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Abstract
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trading intensity satisfies a deterministic integral equation, given per-
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1 Introduction

We take as our starting point the seminal paper of Kyle (1985), where a model
of asset pricing with asymmetric information is presented. Traders submit
order quantities to risk-neutral market makers, who set prices competitively
by taking the opposite position to clear the market. Excluding the market
makers, the model has two kinds of traders: a single risk neutral informed
trader and liquidity (noise) traders. The informed trader rationally antici-
pates the effects of his orders on the price, i.e., she acts non-competitively
or strategically. In the presence of noise traders it is impossible for the mar-
ket makers to exactly invert the price and infer the informed trader’s signal.
Thus markets are semi-strong, but not strong form efficient.

In this model the insider makes positive profits in equilibrium by ex-
ploiting his monopoly power optimally in a dynamic context. Noise trading
provides camouflage which conceals his trading from market makers. An im-
portant issue is to demonstrate that this is possible in equilibrium without
destabilizing prices.

Kyle’s approach is to first study a one-period auction, then extend the
analysis to a model in with auctions take place sequentially, and finally let-
ting the time between the auctions go to zero, in which case a limiting model
of continuous trading is obtained. Back (1992) formalize and extend the
continuous-time version of the Kyle model, by i.a., the use of dynamic pro-
gramming.

There is a rich literature on the one period model, as well as on discrete
insider trading, e.g., Holden and Subrahmanyam (1992), Admati and Pflei-
derer (1988), and others, all adding insights to this class of problems. Glosten
and Milgrom (1985) present a different approach, containing similar results
to Kyle. Before Kyle (1985) and Glosten and Milgrom (1985) there is also
a huge literature on insider trading in which the insider acts competitively,
e.g., Grossman and Stiglitz (1980).

The approach of this article is to study the continuous-time model di-
rectly, not as a limiting model of a sequence of auctions, and use the ma-
chinery of filtering theory in continuous-time to resolve the problem, in a
more general setting with time-varying noise trading. There are also other
generalizations that our approach can handle in addition to the ones already
mentioned: One is that we do not assume that the final price pT equals the
signal ṽ, but show that this is a consequence of our other model assumptions.

We are able to both find the price of the risky asset and solve the insider’s
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problem in a direct way, leading to a deterministic integral equation for the
insider’s trading intensity β(t) at time t, given his information set with perfect
forward information, and correlated liquidity trade.

We solve the integral equation for the trading intensity β(t) by transform-
ing this equation to a non-linear, separable differential equation, which calls
for a simple solution. This we compare to the solution of Kyle (1985) (and
also Back (1992)). In the special case of time homogeneous noise trading we
recover the Kyle-solution. For time-varying noise trading we get the result
that the market depth is still a constant, and the expected (ex ante) profits
of the insider depends on the average volatility process.

2 The Model

At date T there is to be a public release of information that will perfectly
reveal the value of an asset; cf. fair value accounting. Trading in this asset
and a risk-free asset with interest rate zero is assumed to occur continuously
during the interval [0, T ]. The information to be revealed at time T is rep-
resented as a signal ṽ, a random variable which we interpret as the price
at which the asset will trade after the release of information. This informa-
tion is already possessed by a single insider at time zero. The unconditional
distribution of ṽ is assumed to be normal with mean µṽ and variance σ2

ṽ .
In addition to the insider, there are liquidity traders, and risk neutral

market makers. The liquidity traders are unable to correlate their orders to
the insider’s signal ṽ. Thus the liquidity traders have random, price-inelastic
demands. All orders are market orders and the net order flow is observed
by all market makers. We denote by zt the cumulative orders of liquidity
traders through time t. The process z is assumed to be a Brownian motion
with mean zero and variance rate σ2

t , i.e., dzt = σtdBt, where σt > 0 is a
deterministic continuously differentiable function on [0, T ], for a standard
Brownian motion B defined on a probability space (Ω, P ). As Kyle (1985)
and Back (1992) we assume that B is independent of ṽ. We let xt be the
cumulative orders of the informed trader, and define

(2.1) yt = xt + zt for all t ∈ [0, T ]

as the total orders accumulated by time t.
Market makers only observe the process y, so they cannot distinguish

between informed and uninformed trades. Let Fyt = σ(ys; s ≤ t) be the
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information filtration of this process. Since the market makers are assumed
to be perfectly competitive and risk neutral, they will set the price pt at time
t as follows

(2.2) pt = E[ṽ|Fyt ],

which we will call a rational pricing rule. The market makers, the insider
and the liquidity traders all know the probability distribution of ṽ.

