatalogen, 2022)

velpatasvir antiviral NS5A inhibitor for hepatitis C Sofosbuvir/velpatasvir (“Epclusa”), Sofosbuvir/ 
velpatasvir/voxilaprevir (“Vosevi”) authorised July 2016 
(Felleskatalogen, 2022)

venetoclax antineoplastic treatment for leukaemia Authorised December 2016 (Felleskatalogen, 2022)

vinflunine antineoplastic alkaloid derivative for bladder cancer Cause of change unknown

voxilaprevir antiviral protease inhibitor for hepatitis C See velpatasvir
API, Active Pharmaceutical Ingredient; DVT, deep vein thrombosis; IBS, irritable bowel syndrome; MAO, monoamine oxidase; NS5A, nonstructural protein 5A.

Ethics and consent
Ethical approval and consent were not required.

Data availability
Open Science Framework: Pharmaceutical pollution: Prediction 
of environmental concentrations from national wholesales data. 
https://doi.org/10.17605/OSF.IO/Y74FW (Welch et al., 2022).

The following files were used in the creation of this work. All 
foreground data is included, as is background data publicly  
available or created by the authors.

A published summary of NIPH wholesale data can be found 
at https://www.fhi.no/en/publ/2021/drug-consumption-in-nor-
way-2016-2020/; in addition to the contact details of relevant  
NIPH personnel.
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Background (Input) Data Format Source Description Availability

t830_Product_API_sold_per_ year CSV Authors’ Processed NIPH Wholesale data Commercially 
restricted

NO_EN_API_names CSV Authors’ English-Norwegian names for a subset 
of APIs

In Repo

API_toxicity_2019 Excel Authors’ Ecotoxicological status of all drugs sold 
2016-19 in Norway

In Repo

Felleskatalogen_PEC 
_PBT_2018

Excel Felleskatalogen/ 
Farmastat AS

Drug toxicity, persistence and 
bioaccumulation, Norway, 2018

Commercially 
restricted

InChI_Shortlist CSV Authors’ InChIKeys corresponding to APIs studied In Repo

WW_per_PD_2015_2020 Excel Statistics Norway Wastewater consumption per person per 
day in Norway 2015–2020

In Repo

Pop_1951_2021 Excel Statistics Norway Mainland Norwegian population on 1 Jan 
per year 1951–2021

In Repo

NorPD_API_Subset Excel NIPH / NorPD Sample of API prescription data, 
2016–2019

In Repo

DDD_conversion_factors Excel WHOCC DDDs from WHOCC ATC/DDD Index In Repo

API_desc_short Excel Authors’ APIs with broad categories and short 
description

In Repo

Report_DDD_Trends_Subset Excel NIPH Data extracted from reported sales (in 
DDD) of a subset of APIs

In Repo

Grung_2005_PECs Excel (Grunget al., 2008) 2005 PECs for various APIs calculated 
from NIPH wholesale data

In Repo

Code  

Data_Pipeline.Rmd R Markdown Authors’ Full code used in the processing of data In Repo

Foreground (Output) Data  

sales_by_API_year_processed_
2022-08-16_16.24

CSV Authors’ Final data In Repo
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Summary of the article 
 
Welch et al. 2022 describes a methodology to convert national wholesales data of almost 900 APIs 
used in human and veterinary medicine into a dataset that can be used to estimate environmental 
exposure data. The resulting dataset covers annual wholesales from Norway for the period 2016 – 
2019 and provides a comprehensive overview of API sales for an entire country. The different 
sources to obtain the data and their scopes and limitations are well described and compared to 
each other. 
 
General impression 
 
This is a nice data note on a highly relevant topic. The note explains how whole sales data of 
pharmaceutical products can be used to predict environmental concentration of Active 
Pharmaceutical Ingredients (APIs). The first part of this exercise is interesting, i.e. the step from 
wholesales data of pharmaceutical products to the amount of API that is sold. This is also the part 
that is being validated; or at least comparisons are made with other studies, adding to the 
trustworthiness of the method. The second part of the method, i.e. the prediction of the PEC (and 
any references made to prioritization and PNECs) are less convincing. The PEC is estimated in a 
very rudimentary way; hardly the state-of-the-art. The predictions are also not explicitly compared 
to measured values and thus not validated. We suggest removing this part from the manuscript. 
 
Points of concern:

The authors correctly mention that some APIs are salts. Where the PNEC is typically 
reported as the amount (i.e., weight) of the active ion, products typically report the weight 
of the salt. This can result in errors. The authors mention this, but they do not explicitly 
state how they dealt with this issue. Do the API weights that they report refer to the salt or 
to the active ion? And how did they deal with different salts that have the same active ion? 
The authors should be more explicit about their implicit assumptions on this point. 
 

○

To derive the PEC, no API-specific excretion was considered. This results in the 
overestimation of PEC but is not mentioned explicitly in section ‘Predicted Environmental 
Concentrations’. This is one of the reasons, we suggest removing the whole section on PECs 
and to focus on the estimation on the API sales weights. 
 

○

The section on Potential Applications is rather speculative. It does not belong in a methods 
section. We’re not familiar with the formal structure of a data note, but it seems more 

○
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appropriate to put this type of argument in a reflection/discussion section. 
 
For your international audience, it would be great if the titles of the datasets on the 
repository were in English. 
 

○

Not all data (i.e., the NIPH wholesales data) used in the data note seem to be publicly 
accessible. As such, it is difficult to reproduce the results. We don't find this a huge problem, 
but we're not sure whether this is in line with the publication policy of the journal.

○

 
Specific comments 
 
P1: more prominent groups -> please specify; 
 
P1: We doubt whether all readers will know the difference between market-based and sales-based 
assessments; 
 
P1: Is ecotoxicological-exempt the same as data deficient? 
 
P2: Human biology -> what about the veterinary pharmaceuticals? 
 
P2: but doing so everywhere -> doing what everywhere? I assume measuring, but this is not 
explicitly stated; 
 
P2: Somewhere you should explain in a bit more detail what the difference is between wholesales 
data and prescription data. Figure 2 nicely captures this. 
 
P6:  The main data tables are shown in Figure 4 -> the tables in Figure 4 have different names than 
the main data tables listed in the text. 
Confusing. 
 
P6: the associated API names associated were… 
 
P8: validating sales data is definitely not enough to “quality-assure PECs”. Please remove or 
reformulate. 
 
P9: Please add a more explanatory caption. What does “non-masses”, “real masses” and “returns” 
refer to? 
 
P9: The Norwegian Prescription Database (NorPD), the Norwegian Prescription Database… 
 
P11:  Numbers in text are reported in a lot of detail. I suggest using a scientific notation to avoid 
the suggestion of too much accuracy. 
 
P12: Remove Figure 7b. It adds little to no new information. 
 
P12: More dated -> do you mean more recent? 
 
P14/15:The legend of Figures 9-11 is not particularly clear. Numbers are also difficult to compare. 
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Can you find a different, more transparent way of presenting these results? 
 
P16: Table 9: Nice example of how this data can be used to detect interesting trends (and/or 
mistakes). 
 
P17: Some of the names of the data files could be a bit more user-friendly so that the reader 
immediately understands the content.
 
Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
No

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Human and ecological risk assessment of chemicals, particularly 
pharmaceuticals.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 21 Aug 2022
Sam Welch 

Thank you for your quick and comprehensive feedback on our paper. I’ve revised the paper 
in response to a number of your suggestions, and I’ll attempt to respond to them all below. 
 
General impression 
 
This is a nice data note on a highly relevant topic. The note explains how whole sales 
data of pharmaceutical products can be used to predict environmental concentration 
of Active Pharmaceutical Ingredients (APIs). The first part of this exercise is 
interesting, i.e. the step from wholesales data of pharmaceutical products to the 
amount of API that is sold. This is also the part that is being validated; or at least 
comparisons are made with other studies, adding to the trustworthiness of the 
method. The second part of the method, i.e. the prediction of the PEC (and any 
references made to prioritization and PNECs) are less convincing. The PEC is estimated 
in a very rudimentary way; hardly the state-of-the-art. The predictions are also not 
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explicitly compared to measured values and thus not validated. We suggest removing 
this part from the manuscript. 
 
The PEC is indeed calculated in a rudimentary way; unfortunately, with 800+ APIs over four years 
and limited time this seemed like the best compromise to make the data publicly available. I 
would also note that more precise modelling tools, such as Oldenkamp et al.’s ePiE are not yet set 
up for Norway. Our approach is crude, but we’re limited by the tools we have available, while 
removing the PECs entirely would make this data paper no longer an ecotoxicological resource. 
I’ve expanded the discussion in the introduction more to cover these questions, but I believe too 
much discussion would, again, be out of the scope of a data note. 
 
  Points of concern: The authors correctly mention that some APIs are salts. Where the 
PNEC is typically reported as the amount (i.e., weight) of the active ion, products 
typically report the weight of the salt. This can result in errors. The authors mention 
this, but they do not explicitly state how they dealt with this issue. Do the API weights 
that they report refer to the salt or to the active ion? And how did they deal with 
different salts that have the same active ion? The authors should be more explicit 
about their implicit assumptions on this point. 
 
I’ve attempted to clarify this in the methods section, but in essence: when clear data on the salt 
form of an API was available, we factored it into our concentration. When it wasn’t, we assumed 
the full weight corresponded to the active ion.  
 
