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PREFACE 

The present thesis is submitted in partial fulfillment of the requirements for 

the degree of Philosophiae Doctor at the University of Oslo. The research 

presented was conducted under the supervision of Prof. Hedvig Nordeng and 

Dr. Kristina Gervin.  

The thesis is a collection of four papers resulting from research conducted at 

the Department of Pharmacy, University of Oslo, between October 2019 and 

January 2023. The overarching theme of the thesis is to explore the 

relationship between prenatal medication exposure, DNAm and 

neurodevelopment. All studies are joint works, conducted together with Prof. 

Nordeng, Dr. Gervin and other collaborators.  

The thesis synopsis is written to highlight the common thread of the thesis, as 

well as to elucidate the relations between and the interdependence of the 

papers. The synopsis introduces the fields of prenatal pharmacoepidemiology, 

epigenetics and the combination of the two, and subsequently presents 

important methodological considerations and results of the research. It 

concludes with a discussion of the findings in relation to the current literature 

and outlines future directions of the research. The thesis synopsis should equip 

the reader with sufficient knowledge to understand and interpret the findings 

of the present thesis. 
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ABSTRACT 

Background: The Developmental Origin of Health and Disease (DOHaD) 

hypothesis proposes that intrauterine exposures can impact the development 

of diseases later in life. To this end, prenatal exposure to several medications 

including analgesics and psychotropics, has been associated with abnormal 

neurodevelopment, including attention-deficit/hyperactivity disorder 

(ADHD). The underlying link between prenatal medication exposure and 

neurodevelopment is not clear, but epigenetic modifications have been 

suggested as one possible mechanism. Several medications are known to 

interact with the epigenetic machinery and pioneering studies have revealed 

significant associations between prenatal medication exposure and newborn 

DNA methylation (DNAm). Yet, whether DNAm is underlying the 

associations of prenatal medications with neurodevelopment remains elusive. 

To this end, the aim of this thesis was to explore the relationship between 

prenatal medication exposure, DNAm and neurodevelopment.  

Materials and methods: The thesis consists of one systematic literature 

review of prenatal pharmacoepigenetic studies and three original research 

papers. In the original research, we analyzed DNAm in cord blood from the 

Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa 

contains questionnaire data on maternal medication use during pregnancy and 

information on child neurodevelopmental outcomes assessed by 

internationally recognized psychometric tests. Two epigenome-wide 

association studies (EWASs) were conducted to examine the association of 

prenatal paracetamol, (es)citalopram or folic acid exposure with cord blood 

DNAm and child neurodevelopment. Additionally, a comparative study of 

DNAm measurements from the Infinium microarray platforms 450k and EPIC 

was performed, using duplicate samples assessed by both platforms. 

Results: In the systematic literature review, 18 studies were identified. 

Overall, there were few overlapping findings across studies. However, a fair 

comparison of the studies was challenging, partly due to substantial 

heterogeneity in methodology, genome coverage, processing of data and 

statistical modelling. To this end, 10 recommendations for future studies 

within prenatal pharmacoepigenetics were proposed. These recommendations 
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were also the fundament for the three original research papers of this thesis. 

In the first EWAS on paracetamol, folic acid, DNAm and ADHD, we found 

no significant association of prenatal paracetamol exposure with differential 

DNAm in children with ADHD. Further, folic acid did not influence 

these results substantially. In the EWAS on (es)citalopram, DNAm 

and neurodevelopment, no sites were significantly differentially 

methylated between the (es)citalopram, depression and control groups. This 

was also true when assessing the interaction effect of (es)citalopram 

and DNAm on neurodevelopment. However, multiple sites were 

associated with the developmental trajectories of communication and 

psychomotor skills. Several of these sites annotated to genes relevant to 

neurodevelopmental processes and have previously been associated with 

ADHD. In the comparative study of microarray platforms, we identified 

a considerable number of probes exhibiting poor cross-platform 

reliabilities. The probe reliabilities were also influenced by the 

preprocessing of DNAm data. 

Discussion: We found that an overall challenge within prenatal 

pharmacoepigenetics is the non-overlapping findings between studies. Along 

the same lines, our two EWASs neither found any of the previously 

identified associations of prenatal paracetamol or (es)citalopram exposure 

with DNAm. The non-replication of our previous study on paracetamol and 

DNAm could not be explained by the low reliability of probes across 

microarray platforms. Yet, low probe reliabilities may in some cases explain 

non-replication in other studies. Low reliability-probes also exhibit 

decreased power, and therefore, may have implications for the estimation 

of appropriate sample sizes in EWASs. Due to the paucity of 
overlapping findings across studies, we proposed 10 recommendations to 

promote the quality, interpretability and comparability of prenatal 

pharmacoepigenetic studies.  

Conclusion: The findings of this thesis elucidate multiple challenges of 

prenatal pharmacoepigenetic studies. There is a paucity of replication of 

findings across studies, which may in part be explained by heterogeneity in 

methodologies, genome coverage, processing of DNAm data and statistical 

modelling. With improvements in technologies and methodologies, it should 

be feasible to overcome current challenges, which may provide more robust 

results of clinical value in the near future. 
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SAMMENDRAG 

Bakgrunn: DOHaD-hypotesen postulerer at ulike faktorer i fosterlivet kan 

påvirke sykdomsutvikling senere i livet. Prenatal eksponering for flere ulike 

medisiner, slik som analgetika og psykofarmaka, er assosiert med 

utviklingsforstyrrelser i hjernen, blant annet hyperkinetisk forstyrrelse 

(ADHD). Den underliggende sammenhengen mellom medisineksponering i 

fosterlivet og hjerneutvikling er ikke kjent, men epigenetiske modifikasjoner 

er foreslått som én mulig mekanisme. Det er kjent at en rekke medisiner 

påvirker epigenetiske prosesser og tidlige studier har sett en sammenheng 

mellom medisineksponering i fosterlivet og DNA-metylering (DNAm) hos 

nyfødte. Det er likevel uklart hvorvidt DNAm bidrar inn i forholdet mellom 

prenatal medisineksponering og hjerneutvikling. Målet med denne 

avhandlingen var derfor å undersøke forholdet mellom medisineksponering i 

fosterlivet, DNAm og utviklingsforstyrrelser i hjernen.  

Materiale og metode: Denne avhandlingen består av én systematisk 

litteraturgjennomgang av studier innen prenatal farmakoepigenetikk og tre 

originale forskningsartikler. I de tre originale arbeidene, analyserte vi DNAm 

i navlestrengsblod fra biobanken i Den norske mor, far og barn undersøkelsen 

(MoBa). MoBa har spørreskjemadata om mors medisinbruk under 

svangerskapet, samt informasjon om barnets utvikling målt med flere 

internasjonalt anerkjente psykometriske tester. Vi gjennomførte to epigenom-

vide assosiasjonsstudier for å undersøke sammenhengen mellom 

paracetamol-, (es)citalopram- eller folsyreeksponering i fosterlivet med 

DNAm i navlestrengsblod og utviklingsforstyrrelser med opphav i hjernen. 

Vi utførte også en studie der vi sammenliknet prøver med målinger av DNAm 

fra to Infinium mikromatriseplattformer (450k og EPIC).  

Resultater: I den systematiske litteraturgjennomgangen fant vi 18 relevante 

studier. Generelt var det lite overlapp mellom funnene i hver studie. Det var 

imidlertid vanskelig å sammenlikne de forskjellige studiene, blant annet 

grunnet ulikhet i metode, genomdekning, normalisering av DNAm-data og 

statistisk modellering. Derfor foreslo vi 10 anbefalinger for framtidige studier 

innen prenatal farmakoepigenetikk. Disse anbefalingene la også grunnlaget 

for de tre originale forskningsartiklene i avhandlingen. I den første epigenom-
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vide assosiasjonsstudien på paracetamol, folsyre, DNAm og ADHD fant vi 

ingen signifikant sammenheng mellom paracetamoleksponering i fosterlivet 

og endret DNAm i barn med ADHD. Folsyre forandret ikke dette resultatet 

nevneverdig. I den epigenom-vide assosiasjonsstudien på (es)citalopram, 

DNAm og hjerneutviklingsforstyrrelser var det heller ingen seter som hadde 

en signifikant annerledes DNAm da (es)citalopram-, depresjons- og 

kontrollgruppene ble sammenliknet. Vi fant heller ingen interaksjonseffekt 

mellom (es)citalopram og DNAm på hjerneutviklingsutfall. Det var derimot 

flere seter der DNAm var assosiert med ulike utviklingsforløp for 

kommunikasjonsferdigheter og psykomotorikk. Flere av disse setene lå i eller 

nær gener som er relevante for utviklingen av hjernen og som tidligere er blitt 

assosiert med ADHD. I sammenlikningsstudien av mikromatriseplattformene, 

fant vi en stor andel prober hvis målte DNAm stemte dårlig overens på tvers 

av plattformer. Graden av overensstemmelse var i tillegg avhengig av hvordan 

DNAm-dataene var blitt normalisert før sammenlikningen. 

Diskusjon: Vi fant at en utfordring innen prenatal farmakoepigenetikk 

generelt er ikke-overlappende funn på tvers av slike studier. Dette så vi også 

i de to epigenom-vide studiene som heller ikke fant endret DNAm på seter 

som tidligere har blitt assosiert med paracetamol eller (es)citalopram. Det at 

vi ikke klarte å gjenskape funnene fra den tidligere studien vår på paracetamol 

og DNAm, kunne ikke forklares med den lave overensstemmelsen mellom 

prober på tvers av mikromatriseplattformene. Dette utelukker imidlertid ikke 

muligheten for at probene i noen tilfeller kan påvirke replikasjon i andre 

studier. Ettersom prober med lavt samsvar på tvers av plattformer også har 

redusert statistisk styrke, kan disse probene i tillegg påvirke beregningen av 

passende utvalgsstørrelser i epigenom-vide studier. Grunnet mangelen på 

overlappende funn mellom studier, foreslo vi 10 anbefalinger for å fremme 

kvaliteten på, tolkbarheten av og sammenlikningen på tvers av prenatale 

farmakoepigenetiske studier.  

Konklusjon: Funnene i denne avhandlingen belyser flere utfordringer ved 

studier innen prenatal farmakoepigenetikk. Det er mangelfull replikasjon av 

funn på tvers av studier, som blant annet, men ikke utelukkende, kan forklares 

ved ulikhet i metode, genomdekning, normalisering av DNAm-data og 

statistisk modellering. Framtidige forbedringer av teknologi og metoder kan 

gjøre det mulig å overkomme de nåværende utfordringene, og dermed gi mer 

robuste resultater av klinisk verdi i nær framtid.
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 1 

1    BACKGROUND 

The Developmental Origin of Health and Disease (DOHaD) hypothesis 

proposes that prenatal exposures can impact later development of diseases in 

childhood, adolescence and adulthood [1–4]. The mechanisms underlying 

such relations are not clear, but epigenetic modifications have been proposed 

as one possible link [5, 6]. For instance, prenatal paracetamol exposure has 

been associated with both epigenetic patterns [7] and child 

neurodevelopmental outcomes [8]. 

To further explore the epigenetic safety of prenatal medication exposure, 

unifying knowledge and methodology from prenatal pharmacoepidemiology 

and epigenetics is essential. In this chapter, I first provide a brief overview of 

prenatal pharmacoepidemiology, with a particular focus on analgesics, 

psychotropics and child neurodevelopment. Second, the field of epigenetics 

is presented, focusing on the aspects relevant to prenatal 

pharmacoepidemiology. Finally, I briefly describe prenatal 

pharmacoepigenetics, uniting prenatal pharmacoepidemiology and 

epigenetics.   

1.1 PRENATAL PHARMACOEPIDEMIOLOGY  

Pregnant women world-wide are facing difficult decisions with regards to 

medication use, concerning both their own and the fetus’ health. About 4 in 5 

women report using at least one medication during pregnancy [9, 10]. Still, 

for medications intended for long-term use, such as antidepressants, 

pregnancy is one of the main predictors of medication discontinuation [11, 
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12]. Understanding the risks and benefits of medication for both the mother 

and the fetus is pivotal to ensure the reproductive safety of medications used 

during pregnancy.  

In this section, I first provide an overview of prenatal 

pharmacoepidemiological studies, including the motivation for such research. 

Then, I focus on prenatal exposure to analgesics and psychotropics, and the 

association of prenatal medication exposure with child neurodevelopmental 

outcomes.  

1.1.1 WHY ARE PRENATAL PHARMACOEPIDEMIOLOGICAL 

STUDIES NEEDED? 

Historically, women, and pregnant women in particular, have been excluded 

from clinical studies on medication use and safety, being referred to as a 

“vulnerable” population [13, 14]. The limited knowledge about medication 

safety during pregnancy was devastatingly exposed by the thalidomide 

tragedy in the 1950s. Thalidomide was advertised as a completely safe 

medication to treat morning sickness and insomnia in early pregnancy, but 

turned out to cause severe birth defects in more than 10,000 children, and 

likely even more miscarriages [15]. Since then, the importance of including 

pregnant women in studies on medication safety has received increased 

attention [13]. Nonetheless, of the 290 pharmaceutical substances submitted 

for approval to the United States’ Food and Drug Administration (FDA) 

between 2010 and 2019, 89.3% did not have data on use during pregnancy 

from human studies [16]. Hence, knowledge on the safety of medications 

during pregnancy is still limited.  

Today, the focus on pregnant women as “vulnerable” has shifted to women 

being “scientifically complex”, referring to multiple ethical, juridical and 

biological considerations [14]. For instance, exposing women to potentially 

fetotoxic medications during pregnancy is ethically challenging, if not 

impossible. Further, while women can provide an informed consent to 

participate, the legal protection of the fetus is challenged as it does not have 

the capacity to consent. Finally, maternal physiological changes during 

pregnancy may impact medication metabolism and availability [17, 18], and 

many medications may cross the blood-placenta barrier and influence the 

fetus [19, 20]. Thus, understanding medication effects and mechanisms in 
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pregnant women is crucial, but limited by ethical and juridical restrictions in 

clinical trials.  

The ethical and juridical challenges of including pregnant women in clinical 

trials render prenatal pharmacoepidemiological studies based on 

observational data pivotal to ensure reproductive safety of medications for 

both mother and child. Prenatal pharmacoepidemiological studies using 

observational data on medication use, e.g., self-reports or prescription records, 

minimize the ethical and juridical challenges of studying pregnant women. 

Pharmacoepidemiological data are used to describe utilization patterns among 

pregnant women and to investigate an association of prenatal medication 

exposure with an outcome of interest, such as malformations, birth weight, 

preterm births and psychomotor development.  

In summary, the thalidomide tragedy motivated an increased focus on safe 

medication use during pregnancy. Pregnant women are physiologically 

different from non-pregnant women, but inclusion in clinical trials is 

oftentimes infeasible for ethical and juridical reasons. Therefore, prenatal 

pharmacoepidemiological studies based on observational data are pivotal to 

ensure reproductive safety of medications.  

1.1.2 ANALGESIC AND PSYCHOTROPIC USE DURING 

PREGNANCY 

Medications are frequently used by pregnant women, with about 4 in 5 women 

using at least one medication during pregnancy [9, 10]. Overall, the most 

common medications during pregnancy include gastrointestinal and 

antiemetic agents, antibiotics and analgesics [9, 10], of which the two latter 

are usually used for shorter periods of time to treat short-term/acute 

conditions. While most pregnant women contract short-term illnesses, 1 in 5 

women also have long-term and/or chronic diseases during pregnancy [10].  

Several of the short-term conditions during pregnancy are oftentimes treated 

with paracetamol. Paracetamol is recommended by both the European 

Medicines Agency (EMA) [21] and the FDA [22] to treat pain and fever 

during pregnancy. Reflecting these recommendations, 50–65% of pregnant 

women are reported to use paracetamol [8, 10, 23–25]. By contrast, other 

painkillers like opioid analgesics and non-steroidal anti-inflammatory drugs 

(NSAIDs; contraindicated during pregnancy) are used in approximately 3–8% 
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of pregnancies each [9, 10]. Paracetamol’s mechanism of action is still 

debated, but it has been suggested to selectively inhibit the enzyme COX-3 in 

the central nervous system [26], and thereby relieve pain and reduce fever. 

The most frequent conditions treated with paracetamol during pregnancy are 

headache, migraine, pain and various infections, while fever is less commonly 

paracetamol-treated [24, 27]. Notably, a systematic review of prenatal 

paracetamol exposure and child neurodevelopment, found no data supporting 

indication bias due to the maternal condition for paracetamol use [27]. 

One of the most frequent long-term conditions during pregnancy is 

depression, with more than 1 in 10 pregnant women suffering from this 

disorder [28]. Lasting depressive symptoms during pregnancy may contribute 

to both adverse maternal and child outcomes [29, 30]. Pregnant women are 

increasingly prescribed antidepressants to treat moderate to severe depression 

[31–33], with 1–7% of pregnant women using selective serotonin reuptake 

inhibitors (SSRIs) [9, 10, 31, 32, 34]. In turn, the most frequently used SSRIs 

are the structurally similar citalopram and escitalopram (hereafter, 

(es)citalopram), sertraline and fluoxetine [31, 32, 34]. Like other SSRIs, 

(es)citalopram acts by inhibiting serotonin reuptake in the brain and thereby 

increases the extracellular serotonin levels, including in the synaptic cleft 

between neurons [35]. Serotonin is a neurotransmitter implicated in both 

mood, sleep and memory. At early developmental stages serotonin serves 

multiple other functions as well [36], including a regulatory role of cell 

migration and differentiation [37]. It is believed that the increased 

serotonergic neurotransmission, resulting from the heightened serotonin 

levels in the synapses, lessens the depressive symptoms [35, 38].  

