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Abstract

The goal of this thesis is to investigate the potential of Neuromorphic Computing for detecting the
neurotransmitter GABA levels in the human brain. Neuromorphic Computing is a novel approach
to computing that mimics the functioning of the brain, offering energy-efficient real-time processing
for AI applications. In contrast to traditional computing architectures, Neuromorphic Computing
offers several advantages in many applications, including parallel processing, unsupervised learning,
and real-time data processing.

To demonstrate the potential of Neuromorphic Computing for GABA detection, the thesis will
first implement traditional neural networks to analyze the feasibility of detecting GABA levels and
compare the actual experimentally measured GABA levels. Traditional neural networks are known
for their ability to model complex relationships between inputs and outputs, and for their gener-
alization capability, which means they can perform well on unseen data. They have been widely
used in various applications. However, traditional neural networks are computationally expensive
and require a significant amount of data and power to perform their calculations. This can make
them unsuitable for certain applications, such as those that require real time processing or those
that operate on battery-powered devices where energy efficiency is crucial, and there is an insuffi-
cient amount of data. This has led to the development of alternative computing architectures, such
as Neuromorphic Computing, which includes Spiking Neural Networks, as a potential solution to
overcome these limitations.

Spiking Neural Networks (SNNs) are a growing trend in the field of AI and Machine Learning
due to their unique approach to data processing. Unlike traditional artificial neural networks, SNNs
operate in the spike domain and have the potential to be more energy-efficient and provide real-time
data processing. Although much research is still needed to fully comprehend the capabilities and
limitations of SNNs, it is possible to train these algorithms on the same datasets used for traditional
neural networks. With their potential for energy efficiency and real time data processing, SNNs are
considered a promising development for a wide range of applications.

The fact that there are so many interfacing tools and systems that can interface between the neu-
romorphic chip and the measuring system.The Tkinter framework is a popular and widely used
graphical user interface (GUI) library in Python, that makes an ideal choice for many applications.
It allows easy transmission of data between the memory unit and processing unit such as Akida
Neuromorphic Processor.The system will be designed in such a way that it can be easily modified
or expanded in the future if needed. The Tkinter framework provides a range of tools and functions
to create a responsive and intuitive GUI, making it a perfect fit for this project. The aim is to
develop a system that is not only effective in terms of functionality but also user-friendly, allowing
for efficient and seamless access to previously recorded data and analyzing it before deploying to
the hardware.Although DAK-3.5 is a window operating system and Akida1000 is a Linux operating
system, but both can be interfaced by a python programmed system.
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Chapter 1

Introduction

The measurement of gamma-aminobutyric acid (GABA) concentration levels is a crucial aspect of
understanding the functioning of the central nervous system (CNS). GABA is a neurotransmitter
that acts as an inhibitory signal in the brain, slowing down the activities of nerve cells and reducing
stimulation. It is responsible for controlling the excitability of the brain, and disruptions in its con-
centration levels have been associated with several neurological disorders, including epilepsy, anxiety,
and depression. The accurate measurement of GABA concentration levels is essential for understand-
ing the underlying biological mechanisms of these disorders and developing effective treatments[40].

The purpose of this study is to examine the use of dielectric relaxation spectroscopy (DRS) to
measure GABA concentration levels. DRS is a non-invasive technique that measures the dielectric
properties of a material in response to an alternating electrical field. The knowledge gained from
DRS on pure GABA solutions in deionized water for different concentrations, and a constant tem-
perature of 22°C has contributed to the advancement of this thesis. Additionally, this can further
help the field to develop hardware that is more energy efficient.

The primary objective of the study is to develop a model that could accurately predict GABA
concentration levels using the data collected by DAK-3.5. These data will be applied to a neural
network, which is then converted to an Akida-compatible network which is an event-based neural
network. The results of this study will provide insights into the feasibility and challenges of de-
ploying neuromorphic computing to measure GABA concentration levels using the current available
neuromorphic kit in the market The Akida 1000.

There is still much to be learned about the role of GABA in the brain, but what is clear is that this
neurotransmitter plays a critical role in regulating brain activity and is involved in many important
physiological processes. The determination of GABA levels has been a topic of research in the field
of neuroscience for many years, and various studies have been carried out using different methods
For example, Some scientists have used brain imaging techniques such as magnetic resonance imag-
ing (MRI) to examine the levels of GABA in the brains of individuals with epilepsy, depression,
and anxiety disorders[64]. while we will use dielectric relaxation spectroscopy techniques to collect
data from concentrations of GABA and use to artificial neural network [16]. This new method for
determining physiological GABA concentration uses machine learning and a computer-based Vector
Network Analyzer (R140) and an Open Coaxial probe (DAK-3.5). It is important to note that the
accuracy and reliability of the new method will depend on the quality of the data obtained from the
R140 Vector Network Analyzer and the DAK-3.5 Open Coaxial probe, as well as the accuracy and
effectiveness of the machine learning algorithms used.
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The detection of GABA levels in the brain has been a challenging task due to the complexity
of the underlying signals and the difficulty in accurately measuring GABA levels in vivo. There
have been growing applications of deep learning algorithms on dielectric relaxation spectroscopy
data to learn the relationship between the measured signals and the actual GABA concentration in
the solution.
Researchers are still working to develop a hardware architecture that can accurately mimic the phys-
iological information processing of GABA in the human brain. Several types of sensors that mimic
bio-organisms such as e-skin[49],electronic nose and bio-inspired cameras have been developed. They
all require real time computation with a minimum amount of energy. The current computer archi-
tectures, is based on the Von Neumann model, and has significant limitations in terms of energy
efficiency and processing speed[46]. In the Von Neumann architecture, the memory and processing
units are separate entities. This means that when computations are performed, data must be con-
stantly sent back and forth between the memory and the processor. This continuous communication
consumes a large amount of energy and leads to significant delays in processing time. The energy
efficiency of this traditional computing system is therefore limited.

Figure 1.1: Von Neumann Architecture

There has been a significant amount of research focused on demonstrating the potential use of
neuromorphic systems for various applications, including spike-based learning, which is a type of
learning that is inspired by the way neurons communicate in the brain. But still they are limited to
developers and research groups. The only available at the market for all users is Akida1000 which
does not support all network models such as long short-term memory networks (LSTM)[14], used in
the field of Deep Learning. The system has limited building blocks that are only compatible for the
Akida1000. Akida1000 uses an approach of spikes, or discrete events, to communicate information
between neurons, rather than continuous signals. inputs that are 32-floating has to be converted
into a uint-8 format.

One of the major challenges in developing a new hardware architecture is to overcome the com-
munication and energy consumption problems associated with the Von Neumann architecture. In
the human brain, both the memory and processing functions are co-located, allowing for simul-
taneous data processing and storage. To address these limitations, researchers have explored the
development of hardware architectures that integrate memory and processing capabilities in a single
unit. Onether promising solution is the development of hardware architectures that are designed
to process and store data in a manner that is similar to the human brain. This approach, known
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as neuromorphic computing, has the potential to significantly improve the energy efficiency of com-
puting systems and increase the processing speed of these systems[39]. AKD1000 neuromorphic
processor is one such example of a neuromorphic processor available at the market for all users. It
have been developed to simulate the behavior of biological neurons and synapses. Akida1000 has
a unique architecture that enables high-speed, low-power operation for AI and machine learning
applications. The chip can perform computations in an event-driven manner, which allows it to
be highly energy-efficient compared to traditional Von Neumann architectures. Additionally, the
chip includes on-chip learning, which enables it to adapt to changing inputs in real time.It has the
capability to learn from one shot.

Figure 1.2: Akida Architecture

Akida1000 has been used to train deep neural networks to perform tasks such as text, audio, and
image classification without performance trade-of. The development of these hardware architectures
has the potential to significantly improve the energy efficiency and processing speed of computing
systems, making them more suitable for a wide range of applications. Akida1000 is one example
of a neuromorphic research chip that has been developed to demonstrate the potential of this new
computing paradigm.

1.0.1 Aim and objectives of this thesis

The aim of this research project is to further explore the capabilities of SNNs and to gain a deeper
understanding of their potential for use in real-world applications. To do this, the project will focus
on four key areas: studying a new method for GABA detection, acquiring a suitable system for
neuromorphic computing, conducting a literature review to explore what has been done in this field
thus far, and developing a system for interfacing the neuromorphic chip with the measuring system.

One of the key motivations for this research is the growing demand for energy efficient and real
time data processing solutions. With the exponential growth of data being generated and processed,
there is a pressing need for computing systems that can handle this data in a fast and efficient man-
ner. SNNs have the potential to provide such a solution, as they operate in a way that is inherently
more energy efficient than traditional neural networks.
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Another important motivation for this research is the increasing importance of real time data pro-
cessing in various industries. For example, in healthcare, there is a need for real time monitoring of
patients and prompt responses to changes in their conditions.SNNs have the potential to meet these
needs by processing data in real time, thereby providing faster and more accurate results at the
edge rather than the cloud where security is an issue. The project aims to contribute to the body of
knowledge in this field and to help pave the way for the widespread adoption of neuromorphic chips
in real world applications.

The use of neuromorphic computing for the detection of GABA is an area of research that has
yet to be fully explored. While there has been some research into the use of neuromorphic com-
puting for other types of biosensing applications, such as odor and gas sensing, there is currently a
gap in the literature when it comes to using this technology for GABA detection. This gap in the
literature may be due to the complexity of GABA detection, which involves analyzing the electrical
properties of tissues and molecules and general-purpose neuromorphic hardware. GABA,being an
inhibitory neurotransmitter plays a crucial role in the regulation of brain activity. It is real timed
from glutamate, an excitatory neurotransmitter, and is found in high concentrations in certain re-
gions of the brain. The detection of GABA is an important area of research as it can help to improve
our understanding of the role of GABA in brain function and transfer this into a hardware.

Neuromorphic computing is a type of computing that is inspired by the structure and function
of biological neural networks. These networks are designed to process information in a way that
is similar to the way that the brain processes information. Neuromorphic computing has shown
promise for a variety of applications, including image and speech recognition, and it has the po-
tential to revolutionize computing by enabling the development of brain-inspired systems. While
there has been some research into the use of neuromorphic computing for other types of biosensing
applications, there is a gap in the literature when it comes to using this technology for GABA de-
tection. One potential reason for this gap is that detecting GABA is a complex process. However,
there is still potential for the use of neuromorphic computing in GABA detection, particularly as
the technology continues to advance..

One potential approach to using neuromorphic computing for GABA detection is to develop a
biosensor that is designed to mimic the properties of GABA receptors in the brain. Such a biosensor
could be designed to detect the presence of GABA by analyzing changes in the electrical properties
of the receptor. The design of such a biosensor could be inspired by the structure and function of
biological neural networks and could leverage the power of neuromorphic computing to process the
signals involved in GABA detection. Another potential approach to using neuromorphic computing
for GABA detection is to develop a machine learning algorithm that is trained on a large dataset
of GABA-related signals. Such algorithm could be trained to recognize patterns in the signals that
are indicative of the presence of GABA and its concentration. Once trained, the algorithm could
be used to analyze the electrical signals involved in GABA detection and to provide accurate and
reliable GABA detection.

As the technology continues to advance, it is likely that new opportunities will emerge for using
this approach to improve our understanding of the role of GABA in brain function and to develop
new therapies for GABA-related disorders. While there are currently some challenges involved in
GABA detection using neuromorphic computing. One approach that has gained significant momen-
tum in recent years for addressing these challenges is the study of Spiking Neural Networks (SNNs).
SNNs are unique in their operation within the spike domain, allowing them to process data in a
manner that differs from traditional artificial neural networks. The potential for energy efficiency
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and real time data processing make SNNs an attractive option for a wide range of applications,
including the analysis of GABA data. Despite ongoing research and a significant amount yet to be
understood about their capabilities and limitations, SNNs have already demonstrated their poten-
tial to be trained on the same datasets used to train traditional neural networks. This opens up
exciting possibilities for their use in various industries, from healthcare and finance to defense and
transportation.

1.0.2 The structure and Outlining of the thesis

The aim of this Thesis is to provide an insight into the potential use of neuromorphic computing
in bioimpedance signals such as detecting the levels of GABA. Even though it is in early stage for
the field,but it has shown a significant improvement in power reduction and fast computational on
applications such as image classification, object detection, and olfactory classification.

• Chapter 2 A broad contextual framework is established. This encompasses a theoretical
overview of bioimpedance relevant to the research, as well as a discussion on the dielectric
properties of molecules. The chapter also details the tools and instruments employed in the
study, and provides a general introduction to GABA, a neurotransmitter of importance to the
research. Furthermore, the chapter explores several advanced techniques in neural computing,
such as machine learning, deep learning, spiking neural networks and Neuromorphic computing.

• Chapter 3 A literature review is conducted to investigate the potential of neuromorphic com-
puting in the context of bioimpedance signals. The objective of this review is to provide a
comprehensive overview of the existing research on neuromorphic computing and its poten-
tial applications. Specifically, the focus is on the acquisition of a neuromorphic chip that can
interface with the DAK-3.5 dielectric constant measurement system. Although several neuro-
morphic hardware devices have been produced in recent years, they are primarily confined to
the research domain. Therefore, the review is conducted in a systematic and comprehensive
manner taking into account both theoretical and practical aspects of neuromorphic computing.

• Chapter 4 Presents the methodology adopted for the research. This includes a detailed
description of the experiments carried out, which involved dielectric relaxation spectroscopy
measurements on various GABA solutions. Additionally, the chapter describes the training of
several machine learning methods such as Keras-tensorflow sequential API, including feedfor-
ward multi-layer neural networks, convolutional neural networks, and spiking neural networks.
Lastly, the methodology section details the transfer learning process and the deployment of
the trained model to the Akida1000 neuromorphic processor.Moreover, the development of a
system for interfacing the neuromorphic chip with the measuring system is outlined in this
chapter.The system is designed to enable the acquisition and processing of data from the
neuromorphic chip, which is then used to train the machine learning methodology.

• Chapter 5 Present our findings by analyzing the results obtained from various methods and
algorithms that were deployed, each with a different number of features. The objective of this
analysis is to achieve a robust and accurate result with minimum loss.

• Chapter 6 Serves to summarize the work done throughout the thesis and to present potential
avenues for future research. This chapter features a comprehensive discussion of all the results
obtained, placing them in the broader context of the thesis. It also serves to provide a valu-
able contribution to the field of neuromorphic computing and its application to bioimpedance
signals.
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Chapter 2

Theory

2.1 GABA And It’s Function

The human brain is an incredibly complex system, with millions of neurons communicating with each
other to control our thoughts, movements, and emotions. To facilitate this communication, neurons
release chemical compounds called neurotransmitters that bind to receptors on other neurons and
regulate their activity. One of the most important neurotransmitters in the central nervous system
is GABA (gamma-aminobutyric acid), which has an inhibitory effect on neurons and helps regulate
brain activity. GABA blocks chemical messages and slows down the activities of the brain by reduc-
ing the stimulation of nerve cells in the CNS. The process of GABA, like other neurotransmitters
and chemical solutions in the brain, occurs in solutions containing electrolytes.GABA is produced
in the brain and acts by binding to specific receptors on neurons, causing a decrease in neuronal ex-
citability and inhibition of neurotransmitter release. This helps regulate the brain’s overall activity
and plays a critical role in the processes of controlling muscle tone, reducing anxiety, and promoting
sleep. In addition, GABA is involved in a wide range of other physiological processes, including
regulation of hormone secretion, regulation of heart rate, and regulation of respiratory function[62].