To derive the PEC, no API-specific excretion was considered. This results in the 
overestimation of PEC but is not mentioned explicitly in section ‘Predicted 
Environmental Concentrations’. This is one of the reasons, we suggest removing the 
whole section on PECs and to focus on the estimation on the API sales weights. 
 
Acquiring or developing API-specific excretion factors for 800+ APIs was beyond the scope of this 
paper. This does potentially lead to overestimates of risk, especially for well-metabolised APIs, but 
as it’s also possible for metabolites to be more toxic, or transformed back into toxic products in 
the environment, we believe modelling excretion as negligible provides a safest worst-case 
approach. I’ve added a summary of this to the section of Predicted Environmental Concentrations
. 
 
The section on Potential Applications is rather speculative. It does not belong in a 
methods section. We’re not familiar with the formal structure of a data note, but it 
seems more appropriate to put this type of argument in a reflection/discussion 
section. 
 
This is a reasonable point. I’ve removed the section to keep the paper streamlined – it was an 
inclusion from an earlier version of the paper and wasn’t described in the data note guidelines. 
We’ll cover applications further in an upcoming paper, and they’re also mentioned in the 
Deliverable D6.2 linked in the introduction. 
 
For your international audience, it would be great if the titles of the datasets on the 
repository were in English. I’ve updated the names of all data sets to English. Not all data 
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(i.e., the NIPH wholesales data) used in the data note seem to be publicly accessible. 
As such, it is difficult to reproduce the results. We don't find this a huge problem, but 
we're not sure whether this is in line with the publication policy of the journal. 
 
The author's guidelines state: "Data notes must describe research data generated and owned by 
the authors." We’ve published all the foreground data, generated by the project (Figure 3f & g), 
some publicly available data, but no background data owned by other parties/under commercial 
confidentiality. I’ve updated the Data availability section to make it more explicit which data we 
are and aren’t able to publish. 
 
Specific comments Responses to the following comments have been limited to save space, but 
they have all been addressed. 
 
P14/15:The legend of Figures 9-11 is not particularly clear. Numbers are also difficult 
to compare. Can you find a different, more transparent way of presenting these 
results? 
 
I’ve spent some time considering alternative ways to display the data, but ultimately, I feel 
these graphs allow comparison between multiple datasets without creating a false 
conception of closeness. Sales in DDD/1000/day and kg are not directly comparable, 
especially across different combination ATC codes, but trends map to each other, and sales 
are plausible taking into account growth in consumption since 2005. Are sufficient details 
of methods and materials provided to allow replication by others? – No In our view, the 
question of replication (of results) by others is not strictly relevant for a data note. The 
"methods" are provided as R codes. However, the "materials" would correspond to 
background data owned by others (NIPH) which cannot be published here. Therefore, the 
"results" (the foreground data published here) cannot be replicated by others.  

Competing Interests: No competing interests were disclosed.
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The data for this manuscript is part of a larger project and utilize the unique Norwegian Wholesale 
Statistic database. 
 
However, the text is quite difficult to read, as it misses an overall red line, especially for readers 
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not involved in the project and those who did not read the project report. 
 
One example of this is the data evaluation. For me, it is not clear why the author chose the data 
and publications they compared the results of this project to. Grung et al. (2005) and the 
Felleskatalogen data are very likely not known to anyone outside of Norway. Here a better 
explanation would have been needed. 
 
Finally, all the effort of building the database and extracting the data should end in using the 
database and producing results. The results, presented here are, in my opinion, not really 
representative.  The criteria chosen, where at least one year’s weight is 10x different than the 
mean, is at minimum unique. I would have expected a bigger evaluation and more results. What is 
with e.g. the Top Ten of the highest consumption in Norway? What is with the usual suspects like 
Metformin, Ibuprofen, Diclofenac, etc….? Or with substances which are known to display an 
environmental risk? 
 
I, therefore, find this manuscript is not really suitable for indexing. 
 
Some detailed comments.

Grung (2005) In Figure 9 -11 Grung (2005) is cited, which is not in the references and also 
not mentioned in the text. 
 

1. 

Dilution factor - In table 7 the PECsw equation default variables, used in the EMA guideline, 
are described. In the respective text, it is mentioned that the default dilution factor of 10 is 
quite conservative. This might be correct for Norway with the unique combination of large 
fjords and a small overall population. However, the water exchange in some fjords might be 
quite low, due to the length and the shape and therefore hardly any tidal currents and 
already in the Olso region, it is probably a different matter. Especially in other parts of 
Europe, this is clearly not correct. See therefore the public press of the effluent 
concentration in British rivers and e.g. Link et al.1 for rivers in Germany. 
 

2. 

Independent of the above, an exposure scenario, where the effluent is discharged directly 
into the marine environment is not included in the EMA guideline. 
 

3. 

Comparison with prescription data - Individual active ingredients are sold both as OTC-
products and as prescription products, depending on form and strength. This is missing in 
the discussion on the gap between prescription and sales data. 
 

4. 

Checking for extreme changes - Reasons for differences can also be an adverb campaign for 
new generics (increasing consumption) or a similar adverb campaign of a competitor 
(decreasing consumption)

5. 
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Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Environmental Risk Assessment of Pharmaceuticals. Authorization of 
Pharmaceutical Products. Endocrine Disruption

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 21 Aug 2022
Sam Welch 

Thank you for your quick and comprehensive feedback on our paper. I’ve revised the paper 
in response to a number of your suggestions, and I’ll attempt to respond to them all below. 
The data for this manuscript is part of a larger project and utilize the unique 
Norwegian Wholesale Statistic database. 
 
However, the text is quite difficult to read, as it misses an overall red line, especially 
for readers not involved in the project and those who did not read the project report. 
I’ve rewritten part of the abstract and introduction, and I hope our intentions – to calculate 
PECs from Norwegian drug sales, and publish them – are clearer now. 
 
One example of this is the data evaluation. For me, it is not clear why the author chose 
the data and publications they compared the results of this project to. Grung et al. 
(2005) and the Felleskatalogen data are very likely not known to anyone outside of 
Norway. Here a better explanation would have been needed. Pharmaceuticals sales 
data is not generally publicly available, in Norway or elsewhere, and both predicted and 
measured environmental concentration data for Norway are similarly scarce, compared 
with better-studied nations such as Germany. Grung et al. (2008) was the only previously 
published ecotoxicological exercise conducted with the Norwegian Wholesale Database, so 
we wanted to ensure that the sales weights we calculated were consistent with expected 
growth in consumption since 2008. Likewise, Felleskatalogen represents the only public 
source of PECs for APIs in Norway, but as far as we know their results are not archived year-
on-year and are not transparent. As Felleskatalogen PECs are predicted using sales data 
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from a private market research firm, this represented one of the few options we had to 
check for agreement between two sources of the same data. I’ve attempted to clarify these 
points in the section Data evaluation. 
 
Finally, all the effort of building the database and extracting the data should end in 
using the database and producing results. The results, presented here are, in my 
opinion, not really representative.   ORE guidelines request that data notes omit analysis 
and focus on describing the data and its collection/creation, so we believe an analysis would 
be out of scope. The criteria chosen, where at least one year’s weight is 10x different 
than the mean, is at minimum unique. I would have expected a bigger evaluation and 
more results. What is with e.g. the Top Ten of the highest consumption in Norway? 
What is with the usual suspects like Metformin, Ibuprofen, Diclofenac, etc….? Or with 
substances which are known to display an environmental risk? As above, as a data note 
more in-depth analysis would be out of scope for the paper. Checking for extreme variation 
in sales weights was an internal quality-control process for us to assess potential issues in 
our data, but we elected to include a summary of this covering APIs where considerable 
changes are present but caused by market factors. 
 
I, therefore, find this manuscript is not really suitable for indexing. We hope that our 
explanations above will prove that the manuscript is suitable for publication in ORE after all, 
when considering the definition and scope of a Data Note. 
 
Some detailed comments.

Grung (2005) In Figure 9 -11 Grung (2005) is cited, which is not in the references 
and also not mentioned in the text.

1. 

Updated to 2008.
Dilution factor - In table 7 the PECsw equation default variables, used in the EMA 
guideline, are described. In the respective text, it is mentioned that the default 
dilution factor of 10 is quite conservative. This might be correct for Norway with 
the unique combination of large fjords and a small overall population. However, 
the water exchange in some fjords might be quite low, due to the length and the 
shape and therefore hardly any tidal currents and already in the Olso region, it 
is probably a different matter. Especially in other parts of Europe, this is clearly 
not correct. See therefore the public press of the effluent concentration in 
British rivers and e.g. Link et al.1 for rivers in Germany.

1. 

As this study is limited to predicting environmental concentrations in Norway, I believe the 
comment stands. I’ve found minimal measured or modelled Dilution Factors for Norwegian 
surface waters, marine or freshwater, which is why we elected to use the default figure of 
10. As a side note, fjord-releasing WWTP in Norway typically release effluent from a pipe 
located low and far from the coast. I’ve added a brief discussion of the choice of DF, 
including the paper you reference, to the relevant section in Methods. Independent of the 
above, an exposure scenario, where the effluent is discharged directly into the marine 
environment is not included in the EMA guideline. This is an issue with the EMA 
guidelines, but not one we had the capacity to address in this work. I’ve added a brief 
discussion of modelling of saltwater to the section on Predicted Environmental 
Concentrations.