Notably, pregnancy is one of the main predictors of antidepressant medication 

discontinuation [11]. In general, women are more reluctant to use any 

medications during pregnancy [39, 40] and overestimate the risks associated 

with prenatal medication exposure [40, 41]. Yet, some medications are 

perceived more harmful than others: pregnant women consider antibiotics and 

paracetamol low-risk, high-benefit medications, while antidepressants and 

anxiolytics are assumed to exhibit the highest risk [40]. Indeed, in one study 

assessing the perceived risk of malformations upon use of various 

medications, prenatal exposure to antidepressants was regarded just as high-

risk as prenatal thalidomide exposure [41]. In line with this, women with 

depression show low adherence to their medication treatment [12]. The low 
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adherence was associated with the women’s negative beliefs about 

psychotropic use during pregnancy [12]. These findings underscore the 

importance of studying the safety of medication use during pregnancy, to 

support pregnant women and health care personnel in weighing the risks 

against the benefits of medication use.  

1.1.3 PRENATAL MEDICATION EXPOSURE AND 

NEURODEVELOPMENT 

Pregnant women’s perception of risks associated with medication exposure 

mainly regards concerns about harming the fetus [12, 39–42]. Indeed, some 

medications are known teratogens, i.e., the exposure to which may lead to 

malformations or abnormal development. Examples of such medications 

include thalidomide [43] and the antiepileptic valproic acid [44]. Importantly, 

not all medications are teratogenic and the timing of exposure is important 

[45, 46].  

The brain develops throughout pregnancy and into childhood (see Section 

1.2.6) [47]. Abnormal development of the brain may result in 

neurodevelopmental disorders. In the Diagnostic and Statistical Manual of 

Mental Disorders, 5th Edition  (DSM-5), neurodevelopmental disorders are 

defined as abnormal development of the nervous system, which may impact 

both cognitive and behavioral abilities, such as language, executive 

functioning, memory, emotions, and social and psychomotor skills [48]. 

Examples of neurodevelopmental disorders include attention-

deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 

learning and intellectual disabilities, Tourette’s disorder and language 

disorder [48].  

As covered in Section 1.1.2, paracetamol is generally considered safe to use 

during pregnancy [21, 22]. However, a recent review by Bauer et al. (2021) 

prompted discussion about the toxicity of even therapeutic dosages of 

paracetamol during pregnancy, with respect to certain reproductive, 

urogenital and neurodevelopmental conditions [8]. Indeed, several studies 

find a modest, but consistent, association of prenatal paracetamol exposure 

with abnormal neurodevelopment in the children [8, 23, 27, 49, 50]. The most 

frequently studied neurodevelopmental outcomes are ADHD and ASD, and 

related symptoms such as language and communication skills, attention and 

executive functioning [8]. Most of the recent systematic reviews also suggest 
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that the duration of paracetamol exposure is important, with longer duration 

increasing the risks of abnormal neurodevelopmental outcomes [8, 23, 27, 

50]. Nevertheless, the reviews find considerable heterogeneity in results 

between studies, and conclude that the current evidence for an association of 

prenatal paracetamol exposure with neurodevelopmental outcomes suffers 

from methodological shortcomings, such as misclassification bias [8, 23, 27, 

50]. 

The effects of prenatal antidepressant exposure on child neurodevelopment 

have been extensively studied, albeit showing conflicting results [51–64]. 

Overall, recent systematic reviews of the literature find that many studies 

report significant associations between prenatal antidepressant exposure and 

multiple different neurodevelopmental outcomes [51–64]. The outcomes 

include ADHD, ASD, pervasive developmental disorder, scholastic skills, 

intelligence quotient (IQ), mental retardation and developmental delays in 

various domains such as language, psychomotor, cognitive and socio-

emotional skills [51–64].  

Meta-analyses of antidepressants and ADHD [54, 56, 57, 60], ASD [53, 55, 

57, 59, 60] or mental retardation [60] have also been performed, although such 

analyses were discouraged in other reviews, due to the heterogeneity in 

methodologies across studies [61, 63, 64]. Overall, the meta-analyses show 

some evidence of an association between antidepressants and abnormal 

neurodevelopment, but all conclude that this association can be partially or 

entirely explained by confounding by indication [53–57, 59, 60]. This was 

also found in an umbrella review reporting convincing evidence of a prenatal 

antidepressant-ASD association which was attenuated when accounting for 

maternal depression [65].  

In line with the meta-analyses, the systematic reviews conclude that more 

rigorous investigations are needed, with methodologies to reduce biased 

results, including misclassification bias of medication exposure and 

neurodevelopmental outcomes [52, 61, 63, 66], and confounding by indication 

[32, 51, 52, 58, 61, 62, 64]. Some reviews also highlight the utility of the 

discordant-sibling design to address confounding by indication, by controlling 

for the shared genetics and environment between siblings [51, 57–59, 61–63]. 

Accordingly, the meta-analyses restricted to sibling studies all show no 

association between antidepressant exposure and either ADHD [54, 56] or 
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ASD [53, 59]. To summarize, while many studies find an association between 

prenatal antidepressant exposure and neurodevelopmental outcomes, most 

associations attenuate when controlling for maternal psychiatric illness. 

Indeed, in many instances, using the medication may be more beneficial than 

any potential negative sequelae of using it. For instance, untreated maternal 

fever may be associated with adverse child outcomes, both acutely (e.g., 

neural tube and congenital heart defects) and on the long-term (e.g., ASD and 

ADHD) [67–69]. Depression has also been associated with adverse offspring 

outcomes, both on the short-term, such as preterm birth and low birth weight 

[29], and on the long-term, such as increased risk of ASD [70] and poorer 

child language, psychomotor, cognitive and socio-emotional development 

[30]. Therefore, even though maternal medications may increase the risk of 

certain neurodevelopmental outcomes, leaving the condition untreated may 

prove more harmful to the child. 

1.2 EPIGENETICS 

The mechanism linking prenatal medication exposure and child 

neurodevelopmental outcomes remains unclear. In accordance with the 

DOHaD hypothesis, epigenetics may be a possible link. In this section, I 

elaborate on what epigenetics is and its importance to embryonic and fetal 

development, focusing on aspects relevant to prenatal 

pharmacoepidemiology.  

1.2.1 WHAT IS EPIGENETICS? 

The answer to the question of what epigenetics is has changed multiple times 

during the past eight decades [71]. The term “epigenetics” was first coined by 

the developmental biologist Conrad Waddington in 1942 [72]. Waddington 

defined the “epigenotype” as the developmental processes occurring between 

the genotype and the phenotype, i.e., the mechanisms underlying any 

association of the genotype with the phenotype [72]. This definition also reads 

from the term itself: the prefix “epi-” means “on top of” or “in addition to” in 

Ancient Greek, and thus, epigenetics literally means “in addition to genetics”. 

According to a common modern-day definition, epigenetics is mechanisms 

that regulate gene transcription and genome stability without changing the 

DNA sequence. These modifications can be maintained through cell divisions 
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and are reversible. The entire collection of all epigenetic marks in the human 

is called the human epigenome. 

There are two main categories of epigenetic modifications: histone 

modifications and DNA methylation (DNAm; Figure 1). Other important 

factors also regulating gene expression are microRNAs, nucleosome 

positioning and many protein complexes [73]. DNA is wound about 1.8 times 

around octamers of histone proteins, together called a nucleosome. Multiple 

nucleosomes wrap into chromatin making up the condensed chromosomes. 

The histones extend so-called histone tails, which can bind different molecular 

groups, including methyl, acetyl, phosphate and ubiquitin groups [74]. 

Histone modifications influence the chromatin structure directly and 

indirectly, thereby impacting gene transcription [74].  

DNAm is the most commonly studied epigenetic modification, probably due 

to the relative ease of assaying compared to histone modifications [75]. 

DNAm refers to the attachment of a methyl group (–CH3) to the fifth carbon 

of a cytosine nucleotide (Figure 1, bottom panel) [76]. Methylation usually 

occurs on cytosine nucleotides preceding guanine nucleotides (5’-cytosine-

phosphate-guanine-3’ sites [CpGs]) [76]. Of note, methylation of cytosines in 

non-CpG contexts has also been found, particularly in the developing and 

adult human brain [77–79]. Yet, most research to date focuses on DNAm in 

the CpG context.  

1.2.2 MEDIATORS OF DNA METHYLATION AND DEMETHYLATION 

Methylation of the DNA is facilitated by DNA methyltransferases. These 

enzymes catalyze the transfer of one methyl group from S-adenyl methionine 

to the cytosine nucleotide. Different transferases act depending on the context 

of methylation. Dnmt3a and -3b are de novo DNA methyltransferases, 

meaning they can establish new DNAm patterns [76], such as during the major 

remodeling events of the epigenome early in development (detailed in Section 

1.2.6). In contrast, Dnmt1 establishes DNAm patterns during replication, 

using the complimentary methylated DNA strand as a template [76].  
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Figure 1. Overview of two main types of epigenetic modifications. 

The DNA double helix is wound around proteins called histones, forming a complex 

called chromatin. Condensed chromatin is called chromosomes. Histones extend 

histone tails upon which different molecular groups, such as methyl (Me), acetyl (Ac), 

phosphate (P) and ubiquitin (Ub), can be attached to influence chromatin structure. 

There are also epigenetic modifications attached directly to the cytosine nucleotides 

of DNA, called DNA methylation. Created with BioRender.com. 

DNA demethylation occurs both passively and actively. Passive 

demethylation may happen during cell division, if Dnmt1 is inhibited or 

dysfunctional. Active demethylation occurs via several mechanisms, all 

including a series of chemical reactions. One group of enzymes known to 

actively mediate demethylation is the ten-eleven translocation enzymes, Tet1, 

-2 and -3, which catalyze the addition of a hydroxyl group (–OH) to the methyl

group to create hydroxymethyl cytosine [76, 80]. The Tet enzymes

subsequently oxidize hydroxymethyl-cytosine to formyl-cytosine and then

carboxy-cytosine. Finally, the carboxy group is removed to create

https://biorender.com/
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unmethylated cytosine [76, 80]. Interestingly, in neurons, 

hydroxymethylation may account for up to 20% of the total cytosine 

methylation and hydroxymethylation [77]. This finding prompted the 

question of whether hydroxymethylation is not merely a step in the 

demethylation process, but itself serves as a gene regulator [76, 77, 80]. 

1.2.3 DNAM LANDSCAPE 

The total DNAm pattern across all CpGs in the genome is called the 

methylome. While DNAm occurs throughout the genome, some genomic 

regions are more CpG-dense than others. CpG islands (CGIs) refer to regions 

of the genome which are rich in CpGs, usually defined as longer than 500 base 

pairs (bp) and with more than 55–60% CpGs [81, 82]. Regions of 2,000 bp 

flanking the CGIs upstream (“north”) and downstream (“south”) are called 

shores, while the shelves are located 2,000 bp upstream and downstream of 

the CpG shores [82]. CpGs outside of the shelves are often referred to as open 

sea CpGs.  

Notably, CpG density correlates with DNAm status. Overall, the majority of 

CpGs in CGIs tend to be unmethylated [83]. However, such hypomethylation 

is the exception, as 70–80% of all CpGs in mammalian genomes are 

methylated [83]. Thus, most CpGs in low-density regions are methylated [83]. 

Importantly, there are deviations from these overall DNAm patterns. For 

instance, 16% of CGIs in the adult brain are methylated [84], and 10% of the 

CpGs in low-density regions are hypomethylated [83]. 

1.2.4 THE INFLUENCE OF DNAM ON GENE TRANSCRIPTION 

The transcription of genes is the first step toward translating the DNA to 

proteins. During transcription, an RNA copy of a gene is generated 

(messenger RNA [mRNA]) through a complex interplay between proteins, 

including transcription factors and RNA polymerase. The original hypothesis 

of the DNAm-transcription relation was proposed in the 1970s, suggesting 

that DNAm directly silences gene expression by inhibiting transcription [85, 

86]. However, the link between DNAm and transcription has proven more 

complicated [87]. It is true that highly methylated promoters and enhancers 

are typically associated with gene silencing [87–89]. Promoters are genomic 

regions to which proteins bind to initiate or repress transcription, located 

nearby the transcription start site, and enhancers are short genomic regions 

binding proteins which may activate gene transcription not necessarily close 
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to the transcription start site. Silencing via DNAm in these regions occurs 

either directly, by obstructing the binding of the transcription machinery, or 

indirectly, by methyl-CpG-binding proteins (MBPs) [90]. MBPs act by 

recruiting histone modifiers and chromatin remodelers which are associated 

with transcriptional repression [90].  

Approximately 60–70% of all gene promoters overlap with a CGI and these 

CGIs commonly appear close to transcription start sites [91–93]. As promoter 

CGIs are usually unmethylated, these genes are not repressed by methylation 

[84]. Indeed, CGI-overlapping promoters primarily correspond to genes 

expressed in most cells, such as housekeeping genes [91–93]. In contrast to 

the largely unmethylated promoter CGIs, 20–30% of intragenic (gene body) 

CGIs are methylated [84]. In fact, DNAm in gene bodies is widespread even 

outside of CGIs, and such DNAm is believed not to preclude gene 

transcription [84, 94]. Rather, high intragenic methylation may maintain 

transcription efficiency, for instance, by silencing alternative promoters [84, 

87].  

In summary, the effect of DNAm on gene transcription is highly context-

dependent. The relation depends on both the genomic context and available 

transcription factors. There are also additional important considerations not 

detailed here, including the complex interactions between DNAm and other 

epigenetic factors like histone modifications [83, 95], and the role of DNAm 

in the splicing of mRNA, giving rise to multiple different transcripts from the 

same gene [96–98]. Consequently, the relationship between DNAm and gene 

transcription is still being unraveled, and direct inferences about gene 

transcription from DNAm status alone is challenging.  

1.2.5 DNAM VARIABILITY 

The epigenome is highly variable and changes over time, according to both 

internal and external conditions. There are three main factors contributing to 

site-level DNAm variation between individuals: genetic, environmental and 

stochastic factors. Approximately 20% of inter-individual DNAm variation is 

explained by genetic variation [99–101]. To this end, researchers have 

identified several 100,000s loci in the DNA which impact DNAm status at 

specific CpGs, called methylation quantitative trait loci (mQTLs) [99, 100, 

102]. Environmental influences include a variety of non-genetic exposures 

which influence CpG DNAm status. The unique environment of an individual 
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is estimated to account for around 80% of DNAm variability [101]. In 

humans, a multitude of environmental exposures have been reported to 

influence DNAm [103]. For instance, several conventional medications are 

known to directly interact with enzymes in the epigenetic machinery (e.g., 

valproic acid and opioids) [104, 105], and up to 5% of available non-

epigenetic medications are predicted to interact with epigenetic enzymes 

[106]. Finally, DNAm changes may also occur stochastically, e.g., by random 

errors during DNA replication [107]. Stochastic DNAm changes accumulate 

throughout life [107]. 

DNAm patterns also vary within one individual. In particular, cell types and 

tissues exhibit distinct DNAm patterns [79, 83, 89, 108]. The origin of these 

differences is described in the following section.  

1.2.6 DNAM IN EMBRYONIC AND FETAL DEVELOPMENT 

In accordance with the DOHaD hypothesis, fetal life is a critical period which 

may influence an individual’s health throughout the lifetime. Indeed, this is 

also true with regards to epigenetics: embryonic and fetal development is a 

critical time for the establishment of epigenetic patterns. During this time, the 

epigenome is particularly plastic, making it even more susceptible to 

environmental influences. The epigenetic plasticity accommodates the 

complex process of cellular differentiation, whereby the fertilized egg cell 

becomes the more than 200 specialized cell types of the adult human body.  

Fertilization of the egg cell with a sperm cell creates a zygote, in which cell 

division is initiated to generate cells called blastomeres [109]. The 

blastomeres are totipotent stem cells, that is, they have the potential to become 

any cell type in the body. At the eight-cell stage, the blastomeres start to 

differentiate into two types of cells. The embryonic stem cells (ESCs) of the 

inner cell mass, which will develop to the embryo, and the trophoblasts, which 

will form parts of the placenta (Figure 2A) [109]. Thus, the ESCs can 

differentiate to most cell types except extraembryonic structures, and 

therefore, are pluripotent. Further cell divisions create a morula (16–32 cells) 

and subsequently a blastocyst. The blastocyst is eventually implanted into the 

uterine wall to continue development [109]. 

During early developmental stages, large-scale epigenetic changes also take 

place. Two major waves of global DNAm re-programming, occur in ESCs 
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and primordial germ cells (PGCs; Figure 3). First, just after fertilization, the 

global DNAm levels decrease substantially, in a wave of global DNAm re-

programming (Figure 2A) [110, 111]. In this process, most DNAm of the 

paternal genome is removed, while demethylation of the maternal genome is 

less prominent [110, 111]. Spared for this global erasure are imprinting 

control regions and some transposable elements [110, 111]. The partial 

erasure and subsequent re-establishment of new DNAm patterns are necessary 

to ensure the pluripotent features of the ESCs [110]. Only when the blastocyst 

is implanted into the uterine wall do the global DNAm levels start increasing 

[80, 112], likely due to the differentiation of ESCs into more specialized cell 

lineages [112]. The second wave of global demethylation and subsequent re-

methylation occurs in the PGCs (Figure 3), which later give rise to egg and 

sperm cells. Notably, only 6–8% of the global DNAm remains at gestational 

weeks 10 and 11, in female and male PGCs, respectively [113]. Female PGC 

re-methylation initiates at around 11 gestational weeks [113], considerably 

earlier than male PGCs, which may initiate re-methylation around gestational 

week 19 [113, 114]. Notably, these two waves of global changes in DNAm 

are coordinated with extensive genome-wide changes also in histone 

modifications. Hence, these events are not contributing to locus-specific 

regulation of transcription, but rather a global reprogramming of the 

epigenome as a whole [80].  

