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1 Introduction

There was a time when finance was completely without interest from a math-
ematical point of view. The mathematical content in finance was — at best
— elementary and uninteresting. Today the situation is completely different.
All companies which are dealing with finance on a large scale are using ad-
vanced mathematical methods. Financial experts are studying mathematics
and mathematics researchers are studying finance. Almost every university
now has a special program on mathematical finance.

There are several reasons for this new situation. The main reason is
the construction and development of stochastic analysis: About 60 years
ago mathematicians started to combine classical mathematical analysis (in-
tegrals, derivatives ...) with modern probability theory, developed by Kol-
mogorov in the 1930’s. N. Wiener gave a rigorous construction of Brownian
motion (the wiener process) and P. Lévy explored many essential features
of this and other stochastic processes. K. Ito constructed the stochastic in-
tegral, later coined the Ito integral, and started seminal research about the
properties of this and related concepts. J. Doob introduced and studied
the concept of martingales, and together with P.-A. Meyer and others they
founded the modern theory of semimartingales. In the first 20 years this
research was purely mathematical. Then around 1970 it was disovered by
H.P. McKean, P. Samuelsen and others that this new mathematical theory of
stochastic analysis could be useful in finance. The final breakthrough came in
1973 when M. Scholes and F. Black published their celebrated option pricing
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formula. This theoretical price formula was based on advanced stochastic
analysis, and agreed well with the price that had been established (by trial
and failure) through trading on the option market, which had existed for
some years already. In 1997 M. Scholes, together with R. Merton who also
played an essential role in the option pricing formula and in addition made
other fundamental contributions, were awarded the Nobel Prize in Economics
for their achievements. (F. Black died in 1995.)

After the Black-Scholes formula was published there has been an enor-
mous research activity within mathematical finance, and it shows no sign of
slowing down. We will not attempt to give a comprehensive account of this
activity here. But we will try to illustrate the interplay between mathematics
and finance by looking at some themes in more detail.

In Section 2 we consider the simplest possible financial market with one
risky asset and only two possible scenarios. We show that even in this simple
case the option pricing question is nontrivial and requires a subtle equilibrium
argument.

In Section 3 we extend the model to the multi-period case.

In Section 4 we explain the more realistic time-continuous, Brownian
motion based market model setting of the Black-Scholes formula. Even this
model is highly stylized compared to real financial markets, but nevertheless
it catches some essential aspects of pricing of European options and related
issues.

However, as the current financial crisis shows, the established mathemat-
ical models, albeit highly advanced, are still inadequate for a satisfactory
understanding and handling of real-life financial markets. In particular, it
has been pointed out that more emphasis should be put on the possibility of
discontinuities or jumps (”cracks”) in the market. There is a tractable math-
ematical machinery for handling this, namely the stochastic calculus driven
by general Lévy processes, not just Brownian motion. This leads to models
where stock prices may have jumps, which is more realistic than continuous
models. On the other hand, such models are mathematically challenging. In
Section 5 we discuss this more.

Finally, in Sections 6-8 we present other recent developments which rep-
resent research frontiers in mathematical finance today.

2 The Black-Scholes option pricing formula

Consider the following 1-period financial market with two investment possi-
bilities:

(i) We can buy risk free assets (e.g. bonds) with a fixed interest rate r > 0.
For simplicity we here assume that r» = 0.

(ii) We can buy risky assets (e.g. stocks). Let us denote the price of one



stock at time ¢ by S(t), where t = 0 or t = 7" > 0. Assume that
S(0) = 100 units, e.g. Danish Crowns (DKK). The price S(T") at the

future time 7' is uncertain at time ¢ = 0. We assume that there are
only two possible scenarios:

Scenario 1: The price goes up to DKK 115 at time T. We assume that
the probability p that this occurs is % In other words, P (Scenario 1)
=p= %, where P stands for ”probability”.