2.1.1 GABA Neurotransmiter System

The GABA neurotransmitter system involves the release of GABA from a presynaptic neuron and
its binding to specific receptors in the brain. These receptors are divided into three main categories:
GABAA, GABAB, and GABAC. The GABAA receptor, when activated by GABA, opens an ion
channel that allows chlorine ions to flow into the cell, which results in the hyperpolarization of the
membrane potential and inhibits the neuron’s activity by preventing the action potential threshold
from being reached. Similarly, the activation of the GABAB receptor leads to the opening of a
potassium channel and the outflow of potassium ions, also causing hyperpolarization and inhibition
of the neuron’s activity. This inhibitory signaling is regulated by the GABAergic system in the
brain, which helps to modulate the activity of excitatory neurons through two forms of inhibition:
phasic and tonic[15]. Phasic activation of the GABA receptors is closely related to the regulation of
neuronal activity rhythm. It is referred to as the fast and short-lived inhibitory signals transmitted
between neurons in the brain. The role of phasic inhibition in the brain is crucial in maintaining the
proper functioning of individual neurons and network oscillations. These oscillations are believed to
be connected to higher cognitive processes. The process of phasic inhibition starts with the release
of GABA from the presynaptic terminal. The rapid spread of the high concentration of GABA from
the presynaptic site into the surrounding neuropil affects postsynaptic neurons, leading to their
inhibition. After GABA binds to its receptors, it is removed from the synaptic cleft through molec-
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ular diffusion and taken up by the presynaptic GABAergic neuron. The neurons in the brain by
binding to extrasynaptic GABAA receptors and generating tonic inhibition. while tonic activation
mainly occurs in glial cells and enables the regulation of neuronal excitability. Its inhibition acts as
a modulator of the excitability of neuron subtypes, and it has been shown to differentially affect the
excitability of neurons according to variations in chloride gradient[8].

Figure 2.1: GABAergic neurotransmission

Recently, researchers have used biophysically detailed neuron models to investigate the effects of
tonic inhibition on the excitability of different neuron subtypes. The results showed that tonic
inhibition can modulate the excitability of neurons according to variations in electrophysiological
properties. In particular, the results showed that tonic inhibition increased the responsiveness (or
gain) in models with features typical for somatostatin interneurons but decreased the gain in models
with features typical for parvalbumin interneurons. The mechanism underlying gain modulation re-
sults showed that gain modulation was dependent upon the magnitude of tonic current generated at
depolarized membrane potential, a property associated with outward rectifying GABAA receptors.
Furthermore, tonic inhibition produced two biophysical changes in the models that were relevant to
neuronal excitability. Enhanced action potential repolarization through increased current flow into
the dendritic compartment, and reduced activation of voltage-dependent potassium channels.
Reduced potassium channel activation selectively increased the gain in models with action potential
dynamics typical for somatostatin interneurons. In parvalbumin-type models, potassium channels
deactivate rapidly and are unavailable for further modulation. GABA can differentially modulate
interneuron excitability through differences in intrinsic electrophysiological properties and provide
a mechanism for this modulation.

GABA can exist in different conformations due to its flexible carbon backbone, and the pH of
the local environment can determine its ionization state, which can be in the form of an acid, neu-
tral, or base. The acid and neutral forms of GABA have been reported to have a folded and open
topology, respectively. The folded topology involves the formation of an intramolecular hydrogen
bond between the carboxylate and amino groups, while in the open topology, the two side groups are
far apart from each other. The regulation of GABA in the brain is maintained by the interaction be-
tween neuron and glial cells [34]. However, there are multiple factors that can lead to dysregulation
of GABA in the brain and result in neurodegenerative diseases. These factors include alterations
in the synthesis or release of GABA. Abnormal levels of GABA have been implicated in several
neurological and psychiatric disorders, including epilepsy, depression, and anxiety disorders[9]. For
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example, in epilepsy, seizures are caused by the abnormal activity of neurons in the brain, and
increasing GABA levels have been shown to suppress this activity and reduce the frequency and
severity of seizures. Similarly, depression and anxiety disorders are thought to be related to imbal-
ances in the levels of neurotransmitters in the brain, and increasing GABA levels have been shown
to be effective in treating these disorders in some patients[59].

One of the key properties of GABA is its ability to promote relaxation and calmness, which makes
it a crucial neurotransmitter for controlling anxiety and promoting sleep. This is because GABA is
involved in inhibiting the activity of neurons in the brain that produce excitatory neurotransmitters
such as glutamate. When the activity of these neurons is suppressed, the overall activity of the brain
is reduced, leading to feelings of calmness and relaxation[20].

There is still much to be learned about the role of GABA in the brain, but what is clear is that this
neurotransmitter plays a critical role in regulating brain activity and is involved in many impor-
tant physiological processes. By understanding more about GABA and its effects on the brain, we
may be able to develop more effective treatments for a wide range of neurological and psychiatric
disorders.In recent years, much research has been devoted to understanding the function of GABA
in the brain and its involvement in the development of neurological and psychiatric disorders. For
example, Some scientists have used brain imaging techniques such as magnetic resonance imaging
(MRI) to examine the levels of GABA in the brains of individuals with epilepsy, depression, and anx-
iety disorders[64]. While others have used dielectric relaxation spectroscopy techniques to study the
electrical properties of GABA and linked this property to measure the concentration of GABA[16].
GABA is a big dipole, meaning that it is affected by electrical fields. When an alternating electrical
field is applied to a solution containing dissolved GABA molecules, the GABA molecules will rotate
in order to attain a minimum energy level.The rotation of the GABA molecules will continue to
increase as the frequency of the alternating electrical field increases until the GABA molecules can
no longer follow the fast-alternating field. The effect of energy loss in GABA solutions depends on
the dielectric constant values and the concentration of the GABA in the solution[29]. The dielectric
constant is a measure of the electrical polarization of a material and is proportional to the con-
centration of the material in the solution. Therefore, solutions containing higher concentrations of
GABA will show higher dielectric constant values. Additionally, these characteristics are important
for understanding the behavior of GABA solutions in biomedical fields and can be used for further
research to develop new methods for analyzing GABA levels and implement this on systems that
can mimic the human brain.

2.1.2 bioimpedance measurement

Bioimpedance measurements are a widely used technique for detecting structural changes in cells.
The method is versatile and can be adapted to detect various substances, including GABA. However,
detecting the presence of GABA is challenging due to its non-electroactivity. This means that it
will not react to an applied current, making it difficult to detect with general bioimpedance analy-
sis methods such as the cyclic voltammetry technique which is commonly used to detect chemical
changes in electroactive substances[42]. However, since GABA is non-electroactive, it is undetectable
with the method of using cyclic voltammetry. Despite this, there are still ways of detecting the
presence of GABA. The GABA molecule is considered a polar molecule, with its positively and
negatively, charged sides well separated. This property makes it possible to detect GABA with
dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy is a technique that measures
the dielectric response of a material to an alternating electric field[53]. The dielectric response is
the change in the electrical polarization of the material in response to an applied electric field. The
technique is based on the fact that polar molecules, such as GABA, can be detected through their
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dielectric properties. In dielectric relaxation spectroscopy, the dielectric response of a sample is
measured over a range of frequencies. The spectrum obtained from the measurement contains infor-
mation about the molecular structure and dynamics of the sample, including the presence of GABA.

Dielectric substances are classified as polar and non-polar dielectrics based on the response of their
molecules to an external electric field[66]. In the absence of an external electric field, the molecules
of a polar dielectric substance are arranged in an irregular manner due to thermal energy. This
results in any volume of the substance that has a large number of molecules having a zero resultant
dipole moment. As a result, the resultant dipole moment of the substance is zero. However, when a
polar dielectric substance is placed in an external electric field, each molecule experiences a torque
that tries to align the molecule along the direction of the external electric field. As the intensity of
the external electric field is increased, more and more molecules align themselves in the direction of
the field, resulting in a net dipole moment in the substance.

Figure 2.2: Polar Dielectric Molecule

In contrast, non-polar dielectrics are substances in which the molecules do not have a permanent
dipole moment. As a result, they do not experience any torque in an external electric field and do
not align themselves in the direction of the field. Instead, the non-polar molecules get distorted
due to the presence of the external electric field, but do not produce a net dipole moment in the
substance.

2.2 Dielectric relaxation spectroscopy

Dielectric relaxation spectroscopy is a type of impedance spectroscopy that can measure the dielectric
properties of a material as a function of the frequency of an applied electric field. These properties
are important in understanding the structure and dynamics of biological materials, and accurate
knowledge of them is crucial for medical diagnostic, monitoring, and therapeutic technologies[35].
Dielectric relaxation spectroscopy can be used to study changes in the concentration of substances
and the formation of chemical species in biological materials, as well as investigate the motion of
molecules with an electric dipole moment. The technique measures the energy storage and dissipation
properties of a material through its ability to pass an alternating current, making it sensitive to
molecular mobility and structural changes. While dielectric relaxation spectroscopy has been around
for some time, it has not been thoroughly explored for life science applications, despite its potential as
a rapid non-invasive technique for structural characterization. Studying dielectric relaxation is one of
several techniques used to obtain information about the physicochemical properties of biomolecules
in aqueous solution, making it a useful tool for measuring GABA solutions.
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2.2.1 DAK-3.5 Kit

The DAK System is a dielectric assessment system that provides an easy-to-use solution for assessing
the dielectric properties of various media by combining the DAK technology with miniature R60 and
R140 vector reflectometers from Copper Mountain Technologies. It is a powerful tool used in the
field of biomedicine for the measurement of the electrical properties of biological tissues. This system
combines the capabilities of a Dielectric Analysis Kit (DAK-3.5) and a Vector Network Analyzer
(VNA) to measure the impedance of biological tissues at multiple frequencies. The DAK-3.5 is used
to apply a small alternating electrical current to the tissue, while the VNA measures the resulting
voltage and impedance. The DAK System has many potential applications in the field of dielectric
assessment, and it can be used to measure the dielectric properties of various materials, including
solids, liquids, and gases. Additionally, the system can be used to measure the dielectric properties
of living tissues, such as skin and muscle, making it an ideal tool for medical research.

Moreover, bioimpedance theory is the basis for the measurement of the electrical properties of
biological tissues. Bioimpedance spectroscopy (BIS) is a non-invasive technique used to measure the
electrical properties of biological tissues, such as resistance and capacitance, which are related to
their cellular structure and composition. The impedance of a tissue is related to its resistance and
capacitance, and by analyzing the impedance at different frequencies, it is possible to determine the
properties of different components within the tissue. Dielectric properties of molecules are related
to their ability to store and release electrical energy when exposed to an electric field. The dielectric
constant of a material, also known as its permittivity, is a measure of its ability to store electrical
energy. It is a dimensionless quantity that is related to the molecular structure of the material,
including the type and arrangement of atoms and molecules, as well as the presence of electrical
charges. The dielectric properties of molecules are important in many applications.

Recently, bioimpedance theory and the measurement of dielectric properties have been applied to
the study of GABA, using the DAK-3.5 integrated with VNA Vector Network Analyzer R140 to
measure changes in the electrical properties of tissues in response to changes in GABA levels, pro-
viding a non-invasive tool for understanding the effects of GABA on brain activity that can be used
for diagnosing and treatment of diseases related to GABA metabolisms, such as epilepsy, anxiety
disorders, and depression. The DAK-3.5 integrated with VNA Vector Network Analyzer R140 has
the potential to provide valuable insights into the role of GABA in brain function by measuring
changes in the electrical properties of tissues in response to changes in GABA levels. In the study
of GABA using the DAK-3.5 integrated with VNA Vector Network Analyzer R140, electrodes are
used to apply the alternating electrical current to the tissue and to measure the resulting voltage.
The VNA measures the impedance of the tissue at multiple frequencies to determine its electrical
properties. The impedance spectra obtained using this system provide information on the resistance
and capacitance of the tissue, which is related to its cellular structure and composition.

One advantage of the DAK-3.5 integrated with VNA Vector Network Analyzer R140 is that it
allows for the measurement of impedance at a wide range of frequencies, from low to high[23]. This
enables the determination of the properties of different components within the tissue, such as cells,
water, and ions. Additionally, the VNA provides accurate and precise measurements of impedance,
which can be used to detect changes in the electrical properties of tissues in response to changes in
GABA levels.

Another advantage of this system is that it is non-invasive, making it suitable for repeated mea-
surements over time. This can be particularly useful in the study of the effects of GABA on brain
activity, as changes in GABA levels can be monitored over time and correlated with changes in the
electrical properties of tissues. The non-invasive nature of this system also makes it safe for use in

17



Figure 2.3: DAKS 3.5 (200 MHz- 14 GHz)

human subjects, as there is no need for invasive procedures to obtain the data.

The data obtained using the DAK-3.5 integrated with VNA Vector Network Analyzer R140 can
be analyzed using various mathematical techniques, such as circuit analysis and complex plane anal-
ysis, to extract information on the electrical properties of tissues. This information can then be
used to gain insights into the role of GABA in brain function and to understand the underlying
mechanisms by which GABA produces its effects.

2.3 Machine Learning

Machine learning is a subset of artificial intelligence (AI) that enables computers to learn and make
predictions or decisions without being explicitly programmed. It involves feeding a computer system
a large dataset of training examples and allowing the system to learn and make predictions based
on this data. The goal of machine learning is to build models that can generalize well and make
accurate predictions on new, unseen data[41]. There are several types of machine learning, includ-
ing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning is the most common type of machine learning and involves training a model
on labeled data. In this type of learning, the model receives inputs and the corresponding outputs,
and the goal is to learn a mapping from inputs to outputs. For example, in a classification problem,
the inputs are features, and the outputs are class labels. The model is trained on a labeled dataset
and then used to predict the class label of new, unseen examples.

Unsupervised learning, on the other hand, involves training a model on unlabeled data. The goal of
unsupervised learning is to find patterns or structures in the data, such as clusters, without having
prior knowledge of the output labels. This type of learning is used in tasks such as dimensionality
reduction, anomaly detection, and association rule learning.

Semi-supervised learning is a combination of supervised and unsupervised learning. It involves
training a model on a mix of labeled and unlabeled data. The goal is to leverage the large amount
of unlabeled data to improve the performance of the model on the limited amount of labeled data.

Reinforcement learning is a type of machine learning where the goal is to maximize a reward signal by
taking actions in an environment. In this type of learning, an agent interacts with an environment,
takes actions, and receives rewards. The goal is to learn a policy that maximizes the cumulative
reward received by the agent over time.
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Machine learning algorithms can be divided into two categories: parametric and non-parametric.
Parametric algorithms have a fixed number of parameters, while non-parametric algorithms do not.
For example, linear regression is a parametric algorithm, while decision trees and random forests are
non-parametric algorithms. The choice of machine learning algorithm depends on several factors,
including the size and structure of the dataset, the complexity of the task, and the resources avail-
able for training and inference. Some popular machine learning algorithms include linear regression,
logistic regression, decision trees, random forests, support vector machines (SVMs), k-nearest neigh-
bors (k-NN), and neural networks. Regression and classification are two main types of problems in
supervised learning.

2.3.1 Regression And Classification

Regression and classification are two main types of problems in supervised learning. Regression
models are widely used in machine learning to predict a continuous output variable, such as a
numerical value[11]. They are commonly used in many applications, such as sales forecasting, stock
price prediction, and weather forecasting. The use of regression models has become increasingly
popular in recent years due to advances in computational power and the availability of large datasets.
The goal of regression is to find a mathematical relationship between the input and output variables
that can be used to make accurate predictions on new, unseen data.There are several different types
of regression, but the most common type is linear regression, which models the relationship between
the input variables and the output variable using a linear equation. The equation takes the form:

y = b0 + b1x1 + b2x2 + ...+ bn ∗ xn (2.1)

where y is the output variable, b0 is the intercept or bias term, b1 to bn are the coefficients or weights
for the input variables x1 to xn, and x1 to xn are the input variables.The goal of linear regression is
to estimate the values of the coefficients that minimize the difference between the predicted output
and the actual output. This is done by minimizing a cost function, which measures the difference
between the predicted and actual outputs for the training data.

The most common method for estimating the coefficients is Ordinary Least Squares (OLS) regres-
sion, which finds the values of the coefficients that minimize the sum of the squared errors between
the predicted and actual outputs for the training data. This can be solved analytically using matrix
algebra, or iteratively using optimization algorithms such as Gradient Descent or Stochastic Gradi-
ent Descent. Once the coefficients have been estimated, the model can be used to make predictions
on new, unseen data. To make a prediction, the input variables are fed into the model, and the
output variable is calculated using the estimated coefficients and the linear equation.