In addition to the two major waves of DNAm re-programming during early 

development, smaller-scale changes in DNAm in a cell type- and tissue-

specific manner also occur. After the blastocyst implants into the uterine 

lining, the pluripotent ESCs develop into different multipotent stem cells, 

which are progenitors to various highly specialized cell types. For instance, 

neural stem cells are multipotent stem cells that can become most of the cell 

types in the brain, such as neurons, astrocytes and oligodendrocytes. This cell 

differentiation depends on a timely and sequential expression of genes. 

Indeed, while a neuron and a muscle cell have the same DNA, they exhibit 

strikingly different features due to their differential expression of genes 

(Figure 2B).  

The regulation of gene silencing and activation throughout differentiation is 

partly contributed by dynamic DNAm patterns during embryogenesis (Figure 

2B) [80, 115]. The dynamic patterns are cell type- and tissue-specific, with 

15–21% of CpGs’ DNAm status varying between cell types and tissues [116, 
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117]. These variable CpGs are primarily found in enhancers [77, 115, 116]. 

The sequential methylation and demethylation of variable CpGs is 

hypothesized to be mediated by the local binding of transcription factors 

which causes demethylation [80]. However, how the transcription factors 

contribute to demethylation is not clear [80]. The dynamic methylation and 

demethylation during fetal development are the main contributors to the 

diversity in DNAm found in differentiated cells and tissues later in life [79, 

80, 83, 118]. 

Besides cell differentiation, fetal development also involves other cellular 

processes, wherein DNAm plays an important role. For instance, 

neurodevelopment involves complex processes like neuronal migration, 

synaptic transmission and myelination of neurons [119]. DNAm supports a 

precise transcriptional regulation of these processes to ensure normal brain 

development and function [120]. Studies on neurodevelopment and DNAm 

indicate that considerable DNAm remodeling takes place throughout 

pregnancy and even postnatally [120, 121]. Further, schizophrenia-associated 

differential DNAm is enriched for sites that are dynamically altered 

specifically during fetal brain development, suggesting a neurodevelopmental 

component of the disorder [121, 122]. Thus, these studies suggest that 

disorders with some neurodevelopmental component, may be contributed by 

early epigenetic mechanisms. 

To summarize, major changes to the methylome occur during fetal life, 

including waves of de- and re-methylation, as well as cell differentiation 

requiring tight transcriptional control. The considerable epigenetic plasticity 

renders the developing fetus’ epigenome particularly susceptible to influence 

from environmental factors. As dynamic changes in brain DNAm extend into 

early childhood and occur in genes essential to neurodevelopment, 

environmental factors such as prenatal medication exposure could in principle 

influence neurodevelopment. 
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Figure 2. Schematic of DNA methylation in cell differentiation. 

Overview of (A) the early stages of human development and (B) a very simplified cell 

differentiation path. (A) Just after fertilization, most paternal and maternal DNAm is 

erased. During this time, the dividing cell exhibits totipotent potential and eventually 

forms a blastocyst with an inner cell mass of pluripotent embryonic stem cells.  
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Figure 2 continued. (B) The embryonic stem cells express genes important to 

maintain pluripotency, while cell type-specific genes are silenced which may partly 

be due to hypomethylation of regulatory regions, e.g., promoters and enhancers. 

During cellular differentiation, pluripotency genes are silenced, while genes 

important for establishing and maintaining a multipotent cell identity are turned on. 

Neural stem cells will express Gene A but not Gene B, and myogenic progenitor cells 

will express Gene B but not Gene A, contributing to define particular cell lineages. 

Finally, cell type-specific genes are differentially expressed based partly on local 

DNAm patterns. Created with BioRender.com. 

1.2.7 EPIGENETIC EPIDEMIOLOGY 

The ability of DNAm to change dependent on environmental influences is 

pivotal in epigenetic epidemiology. Early pioneering research, such as the 

Heijmans et al. (2008) [123] study on prenatal famine exposure and IGF2 

DNAm, inspired a wave of research within epigenetic epidemiology [124]. 

Studies in this field apply epidemiological methods to epigenetic studies 

[125], to understand the plausible epigenetic etiology of diseases [126].  

Early studies within epigenetic epidemiology focused on candidate genes, i.e., 

gene(s) of interest were selected a priori and DNAm was measured at CpGs 

in the selected gene(s) [75]. In the late 2000s, high-throughput DNAm assays 

like the Illumina Infinium HumanMethylation microarrays became available 

[127]. These microarrays enabled increased coverage of the epigenome, while 

still remaining relatively time- and cost-efficient, facilitating epigenome-wide 

association studies (EWASs). In EWASs, the DNAm across 100,000s of 

CpGs are measured and the association of DNAm with an exposure or 

phenotype of interest is tested [75]. As such, current epigenetic epidemiology 

studies more elaborately map the epigenetic landscape than traditional 

candidate gene studies [75]. Indeed, continuous technological, statistical and 

methodological developments improve studies within epigenetic 

epidemiology, and the number of such studies is increasing every year.  

1.3 PRENATAL PHARMACOEPIGENETICS 

Pharmacoepigenetics broadly covers three different concepts: development of 

drugs interacting with the epigenetic machinery, how epigenetic patterns alter 

the response to medications and conversely, how medications may influence 

epigenetic patterns. For the purposes of this thesis, prenatal 

https://biorender.com/
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pharmacoepigenetics refers to how prenatal exposure to medications may 

influence DNAm.  

According to the DOHaD hypothesis, early-life exposures may impact later 

disease development, possibly mediated through epigenetic modifications. 

The embryonic and fetal periods are developmental stages particularly 

susceptible to teratogens (Figure 3). The brain develops throughout pregnancy 

and into childhood [47], and this process depends on a tightly orchestrated 

epigenetic program [120, 121]. Prenatal pharmacoepidemiological studies 

have identified associations of paracetamol and antidepressants with child 

neurodevelopmental outcomes [8, 23, 27, 49–64]. Further, many medications 

interact with the epigenetic machinery [104–106]. Yet, whether DNAm is 

underlying the relations of prenatal medications with neurodevelopment 

remains elusive.  
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Figure 3. Fetal development, teratogens and DNA methylation. 

Overview of fetal development, windows of susceptibility to teratogens, adverse 

outcomes and global DNAm levels. Note that the timing and extent of global re-

methylation in the primordial germ cells (PGCs) are not certain [113, 114]. Modified 

from Moore (1988) [128], Ciernia et al. (2016) [112] and Gkountela et al. (2015) 

[114]. Created with BioRender.com.  

http://www.biorender.com/
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2    THESIS AIMS 

The aim of this doctoral work was to explore the relationship between prenatal 

medication exposure, DNAm and neurodevelopment. The hypothesis was that 

prenatal exposure to paracetamol or (es)citalopram is associated with DNAm 

and child neurodevelopment. 

To explore the main aim and hypothesis, the specific objectives were to: 

(1) Provide an overview of the current literature on prenatal

pharmacoepigenetics, focusing on psychotropics and analgesics, and

propose recommendations for future studies in the field.

(2) Examine the relationship of prenatal medication exposure, DNAm

and neurodevelopment in a Norwegian birth cohort by:

(a) Conducting EWASs to investigate whether prenatal exposure

to paracetamol or (es)citalopram is associated with

differences in cord blood DNAm.

(b) Assessing the association of DNAm with neurodevelopment,

and investigating the relation between medications, DNAm

and neurodevelopment using interaction terms.

(3) Explore technical variation and reliability of measured DNAm levels

in cord blood between Infinium microarray platforms.

The relation of each of these objectives to the papers of the thesis is presented 

in Figure 4. 
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Figure 4. Overview of the objectives and papers of the present thesis. 

Overview of the main aim, objectives and papers of the present thesis, including the 

four papers (dark red) and the main findings of the first paper (pink). The findings 

and recommendations of Paper I provided a foundation for the Papers II–IV, as 

indicated by the arrows. Which objective the respective papers relate to is indicated 

in the left margin (see main text for details).
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3    MATERIALS AND METHODS 

This thesis comprises papers with various research approaches, including a 

systematic literature review, two EWASs and a comparative study of DNAm 

measurements from different Infinium microarray platforms. Therefore, in the 

first section, I briefly overview the distinct study methodologies and 

approaches. In subsequent sections, I overview topics mainly related to the 

three original research papers (Papers II–IV), including data sources, sample 

selection, measures, microarray technology and statistical considerations.  

3.1 RESEARCH METHODOLOGIES 

In this section, I briefly summarize the different research methodologies of 

the papers. Paper I provides an overview of the current literature of prenatal 

pharmacoepigenetics, while Papers II–IV are original research based on data 

from the Norwegian Mother, Father and Child Birth Cohort Study (MoBa).  

3.1.1 SYSTEMATIC LITERATURE REVIEW 

In Paper I, a systematic literature review was conducted. Systematic literature 

reviews should compile all the literature relevant to the research question of 

the review [129]. This requires a systematic and transparent approach, 

wherein all papers are assessed in the same way. To limit bias by the reviewer, 

at least two reviewers should preferably be included in the assessment of all 

articles from the database searches and in the extraction of data from the 

selected articles [129]. To support researchers in conducting systematic 

literature reviews, the Preferred Reporting Items for Systematic review and 
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Meta-Analysis protocols (PRISMA) guidelines have been developed, which 

provides a list of items to be reported [130]. 

We took multiple measures to make the systematic literature review 

transparent and the results reliable. First, the search strategy and inclusion 

criteria were determined a priori, and were discussed by all authors and two 

experienced librarians to ensure an unambiguous protocol. Second, the 

protocol was registered in PROSPERO, which is a prospective register of 

systematic reviews [131, 132]. The register is open to everyone and thus 

ensures methodological transparency. Third, we searched multiple databases, 

including MEDLINE, EMBASE, PsycINFO, Scopus and Web of Science. 

Additionally, the reference lists of all included papers and 35 relevant reviews 

were screened to ensure full coverage of the literature. Fourth, all relevant 

papers identified in the database searches were screened independently by two 

reviewers. The reviewers were blinded to each other’s assessment until all 

articles were screened using the Rayyan application [133]. Any disagreement 

between reviewers were resolved by consulting a third reviewer. Finally, the 

extraction of data was performed by adhering to the PRISMA guidelines 

[130], when applicable. 

3.1.2 EPIGENOME-WIDE ASSOCIATION STUDIES 

Epigenome-wide association studies (EWASs) aim to examine the association 

of epigenetic modifications across the genome (primarily, DNAm) with an 

environmental exposure or phenotype of interest [75, 134]. The two EWASs 

conducted in Papers II and IV are based on data from MoBa, a large 

prospective birth cohort study (detailed in Section 3.2.1) [135, 136]. 

Prospective cohort studies are longitudinal, usually conducted over several 

years, and follow subjects from prior to the occurrence of the phenotype of 

interest. During the study period, a multitude of variables may be recorded, 

such as physical and mental health, lifestyle and socioeconomic status.  

3.1.3 COMPARATIVE STUDY OF MICROARRAY PLATFORMS 

In Paper III, we systematically investigated the concordance of DNAm 

measurements. We relied on a subset of data from Paper II and the original 

paper by Gervin et al. (2017) [7]. The 17 overlapping samples between the 

two studies were used to systematically investigate differences in DNAm 

measurements from two microarray-based platforms.  
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3.2 DATA SOURCES 

Below, I present the data sources used for Paper II, III and IV. 

3.2.1 THE MOTHER, FATHER AND CHILD COHORT STUDY 

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a 

population-based prospective birth cohort study conducted by the Norwegian 

Institute of Public Health (NIPH) [135, 136]. All pregnant women in Norway 

between 1999 and 2008 were invited to participate, and 40.6% of women 

consented to participation, including linkage of their responses to relevant 

health registries [135, 136]. MoBa includes approximately 114,500 children, 

95,200 mothers and 75,200 fathers [135, 136].  

In MoBa, questionnaires regarding e.g., maternal, paternal and child health, 

lifestyle and school performances, have been distributed multiple times during 

pregnancy (pregnancy weeks 15, 22 and 30), childhood (0.5, 1.5, 3, 5, 7, 8, 11 

years) and adolescence (13, 14 and 16–17 years). The study is still ongoing. 

Depending on child age, parents, children and/or (pre-)school teachers were 

asked to reply. Importantly, MoBa also comprises a biobank, with (whole and 

umbilical cord) blood, urine and milk teeth [137]. The biobank contains more 

than 90,000 blood samples from parents and children. Whole blood samples 

from both parents were collected at the routine ultrasound appointment at 17–

18 pregnancy weeks. At birth, umbilical cord blood was collected, and 

maternal whole blood was collected within two days post-partum [137].  

A major advantage of MoBa is its size, being one of the world’s largest birth 

cohorts. Further, the cohort contains detailed information on pregnancy 

exposures, including use of over-the-counter medications and child behavior 

and cognition [136, 138]. Finally, the multiple different biospecimens [137] 

offer possibilities to explore the molecular underpinnings of epidemiological 

findings. An important limitation of MoBa is that the MoBa population does 

not necessarily reflect the Norwegian population of women giving birth 

between 1999 and 2008 as a whole. In particular, young women, women 

smoking or living alone, and mothers with more than two previous 

pregnancies, previous/current still births or neonatal deaths, were markedly 

under-represented in MoBa as compared to all women giving birth in Norway 

in the same time period (22–45% less frequent in MoBa) [139]. By contrast, 

women taking folic acid or multivitamins were clearly overrepresented in 
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MoBa (31–43% more frequent in MoBa) [139]. The children still enrolled in 

MoBa at 3 years old were more frequently the firstborn child and the mother 

exhibited higher education than other mothers giving birth in Norway during 

the same time period [140]. Importantly, only the prevalence estimates 

appeared biased due to self-selection (selection bias) in MoBa, while tested 

exposure-outcome associations were not biased [139].  

The doctoral project is based on questionnaires (Q-) at gestational weeks 15 

(Q1) and 30 (Q3), and at 0.5 years (Q4), 1.5 years (Q5), 3 years (Q6) and 5 

years (Q5y). The relatively small EWAS sample sizes and the increasing loss 

to follow up with child age in MoBa [141] render questionnaires beyond 5 

years futile to include in our studies. DNAm was measured in cord blood 

samples from the MoBa biobank.  

3.2.2 THE MEDICAL BIRTH REGISTRY OF NORWAY 

The Medical Birth Registry of Norway (MBRN) is a national health registry 

with information on all births in Norway from 1967 and onwards. The registry 

is administered by NIPH. All Norwegian maternity units are obliged to notify 

births to the MBRN, this includes all pregnancies ending later than pregnancy 

week 12 and even pregnancy terminations after this week. This notification 

should include information on maternal health before and during pregnancy 

(e.g., medication use, and upon maternal consent, information on maternal 

occupation, smoking, alcohol use, and whether pregnancy resulted from 

assisted conception), as well as complications during pregnancy and/or birth 

(e.g., labor interventions, live or still births, congenital abnormalities and 

apparent child diagnoses). 

3.2.3 THE NORWEGIAN PATIENT REGISTRY 

The Norwegian Patient Registry (NPR) contains health information on 

patients in contact with the Specialist health care services in Norway, 

provided by specialists in outpatient clinics and governmental hospitals. The 

registry was established in 2008 and is administered by the Norwegian 

Directorate of Health. Diagnoses in the NPR are classified based on the 

International Classification of Diseases and Other Health Problems, 10th 

Revision (ICD-10).  
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3.3 COMPARISON GROUPS AND SELECTION CRITERIA 

In this section I briefly outline the selection criteria of the various EWAS 

comparison groups. In both EWASs, only pregnancies which were singleton 

and term births (37 weeks) were included. 

In Paper II, cases and controls were selected based on both prenatal 

paracetamol exposure and ADHD diagnosis. ADHD was included as a 

selection criterion to enrich for ADHD in the study, as ADHD is a relatively 

rare condition among children in MoBa (3.0%). Cases were defined as 

children having received an ADHD diagnosis by a health professional and 

being exposed to paracetamol 20 days. All samples having these features 

were included, as only 61 samples in the entire MoBa exhibited these 

characteristics. The study included two additional comparison groups: one 

group of children with an ADHD diagnosis who were not exposed to 

paracetamol and one group of children neither exposed to paracetamol nor 

having an ADHD diagnosis. As both of these groups consisted of >100 

subjects, 100 individuals for each group were randomly sampled to be 

included in the study.  

In Paper IV, any pregnancies where the fetus had been exposed to 

psycholeptics or antiepileptics were excluded. The cases were defined as 

being prenatally exposed to either citalopram or escitalopram (collectively 

referred to as (es)citalopram). To assess confounding by indication, i.e., that 

the underlying depression and not the antidepressants is associated with 

DNAm, we also included a depression group of women with unmedicated 

depression or anxiety during pregnancy. All women in MoBa fulfilling the 

inclusion criteria of either the (es)citalopram or the depression groups were 

included, due to relatively low numbers (n = 305 and n = 309, respectively). 

The control group included women that neither used (es)citalopram nor 

experienced depression during pregnancy. As this group greatly outnumbered 

the other comparison groups (n = 17,228), propensity scores were used to 

match the controls to the (es)citalopram group, resulting in a control group of 

n = 347 samples. The propensity scores were the probability of the subject 

taking (es)citalopram provided a list of relevant pre-treatment characteristics 

[142, 143]. Specifically, propensity scores were generated by using a logistic 

regression model with (es)citalopram (yes/no) as the dependent variable and 

various characteristics as independent variables, including measures of 
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parental lifestyle and socioeconomic status. From this list, covariates with a p 

value <0.1 were selected for inclusion in the final model matching the 

(es)citalopram subjects to controls.  

3.4 MEASURES 

3.4.1 PRENATAL MEDICATION AND SUPPLEMENT EXPOSURE 

Medication use in both Papers II and IV were retrieved from self-reports in 

MoBa. Provided a list of conditions, pregnant women were asked to report 

any medication use on each of the indications. Use was reported for every 4-

week interval throughout pregnancy. Q1 and Q3 covered gestational weeks 

0–4, 5–8 and 9–12, and 13–16, 17–20, 21–24, 25–28 and 29, respectively. 