Scenario 2: The price goes down to DKK 95 at time T'. The probability

1 — p that this occurs is also 1. So we have P (Scenario 2) =1—p = 1.
A FEuropean call option in this market is a contract which gives the buyer
of the contract the right — but not the obligation — to buy one stock at the
specified future time 7" and at a specified price K, usually called the ezercise
price. In this example we assume that K = DKK 105. See Figure 1.
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Figure 1

The question is:
What is the "right” price to pay for such a contract/option at time 07
The answer depends of course on what we mean by "right” price. Some
people will say that the right price should be the expected payoff at time T
So let us compute this:

Scenario 1: If the price goes up to DKK 115, then the buyer of the option
can buy one stock for DKK 105, sell it again for DKK 115 and thus get a
payoff of DKK(115 — 105) = DKK 10. This happens with probability p = %



Scenario 2: If the price goes down to DKK 95, then the buyer will not
exercise the option and the payoff is 0. This also happens with probability

5 (=1-p).

We conclude that the expected payoff (wth respect to the probability law
P) for the buyer is

(2.1) Ep[payoff] =10- 3403 =5 (DKK).

(Ep denotes expectation with respect to P). Is this the right price to pay
for the option at time 0?7 Perhaps surprisingly, the answer is no, if "right”
price is interpreted in an equilibrium sense. By this we mean the following:

An arbitrage in this market is an investment policy at time 0 which at
time 7' gives a (strictly) positive profit with a (strictly) positive probability
and a (strictly negative profit with probability 0. Thus an arbitrage is a
kind of "money machine”, also called a ”free lunch”. There is no chance for
a loss, and a positive chance for a positive profit. It is a basic equilibrium
criterion for a financial market that arbitrages cannot exist. If a market had
an arbitrage, then everybody would use it and the market would collapse. In
view of this, we choose to define the "right” price of an option as the price
which does not lead to an arbitrage for buyer or seller.

We claim that the expected payoff price DKK 5 found earlier gives an
arbitrage opportunity to the seller of the option. Here is how:

If the seller receives DKK 5 at time 0 for the option, she can borrow
DKK 95 in the bank and use the total amount, DKK 100, to buy one stock.
This stock she keeps till time T and then she sells it. There are now to
possibilities:

In Scenario 1 she receives DKK 115 for the stock. With this amount she
can pay back the loan to the bank (DKK 95) and she can pay the buyer of
the option the promised payoff, DKK 10. This leaves her with a profit of
DKK 10.

In Scenario 2 she receives DKK 95 for the stock. This is exactly enough
to pay back the bank. In this scenario there is nothing to pay to the owner
of the option. Thus in this case the profit (and the loss) is 0.

We see that with this strategy the seller cannot lose money, and there
is a positive probability for a positive profit. Hence paying DKK 5 for the
option leads to an arbitrage for the seller.

We conclude that, by such an equilibrium requirement, the price DKK 5
is too high.

What, then, is the non-arbitrage price of this option?



A fundamental part of the Black-Scholes option pricing formula states
that the non-arbitrage price is given by the expected (and, in general, dis-
counted, but here we have assumed r = 0) payoff with respect to the risk
neutral probability measure (), not with respect to P. Thus, in our case,

(2.2) pricegg = Eg[payoff] = 10-¢+0- (1 — q),

where ¢ = @ (Scenario 1), i.e. the Q-probability that Scenario 1 occurs.
How do we find this risk neutral probability measure @7
According to Black-Scholes the measure ) is characterized by the prop-
erty that the (discounted) stock price is a martingale with respect to it. In
our setting this simply means that

(2:3) EqlS(T)] = 5(0),
where S(t) is the stock price at time ¢t = 0, 7. This gives the equation
115-g+95- (1 —¢q) = 100,

from which we get ¢ = }l. Therefore, according to (2.2) the right price for
this option is

(2.4) pricegg =101 +0- 2 = 2.50 (DKK).

More generally, if the interest rate in the bank is » > 0 and the exercise price
at time T is K > 0, then the Black-Scholes option pricing formula states
that the arbitrage free price for the option is

(2.5) pricegg = Eqle ™ (S(T) — K)*],

where

(S(T) — K)" = max{S(T) — K, 0}

and @ is the risk neutral probability measure, characterized by the property
that the discounted stock price, e " S(t), is a martingale with respect to Q.
In our 1-period market this simply means that

(2.6) Eqle™S(T)] = 5(0).