Classification, on the other hand, is used to predict a categorical output variable, such as a la-
bel or a class. In classification, the model learns to assign each input to one of several possible
categories. The goal of classification is to learn a decision boundary that separates the different
classes in the input space, so that new, unseen data can be classified correctly. There are several
different types of classification algorithms, but the most common type is binary classification, which
predicts one of two possible classes. Multi-class classification, which predicts one of more than two
possible classes, is also commonly used. The input variables used in classification are known as fea-
tures, and the output variable is known as the target or label. The training data is a set of labeled
examples, where each example consists of a set of features and a corresponding target or label. The
goal of classification is to learn a function that maps the features to the correct label.
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Figure 2.4: Ordirnary Least Squares

One common algorithm for binary classification is logistic regression, which models the proba-
bility of the positive class as a function of the input variables using a logistic function. The logistic
function takes the form:

p(y = 1|x) = 1/(1 + exp(−z)) (2.2)

where p(y=1—x) is the probability of the positive class given the input variables x, and z is a
linear combination of the input variables and their corresponding weights or coefficients:

z = b0 + b1x1 + b2x2 + ...+ bn ∗ xn (2.3)

where b0 is the intercept or bias term, and b1 to bn are the coefficients or weights for the in-
put variables x1 to xn.

The goal of logistic regression is to estimate the values of the coefficients that maximize the likeli-
hood of the training data. This is done by minimizing a cost function, which measures the difference
between the predicted and actual probabilities for the training data. Once the coefficients have been
estimated, the model can be used to make predictions on new, unseen data. To make a prediction,
the input variables are fed into the model, and the probability of the positive class is calculated
using the estimated coefficients and the logistic function. The predicted class is then determined
based on a threshold, which is typically set to 0.5.

Classification is widely used in fields such as finance, healthcare, and natural language process-
ing, and it has many applications such as fraud detection, spam filtering, and sentiment analysis.
However, it is important to choose the appropriate type of classification algorithm and to carefully
validate the model to ensure that it is accurate and robust.
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Figure 2.5: Classification

2.3.2 Neural Networks

Neural networks, inspired by the structure and function of the brain, are a type of machine learning
algorithm[48]. They consist of interconnected layers of artificial neurons and can be utilized for var-
ious tasks such as image classification, speech recognition, and natural language processing. These
networks are designed to recognize the underlying relationships in a given dataset by imitating the
way the human brain functions. The systems of neurons can either be organic or artificial in nature,
and they have the ability to adapt to changing input. As a result, neural networks can generate the
best possible results without requiring the redesign of output criteria. An artificial neural network
behaves the same way. It works on three layers. The input layer takes input. The hidden layer
processes the input. Finally, the output layer sends the calculated output.

Figure 2.6: Neural Network Structure

Neural networks have been around for many years, and they have gone through several periods
during which they have fallen in and out of favor. But recently, they have steadily gained ground
over many other competing machine learning algorithms. They were created to overcome the preci-
sion problems faced by earlier classification algorithms known as perceptrons. The invention of the
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Multi-layer perceptrons algorithm allowed for greater accuracy by incorporating layers of percep-
trons. The input is propagated forward in the network, with the values being multiplied by weights
and the bias being added. To increase the accuracy of the classifier, the neural network tunes these
variables in each cycle through a process called training.

2.3.3 Deep learning

Deep learning is a subset of machine learning that uses artificial neural networks to learn from large
amounts of data. These networks are made up of multiple layers of interconnected neurons that work
together to identify patterns and relationships in the data. Deep learning has become increasingly
popular in recent years due to its ability to solve complex problems in a wide range of domains.
These methods have dramatically improved the state-of-the-art in speech recognition, visual object
recognition, object detection, and many other domains such as drug discovery and genomics[37].
Deep learning discovers intricate structures in large data sets by using the backpropagation algo-
rithm to indicate how a machine should change its internal parameters that are used to compute
the representation in each layer from the representation in the previous layer. Some of the most
impressive applications of deep learning include self-driving cars, facial recognition, and language
translation.

One of the key advantages of deep learning is its ability to automatically learn features from raw data
without the need for manual feature engineering. This means that the network can identify relevant
features in the data on its own, without the need for human intervention. This is particularly use-
ful in tasks where the relevant features are not well understood or where the data is high-dimensional.

Another important aspect of deep learning is its ability to handle large amounts of data. Deep
learning algorithms are typically trained on large datasets consisting of millions of samples. This
allows the network to learn patterns and relationships that may not be apparent in smaller datasets.
There are several types of neural networks used in deep learning, including feedforward neural net-
works, convolutional neural networks, and recurrent neural networks. Feedforward neural networks
are the simplest type of neural network and are used for tasks such as classification and regression.
Convolutional neural networks are commonly used in computer vision tasks and are designed to
identify features in images. Recurrent neural networks are used for tasks involving sequential data,
such as speech recognition and natural language processing. The training process in deep learning
involves feeding large amounts of data into the network and adjusting the weights of the connections
between the neurons to minimize a loss function. The loss function measures the difference between
the output of the network and the desired output. During training, the network adjusts its weights
to minimize the loss function, allowing it to learn from the data.

Feedforward Neural Network

Feedforward Neural Networks, or FFNNs, are a type of artificial neural network that is widely used
for various applications, including image and speech recognition, natural language processing, and
control systems. FFNNs consist of interconnected nodes, known as artificial neurons, which process
and transmit information through the network. The information in FFNNs flows in one direction,
from the input layer to the output layer, through any hidden layers[57]. The input layer receives the
input data, which is then processed by the hidden layers using weighted connections and activation
functions. The output layer produces the network’s prediction or output. To train the FFNN, the
weights of the connections between the neurons are adjusted using a supervised learning algorithm,
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such as backpropagation. FFNNs have several advantages, including their versatility to approxi-
mate any continuous function and their ability to handle large amounts of data[27]. However, they
also have some limitations, such as the vanishing gradient problem and the potential for overfitting.
Despite these limitations, FFNNs are still a valuable tool in the field of artificial intelligence, with
their ability to solve complex problems.

Figure 2.7: Feedforward Neural Network

One of the potential challenges, which is overfitting occurs when the network becomes too special-
ized to the training data and is unable to generalize to new data[50]. To address this issue, several
techniques have been developed, including regularization, dropout, and early stopping. Regular-
ization is a technique that penalizes large weights in the network, reducing the risk of overfitting.
Dropout is a technique that randomly drops out some of the neurons in the network during training,
preventing the network from becoming too specialized to any particular feature[27]. Depending on
the architecture and application it may have an effect on the model. Early stopping is also another
technique that stops the training process when the performance on a validation set stops improving,
preventing the network from overfitting to the training data.

Despite its impressive performance in many domains, deep learning also has several limitations.
One of the main limitations is the need for large amounts of labeled data and powerful hardware.
Deep learning algorithms require large datasets to learn patterns and relationships in the data. In
domains where labeled data is scarce, deep learning may not be the best approach. Another limita-
tion of deep learning is its lack of interpretability. Deep learning algorithms are often described as
”black boxes” because it can be difficult to understand how the network is making its predictions.
This lack of interpretability can make it challenging to trust the predictions made by the network,
particularly in high-stakes domains such as healthcare. As deep learning continues to advance, it
is likely that these limitations will be addressed, enabling even more impressive applications in the
future.

2.3.4 Convolutionl Neural Network

Convolutional Neural Networks (CNNs) are a type of artificial neural network that is commonly used
for image and video recognition tasks[55]. Unlike traditional feedforward neural networks, CNNs are
designed to take advantage of the structure and spatial relationships in image data. CNNs consist
of multiple layers, including the input layer, hidden layers, and the output layer. The hidden layers
are composed of convolutional layers, pooling layers, and activation layers. The convolutional layers
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apply filters to the input data, while the pooling layers reduce the spatial size of the data. The
activation layers introduce non-linearity into the network.The training process in CNNs involves
adjusting the weights of the filters in the convolutional layers to minimize the error between the
network’s prediction and the actual output. To ensure the network does not overfit to the training
data, techniques such as dropout and data augmentation can be used. One of the key advantages
of CNNs is their ability to learn local patterns in the data. This allows them to automatically ex-
tract features from the input data, reducing the need for manual feature engineering. Additionally,
CNNs can be trained on large datasets, making them well-suited for image and video recognition
tasks. Furthermore, CNNs have the capability to learn hierarchical representations of the data,
where lower-level features are combined to form higher-level features. This allows CNNs to capture
increasingly complex and abstract features in the data as the network goes deeper. Additionally,
CNNs are able to share weights across different parts of the image, reducing the number of parame-
ters in the network and improving the efficiency of the training process. Another advantage of CNNs
is their translational invariance, meaning they can recognize the same features regardless of their
position in the image. This makes CNNs robust to small translations and rotations in the input
data and allows them to generalize well to new data.

In recent years, CNNs have achieved state-of-the-art results on a wide range of image and video
recognition tasks, and have been applied to areas such as object detection, semantic segmentation,
and generative models. The success of CNNs has led to the development of deeper and more complex
architectures, such as Residual Networks and Inception Networks, which have further improved the
performance of CNNs on these tasks.

Figure 2.8: Convolutional Neural Network with Fully connected Layer

2.4 Spiking Neural Network

Numerous Machine Learning (ML) algorithms have been developed for stream learning. However,
most off-the-shelf models require retraining in evolving environments and struggle to scale due to
their learning algorithm. In recent years, Artificial Neural Networks (ANNs), inspired by the bio-
logical process by which the brain acquires and processes sensory information, have been used to
tackle fast-evolving information flows. The Spiking Neural Network is a biologically plausible neuron
model that is popular for capturing informational dynamics among real biological neurons, allowing
for more accurate and powerful computational and integrating various information dimensions into
a single model and dealing with large volumes of data[25]. SNNs are considered the third generation
of ANNs and have the ability to learn continuously and incrementally, making them adaptable to
non-stationary and evolving environments and useful as drift detectors. SNNs have also demon-
strated their ability to capture temporal associations between variables in streaming data. They are
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the new development in Artificial Intelligence (AI) that utilizes machine learning methods to train
models in the spike domain[26].

Figure 2.9: Spiking Neuron

SNNs learn from data that has been trained on, much like traditional Artificial Neural Networks.
Despite being a relatively new field of study, there has been a significant amount of research into
understanding how biological neurons learn, and how that knowledge can be applied to train SNNs
to perform various tasks.

The process of learning in biological neurons occurs primarily through the strengthening and weaken-
ing of synapses. In the simplest terms, when an incoming spike causes an output spike, the larger the
synaptic weight between the neurons, the stronger the connection. This strengthening or weakening
of synapses is observed experimentally and is a key aspect of biological learning. In addition to this,
experimental data suggests that the addition or removal of synapses can also play a role in learning.

Figure 2.10: Biological neuron and its association with an artificial spiking neuron

One model for biological learning that has received a lot of attention is Spike-Timing-Dependent
Plasticity (STDP)[17]. This model is based on the idea that if a presynaptic neuron fires just before
a postsynaptic neuron, the connection between the two will be strengthened. Conversely, if the post-
synaptic neuron fires before the presynaptic neuron, the connection will be weakened. While STDP
has shown promise in early research, it has been found that building a large, complex functional
system using this model is much more difficult than initially thought.

Despite the challenges, researchers have continued to make progress in the field of SNNs. One
key development has been the use of supervised learning algorithms to train SNNs, such as the
backpropagation algorithm. This allows for the weights of the synapses in an SNN to be adjusted
in a way that minimizes the error between the predicted output and the actual output. One of
the benefits of SNNs is their ability to model the asynchronous and parallel nature of information
processing in the brain. This makes them a promising solution for real-time applications, such as
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image and speech recognition, where traditional ANNs can struggle. In addition, SNNs can be im-
plemented in hardware much more efficiently than traditional ANNs, making them well-suited for
applications where power consumption is a concern.

Data and information represent as Spikes and before feeding input data to a Spiking Neural Network,
it must first be encoded into spike trains, which are spatio-temporal patterns of spikes that repre-
sent the input stimuli. This encoding process remains an open issue in neuroscience, as questions
persist about what information is contained in these spiking patterns and what code neurons use
to transmit that information. However, research has traditionally shown that most of the relevant
information is contained in the mean firing rate of neurons[25].

Two main encoding schemes exist for encoding input data into spike trains: temporal encoding
and rate-based encoding[7]. These encoding schemes are also referred to as temporal coding and
rate coding, respectively. Temporal encoding is used when patterns within the encoding window
provide information about the stimulus that cannot be obtained from spike count. This encoding
scheme is based on spike timing and includes methods such as time-to-first-spike, where a code for
the timing of the first spike contains all information about the new stimulus; phase, which applies
a time-to-first-spike encoding scheme when the reference signal is not a single event, but a periodic
signal; and correlations and synchrony, which uses spikes from other neurons as the reference signal
for a spike code [25]. Rate-based encoding, on the other hand, is based on a spiking characteristic
within a time interval (e.g., frequency) and includes three different notions of mean firing rate: rate
as a spike count, rate as a spike density, and rate as a population activity [7]. The rate-based en-
coding scheme is used when the information is encoded in the mean firing rate of the neuron, and
not in the timing of individual spikes.

The choice of encoding scheme depends on the specific characteristics of the input data and the
task at hand and can impact the performance of the SNN.

Figure 2.11: Rate-based encoding versus Temporal encoding

Despite the exciting developments in the field of SNNs, researchers still face significant challenges
in effectively training them, such as incorporating biologically inspired learning rules like STDP
into the training process and dealing with the high-dimensional, time-varying nature of spike data.
Nonetheless, SNNs are highly regarded in the online learning research community due to their adapt-
ability and accurate representation of brain-like information processing, making them suitable for
high-performance hardware platforms. While the field of SNNs is still in its early stages, there is a
great deal of promise for these networks to be used in a wide range of applications, and researchers
will continue to build on knowledge gained from biological and machine learning studies to develop
more effective training methods for SNNs, making them more widely applicable.
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The field of machine learning and deep learning has seen explosive growth in the last decade, achiev-
ing breakthrough results in various domains such as image recognition, natural language processing,
autonomous vehicles, financial prediction, and medical diagnosis. However, the traditional com-
puting architecture used for implementing these algorithms has limitations, particularly for certain
applications like wearable devices and bioimpedance-based sensory systems. Separating memory
and processing units in traditional computing architectures leads to significant energy consumption
and communication delays between the memory and processor, which is a critical issue for these
applications. In contrast, neuromorphic computing is a new approach to computing that aims to
create more energy-efficient architectures by emulating the way the brain processes information.
This approach can potentially address the limitations of traditional computing architectures and
enable the development of more energy-efficient systems that can operate in real-time, making them
well-suited for applications with strict power constraints, such as IoT and wearable devices.

2.5 Neuromorphic Computing

The field of machine learning and deep learning has seen an explosive growth in the last decade,
solving complex problems and achieving breakthrough results in various domains. From image
recognition, natural language processing, and autonomous vehicles to financial prediction and medi-
cal diagnosis, the impact of machine learning algorithms has been profound. However, the traditional
computing architecture used for implementing these algorithms has its limitations, which become
more pronounced for certain applications, such as wearable devices and bioimpedance-based sensory
systems. In particular, the separation of memory and processing units in traditional computing ar-
chitectures leads to significant energy consumption and communication delays between the memory
and processor, which is a critical issue for these applications.

Neuromorphic computing is the new approach to computing that aims to create more energy-efficient
and faster computers by mimicking the way the human brain processes and stores information. It’s a
departure from the traditional Von Neumann architecture that has been the cornerstone of modern
computing for decades. In the Von Neumann architecture, memory and processing are separate
entities, leading to inefficiencies in communication and energy consumption[51].

In the human brain, the processing and storage of information are integrated into a single entity,
allowing for fast and energy-efficient processing. Similarly, Neuromorphic computing tries to achieve
this integration by using novel hardware and software systems that aim to replicate the functions
of neurons and synapses in the human brain[10]. One key difference between traditional comput-
ing and Neuromorphic computing is the way information is stored and processed. In traditional
computing, data is stored in memory, and the processor accesses the data to perform computations.
This constant back and forth communication between memory and processor consumes a significant
amount of energy and leads to delays in processing. In contrast, Neuromorphic computing systems
store and process data in a single physical location, eliminating the need for constant communication
between memory and processor. This results in a more energy-efficient computing system that can
perform computations faster compared to traditional computing methods. Another advantage of
Neuromorphic computing is its ability to perform well under low-power conditions, making it ideal
for applications where power consumption is a concern. Neuromorphic systems can use algorithms
that are more energy-efficient than traditional algorithms, as they can process and store information
in parallel. This ability to conserve energy makes neuromorphic systems ideal for use in portable and
embedded devices, such as mobile phones, laptops, wearable devices, and IoT (Internet of Things)
devices where power consumption and size are critical factors[22].