Q4 covered the last weeks of pregnancy, from gestational week 30 until 

delivery. Women also reported the total number of days the medication was 

used for each indication. Medications are denoted by their Anatomical 

Therapeutic Chemical (ATC) code. Vitamin, mineral and dietary supplement 

use in MoBa is registered similar to medications. Provided a list of various 

supplements, women are asked to report any use per 4-week interval 

throughout pregnancy. In both Papers II and IV, medication and supplement 

use were coded as binary variables (“yes”/“no”), where “yes” indicated use at 

any time during pregnancy. 

In Paper II, we defined prenatal paracetamol exposure as maternal use of 

paracetamol (ATC code: N02BE01) on any indication listed in the MoBa 

questionnaires for ≥20 days. Maternal folic acid use during pregnancy was 

also examined. Self-reports of folic acid use in MoBa correspond well with 

maternal folic acid serum concentrations in gestational week 18 [144, 145]. 

Maternal folic acid use is also recorded in MBRN upon interview during the 

first antenatal consultation (gestational weeks 6–12). To be defined as using 

folic acid during pregnancy, we required recorded use in both MoBa and 

MBRN.   

In Paper IV, maternal use of citalopram (ATC code: N06AB04) or 

escitalopram (ATC code: N06AB10) were assessed on indications relating to 

mental health problems except eating disorders. Any reported use of 

(es)citalopram, irrespective of the total number of days, were defined as 

prenatal (es)citalopram exposure, as antidepressants are commonly taken as 
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one dose per day over a prolonged period of time. Antidepressant self-reports 

in MoBa and redeemed prescriptions registered in the Norwegian Prescription 

Database (NorPD) are shown to exhibit good agreement, where 87.0% of 

reports of antidepressant use in MoBa also have a corresponding filled 

prescription for the antidepressant in NorPD [146]. 

3.4.2 MATERNAL MENTAL HEALTH 

To examine the impact of the underlying maternal disease in Paper IV, we 

compared mothers using (es)citalopram during pregnancy to a depression 

group. Maternal depression was ascertained using two measures. First, self-

reported depression recorded as answering “Yes” to having depression (Q1, 

Q3), anxiety (Q1), other psychological problems (Q3) or mental health 

problems (Q4) during pregnancy. Second, depression was assessed using 

items from the Hopkins Symptom Checklist (SCL) relating to symptoms of 

depression and anxiety (SCL-5 items in Q1 and SCL-8 items in Q3) [147–

150]. A mean SCL-5 score ≥2.0 is indicative of depression [150, 151]. The 

SCL is an internationally recognized instrument to measure symptoms of 

mental disorders [147, 148]. The SCL-5 and -8 short-version SCLs included 

in MoBa have been shown to correlate well with the full-item instrument 

SCL-90 (0.90 and 0.92 respectively) [150]. The SCL-5 has a sensitivity of 

82.0% and a specificity of 96.0% [151]. 

3.4.3 NEURODEVELOPMENTAL OUTCOMES 

Different domains of neurodevelopment were assessed in Papers II and IV. 

In both papers, ADHD diagnoses recorded in the NPR were utilized. In Paper 

IV, additional psychometric test scores were used to examine features that 

may be, but are not necessarily, related to ADHD [152, 153].  

ADHD DIAGNOSIS IN NPR 

Diagnoses in the NPR are registered by specialists in outpatient clinics and 

governmental hospitals in accordance with the ICD-10 coding system. ADHD 

was defined as an ICD-10 diagnosis of hyperkinetic disorder (F90) [154]. The 

ICD-10 F90 diagnostic criteria are relatively similar to the ADHD diagnostic 

criteria in the Diagnostic and Statistical Manual, 5th edition (DSM-5) [48, 

154], albeit the DSM-5 criteria are less conservative than the ICD-10 criteria 

[155]. 
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THE CHILD BEHAVIOR CHECKLIST, DSM-ADHD SUBSCALE 

The Child Behavior Checklist DSM-oriented (CBCL-DSM) ADHD subscale 

measures ADHD symptoms [156, 157]. In MoBa, the CBCL-DSM is included 

in questionnaires distributed at 1.5 (Q5), 3 (Q6) and 5 (Q5y) years old. When 

compared to ADHD diagnoses from semi-structured clinical interviews, the 

CBCL-DSM ADHD subscale exhibits a moderate agreement ( = 0.51), a 

sensitivity of 81% and a specificity of 70% [158]. 

THE AGES AND STAGES QUESTIONNAIRE 

The Ages and Stages Questionnaire (ASQ) communication, fine motor and 

gross motor subscales [159] were also included in Paper IV. Only a subset of 

the original ASQ items were included in MoBa and the items included in 

MoBa span different age ranges of the ASQ questionnaires, to introduce more 

variation in scores across individuals. Overall, the ASQ exhibits good 

agreement (84%) compared to standardized assessments, having a sensitivity 

of 72% and a specificity of 86% [159]. The Norwegian version of the ASQ 

has also been validated [160]. 

3.5 MEASURING DNAM – THE MICROARRAY

TECHNOLOGY 

DNAm can be measured in different ways, broadly categorized based on the 

experimental approach: enzyme digestion-, affinity enrichment- and bisulfite 

conversion-based methods [161]. Additionally, third generation methods have 

also proven useful in assaying DNAm, allowing for direct detection of 

methylation from the DNA molecule, e.g., the NanoPore technology [162]. 

Selecting an appropriate assay depends on multiple factors, including budget, 

time, DNA quantity, throughput, resolution and genome coverage [161]. The 

Illumina Infinium microarray offers a good balance between throughput and 

genome coverage versus the costs and time [161], and therefore, these 

microarrays are the most common method for assaying DNAm to date [134]. 

To this end, the Infinium microarrays were also used for assaying DNAm in 

this doctoral project. The different steps of Infinium microarray analysis, are 

delineated in Figure 5. First, DNA is treated with bisulfite, which deaminate 

cytosine bases to uracil. Methylated cytosines are not converted to the same 

degree. Second, the bisulfite-treated DNA is amplified and enzymatically 



Materials and Methods 

29 

fragmented. Third, the amplified DNA is hybridized to the microarray. 

Fourth, the microarray is scanned to reveal probe intensities.  

The microarray consists of 100,000s of oligonucleotides called probes, which 

are target-specific, i.e., each probe should recognize an individual CpG [82, 

127]. In the Infinium methylation assays, there are two different probe 

designs, named type I and II [82]. The type I design has two distinct beads per 

CpG: one recognizing the methylated CpG and the other recognizing the 

unmethylated CpG. The bead matching the methylated CpG has a probe 

which will be extended by one base only if the target sequence has retained 

the cytosine after bisulfite treatment. Conversely, the bead matching the 

unmethylated CpG has a probe which will be extended by one base only when 

the cytosine has been converted to a thymine. DNA polymerase, the enzyme 

that synthesizes DNA, can only extend the probe by one nucleotide when the 

preceding base pair matches (i.e., when cytosine binds guanine or adenine 

binds thymine). Since the base preceding the CpG in the 5’ to 3’ direction of 

the DNA will be the same regardless of CpG methylation status, the two beads 

will both be detected in the same color channel. By contrast, the type II design 

has only one bead type with one probe extending by a single base. The 

fluorophore-labeled base reveals whether the cytosine has been converted to 

thymine based on the color detected in the scanner. After scanning, the 

intensities measured are “translated” into the methylation level of the CpG 

(the  value) defined as the proportion of methylated intensity to the total 

intensity (see enlarged box in Figure 5). 

The first Infinium methylation assay covered approximately 27,000 CpGs 

[127] and used only type I probes. Since type II probes require half the number

of beads per CpG, it was utilized when the methylation assay was expanded

to include 480,000 CpGs, named the 450k platform [82]. This was the main

microarray used in EWASs throughout the past decade [134], until it was

replaced by the Infinium EPIC v1.0 platform covering 850,000 CpGs.

Currently, Illumina offers two different microarray assays to assess human

DNAm: the EPIC platform v2.0 (poor-performing probes from v1.0 has been

removed and replaced by an additional 186,000 CpGs) and the Infinium

custom methylation kit, allowing researchers to customize the microarray

with probes of interest (up to 100,000 CpGs) [163]. In summary, the Infinium

microarrays are affordable high-throughput assays widely used in EWASs

today and are continuously evolving.
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3.6 STATISTICAL CONSIDERATIONS 

In the below paragraphs, I delineate some statistical considerations that are 

important in EWASs. Please note that the list is not exhaustive, but focuses 

on selected topics specifically relevant to this thesis.    

3.6.1 ANALYSIS PIPELINES AND NORMALIZATION METHODS 

Multiple analysis pipelines have been developed to aid in the processing and 

interpretation of DNAm data. Most pipelines are embedded in R packages, 

such as minfi [164], ChAMP [165, 166], ENmix [167], RnBeads [168, 169] 

and wateRmelon [170]. The packages feature similar preprocessing steps, 

including normalization and filtering of the raw data. However, the default 

selection of normalization method(s) differs across packages. Broadly, 

normalization of DNAm data may be divided into three categories: 

background, probe-type and dye-bias normalization. These normalizations 

adjust for background noise, different probe type chemistries, and bias in dye 

intensities (red versus green color channel), respectively. There is currently 

no consensus with respect to which normalization methods are better, and this 

may also vary depending on the study. For instance, functional normalization 

is better for studies when large differences between comparison groups are 

expected (such as in studies on cancer) [171], while ssNoob (single-sample 

normal-exponential using out-of-band probes normalization) has been 

suggested for the conjunct analysis of 450k and EPIC data [172]. 

In Paper III, the per-CpG reliability of DNAm across platforms for different 

common analysis pipelines in R was assessed. Based on the findings from 

these investigations, the default ENmix pipeline seemed most appropriate to 

best conserve concordance of measurements across platforms. Therefore, in 

Papers II and III, the default ENmix pipeline was used, including ENmix.oob 

(exponential-normal mixture out-of-band) background normalization [173], 

RELIC (REgression on Logarithm of Internal Control probes) dye-bias 

correction [174] and the RCP (regression on correlated probes) probe-type 

normalization [175]. In Paper IV, background noise was corrected for using 

ENmix.oob [173] and BMIQ (beta-mixture quantile normalization) was used 

for probe-type normalization [176]. The ENmix.oob and BMIQ methods are 

both frequently used in EWASs [134], and have been reported to perform 

better than other normalization methods in conserving concordance across 

duplicate samples analyzed on the same microarray platform [177, 178]. 
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3.6.2 SELECTION OF COVARIATES 

Systematic variation in DNAm data may contribute to false positives. In 

EWASs, such variation can occur if technical or biological covariates 

differentially impact DNAm, e.g., due to batch or sex, respectively. Yet, 

including overly many covariates in a regression model may overburden it 

and as such reduce the statistical power [134]. 

In line with this, we found considerable variation in which covariates were 

included in prenatal pharmacoepigenetic studies in our systematic literature 

review (Paper I). Thus, we implemented a systematic approach in the EWASs 

of Papers II and IV, to determine appropriate covariates to include in the 

models. First, we summarized the DNAm variation using principal component 

analysis (PCA), to have a measure of the overall, genome-wide variation in 

DNAm. The principal components (PCs) accounting for the most DNAm 

variation were then tested for association with a list of putative relevant 

covariates. These covariates were identified from prenatal 

pharmacoepigenetic studies in Paper I. Second, the covariates significantly 

associated with the selected PCs were included in PC-PR2, a method for 

assessing the contribution of each covariate to the between-sample DNAm 

variability [179, 180]. Finally, the covariates contributing the most to DNAm 

variability between samples were assessed for significant differences in mean 

or proportion between the comparison groups. If the covariate both 

contributed considerably to DNAm variability and was significantly different 

between the comparison groups, we included the covariate in the regression 

model. By using this systematic approach in selecting covariates, we aimed to 

include relevant but not excessively many covariates in our models.  

3.6.3 CELL TYPE COMPOSITION 

As DNAm vary across cell and tissue types, the estimated cell type 

composition is important to assess in EWASs. Like most current EWASs, we 

used one of several established deconvolution methods. Such methods may 

be reference-based or reference-free, based on whether the method uses a 

reference DNAm database of cell types in the tissue of interest or not [181]. 

Generally, when a reference database of DNAm is available for the tissue type 

of interest, a reference-based approach is recommended [182]. Since a 

validated reference database for umbilical cord blood exists [183], we used 

this in Papers II and IV. 
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3.6.4 REGRESSION MODELS 

In EWASs, linear regression models are most often used to investigate the 

strength of association between DNAm at individual CpGs and an exposure 

or phenotype of interest. DNAm data violate the assumptions of linear 

regression, including that of homoscedasticity [184]. To limit 

heteroscedasticity, M values (log2( / (1–)) are suggested for statistical 

analyses in EWASs rather than  values [184]. 

Accordingly, we used linear regression models and M values when assessing 

the association between DNAm and prenatal medication exposure in Papers 

II and IV. We also assessed interaction where two variables interact to 

influence the response variable. In Paper II we asked whether two prenatal 

exposures (paracetamol and folic acid) could interact to influence DNAm and 

in Paper IV, we asked whether DNAm and (es)citalopram exposure 

interacted to impact neurodevelopmental outcomes. 

In Paper IV we also used the unsupervised clustering method latent class 

growth analysis (LCGA; also called group-based trajectory modelling) to find 

trajectories of neurodevelopmental outcomes across multiple timepoints 

[185]. This enabled the consideration of development of such outcomes over 

time, which may be more informative than symptoms at one particular 

timepoint.  

3.7 ETHICS AND DATA PROTECTION 

The linking of data across MoBa, MBRN and NPR was performed using the 

personal, 11-digit identification number, unique to every permanent resident 

of Norway. All data are de-identified, and the linkage between MoBa and the 

different health registries was handled by NIPH and the relevant registries. 

The establishment of MoBa and initial data collection was based on a license 

from the Norwegian Data Protection Agency and approval from the Regional 

Committees for Medical and Health Research Ethics (reference: S-97045 and 

S-95113). The MoBa cohort is currently regulated by the Norwegian Health

Registry Act. The MoBa biobank is registered as the research biobank number

169 in the Norwegian Biobank Registry. The original studies of this thesis

were approved by the Regional Committees for Medical and Health Research

Ethics (reference: 23136, 2014/163).
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MBRN and NPR are both governed by the Personal Health Data Registries 

Act §11 [Norwegian]. Additionally, both MBRN and NPR each have specific 

regulations for data handling (Regulation on collection and processing of 

health information in the Medical Birth Registry of Norway and Regulation 

on collection and processing of health information in the Norwegian Patient 

Registry [both in Norwegian]).  

https://lovdata.no/lov/2014-06-20-43/§11
https://lovdata.no/lov/2014-06-20-43/§11
https://lovdata.no/dokument/SF/forskrift/2001-12-21-1483
https://lovdata.no/dokument/SF/forskrift/2001-12-21-1483
https://lovdata.no/dokument/SF/forskrift/2007-12-07-1389/
https://lovdata.no/dokument/SF/forskrift/2007-12-07-1389/
https://lovdata.no/dokument/SF/forskrift/2007-12-07-1389/
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4    RESULTS 

In the following paragraphs, the main results of the four papers of the thesis 

are presented, in the order of the thesis objectives (Figure 4).  

4.1 OBJECTIVE 1: REVIEW OF PRENATAL

PHARMACOEPIGENETIC STUDIES 

In Paper I, we performed a systematic literature review of studies on prenatal 

exposure to analgesics or psychotropics with epigenetic modifications as the 

outcome. We also proposed 10 recommendations for future studies. The 

results of the systematic literature review provided a foundation for the three 

remaining papers of the thesis. 

We identified 18 eligible studies published before September 1, 2020. The 

most frequently studied medication group was antidepressants, examined in 

12 different studies. The remaining six studies investigated antiepileptic drugs 

(n = 2), paracetamol (n = 2), acetylsalicylic acid (n = 1) and methadone (n = 

1). All studies examined the association between medication exposure and 

DNAm, either by performing EWASs (n = 7), conducting candidate gene 

studies (n = 9) or using both approaches (n = 2). DNAm was primarily 

assessed in cord blood (n = 13), but some studies investigated placentae (n = 

5) or buccal cells (n = 2). In addition to DNAm, eight studies also examined

child phenotypic outcomes such as ADHD, neonatal abstinence syndrome and

stress reactivity.
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Notably, among the EWASs investigating the same medication or medication 

group (paracetamol, antidepressants and antiepileptic drugs), none of the 

significant CpGs overlapped between studies. Further, for both paracetamol 

and antiepileptic drugs, one study reported several hundreds of significant 

CpGs, while the other study found no or only a few significant CpGs. All but 

one candidate gene study investigated prenatal antidepressant exposure. There 

were four genes which were investigated in more than one study. For one gene 

the findings were consistent across studies: there was no difference in DNAm 

between antidepressant exposed and unexposed groups in the glucocorticoid 

receptor gene (NR3C1).  

The systematic review revealed inconsistencies in the prenatal 

pharmacoepigenetic literature with regards to methodology, materials, 

genome coverage and statistical modelling. These differences made the 

interpretation of findings challenging, in particular with regards to 

comparison across studies. Therefore, we proposed 10 recommendations to 

improve the quality, interpretability and comparability of future prenatal 

pharmacoepigenetic studies. The recommendations were focused on how 

established epidemiological practices can be utilized in epigenetic studies, as 

well as particular considerations important in epigenetic studies (Box 1).  

Box 1. Recommendations for future prenatal pharmacoepigenetic studies. 

Reproduced from Olstad et al. (2021) [187]. 

(1) HYPOTHESIS: candidate gene studies should use a plausible hypothesis

to guide the study design

Hypotheses should be defined prior to designing a candidate gene study, and be

guided by principles of teratology, knowledge of pharmacological mechanisms, and

epidemiological and biological observations. Hypothesis-free EWASs are also

important as the field of prenatal pharmacoepigenetic studies is still emerging.