The above example is too simple to be realistic, but nevertheless we have
seen that it contains several essential features of real life financial markets.
As another illustration of this, let us consider the more general situation
where the probability p of Scenario 1 is not %, but some unknown number
between 0 and 1. What can we say about the option price then? Note that
the risk neutral measure Q defined by equation (2.6) does not depend on p.
Therefore g is still ; and formula (2.5) gives the same price 2.50 DKK. This
shows that to decide the option price at t = 0 it is not necessary to know the
probability p of Scenario 1. This result is a useful (and perhaps surprising)
consequence of the model. It turns out to remain true in the more elaborate
(and realistic) models discussed in the next sections.

5



3 Multi-period models

A natural first extension of the model in Section 2 is the multi-period model,
where trading takes place at specified times ¢;, 0 < i < N — 1, where

O=th<ti < - <t <ty <---<ty=T.

At each trading time ¢; the agent has to decide how many stocks, say 1 (t;),
to keep and how many bonds, say ¢g(;) to keep. However, such a choice
cannot be made arbitrarily and freely. It is necessary to put constraints of
such a trading strategy (or portfolio) p(t) = (¢o(t), p1(t)).

(i) First of all, it must be self-financing, in the sense that if we decide to,
say, buy stocks at time ¢;, then we must borrow the corresponding amount in
the bank. The precise mathematical way of expressing this is the following:
Let

(3.1) V(t) = @o(t)So(t) + 1(t)S1 (1),

be the value of the portfolio at time ¢, where Sy(t) and S(t) are the unit
prices of the risk free and risky asset, respectively. Then the increase

AV () =V (tiza) — V(L)

of the value right after transaction has taken place at time ¢; should be
coming from the increase of prices only, i.e. we should have

where

Condition (3.2) is called the self-financing condition. 1t is expressing math-
ematically that no money is coming into the system or going out of the
system.

(ii) Second, the portfolio decision ¢(t;) at time ¢; must be based on the
observed prices up to and including that time, and not on any future asset
prices. Mathematically this is expressed by requiring the portfolio choice
©(t;) (as a random variable) to be measurable with respect to the o-algebra
F:, generated by the previous asset prices So(s),51(s); 0 < s <t,.

If we assume, as in Section 2, that

(3.3) So(t) = e (r > 0 constant),



then the martingale condition corresponding to (2.6) for a risk neutral mea-
sure () becomes

(34) EQ [67Tti+151(ti+1)|fti] = 67“2‘51(151‘); 1= 0, 1, . ,N —1

where Eq[-|F:,] denotes conditional expectation with respect to the o-algebra
Fi,.

An arbitrage in this market is a portfolio ¢(t) satisfying (i) and (ii) and
such that the corresponding value process

Ve(t) = o(t) - S(t) = @o(t)So(t) + 1 (t)Si1(t)
satisfies
(3.5) V#(0)=0, V#T)>0 as. and P[V?T)>0]>0,

where, as before, P denote s probability and a.s. means ”almost surely”,
i.e. with probability 1. This is in agreement with the arbitrage concept we
discussed in Section 2.

One can now prove that such a market is arbitrage free if and only if there
exists (at least one) risk neutral measure ). This result is sometimes called
the first fundamental theorem of asset pricing. See e.g. [S].

If such a risk neutral measure () exists, then the price

(3.6) pricepg = Fgle ™ (S1(T) — K)7]

will be an arbitrage free option price of the corresponding European call
option.

This multi-period market is called complete if for every Fr-measurable
random variable F' there exists an initial wealth x € R and a portfolio ¢(t)
satisfying (i) and (ii) such that

(3.7) F=Vf=ua+ Z o(t;) - AS(t;) as.

In other words, we should be able to reproduce (replicate) any given terminal
"payoff” F' by choosing the initial wealth x (constant) and the portfolio ¢
suitably. The second fundamental theorem of asset pricing states that a given
arbitrage-free market is complete if and only if there is only one risk neutral
measure Q.