27



In Neuromorphic computing systems, computation is performed using artificial neurons and synapses,
which are modeled after their biological counterparts. These artificial neurons and synapses are inte-
grated into the same physical location and are designed to perform the same functions as biological
neurons and synapses. Neuromorphic computing systems can be implemented using both digital
and analog circuits. Digital Neuromorphic computing systems use digital circuits to implement the
artificial neurons and synapses, while analog Neuromorphic computing systems use analog circuits.
Analog Neuromorphic computing systems are known to consume less power compared to digital
Neuromorphic computing systems, making them ideal for low-power applications.

One of the challenges in Neuromorphic computing is creating systems that are scalable and can
perform complex computations. Currently, Neuromorphic computing systems are limited in their
computational capability, and research is being conducted to develop more advanced Neuromorphic
computing systems that can perform complex computations.

28



Chapter 3

Neuromorphic Hardware and
Software/Frameworks

3.1 Neuromorphic Hardware

In recent years, there has been a growing interest in mapping machine learning algorithms and deep
learning workloads onto neuromorphic hardware. The objective of this mapping is to leverage the
inherent energy efficiency and low power consumption of neuromorphic hardware, while still being
able to perform complex computations. The use of machine learning and deep learning algorithms in
various domains, such as image and speech recognition, autonomous driving, and natural language
processing, has increased dramatically over the last decade. However, the energy consumption and
computational demands of these algorithms are very high, making it difficult to run them on con-
ventional hardware systems. Neuromorphic hardware provides a promising solution to this problem,
as it is specifically designed to perform computations in an energy-efficient manner, mimicking the
way the human brain processes information.

There are several approaches proposed for mapping machine learning workloads to neuromor-
phic hardware, each with different objectives and trade-offs. Some of the popular mapping ap-
proaches include Corelet[3], which is used to map Spiking Neural Networks (SNNs) onto TrueNorth
hardware[21]. Another approach, PACMAN [24], maps SNNs onto SpiNNaker. PyNN [4] maps SNNs
onto different hardware platforms, such as Loihi, BrainScaleS , and Neurogrid[6], by balancing the
load on each tile. The primary objective of these approaches is to balance the workload on each
tile by distributing the neurons and synapses evenly. This ensures that the computational demands
of the machine learning algorithms are met, while also minimizing energy consumption. Beyond
load balancing, recent techniques have also explored other objectives. For example, PSOPART is
used to map SNNs to neuromorphic hardware, with the goal of reducing energy consumption on the
shared interconnect[18]. SpiNeMap performs energy-aware clustering of SNNs and then maps the
clusters to tiles, reducing the coication energy[54]. DecomposeSNN decomposes an SNN to improve
the cluster utilization[5]. By leveraging the energy efficiency of neuromorphic hardware, it is pos-
sible to perform complex computations while minimizing energy consumption and preserving the
computational efficiency of machine learning algorithms. These purposed approaches to simulating
large-scale spiking neural networks have their own strengths and weaknesses. By considering the
technology used to model neurons and synapses, the communication topology, and the support for
synaptic plasticity, it is possible to choose the best approach for a particular application.

1. Technology used to model neurons and synapses:
The technology used to model neurons and synapses can be either digital or analog. Digital
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models are implemented on conventional general-purpose computers, including cluster ma-
chines and high-performance computers, or on special-purpose hardware such as FPGAs[44],
graphics processor units, or custom silicon. Analog models, on the other hand, can be either
subthreshold, where real-time performance is achievable, or above threshold, where the circuits
are much faster than biological real-time.

Digital models are implemented on conventional general purpose computers, including cluster
machines and high-performance computers, or on special-purpose hardware such as FPGAs,
graphics processor units, or custom silicon. They have the advantage of flexibility and Their
circuits can be easily reconfigured to handle a wide range of neural network models and tasks,
making them more versatile than analog circuits. Digital neuromorphic hardware is also ca-
pable of performing complex computations with high accuracy, which makes it a good fit for
tasks such as natural language processing, image recognition, and autonomous driving.

On the other hand, Analog neuromorphic hardware uses continuous signals, such as voltage or
current, to represent and process data, while digital neuromorphic hardware uses binary digits
or bits. Both analog and digital neuromorphic hardware have their own strengths and weak-
nesses, and the choice of which to use depends on the specific application and task. Analog
circuits are often more power-efficient and can perform certain types of computations more
quickly.This makes analog neuromorphic hardware especially well-suited for applications that
require low-power consumption, such as implantable medical devices or sensors for the Internet
of Things (IoT), while digital circuits are more flexible and can handle a wider variety of neural
network models. Analog circuits are especially well-suited for processing continuous signals in
real time, which is important for applications such as signal processing and control systems.
Digital circuits, on the other hand, are better at processing discrete signals and can perform a
wide range of computations with high precision and flexibility.

Overall, both analog and digital neuromorphic hardware are important in the development
of intelligent systems, and advances in this field have the potential to revolutionize computing
and artificial intelligence.

2. Communications topology:
The communications topology employed by a computing system can have a significant impact
on its ability to simulate large-scale neural networks. Some designs use conventional topologies,
such as those used in cluster machines and high-performance computers, while others use novel
topologies, such as the lightweight multicast packet routing mechanism used in SpiNNaker.

3. Support for synaptic plasticity:
The support for synaptic plasticity is another important factor to consider when evaluating
different designs for simulating neural networks. Some designs provide limited support for
synaptic plasticity, while others provide full support, allowing for the simulation of plasticity
and learning in neural networks.

3.2 Neuromorphic Cognitive Systems

Neuromorphic cognition systems refers to the study and development of computing systems that
mimic the structure, function, and behavior of the biological nervous system[65]. This field aims to
create novel hardware solutions that can perform complex computation real time on the principles
of biological neural networks. Neuromorphic computing systems, such as the Akida 1000 neuromor-
phic processor, are designed to process and interpret sensory information in real time, making them
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suitable for various applications in the fields of robotics, artificial intelligence, and bioinformatics.
One of the main advantages of neuromorphic computing is its ability to handle event-based data and
perform computation with low latency and high energy efficiency, making it a promising platform
for implementing machine learning algorithms and neural networks in bioimpedance-based sensory
systems.

In recent years, it has been the development of single-chip devices that emulate peripheral sensory
transduction, such as silicon retinas, visual motion sensors, and silicon cochleas. These single-chip
devices have been successful in a wide range of applications, including robotics, medical devices, and
sensory processing. For example, silicon retinas have been used in robotics to create vision systems
that can detect and track objects in real time, while silicon cochleas have been used in hearing aids
to improve speech recognition and sound localization. The success of these single-chip devices has
led to the development of larger multi-chip neuromorphic systems that aim to emulate more complex
neural networks. These multi-chip systems typically consist of one or more neuromorphic sensors,
which are interfaced with general-purpose neural network chips using spiking silicon neurons and
dynamic synapses. One example of such a system is the Neuromorphic Adaptive Plastic Scalable
Electronics (NAPSE) chip[56], which was developed by a team at Georgia Tech. The NAPSE chip
uses a scalable architecture to emulate the behavior of large scale neural networks and has been used
for tasks such as sensory processing, control, and decision making. Some other examples of a multi-
chip neuromorphic system are the SpiNNaker (Spiking Neural Network Architecture) project,IBM
TrueNorth,Loihi,SynSense and Akida Neuromorphic processor.

3.2.1 SpiNNaker

SpiNNaker is a chip designed for high-performance and scalable neural network simulations. It is
an architecture designed to be highly efficient and scalable, making it an ideal choice for large-scale
neural network simulations. The chip was developed by the University of Manchester and it is still
not commercially available, but limited to research groups. One of these groups is the computa-
tional neuroscientists group that uses SpiNNaker to simulate large neural models to understand the
brain.The lightweight nature of the packet-routing mechanism, combined with its support for high
connectivity, makes it possible for the SpiNNaker system to simulate large scale neural networks
with millions of neurons and billions of connections. SpiNNaker’s architecture is based on a scal-
able, parallel processing model that allows it to simulate the operation of large numbers of neurons
and synapses in real time. The chip is designed to be highly energy-efficient, which makes it ideal
for running large scale neural network simulations on embedded systems, such as robots and au-
tonomous vehicles. Its architecture is based on a mesh-based communication system, which allows
it to distribute data between processing nodes with low latency. This makes it ideal for large-scale
simulations, as the communication overhead is low and the simulation can be scaled up by adding
more nodes.
SpiNNaker has been used in various studies to investigate the functioning of the human brain and
to develop new algorithms that mimic biological processes. For instance, researchers have utilized
SpiNNaker to simulate the brain’s visual system and to understand how it processes visual informa-
tion. Such studies have led to the development of novel algorithms for image recognition that are
more efficient and accurate than traditional approaches.
One of the key applications of SpiNNaker is in the field of machine learning, where it is used to
implement large scale neural network algorithms in order to understand how the brain works and
implement them in computer architecture. These algorithms are used in a variety of applications,
including image recognition, speech recognition, and natural language processing. For example,
SpiNNaker has been used in a number of studies to develop deep learning algorithms for image
recognition, including the development of Convolutional neural networks (CNNs) for recognizing
objects in images.
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Another application of SpiNNaker is in the field of robotics, where it is used to implement real
time control systems. For example, SpiNNaker has been used to develop real time control systems
for robots that are capable of navigating complex environments. These systems use SpiNNaker to
process sensory data in real time, allowing the robot to react quickly to changes in its environment.
SpiNNaker has also been used in a number of studies to develop algorithms for brain-machine in-
terfaces (BMIs)[36]. BMIs have been extensively researched and used for several years to detect
imagined motor tasks by exploiting the natural link between these tasks and physical actions. How-
ever, a key challenge in realizing the future potential of neuromorphic computing is identifying and
implementing brain-inspired algorithms to decode recorded signals in real time. To address this
challenge, researchers have proposed and implemented a novel approach inspired by the olfactory
system of insects to decode and predict imaginary movements from electroencephalogram (EEG)
signals using a spiking neural network implemented on the SpiNNaker neuromorphic hardware (4
chip, 64 cores)[58]. The study provides a proof of concept for the successful implementation of a
functional spiking neural network for decoding two motor imagery (MI) movements on the SpiN-
Naker system, which can be extended to classify more complex MI movements on larger SpiNNaker
systems. There is a growing body of research that demonstrates the effectiveness of SpiNNaker for
these applications, making it an important tool for those working in these fields.

The neural simulation on SpiNNaker follows an event-driven model, in which all computational
tasks are triggered by events in hardware. The neuron states are computed in discrete timesteps
initiated by a local periodic timer event on each processor. During each timestep, the processors
evaluate the membrane potentials of all their neurons based on prior synaptic inputs and generate a
packet for each neuron that spikes. These spike packets are routed to all processors that model neu-
rons that are efferent to the spiking neuron[52]. When a processor receives a spike packet, it raises
a packet event that prompts the efferent processor to retrieve the appropriate synaptic weights from
off-chip RAM using a background Direct Memory Access (DMA) transfer. The processor can then
perform other computations during the DMA transfer, and is notified of its completion by a DMA
done event. The completion of the DMA transfer prompts the calculation of the sizes of synaptic
inputs to subsequent membrane potential evaluations. This event-driven approach ensures that the
processors only perform computations in response to relevant events, maximizing energy efficiency
and computational throughput.

3.2.2 IBM TrueNorth

IBM TrueNorth is a neurosynaptic computing architecture designed to emulate the human brain’s
function and performance. The architecture was developed by IBM Research and was first intro-
duced in 2014. The main aim of the TrueNorth architecture is to create a new type of computing
system that can efficiently handle cognitive and perception tasks while consuming low power. It
is based on the concept of neuromorphic computing, which is a new approach to computing that
mimics the structure and function of the brain’s neurons and synapses. The TrueNorth architecture
is designed to be highly scalable, flexible, and programmable. It is based on a novel chip architec-
ture that integrates thousands of tiny processors, each with its own memory, and a large number of
programmable connections. This architecture allows the chip to perform multiple tasks simultane-
ously and to reconfigure itself on-the-fly, which makes it suitable for handling complex and dynamic
environments.

One of the unique features of TrueNorth architecture is its highly parallel and low-power design.
The architecture uses a low-precision, event-driven computing model that is optimized for the spik-
ing neural network algorithms used in many cognitive computing tasks. This approach reduces the
power consumption of the chip compared to traditional processors, making it suitable for use in
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battery-powered devices[3]. Another key aspect of the TrueNorth architecture is its programma-
bility. The architecture uses a high-level programming language called Corelet, which makes it
easier for developers to write and debug applications for the chip. Corelet is designed to be flex-
ible and easy to use, allowing developers to easily program the chip to perform a wide range of
tasks. The TrueNorth architecture has been used in a variety of fields, including computer vision,
robotics, and speech recognition. For example, the architecture has been used to develop a real
time image recognition system that can recognize objects and faces in images and videos[13]. The
system has been tested on a variety of datasets and has demonstrated high accuracy and low latency.

The IBM Neurosynaptic system features the use of Convolutional Neural Networks (CNNs) in deep
learning applications. These algorithms have been effective in solving various visual and audio
recognition problems. As the development of new machine learning algorithms accelerates, the IBM
TrueNorth chip has been shown to be capable of performing Deep Neural Networks (DNNs) effi-
ciently, achieving near state-of-the-art results on eight standard datasets, including image and speech
classification. For instance, the CIFAR100 dataset achieved 65.48% accuracy with the use of 31492
neurosynaptic cores, or about 8 TrueNorth chips[13]. As deep neural networks become increasingly
deeper, their accuracy also rises, as evidenced by the use of 152-layer residual networks achieving
high accuracy on the ImageNet test[28]. This level of accuracy requires the use of 8-bit neuron
states, and while TrueNorth is efficient at accelerating machine learning, it still faces challenges such
as high core occupancy and a gap between its performance and state-of-the-art accuracy. One issue
with TrueNorth is the low resolution of the data representation, as all communications between the
neurosynaptic cores use binary spikes and the synaptic weights are stored as integers and selected
through a lookup table. This low resolution leads to quantization loss and a decrease in inference
accuracy when mapping a trained neural network in floating-point data format to TrueNorth. To
overcome this issue, stochastic computing methods are used, where data is statistically represented
in both temporal and spatial domains, by using multiple spikes or multiple hardware copies of the
neural networks[2]. With its ability to handle complex and dynamic environments, the TrueNorth
architecture has the potential to revolutionize the field of computing and open up new possibilities
for research and development in the future. Despite these promising capabilities, there are limi-
tations to the flexibility of TrueNorth for users. Each type of layer is well-written, but they are
encrypted in a protected function file, preventing users from accessing or modifying details within
the convolutional layer, such as regularization or activation functions.

3.2.3 Loihi

Loihi is a groundbreaking research chip developed by Intel that has the potential to revolutionize
the field of artificial intelligence and machine learning. This cutting-edge technology is designed to
simulate the behavior of biological neurons and synapses, and has a unique architecture that enables
high-speed, low-power operation for AI and machine learning applications. The chip represents a
major advance in the field of neuromorphic computing, which aims to develop computing systems
that mimic the structure and function of biological neurons and synapses[19]. The architecture of
Loihi is based on a spiking neural network, which is a type of artificial neural network that operates
using spikes or pulse-like signals. Unlike traditional Von Neumann architectures, which are based on
a linear flow of information processing, Loihi can perform computations in an event-driven manner.
This means that it can respond to incoming signals in real-time and perform computations only
when necessary, which allows it to be highly energy efficient.

One of the key features of Loihi is its ability to perform on-chip learning. This is a type of ma-
chine learning that takes place directly on the chip, rather than on a separate computer. This
means that the chip can adapt to changing inputs in real-time and continue to improve its perfor-
mance over time. This ability to learn is particularly useful for AI systems that need to operate
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in resource-constrained environments, such as IoT devices, autonomous robots, and wearable de-
vices. In addition to its event-driven architecture and on-chip learning capabilities, Loihi has several
other unique features that make it well-suited for AI and machine learning applications. For ex-
ample, it has a hierarchical structure that enables it to process information at different levels of
abstraction. This allows it to perform complex computations more efficiently than traditional Von
Neumann architectures. Additionally, Loihi includes a flexible interconnect structure that enables
it to be easily reconfigured for different applications. The chip’s ability to perform computations
in an event-driven manner, combined with its ability to learn on-chip, makes it an ideal technology
for building AI systems that can operate in real-world scenarios, where low-power consumption and
high computational efficiency are critical.