(2) MEDICATION SELECTION: investigate individual medications rather

than medication classes

Unless the pharmacological and epigenetic mechanisms of action of medications are

expected to be similar across the medication class, medications should be analysed

on an individual substance level. 

(3) STATISTICAL POWER: ensure sufficient sample sizes to detect relevant

DNAm differences

To detect biologically relevant DNAm associations and to ensure valid interpretation

of the results, tools developed for power assessments in epigenetic studies should be

used when planning such studies.
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Box 1. Continued. 

(4) STUDY DESIGN: include a disease comparison group to disentangle

medication from indication

Studies should include a disease comparison group to better differentiate the effects

of exposure to medication from the underlying maternal disease. This may reduce 

the impact of confounding by indication.

(5) SYSTEMATIC ERROR: assess selection bias, information bias, and

confounding

Selection bias should be assessed by comparing characteristics of study samples to

the target population. The validity of medication exposure, neonatal phenotype, and

other covariates should be reported, and information bias and misclassification

addressed. Measured confounders of the exposure–outcome association(s) are to be

adjusted for and residual confounding investigated. Importantly, cell type 

heterogeneity should be considered a confounding factor in epigenetic studies.

(6) TISSUE SELECTION: biomarkers and extrapolation of DNAm patterns

across tissues

If the research aim is not only to report a tissue-independent biomarker, but to 

extrapolate results to other target tissues, the limitations of such translation should 

be recognized, and reduced using software applications or data sets on cross-tissue

correlations of modifications.

(7) LONGITUDINAL PERSPECTIVE: assess persistence of DNAm patterns

throughout childhood

The follow-up of epigenetic patterns later in childhood is essential to assess the 

relevance of these changes over time, as they may suggest a long-term impact on the 

phenotypic outcome. 

(8) DATA INTEGRATION: integrate epigenetic data with complementary

omics data

Integration of complementary omics data, such as genomic and transcriptomic data,

can strengthen functional and causal inferences of the findings.

(9) CAUSAL INFERENCE: provides a framework for interpreting exposure-

outcome associations

Causal inference methods, such as two-step Mendelian randomization, may support

the inference of causation from exposure–outcome associations, including how 

medication may impact phenotypic outcome via DNAm changes. Importantly, the 

underlying assumptions of causal methods are often untestable and, therefore, such

methods should be used carefully.

(10) REPLICATION: replicate findings using different methods and

independent cohorts

Replication both across methods and in independent cohorts is essential to increase

the validity of the findings and the generalizability of the results to enhance clinical

relevance.

.
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4.2 OBJECTIVE 2: PRENATAL MEDICATIONS, DNAM AND

NEURODEVELOPMENT

In Papers II and IV, we examined associations between medication 

exposure, DNAm and child neurodevelopment.  

In Paper II, we aimed to replicate and expand on a study conducted by our 

research group on prenatal paracetamol exposure, DNAm and ADHD [7]. In 

contrast to the original study, we found no significant CpGs associated with 

paracetamol and ADHD. We also examined whether folic acid could interact 

with paracetamol in the effect on DNAm, as folic acid is an important methyl 

donor for DNAm [186]. We did not find any significant interaction effects of 

paracetamol and folic acid on cord blood DNAm. In summary, this study 

could not replicate previous findings in MoBa, and did not identify any 

interaction effects of paracetamol and folic acid on DNAm in children with 

ADHD.  [187] 

In Paper IV, we aimed to investigate the relationship between prenatal 

(es)citalopram, cord blood DNAm and later neurodevelopmental outcomes. 

We found no significant differentially methylated CpGs between the three 

comparison groups: the (es)citalopram, the depression and the control groups. 

In line with some previous pharmacoepidemiological studies, we identified a 

significantly higher proportion of ADHD in the (es)citalopram and depression 

groups compared to controls. To examine any molecular underpinning of 

these differences, we investigated whether there was an interaction effect of 

(es)citalopram exposure and DNAm on neurodevelopment. These analyses 

did not identify any significant interaction effects of (es)citalopram exposure 

and DNAm on the neurodevelopmental outcomes. Children with 

neurodevelopmental conditions often present heterogeneity in the 

developmental course. We used LCGA to identify different developmental 

trajectories for ADHD symptoms, and communication and psychomotor 

skills. We found that DNAm measured at birth before symptom onset was 

significantly associated with later developmental trajectories of 

communication (126 significant CpGs) and psychomotor skills (32 significant 

CpGs). Interestingly, several of the identified CpGs annotated to genes 

previously associated with ADHD (e.g., PEX10, KCNJ5 and SHANK2) and 

neurodevelopmental processes (e.g., BEGAIN and HOXC4). Some of the 

significant CpGs also showed good blood-brain correlation.  
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To summarize, the two EWASs complement and build on the systematic 

literature review, by implementing several of the recommendations to 

improve study quality and interpretability. Neither of the EWASs identified 

significant associations between prenatal medication exposure and DNAm.  

4.3 OBJECTIVE 3: DNAM VARIATION BETWEEN

MICROARRAYS 

In Paper III, we conducted a systematic investigation of the concordance of 

DNAm measurements between the Infinium microarray platforms 450k and 

EPIC (Figure 6). This study was prompted by our non-replication in Paper 

II.  

We assessed 17 samples with DNAm measured on the 450k and EPIC 

platforms. Comparing six popular analysis pipelines for DNAm data 

(ChAMP, ENmix, minfi, RnBeads, customized RnBeads [ENmix.oob and 

BMIQ] and wateRmelon), we found considerable differences in cross-

platform CpG reliability when preprocessing with the different pipelines. The 

ENmix pipeline exhibited the best cross-platform reliabilities. We found 

relatively small differences in the mean absolute DNAm differences between 

platforms, with 1.6% of the CpGs exhibiting a mean absolute difference in 

DNAm >0.1 across platforms. However, the per-CpG correlation was 

generally low, with a mean correlation of 0.237. This was also reflected in the 

cross-platform reliabilities, as only about 26.7% of probes exhibited a 

moderate or better reliability (intra-class correlation coefficient ≥0.5). Finally, 

we examined the reliability of the significant CpGs of our previous 

paracetamol-DNAm study [7], and found that most of these CpGs exhibited 

low reliabilities, but this could not explain our non-replication of findings in 

Paper II.  

In summary, we found relatively poor concordance of DNAm measurements 

across microarray platforms. While these findings cannot explain the non-

replication reported in our Paper II, other replication studies may be affected 

by the poor cross-platform concordance.  
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5    DISCUSSION 

To explore the current state in the field of prenatal pharmacoepigenetics, we 

conducted a systematic literature review. This review identified 18 studies 

with few overlapping findings across same-medication studies. Yet, a fair 

comparison of the studies was challenging, partly due to substantial 

heterogeneity in methodology, genome coverage, processing of data and 

statistical modelling. To this end, we proposed 10 recommendations to 

improve the interpretability, comparability and quality of prenatal 

pharmacoepigenetic studies (Figure 7). The systematic literature review 

provided an inspiration and foundation for the three remaining papers. In the 

first EWAS, we found no significant association of prenatal paracetamol 

exposure with differential DNAm in children with ADHD. Further, folic acid 

did not interact with paracetamol to influence DNAm. This non-replication of 

our previous study on paracetamol and DNAm could not be explained by the 

low reliability of probes across microarray platforms. Nevertheless, the 

finding of poor concordance of measured DNAm levels across platforms can 

in principle contribute to non-replication in other instances. Finally, in the 

study on (es)citalopram, DNAm and neurodevelopment, no CpGs were 

significantly differentially methylated between the (es)citalopram, depression 

and control groups. This was also true when assessing the interaction effects 

of (es)citalopram and DNAm on neurodevelopment. However, we identified 

multiple CpGs associated with the developmental trajectories of 

communication and psychomotor skills. Several of these CpGs annotated to 

genes relevant to neurodevelopmental processes and genes previously 

associated with ADHD.  
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Figure 7. The 10 recommendations of the systematic review.  

Visualization of the 10 recommendations proposed in the systematic literature review. 

See Box 1, p. 36–37 for details.  

This thesis highlights several challenges of the current prenatal 

pharmacoepigenetic studies (Figure 7). Here, I discuss several of these 

challenges in relation to the other findings of this thesis, and briefly mention 

the implications for future prenatal pharmacoepigenetic studies.  

5.1 REPLICATION OF FINDINGS 

Replication is essential to ensure that the study findings are robust and valid. 

In our systematic literature review, we found no overlapping findings across 

studies on the same medication or medication group. Since we concluded the 

systematic literature review in September 2020, several new studies in 

prenatal pharmacoepigenetics have been published. In particular, five new 

EWASs (two on opioids [188, 189], two on antidepressants [190, 191] and 

one on paracetamol [192]) and one candidate gene study on opioids [193]. 

Importantly, none of the new studies change the main finding of mostly non-

overlapping results in the systematic literature review.  

Along the same lines, we could not replicate the findings of our previous 

EWAS on paracetamol and ADHD [7]. Further, our study on (es)citalopram 

did not find any CpGs associated with DNAm, contrasting all but one previous 

EWAS on antidepressants and cord blood DNAm [190, 194–197]. 
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Regrettably, there is currently a paucity of robust and replicable findings 

within prenatal pharmacoepigenetics. This challenge is also reported in 

related fields, such as prenatal exposure to poor maternal wellbeing [198], 

suggesting that the challenge of replicating findings is not particular to 

prenatal pharmacoepigenetics, but a broader issue within epigenetic 

epidemiology.  

To this end, we suggested 10 recommendations to improve interpretability, 

comparability and replicability of prenatal pharmacoepigenetic studies, which 

were followed up in our (es)citalopram study. First, we investigated only a 

single antidepressant, instead of all antidepressants (Figure 7 and Box 1, pt. 2 

“Medication selection”). Further, we included a disease comparison group of 

subjects prenatally exposed to unmedicated maternal depression (Figure 7 and 

Box 1, pt. 4 “Study design”). We also reduced the impact of variables other 

than the exposure by using propensity score matching to select our controls 

and systematically assessed potential covariates (Figure 7 and Box 1, pt. 5 

“Systematic error”). The validity of all measures of medication exposure and 

neurodevelopmental outcomes were reported (Figure 7 and Box 1, pt. 5 

“Systematic error”). To strengthen the relevance of the findings to brain 

phenotypes, we also assessed the correlation of DNAm at significant CpGs in 

cord blood with the same CpGs in different brain areas (Figure 7 and Box 1, 

pt. 6 “Tissue selection”). Finally, we included a substantially larger number 

of samples in the exposure group than any of the previous epigenetic studies 

on prenatal antidepressant exposure. While we believe such measures are 

important to implement also in future studies, it is still uncertain whether the 

10-fold increase in sample size is sufficient to ensure an appropriately

powered study.

5.2 STUDY POWER 

The power of a study is the probability of rejecting the null hypothesis when 

the alternative hypothesis is true. I.e., a high power indicates a larger 

likelihood of identifying a true difference between the comparison groups. 

Conversely, lower power results in more false negatives and consequently, a 

reduced likelihood that the identified positives are true positives. Therefore, 

having sufficient power is essential for the study findings to be robust, 

interpretable and replicable.  
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5.2.1 SAMPLE SIZES 

Study power is inherently related to sample sizes. However, estimating 

sufficient sample sizes to achieve an acceptable power in EWASs is 

challenging [75, 199, 200]. Such calculations depend not only on the 

significance threshold, the effect sizes and variability in DNAm, but also the 

cell and/or tissue types and the proportion of differentially methylated CpGs 

[75, 199].  

The median total sample size of the EWASs we reviewed was 19. By 

comparison, current genome-wide association studies (GWASs), examining 

the association between single nucleotide polymorphisms (SNPs) and a 

phenotype, includes 10,000s to 100,000s of samples. Arguably, a pertinent 

question is why GWASs would require more than a 1,000-fold more samples 

than EWASs. Indeed, early studies in GWASs also included a few hundred 

samples. Then, in a powerful review in 2005 [201], Wang et al. argued for 

increasing sample sizes from the order of 100s to 1,000s. Only with these 

numbers of samples, Wang et al. stated, would GWASs be able to detect the 

small effect sizes of infrequent SNPs [201]. In 2010, Rakyan et al. stated that 

the appropriate sample size of EWASs should not be expected to be any 

smaller than what is appropriate in GWASs [75]. In particular, additional 

complexities of epigenetic data include cell- and tissue-specific DNAm 

patterns, that the DNAm level can take any value between 0 and 1, and 

inherent measurement errors [75]. 

Currently, there are two sample size calculators specifically developed for 

EWASs available, by Graw et al. (2019) [199] and Mansell et al. (2018) [200]. 

In the antidepressant EWASs included in the systematic literature review, the 

median number of exposed samples was 14. According to the Mansell et al. 

calculator [200], with a group size of 14, only 13.4% of CpGs will have a 

power >80%1. Notably, in the (es)citalopram EWAS of this thesis, 98.7% of 

CpGs have a power >80%a.  

These estimations suggest that most of the sample sizes currently used in 

prenatal pharmacoepigenetic EWASs are too low for studies to exhibit an 

appropriate power. While these considerations cannot rule out that some of 

the significant findings reported in prenatal pharmacoepigenetic studies are 

1 Parameters: sample size = 28/650; α = 9.42*10-8; diff. DNAm = 0.05; bins = 500. 
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true positive findings, they suggest that current results should be interpreted 

with caution. Likely, the rapid development of technology to measure DNAm 

will enable even more cost-effective DNAm assays in the years to come, 

which will support increasing sample sizes in EWASs.   

5.2.2 INFINIUM MICROARRAY PROBE RELIABILITY 

In our comparative study of measured DNAm levels across Infinium 

microarray platforms, we uncovered relatively poor per-CpG reliability 

between platforms. I.e., the DNAm level measured for a CpG with the 450k 

platform usually did not correspond well with the DNAm level measured for 

the same CpG on the EPIC platform. These findings are in line with previous 

reports in cord blood [202] and multiple other tissues [202–207].  

Some studies report that such differences are not impacting EWAS results 

[202, 203], while others find that the CpGs with higher reliability across 

platforms also have the highest probability of being replicated [205]. 

Similarly, poor reliability of probes has been associated with a reduced power 

of individual CpGs, increasing the number of false negative findings [205, 

208, 209]. Consequently, if our non-replication of paracetamol-DNAm 

associations was entirely explained by low-reliability probes, we would 

expect no or only a few significant CpGs also in the previous study, which 

was not the case [7]. Importantly, this does not exclude the possibility of low-

reliability probes influencing replication of other studies using different 

microarray platforms. For CpGs that are truly different between two 

comparison groups but have low cross-platform probe reliabilities, we are less 

likely to identify these CpGs across studies using different Infinium platforms, 

i.e., the CpGs are harder to replicate.

Low probe reliabilities have also been identified for same-platform 

comparisons of duplicate samples processed conjunctly [173, 178, 203, 205, 

209–214]. Yet, to my knowledge, current EWAS power calculators are not 

explicitly incorporating the low-reliability aspect. Considering the impact of 

reliability on power and the considerable proportion of low-reliability probes 

both across and within platforms [173, 178, 211–215, 202–207, 209, 210], it 

is plausible that low-reliability probes would require much larger sample sizes 

to attain the same power as high-reliability probes. A further investigation of 

this hypothesis could provide useful insights into the power of EWASs. It may 
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also elucidate whether sample sizes of 300–400 are truly sufficient for an 

appropriate study power, as suggested by current EWAS power calculators. 

We also found that the cross-platform probe reliability depended on the 

preprocessing of the data. Hence, whether DNAm levels are preserved across 

platforms, also depends on the preprocessing pipeline. Notably, recent studies 

have reported that changes in analysis pipeline may impact the p values of 

CpGs upon testing differential DNAm [216], as well as the consistency of 

DNAm predictors and their association with phenotypes [217].  

To summarize, the various microarray platforms and the preprocessing of 

DNAm data may influence the replicability of prenatal pharmacoepigenetic 

findings. Therefore, a corollary of welcoming technological improvements 

and novel bioinformatic tools is the challenges associated with microarray 

platforms and analysis pipelines. However, a more extensive exploration of 

the plausible impact of probe reliabilities on power will be important to ensure 

that current studies are not underpowered to detect true group differences.  

5.3 CELL TYPE AND TISSUE-SPECIFIC DNA

METHYLATION 

The cell type- and tissue-specific DNAm patterns confer considerations 

particular for epigenetic studies. First, changes in cell type proportions rather 

than actual DNAm changes may be driving differential DNAm between 

groups. Second, extrapolation between tissues is not straight-forward, and 

oftentimes peripheral tissues are used due to inaccessibility of the tissue of 

interest. Third, DNAm measurements from cell-type heterogenous tissues are 

an average over all the cell types of the tissue.  

In the two EWASs of this thesis, we investigated DNAm in umbilical cord 

blood. Cord blood consists of hematopoietic stem cells, nucleated red blood 

cells (nRBCs) and various leukocytes, including monocytes, granulocytes and 

lymphocytes. The constituents of the latter are natural killer (NK) cells, B 

cells, and CD4+ and CD8+ T cells. These different cell types show distinct 

DNAm patterns [183, 218]. Consequently, if medication exposure alters the 

cell type composition of cord blood, differences between the exposed and 

unexposed groups may not reflect a change in the actual DNAm patterns, but 

rather in the relative proportions of cell types. Thus, the importance of 
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accounting for cell type composition in EWASs has been highlighted many 

times [181, 219, 220]. 

To this end, potential covariates, including cell type composition, were 

thoroughly examined in the EWASs of this thesis. As expected, we found that 

cell types contributed the most variability to DNAm by far, explaining 5.0–

13.7% of the between-sample DNAm variability. Importantly, we did not find 

considerable differences between groups with regards to cell type 

composition. These investigations suggested that in our cases, cell type 

composition was likely not a driving force of DNAm differences between 

comparison groups. 