If this is the case there is only one arbitrage-free price pricegq, namely
the one given by (3.6). See e.g. [S].

4 Time-continuous models

The next step in the progression towards more realistic mathematical fi-
nancial models is to introduce time-continuous markets, where asset prices
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change all the time (not just at prescribed discrete times ¢;) and trading is
allowed to take place continuously in [0,7]. In this setting the most basic
model for the stock price S(t) at time ¢ is the equation

dSi(t)
dt
where o and o # 0 are constants and "noise” represents the uncertainty of

the price dynamics. If "noise” is interpreted as ”white noise”, then in a weak
sense we have

(4.1) = S1(t)[a + o "noise”]; S1(0) > 0.

’” dB(t)”
dt
where B(t) is Brownian motion (the Wiener process) at time t. The rigor-

ous interpretation of (4.1) is then that S;(t) satisfies the stochastic integral
equation

(4.2) "noise” =

(4.3) Si(t) = S1(0) + /0 Sy (s)ds + /0 7S, (s)dB(s),

or — in differential form (shorthand notation) —
(4.4) dSi(t) = aSi(t)dt + oS (t)dB(t); S1(0) > 0.

The last integral on the right hand side of (4.3) is the famous [t6 inegral
mentioned earlier.

Using the Ito formula, which is a stochastic chain rule, one can prove that
the solution of (4.3) is

(4.5) Si(t) = 51(0) exp((o — 10%)t + o B(1)); t>0.

(See e.g. [D].)

The market (So(t),S1(t)) with Sp(t) = € and Si(t) given by (4.5) is
called the Black-Scholes market, because this was the market in which Black
and Scholes proved their option pricing formula [BS]. Basically one can now
transform the argument and formulas of the previous sections to this situation
and obtain analogous results.

For example, the value process V¢(t) corresponding to a portfolio ¢ is

defined by

(4.6) Ve(t) = o(t) - S(t); t€10,T7.
The portfolio is called self-financing if

(4.7) dVe(t) = ¢(t) - dS(t).

A probability measure () is called risk neutral if the discounted price process
e S (t) is a Q-martingale, i.e.

(4.8) Eqle™"S1(s)|F] = e Sy (t) for all s > t.
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If there exists a risk neutral measure (), then the market has no arbitrage.
(But the converse is not true in this continuous time model. See [DS].)

If there is only one risk neutral measure (), then the market is complete,
in the sense that every bounded Fpr-measurable random variable F' can be
replicated, i.e. written as

(4.9) F=zx+ /T (t)dS(t)

for some x € R and some (admissible) portfolio ¢. (We are neglecting some
technical conditions here.)

One can show that this Black-Scholes market is indeed complete. Thus
there is exactly one risk neutral probability measure (), and the unique non-
arbitrage price, pricegg(F'), at t = 0 of a contract which pays F' at time T’
is

(4.10) pricegg(F) = Egle "™ F].

5 Models with jumps

Finally we discuss more recent developments, where the possibility of jumps
are introduced. A natural — and at the same time mathematical tractable —
way of doing this is to add a jump term in the stock price model as follows:

(5.1) 45,(t) = ,(7) [adt + 0dB(1) + 4 /

Ro

ZN(dt, dz)}

where o, 0 and v are constants and

(5.2) N(dt,dz) = N(dt,dz) — v(dz)dt.

Here N([0,¢],U) is the number of jumps of a given underlying Lévy process
n(s) at times s up time ¢ with jump size An(s) := n(s) —n(s™) € U, U
being a Borel set in Ry = R\ {0}, with closure U C Ry. And v(U) :=
E[N([0,1],U)] is the Lévy measure of 7). Intuitively, one can regard (5.1) as
another interpretation of (4.1), but now with "noise” represented by
oo dn(t)”

(5.3) noise” = — =,
where 7(t) is the given Lévy process.