The Loihi 2 second-generation neuromorphic research chip is compatible with the Lava open-source
software framework designed for developing applications for neuromorphic hardware architectures.
The software currently operates on CPUs and Loihi chips, but the compiler and runtime are open
to extensions for other architectures. Access to Loihi 2 will primarily be through the Neuromor-
phic Research Cloud, which provides shared systems such as the ”Oheo Gulch” single-chip system
connected to an Aria 10 FPGA for early evaluation[38]. It will soon be joined by the ”Kapoho
Point,” a compact (4x4-inch) stackable 8-chip system with Ethernet. Intel has tested Loihi 1 and
2 chips in various applications, including adaptive robot arm control, visual-tactile sensory percep-
tion, odor and gesture recognition, drone motor control with low latency response to visual input,
fast database similarity search, modeling diffusion processes for scientific computing applications,
and solving optimization problems such as railway scheduling. Moreover, the Loihi chip consumes
significantly less power than standard CPU and GPU solutions, making it a promising candidate
for neuromorphic AI acceleration. This feature may enable the Loihi chip to provide datacenter-like
hardware capabilities for robots, autonomous vehicles, and other applications, with lower power
consumption and latency. SNN’s efficiency in battery-powered sensors with built-in AI is also ex-
pected to benefit from lower-end neuromorphic chips. The Loihi chip has been evaluated in various
demonstrations, and in most cases, its power consumption was less than 1 watt. In comparison,
standard CPU and GPU solutions typically consume tens to hundreds of watts, which highlights the
breakthrough in energy efficiency that Loihi represents. In many of these demonstrations, relative
gains reached several orders of magnitude, indicating the vast improvements that Loihi provides in
energy efficiency. Furthermore, the Loihi chip exhibits state-of-the-art response times to incoming
data samples while also adapting and learning from incoming data streams, making it ideal for the
best applications. The combination of low power and low latency, with continuous adaptation, has
the potential to introduce new intelligent functionality to power and latency constrained systems at
a scale and versatility beyond what any other programmable architecture can currently support.

The Loihi 2 neuromorphic chip represents a significant advancement over the first generation Loihi
with several notable improvements. Specifically, the Loihi 2 chip boasts up to 10 times faster pro-
cessing capability, which includes a 2 times improvement for simple neuron state, 5 times for synaptic
operations, and 10 times for spike generation. Additionally, the Loihi 2 chip provides up to 60 times
more inter-chip bandwidth, which has been achieved through a combination of higher inter-chip
signaling speed (four times faster), more inter-chip links (6 versus 4), and over 10 times reduction
in inter-chip bandwidth utilization. Moreover, the Loihi 2 chip can support up to 1 million neurons,
which represents a 15 times increase in resource density. The chip is also scalable in three dimensions
with native Ethernet support, and fully programmable neuron models with graded spikes. Finally,
the Loihi 2 chip boasts enhanced learning and adaptation capabilities. These impressive advance-
ments demonstrate the significant progress made in the field of neuromorphic computing and hold
promise for future developments in this area.
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3.2.4 SynSense

SynSense is a neuromorphic computing platform that utilizes a novel architecture inspired by the bi-
ological structure of the human brain. Neuromorphic computing is a subfield of artificial intelligence
that aims to design computing systems that work like the human brain. SynSense is unique in its
design because it uses a large number of simple processing units, each mimicking the behavior of a
single neuron. The primary building block of the SynSense platform is the artificial neuron, which is
designed to mimic the properties of biological neurons. These artificial neurons receive inputs from
other neurons, process these inputs, and produce outputs that can be sent to other neurons. The
processing performed by the artificial neurons is based on mathematical models that are inspired by
the behavior of biological neurons. The SynSense platform uses a parallel processing architecture,
which allows for massive amounts of computation to be performed in parallel.

One of the key advantages of the SynSense platform is its energy efficiency. Because the indi-
vidual processing units are designed to be simple and to mimic biological neurons, they require very
little power to operate. This means that the SynSense platform can be used in a wide range of
applications, including edge computing, where low power consumption is important. In addition,
the energy efficiency of the SynSense platform enables it to be used in applications where traditional
computing systems would be impractical, such as wearable devices and Internet of Things (IoT)
devices, including gesture recognition, face or object detection, location tracking, and surveillance.
Another advantage of the SynSense platform is its ability to handle complex, dynamic tasks. Unlike
traditional computing systems, which are designed to perform a specific task, the SynSense platform
is capable of adapting to new inputs and tasks in real time. This is because the artificial neurons in
the platform can change their behavior based on the inputs they receive. This makes the SynSense
platform ideal for use in applications that require real time decision making and problem solving,
such as autonomous robots and vehicles.

The SynSense platform presents significant potential for use in diverse applications within the
healthcare field. Notably, SynSense has developed a suite of hardware solutions that enable com-
pact, energy-efficient neuromorphic bio-signal processing. These solutions have been tailored to
support ultra-low power sensory processing at the edge, with power consumption levels typically
below a few milliwatts, and can instantly detect anomalies through continuous monitoring of critical
body signals, including electrocardiogram (ECG), electromyogram (EMG), and electroencephalo-
gram (EEG), in real time from wearable devices. This technology could be applied, for instance,
to develop wearable devices for monitoring and diagnosing neurological disorders like epilepsy or
Parkinson’s disease. Moreover, the platform’s ability to handle complex, dynamic tasks may render
it useful for developing assistive technologies geared towards supporting individuals with disabilities.
Moreover,SynSense has successfully implemented ultra-low-power always-on key-word and command
detection based on Spiking Neural Networks (SNNs) for auditory processing. This state-of-the-art
technology is specifically designed to process data in close proximity to the sensor, utilizing cut-
ting edge algorithms that are tailored to specialized processors. Overall, SynSense is a promising
platform for neuromorphic computing applications. Its energy efficiency, ability to handle complex
tasks, and potential for use in a variety of applications make it an exciting development in the field
of artificial intelligence and computing.

While these multi-chip neuromorphic systems have the potential to revolutionize computing and
artificial intelligence, they also present new challenges and issues. One of the main challenges is
the need for efficient communication between the different components of the system. In order to
achieve real time performance, data must be communicated between the neuromorphic sensors and
the general-purpose neural network chips with low latency and high bandwidth. Another challenge
is the need for efficient power management. Multi-chip neuromorphic systems can require a large
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amount of power, which can be a significant challenge for mobile and battery-powered applications.
Power-efficient design strategies, such as the use of low-power analog circuits and voltage scaling,
will be essential for the development of practical and scalable neuromorphic systems. These devices
have demonstrated the potential of neuromorphic computing for a wide range of applications, and
have led to the development of larger multi-chip neuromorphic systems. While these systems present
new challenges and issues, they also offer the potential for significant advances in computing and
artificial intelligence. With continued research and development, multi-chip neuromorphic systems
have the potential to transform the way we interact with technology and each other.

3.2.5 Akida Neuromorphic Processor

One of the leading companies in the neuromorphic field is BrainChip, which has developed Akida,
a neuromorphic processor IP designed to process sensor data with unparalleled efficiency, precision,
and energy economy. The Akida neuromorphic processor is a fully customizable event-based AI
neural processor, which supports up to 256 nodes that connect over a mesh network. Its scalable ar-
chitecture and small footprint make it highly efficient, boosting performance by orders of magnitude
compared to traditional Von Neumann architectures. At the heart of Akida are its Neural Processing
Units (NPUs), which are organized into nodes. Each node contains four NPUs, each with scalable
and configurable SRAM. The NPUs within each node can be configured as either convolutional or
fully connected, depending on the needs of the application.

One of the key advantages of Akida is its ability to leverage data sparsity, activations, and weights
to reduce the number of operations by at least 2X. This is achieved by processing only the essential
data, rather than processing all data, including redundant and non-useful information. Moreover,
Akida is designed to be highly energy-efficient, due to its event-based architecture. By processing
data only when an event occurs, Akida reduces the amount of power required for processing, which
is particularly beneficial for applications with strict power constraints, such as IoT devices.

On-chip learning is a feature in Akida neuromorphic processors that enables the device to learn
and adapt to new information in real time, without the need for external computing resources. This
is made possible by the event-based nature of Akida’s design, which allows for the efficient pro-
cessing of sparse data and low-latency learning. The on-chip learning capability of Akida opens up
new opportunities for applications in areas such as autonomous systems, sensory processing[60], and
machine learning, by allowing for real-time adaptation and enabling devices to operate in dynamic
environments and respond to changing conditions. Moreover, one of the key benefits of on-chip
learning in Akida is its energy efficiency, which stands in contrast to traditional computing systems
that rely on large amounts of data storage and transfer to perform machine learning tasks, leading
to significant energy consumption.

One of the key benefits of on-chip learning in Akida is its energy efficiency. Traditional comput-
ing systems rely on large amounts of data storage and transfer to perform machine learning tasks,
which can consume significant amounts of energy. In contrast, Akida’s event-based design allows
for learning to occur with very low power consumption, making it well-suited for battery-powered
or energy-constrained systems. Additionally, on-chip learning in Akida enables new levels of system
integration and compactness. With the ability to perform learning locally, there is no need for ex-
ternal processors or memory components, which can reduce system size and complexity. Another
advantage of on-chip learning in Akida is its ability to handle dynamic data streams. Traditional
computing systems can struggle to keep up with rapidly changing data, leading to latency and inac-
curacies in their output. In contrast, Akida’s event-based design allows for real-time processing of
incoming data, enabling accurate and timely responses. Overall, the on-chip learning capability of
Akida represents a significant advancement in the field of neuromorphic computing, enabling new
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applications and improving the performance and efficiency of existing ones.

The challenge of mapping any Compatible model to Akida One of the main challenges of map-
ping a compatible machine learning model to the Akida neuromorphic processor is ensuring that the
model’s structure and parameters are compatible with the event-based processing approach used
by Akida. In traditional computing systems, machine learning models are typically designed to
operate on a continuous stream of data and use floating-point arithmetic to perform computations.
In contrast, Akida operates on a stream of events and uses a fixed-point arithmetic system, which
can result in different behavior and accuracy compared to traditional systems. Another challenge
is the limited memory resources available on the Akida, which may require a reduction in the size
of the model or the use of more efficient algorithms to ensure it can run effectively. Additionally,
converting a machine learning model from a software implementation to a hardware implementation
on the Akida can also require significant expertise in both machine learning and hardware design.
Overall, mapping a machine learning model to the Akida requires careful consideration of the model’s
structure, parameters, and computational requirements, as well as an understanding of the unique
constraints and capabilities of the Akida neuromorphic processor. Furthermore, it is also important
to evaluate the power consumption and performance of the mapped model on the Akida, as this can
impact its practicality for deployment in real world applications.

Another challenge is the limited support for certain types of machine learning models, as the Akida
is currently optimized for convolutional neural networks (CNNs) and support for other types of
models may be limited. In addition, the Akida’s event-based processing approach may also result in
different behavior and accuracy compared to traditional machine learning models, which can make
it difficult to directly compare the results from the Akida with those from traditional systems. De-
spite these challenges, the unique capabilities of the Akida, such as its low power consumption and
high performance, make it a promising platform for implementing machine learning algorithms in
bioimpedance based sensory systems. With advances in mapping techniques and development of
new algorithms, it may be possible to overcome these challenges and unlock the full potential of
neuromorphic computing for bioimpedance sensing applications in the future.

3.2.6 Biohybrid systems

Biohybrid systems are a promising area of research that involve biological and artificial components
interacting in a unidirectional or bidirectional fashion. One of the key applications of biohybrid sys-
tems is in the area of brain repair, with neurons or brain tissue serving as the biological component.
The first demonstration of a biohybrid dialogue was achieved in the early 1990s by Renaud-LeMasson
and colleagues, who established communication between a biological neuronal network and a com-
putational model neuron in vitro[12]. Shortly after, Chapin and colleagues brought the biohybrid
paradigm to the in vivo setting by interfacing the brain with a robotic end-effector, a paradigm that
has recently become a reality in clinical research.

Biohybrid systems are now a widespread approach to addressing brain dysfunction and devising
novel treatments for it. Representative examples include electronic devices coupled to biological
neurons in vitro or to the brain in vivo[1], establishing a bidirectional communication through a
closed-loop architecture. A key feature of such systems is the real time processing and decoding
of neural signals to drive an actuator for brain function modulation or replacement. To this end,
the enhancement of biohybrid systems with artificial intelligence (AI) is an emerging strategy to
achieve an adaptive interaction between the biological and artificial counterparts[61]. Neuromorphic
engineering represents the latest frontier for enhancing biohybrid systems with hardware intelligence
and distributed computing, offering unprecedented brain-inspired computational capability, dynamic
learning and adaptation to ongoing brain activity, power-efficiency, and miniaturization to the micro-
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scale. The intrinsic learning and adaptive properties of neuromorphic devices enable bypassing the
typical trial-and-error programming and the pre-programmed behavior of current brain implantable
devices, such as those used for deep-brain stimulation. In turn, this unique potential enables sur-
passing the drawbacks of current mechanistic approaches with a phenomenological (evidence-based)
operating mode. Overall, these features serve as an asset to attain a physiologically-plausible inter-
action between the biological and artificial counterparts.

The latest avenue for biomedical applications is neuromorphic-based functional biohybrids for brain
regeneration. These are hybridized brain tissue grafts, wherein the neuromorphic counterpart(s)
emulate and integrate brain function, aiming at guiding the integration of the biological graft into
the host brain. This crucial aspect cannot be attained by a purely biological regenerative approach.
Further advances in neuromorphic biohybrids are expected to bring unparalleled strategies in regen-
erative medicine for the brain. By providing symbiotic artificial counterparts capable of autonomous
and safe operation for controlled brain regeneration, they herald a paradigm shift in biomedical in-
terventions for brain repair, from interaction to integration. However, challenges arise due to the
physical inement of the neuromorphic counterparts within the biohybrid graft. The neuromorphic
devices should be power-autonomous, as device powering cannot rely on a wired power supply unit,
such as commonly used subcutaneous batteries. Continuous device operation without the need for
battery replacement is essential for brain regeneration, and the operation of an autonomous sys-
tem should not depend on external components. Wireless operation is also required to follow the
graft’s evolving function during the regeneration process, enabling wireless device re-programming
and hardware failure monitoring.

On-chip learning is supported by application specific integrated circuits for advanced signal pro-
cessing to follow the evolving temporal dynamics of the graft during its integration within the host
brain without the aid of an external controller. Another important consideration is the bioresorbable
property of the neuromorphic devices. In aiming to heal brain damage, the neuromorphic counter-
parts should be regarded as a temporary aid in the process, and they should be removable upon
completion of brain repair. Non-invasive micro-surgery techniques, such as high-intensity focused
ultrasound, may permit removal of mm-sized devices, but this is not technically feasible in the case of
ultra-small (and, even more so, intracellular) devices. Therefore, particularly relevant to functional
biohybrids is that the neuromorphic counterparts should be bioresorbable.

Biohybrid systems represent a promising area of research for addressing brain dysfunction and de-
veloping novel treatments for it. The combination of biological and artificial components enables the
real time processing and decoding of neural signals to drive an actuator for brain function modulation
or replacement. The integration of neuromorphic engineering and artificial intelligence into biohy-
brid systems offers unprecedented brain-inspired computational capability, dynamic learning, and
adaptation to ongoing brain activity, making it possible to attain a physiologically-plausible interac-
tion between the biological and artificial counterparts. The latest advances in neuromorphic-based
functional biohybrids hold tremendous potential for regenerative medicine for the brain, providing
symbiotic artificial counterparts capable of autonomous and safe operation for controlled brain re-
generation.