The second challenge with DNAm differences between tissues is whether the 

DNAm of a peripheral surrogate tissue is relevant to the tissue of interest. For 

instance, we investigated cord blood DNAm, but were interested in whether 

DNAm was associated with neurodevelopmental outcomes. Ideally, we would 

investigate DNAm in fetal brain tissue. However, very few such specimens 

are available [221, 222]. Even if post mortem fetal brain samples were more 

readily available, such tissue would likely in large part stem from abortions, 

for which the generalizability to live birthed individuals is questionable. 

Therefore, a frequently used approach is to examine more available peripheral 

tissues as proxies for brain tissue. The frequent use of such surrogate tissues 

in EWASs have led to the investigation of surrogate tissue-brain DNAm 

correlation and the establishment of databases of such correlations [223–225]. 

Utilizing these resources may help inferring the biological relevance of 

significant DNAm differences between groups also in the tissue of interest.  

To this end, in the (es)citalopram study, we assessed the CpGs associated with 

communication and psychomotor developmental trajectories using the 

BECon online tool [224]. This tool has data from the 450k platform for blood 

and brain. Notably, current blood-brain correlation resources only exhibit 

whole blood versus brain correlations [223, 224]. Since DNAm patterns 

changes as the immune system matures in early childhood, cord blood and 

whole blood exhibit differential DNAm patterns [218], and extensive changes 

also occur in the brain methylome throughout development. Therefore, the 

biological interpretation of the CpGs in the EWAS on (es)citalopram is 

limited by unavailable tissue correlation resources.  
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Another limitation of using bulk tissue, whether it is cord blood, whole blood 

or brain tissue, is the fact that DNAm measurements from cell type 

heterogenous tissues are an average over all cell types of the tissue [75]. Thus, 

if there is a considerable change in DNAm in a subset of cell types, this may 

be concealed by the non-changing DNAm of the other cells. One way to 

combat this challenge is by analyzing single cell types. To enable sorting of 

cell types, e.g., by the fluorescence-activated cell sorting (FACS) technique, 

fresh tissue is needed. However, biobanks of large cohort studies typically 

contain frozen samples, and thus, disable cell sorting.  

5.4 INTERPRETING DNA METHYLATION DIFFERENCES 

The effect sizes in the epigenetic epidemiology of complex diseases are 

expected to be small, on the order of 0.05 and upwards [126, 226]. These small 

differences are likely a result of the multitude of different factors believed to 

influence complex disease development and the aforementioned limitations 

of cell type heterogeneity in tissues.   

Inference of the functional implications of differential DNAm will depend on 

genomic position and how DNAm “translates” to gene transcription. As 

outlined in Section 1.2.4, a direct inference from DNAm to gene transcription 

is challenging. Therefore, the functional meaning of changes in DNAm will 

require integration of other -omics data, including data on the genome, 

transcriptome and on histone modifications [181]. There are also online 

resources available to support making functional inferences about DNAm 

findings. An example of a multi-omics initiative is the Encyclopedia of DNA 

Elements (ENCODE) project, aiming to elucidate all functional elements of 

the human genome by mapping a host of different data including transcripts, 

epigenetics, transcription factor binding sites and genotypes [227–229]. 

None of the EWASs in the systematic literature review integrated other -omics 

data. This is also a limitation of the EWASs of this thesis. While single-omics 

studies may be valuable in identifying potential biomarkers, the mechanistic 

implications of the findings are difficult to infer from DNAm alone. 

Increasing utilization of available online resources and focus on multi-omics 

approaches, may promote the functional interpretation of prenatal 

pharmacoepigenetic studies. 
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5.5 NEURODEVELOPMENTAL OUTCOMES

The term neurodevelopmental outcomes covers a variety of different 

conditions and disorders, whose common denominator is that they origin 

during the development of the brain. Therefore, neurodevelopmental 

outcomes may be measured in many different ways, e.g., diagnoses asserted 

by specialists, parental or self-reported psychometric tests, and school results 

[66]. The manifestations and developmental courses of neurodevelopmental 

conditions are heterogenous, and there is considerable symptom overlap 

between such disorders [230]. To this end, researchers within developmental 

sciences advocate for a transdiagnostic approach to developmental disorders 

whereby trajectories of the many domains implicated in such disorders are 

modeled [231–233]. 

In both EWASs of this thesis, ADHD was examined. ADHD is characterized 

by inattention and/or hyperactivity with varying severity [152, 153, 234]. As 

such, ADHD is inherently a heterogenous disease. Further, the disorder follow 

different developmental courses [153, 234]. Consequently, a diagnosis may 

be reductionistic and overly simplistic. Indeed, this is an important limitation 

of our EWAS on paracetamol wherein we used ADHD diagnoses only.  

While diagnoses neatly classify the subjects into two categories, a single-

minded focus on neurodevelopmental diagnoses when investigating 

medication safety and long-term neurodevelopmental outcomes has been 

questioned [235]. Importantly, longitudinally assessing trajectories of ADHD 

symptom development, may better reflect subgroups of individuals with the 

disorder, with differing symptom severity and developmental courses [152, 

153, 234]. This approach also enables identification of subclinical individuals, 

which are not captured with the dichotomous diagnostic label [152, 153, 234]. 

Indeed, two recent EWASs have used repeated measurements of ADHD 

symptoms to identify symptom trajectories [236] or to increase the precision 

of the ADHD measure [237].  

In our (es)citalopram study, we included both ADHD diagnosis and symptoms 

to more robustly assess ADHD. We did not identify a significant association 

of neither ADHD diagnoses nor ADHD symptom trajectories with differential 

DNAm. However, delayed communication and psychomotor development 

were associated with differential DNAm in genes previously associated with 
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ADHD in childhood [236, 238]. Following up on these findings and covering 

a broader spectrum of neurodevelopmental conditions, may reveal novel 

insights into the disease etiology of such disorders.   

5.6 GENETIC CONSIDERATIONS 

An important consideration with regards to DNAm and ADHD, and other 

neurodevelopmental disorders, is genetics. The EWASs of this thesis could 

not account for the genetic component of ADHD. In the (es)citalopram study, 

we observed significantly more children with ADHD and other 

neurodevelopmental symptoms both among (es)citalopram-treated and 

depressed mothers. Future studies including genetic data may help to elucidate 

the impact of maternal genetic susceptibility to child ADHD and other 

neurodevelopmental outcomes. Further, understanding the correlation of child 

polygenic risk scores with neurodevelopmental outcomes will also be 

important. 

Genetics contributes about 20% of inter-individual DNAm variation [99–

101]. To this end, researchers have identified several 100,000s loci in the 

DNA which impact DNAm status at specific CpGs, called methylation 

quantitative trait loci (mQTLs) [99, 100, 102]. Consequently, genetic data 

may also be used to explore the contribution of genetics to DNAm variation.  

Finally, genetic data can be utilized to strengthen the causal interpretation of 

associations. In particular, mQTLs can also be used for strengthening the 

causal interpretation of findings. First, by assessing the overlap of mQTLs 

with EWAS hits. If overlapping, this may suggest that the DNAm mediates 

an increased disease risk at the specific loci. For instance, studies have 

demonstrated mQTLs which substantially overlap with genetic variants 

associated with schizophrenia [239–241] and autism [242]. Second, mQTLs 

may be used in two-step Mendelian randomization [243, 244], as briefly 

described in the following section. 

5.7 CAUSAL INFERENCE: MECHANISMS AND BIOMARKERS 

One important question is whether the significant CpGs associated with a 

phenotype are causal. In the DOHaD framework, DNAm is hypothesized as a 
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mediator between prenatal exposures and later disease development [5, 6]. In 

this perspective, DNAm is part of a causal path from exposure to outcome. 

While understanding disease etiology is important, non-causal associations 

may also be valuable, for instance as prognostic or diagnostic biomarkers 

[245].  

The mechanism underlying the associations between prenatal medication 

exposure and neurodevelopment is not known. Understanding whether 

DNAm is part of this mechanism may guide the use of medications with good 

safety profiles in pregnancy. Moreover, such investigations can give rise to 

new therapeutic agents interacting with the epigenetic machinery. For 

instance, several approved cancer medications are DNA methyltransferase 

inhibitors [245], as early studies on the epigenetics of cancer identified 

extensive changes to the methylome [246].  

However, even if DNAm plays no mediating role in the medication-

neurodevelopmental outcome relationship, it may still be a valuable 

biomarker. For instance, DNAm biomarkers can be useful to infer exposure 

status or risk for neurodevelopmental disorders [245, 247, 248]. Further, 

DNAm biomarkers are already used for diagnostic and prognostic purposes, 

as well as to predict response to therapy [245]. Notably, biomarkers can be 

both causal and non-causal. 

Most EWASs to date focus on associations only and cannot explore causal 

relations directly. For instance, our EWASs used linear regression models to 

assess the association of prenatal medication exposure with DNAm. This 

analysis alone cannot be used to infer causal relationships.  

One approach to explore the role of DNAm as a causal mediator in EWASs, 

is two-step Mendelian randomization [243, 244]. While this method has been 

used to assess the role of DNAm in mediating the association of prenatal 

exposure with child phenotypic outcomes [249, 250], no study within prenatal 

pharmacoepigenetics has utilized this approach to date. Causal inference 

methods should be used with caution, however, if the aim of a study is to 

explore causal pathways, such approaches are pivotal.
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6     CONCLUSION 

The aim of this thesis was to explore the relationship between prenatal 

medication exposure, DNAm and neurodevelopment. To this end, a 

systematic literature review was conducted to summarize the literature on 

prenatal pharmacoepigenetics and propose recommendations for future 

studies. Several of the recommendations were followed up on in two EWASs. 

We hypothesized that prenatal exposure to paracetamol or (es)citalopram 

influences DNAm, and may be associated with child neurodevelopmental 

outcomes. However, in our EWASs, we could not replicate findings from 

previous studies on the association of prenatal paracetamol or (es)citalopram 

exposure with DNAm. We did, however, find significant associations 

between child neurodevelopmental trajectories and DNAm. These findings 

should be replicated in other independent cohorts.  

The finding of non-overlapping results seemed to be a general challenge 

within prenatal pharmacoepigenetics. As we identified considerable variation 

in measured DNAm levels across microarray platforms, we suggest that this 

variation may contribute to the observed paucity of replication of findings. 

Importantly, other factors likely also contribute to the non-replication, several 

of which were outlined in this thesis. 

In conclusion, the findings of this thesis elucidate multiple challenges of 

prenatal pharmacoepigenetic studies. The apparent lack of robust findings 

renders the current clinical relevance of such studies uncertain. With 

improvements in technology and methodology, it should be possible to 

overcome the present challenges. This may provide more robust results of 

greater clinical value in the near future. 
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7     FUTURE PERSPECTIVES 

One important aim of prenatal pharmacoepigenetic studies is the translation 

of findings into clinic. However, the current state of the field limits such 

translation. This thesis points out several challenges and possibilities within 

prenatal pharmacoepigenetics. Below, I outline prospects for future research. 

We discovered poor probe reliabilities across platforms and propose that this 

may influence the power calculations of EWASs (Section 5.2.2). To my 

knowledge, current EWAS power calculators do not directly include probe 

reliabilities when estimating study power. Investigating the effect of including 

probe reliabilities in such calculators may contribute to ensure adequately 

powered prenatal pharmacoepigenetic studies.  

Cell type heterogeneity may conceal DNAm changes in specific cell types 

(Section 5.3). Currently, obtaining single-cell samples is expensive and 

infrequently available from large cohort studies. As technology progresses 

and new cohorts and clinical studies store samples which can be used for cell 

sorting (e.g., by isolating peripheral mononuclear cells from blood before 

freezing), future studies may be able to investigate DNAm changes in 

individual cell types. Such studies may find novel signals currently concealed 

in cell type heterogenous samples. 

Neurons have been discovered to exhibit considerable hydroxymethylation, 

as well as methylation at non-CpGs [77–79]. These epigenetic modifications 

are likely also important in gene regulation [80]. Therefore, it would be 

interesting to assess such modifications. As persistent hydroxymethylation 

has primarily been found in human brain tissue, ideally, this modification 

should be investigated in that tissue. However, as pointed out, brain tissues 
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from live humans are infrequently available and post mortem tissues are 

mostly used. It is also possible to investigate hydroxymethylation in other 

model systems of differentiating neurons. Notably, as is always important 

when using model systems, caution is needed when drawing inferences to 

humans. An examination of hydroxymethylation and non-CpG methylation 

may be pivotal to better elucidate associations between prenatal medication 

exposure, (hydroxy)methylation of DNA and child neurodevelopment.  

With regards to ADHD and other neurodevelopmental conditions, it would be 

interesting to assess parental-reported ADHD symptoms and estimate 

developmental trajectories also in the paracetamol data set (Section 5.5). This 

could allow for detection of ADHD subpopulations or subclinical individuals, 

not accounted for when using only the diagnostic label. Furthermore, this 

thesis mainly focused on ADHD, however, other neurodevelopmental 

outcomes should also be investigated, e.g., ASD and learning disabilities.  

A limitation of the EWASs in this thesis was that we could not assess how 

maternal genetic susceptibility influences neurodevelopmental outcomes in 

the child or the correlation of child polygenic risk scores with 

neurodevelopmental outcomes. Genetic data in MoBa is now available and 

therefore, an investigation of genetics is feasible. This will allow for an 

examination of child polygenic risk scores for ADHD and other 

neurodevelopmental outcomes, as well as an examination of the genetic 

contribution to DNAm variation. Additionally, mQTLs can be used to 

strengthen the causal interpretation of findings, as described in Section 5.6. 

When integrating genetic and epigenetic data to improve causal inference, the 

complexity of the data set increases, being both static and dynamic in nature. 

Whether the simple linear integrative -omics models capture this complexity 

is not clear. Using artificial data where the ground truth is known may prove 

a valuable approach to explore such questions. Creating simulated “synthetic” 

data sets by mimicking statistical patterns in real-world data, enables testing 

of how varying one parameter influences the estimates of other parameters. 

As such, simulated data allow for testing of models and assumptions, and can 

be used to uncover complex interactions and non-linearities in the data. In this 

regard, newly established initiatives such as the RealArt convergence 

environment at the University of Oslo hold great promise for improving our 

knowledge on prenatal pharmacoepigenetics (Figure 8). 
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ABSTRACT
When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal 
circulation and may induce epigenetic modifications. Where such modifications occur and 
whether they disrupt normal foetal developme nt, are currently unanswered questions. This 
field of prenatal pharmacoepigenetics has received increasing attention, with several studies 
reporting associations between in utero medication exposure and offspring epigenetic outcomes. 
Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of 
this review were to (i) provide an overview of the literature on the association of prenatal 
exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommen-
dations for future studies within prenatal pharmacoepigenetics. We performed systematic litera-
ture searches in five databases. The eligible studies assessed human prenatal exposure to 
psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We 
identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, anti-
epileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all 
studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most 
studies found significant differences in DNA methylation upon medication exposure, almost no 
differences were persistent across studies for similar medications and sequencing methods. The 
reviewed studies were challenging to compare due to poor transparency in reporting, and 
heterogeneous methodology, design, genome coverage, and statistical modelling. We propose 
10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemio-
logical and epigenetic perspectives. These recommendations may improve the quality, compar-
ability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.
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Background

Every day, pregnant women use medications for 
which the scientific evidence on foetal safety is lim-
ited or inconclusive. As most medications pass both 
the placental and blood-brain barriers during gesta-
tion [1–4], common medications such as analgesics 
and psychotropics may exhibit pharmaceutical 
effects in the foetus and potentially disrupt normal 
foetal development. This reasoning is based on the 
Developmental Origins of Health and Disease 
(DOHaD) hypothesis, which is a conceptual frame-
work linking prenatal environmental exposures to 
health and disease in later life [5–9]. Indeed, many 
studies have reported a variety of adverse 

developmental outcomes as sociated with in utero 
medication exposure, including developmental 
delays and abnormalities (comprehensively reviewed 
in [10–18] and the textbook by Schaefer et al. [19]).

T he mechanisms by which prenatal exposure to 
medications impacts foetal development remain 
largely unknown. One suggested mechanism is 
the direct or indirect influence of epigenetic mod-
ifications in the developing foetus [9,20]. 
Epigenetics encompasses regulatory mechanisms 
that can impact genome stability and gene tran-
scription, such as histone modifications and DNA 
methylation (DNAm) of cytosine-phosphate- 
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guanine sites (CpGs). Such modifications are 
reversible and can be influenced by both genetics 
and environmental factors, such as medications 
[21], making epigenetic changes plausible media-
tors of the prenatal environmental impact on 
developmental outcomes [9,20].

The research on epigenetic modifications in 
neonates exposed to medications in utero, here-
after referred to as prenatal pharmacoepigenetics, 
has gained increasing attention in recent years. 
Although the literature on prenatal pharmacoepi-
genetics is growing, only one systematic review 
summarizing the findings on medications that 
potentially interfere with foetal development is 
available [22]. However, this review only included 
studies on antidepressants. Therefore, the primary 
aim of the current review is to provide an overview 
of the literature on the association of prenatal 
exposure to psychotropics and analgesics with epi-
genetic outcomes. In addition, by evaluating the 
eligible studies from both epidemiological and epi-
genetic perspectives, this review also aims to pro-
vide recommendations for future prenatal 
pharmacoepigenetic research to improve the over-
all quality, comparability, and clinical relevance of 
prenatal pharmacoepigenetic association studies.