We assume that the insider’s portfolio is of the form

(2.3) dxt = (ṽ − pt)βtdt, x0 = 0,

where β ≥ 0 is some deterministic function. Both assumptions are consistent
with Kyle (1985).1 The function βt is called the trading intensity on the
information advantage (v − pt) of the insider.

Denote the insider’s wealth by w and the investment in the risk-free asset
by b. The budget constraint of the insider can best be understood by con-
sidering a discrete time model. At time t the agent submits a market order
xt−xt−1 and the price changes from pt−1 to pt. The order is executed at price
pt, in other words, xt−xt−1 is submitted before pt is set by the market makers.
The investment in the risk-free asset changes by bt−bt−1 = −pt(xt−xt−1), i.e.,
buying stocks leads to reduced cash with exactly the same amount. Thus,
the associated change in wealth is (which was pointed out by Back (1992))

(2.4) bt − bt−1 + xtpt − xt−1pt−1 = xt−1(pt − pt−1).

In other words, the usual accounting identity for the wealth dynamics is of the
same type as in the standard price-taking model, except for one important
difference; while, in the rational expectations model, the number of stocks in
the risky asset at time t is depending only on the information available at this
time, so that both the processes x and p are adapted processes with respect
to the same filtration, here the order x depends on information available only
at time T for the market makers (and the noise traders). As a consequence
we obtain the dynamic equation for the insider’ wealth wt as follows

(2.5) wt = w0 +

∫ t

0

xsdps

1The finite variation property of x is assumed by Kyle (1985), and an equilibrium where
this is the case is found by Back (1992).
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This is not well-defined as a stochastic integral in the traditional inter-
pretation, since pt is Fyt -adapted, and xt is not. Thus it needs further ex-
planation. However, since we assume that the strategy of the insider has the
form (2.3) for some deterministic continuous function βt > 0, then a natural
interpretation of (2.5) is obtained by using integration by parts, as follows:

wt = w0 + xtpt −
∫ t

0

psdxs

= w0 + pt

∫ t

0

(ṽ − ps)βsds−
∫ t

0

ps(ṽ − ps)βsds

= w0 +

∫ t

0

(ṽ − ps)2βsds−
∫ t

0

(ṽ − pt)(ṽ − ps)βsds.(2.6)

Alternatively, one might obtain (2.6) by interpreting the stochastic inte-
gral in (2.5) as a forward integral. See Russo and Vallois (1993), Russo and
Vallois (1995, 2000) for definitions and properties and Biagini and Øksendal
(2005) for applications of forward integrals to finance.

The insider tries to find the trading intensity βt which maximizes the
expected terminal wealth

(2.7) E[wT ] = w0 +

∫ T

0

E[(ṽ − ps)2]βsds−
∫ T

0

E[(ṽ − pT )(ṽ − ps)]βsds.

The dilemma for the insider is that an increased trading intensity at some
time t will reveal more information about the value of ṽ to the market makers
and hence induce a price pt closer to ṽ, which in turn implies a reduced insider
information advantage.

Let us define the information filtration of the informed trader as Gt =
Fyt ∨ σ(ṽ). Thus the informed trader knows ṽ at time zero and observes yt
at each time t. Obviously the filtration Gt ⊃ Fyt and this extension is not
of a trivial type, but a significant one. For example, there is information in
Gt for any t ∈ [0, T ) that will only be revealed to the market makers at the
future time T . The key point here is that from (2.3) the order xt depends
on ṽ which is not in Fyt . Since the insider knows the realization of ṽ at time
0, she has long-lived forward-looking information.
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We can now formulate the problem mathematically:
The insider wants to solve
(2.8)

max
β

E[wT ] = w0 + max
β

(

∫ T

0

E[(ṽ− ps)2]βsds−
∫ T

0

E[(ṽ− pT )(ṽ− ps)]βsds).

subject to the price p satisfying the rational pricing rule (2.2), for all t ∈
[0, T ].