There is a corresponding It6 formula for stochastic differential equations
of the form (5.1), and using this one can prove that if vz > —1 for a.a. z
with respect to v, then

S1(t) = S1(0) exp ((a — 307+ [ {In(1+~z) - ’yz}u(dz))t

Ro
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(5.4) + /t/ In(1+ 72)N(d5,dz)>; 0<t<T.

See e.g. [DS], Chapter 1.

Thus we see that also in this case S;(t) behaves like a ”distorted” expo-
nential function, but now it might jump (in either direction) at any time ¢.
(The condition vz > —1 prevents it from jumping to a negative value.)

In contrast to the (continuous) Black-Scholes market in Section 4, the
market (Sy(t), S1(t)) with S;(t) given by (5.4) is typically incomplete. This
means that there are several (in fact infinitely many) risk neutral measures
Q. If we let M denote the family of all risk neutral measures, then

. o —rT
(5.5) priceyor 1= ngﬁt Egle™™ F|
and
(56) priceseller = sup EQ[e_TTF]
QeMm

is called the buyer’s and the seller’s price, respectively, at time 0 of a contract
which pays the random (Fpr-measurable) amount F' at time 7. Any price in
the interval

[prlcebuyerv prlceseller]

will be a non-arbitrage price. Therefore this interval is called the non-
arbitrage interval. Note that in this situation an arbitrage-free price is no
longer unique, and additional coniderations are required to determine the
price.

Since we all believe that real markets are incomplete, the jump models
appear to be better suited to handle realistic situations. But they are also
more complicated mathematically.

6 Market friction

So far we have assumed that all transactions can be carried out immedi-
ately, without any costs or delays. In real financial markets this is not the
case. Usually there are transaction costs of several types involved. For ex-
ample, one may have costs which are proportional to the volume traded.
When modeling such situations mathematically one is led to using singular
stochastic control theory. Another example of a transaction cost type is a
fized cost to be paid for any transaction, no matter how big or small. To
deal with such situations one would use impulse control theory. See [DS] for
more information.
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7 Asymmetric information

All the mathematical models we have discussed so far have assumed that all
agents involved have access to the same information, namely the informa-
tion that can be obtained by observing the market prices up to the present
moment. This is only an approximation of the real situation. For example,
many traders in the financial only know some of the previous market values,
not all of them. Or they get access to the information with some time delay.
In these cases the trader only has partial information to her disposal when
making the decisions. Another example is when the agent has (legal or ille-
gal) access to information about the future value of some financial asset. In
this case the agent is called an insider.

Dealing with the mathematical modeling of financial markets with partial
and /or inside information represents a big mathematical challenge. One has
to work with anticipative stochastic calculus and Malliavin calculus to deal
with such issues. See e.g. [DOP] and the references therein.

8 Risk measures

An axiomatic construction of risk measures first appeared about 10 years
ago, and it was subsequently extended to what we today call convex risk
measures. Intuitively, the risk p(F') of a financial standing F', is the amount
we have to add to F' to make the standing ”acceptable”. If we formulate this
rigorously, we arrive at a set of axioms that the risk measure p should satisfy.
In particular, it should be convez, i.e.

pAF + (1 = N)G) < Xp(F) + (1 = N)p(G)

for all financial standings F,G and all numbers A € (0,1). Intuitively this
means that the risk is reduced by diversification. Surprisingly, this crucial
property does not hold for the traditional and most commonly used risk
model so far, namely the value at risk (VaR). Therefore one should abandon
the VaR as a measure of risk and start using convex risk measures instead.
When using mathematics to minimize the risk in this setting, one is faced
with challenging problems in stochastic differential game theory and stochas-
tic control of forward-backward stochastic differential equations. See e.g.

M), [0S2], [0S3].
9 Summary

We have tried to give a glimpse of the short — but highly successful — history
of mathematical finance, from the Black-Scholes formula in 1973 to the most
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recent research developments of today. A striking feature is the fruitful in-
terplay between financial concepts and the corresponding stochastic analysis
machinery.

The current financial crises has many reasons. What seems clear in any
case, is that there is a need for better understanding of how the financial
markets work. To achieve this, it is necessary to continue and enhance the
research activity within mathematics and finance and the interplay between
the two.
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