Methods

Search strategy

Literature searches were performed in the 
MEDLINE, EMBASE, PsycINFO, Scopus, and 
Web of Science databases. The searches were first 
completed on 19 January 2020, and any new stu-
dies meeting the eligibility criteria, published 
before 1 September 2020, were included in the 
final review. In addition, the reference lists of the 
eligible articles and references of 35 relevant 
reviews were screened to ensure complete coverage 
of the literature. Prior to performing the literature 
searches, a detailed search strategy and vocabulary 
were developed with support from experienced 
librarians in medicine, pharmacy, and psychology. 
We included studies investigating (i) prenatal 
exposure to (ii) psychotropics and analgesics with 
(iii) an epigenetic outcome. The search terms for 
these three criteria are listed in Supplementary 
Table S1. Supplementary Table S2 provides an 

example of a search in EMBASE. The review is 
reported in adherence to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [23], and the protocol and 
search strategy are available in the PROSPERO 
database (registration ID: CRD42020166675) 
[24,25].

Inclusion criteria

The studies included in this review were selected 
based on the participants, intervention/exposure, 
comparison group, outcome, and study design 
(PICOS) criteria [26]. Participants were defined as 
children (<18 y old) prenatally exposed to psycho-
tropics or analgesics for which epigenetic data were 
available. Anatomical Therapeutic Chemical (ATC) 
codes were used to identify medication groups in 
accordance with the World Health Organization 
ATC index [27]. The exposure was defined as use 
of antidepressants (ATC code: N06A), psycholep-
tics (N05), antiepileptic drugs (AEDs; N03), analge-
sics (N02), or non-steroidal anti-inflammatory 
drugs (NSAIDs; M01A) during pregnancy. We spe-
cifically selected analgesics and psychotropics, based 
on the expertise of our research group, biological 
plausibility, and the emerging number of pharma-
coepigenetic studies on analgesics and psychotro-
pics. The comparison group included children of 
mothers who did not use the medication of interest 
during pregnancy. The outcome was epigenetic 
measurements in tissue samples from exposed and 
unexposed children (<18 y old). If the study also 
included data on immediate or long-term develop-
mental outcomes in the children, we reported these 
as well. Studies investigating the same data sets 
were all eligible if they reported on different expo-
sures and/or outcomes. Only original articles with 
the study designs case-control, cohort, or rando-
mized controlled trial were included. No limitations 
were applied regarding the time of publication, but 
only articles in English or Scandinavian languages 
were eligible.

Data extraction

After searching and retrieving the results from the 
databases, any duplicates were removed in 
EndNote X8.2 and the remaining records 
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uploaded to the online systematic review data 
management platform Rayyan [28]. Two reviewers 
(KG and EWO) independently screened the titles 
and abstracts, excluding studies that did not meet 
the inclusion criteria. If the eligibility of a paper 
was unclear based on the title and abstract, it was 
included for the next round of screening. In the 
second screening, the full-text versions of all 
papers were read and the final exclusion of papers 
performed. Any disagreement between the two 
reviewers was resolved by a third reviewer 
(HMEN).

Results

Outcomes of the screening and selection process

The initial searches yielded a total of 2,159 
records: 488 records in MEDLINE, 880 records 
in EMBASE, 88 records in PsycINFO, 194 

records in Scopus, and 509 records in Web of 
Science (Figure 1). A total of 871 duplicated 
records were removed, leaving 1,288 unique arti-
cles to screen the titles and abstracts in Rayyan 
[28]. After the first screening, 1,262 papers were 
excluded due to being non-original studies 
(n = 605) or failing to meet the defined PICOS 
criteria (n = 657). After reading the complete 
texts of the 26 records remaining from the first 
round, we excluded 11 records due to wrong 
exposure according to our criteria (could not 
differentiate medication exposure across groups; 
n = 5), wrong population according to our cri-
teria (participants were too old upon exposure 
or sampling; n = 3), or wrong comparison 
groups according to our criteria (did not include 
a non-medicated group; n = 3). By screening the 
reference lists of the 15 remaining records and 
35 relevant reviews, we identified 1 additional 
article. Two additional studies meeting the 

Figure 1. Flow chart of article screening and selection based on the template from PRISMA [23]. ‘Second search’ refers to eligible 
studies published during the manuscript revision process.
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eligibility criteria were published during the 
revision process (before 1 September 2020) and 
were also included. Consequently, a total of 18 
records were included in the final review.

Overview of the eligible studies
All of the eligible articles were based on data from 
single birth cohorts, except for one study validat-
ing results in an independent cohort [29], and one 
study being a randomized controlled trial [30]. Of 
the eligible articles, nine were epigenome-wide 
association studies (EWASs; median sample size 
241 neonates [interquartile range; IQR: 284]), and 
eleven were candidate gene studies (median sam-
ple size 115 neonates [IQR: 168]). Hence, two 
studies, including 46 and 58 neonates, combined 
epigenome-wide and candidate gene approaches 
[31,32]. The medications included were the psy-
chotropics antidepressants (12 studies; median 
sample size 201 neonates [IQR: 354]), and AEDs 
(2 studies; 18 and 201 neonates), and the analge-
sics paracetamol (2 studies; 281 and 384 neonates), 
acetylsalicylic acid (1 study; 358 neonates), and 
methadone (1 study; 53 neonates). The epigenetic 
outcome investigated in all papers was DNAm, in 
cord blood (13 studies; median sample size 201 
neonates [IQR: 341]), placental tissue (5 studies; 
median sample size 236 neonates [IQR: 38]), and/ 
or buccal cells (2 studies; 236 and 53 neonates). 
The neonatal tissues were sampled within 72 h 
after birth in all studies, except by Cardenas et al. 
(2019), who also collected blood from children 
aged 3–5 y and 7–11 y [29]. All studies adjusted 
for potential covariates and/or confounders in 
their statistical analyses or by design, but the num-
ber of variables under consideration differed 
greatly (Supplementary Table S3). The covariates 
most frequently accounted for were maternal age 
(n = 16), smoking during pregnancy (n = 13), 
infant sex (n = 12), gestational age (n = 10), and 
folate use in pregnancy (n = 10).

In addition to the epigenetic outcomes, several 
studies reported phenotypic outcomes in children, 
specifically poor foetal growth (n = 1) [33], birth 
weight (n = 2) [31,34], severity of neonatal absti-
nence syndrome (n = 1) [34], ADHD (n = 1) [35], 
stress reactivity (n = 2) [36,37], and soothability 
(n = 1) [38] (Supplementary Table S4). One study 

performed a mediation analysis of medication 
exposure, epigenetic modification, and neonatal 
phenotypic outcome [37]. This study assessed 
whether the DNAm of a CpG in the placental 
NR3C2 gene acted as a mediator of the effect of 
maternal depressive symptoms on cortisol reactiv-
ity in 12-month-old infants [37]. The effects of 
maternal depression on cortisol levels were 
decomposed into direct effects and DNAm- 
mediated indirect effects, finding that, although 
the indirect effect of DNAm was positive, it did 
not overcome the larger negative direct effect of 
depressive symptoms on infant cortisol levels [37]. 
However, the analysis demonstrated an increased 
DNAm at the NR3C2 CpG upon in utero antide-
pressant exposure, suggesting that maternal anti-
depressant use during pregnancy enhances the 
indirect effect of NR3C2 DNAm on the infant 
stress response [37].

All EWASs used the Illumina platform [39] to 
assess DNAm with the MethylationEPIC (n = 2), 
HumanMethylation 450 (n = 3), or 
HumanMethylation 27 (n = 4) bead chips. To 
assess the association between CpG DNAm and 
medication exposure, the majority of the EWASs 
used linear regression models (n = 6). In most of 
the EWASs, a result was considered significant if 
the false discovery rate (FDR) adjusted p-value was 
<0.05 (n = 8), except for one study that used an 
FDR adjusted p < 0.1 [32].

In the candidate gene studies, several meth-
ods were used to investigate DNAm: the 
Illumina platform (n = 1) [33], the 
SEQUENOM MassARRAY EpiTYPER platform 
(n = 3), and the PyroMark system (n = 7). The 
studies reported the methylation percentages 
(n = 6), mean methylation percentages of tri-
plicates (n = 4) or the β value from the 
Illumina microarray (n = 1) [33]. Various sta-
tistical tests were applied to assess differential 
DNAm. For these tests, three studies used FDR 
adjusted p-values (p < 0.25 in one study; 
p < 0.05 in two studies), two studies used the 
Bonferroni-corrected p-value, and the last six 
studies applied an unadjusted p < 0.05. 
Further details on the studies are available in 
Tables 1 and 2. For excellent discussions of 
statistical approaches in epigenetic studies, we 
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recommend the recently published reviews by 
Teschendorff and Relton [40], van Rooij et al. 
[41], and Mansell et al. [42].

Results of prenatal medication exposure and 
neonatal DNA methylation

The most examined medication group in prenatal 
pharmacoepigenetics was antidepressants, investi-
gated in 12 studies of 3,320 neonates (2 EWASs, 8 
candidate gene studies, and 2 studies combining 
an epigenome-wide and a candidate gene 
approach). In the most recent EWAS, Cardenas 
et al. [29] discovered 130 differentially methylated 
CpGs in cord blood samples collected from neo-
nates exposed to antidepressants in utero. One of 
these sites that mapped to ZNF575 was replicated 
in an independent cohort [29]. Schroeder et al. 
[43] found that the exposed neonates had two
differentially methylated CpGs in TNFRSF21 and
CHRNA4. However, the authors disregarded these
findings as false positives considering the small
effect sizes (DNAm changes of 1–3%) [43]. In
the EWAS conducted by Gurnot et al. [31], three
CpGs were differentially methylated in neonates
prenatally exposed to serotonin reuptake inhibi-
tors (SRIs; CYP2E1, EVA1, and SLMAP).
However, in the EWAS by Non et al. [32], no
CpGs were significantly different in neonates
exposed to selective serotonin reuptake inhibitors
(SSRIs) in utero.

The candidate gene studies investigated CpGs in 
a total of 32 different genes (Supplementary Table 
S6). Most of the included genes were chosen based 
on their suggested association with psychiatric dis-
orders (e.g., the serotonin transporter gene 
SLC6A4) [32,38,44], stress reactivity (e.g., the glu-
cocorticoid and mineralocorticoid receptor genes 
NR3C1 and NR3C2) [32,36,37,45], or adverse early 
life events (e.g., the brain-derived neurotrophic 
factor gene BDNF) [32,44]. In the studies combin-
ing epigenome-wide and candidate gene 
approaches [31,32], the candidate gene investiga-
tion was used to verify the epigenome-wide results. 
However, except for the verification of CYP2E1 
DNAm by Gurnot et al. [31], neither of the 

significant genes in either of the candidate gene 
studies were also significant in the EWASs of 
antidepressants.

Four genes involved in neurotransmitter recep-
tor or transporter activity (NR3C1, SLC6A4, and 
FKBP5) or neuronal differentiation (BDNF) were 
investigated across several studies (Table 3). The 
DNAm of neither NR3C1 nor BDNF was asso-
ciated with prenatal exposure to antidepressants 
in any of the studies investigating these genes 
[32,36,37,45]. For SLC6A4, the results were contra-
dictory. Although Gartstein et al. [38] found an 
increase in DNAm at six CpGs in cord blood upon 
prenatal SSRI exposure, Non et al. [32] reported a 
decrease in DNAm at one CpG in cord blood 
upon prenatal SSRI exposure when examined by 
pyrosequencing but not in the epigenome-wide 
approach. Finally, Devlin et al. [44] found no 
association between in utero exposure to SSRIs or 
serotonin and noradrenaline reuptake inhibitors 
(SNRIs), and DNAm of SLC6A4 in cord blood. A 
CpG in FKBP5, which encodes a co-regulator of 
the glucocorticoid receptor, was negatively asso-
ciated with in utero SSRI exposure in cord blood 
[32], but not in the placenta [33]. In summary, the 
results of studies on prenatal antidepressant expo-
sure and DNAm are largely inconsistent.

Prenatal AED exposure was investigated in two 
EWASs [46,47], which reported discrepant results. 
Emes et al. [46] found no global DNAm differ-
ences in the cord blood of neonates exposed to 
AEDs in utero, whereas Smith et al. [47] observed 
decreased global DNAm in the cord blood of neo-
nates prenatally exposed to AEDs and no global 
DNAm differences in placental tissue. 
Furthermore, Emes et al. [46] reported differential 
DNAm at 662 CpGs when comparing cord blood 
from neonates that were exposed and not exposed 
to AEDs in utero, whereas Smith et al. [47] found 
14 CpGs with significantly reduced DNAm in the 
same tissue, including three CpGs that were also 
significant in placentae.

Two EWASs examined the association between 
in utero paracetamol exposure and DNAm in pla-
centae [48] or cord blood [35]. Addo et al. [48] 
reported 24 differentially methylated CpGs in pla-
cental tissue when comparing exposed and 
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unexposed pregnancies. Using a different study 
design, Gervin et al. [35] compared DNAm in 
long-term paracetamol-exposed children with 
ADHD to short-term-exposed children with 
ADHD (2,089 differentially methylated CpGs), 
unexposed children with ADHD (192 differentially 
methylated CpGs), and unexposed children with-
out ADHD (6,211 differentially methylated CpGs). 
Although the studies report vastly different num-
bers of significant CpGs, both Gervin et al. [35] 
and Addo et al. [48] concluded that prenatal para-
cetamol exposure may be associated with DNAm 
in cord blood from susceptible individuals or pla-
centae, respectively.

Yeung et al. [30] investigated the association 
between prenatal acetylsalicylic acid exposure and 
DNAm in cord blood. In the randomized con-
trolled trial, women were randomly assigned to 
receive 81 mg of acetylsalicylic acid or placebo 
every day until conception (within six menstrual 
cycles) and during pregnancy [49]. The DNAm of 
one CpG (3,500 base pairs upstream of the 
POU4F1 promoter) in cord blood was significantly 
associated with prenatal exposure to acetylsalicylic 
acid [30]. However, Yeung et al. concluded that 
the association of prenatal acetylsalicylic acid 
exposure with DNAm in cord blood is negligible, 
as only one CpG with a minor effect size (1% 
increase in CpG DNAm) was discovered in their 
association study [30].

In the EWAS on prenatal methadone exposure, 
McLaughlin et al. [34] reported a significant 
increase in buccal cell DNAm of ABCB1, CYP2D6, 
and OPRM1 in neonates of mothers who were 
methadone-maintained during pregnancy. The 
authors argued that their results demonstrated 
that opioids interact with epigenetic mechanisms, 
and that the altered DNAm of the opioid metabo-
lism-related genes may have a functional signifi-
cance that needs further investigation [34].

Discussion

In this review, we have systematically summarized 
the literature investigating associations between 
prenatal medication exposure and epigenetic dif-
ferences in neonates. We included a total of 18 
studies on DNAm, examining in utero exposure to 
antidepressants, AEDs, paracetamol, acetylsalicylic 

acid, or methadone. We found substantial incon-
sistency across studies, including heterogeneity in 
methodology, materials, design, genome coverage, 
and statistical modelling, making the interpreta-
tion of findings and cross-study comparisons chal-
lenging. The novelty of the field combining 
epidemiological and pharmacoepigenetic methods 
may partly explain this heterogeneity due to a lack 
of consensus on how to perform analyses and 
report findings. Therefore, we discuss the results 
of the reviewed studies with respect to both epide-
miological and epigenetic considerations, and sug-
gest 10 recommendations for future studies in 
prenatal pharmacoepigenetics, as summarized in 
Box 1.

Prenatal pharmacoepigenetic candidate gene 
studies should have a clearly defined hypothesis 
guided by teratological principles [50] and phar-
macological, epidemiological, and biological 
knowledge (pt. 1, Box 1). Founding the research 
question on a well-informed hypothesis is funda-
mental for a transparent and well-designed prena-
tal pharmacoepigenetic study. This was mostly 
done in the candidate gene studies included in 
this review, which provided a rationale for select-
ing the genes being studied, such as the gene being 
related to psychiatric disorders (the serotonin 
transporter gene SLC6A4) [32,38,44] or stress 
reactivity (the glucocorticoid and mineralocorti-
coid receptor genes NR3C1 and NR3C2) 
[32,36,37,45].

Small molecular and structural differences 
between drugs are known to cause variations in 
toxicity and teratogenicity [50]. Although the 
reviewed studies on analgesics focused on one 
specific medication [30,34,35,48], the studies on 
psychotropics investigated the effect of medication 
classes on neonatal DNAm [29,31–33,36–38,43– 
47,51,52]. In the two studies on AEDs [46,47], 
several medications were investigated, which may 
be too broad considering the various different 
pharmacological [53,54] and epigenetic mechan-
isms of action of AEDs [21,55,56]. For example, 
Smith et al. [47] jointly analysed seven different 
AEDs among 53 women, but also performed a 
stratified analysis of carbamazepine monotherapy 
(36 women). In contrast, Emes et al. [46] jointly 
analysed valproate, lamotrigine, and carbamaze-
pine among nine women, and did not stratify 
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their analyses on individual medications. Analyses 
on a medication class level may mask effects or 
give heterogeneous results that are difficult to 
interpret. Consequently, prenatal pharmacoepige-
netic studies should aim to investigate individual 

medications rather than medication classes and 
ensure sufficient study power to do this (pt. 2 & 
pt. 3, Box 1).

The median sample size of the reviewed studies 
was 201 (IQR of 289), with sample sizes as low as 

Box 1. (1)HYPOTHESIS: candidate gene studies should use a plausible hypothesis to guide the study design Hypotheses should be 
defined prior to designing a candidate gene study, and be guided by principles of teratology, knowledge of pharmacological 
mechanisms, and epidemiological and biological observations. Hypothesis-free EWASs are also important as the field of prenatal 
pharmacoepigenetic studies is still emerging. 

(2)MEDICATION SELECTION: investigate individual medications rather than medication classes Unless the pharmacological and 
epigenetic mechanisms of action of medications are expected to be similar across the medication class, medications should be 
analysed on an individual substance level. 

(3)STATISTICAL POWER: ensure sufficient sample sizes to detect relevant DNAm differences To detect biologically relevant DNAm 
associations and to ensure valid interpretation of the results, tools developed for power assessments in epigenetic studies should be 
used when planning such studies. 