Usually the assumption is made that lims→T− pt = pT = ṽ a.s., but as
we will show below, this is a consequence of our other model assumptions,
provided that the insider trades optimally. This result seems natural, ensur-
ing that all information available has been incorporated in the price at the
time T of the public release of the information. But note that if the insider
does not trade optimally then this need not hold.

Since there is a tacit understanding that the price process p is continuous
in this model, this result also means that the insider must trade continuously
throughout the time interval [0, T ], and we can expect that the trading in-
tensity β must be large as t approaches T in order for this condition to be
satisfied. 2

An equilibrium is a pair (p, x) such that p satisfies (2.2), given x, and x
is an optimal trading strategy solving (2.8), given p. Moreover, we require
that the mean square error process St(β) satisfies

(2.9) St(β) := E[(ṽ − pt)2] > 0 for all t ∈ [0, T ).

Here S0(β) := S0 := σ2
ṽ . This assumption will be discussed and relaxed later.

We now have the following result:

Theorem 2.1. The optimal trading intensity βt of the insider is given by

(2.10) βt =
S

1/2
0 (
∫ T

0
σ2
sds)

1/2σ2
t

S0

∫ T
t
σ2
sds

; t ∈ [0, T ).

The corresponding optimal wealth of the insider is

(2.11) J(β) = S
1/2
0

(∫ T

0

σ2
t dt
)1/2

.

2If the price pt 6= ṽ for some t < T , and the agent did not trade in [t, T ), there would
have to be a jump in the price at time T , which the results of our model rule out. This
would not be rational for the insider to do, as she would miss some profit opportunities
by not trading.
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The corresponding price pt set by the market makers is

pt = E[ṽ|F ŷt ] =
p0 + S0

∫ t
0
βs

σ2
s
dŷs

1 + S0

∫ t
0
(βs

σs
)2ds

(2.12)

= E[ṽ] +

∫ t

0

λsdys,

where the price sensitivity λt is given by

(2.13) λt =
[ S0∫ T

0
σ2
sds

]1/2
.

The corresponding mean square error is

(2.14) St(β) := E[(ṽ − pt)2] =
S0

∫ T
t
σ2
sds∫ T

0
σ2
sds

; t ∈ [0, T ].

In particular, ST (β) = 0, which by (2.9) implies that

(2.15) ṽ = pT a.s.

3 Properties of the equilibrium.

The generalization relative to Kyle (1985) included in Theorem 2.1 allows for
a time varying volatility parameter in the order process of the noise traders.
One would, perhaps, expect that as a consequence the market liquidity func-
tion λt would depend on time, suggested by the expression (4.39) in the next
section. The result of Theorem 2.1 is that it does not. The intuition for this
can be explained as follows:

The trading intensity βt will typically increase as t approaches T , since
the insider becomes increasingly desperate to utilize his residual information
advantage. In particular, from expression (2.10) in Theorem 2.1 we see that
βt/σ

2
t increases as t increases. It follows from the proof in the next section,

equations (4.38) and (4.39), that the price sensitivity λt can be written

λt =
βtSt
σ2
t

.

7



By the well-known Kalman-Bucy filter we have

(3.1)
dSt
dt

= −
(βt
σt
St

)2

, where St = St(β).

Solving this equation we see that St has the form

St =
S0

1 + S0

∫ t
0
β̃2
sds

; t ∈ [0, T ],

where

β̃t =
βt
σt

; 0 ≤ t ≤ T.

The quantity
∫ t

0
β̃2
sds measures the the ”amount” of insider trading to liq-

uidity trading by time t. As this quantity increases over time, the amount
of private information St remaining at time t is seen, from the above expres-
sion, to decrease, where St is the (mean square) distance between ṽ and pt.
It follows from the proof in Section 4 that if β is optimal, then (see (4.35))

St =
S0

∫ T
t
σ2
sds∫ T

0
σ2
sds

.