Comparison with prescription data - Individual active ingredients are sold both 1. 
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as OTC-products and as prescription products, depending on form and strength. 
This is missing in the discussion on the gap between prescription and sales data.

I’ve clarified the language around this in Methods: Data sources and management.
Checking for extreme changes - Reasons for differences can also be an adverb 
campaign for new generics (increasing consumption) or a similar adverb 
campaign of a competitor (decreasing consumption)

1. 

This is potentially the case, although I doubt it was an important driver compared to the 
already identified regulatory factors, and I’ve therefor not mentioned it in the test. Is the 
rationale for creating the dataset(s) clearly described? - Yes Are the protocols 
appropriate and is the work technically sound? - Yes Are sufficient details of methods 
and materials provided to allow replication by others? - Yes Are the datasets clearly 
presented in a useable and accessible format? - Partly We’ve attempted to improve the 
presentation of the published dataset by rendering names in English and with more 
frequent reference to the data processing pathway depicted in Figure 3.  

Competing Interests: No competing interests were disclosed.
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Abstract:

Environmental Risk Assessment (ERA) of pharmaceuticals relies on 
available measured environmental concentrations, but often such data 
are sparse. Predicted Environmental Concentrations (PECs), calculated 
from sales weights, are an attractive alternative, but often cover only 
prescription sales. We aimed to rank, by environmental risk in Norway, 
around 200 Active Pharmaceutical Ingredients (APIs) over 2016 to 2019, 
based on sales PECs. To assess the added value of wholesale and 
veterinary data we compared exposure and risk predictions with and 
without these additional sources. Finally, we aimed to characterise the 
persistence, mobility, and bioaccumulation of these APIs. 
We compared our PECs to available Norwegian measurements, then, 
using public Predicted No Effect Concentrations, we calculated Risk 
Quotients (RQs), and appended experimental and predicted persistence 
and bioaccumulation. Our approach overestimated environmental 
concentrations compared to measurements for 18 of 20 APIs with 
comparable predictions and measurements. 17 APIs had mean RQs > 1, 
indicating potential risk, while the mean RQ was 2.05 and median 0.001, 
driven by sex hormones, antibiotics, the antineoplastic abiraterone, and 
common painkillers. Some high-risk APIs were also potentially persistent 
or bioaccumulative (e.g. levonorgestrel (RQ = 220) and ciprofloxacin 
(RQ = 56), potentially persistent), raising the possibility of impacts 
beyond their RQs. Exposure and risk were also calculated with and 
without over-the-counter sales, showing prescriptions explained 70% of 
PEC magnitude. Likewise, human sales, compared to veterinary, 
explained 85%. 
Sales-predicted environmental concentrations provide an efficient option 
for ERA, designed to overestimate compared to analytical techniques, 
and potentially held back by limited data availability and an inability to 
quantify uncertainty, but nevertheless, an ideal initial approach for 
identification and ranking of risks. 
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1. Introduction

1.1. Pharmaceuticals in the Environment

The potential for pharmaceuticals to negatively impact humans and wildlife is, at this point, well 

known and extensively studied in the scientific community, although still less so than more 

prominent groups (Maack et al., 2022). relatively little of this information has been globally 

translated into regulation (Miarov et al., 2020; Schaub & Braunbeck, 2020; Sumpter et al., 2022). 

Pharmaceuticals sold and prescribed for both human and veterinary use have been detected across 

the range of human-dominated continents (Beek et al., 2016; Wilkinson et al., 2022) and even in the 

Arctic (Kallenborn et al., 2008) and Antarctic (González-Alonso et al., 2017), across groundwater, 

marine and fresh surface waters, drinking water (Benotti et al., 2009) and terrestrial matrices (Patel 

et al., 2019).

By design, pharmaceuticals are capable of biologically relevant effects at low concentrations, and 

studies have shown both sublethal effects and mortality in lab studies at environmentally relevant 

levels (Caldwell et al., 2012; Flaherty & Dodson, 2005) across a wide variety of pharmaceutical 

classes. Understanding of direct and indirect mechanisms of action varies between types and 

species, making it difficult to extrapolate data from effects in humans to other species. Although 

many target receptors are highly evolutionarily conserved across species (Arnold et al., 2014), 

different species, and different life stages, can respond to different APIs in unpredictable ways (A. R. 

Brown et al., 2014). 

Despite this variability, grouping pharmaceuticals by broad organ/system target and mode of action 

remains a convenient and accessible way to generalise effects. Below, we summarise the state of 

understanding of the effects of some of the best studied groups.

Pharmaceutical sex hormones, principally employed as contraceptives and as part of hormone 

therapies have been shown to disrupt fish reproduction in laboratory (Nash et al., 2004) and 

experimental field studies (Harris et al., 2011; Kidd et al., 2007) at environmentally relevant 
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concentrations, and linked to observed fish sexual disruption in rivers downstream of WWTPs,  

(Jobling et al., 1998; Mills & Chichester, 2005). However, drawing direct causative links between a 

given API and an environmental effect remains difficult.

Anti-depressants are the second most common prescribed class of medications after statins 

(McDonald, 2017), and typically function by preventing the reuptake of the neurotransmitter 

serotonin. Serotonin is a heavily evolutionarily conserved substance responsible for a broad range of 

effects including mood, memory, pain, and immune defence, and anti-depressants have been shown 

to affect behaviour and reproduction in a range of fish (McDonald, 2017) and aquatic invertebrates 

(Estévez-Calvar et al., 2017; Gonzalez-Rey & Bebianno, 2013), as well as developmental effects in 

amphibians and fish (Conners et al., 2009; Foran et al., 2004).

Antibiotics, meanwhile, have received a great deal of public and scientific attention as drivers of 

antimicrobial resistance (Kovalakova et al., 2020) but a number of such substances have also shown 

environmental toxicity to standard test taxa.  Direct toxicity is largely limited to prokaryotic algae 

and cyanobacteria (González-Pleiter et al., 2013), but some toxicity to plants, invertebrates and fish 

has also been shown (Isidori et al., 2005; Kovalakova et al., 2020; Yang et al., 2017).

Environmental toxicity has also been found in other therapeutically important groups of APIs (Active 

Pharmaceutical Ingredients). Statins, a class of drug widely prescribed to lower blood cholesterol, 

have shown toxicity to aquatic plants (Brain et al., 2006), invertebrates (Dahl et al., 2006; Neuparth 

et al., 2014; Ribeiro et al., 2015) and fish (Ellesat et al., 2010; Estey et al., 2008; Ribeiro et al., 2015; 

Thorpe et al., 2004).  Analgesics acting via the cyclooxygenase pathway, most famous among them 

paracetamol, diclofenac, and ibuprofen, are toxic to various aquatic species at high concentrations 

(around 1 to 100 µg/L) (Cleuvers, 2003, 2004; Nunes et al., 2014). However, toxicity data available 

across and within drug groups can be inconsistent and difficult to access (Ramström et al., 2020), 

limiting attempts to understand the overall pharmaceutical risk landscape, beyond individual 

substances.
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3

1.1. Environmental Risk Assessment of Pharmaceuticals in Europe

Environmental risk assessment (ERA) of human pharmaceuticals in the EU is administered by the 

European Medicines Agency (EMA), which is empowered to conduct a single authorisation 

procedure that recommends a pharmaceutical product for marketing in the EU, Iceland, 

Liechtenstein, and Norway (EMA, 2018). 

Under current guidelines, last updated in 2008, all new substances brought to market are required 

to either conduct an ERA or provide evidence that no such risk assessment is required (EMA CHMP, 

2006). Significant changes to the ERA of chemicals across the EU are planned, including a movement 

to a single assessment per substance regardless of manufacturer and application, under the 

European Green Deal, but relevant legislation has yet to be passed or implemented (van Dijk et al., 

2021). 

To streamline the process, this risk assessment is conducted on a tiered basis (Figure 1a), where 

early phases examine potential for risk under conservative assumptions, while later phases use more 

realistic assumptions. In summary, at Phase I a Predicted Environmental Concentration (PEC) based 

on the predicted percentage of a given population using a drug (“Market penetration”) and the 

maximum daily dose of the drug is used to predict a conservative PEC. 

If this PEC is below an action limit of 0.01 µg/L, then no further assessment is needed, but if this limit 

is exceeded a further Phase II assessment is conducted, comparing toxicity and interactions with the 

environment, predicted from a panel of standardised lab studies, to regulatory thresholds. 

Additionally, if necessary, a refined PEC can be calculated using more nuanced measures of 

interactions with the body and environment, and, depending on the individual characteristics, 

assessments of risk in specific matrices (sediment, sewage treatment plants, groundwater) and to 

specific taxa (microbes) can be triggered (EMA CHMP, 2006).

At phase I, a log Kow (n-octanol-water partition coefficient, a measure (ascending) of a molecule’s 

lipophilicity) threshold of 4.5 triggers the assessment of persistence and bioaccumulation. Should 
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4

the API proceed to phase II, these will be further assessed. Persistence screening, based on the EU 

TGD (EC, 2003) uses a battery of tests to determine whether the chemical is likely to be degraded by 

various abiotic and biotic processes over reasonable periods, while bioaccumulation is typically 

assessed by testing the ratio between the API in fish and the API in water in a stable spiked 

environment. Where either of these parameters are found to be potentially problematic, this is 

noted in an API’s risk assessment, but neither are factored into the numerical descriptor of risk, or 

any regulatory decision-making. That said, concentrations of pharmaceuticals in the environment 

are increasingly regulated under the Water Framework Directive, and draft Environmental Quality 

Standards for the APIs including azithromycin, diclofenac, estrone, estradiol and ethinylestradiol (EC, 

2011a, 2011b, 2011c) have been set, which by design as retrospective ERA account for persistence.