Overall, the challenge in developing neuromorphic computing systems lies in creating hardware
that can simulate the dynamic and parallel nature of biological neurons and synapses. To address
this challenge, researchers have developed novel computing architectures, such as spiking neural
networks and memristive circuits, that can simulate the behavior of biological neurons in real time.
Additionally, algorithms and techniques, such as unsupervised learning and spike-timing dependent
plasticity, have been developed to train these hardware systems in a biologically-plausible manner.
One of the key benefits of neuromorphic computing is its ability to perform real time processing and
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decision making. Unlike traditional computing systems, which require complex data pre-processing
and extensive training, neuromorphic systems can process raw sensory data in real time, allowing
them to make decisions and respond to changing conditions in a timely manner. This makes them
particularly well-suited for applications in areas such as robotics, where fast response times are crit-
ical for safety and stability. In summary, the field of neuromorphic cognition aims to bridge the gap
between biological and artificial intelligence by creating computing systems that can process and in-
terpret sensory data in a manner similar to biological neurons. With its ability to handle event-based
data and perform computation with low latency and high energy efficiency, neuromorphic computing
offers a promising platform for implementing machine learning algorithms and neural networks in
bioimpedance based sensory systems. In addition, another key advantage of spike-timing-dependent
computing is its ability to perform efficient computations using low power consumption. This is
in contrast to traditional computing systems, which are optimized for throughput, rather than en-
ergy efficiency. As a result, neuromorphic computing systems are particularly well-suited for use
in portable and battery powered devices, where low power consumption is a critical factor. These
advantages make neuromorphic computing an attractive approach for developing intelligent systems
that can operate in real-time, with low energy consumption, and can handle the unique challenges
presented by bioimpedance-based sensory systems. Unlike traditional computing systems, which are
optimized for throughput, neuromorphic systems are optimized for energy efficiency. Neuromorphic
computing also has the potential to overcome the limitations of traditional machine learning algo-
rithms, such as the need for large amounts of labeled training data and the difficulty in scaling to
handle high dimensional data. By leveraging biologically inspired algorithms, such as unsupervised
learning and spike-timing dependent plasticity, neuromorphic systems can learn from and adapt to
new data in real time, making them well-suited for applications in rapidly changing and unpre-
dictable environments. Additionally, neuromorphic computing has the potential to provide a new
level of scalability and robustness, making it possible to implement large-scale, real time machine
learning systems that can handle high-dimensional data in a computationally-efficient manner. This
advantage is crucial for applications that require real-time processing of large amounts of data, such
as robotics, autonomous vehicles, and smart cities. The field of neuromorphic cognition is a rapidly
growing and exciting area of research that has the potential to revolutionize the way we process and
interpret sensory data. With its ability to perform real time processing and decision-making, low
power consumption, and biologically inspired learning algorithms, neuromorphic computing offers
a promising platform for implementing machine learning algorithms and neural networks in a wide
range of applications. This includes the development of intelligent systems that can operate in dy-
namic environments, adapt to new situations, and make decisions in real time, which are critical for
many applications such as healthcare, security, and the internet of things. As researchers continue
to explore the potential of neuromorphic computing, we can expect to see significant advancements
in the development of intelligent systems in the near future.

39



Chapter 4

Methodology

4.0.1 Data Acquisition System in the laboratory

Gamma-Aminobutyric acid (GABA) is an important neurotransmitter in the central nervous system
that plays a crucial role in regulating neuronal excitability. Accurate and reliable measurement of
GABA concentration is essential for the study of its physiological and pathological functions. In
this study, the dielectric properties of pure GABA solutions in deionized water were measured using
Dielectric Relaxation Spectroscopy (DRS) and the data was collected over several days under con-
stant conditions to build a model for detecting GABA concentration levels.

The aim was to create a series of solutions with increasing GABA (gamma-aminobutyric acid) con-
centrations in the interval of 10µM to 200µM that will be applied on a machine learning model.Data
is the backbone of machine learning, and its importance cannot be overstated. The quality and
quantity of data used in the training process directly affects the accuracy and performance of a
machine learning model. The more diverse and representative the data is, the more accurately the
model will be able to make predictions. we measured the mass of GABA by using a XS204 MET-
TLER TOLEDO which is compact and high-performance analytical balance designed for laboratory
applications.
We first calculate the mass of GABA needed from the concentration in molality to mass in grams
using the equation of mol and molarity. The molarity of the solution was used to express the concen-
tration, as it is a convenient and commonly used method to quantify the amount of solute present
in a solution.

m = M ∗ n = M ∗ C ∗ V (4.1)

where m is the mass of the GABA powder in gram (g), M is the molar mass of GABA, M = 103.12
g/mol. c is the concentration of GABA with unit [mol/kg = molal = m] and V is the volume of
solvent water, V = 0.5 L = 0.5 kg. We stored The weighed GABA powder in individual flasks, ready
for use in creating the solutions. To create the first 0.5 M GABA solution, a calculated amount of
the first 0.5 M of GABA was mixed with 500 ml of deionized water. This solution served as the
starting point for the creation of higher concentration solutions with an increment of 10µM. The
temperature of the solutions was kept constant at 22°C during the measurement in order to avoid
variation in temperature.
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Target Concentration GABA solution Pure Dioinzed Water (ml)
10µM 5 ml 495 ml
20µM 10 ml 490 ml
30µM 15 ml 485 ml
40µM 20 ml 480 ml
50µM 25 ml 475 ml
60µM 30 ml 470 ml
70µM 35 ml 465 ml
80µM 40 ml 460 ml
90µM 45 ml 455 ml
100µM 50 ml 450 ml
110µM 55 ml 445 ml
120µM 60 ml 440 ml
130µM 65 ml 435 ml
140µM 70 ml 430 ml
150µM 75 ml 425 ml
160µM 80 ml 420 ml
170µM 85 ml 415 ml
180µM 90 ml 410 ml
190µM 95 ml 405 ml

Table 4.1: GABA Concentrations

4.1 Setup of Electrical Impedance Spectroscopy

From these known concentrations the dielectric properties of the solutions were measured using the
DAK-3.5 spectrometer with a frequency range of 200 MHz to 14 GHz. In order to use the DAK
software to make accurate and reliable dielectric measurements:

1. Open the DAK software and ensure that DAK 3.5 is selected. Open the DAK software and
ensure that DAK 3.5 is selected.

Click on the ”Calibration” button.

2. Click on ”Open” a few times to polish the copper stripe.

3. Click on ”Short” a few times to clean the probe.

4. Click on ”Open” a few times and set the water temperature to 25°C by clicking on ”Load” a
few times.

5. Zoom in to check the reference spectrum and clean the probe if necessary.

6. Click on ”Apply” to confirm the calibration settings.

7. Click on ”Measurement” to start making measurements.

8. Check the reference liquid first by selecting saline 0.1M and setting the temperature to 22°C.

9. Ensure that ”Analyze” is turned on (check for the presence of red lines). If the error is below
±4, the calibration is good.
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10. Click on ”Analyze” to remove the analyze window and start taking measurements by clicking
on 1, 2, 3, ...

11. To save the data, click on ”Save Measurements As...” and save the file as a ”.dak measurement”
file.

12. To export the data, click on ”Load Measurements...” and select the ”.dak measurement” file
that you want to export to an Excel file.

13. Click on ”Excel Export” and the data will be exported to an Excel file.

The steps outlined in the procedure are essential to ensure the proper and efficient use of the DAK
software for dielectric measurements. Each step must be followed in order to ensure accurate and
reliable results.

During the data collection, 100 samples of 19 different concentrations were collected over several
days under constant conditions, and the processed these data for analysis purpose. It is a critical to
understand the important features of GABA. each sample collected data consists of 10 samples, each
representing a unique concentration stored in a worksheet format, with each worksheet consisting
of 10 spreadsheets. To ensure the data is well-structured and optimized for analysis. We eliminated
any rows containing text information from the DAK that were not relevant to the modeling pro-
cess. The elimination of extraneous information streamlines the data and reduces the potential for
errors or inaccuracies in the analysis, allowing the modeling process to be carried out with greater
accuracy and reliability, leading to more meaningful and useful results in the analysis of GABA data.

The dielectric permittivity of the GABA solutions increased with increasing GABA concentration,
indicating that GABA molecules contribute to the polarization of the solution in the presence of
an electric field. The dielectric conductivity also increased with increasing GABA concentration,
suggesting that the GABA molecules increase the electrical conductivity of the solution. The di-
electric relaxation spectra showed a clear peak, which corresponded to the relaxation time of the
GABA molecules in the solution.The relaxation time was found to decrease with increasing GABA
concentration, indicating that the GABA molecules are more mobile and able to polarize faster in
higher concentration solutions.

4.1.1 Data manipulation and preprocessing

The pre-processing of the raw GABA data collected from DAK was done using the pandas library in
Python. We filtered to remove any noise or artifacts in the data and dropped some of the features,
then normalized to correct for baseline drift. There was no missing values or errors in the data.
Following pre-processing, we subjected the data to statistical analysis using the matplotlib library
in order to visualize and identify outliers in the distribution of the data using histograms and scatter
plots.

Scaling the features

When analyzing GABA through dielectric spectroscopy, it is important to consider various param-
eters including the real term of permittivity, the imaginary term of dielectric loss, the electrical
conductivity, and the loss tangent.The variations in these parameters across different frequency
ranges provide crucial information on the capacitive behavior and dielectric loss of the sample.These
can greatly impact the modeling process. To ensure that the analysis is accurate and meaningful
proper scaling is required.Machine learning algorithms rely on proper data to solve problems, and
data preprocessing is often necessary to ensure that the data is suitable for analysis. However,
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Figure 4.1: Dielectric Constant Value

preprocessing can be risky as it may inadvertently modify the data and potentially remove impor-
tant information. Data normalization is a critical step in many machine learning algorithms, as it
helps to ensure that different features are treated equally and can improve the model’s performance.
Normalization from a statistical point of view is a type of scaling data and then bringing all the
features into normal distribution or Gaussian distribution.is an important step in data preprocessing
to ensure that machine learning models can effectively learn from the data. In the case of GABA
concentration detection using machine learning, it is necessary to either standardize or normalize
the input data, because the real term of permittivity dielectric constant, has a higher value than
the imaginary term of dielectric loss, the electrical conductivity, and the loss tangent of the data.
This creates a problem because the features have different ranges of values, and we want to bring
all features to the same scale. The normalization process is useful when the features have different
ranges of values, and we want to bring all features to the same scale. So, we Normalized the data to
make that none of the features dominate the others resulting in all the input features on the same
scale[45]. This is done by subtracting the minimum value of each feature from the data and then
dividing the result by the range of that feature. This results that the data being scaled between 0
and 1. This made that all the features are on the same scale and have equal importance in the model.
After we trained the data with normalization applied, there was an improvement in the accuracy and
stability of the model, and the model could effectively detect minor changes in GABA concentration.

Deep Learning refers to the use of Artificial Neural Networks (ANNs or NNs), which consist of
multiple hidden layers with a large number of nodes in each layer. Although the concept of ANNs
was first introduced in 1943, it has only recently gained popularity due to the decreasing costs of
storage and the increase in computational power, both in CPUs and GPUs. Today, ANNs are widely
used for various tasks, such as image classification, text recognition, and predicting health compli-
cations. The versatility and efficiency of Deep Learning have made it a valuable tool in various
industries and applications.

Before implementing our machine learning algorithms, it is important to visualize and analyze the
data to gain insights. The data points of the different concentrations look the same. One cannot
separate the data points linearly. In the case of measuring GABA concentration using dielectric
relaxation spectroscopy, various visualization methods can be used to observe patterns in the data
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and understand the relationships between different variables. For example, scatter plots can be used
to show the relationship between the concentration of GABA and the dielectric constant values.
Additionally, histograms can be used to visualize the distribution of data points, and box plots can
be used to show the range, median, and outliers of the data. These visualization methods provide
a clear picture of the data and help in identifying any trends or patterns that may exist. Addition-
ally, statistical analysis can also be performed on the data to determine the mean, median, mode,
standard deviation, and other important statistical measures. This helps in determining the central
tendency of the data and understanding its variability. By using these visualization and statistical
techniques, the data can be thoroughly analyzed before moving on to the machine learning phase.
We then applied a machine learning algorithms to the data to predict the GABA concentration
levels. The data collected from the laboratory was used to train the model, and the trained model
was then used to make predictions on new data points. The machine learning algorithms used for
this task is supervised machine learning.

4.2 Model Engineering

Once the electrical impedance spectroscopy data was collected and processed, we began the process
of modeling our architecture. We first build a neural network model that met our requirements
and evaluated its performance. We started by determining the architecture of the model, which
consisted of multiple layers of neurons with different activation functions such as sigmoid, tanh, and
ReLU. After determining the architecture, we trained the model using the processed data as input
and compared the model’s output to the expected output. We then used gradient descent optimiza-
tion to update the model until the error between the model’s output and the expected output was
minimized. Next, we evaluated the model’s performance by comparing its output to the expected
output for data that wasn’t used in the training process. This allowed us to determine the model’s
ability to generalize to new data and avoid overfitting or underfitting.

4.2.1 Model

This thesis employs the Keras-TensorFlow sequential deep learning architecture for both the Neural
network and Akida1000, given that the latter exclusively supports the Keras-Tensorflow architec-
ture. The Tensorflow sequential API enables contextual analysis of the experimental data we have
obtained. Interpreting the relationships in the data, given their large quantity and high complexity,
can be challenging. However, our aim is to evaluate the levels of pathological changes that necessitate
improvements in monitoring GABA.Determining the physiological concentration of GABA in aque-
ous solutions is difficult due to the similarities in permittivity spectra obtained from experiments at
various concentrations. Distinguishing one concentration from another is almost impossible for the
human eye, as the quantities of GABA dissolved in deionized water minimally affect the large volume
of water. The values of impedance and permittivity at low frequencies may be linked to the values
at high frequencies, indicating a dependency between them. These connections can provide valuable
insights in detecting differences between datasets. Therefore, we opted to use Keras sequential API
networks for their ability to detect and understand the relationships between the data points and for
their ability to distinguish biological events under conditions where conventional methods would be
inadequate for analyzing the impedance measurements and determining the physiological concen-
tration of GABA. The deep learning architecture provides the contextual ability that is necessary
for our analysis, making it the ideal choice for our study. The sequential API in Keras-TensorFlow
provides two types of deep learning networks for our analysis, the multilayer neural network and
the convolutional 2D network. Both of these networks have unique features that make them well
suited for our study. The multilayer neural network has the ability to capture complex relationships
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between the input and output variables. This network is made up of multiple layers of artificial
neurons that are connected to each other in a feedforward manner. This network can be used to
model complex functions and can be used to make predictions based on the input data. Before
building the model, it is important to prepare the data by preprocessing and normalizing the input
features to improve the performance of the model. There are several preprocessing techniques that
can be applied to the input data, such as scaling, normalization, and standardization. In this case,
normalization is applied to the input data. This helps to improve the convergence of the model and
reduce the risk of overfitting.

4.2.2 Multi Layers Feedforward Neural Network

The use of sequential API networks in our study was motivated by their ability to uncover and com-
prehend the complex relationships within data, especially in scenarios where traditional methods
fall short. Among the deep learning architectures, the multilayer feedforward neural network was
selected for its capability to model intricate functions and make predictions based on input data.
This network is constructed from multiple layers of artificial neurons arranged in a feedforward fash-
ion, allowing it to detect complex relationships between the input and output variables.

Model Architecture

In our study, we developed a regression neural network using Keras and Keras-Tuner to optimize the
model’s architecture and hyperparameters. The model architecture was built using Keras, a high-
level neural networks API that runs on top of TensorFlow. We utilized the Keras-Tuner package, an
open-source hyperparameter optimization library, to automate the hyperparameter search process
and select the optimal values for model parameters, such as the learning rate, number of layers, and
activation functions[47]. The Keras-Tuner package utilizes a variety of search algorithms to explore
the hyperparameter space and identify the best combination of hyperparameters. We employed the
Bayesian Optimization algorithm, which uses a probabilistic model to predict the performance of
different hyperparameter configurations and select the best one based on the predicted performance.
Our regression neural network used a sequential structure with 11 layers, and the ReLU activation
function was used for the hidden and output layers. The first dense layer had 382 neurons and each
node received the output of the input layer. The next nine layers were also dense layers with different
numbers of output nodes, and the ReLU activation function was used for all of these layers. This
deep architecture enabled the model to learn complex representations of the input data and improve
its ability to make accurate predictions. The final layer was a dense layer with one output node,
which was used for regression, and the activation function used was linear. This enabled the output
of the layer to be a continuous value that could be used to make predictions. Hyperparameters play
a crucial role in determining the overall performance of the model and the efficiency of the training
process. In our regression neural network, we considered several hyperparameters. The number of
input neurons should always be equal to the number of input features and the number of hidden
layers which we considered depending on our problem , but we typically kept to a minimum. Having
more layers increases the computational effort required to run the system[32]. In our study, the
optimum number of layers was identified as 11. The activation function determines the behavior
of each neuron in the network. For our hidden layers, we used the Rectified Linear Unit (ReLU)
function, which is fast and efficient to execute in a system. We also considered the number of neurons
per layer and the activation function used for the output layer as important hyperparameters. For
our regression neural networks, it is not necessary to use an activation function on the output layer.
For our regression neural networks we selected the loss function mean squared error (MSE), which
is a common loss function for regression problems.We also used the mean absolute error (MAE)
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and percentage absolute error (PAE) to evaluate the performance of the model. The optimizer used
is the Adam optimizer, which is a variant of stochastic gradient descent (SGD) that adapts the
learning rate based on the historical gradient information.