From this we conclude that if β is optimal, then not only does St decrease
over time, meaning that the insider’s information gradually enters the price
pt, but also

ST = 0 and hence pT = ṽ a.s.

The function λt is seen to depend on two effects:
(i) The quantity βt/σ

2
t increases over time, which tends to increase λt as time

t increases.
(ii) The quantity St decreases over time, suggesting that the insider’s infor-
mation advantage is deteriorating, which tends to decrease λt as t increases.
In equilibrium (i) is offset by (ii) and λt = λ is constant over time.

Notice that the important quantities are βt/σ
2
t and βt/σt = β̃t in the above

arguments. The mere fact that the amount of insider trading represented by∫ t
0
β2
sds is large, is no guarantee that the market price pt is close to the

fundamental value ṽ, i.e., that St is small. It could be that the amount
of noise trading

∫ t
0
σsds is also large, in which case the insider could hide

his trade, and less information about the true value would be revealed to
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the market makers. Similarly, we do not know that βt is monotonically
increasing over time, only that βt/σ

2
t is. Notice that the equilibrium value

of the price sensitivity λ can be interpreted as the square root of a ratio,
where the numerator is the amount of private information, ex ante, and the
denominator is the amount of liquidity trading.

From the expressions in Theorem 2.1 we notice that

βt =
1

λ

σ2
t∫ T

t
σ2
sds

so βt is inversley related to λ for each t. Since the quantity 1/λ measures the
market depth, the insider will naturally trade more intensely, ceteris paribus,
when this quantity is large.

From the general discussion in Kyle (1985) it is indicated that if the slope
of the residual supply curve λt ever decreases (i.e., if the market depth ever
increases), then unbounded profits can be generated. This is inconsistent
with an equilibrium, so λt must be monotonically non-decreasing in any
equilibrium. It is argued that this follows since in continuous time, the
informed trader can act as a perfectly discriminating monopsonist, moving
up or down the residual supply curve (i.e., the market is infinitely tight).
Hence, she could exploit predictable shifts in the supply curve. From the
analysis of Back (1992) it is known that, more generally, this slope must be
a martingale given the market makers’ information. Our result that λt is
indeed a constant is, accordingly, consistent with the literature.

One would, perhaps, expect that the insider, since she knows the function
σt, may use it to further conceal her trade in that she will use a high βt at
a time when σt is large. This impression is confirmed by investigating the
optimal trading intensity β appearing in expression (2.10) of Theorem 2.1.

However, when σt is low the insider must apply a correspondingly lower
trading intensity, and it turns out that the expected (ex ante) profits average
out. This can be demonstrated as follows: Consider the expected wealth of
the insider

E[wT ] = w0 + S0

∫ T

0

βtdt

1 + S0

∫ t
0
β̃2
sds

,

an expression which follows from the results of the next section. Here
the last term is the expected (ex ante) profits, which can be shown to be
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√
S0

∫ T
0
σ2
t dt.

3 Thus, trading at a time-varying volatility σt corresponds ex-

actly, when it comes to expected profits, to trading at a constant volatility
σ determined by σ2 = 1

T

∫ T
0
σ2
t dt, the right comparison in this regard.

The explanation is that in this model both the insider and the market
makers can be assumed to know the value of σt at any time t. Accordingly
the insider cannot utilize the variability in this volatility to further conceal
her trades, and thus make additional profits

When the amount of liquidity trading
∫ t

0
σ2
sds is large, we noticed above

that λ is small, in which case the insider’s profit is large. However, a small
value of λ is, in isolation, no guarantee for a large ex ante profit of the insider,
since a large value of S0 also makes the profit of the insider large, and λ large
as well.

This points in one possible direction for extending the present model.
Suppose that the private information is connected to quaterly accounting
data for the firm, so T stands for one quarter, and let us extend the model
beyond T to 2T , 3T, · · · , etc. Let us, as in Admati and Pfleiderer (1988),
imagine two types of liquidity traders, discretionary and non-discretionary.
Just after each disclosure period of length T , the level of private information
relative to the uninformed is at its minimum. It seems reasonable, from the
above formula for the ex ante profits of the insider, that the discretionary
traders, acting strategically to time their trades, should concentrate their
trade to these times in order to loose less to the insider. That this kind
behavior is optimal is expected from the conclusions of Admati and Pfleiderer
(1988), who noticed that λ is a constant is not in accordance with empirical
findings; the bid ask spread 2λ is varying over time.