Risk, defined as the probability of an API exceeding a threshold of toxic effect, is calculated by 

dividing the PEC for a given area by a Predicted No Effect Concentration (PNEC), based the lowest 

concentration at which chronic or acute adverse effects are found to fish, algae, and daphnia, 

divided by an assessment factor of 3 to 1000, depending on data availability and test duration. As a 

matter of convention, any RQ < 1 is generally assumed to be of negligible importance, while 

exceedances indicate a potential issue. However, as with persistence and bioaccumulation above, no 

cost-benefit comparison is conducted, as the medical benefit to humanity is judged to outweigh any 

environmental impact.

Over the fifteen years that this ERA requirement has been in force, reaction to it has been mixed. 

New risk assessments are required only where it cannot be shown that a substance authorisation 

would contribute no additional risk, so many generally high-consumption substances, such as 

carbamazepine and paracetamol (Burns et al., 2018), have not, in some cases had ERAs triggered, 

while newer APIs, even those with much lower consumption, must still be assessed.

Conversely, for those substances where ERAs have been conducted, little or no data is made publicly 

available, with no ability for researchers to audit the data used in the assessment (Ågerstrand et al., 
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5

2014, 2015; Oelkers & Floeter, 2019). Meanwhile, the battery of tests used has been criticised as 

originally designed to assess the toxicity of industrial chemicals to an extremely limited range of 

species (Brandt et al., 2015; Gunnarsson et al., 2019), and thus insufficient to assess the risk posed 

by API toxicity, let alone the more complex ecologically-mediated effects of antibiotics (Boxall et al., 

2012). In Norway, where WWTPs principally—69% of capacity in plants of over 2000 population 

equivalents—discharge to saltwater ecosystems (EEA, 2022), the freshwater species used in 

standard tests may be insufficient for estimating risk from pharmaceutical pollution. In the TGD, a 

default additional Assessment Factor of 10 is given for extrapolating from freshwater to marine 

ecosystems (EC, 2003), but this has been criticised by the EU’s own expert committee on 

ecotoxicology (EC CSTEE, 2002).

Across other sides of the multi-stakeholder table, both the pharmaceutical industry and European 

NGOs have criticised the current state of ERA as too broad, not well equipped to prioritise drugs 

based on chemical properties and mode of action, and lacking transparency, with large portions of 

toxicity data still proprietary and not in the public domain (European Environmental Bureau, 2018; 

Snape & Owen, 2019). In 2018 the EMA released a set of draft guidelines for public consultation that 

build on the prior guidelines and address specific mechanisms of toxicity (endocrine disruption) and 

reduce the need for environmental fate testing, but there is as yet no timeline for if or when these 

will replace the guidelines currently in force (EMA, 2018), despite the growing importance of 

environmental sustainability in the EU’s plans for pharmaceuticals, and its ambitions to reach a toxic 

free environment (EU, 2020, 2021). 

In response to this lack of risk assessments for common drugs, and the relative abundance of 

prescription and sales data available, several parties have conducted desk studies, aiming to predict 

the emissions, exposure and effects of pharmaceuticals to the environment from already existing 

data (Dong et al., 2013; Grung et al., 2008; Gunnarsson et al., 2019; Guo et al., 2016; He et al., 2020; 

Jelic et al., 2011). Even desk studies, however, can prove patchy, focusing on different metrics of 
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6

potential impact, including exposure, hazard and risk and different models, but with a geographical 

reach largely limited to the developed West, Japan and China (Burns et al., 2018). A key issue in this 

approach remains the culture of commercial confidentially in the pharmaceutical industry, which 

runs directly counter to the academic imperative to make data and methods transparent and readily 

available, and a great deal of data that is nominally publicly available (Daughton, 2016) might more 

properly be called grey literature.

Although a wide range of pharmaceutical substances can be easily detected in aquatic ecosystems 

with modern analytical chemistry (Patel et al., 2019), the extensive diversity of pharmaceutical 

substances and potentially affected ecosystems, and the necessarily pre-emptive nature of 

pharmaceutical risk assessment have created an enduring need for the conservative prediction of 

pharmaceutical environmental concentrations in the environment for regulatory and policy 

purposes. 

Comparisons of sales and prescription-derived exposure predictions to measured exposure have 

shown its promise as an efficient approach in a number of settings: Burns et al. (2017) found good 

agreement between PECs and MECs (Predicted and Measured Environmental Concentrations) for 95 

APIs in one of the two urban rivers studied in York, UK, while Letsinger & Kay (2019) observed that 

for 24 APIs with PECs and MECs available, predictions (PECB in their work) overestimated both mean 

and maximum MECs but nevertheless provided a useful tool for prioritisation. 

More refined tools, that predict environmental concentrations based on an extensive set of 

hydrological, demographic and WWTP parameters (T. Austin et al., 2022; Oldenkamp et al., 2018), 

have been developed, but do not currently include the Norwegian mainland. Furthermore, inclusion 

of over-the-counter (OTC) sales is rare, particularly on a larger scale (T. J. Austin et al., 2021), 

potentially leading to underestimates of emissions even where environmental behaviour and fate is 

well-parameterised. Thus, in Norway, where MECs are rare, models of pharmaceutical emissions are 

crude, but sales data is high-quality and centralised by public authorities, the existing PECSW (PEC in 
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7

Surface Water) prediction equation represents an ideal first-line tool for prediction and 

prioritisation.

1.2. Norway in 2019 and beyond

Norway is a highly developed and largely sparsely populated nation in the North of Europe, with 

mainland habitation ranging from the more temperate and urban south to the arctic north. 

Norway’s population in 2019 was 5.33 million, 82.6% of whom lived in urban settlements. At present 

day, roughly half of Norway’s population lives in Østlandet, in the south-east of the nation, of which 

1.01 million live in the Oslo greater urban area, Norway’s capital and densest, most populous city. 

Distribution of water treatment technology is also uneven across the country, with basic mechanical 

filtration giving way to large-scale advanced, tertiary treatment plants in the south (Berge & S. 

Sæther, 2020).

State population projections predict a population of over 5.9 million by 2050, and the number of 

elderly (>70 years old) to double from 670,000 today to 1.4 million (Statistics Norway, 2020). 

Concurrently, under the high global warming Representative Concentration Pathway 8.5 (“Business 

as usual”), Norway’s climate is predicted to change drastically by 2100. Average temperature is 

expected to increase by around 4.5 °C, and precipitation by 18%, as extreme rainfall events become 

more common and snow cover shrinks (Hanssen-Bauer et al., 2017).

Norway’s economy and way of life is built on marine and freshwater ecosystems, producing an 

estimated 13,000 million EUR and 600 million EUR in measured ecosystem services respectively per 

year (Skre, 2017). Of Norway’s biodiversity, last documented by the Norwegian Red List for Species 

in 2015, 14% of threatened species were found in fresh and saltwater ecosystems, and a further 32% 

in wetlands, coasts, and floodplains (Henriksen & Hilmo, 2015). 

Norway’s development, climate, regulations, population demographics and minimal pharmaceutical 

manufacturing infrastructure limit its exposure to the extremely high environmental concentrations 

of APIs seen in some other nations (Wilkinson et al., 2022). However, its high degree of centralised 
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8

data collection, and relatively well-characterised environment make it an ideal testbed for assessing 

the effectiveness of sales-based approaches.

1.3. Aims

In this paper, we present a top-down method for the ranking of API environmental risk. We build 

upon a dataset of predicted environmental concentrations (PECs) in surface waters based on 

national wholesale data for Norway (2016-2019), recently published by Welch et al. (2022). (1) To 

assess the accuracy of PECs by comparison with available measured environmental concentrations 

(MECs) for Norway. (2) To calculate risk quotients (RQ) for each API by combining PECs with publicly 

available environmental toxicity values (PNECs), and make a ranking risk of APIs by risk quotients. (3) 

To refine the risk characterisation of APIs by inclusion of other chemical properties (persistence, 

mobility, bioaccumulation). (4) To evaluate the added value of additional information sources and 

their potential effects on the risk characterisation.

2. Methods

2.1. Software and Data 

All data processing and analyses were conducted in Base R 4.2.1 "Shake and Throw" and RStudio 

2022.07.1 Build 554. Packages used are summarised in the software repository available below.

API sales weight data in Norway for the years 2016 – 2019 was obtained from a processed and 

cleaned form of the Norwegian Institute for Public Health’s Norwegian Wholesale Drug Database 

(Welch et al., 2022). PECSW were calculated there using the standard refined PECSW equation 

(Equation 1) outlined in the EMA’s guidelines (EMA CHMP, 2006). 