4.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of artificial neural network that are specifically
designed for image and video recognition tasks, taking advantage of the structure and spatial re-
lationships in the data. They consist of multiple layers, including the input layer, hidden layers
composed of convolutional, pooling, and activation layers, and the output layer. During the training
process, the weights of the filters in the convolutional layers are adjusted to minimize the error
between the network’s prediction and the actual output, while techniques such as dropout and data
augmentation are used to prevent overfitting. The key advantage of CNNs is their ability to learn
local patterns in the data and extract features automatically, reducing the need for manual feature
engineering, and they can also be trained on large datasets, making them well-suited for image and
video recognition tasks.

The measured GABA samples in our study were structured in a tabular form consisting of 167
rows and 4 columns, which bears similarities to an image. Convolutional Neural Networks (CNN)
are commonly used for image analysis tasks, and in theory, could be applied to our tabular data
to extract relevant features. However, it is important to note that the Akida platform we used for
our analysis is only capable of converting CNNs to SNNs, and is not compatible with input layers
that have a bit precision greater than 4. Therefore, although convolution could potentially be im-
plemented on our GABA samples, the use of Akida limited our ability to do so.

After defining the model architecture, we trained and compiled the model on a dataset of 1900
GABA concentrations samples that were diverse in terms of the variables included and the range
of values for each variable. To prevent overfitting, the data was split into a training set and a test
set and trained in smaller batches over 500 epochs. Both CPU and GPU were used for training
and evaluation. A CPU, which is designed for general-purpose computations, can be used for deep
learning, but it is typically slower than GPUs and TPUs, which are optimized for matrix operations
that are common in deep learning. Although CPUs can be a good choice for smaller models or less
computationally demanding problems, GPUs are preferred for deep learning due to their massively
parallel architecture. Originally designed for graphics processing, GPUs have been repurposed for
deep learning, which also relies critically on matrix multiplications. The evaluation of the model’s
performance was based on several metrics, including mean squared error (MSE), root mean squared
error (RMSE), and mean absolute error (MAE). These metrics provide a measure of the model’s
accuracy in its predictions and the magnitude of the errors.

In this study, the Akida 1000 was used to convert the traditional machine learning model to a
Spiking Neural Network in the spike domain. This allows the model to learn on the edge and make
predictions in real-time. The advantage of using Akida is that it reduces the power consumption and
latency, making it suitable for real-world applications. The model was trained on a limited amount
of data due to the challenge of clinical data acquisition, and this limited data was used to predict
the GABA concentration levels. To overcome the problem of overfitting, regularization techniques
were applied to the model during the training phase.Before transferring the architecture in to Akida
it has to quantized.
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4.2.4 Quantization

One example of research that has used the method of quantization to convert floating-point data to
event-based input without losing precision is the study of event-driven neural networks. In event-
driven neural networks, information is processed and transmitted only when an event is triggered,
rather than continuously as in traditional neural networks. This allows for a more energy-efficient
and low-latency processing of signals. In this context, quantization is used to map the floating-point
values of the activation and weights of the neural network to a limited set of discrete values that
can be represented as events.

Converting floating-point values in 32-bit format to 8-bit unsigned integers (uint8) involves reducing
the precision of the floating-point values[67]. We first scaled the floating-point values to fit within
the range of the uint8 format, which is [0, 255]. The scaled floating-point values are then rounded
to the nearest integer which leads to significant accuracy loss. The real term of permittivity, the
imaginary term of dielectric loss, the electrical conductivity, and the loss tangent of the different
concentration varies in decimals values and have a large dynamic range. The conversion process
results in a loss of precision, which impacted the accuracy of the results obtained. The amount
of precision loss depends on the range of the original floating-point values and the scaling factor
used. It is worth noting that converting floating-point values to uint8 is a common preprocessing
step in computer vision and image processing applications, where the reduced precision and memory
requirements of the uint8 format can be more efficient for processing large datasets[31]. In addition
to the conversion process, there are several challenges that need to be considered when converting
floating-point values to uint8. The floating-point values fall outside the range of the uint8 format,
leading to overflow errors. These errors cause significant accuracy loss, and they need to be handled
properly to ensure accurate results. The uint8 format is not compatible with many common machine
learning algorithms and libraries that are optimized for floating-point data. This may limit the use
of uint8 data in certain applications, and it may require additional preprocessing steps to convert the
data back to a floating-point format. Converting the floating-point values to uint8 may require re-
training the model to account for the reduced precision. It is a time-consuming and computationally
intensive process, and it impacted the overall performance of the model.

4.2.5 Akida1000

Akida is a machine learning framework that focuses on modeling Spiking Neural Networks. It is
similar in many ways to other machine learning frameworks such as Keras-Tensorflow, as it uses the
core data structures of layers and models. However, the main difference between Akida and other
frameworks is that it aims to represent Spiking Neural Networks instead of traditional Artificial
Neural Networks.

A Spiking Neural Network is a network of neurons that fire when their potential reaches a pre-
defined threshold. Unlike other frameworks, Akida layers only use integer inputs, outputs, and
weights. The Akida layers can be represented as a combination of standard machine learning layers,
such as a Convolutional or Dense layer to evaluate the Spiking Neuron Potential, an inverted bias to
represent the firing threshold, and a ReLu activation to represent the neuron spike. There are three
main layer types available in Akida: FullyConnected, Convolutional, and SeparableConvolutional.
The weights of Akida layers are N-bit integers, and the input format of Akida is 4-dimensional
tensors.

The Akida framework supports two main types of models: native Spiking Neural Network (SNN)
models and deep-learning SNN models. Native SNN models are typically composed of a few Dense
layers, and the last FullyConnected layer can be trained online using the Akida Edge Learning al-
gorithm. Deep-learning SNN models, on the other hand, are genuine CNN models that have been
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converted to Akida SNN models using the CNN2SNN seamless conversion tool. The models in
Akida are defined using the sequential API, which means that a Model object is created and layers
are added to it using the .add() method. The available layers are InputData, InputConvolutional,
FullyConnected, Convolutional, and SeparableConvolutional. Layers are built with a name and a
list of named parameters. The input layer of a model can either be an InputData layer type or an
InputConvolutional layer type. The InputData layer type is a universal input layer that can be used
for any data type, while the InputConvolutional layer type is specifically designed for image data,
and can accept either RGB or grayscale pixel inputs.

After the input layer, all subsequent layers in the model are referred to as data-processing lay-
ers. Each layer contains several neurons that are connected to the inputs of the layer according to
a specified topology. Each connection is assigned a weight, which, when combined with the input,
modifies the potential of the neuron. Once the potentials of the neurons have been evaluated, they
are passed through an activation function that may or may not emit a spike.

There are three types of data-processing layers: FullyConnected, Convolutional, and Separable-
Convolutional. In a FullyConnected layer, each neuron is connected to all possible inputs, although
a smaller number of connections are typically non-zero. In a Convolutional layer, each neuron’s
connection weights represent a localized filter that is tested across all x and y positions. The Sepa-
rableConvolutional layer is a variant of the Convolutional layer that is less computationally intensive.
If the last layer of a model is a FullyConnected layer, it can be trained using the Akida Edge learning
algorithm. The Akida activation function uses quantization to evaluate the response of a neuron
when its potential exceeds its firing threshold. The intensity of the response is measured by dividing
the difference between the potential and the threshold into several quantization intervals, each corre-
sponding to a quantized spike value. By default, the quantization scheme is binary, emitting a spike
with a value of one when the neuron potential is above the threshold. All data-processing layers share
the following activation parameters: threshold, activation bits, and activation step. The threshold
parameter determines the value at which a neuron must fire to generate an event. Activation bits
define the number of bits used to quantize the neuron response and can have a value of 1, 2, or 4.
The activation step parameter defines the length of the quantization intervals for activation bits = 4.

The InputConvolutional, Convolutional, and SeparableConvolutional layer types share the following
pooling parameters: pool size, pool type, and pool stride. The pool size parameter determines the
width and height of the pooling patches, while the pool type parameter sets the type of pooling
to be performed (NoPooling, Max, or Average). The pool stride parameter sets the horizontal and
vertical strides applied when sliding the pooling patches.

By default, Akida models are computed on the host CPU using a software backend. To perform the
inference of a model on hardware, it must first be mapped to a specific Akida Device. An Akida
Device is characterized by its hardware version and the description of its processing node mesh.
The list of hardware devices that are detected on a specific host can be obtained using the devices()
method.

4.2.6 Interfacing System

In this study, a system was developed for interfacing the Akida Neuromorphic Processor with the
data storage entity of the measuring device. The main focus of the implementation was to provide
the chip with access to previously measured data. To achieve this goal, a Tkinter application was
designed to serve as the interface between the Akida chip and the measurement storage entity. The
Tkinter application was designed to be user-friendly and intuitive, allowing users to easily upload
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previously measured data to the Akida chip. The interface also provides the ability to monitor and
control the chip in real time, enabling users to quickly make adjustments and optimize performance.
The Tkinter application was tested extensively to ensure reliability and robustness, and the results
showed that it performed well in all scenarios. The development of this system represents a signif-
icant advancement in this task, as it provides a convenient and effective way for users to interface
the Akida Neuromorphic Processor with measuring systems. This interface will likely be useful for
a wide range of functions, including file management, and data visualization. In addition, the Tk-
inter application provides a flexible platform that can be easily modified and expanded to meet the
changing needs of the task[43].

Additionally, the Tkinter application is highly customizable, allowing users to easily add or modify
features to meet their specific needs. This level of customization makes it possible to adapt the
interface to a wide range of applications, from simple data acquisition to complex autonomous sys-
tems. Furthermore, the Tkinter interface is cross-platform compatible, meaning that it can be run
on a variety of operating systems, including Windows, MacOS, and Linux.
Another important aspect of the Tkinter application is its ability to store and retrieve data efficiently.
This feature is critical for many applications, as it enables users to easily access previously measured
data for analysis and training purposes. The application provides a simple and straightforward way
to upload data to the Akida chip, as well as to download results from the chip for further analysis.
In terms of performance, the Tkinter application provides fast and reliable communication with
the Akida Neuromorphic Processor. The interface was designed to minimize latency and maximize
efficiency, enabling users to interact with the chip in real time with minimal delay. This high level of
performance makes the Tkinter application well-suited for applications that require real time data
processing, such as autonomous systems and robotics.

The application’s flexible architecture, efficient data management, and real time performance make
it well-suited for a wide range of applications. With its ease of use and customizable features, the
Tkinter application is poised to become an important tool for researchers and practitioners in many
fields. Furthermore, the Tkinter application provides an intuitive and user-friendly interface, making
it easy for both experts and non-experts to use. This is a crucial feature for applications that require
a high degree of accessibility, such as educational tools and prototyping platforms. The interface
was designed with simplicity in mind, with a focus on clear and concise information presentation,
making it easy for users to understand the status and performance of the Akida Neuromorphic Pro-
cessor. Another important feature of the Tkinter application is its ability to handle multiple data
sources and formats. This makes it possible to use the application with a wide range of measuring
systems, including both custom-built and commercial systems. The application provides a flexible
and scalable architecture, enabling users to easily add or modify data sources as needed. Finally,
the Tkinter application is designed with security and privacy in mind. The interface uses secure
communication protocols to protect against unauthorized access and to ensure that sensitive data is
protected. Additionally, the application provides robust data management features, making it easy
for users to securely store and retrieve data. Tkinter is the standard GUI library for Python and
is included in most Python installations. It provides a powerful object-oriented interface for GUI
development.

Some key features of Tkinter include: Widgets, Tkinter includes a wide range of widgets, including
buttons, labels, text boxes, and more. Event-driven programming: Tkinter allows you to cre-
ate applications that respond to user events, such as button clicks, mouse movements, and more.
Cross-platform compatibility: Tkinter applications run on Windows, macOS, and Linux, providing
a consistent user experience across multiple platforms. Easy to use: Tkinter’s object-oriented design
makes it easy to create simple and complex GUI applications, with a minimal amount of code. To
start using Tkinter, we imported the Tkinter module and create a top-level window, also known as
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the root window. we then add widgets to the window and set up event handling to respond to user
interactions. The system provides a convenient and effective way for users to access and control the
Akida chip, and its flexible architecture makes it well-suited for this task.
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Chapter 5

Results

The goal of selecting and fitting a predictive algorithm is to achieve the best possible performance
that can be implemented on neuromorphic hardware. The selection of an appropriate algorithm
depends on the nature of the problem and the dataset used. In this study, we investigate the
use of feedforward artificial neural network (ANN) and Conv2D algorithms in predicting gamma-
aminobutyric acid (GABA) levels based on the features of the input dataset. The dielectric properties
used for the model can not be separated from one another by the human eye.

Figure 5.1: Vitualizal Dielectric Constant Value.

We used a minimum and diverse GABA dataset of 1900 samples and shape of (167,4) and trained
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different regression models using the sequential API, a high-level API in the Keras library that is
used for building deep learning models. The data was split into an 80% training set and a 20% test
set. The model was trained on the training set and evaluated on the test set. The performance of
the model was evaluated based on several metrics, including mean squared error, root mean squared
error, and mean absolute error, to measure the accuracy of the model’s predictions and the magni-
tude of the errors.

5.1 Feedforward ANN

The feedforward ANN is a type of artificial neural network that consists of multiple layers of inter-
connected nodes that process the input data to make predictions. In our study, we found that the
ANN was not compatible with the Akida processor, but the results showed that the model can be
implemented on the GABA dataset with a promising result. The loss of the model declined as the
network was trained for 1000 epochs. The model evaluation showed a minimum error loss of 1.0199
on the training data and a mean squared error of 5.8541. However, the loss and mean squared error
were 1.1976 and 7.45673, respectively, when evaluated on the test dataset.

Figure 5.2: The learning behavior of the ANN model.

The results also showed that the predicted GABA levels on the training dataset were more likely
to be accurate compared to the predicted GABA levels on the test dataset. This was evidenced by
the mean average error, which was lower for the training dataset compared to the test dataset. The
mean average error is a measure of the accuracy of the predictions made by the model, and a lower
value indicates that the model’s predictions are more accurate.

Figure 5.3: True values of both training and test dataset vs predicted values of ANN model.
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Moreover, the mean squared error was also lower for the training dataset compared to the test
dataset. The mean squared error measures the average squared difference between the predicted
values and the actual values. A lower value of mean squared error indicates that the model’s pre-
dictions are closer to the actual values. However, it is important to note that the performance of
the model on the test dataset was still quite good, and the difference in performance between the
training and test datasets was not significant. This suggests that the model was not overfitting the
training data and was able to generalize well to test dataset.

Figure 5.4: ANN’s training and testing prediction compared to the true values.

In addition to the mean average error and mean squared error, we also evaluated the performance
of the model using other metrics such as root mean squared error and mean absolute error. These
metrics provide additional information on the accuracy and magnitude of errors in the model’s pre-
dictions. During our analysis, we observed that the training and testing errors were skewed to the
right. In both the training and the test distribution the majority of the values are concentrated on
one side of the mean, resulting in a longer tail on the right side of the mean, which indicates that the
majority of the data points have lower values compared to the few data points with higher values.

Figure 5.5: Error distribution.

5.2 CNN

In our study, we also analyzed the performance of Conv2D algorithms in predicting gamma-aminobutyric
acid (GABA) levels based on the same dataset using the sequential API in TensorFlow. During our
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analysis, we observed that the training and testing distribution errors were skewed to the right which
indicates that the majority of the data points have lower values compared to the few data points
with higher values. The observation of right-skewed errors in our study can have several implications
for the model’s performance. One possibility is that the model is overestimating the GABA levels
for some of the data points, resulting in a long tail of high errors. Alternatively, it could be that the
model is underestimating the GABA levels for some of the data points, resulting in a long tail of
low errors. A possible explanation for the skewness of the errors could be the presence of outliers in
the data. Outliers are data points that are significantly different from the other data points and can
have a significant impact on the performance of the model. The presence of outliers in the GABA
dataset could be causing the right skewness of the errors, as the model is struggling to accurately
predict the GABA levels for these outlier data points.