We also have the following corollary:

Corollary 3.1. Suppose σt = σ > 0 is a constant. Then the optimal trading
intensity for the insider is

(3.2) βt =
σ
√
T√

S0(T − t)
; 0 ≤ t < T.

The corresponding price pt set by the market makers is given by

(3.3) dpt = λtdyt,

3In the case when σt = σ is a constant, we get that the expected profits equal σ
√
S0T ,

consistent with Kyle (1985).
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where

(3.4) λt ≡ λ =

√
S0

σ

1√
T

; a constant for all t ∈ [0, T ).

This result follows from Theorem 2.1 by setting σs ≡ σ in (??). The
results of Corollary 3.1 are in agreement with Kyle (1985) and Back (1992)
(when we set T = 1).

Recently, a paper of related interest by Eide (2007) came to our knowl-
edge. Her work, which was done independently of ours, differs from ours in
several ways: She focuses on the situation when the price process ṽt of the
stock is assumed to have a specific dynamics (an Itô diffusion and a mar-
tingale with respect to an independent Brownian motion), and its current
value ṽt (not ṽT ) is known to the insider at time t for all t ∈ [0, T ]. She
avoids the use of forward integrals by assuming a priori that the processes
are semimartingales with respect to the relevant filtrations. Like Back she
then assumes that the market makers set the price equal to pt = H(t, yt) for
some function H and that H(t, yt) = E(ṽT |Fyt ). These assumptions put the
problem of finding a corresponding equilibrium into a Markovian context,
which allows her to solve the problem by using dynamic programming. In
conclusion, her a priori assumptions are stronger than ours, but they enable
her to solve other problems than we do. In particular, the final stock value
ṽ = ṽT need not be normally distributed in her case.

Remark 3.2. To summarize, our paper differes from the papers of Kyle
(1985) and Back (1992) both with respect to basic assumptions and method:

(i) We do not assume that the volatility σ(t) of the noise traders is con-
stant. Nevertheless we prove that the price sensitivity λt is constant
also in our case, if the optimal strategy is applied.

(ii) We do not assume a priori that

pT = ṽ a.s.

But this is proved to be the case if the optimal strategy is used.

We remark that if we had made this assumption a priori, then our proof
could have been simplified as follows: The last term in (4.14) would

have been 0. Hence (see (4.16)) we would have S
(β)
t,T = 0 for all t ∈ [0, T ]

and Problem 1 would automatically reduce to Problem 2.
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(iii) We do not assume a priori that the strategy xt is incospicuous, i.e. that

1

σt
dyt =

1

σt
xtdt+ dzt

is a Brownian motion with respect to its own filtration. However, this
is proved to hold if xt is chosen optimally. 4

(iv) We do not assume a priori that there exists a function H such that

pt = H(t, yt).

But this is proved to be the case if the insider acts optimally.

(v) Finally, since we are not assuming a Markovian setup we cannot use
dynamic programming (the HJB equation) to find the optimal strategy,
but we use filtering theory and a perturbation argument instead.

Remark 3.3. It is interesting to note that also in our general setting the total
order process yt becomes a Brownian bridge with respect to the filtration Gt
if the optimal insider strategy is used. To see this we proceed as follows:

By (2.7), (2.8), (2.9) we have

dyt = (ṽ − pt)βtdt+ σtdBt

= (ṽ − E[ṽ]− λyt)βtdt+ σtdBt

=
[(∫ T

0
σ2
udu

S0

)1/2

(ṽ − E[ṽ])− yt
] σ2

t dt∫ T
t
σ2
udu

+ σtdBt .(3.5)

Thus yt is the bridge of the process zt =
∫ t

0
σsdBs, conditioned to arrive at

the terminal value

yT =
(∫ T

0
σ2
udu

S0

)1/2

(ṽ − E[ṽ])

at time t = T .
In particular, if σt = σ is constant we get

(3.6) dyt =
[
σ
( T
S0

)1/2

(ṽ − E[ṽ])− yt
] dt

T − t
+ σ dBt,

and hence 1
σ
dyt is the classical Brownian bridge, conditioned to arrive at( T

S0

)1/2

(ṽ − E[ṽ])

at time t = T .
4Also Back (1992) shows this, using a different method.
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4 The solution of the problem

In this section we present the proof of Theorem 2.1. It can be noted to be
rather different from the corresponding development in Kyle (1985).