(Eq. 1)𝑃𝐸𝐶𝑆𝑊 =
𝐴𝑃𝐼 𝑠𝑜𝑙𝑑 × (1 ― 𝑊𝑊𝑇𝑃 𝑅𝑒𝑚𝑜𝑣𝑎𝑙)

365 ×  𝑊𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ×  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×  𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

PECSW equation with default variables and parameters: API weight sold per year (g), proportion 

removed in WWTPs (default of 0), days per year (365), wastewater produced per person per day 
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9

(default of 200 L), population of area or country, dilution factor of effluent in receiving waters 

(default of 10).

These data were paired with PNECs and bioaccumulation and persistence hazard statements from 

the Norwegian pharmaceutical specialities website Felleskatalogen (2022), and further PNECs made 

available by AstraZeneca (2017) and the EU Joint Research Centre (Loos et al., 2018). Norwegian 

MECs compiled by the German Environment Agency’s Pharmaceuticals in the Environment database 

(Baz-Lomba et al., 2016; Graumnitz & Jungmann, 2021; Paruch et al., 2017; Plósz et al., 2010; 

Rodriguez-Mozaz et al., 2020; Vasskog et al., 2008) were used in validation. Lastly, quantitative 

structure-activity relationship (QSAR)-predicted mobility, bioaccumulation and persistence from 

OPERA (EPA, 2018), and predicted “provisional PNECs” from the NORMAN ecotoxicology database 

(Aalizadeh et al., 2017; NORMAN, 2022; von der Ohe et al., 2011) were used to characterised the 

biotic and abiotic properties of APIs where experimental data were not available..

Where necessary, data was translated from the original language to English. Felleskatalogen 

Norwegian language Persistency and Bioaccumulation key phrases, typically following a format of 

“[API name] was found to have a [low/moderate/high/data deficient] [persistence/bioaccumulation] 

were translated into an ordered categorical variable by matching key phrases (low, moderate, etc.) 

and replacing the statement with their English equivalent. Norwegian API names were also manually 

matched with English API names.

2.2. Calculation of Environmental Risk

Comparison of Predicted and Measured Environmental Concentrations 

PECs were compared with available Norwegian MECs for wastewater influent and effluent samples, 

as available surface water MECs were of limited applicability. Of the available MECs, data were 

limited to single sample analyses of parent substances with valid date values and literature 

credibility rated as “good” by the database maintainers. In order to draw more direct comparisons, 
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PECs for wastewater treatment plants (PECWWTP) were calculated from PECSW by removing the 

dilution factor of 10 from the equation, in effect multiplying PECSW values by 10.

Predicted No-Effect Concentrations 

Toxicity data was obtained in the form of Predicted No-Effect Concentrations for 257 substances 

from the Norwegian Pharmaceutical Specialties website Felleskatalogen (2020). These PNECs were 

originally calculated by the Swedish Pharmaceutical Specialities website, FASS.se (2019), where full 

equations and constituent test data were given; however, this data could not easily be converted 

into a machine-readable format and hence Felleskatalogen’s more accessible but less transparent 

dataset was used. In any case, a full account of the toxicity data’s origin is impossible, as the studies 

that produced said data are often not publicly available. 

In addition, this data was supplemented with PNECs made publicly available by AstraZeneca 

(AstraZeneca, 2017), for seven APIs: atenolol, lidocaine, metformin, mepivacaine, naproxen, 

omeprazole, and tamoxifen, and six PNECs calculated by the EU’s Joint Research Centre (Loos et al., 

2018), for azithromycin, clarithromycin, diclofenac, erythromycin, estradiol  and ethinylestradiol. 

Where more than one value was available for a PNEC, the lowest was used.

Risk Quotients

Predicted risk per API per year were calculated as simple Risk Quotients (or Risk Characterisation 

Ratios) following the standard ecotoxicological method (Equation 2; EMA CHMP, 2006)

 (Eq 2.)𝑅𝑄𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 =
𝑃𝐸𝐶𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟

𝑃𝑁𝐸𝐶

In accordance with standard practice for pharmaceutical environmental risk assessment, RQ > 1 was 

used as a threshold above which substances are considered to pose a potential risk to the 

environment. 

QSAR Predicted No-Effect Concentrations
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As access to experimental toxicity data was limited to around 25% of APIs, we used modelled PNECs 

(EC, 2003; NORMAN, 2018), referred to in the source literature as provisional or P-PNECs,  as an 

alternative for initial screening and prioritisation of APIs. These P-PNECs were calculated by the 

database authors following standard TGD guidelines for predicted acute toxicity tests across three 

taxa, with an Assessment Factor (AF) of 1000 applied to the most sensitive species by the database 

authors (EC, 2003; NORMAN, 2018).

Comparing Risk Quotients and Prioritisation

Simple comparisons between risk quotients based on experimental and QSAR PNECs were 

conducted by calculating Pearson’s R (correlation coefficient) between the two sets of values 

(Rodgers & Nicewander, 1988). Likewise, Spearman’s rho (rank correlation coefficient) was used to 

compare ranking of APIs using various subsets of data.

2.3. Dataset Overview

On average, 820 PECs were calculated per year across the four-year period, of which roughly 25% 

also had PNECs available, and 52% had QSAR PNECs (Table 1).  

3. Results

3.1. Comparison with Measured Environmental Concentrations

Nineteen APIs had both PECs and WWTP MECs for the 2015-16 period (Figure 2): the stimulants 

methylphenidate and amfetamine, the beta blockers metoprolol and atenolol, the antibiotics 

trimethoprim, tetracycline, sulfamethoxazole, ofloxacin, metronidazole, clindamycin, clarithromycin, 

ciprofloxacin, cefalexin, and azithromycin, the anti-epileptic carbamazepine, the anti-depressant 

citalopram, the antihistamine fexofenadine, the local anaesthetic lidocaine and the erectile 

dysfunction therapy sildenafil.
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In fifteen cases, PECWWTPs over-estimated compared to MECs (by a median factor of 20), ranging from 

a 2800-fold overestimation in the case of metoprolol to a 3.6-fold overestimation for azithromycin. 

The stimulant methylphenidate, the antidepressant citalopram, and the antibiotic tetracycline were 

within one order of magnitude, while no API other than the previously discussed metoprolol was 

more than two orders of magnitude greater. In two cases, the PEC was lower than MECs: the 

stimulant and drug of abuse amfetamine (56-fold underestimation) and the antibiotic ofloxacin (1.5-

fold). 

A Spearman rank-correlation test was conducted on the 19 comparable median PEC-MEC sets. No 

significant correlation was found between either EC rankings (Rho = 0.18, p = 0.46). The small 

sample size of comparable RQs (6) precluded Spearman’s test, but briefly: both RQs ranked 

ciprofloxacin as by far the highest-risk API, but disagreed on the order of the remaining five.

3.2. Characterising Risk Quotients, Persistence, Mobility & Bioaccumulation

Risk Quotients were calculated for 208 substances across the 2016 to 2019 period. The substances 

with the 20 highest average RQs over this period are displayed in Table 2, while overall the average 

RQ of all remaining 188 was 0.24, the minimum 6.9E-8 and the maximum 0.41. Likewise, the 

persistence classes of the remaining substances were 117 high, 34 moderate, 24 low, and 13 

uncertain; the bioaccumulation classes 11 high, 174 low, and 3 uncertain; and the mobility classes, 

predicted by QSAR, were 63 very mobile, 21 mobile and 104 not mobile. 

By far the highest risk quotient was seen for the progestogen and androgen levonorgestrel, driven 

by its inclusion in a wide range of contraceptive products and its chronic reproductive toxicity to fish 

above 0.0001 μg/L, and presenting a higher RQ than all other APIs’ RQs added together. 

Levonorgestrel has also found to be potentially persistent in biodegradation tests (FASS, 2019a), 

although its potential to bioaccumulate and predicted mobility are low. 

Six further sex hormones were represented in the top 20 APIs, the estrogens ethinylestradiol and 

estradiol, and the progestogens norethisterone, etonogestrel, desogestrel and drospirenone, with 
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RQs ranging from 0.47 to 19. Exposure driven largely by use in birth control drugs and implants, 

chronic reproductive toxicity has likewise been found at low concentrations in fish. Potential for 

bioaccumulation amongst these APIs is generally low except for ethinylestradiol, and predicted 

potential for mobility raises no cause for concern, but five of the APIs, estradiol being the only 

exception, are potentially persistent or slowly degraded in the aquatic environment. 

The antineoplastic (or anti-cancer) APIs abiraterone and fulvestrant feature also in the top 20. 

Abiraterone, a treatment for testicular cancer that acts not only as inhibitor of the production of 

androgens including testosterone but also as an estrogen agonist, has shown reproductive chronic 

fish toxicity at nanogram per litre levels, while fulvestrant, a selective estrogen receptor degrader 

taken for some breast cancers effects reproduction at even lower concentrations, but is sold at a 

fraction of the quantity.  

Two antibiotic APIs are also present, ciprofloxacin, a broad-spectrum fluoroquinolone, and 

amoxicillin, a beta-lactam antibiotic. Standard toxicity tests for environmental risk assessments 

include no explicit assessment of toxicity to bacteria, and consequently toxicity is driven by chronic 

effects to fish, while toxicity data available for amoxicillin was limited to a single study of algal 

toxicity (Andreozzi et al., 2004). 

The presence of the analgesic cyclooxygenase (COX) inhibitors, ibuprofen and diclofenac (non-

steroidal anti-inflammatory drugs, or NSAIDs), and the analgesic paracetamol, is largely driven by 

their extremely high sales weights. Each of the APIs is consistently among the greatest sales weights 

each year. Paracetamol toxicity in the microgram/l range was driven by chronic toxicity to Daphnia 

magna, while ibuprofen toxicity in the same range results from its effects on green algae. 