Figure 5.6: CNN training and test error distribution.

Moreover, we investigated the use of the Conv2D algorithm in predicting GABA levels based on
the features of the input dataset as an image format. The results showed that the Conv2D algo-
rithm achieved a promising performance on the GABA dataset. The model was trained for 1000
epochs, and the evaluation showed a minimum error loss of 0.4452 on the training data and a mean
squared error of 0.3013. The loss and mean squared error were 0.4279 and 0.2862, respectively, when
evaluated on the test dataset.

Figure 5.7: The learning behavior of the CNN model.

We compared the true values of both the training and the test dataset and their predicted value after
training 1000 epochs. It shows that traditional CNN can be implemented on the GABA dataset.
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Figure 5.8: True values of both training and test dataset vs predicted values of CNN model.

We noted that the performance of the model on the test dataset was still quite good, and the
difference in performance between the training and test datasets were not significant.

Figure 5.9: CNN’s training and testing prediction compared to the true values.

5.3 Quantized model result

After selecting a model the goal of selecting and fitting a predictive algorithm is to achieve the best
possible performance that can be implemented on neuromorphic hardware. Among the two regres-
sion models in our analysis, we found that the ANN was not compatible with the Akida processor,
but the result shows that the model can be implemented on the GABA dataset with a promising
result. However traditional CNN can not be directly implemented on Akida neuromorphic processor.
In order to convert a traditional CNN into Akida compatible spiking neural network, we quantized
the model with the first convolutional layer 8-bit weights, and other layers are quantized using 2-bit
weights and All activations 2 bits. The result shows that there was not a significant loss of perfor-
mance but promising results.
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Figure 5.10: The learning behavior of the Quantized CNN model.

The evaluation of several metrics, including mean squared error, root mean squared error, and
mean absolute error, to measure the accuracy of the model were mae: 1.6106 mse: 11.6070 for the
training dataset and mae: 1.6055 - mse: 11.3201 for the test dataset. From the result, we can also
see that the quantized model overestimates some of the predicted values of the test data.

Figure 5.11: Quantized CNN training and testing prediction compared to the true values.

The measured accuracy of the quantized model’s predictions and the magnitude of the errors is
not much scattered. It shows that the model can still learn from the data even if quantized in lower
activation and weights bits.
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Figure 5.12: Quantized CNN’s training and testing prediction compared to the true values.

We observed that the distribution of errors on the training dataset was different from that of the
testing dataset. Specifically, the distribution of errors on the training dataset was symmetrical, with
the highest error being 10 and the lowest error being -10. In contrast, the distribution of errors on
the testing dataset was widely distributed. This observation suggests that the model may be over-
fitting to the training dataset and not generalizing well to new, unseen data. The wide distribution
of errors on the testing dataset indicates that there is a risk of both overfitting and underfitting the
model on the real dataset.

Figure 5.13: Quantized CNN’s training and testing prediction compared to the true values.

Overfitting occurs when the model is too complex and learns the noise in the training dataset, re-
sulting in poor performance on new data. Underfitting occurs when the model is too simple and is
unable to capture the underlying patterns in the data, also resulting in poor performance on new
data. Even though we employed techniques such as regularization and dropout, the quantized model
couldn’t improve its performance.
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5.4 Converting Quantized CNN to Akida compatible model

Converting floating-point values to Convolutional 2D for the Akida CNN2SNN can be challenging for
several reasons. First, the conversion process requires transforming the floating-point values into an
event-based data representation that is compatible with the Akida CNN2SNN hardware. This can
be a complex process that requires careful optimization of the algorithms used to convert the data.
Second, the algorithms used for the conversion must be optimized for low-latency, low-power pro-
cessing, which is a key requirement for the Akida CNN2SNN hardware. The accuracy of the results
obtained from the Akida CNN2SNN hardware may be lower compared to traditional floating-point
algorithms due to the limited precision of the event-based data representations. Third, the con-
version process may increase the computational complexity of the algorithms, leading to reduced
performance. This can be particularly challenging when scaling the algorithms to handle larger
datasets and more complex models. The limitations of the event-based data representations and the
Akida CNN2SNN hardware architecture may also impact the overall performance of the algorithms.
Finally, the Akida CNN2SNN hardware itself may have limitations in terms of the maximum size
and complexity of the models that can be processed. This can further impact the scalability of the
algorithms and limit their overall performance.

After converting to Akida, the measured accuracy of the model’s predictions and the magnitude
of the errors is significantly worst with a mae: 49.4009. It shows more scattered indicating that the
model didn’t learn from converted quantized model.

Figure 5.14: Akida’s testing prediction compared to the true values.

In our study, we observed that the distribution of errors on the testing dataset was widely dis-
tributed. This suggests that the model may not be effectively utilizing the knowledge gained from
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the quantized model on the training dataset, and instead may be randomly predicting on the test
dataset. One possible explanation for this observation is the loss of precision that occurred when
we converted the 32-bit floating point values of the GABA dataset into uint8. This loss of precision
may have impacted the model’s ability to accurately generalize to new, unseen data. It is well known
that the loss of precision can have a significant impact on the accuracy of machine learning models,
particularly those that are sensitive to small changes in the input data. As a result of this loss of pre-
cision, the model may not be able to effectively generalize to new, unseen data, which is a common
problem in machine learning. This can occur when the model is overfitting to the training dataset,
as discussed earlier, or when the testing dataset has significant differences from the training dataset.

Figure 5.15: Akida’s testing prediction compared to the true values.

Furthermore, the result shows that the difference between the predicted values and the true val-
ues is unpredicted.
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Figure 5.16: Akida’s testing prediction compared to the true values.

In summary, our result highlights the importance of carefully analyzing and implementing a tradi-
tional CNN and converting CNN2SNN on the GABA dataset to identify potential issues with the
existing neuromorphic hardware. By employing appropriate techniques, it is possible to improve the
performance of the model and ensure that it can generalize well to new datasets on the hardware.
The table below summarizes the results of the minimum mae obtained after training the different
algorithms on the GABA dataset with 1000 epochs.

Model Type Min MAE Min MSE Min MAPE R2 Epochs
ANN 0.8158 2.8870 1.1486 0.9973 1000
CNN 0.8559 1.3776 0.9822 0.9998 1000

Quantized CNN 1.4768 10.9771 1.8820 0.9962 1000
CNN2SNN 49.4009 N/A N/A -0.6259 N/A

Table 5.1: The minimum MAE,MSE, MAPE of the different models.
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Chapter 6

Discussion and Summary of Future
Outlook

6.1 Discussion

The purpose of this thesis is to contribute to the project of determining the physiological GABA
concentration levels using a machine learning model. In the previous study, only six different con-
centrations were used, and the dielectric constant data was the only input data used to determine
the different GABA concentrations. However, this may not be sufficient to accurately detect GABA
concentration levels, and there is a risk of overfitting the model due to the limited amount of data[30].
To achieve a higher detection resolution and avoid the overfitting problem, we include more con-
centrations ranging from 10µM to 190µM with 10 samples for each concentration. It is important
to note that even minor changes in GABA concentration can result in severe clinical symptoms.
Therefore, it is crucial to have a highly sensitive and accurate method to detect GABA concentra-
tion levels. By including more concentrations, the model will have a richer source of data to learn
from, which will improve its accuracy and stability.

In addition to including more concentrations, we have also added more features to the model. Rather
than using only the real term of permittivity dielectric constant, we have included the imaginary
term of dielectric loss, the conductivity, and the loss tangent of the data. This will provide more
information for the model to learn from, which will improve its accuracy and reliability. Increasing
the number of parameters per layer or the number of layers in a neural network will give each layer
a richer source of data from which the layer can learn the non-linear function relation[33]. However,
adding too many layers or parameters may result in overfitting, which can be detrimental to the
accuracy and stability of the model. Therefore, it is important to find the optimal balance between
the number of layers, parameters, and data used in the model.

Using more features may not always result in increased accuracy and stability of the model but
sometimes underfits the model without providing complementary information to the model that can
improve the model’s ability to perform well. First, we started including all the features of the dataset
from the DAK-3.5 device. The result shows that after some epochs the model didn’t learn more
from the dataset. We also excluded all other features except the real term of permittivity dielectric
constant and the imaginary term. The result was better than when used all the features. the op-
timal numbers features were the real term of permittivity dielectric constant, the imaginary term
of dielectric loss, the conductivity, and the loss tangent of the dataset, with 11 layer regression model.
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In future work, it will be important to continue to evaluate and optimize the model to improve
its performance. Additionally, the model could be applied to other levels of GABA datasets and
tasks to determine its generalizability and potential for wider use considering the limitation of neuro-
morphic hardware available. Even though there have been efforts to apply neuromorphic computing
to bioimpedance-based sensory systems, which are used in various medical and health applications,
such as monitoring of brain function, monitoring of vital signs, and diagnosis of neurological dis-
orders. Even though, there is a challenge in these systems apply them to general purposes, but
they have the potential to revolutionize various applications, including bioimpedance-based sensory
systems, by providing more efficient and effective solutions to process large amounts of physiological
data in real time.

6.2 Summary

Our experiment showed that the traditional CNN architecture with structural hyperparameter opti-
mization was the most effective in regression of the GABA dataset. Although the Akida CNN2SNN
performed poorly, this was due to the intrinsic properties of the GABA dataset and the limitations
of the Akida neuromorphic processor. These results suggest that the choice of network architecture
and optimization techniques should be carefully considered to achieve optimal performance in SNNs
for specific applications. Further research is needed to fully understand the potential of these tech-
niques and to identify new approaches for optimizing SNNs.

One limitation of Akida is its current hardware limitations. The current implementation of Akida
is based on a Field Programmable Gate Array (FPGA)[63], which limits the size and complexity
of the neural networks that can be implemented. Although the FPGA-based implementation offers
flexibility and reconfigurability, it also restricts the scalability of the system. As a result, complex
applications that require larger and more complex neural networks may not be feasible using Akida
technology. Another limitation of Akida is its current software support. The software tools and
libraries for Akida are still in development, and the existing tools have certain limitations in terms
of performance and usability. Furthermore, the lack of a standardized software ecosystem makes it
difficult for developers to share and reuse code, which can slow down the development process. In
addition to these limitations, there is also a lack of standardized benchmarks and metrics for evaluat-
ing the performance of Akida-based systems. This makes it difficult to compare the performance of
different systems and to optimize the performance of Akida-based systems for various applications.
Despite these limitations, Akida technology has the potential to transform various applications, such
as edge computing, Internet of Things (IoT), and other real-time processing systems. To address the
limitations, ongoing research is focused on developing more advanced hardware and software tools,
as well as standardizing benchmarks and metrics for evaluating the performance of Akida-based
systems.The field of neuromorphic computing presents a significant challenge for beginners due to
the requirement for a deep understanding of several interrelated fields, including neuroscience, VLSI,
nanoelectronics, and computer science, each of which is complex and requires a significant invest-
ment of time to master. However, with continued research and development, Akida technology has
the potential to become a leading neuromorphic computing technology, offering more efficient and
effective solutions for real time processing applications.

A solid foundation in neuroscience is necessary for understanding the potential applications of neu-
romorphic computing and how it can be used to emulate the functionality of the human brain.
VLSI technology is crucial for the design and implementation of neuromorphic chips, providing the
necessary computational power, while nanoelectronics is concerned with the behavior of electronic
devices at the nanoscale and the interaction between the various components that impact the overall
performance of the chip.
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Computer science provides the computational framework for implementing machine learning al-
gorithms on neuromorphic chips, and a deep understanding is essential to design and implement
efficient algorithms that can make use of the unique features of neuromorphic chips. The breadth
and depth of knowledge required in this field make it easy for beginners to get lost, so it is important
to focus on the key elements that are relevant to the specific application and not dive too deep into
any one area without proper mentorship or supervision. Having a mentor or supervisor who is an
expert in the field can provide guidance and support, help the beginner understand the important
concepts, identify areas of focus, and provide feedback on progress made. With the right approach
and guidance, beginners can overcome the challenges and make significant contributions to the field
of neuromorphic computing, which has the potential to revolutionize various applications, including
bioimpedance-based sensory systems, by providing more efficient and effective solutions to process
large amounts of physiological data in real time.

6.3 Future work

Future work in neuromorphic computing for GABA level detection can focus on several areas to
improve the performance of models and optimize their capabilities. One of the critical areas is to
incorporate additional features in the dataset to train the models more effectively. This can include
the collection of more experimental and vivo data to increase the size and diversity of the training
dataset. Additionally, the models’ hyperparameters can be optimized further to improve the perfor-
mance of the models.

To train the models more effectively, it is also essential to acquire programmable hardware. Pro-
grammable hardware, such as FPGAs and GPUs, provide high computational power and flexibility
for training neural networks. The use of programmable hardware can significantly reduce the train-
ing time of the models, making them more efficient and effective. Neuromorphic hardware is used
for edge learning rather than training traditional networks. Most of the training takes place on the
local CPU and then it is transferred to a neuromorphic processor.

Another important area of future work is the implementation of a robustness, spike encoding mech-
anism for information representation based on the number of spikes per unit of time for GABA
data. Rate coding is a widely used information encoding scheme in the human brain, and it has
several advantages, particularly for continuous data. This approach can improve the accuracy and
efficiency of the models and enable them to process large amounts of physiological data in real time.
More advanced neural network architectures can also be used to improve the performance of the
models. These include deep learning models such as LSTM and Recurrent Neural Networks (RNNs),
which have demonstrated superior performance in several applications. The use of advanced neural
network architectures can also lead to the development of more efficient and effective models that
can perform complex tasks. These efforts can significantly improve the performance and capabilities
of the models, making them more efficient and effective in processing large amounts of physiological
data in real time.
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Appendix A

Hardware

To effectively train a deep neural network model, it is necessary to have access to large amounts of
data. This can require having the appropriate hardware and software that can handle the learning
process efficiently and securely. Although the amount of data used in this task is not significantly
large. However, it still requires a PC with both CPU and GPU to compute and compare the power
consumption of these processors. In the case of implementing the Akida1000 for the task, another Pc
the Shuttle XH110G with the specific requirement and compatibility recommended by Brainchip was
built and installed all the components and software. We build XH110G Shuttle which is a compact
and robust multi-display digital signage player with enhanced AI capabilities, it is a recommended
pc easy to install the Akida1000 PCI. The first step is to procure the XH110G, a 3-liter Slim PC with
a new single-slot design that enables the installation of multi-display graphics card. The XH110G
is equipped with the Intel H110 chipset and supports both Intel Kabylake and Skylake LGA 1151
processors. It provides strong graphics support via PCI-E x16 expansion slot for various add-on
cards such as graphics cards (multi-display), capture cards, multi-network cards, drawing graphics
cards, and more. The XH110G is a versatile and high-performance mini PC that can be easily
integrated into a variety of digital signage markets. The slim metal chassis, including VESA mount
capability, versatile connectivity, and reliable operation in up to 50°C temperatures make XH110G
suitable for workstation or surveillance and video wall applications.

To enhance the performance of the XH110G, we installed 2X8 GB DDR4 memory cards, and a
500GB hard disk, to install a Linux operating system. We also installed an I7 9th generation In-
tel Core CPU, which is powerful and capable of handling complex tasks. Finally, we installed the
Akida1000 PCI, a neuromorphic processor, following Akida’s installation procedure on the XH110G
to enhance its AI capabilities. The Akida processor is designed to mimic the way the human brain
processes information and is capable of handling complex and diverse tasks such as image and speech
recognition, machine learning, and other cognitive computing applications. Its ability to perform
on-device processing enables devices to make real time decisions without the need for cloud con-
nectivity. This capability is especially important for edge devices that need to process data locally
without relying on a connection to the cloud.

Building this system saves 1/10 of the total costs that a ready Shuttle with an Akida processor
installed available at the market. The XH110G, combined with the Akida1000 PCI, is a promising
technology for the future of AI and neuromorphic computing. Its ability to handle high-performance
computing tasks, coupled with its energy efficiency and versatility, make it an attractive option for
developers looking to build cutting-edge digital signage applications.
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Appendix B

Appendix

Figure B.1: GABA sample
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Figure B.2: XS204 METTLER TOLEDO SCALER

Figure B.3: Shuttle XH110G Components

Figure B.4: Full DAK Setup
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