To summarize the model mathematically, the portfolio of the noise traders
has the form

(4.1) dzt = σtdBt , t ∈ [0, T ],

and the portfolio of the insider is

(4.2) dxt = (ṽ − pt)βtdt ,

where pt is the market price at time t set by the market makers. The total
traded volume is hence

(4.3) dyt = (ṽ − pt)βtdt+ σtdBt .

If we let Fyt , t ∈ [0, T ], be the filtration generated by ys; s ≤ t, then it is
assumed that

(4.4) pt := E[ṽ|Fyt ], 0 ≤ t ≤ T.

Substituting this into (4.3) we get that the total traded volume process must
satisfy the equation

(4.5) dyt = (ṽ − E[ṽ|Fyt ])βtdt+ σtdBt , t ∈ [0, T ] .

Thus, it is an assumption of the whole setup that a solution process yt of this
(highly non-standard) equation (4.5) exists. The main idea of our approach
is that we prove that it is possible to find a solution of (4.5) by regarding yt
as the innovation process ỹt of an auxiliary linear filtering problem, where
the signal process is

(4.6) dṽt = 0, ṽ0 = ṽ; t ∈ [0, T ],

and the observation process is
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(4.7) dŷt = ṽβtdt+ σtdBt ; t ∈ [0, T ], ŷ0 = 0 .

The innovation process for this problem is, by definition,

dỹt = (ṽ − E[ṽ|F ŷt ])βtdt+ σtdBt(4.8)

= dŷt − E[ṽ|F ŷt ]βtdt ,

where F ŷt = σ(ŷs , 0 ≤ s ≤ t) is the information filtration generated by ŷ.
As before let Fyt = σ(ys; s ≤ t) be the information filtration of the process

y. Then we have:

Lemma 4.1. Fyt = F ŷt ; t ∈ [0, T ].

Proof. The proof of Lemma 6.2.5 (iii) in Øksendal (2003) applies without
changes.

Corollary 4.2. The innovation process ỹt is a solution of the equation (4.5)
for the total traded volume process yt.

Based on this we choose the innovation process ỹt to represent the total
order process yt and we write ỹt = yt from now on.

Note that from filtering theory we know that the process y∗ defined by
dy∗t := 1

σt
dyt is a Brownian motion with respect to the information filtration

Fyt . 5

As before let

(4.9) St = S
(β)
t := E[(ṽ − pt)2]

be the mean square error process and define

(4.10) St,T = S
(β)
t,T := E[(ṽ − pt)(ṽ − pT )]; 0 ≤ t ≤ T.

(Note that if we had assumed that

pT = ṽ a.s.

5Back (1992) also has this result using a different method.
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then we would get St,T = 0 and the following proof would simplify consider-
ably.)

Then (2.7) can be written

(4.11) E[wT ] = w0 +

∫ T

0

S
(β)
t βtdt−

∫ T

0

S
(β)
t,T βtdt.

We need to compute S
(β)
t,T = E[(ṽ − pT )(ṽ − pt)]: We have

E[(ṽ − pT )(ṽ − pt)] = E[(ṽ2)− E[(ṽpt)− E(ṽpT ) + E(pTpt)

= E(ṽ2)− E(p2
t )− E(p2

T ) + E(pTpt) .

We first compute E(pTpt). By (4.4) we have that pt is a square-integrable
martingale. Hence

E[ptpT ] = E[p2
t ],

and consequently

E[(ṽ − pT )(ṽ − pt)] = E(ṽ2)− E(p2
t )− E(p2

T ) + E(pTpt)

= E(ṽ2)− E(p2
t )− E(p2

T ) + E(p2
t )

= E(ṽ2)− E(p2
T ) .