Paracetamol is slowly degraded in the environment, but no other parameters were found to be 

cause for concern. Diclofenac was flagged as moderately persistent, and mobile; no information on 

the taxa driving its PNEC could be found.
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Mycophenolic acid, a common immunosuppressant prescribed for organ transplants and 

autoimmune disorders, also showed high risk, driven by its high sales for its class and chronic 

reproductive toxicity to fish in the 100-ng/l range. The API was also found to be potentially 

persistent in the environment, and further, predicted to be mobile.

The remaining constituents of the top 20 represented a diverse range of APIs. Chlorhexidine, used 

yearly in the hundreds of kilos as an antiseptic and disinfectant, poses significant risk due to its acute 

toxicity to algae (Environment and Climate Change Canada, 2017) and is potentially persistent, while 

the antifungal terbafine is chronically toxic to algae, and potentially bioaccumulative. Simvastatin, 

the second most heavily consumed statin in Norway, showed chronic toxicity to Daphnia in lab 

studies, while dronedarone, Norway’s principle antiarrhythmic, was chronically toxic to green algae, 

as well as potentially persistent. Nicotine, predicted to pose low risk using a PNEC driven by Daphnia 

toxicity (Roder Green et al., 2014; Savino & Tanabe, 1989; Valcárcel et al., 2011), is likely 

underestimated due to the inclusion of only strictly medical sales in this work. Moreover, this API is 

predicted to be highly mobile in aquatic environments, raising the potential for it to rapidly move 

through surface water bodies and potentially into groundwater. 

Risk Quotients, Persistence (both experimental and QSAR-based), and QSAR mobility (LogOC) were 

compared (Figure 3) to illustrated patterns of risk across different parameters of interest. 

Bioaccumulation factors (EPA, 2018) were omitted from graphs but can be summarised thusly: only 

one substance was predicted to bioaccumulate, with a Bioaccumulation Factor in excess of 8000 

(very bioaccumulative): the antineoplastic mitotane. As no experimental data was available, it was 

not possible to compare this prediction to an empirical number. Four APIs were predicted to be 

potentially persistent – desloratadine, an antihistamine, sertraline and vortioxetine, antidepressants, 

and biperiden, an antiparkinson agent. Of these, desloratadine has been demonstrated to be 

potentially persistent, but no other comparisons can be drawn.
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QSAR-predicted LogOC were within applicability domains and calculated for 482 APIs. 316 substances 

were classified as very mobile (vM, LogOC < 3), 97 as mobile (M, 4 < LogOC < 3), and 69 as not mobile. 

Although mobility assessment is not as of yet included in current or planned ERA of human or 

veterinary pharmaceuticals (EMA, 2018; EMA CHMP, 2006; Regulation (EU) 2019/6, 2022), 

assessment of mobility has been proposed for inclusion in REACH assessment (Berger et al., 2018), 

and has recently undergone public consultation (EU, 2022). Thus, it seems reasonable to assume it 

will at some point be considered in regulatory ERA of pharmaceuticals. 

Table 3The predicted mean RQ across the 4 years, and experimental PNEC availability across the 20 

API types containing the most APIs are summarised in Table 3. In total, APIs were classified into 57 

types, with a minimum number of constituents of 1, a maximum of 110 and a mean of 15.3. 

Availability of PNECs across all types was poor, with 14 classes (covering 67 APIs) having no data 

available, and only 7 classes (56 APIs) having 50% or more data. Availability in groups containing 

highest risk substances, such as antineoplastics, analgesics and sex hormones are notably poor, 

raising the possibility that overall risk is significantly underestimated due to their omission – though 

without knowing how much these substances would drive overall risk, drawing firm conclusions 

would be premature.

Page 16 of 49Environmental Toxicology and Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

3.3. QSAR-Predicted Toxicity as a Supplement to Test Data

As an alternative to limited available PNECs, QSAR lowest PNECs (p-PNECs) generated by Aalizadeh 

et al. (2017) from the NORMAN ecotoxicological database were also used to screen and rank APIs 

(Figure 4a) (NORMAN, 2018, 2022). We were able to match 428 APIs to provisional PNECs (roughly 

50%), 78 of which also had experimental PNECs, permitting comparisons between results (Figure 3b, 

c). Correlation between the two datasets was poor, with provisional RQs on average 50% higher than 

standard RQs, and low positive correlation between both values (Pearson’s r = 0.301) and rankings 

(Spearman’s rho = 0.493) of RQs. Ultimately this discrepancy is likely based on the narcosis and 

physicochemical-parameter based prediction tools used in the source data (Aalizadeh et al., 2017), 

compared to the receptor-driven toxicity (Coors et al., 2022; Gunnarsson et al., 2019) of most APIs, 

especially high risk sex hormones.

3.4. Wholesale-Prescription and Human-Veterinary Risk and Exposure

Norway’s Wholesale Pharmaceutical Database is an unusual resource in its inclusion of not only 

prescription but also over-the-counter and institutional use of medications, and coverage of both 

human and veterinary products. PECs, and, where possible RQs, were compared between total, all-

inclusive sales weights and prescription sales weights only, to assess the impact of the inclusion of 

wholesales. 

In total, of the 870 APIs for which sales weights were calculated, 72 were available OTC and 840 

under prescription. Of these, 42 substances are available both OTC and under prescription. On 

average, PECs excluding OTC sales were 68.5% (median 71.6%) the size of total sale PECs, but this 

difference was largely driven by a handful of APIs: the stimulant caffeine (0.001%), the imidazole 

antifungals ketoconazole and econazole (7% and 20%), the progesterone receptor-modulating sex 

hormone and emergency contraceptive ulipristal (83%), the anti-acne drug benzoyl peroxide (21%), 

the laxative bisacodyl (25%), the antihistamine meclozine (32%), and the antifungal amorolfine 

(43%). 
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RQ calculations were only possible for 10 of these APIs, giving an average contribution of 

prescription sales to total sale risk of 92%. Of the constituents, only acetylsalicylic acid (aspirin), 

diclofenac, miconazole, paracetamol, ibuprofen and the disinfectant, antiseptic and mouthwash 

chlorhexidine saw an increase of more than 10%, and RQ overall increased by 19.4 across the nine 

substances. Prioritising APIs by RQ gave an extremely similar order both with and without the 

addition of OTC sales (Spearman’s rho = 0.99, P < 0.01).

Likewise, of the 870 APIs 793 were sold for human use and 120 for veterinary use, while 43 are 

available for both. Of these APIs, only one, methylrosaniline, an antiseptic and disinfectant also 

known as Solvent Violet 9, is coded as being available over the counter. 

Of the 43 dual-purpose APIs, on average 84% (94% median) of PECs’ value was contributed by 

human use.  As with the previous comparison, this is driven by only a small proportion of APIs, 

principally the antibiotics oxytetracycline (4%) and benzylpenicillin (39%), the NSAID meloxicam 

(8%), the anthelmintic ivermectin (25%), and the sedative dexmedetomidine (39%). Consequent 

effects on risk could only be calculated for 3 of these, giving a 94% average (92% median) 

contribution across the antibiotic amoxicillin (91%), the antiseptic chlorhexidine (99%) and the 

antifungal miconazole (92%). Again, prioritisation based on human data only gave an almost 

identical order to human and veterinary data (Spearman’s rho = 0.99. p < 0.01).

4. Discussion

4.1. Comparison of Predicted Environmental Concentrations to Measurements

By design conservative, it is not, perhaps, a surprise that where PECs and MECs were available for 

the same substances, PECs generally represented an overestimate compared to detected levels in 

WWTP influent and effluent, although comparing concentrations for the same year was not typically 

possible.  Our findings are broadly in line with other works comparing MECs and PECs (Burns et al., 

2017; Letsinger & Kay, 2019), and are likely driven by a combination of factors. Conservative choices 

of WWTP removal and metabolism parameters will drive overestimates of inputs, especially where 
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APIs are well-metabolised, or removed – although there remains the potential for APIs to be (back-

)transformed into toxic chemicals in the environment (Celiz et al., 2009). Likewise, Norway’s 

complicated hydrological landscape is likely not well captured by a default dilution factor of 10, 

although very little observational data is available (Keller et al., 2014). Finally, our use of sales data 

collected at the wholesale level assumes total consumption of purchased pharmaceuticals, when 

variation in sales to the public, patient adherence (M. T. Brown et al., 2016) and expiry of products 

mean this is unlikely to be the case.

A handful of exceptions existed to this trend of overestimation. Firstly, amfetamine, a prescription 

stimulant in enantiomeric mixture, is relatively uncommon in Norway, and is more often sold in 

Norway as only the right-handed enantiomer dexamfetamine, alone or as the prodrug 

lisdexamfetamine. Unfortunate, distinguishing between these in the source analysis was not possible 

(Baz-Lomba et al., 2016), which may contribute to the stark discrepancy between predicted surface 

water and measured influent concentrations Furthermore, recreational and other illicit uses of 

amphetamine, and its prodrug methamphetamine, are likely to drive measured concentrations in 

Norwegian wastewaters, but are difficult to account for in a model based solely on licit sales. 