But
E(p2

T ) = E(ṽ2)− E(ṽ − pT )2 = E(ṽ2)− S(T ) ,

and hence

S
(β)
t,T = E[(ṽ − pT )(ṽ − pt)] = ST (β) .(4.12)

In particular, note that

(4.13) S
(β)
t,T ≥ 0 for all t ∈ [0, T ]

and

(4.14) S
(β)
t,T = 0 if pT = ṽ.

We now return to problem (2.8). By (3.17) we see that our original
problem can be formulated as the following control problem:
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Problem 4.3. Maximize

(4.15) J1(β) :=

∫ T

0

St(β)βtdt− ST (β)

∫ T

0

βtdt

over all β∈A, where A is the set of all (deterministic) functions β : [0, T )→R
which are continuous on [0, T ).

We first study the following related problem:

Problem 4.4. Maximize

(4.16) J(β) :=

∫ T

0

St(β)βtdt

over all β ∈ A.

We will find the optimal control β̂ ∈ A for Problem 4.3 and show that

the corresponding terminal price p
(β̂)
T satisfies

(4.17) p
(β̂)
T = ṽ a.s.

It follows by (4.15) that S
(β̂)
t,T = ST (β̂) = 0 and hence β̂ is also optimal for

Problem 4.3, because,

sup
β∈A

J1(β) ≤ sup
β∈A

J1(β) = J(β̂) = J1(β̂) ≤ sup
β∈A

J1(β).

The first inequality holds since J1(β) ≤ J(β) for all β. (We assume that
β 6= 0.) The second (in)equality holds by the definition of β̂. The third

(in)equality holds since S
(β̂)
t,T = 0. The fourth inequality holds since β̂ is just

one of possible β’s in the maximum.
In view of this we now proceed to solve Problem 4.3. Since the map

β → J(β); β ∈ A

is concave, we can use the following perturbation argument to find the max-
imizer for J(·):

Suppose β ∈ A maximizes J(β). Choose an arbitrary function ξ ∈ A and
define the real function g by

g(y) = J(β + yξ), y ∈ R.
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Then g is maximal at y = 0 and hence

0 = g′(0) =
d

dy
J(β + yξ)|y=0

=
d

dy

(∫ T

0

St(β + yξ)(βt + yξt)dt
)∣∣∣

y=0

= I1 + I2,(4.18)

where

(4.19) I1 =

∫ T

0

St(β)ξtdt

and

(4.20) I2 =

∫ T

0

βt
d

dy
St(β + yξ)|y=0dt.

Define

(4.21) ηt =
d

dy
St(β + yξ)|y=0.

By the well-known Kalman-Bucy filter we have

(4.22)
dSt
dt

= −
(βt
σt
St

)2

, where St = St(β).

Hence

St = S0 −
∫ t

0

(βs
σs
Ss

)2

ds.

Therefore

ηt = −
∫ t

0

d

dy

[(βs + yξs
σs

Ss(β + yξ)
)2]

y=0
ds

= −
∫ t

0

2
(βs
σs
Ss(β)

)[ ξs
σs
Ss(β) +

βs
σs
ηs

]
ds.

Differentiating with respect to t we get

dηt
dt

= −γtξt
σt

St(β)− γtβt
σt

ηt
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where

(4.23) γt = 2
βt
σt
St(β).

Hence
dηt
dt

+
γtβt
σt

ηt = −γtξt
σt

St(β).

Multiplying by exp
( ∫ t

0
γrβr

σr
dr
)

we obtain

d

dt

(
ηt exp

(∫ t

0

γrβr
σr

dr
))

= −γtξt
σt

St(β) exp
(∫ t

0

γrβr
σr

dr
)
.

Note that

η0 =
d

dy
S0(β + yξ)|y=0 =

d

dy
E[(ṽ − E[ṽ])2] = 0.

Hence, by integrating the above,

(4.24) ηt = − exp
(
−
∫ t

0

γrβr
σr

dr
)∫ t

0

γsξs
σs

Ss(β) exp
(∫ s

0

γrβr
σr

dr
)
ds.