Ofloxacin, with a PEC in the lower ranges of observed effluent MECs, is also a racemic mixture – of 

levofloxacin and dextrofloxacin – the biologically active former of which is sold more commonly 

alone. As with amfetamine, it seems probably the discrepancy observed here is caused by the 

current inability of our model to account for racemic mixtures in prediction.

Covering only 20 of the 870 unique APIs studied (2.3%), it is difficult to generalise conclusions from 

the MECs compared to the entire dataset. However, the patterns seen here largely depict 

overestimates of environmental concentrations, in keeping with the model’s conservative 

assumptions, and the choice of the most conservative parameters for metabolism and WWTP 

removal (EMA CHMP, 2006). APIs were also ranked by environmental concentration and RQ using 

measured and predicted values. The generation of significant results were limited by small available 
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sample sizes for comparison, but nevertheless divergences between the two sets of rankings were 

apparent.

4.2. Characterising Risk, Persistence, Mobility & Bioaccumulation

Predicted API risk, persistence, mobility and bioaccumulation, summarised across Table 2, Figure 3 

and Table 3 were characterised by a general patchiness of data, with experimental or QSAR-based 

parameters generally available for less than 50% of APIs. 

Where risk could be considered – roughly 25% of APIs with PECs – 17 substances had RQs in excess 

of 1, indicating an exceedance of PNECs. Six of these APIs, including levonorgestrel, by far the riskiest 

(RQ ≈ 220) of the substances, were sex hormones, characterised largely by progestogenic and 

estrogenic mode of action and adverse effects on fish reproduction at low concentrations. Data 

were, however, poor both within and across type groupings, a concerning prospect where so many 

substances in each type share similar modes of action. A discussion of toxicity would be incomplete 

without also mentioning that PNECs based on risks of anti-microbial resistance (AMR) proposed by 

Bengtsson-Palme and Larsson (2016) are 3 to 50 times smaller than current PNECs, and 

consequently the inclusion of AMR as a driver of risk would likely change outcomes significantly. 

Data availability was similarly poor for both experimental and predicted persistence and 

bioaccumulation of APIs, as well as predicted mobility. A number of high-risk APIs, such as 

levonorgestrel and ciprofloxacin, were potentially persistent, but extrapolating parameters such as 

persistence and bioaccumulation into an overall quantification of risk is difficult despite the inclusion 

of screening thresholds throughout the official ERA process (Figure 1).  

Seven APIs: terbafine, mycophenolic acid, naproxen, paracetamol, amoxicillin, ibuprofen, and 

ciprofloxacin showed a potentially concerning combination of high risk (RQ > 1) and mobility (Log KOC 

< 4). These substances’ predicted mobility means they may be more able to circulate in the 

environment and enter additional compartments such as groundwater; there is also some evidence 

that APIs with higher KOC values are removed less efficiently from WWTPs (Douziech et al., 2018), 
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although some of these APIs are known to be removed well (e.g. paracetamol,  ibuprofen, >90%) 

with existing treatment technologies (Al Qarni et al., 2016; Smook et al., 2008; Wojcieszyńska & 

Guzik, 2020), contributing to an overall uncertain picture of how KOC will affect the environment.

4.3. Use of QSAR-predicted PNECs 

The supplementation of scarce toxicity data with QSARs met with limited success (Figure 4), 

comparisons between provisional PNECs and PNECs for the same API suggesting the QSAR PNECs 

used have less value as a tool for predicting the highly specific toxicity of many pharmaceuticals. 

Without access to predicted toxicity values based on the interaction of APIs with specific receptors, 

predicting risk from QSARs gives results wildly at odds with experimentally derived PNECs. 

Consequently, we elected not to proceed in risk characterisation using these predicted values, but 

the general approach may be more applicable as QSARs are refined for pharmaceutical toxicity.

4.4. Effects of inclusion of Over-the-counter and veterinary data

On average, 70% of PECs calculated were attributable to prescription medications only (Figure 5). 

Likewise, 85% of PEC magnitude was explained by human medications (Figure 6). While their full 

inclusion drove very little change in overall predicted risk, both at the individual API level and 

overall, this is principally an effect of limited toxicity data, and we would expect to see a larger and 

more significant effect as PNEC availability approaches 100%.

4.5. Future work

A number of expansions of the work described here are foreseen but were beyond the scope of this 

paper. 

The Norwegian Institute for Public Health’s original source data used for the calculation of PECs, the 

Norwegian Wholesale Drug Database, records sales at the month and county level (Sommerschild et 

al., 2021), meaning it may be possible to efficiently localise predictions. At the present stage, an 

inability to distinguish between emissions in the more densely populated and developed south of 

the country, as well as seasonal patterns in consumption and hydrology, may limit the specificity of 
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our predictions. Furthermore, as veterinary, and human drugs are considered jointly under our 

current models, no allowance is made for variation between urban and agricultural pathways into 

the aquatic environment. In the future, we hope to develop a geographically explicit approach that 

permits these factors to be incorporated into modelling.

Quantification of Uncertainty

Uncertainty was difficult to directly quantify in our output dataset of Risk Quotients, as the 

collection methods used on drug sales are difficult to assess, applying nominally to a sample size 

equal to the population. Likewise, single worst-case values were used in the calculations of PECs and 

combined with threshold PNECs in the calculation of Risk Quotients. We aim, in future work, to 

quantify the contribution of different sources of uncertainty more carefully for a subset of APIs, 

potentially using hierarchical Bayesian approaches (Wolf & Tollefsen, 2021).

Combined Risk of Pharmaceuticals

Given the current debate over the scientific appropriateness and pragmatic value of various 

approaches to predict combined, mixture or cumulative risk, we elected to exclude such an exercise. 

Nevertheless, given the common and at times opposed modes of action (for instance, fish 

feminisation and masculinisation by different sex hormones) of different APIs, the combined effects 

of APIs on wildlife are likely to remain an important area of study and discussion for some time. 

Present ERA of pharmaceuticals fails to consider combined effects entirely, but a number of 

proposals exist to account for increased risk. These include the simple sum of Risk Quotients (Rorije 

et al., 2022) where all constituents of a mixture are known, the employment of a Mixture 

Assessment Factor that permits each chemical in a matrix only a tiny share of the worst-case mixture 

complexity (Swedish Chemicals Agency, 2015), or summing Toxic Units that quantify effects to 

different taxa. Compared to the two former, the sum of Toxic Units is a more scientifically correct 

approach, but also by far the most data-dependent (OECD, 2018). As data and methodology become 

more mature it may be more practical to conduct such wide-ranging assessments of combined 
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toxicity, but within the scope of this work we chose to limit our consideration to the prioritisation of 

single substances.

5. Conclusions

Based on our findings, the pharmaceutical environmental risk landscape in contemporary Norway is 

dominated by a small number of high-risk APIs playing crucial roles in maintaining modern standards 

of life and healthcare, in particular contraceptives, many of which are also persistent, 

bioaccumulative and/or mobile. However, the lack of PNECs for many APIs, as well as data on 

persistence, bioaccumulation and mobility make it difficult to give a comprehensive overall 

impression of the issue of pharmaceutical pollution in Norway. 

QSAR approaches hold some promise as a supplement to slow and expensive laboratory testing, but 

the data used for comparison in this paper diverged considerably from experimental findings, 

suggesting they may not yet be mature enough to assess the complex, receptor-driven toxicity of 

APIs. 

Lastly, we found a relatively small impact of the inclusion of over-the-counter and veterinary sales 

on risk, compared to the prescription human approach taken in many similar studies. However, this 

is likely to be skewed by the data scarcity discussed above.

Consequently, efforts to further understanding and mitigation of API pollutants in Norway will 

ideally focus on filling data gaps, either through the publication of existing risk assessment data, 

mechanism-specific computational approaches, or, where unavoidable, further testing. More 

specific endpoints, such as for development of anti-microbial resistance, may also need to be 

employed. 

In addition, better models of pharmaceutical transport and dispersal from source to the 

environment, as have been developed for other areas of Europe, will likely prove invaluable in 
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refining prioritisation of APIs, and identifying key points where loads of high-risk APIs can be most 

efficiently and efficaciously intercepted. 

Finally, once these data gaps are filled, a more considered assessment of the risks of mixtures of 

pharmaceuticals can be attempted, under a variety of present and future conditions, finally allowing 

risk assessment to contribute to prevention, rather than cure. 

6. References

6.1. Figures

Figure 1: Flow diagram of (a) full tiered ERA of human medications in the EU (after EMA CHMP, 2006), and (b) a condensed 
adaptation of the protocol applied in this work.

Figure 2: PECs (red dots) from 2016, and median MECs for WWTP influent (blue squares) and effluent (green triangles), with 
minimum and maximum (vertical bars), based on data from the German Environment Agency’s Pharmaceuticals in the 
Environment Database for 2015 and 2016 (Graumnitz & Jungmann, 2021), for 20 APIs, on a log10 scale. Theoretical PECs in 
WWTPs are obtained by multiplying PECSW by removing the dilution factor of 10; and thus are 10 times higher than PECSW 

values.

Figure 3: Maximum Risk Quotient (107 APIs) (a) and predicted mobility (Log Koc) (456 APIs) (b) by API, coloured by 
Persistence threshold: not enough data available (NA), not persistent (nP), low persistence, moderate persistence and 
potential persistence (P), and high persistence, based on Felleskatalogen experimental hazard statements (solid points) 
where available, and EU thresholds applied to QSAR biodegradation where not (asterisks, hollow points). APIs with a 
missing or negligible RQ (< 0.01, 763 APIs) or Log Koc (> 6, 414 APIs) are placed on the graph axis; 56 APIs have a predicted 
persistence statement, and 814 do not. Dashed lines indicate RQ > 0.1, 1, 10 and 100 (x axis), and Log Koc < 3 and 4 
thresholds. APIs with a RQ > 1, LogKOC < 3, or potential persistence (QSAR) / high persistence (experimental) are labelled.

Figure 4: (a) Risk screening based on NORMAN QSAR PNECs (NORMAN, 2022) for 428 APIs based on 2019 PECs; (b) plotted 
correlation for 78 APIs between QSAR and experimentally predicted RQs; (c) Tukey Mean difference (QSAR - experimental) 
plot of difference between RQs against mean of RQ for 78 APIs. APIs labelled where RQ > 10 (a) or where space permits (b, 
c)

Figure 4: Predicted Environmental Concentrations for 42 APIs and Risk Quotients for 10 of these sold both OTC and on 
prescription, sorted by total PEC. Values for prescription sales alone are shown by red circles, those from prescription and 
OTC sales (wholesale) by blue arrows. All variables are plotted on log10 scales. The standard regulatory thresholds of PEC > 
0.01 ug/L and RQ > 1 are indicated with a dashed line.

Figure 5: Predicted Environmental Concentrations for 43 APIs and Risk Quotients for 3 of these sold in 2019 both for human 
and veterinary application, sorted by total PEC. Values for human sales alone are shown by red circles, those from human 
and vet sales by blue arrows. All variables are plotted on log10 scales. The standard thresholds of PEC > 0.01 ug/L and RQ > 
1 are indicated with a dashed line.
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6.2. Tables

Table 1: Total number of APIs with PECs per year, and substances of which have PNECs. PNECs from FASS.se (2019b), 
AstraZeneca (2017) and the JRC (Loos et al., 2018) , QSAR PNECs from NORMAN (2022).

Table 2: Top 20 APIs (of 208) sorted by average Risk Quotient (2016-2019). Bioacc. (Bioaccumulation) hazard statements 
are translated from Felleskatalogen (Felleskatalogen, 2022) and FASS guidelines (FASS, 2012), where “low” corresponds to 
BCF < 500 or log Dow (at pH7) < 4, and “high” to BCF ≥ 500 or log Dow (at pH 7) ≥ 4. Likewise, “high” persistence indicates 
DT50 > 120 (OECD 308) or no ready or inherent biodegradation (OECD 301/302B/302C), “moderate” DT50 ≤ 120 or inherent 
biodegradation, and “low” DT50 ≤ 32 or ready biodegradability. Mobility is classified based on OPERA (EPA, 2018) QSARs of 
log carbon adsorption coefficient (log Koc) as either “very Mobile” if log Koc < 3, “Mobile” if log Koc < 4, and otherwise “not 
Mobile”. NA indicates that a QSAR within the applicability domain could not be calculated.

Table 3: Predicted mean Risk Quotient by the 20 most common API types, grouped into bins by one order of magnitude. 
APIs for which no experimental PNEC was available to calculate RQs are recorded in the No Data column, and as a 
percentage of the total in the column Missing. Predicted No Effect Concentrations were compiled from publicly available 
FASS, AstraZeneca and JRC data (AstraZeneca, 2017; FASS, 2019b; Loos et al., 2018); pPNECs were not considered.
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Figure 1: Flow diagram of (a) full tiered ERA of human medications in the EU (after EMA CHMP, 2006), and 
(b) a condensed adaptation of the protocol applied in this work. 
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Figure 2: PECs (red dots) from 2016, and median MECs for WWTP influent (blue squares) and effluent 
(green triangles), with minimum and maximum (vertical bars), based on data from the German Environment 
Agency’s Pharmaceuticals in the Environment Database for 2015 and 2016 (Graumnitz & Jungmann, 2021), 
for 20 APIs, on a log10 scale. Theoretical PECs in WWTPs are obtained by multiplying PECSW by removing 

the dilution factor of 10; and thus are 10 times higher than PECSW values. 

250x150mm (300 x 300 DPI) 

Page 43 of 49 Environmental Toxicology and Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 3: Maximum Risk Quotient (107 APIs) (a) and predicted mobility (Log Koc) (456 APIs) (b) by API, 
coloured by Persistence threshold: not enough data available (NA), not persistent (nP), low persistence, 

moderate persistence and potential persistence (P), and high persistence, based on Felleskatalogen 
experimental hazard statements (solid points) where available, and EU thresholds applied to QSAR 

biodegradation where not (asterisks, hollow points). APIs with a missing or negligible RQ (< 0.01, 763 APIs) 
or Log Koc (> 6, 414 APIs) are placed on the graph axis; 56 APIs have a predicted persistence statement, 
and 814 do not. Dashed lines indicate RQ > 0.1, 1, 10 and 100 (x axis), and Log Koc < 3 and 4 thresholds. 

APIs with a RQ > 1, LogKOC < 3, or potential persistence (QSAR) / high persistence (experimental) are 
labelled. 
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Figure 4: (a) Risk screening based on NORMAN QSAR PNECs (NORMAN, 2022) for 428 APIs based on 2019 
PECs; (b) plotted correlation for 78 APIs between QSAR and experimentally predicted RQs; (c) Tukey Mean 

difference (QSAR - experimental) plot of difference between RQs against mean of RQ for 78 APIs. APIs 
labelled where RQ > 10 (a) or where space permits (b, c) 
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Figure 5: Predicted Environmental Concentrations for 42 APIs and Risk Quotients for 10 of these sold both 
OTC and on prescription, sorted by total PEC. Values for prescription sales alone are shown by red circles, 

those from prescription and OTC sales (wholesale) by blue arrows. All variables are plotted on log10 scales. 
The standard regulatory thresholds of PEC > 0.01 ug/L and RQ > 1 are indicated with a dashed line. 
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Figure 6: Predicted Environmental Concentrations for 43 APIs and Risk Quotients for 3 of these sold in 2019 
both for human and veterinary application, sorted by total PEC. Values for human sales alone are shown by 
red circles, those from human and vet sales by blue arrows. All variables are plotted on log10 scales. The 

standard thresholds of PEC > 0.01 ug/L and RQ > 1 are indicated with a dashed line. 
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PECs PNECs QSAR PNECs 

2016 805 204 424

2017 821 205 420

2018 821 202 422

2019 832 201 428
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API Type PEC (μg/L) PNEC (μg/L) RQ Bioacc. Persistence Mobility
levonorgestrel sex hormone 2.2×102 1.0×104 220 low high nM

ciprofloxacin antibacterial 2.8×100 5.0×102 56 low high vM

abiraterone antineoplastic 3.1×101 1.3×102 24 high low nM

ethinylestradiol sex hormone 6.6×103 3.5×104 19 high low nM

diclofenac analgesic 6.5×100 5.0×101 13 low moderate M

estradiol sex hormone 4.8×102 4.0×103 12 low moderate nM

ibuprofen analgesic 1.2×102 1.0×101 12 low low vM

amoxicillin antibacterial 8.2×100 7.8×101 11 low high vM

mycophenolic acid immunosuppressant 7.4×100 6.8×101 11 low high M

paracetamol analgesic 8.6×102 9.2×101 9.3 low moderate vM

chlorhexidine antiseptic 6.3×100 8.4×101 7.5 low high NA

norethisterone sex hormone 3.3×102 5.0×103 6.7 low high nM

etonogestrel sex hormone 1.0×102 2.7×103 3.8 low moderate nM

desogestrel sex hormone 9.3×103 2.7×103 3.5 low moderate nM

terbinafine antifungal 1.8×100 5.3×101 3.4 high low M

simvastatin statin 6.6×100 2.0×100 3.3 low low NA

fulvestrant antineoplastic 1.6×102 5.7×103 2.7 low low NA

nicotine other nervous system 1.4×100 2.4×100 0.56 low low vM

dronedarone cardiac 2.0×100 4.0×100 0.49 low high NA

drospirenone sex hormone 1.1×101 2.3×101 0.47 low high NA
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 Risk Quotient

Type > 100 > 10 > 1 > 0.1 < 0.1 No Data Total Missing

antineoplastic 1 1 1 22 85 110 77%
antibacterial 2 1 8 63 74 85%
analgesic 2 1 2 6 48 59 81%
antiviral 19 29 48 60%
sex hormone 1 2 3 1 3 24 34 71%
antihypertensive 1 7 23 31 74%
other nervous system 1 4 21 26 81%
respiratory 10 14 24 58%
anticonvulsant 1 6 16 23 70%
steroid 1 6 16 23 70%
antihistamine 4 18 22 82%
antipsychotic 6 14 20 70%
cardiac 2 1 17 20 85%
antidepressant 1 4 15 20 75%
diagnostic agent 6 11 17 65%
antifungal 1 1 4 11 17 65%
anaesthetic 0 17 17 100%
anti-diabetic 10 5 15 33%
alimentary 3 12 15 80%
urological 3 12 15 80%
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Paper III: Probabilistic risk calculation for chemical mixtures: 
environmental risk of pharmaceuticals under future scenarios 
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