Substituting this in (4.20) and changing the order of integration we get

I2 =

∫ T

0

βtηtdt

= −
∫ T

0

βt

[ ∫ t

0

γsξs
σs

Ss(β) exp
(
−
∫ t

s

γrβr
σr

dr
)
ds
]
dt

= −
∫ T

0

[ ∫ T

s

βt exp
(
−
∫ t

s

γrβr
σr

dr
)
dt
]γsξs
σs

Ss(β)ds.

Changing the notation between s and t we get

(4.25) I2 = −
∫ T

0

[ ∫ T

t

βs exp
(
−
∫ s

t

γrβr
σr

dt
)
ds
]γtSt(β)

σt
ξtdt.

Combining this with (4.18) and (4.19) we obtain∫ T

0

{
St(β)−

[ ∫ T

t

βs exp
(
−
∫ s

t

γrβr
σr

dr
)
ds
]γt
σt
St(β)

}
ξtdt = 0.
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Since this holds for all ξ ∈ A we conclude that

(4.26) St(β)−
[ ∫ T

t

βs exp
(
−
∫ s

t

γrβr
σr

dr
)
ds
]γt
σt
St(β) = 0; t ∈ [0, T ].

Recall that we have assumed that (see (2.9))

(4.27) St(β) > 0 for all t ∈ [0, T ).

Hence (4.26) implies that

(4.28)
[ ∫ T

t

βs exp
(
−
∫ s

t

γrβr
σr

dr
)
ds
]γt
σt

= 1; t ∈ [0, T ).

From this we deduce that

(4.29) lim
s→T−

βs =∞ or lim
t→T−

γt
σt

=∞ , or both.

By (4.28) we see that in either case we can deduce that

(4.30) lim
t→T−

βt =∞ .

Put

(4.31) u(t) =
γtβt
σt

, v(t) =

∫ t

0

u(r)dr.

Then (4.28) gives ∫ T

t

βs exp(−v(s))ds =
βt
u(t)

exp(−v(t)).

Differentiating we get

−βt exp(−v(t)) =
[ d
dt

( βt
u(t)

)
− βtu(t)

u(t)

]
exp(−v(t))

or
d

dt

( βt
u(t)

)
= 0; t ∈ [0, T ).

From this we deduce that

u(t) = C1βt; t ∈ [0, T )
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i.e.
γt = C1σt; t ∈ [0, T )

for some constant C1. Hence, by (4.23)

(4.32)
βt
σt
St(β) = C2σt, t ∈ [0, T )

where C2 = 1
2
C1.

We conclude that the optimal βt must satisfy the equation

(4.33) βt =
C2σ

2
t

St(β)
.

Hence, by (4.30)

(4.34) ST (β) = lim
t→T−

St(β) = 0.

Moreover, by (4.22) and (4.32),

d

dt
St(β) = −

(βt
σt
St(β)

)2

= −C2
2σ

2
t ,

which integrates to

St(β) = ST (β) + C2
2

∫ T

t

σ2
sds = C2

2

∫ T

t

σ2
sds.

Choosing t = 0 we get

C2 =
[ S0∫ T

0
σ2
sds

]1/2
.

Hence, β = β∗ is optimal iff

(4.35) St(β) =
S0

∫ T
t
σ2
sds∫ T

0
σ2
sds

and the optimal β = β∗ is given explicitly by

(4.36) βt =
S

1/2
0 (
∫ T

0
σ2
sds)

1/2σ2
t

S0

∫ T
t
σ2
sds

; t ∈ [0, T ).
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This gives that the maximal value J(β∗) of J(β) is

J(β) =

∫ T

0

St(β)βtdt

=
[
S0

∫ T

0

σ2
sds
]1/2

(4.37)

and hence that the maximal expected terminal wealth of the insider is

(4.38) E[wT ] = w0 +
[
S0

∫ T

0

σ2
sds
]1/2

.

Finally, by the Kalman-Bucy filter the corresponding filtered estimate pt
is given by

(4.39) pt = E[ṽ] +

∫ t

0

λsdys; t ∈ [0, T ],

where the price sensitivity λt is given by

(4.40) λt =
St(β)βt
σ2
t

=

[
S0∫ T

0
σ2
sds

]1/2

; t ∈ [0, T ].

This concludes the proof of Theorem 2.1.
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