(4)STUDY DESIGN: include a disease comparison group to disentangle medication from indicationStudies should include a disease 
comparison group to better differentiate the effects of exposure to medication from the underlying maternal disease. This may 
reduce the impact of confounding by indication. 

(5)SYSTEMATIC ERROR: assess selection bias, information bias, and confounding Selection bias should be assessed by comparing 
characteristics of study samples to the target population. The validity of medication exposure, neonatal phenotype, and other 
covariates should be reported, and information bias and misclassification addressed. Measured confounders of the exposure– 
outcome association(s) are to be adjusted for and residual confounding investigated. Importantly, cell type heterogeneity should be 
considered a confounding factor in epigenetic studies. 

(6)TISSUE SELECTION: biomarkers and extrapolation of DNAm patterns across tissues If the research aim is not only to report a tissue- 
independent biomarker, but to extrapolate results to other target tissues, the limitations of such translation should be recognized,, 
and reduced using software applications or data sets on cross-tissue correlations of modifications. 

(7)LONGITUDINAL PERSPECTIVE: assess persistence of DNAm patterns throughout childhoodThe follow-up of epigenetic patterns 
later in childhood is essential to assess the relevance of these changes over time, as they may suggest a long-term impact on the 
phenotypic outcome.  

(8)DATA INTEGRATION: integrate epigenetic data with complementary omics dataIntegration of complementary omics data, such as 
genomic and transcriptomic data, can strengthen functional and causal inferences of the findings.  

(9) CAUSAL INFERENCE: provides a framework for interpreting exposure-outcome associations Causal inference methods, such as 
two-step Mendelian randomization, may support the inference of causation from exposure–outcome associations, including how 
medication may impact phenotypic outcome via DNAm changes. Importantly, the underlying assumptions of causal methods are 
often untestable and, therefore, such methods should be used carefully. 

(10)REPLICATION: replicate findings using different methods and independent cohorts Replication both across methods and in 
independent cohorts is essential to increase the validity of the findings and the generalizability of the results to enhance clinical 
relevance. 
.
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18 [46] and 23 [31]. None of the studies reported a 
power assessment to justify the selected sample 
size. The power of an EWAS depends on many 
variables, including the significance level, effect 
size, sample size, array technology, tissue type, 
and distribution of DNAm differences [57]. 
Therefore, power calculations are challenging, but 
simulation studies for power estimation [42,58,59], 
as well as power assessment tools [42,57], may 
support the investigation of power in epigenetic 
studies. In epigenetic epidemiology, the effect sizes 
are expected to be small, ranging from 0.05 to 
0.1 and upwards [60,61], as evidenced in studies 
on prenatal smoking exposure, with effect sizes 
commonly ranging from 0.02 to 0.1 [62,63]. We 
recommend that future prenatal pharmacoepige-
netic studies perform and report power assess-
ments in order to ensure sufficient power to 
detect genuine epigenetic differences between 
comparison groups (pt. 3, Box 1).

The indication for medication use is an impor-
tant potential confounder in prenatal pharmacoe-
pigenetic studies, as the observed outcome may be 
associated with the underlying maternal illness 
and not the medication used to treat it [64,65]. 
Among the 14 studies on psychotropics in this 
review, only eight studies included such a compar-
ison group [29,32,33,36,37,44,51,52]. Notably, 
seven of these studies found an association 
between the underlying maternal depression and 
DNAm in the neonate [29,32,33,36,37,44,51], 
emphasizing the importance of including this 
comparison group in future prenatal pharmacoe-
pigenetic studies (pt. 4, Box 1).

When defining medication-exposed comparison 
groups, more than half of the reviewed studies 
relied partly or entirely on self-reported medica-
tion use during pregnancy [29,35,37,38,43,45– 
48,51]. This measure does not necessarily reflect 
the actual medication use [66–68] and is vulner-
able to recall bias if reported retrospectively [69]. 
In five studies, medication exposure was assessed 
at birth using maternal and/or neonatal blood 
concentrations of the medication [31,34,37,47,51]. 
Although informative at birth, this measure does 
not reflect medication use in earlier stages of preg-
nancy. Similarly, the eight studies investigating the 
association between DNAm and neonatal pheno-
typic outcomes included various outcome Ta
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definitions without assessing the validity of the 
measurement [31,33–38,46]. In five studies, data 
were measured objectively (birth weight [31,33,46] 
and cortisol levels [36,37]), whereas two studies 
relied on diagnoses by specialists [34,35], and one 
study used parent reports on infant temperament 
[38]. An assessment of medication exposure, neo-
natal phenotype, and covariates is crucial to avoid 
misclassification. Therefore, we recommend that 
future prenatal pharmacoepigenetic studies per-
form sensitivity analyses to assess the robustness 
of the findings, taking into account the validity of 
the measures (pt. 5, Box 1). For example, methods 
to quantify the impact of exposure and outcome 
misclassifications, such as probabilistic bias analy-
sis [70], are highly recommended [64].

A wide range of different covariates were con-
sidered in the studies (Supplementary Table S3). 
Selecting an appropriate set of confounders to 
control for is critical to avoid systematic bias (pt. 
5, Box 1). Ten studies selected confounders by 
assessing associations between covariates, expo-
sure, and outcome [31,33,34,36–38,45,46,51,52]. 
We suggest to control for covariates that are 
assumed to be confounders, i.e., covariates that 
are not part of the causal path, and that are both 
a cause of the exposure and the outcome. 
Therefore, the covariates to be accounted for 
should occur upstream of the prenatal exposure, 
while mediators (which are part of the causal path-
way) should not be accounted for when investigat-
ing the total effect of the exposure on the outcome. 
The specific covariates to be taken into account 
need to be assessed for each individual study, as 
the relevance of the covariates depends on several 
factors (e.g., study design and tissue type), and 
include both technical covariates related to labora-
tory procedures and biological covariates. 
Examples of biological covariates to be evaluated 
are maternal age, smoking during pregnancy, 
infant sex, gestational age, and folate use in preg-
nancy, which were the covariates most commonly 
accounted for in the studies included in this review 
(Supplementary Table S3). To this end, future 
prenatal pharmacoepigenetic studies may also ben-
efit from implementing causal inference tools, 
such as directed acyclic graphs (DAGs) [71], to 
identify a sufficient set of confounders for adjust-
ments [64]. Such investigations can be 

complemented by assessing whether the selected 
confounders largely capture the model variability, 
as was performed by surrogate variable analysis in 
Gervin et al. [35], and by principal component 
analyses in Addo et al. [48] and Cardenas et al. 
[29]. For an excellent overview of a general 
approach to identify relevant confounders in 
observational studies, please refer to the review 
by VanderWeele [72].

The majority of the reviewed studies were based 
on cord blood, which consists of cells exhibiting 
cell type-specific DNAm patterns [40]. Therefore, 
prenatal pharmacoepigenetic studies should con-
sider whether DNAm differences associated with 
medication exposure reflect variation in constitu-
ent cell types, which are known to mediate or 
confound the exposure associations [40,73]. 
When investigating cell-type proportions as a 
mediator, in order to assess the direct effect of 
medication exposure on associated DNAm differ-
ences, it may be necessary to adjust for estimated 
or measured cell-type composition (see, e.g., Liu et 
al. [74] and Gervin et al. [75]). However, if the 
total effect of medication exposure on DNAm is 
more interesting, for instance when searching for 
potential biomarkers of a phenotypic outcome, the 
cell-type composition should not be accounted for, 
as it may remove relevant DNAm–phenotypic out-
come associations (see, e.g., Ollikainen et al. [76]). 
Cell type composition may act as a confounder 
when assessing the extent to which DNAm med-
iate the effect of drug exposure on a phenotypic 
outcome, and should in such instances be 
accounted for [73]. In summary, variation in cell- 
type composition confers an important covariate 
in epigenetic studies, and should be appropriately 
evaluated [40,60,73,77]. Surprisingly, only six of 
the reviewed studies considered cell-type composi-
tion in their analyses [29,30,35,45,48,52], empha-
sizing the need for increased awareness among 
prenatal pharmacoepigenetic researchers to evalu-
ate cell types in future studies (pt. 5, Box 1). There 
are several different methods to determine and 
account for the cell-type composition in tissue 
samples, and these are extensively described in 
the excellent recent review by Teschendorff and 
Relton [40].

Among the reviewed records, eight studies 
hypothesized an association between DNAm and 
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neonate phenotypes [31,33–38,46], including five 
studies concerning brain-related phenotypic out-
comes [34–38]. However, DNAm in peripheral 
surrogate tissues does not necessarily resemble 
DNAm in the target tissue [78–80], which chal-
lenges the accuracy of the extrapolation of the 
findings. Although this limitation was acknowl-
edged in most studies [29–32,35–38,43– 
45,47,48,51], only one study attempted to reduce 
the constraint by including a correlation analysis 
of select CpGs across adult whole blood and brain 
tissue [29]. Importantly, investigation of peripheral 
tissues is still considered valuable, since biomar-
kers of maternal disease or child developmental 
outcomes do not need to be from the relevant 
tissue (i.e., do not need to be tissue-specific). 
However, to realize the ultimate aim of prenatal 
pharmacoepigenetics of gaining direct mechanistic 
insights into how medication exposure impacts the 
foetus with potential phenotypic consequences, 
future studies should validate tissue extrapolation 
by, for example, investigating cross-tissue correla-
tions in available databases [61,81–85] (pt. 6, Box 
1). Yet, current databases are mostly available on 
adult tissues, limiting the relevance to prenatal 
pharmacoepigenetic studies. Researchers have 
been calling for initiatives to develop biobanks of 
foetal and child brain specimens, while also taking 
into account the ethical issues of building such 
biobanks [86].

Only one of the reviewed studies investigated 
DNAm patterns longitudinally during childhood, 
finding that DNAm at a CpG in ZNF575 persisted 
into early childhood [29]. Though investigating 
the DNAm at birth provides information on the 
immediate impact of prenatal medication expo-
sure, the follow-up of epigenetic patterns later in 
childhood is valuable to assess the persistence over 
time and increase the clinical relevance of the 
findings (pt. 7, Box 1).

The clinical relevance of prenatal pharmacoepi-
genetic research may also be strengthened by func-
tional and causal interpretations of the results. 
Using a multi-omics approach with integration of 
omics data (e.g., genomics, epigenomics, and tran-
scriptomics data) [87] could substantiate the epi-
genetic findings (pt. 8, Box 1). However, the 
reviewed studies only used single omics data (i.e., 
epigenomics). Although single omics data are 

potentially useful both as biomarkers and in pro-
viding insight into biological pathways, this is lim-
ited to correlations or associations often reflecting 
reactive, rather than causative, processes. We 
recommend that future studies include additional 
omics data, as this may enable (i) investigation of 
the functional consequences of DNAm on gene 
expression [40], (ii) adjustment for the genetic 
variation associated with DNAm variation [88– 
90], and (iii) utilization of genomic methylation 
quantitative trait loci (mQTLs) to implement cau-
sal inference methods, such as two-step Mendelian 
randomization [40,91] (pt. 9, Box 1). There are 
several openly accessible resources making omics 
data available for integration, as thoroughly 
reviewed by Walton, Relton and Caramaschi [92].

Causal modelling and reasoning are increasingly 
being applied in genetic epidemiology to 
strengthen the ability to make causal inferences 
about associations, but it is still new to the field 
of pharmacoepigenetics [40,64]. For example, two- 
step Mendelian randomization [91,93–95] has 
been used to assess how DNAm can mediate an 
association between prenatal exposure and pheno-
typic outcomes in children [96,97]. Notably, only 
one reviewed study attempted to make causal 
inferences about an association between prenatal 
antidepressant exposure, cord blood DNA, and 
infant stress reactivity in a mediation analysis 
[37]. We foresee important advances in future 
prenatal pharmacoepigenetic studies using the 
causal inference framework (pt. 9, Box 1). 
Importantly, the causal models rely on assump-
tions that need to be met for them to be valid 
[98]. As these assumptions are often untestable 
[98], careful use of the causal inference framework 
in pharmacoepigenetic studies is essential.

Lastly, to validate findings, replication using a 
different technology and in an independent cohort 
is essential, both to determine the robustness of 
the associations and to assess the level of technical 
and biological variation. Notably, only two of the 
reviewed studies applied more than one method to 
assess DNAm [31,32], and only one study 
attempted to validate their results in an indepen-
dent cohort [29], emphasizing the need for an 
increased focus on replication in prenatal pharma-
coepigenetics (pt. 10, Box 1). Several multi-cohort 
consortia to enable replication of studies are 
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already in place, such as the Pregnancy and 
Childhood Epigenetics consortium (PACE) [99].

Conclusion

Investigating the potential effects of pharmacolo-
gical treatment in pregnancy is essential to estab-
lish foetal epigenetic safety, understand the 
underlying mechanisms, and recognize the clinical 
consequences for the offspring. However, studies 
on prenatal medication exposure and epigenetic 
changes are largely heterogeneous and inconsis-
tent. To improve the quality, comparability, and 
interpretability of future prenatal pharmacoepige-
netic studies, we propose 10 recommendations 
bridging the fields of prenatal epidemiology and 
epigenetics. Epidemiological approaches and cau-
sal inference frameworks will reduce systematic 
bias and improve our ability to interpret expo-
sure–outcome associations, including how medica-
tions may impact phenotypic outcomes via 
changes in DNAm. Furthermore, it is essential to 
consider the persistence of DNAm patterns over 
time and the potential for cross-tissue extrapola-
tion when assessing the biological relevance of the 
epigenetic contribution. Importantly, integrating 
more omics data and implementing two-step 
Mendelian randomization can strengthen the 
functional and causal inferences of the findings. 
In conclusion, a consensus on how to perform and 
report prenatal pharmacoepigenetic studies will 
fuel the development of the field and contribute 
to future high-quality studies of clinical relevance.
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Abstract 28 

Pharmacoepigenetic studies are important to understand the mechanisms through which medications influence 29 

the developing fetus. For instance, we and others have reported associations between prenatal paracetamol 30 

exposure and offspring DNA methylation (DNAm). Additionally, folic acid (FA) intake during pregnancy has 31 

been associated with DNAm in genes linked to developmental abnormalities. In this study, we aimed to: (i) 32 

expand on our previous findings showing differential DNAm associated with long-term prenatal paracetamol 33 

exposure in offspring with attention-deficit/hyperactivity disorder (ADHD), and (ii) examine if there is an 34 

interaction effect of FA and paracetamol on DNAm in children with ADHD, using data from the Norwegian 35 

Mother, Father and Child Cohort Study (MoBa) and the Medical Birth Registry of Norway. We did not identify 36 

any impact of paracetamol or any interaction effect of paracetamol and FA on cord blood DNAm in children 37 

with ADHD. 38 

Keywords: ADHD, DNA methylation, Epigenetics, Epigenetic epidemiology, EWAS, Folic acid, MoBa, 39 

MBRN, Paracetamol, Acetaminophen. 40 

Introduction 41 

There is an increasing interest in understanding how maternal medication use during pregnancy may affect 42 

epigenetic patterns and impact fetal development [1]. Epigenetics entails modifications to the DNA which may 43 

alter gene expression, without changing the DNA sequence [2]. DNA methylation (DNAm) is the most 44 

commonly studied epigenetic modification, whereby a methyl group is attached to cytosine-phosphate-guanine 45 

dinucleotides (CpGs) [2]. DNAm is reversible and influenced by both genetics and environmental factors, such 46 

as medications [2]. Therefore, pharmacoepigenetic studies are useful to better understand the mechanisms 47 

through which medications may impact the developing fetus. 48 

Epidemiological studies have suggested adverse neurodevelopmental outcomes of long-term paracetamol use 49 

during pregnancy, including increased risks of attention-deficit/hyperactivity disorder (ADHD) and autism 50 

spectrum disorder (ASD) [3]. In contrast, folic acid (FA) intake during pregnancy has been associated with 51 

reduced ADHD and ASD symptoms in the child [4]. Several studies have found associations between prenatal 52 

paracetamol exposure and differential DNAm in cord blood [5, 6] and placenta [7], but none of the differences 53 

in DNAm overlapped across the studies [1, 5–7]. FA is an essential methyl donor for DNAm. Interestingly, a 54 

meta-analysis [8] and a recent FA intervention study [9] found an association of maternal FA intake during 55 

pregnancy with differences in DNAm at genes linked to developmental abnormalities.  56 

In this study, we aimed to: (i) expand on our previous findings showing epigenome-wide differences in DNAm 57 

associated with long-term prenatal paracetamol exposure (20 days) in children with ADHD [5], and (ii) 58 

examine if there is an interaction effect of FA and paracetamol on DNAm in children with ADHD. To do this, 59 

we selected umbilical cord blood samples from the Norwegian Mother, Father and Child Cohort Study 60 

(MoBa), which contains information on maternal use of paracetamol and FA during pregnancy, and conducted 61 

an epigenome-wide association study (EWAS).  62 
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Materials and Methods 63 

This study is based on umbilical cord blood samples from MoBa, conducted by the Norwegian Institute of 64 

Public Health (NIPH) [10]. MoBa is a prospective, population-based birth cohort (n = 114,500 children, n = 65 

95,200 mothers and n = 75,200 fathers), including births in Norway between 1998 and 2008 [10]. In 40.6% of 66 

pregnancies, parents consented to participate. Throughout pregnancy and childhood, the participants complete 67 

multiple questionnaires. MoBa also includes a biobank with approximately 90,000 blood samples collected 68 

from both parents during pregnancy, and from mother and child (umbilical cord) at birth [11]. This study is 69 

based on Data Version 8 released by MoBa in 2015. All MoBa participants have provided a written, informed 70 

consent to participate in the cohort and can retract their consent at any time. The establishment of MoBa and 71 

initial data collection was based on a license from the Norwegian Data Protection Agency and approval from 72 

The Regional Committees for Medical and Health Research Ethics. The MoBa cohort is currently regulated 73 

by the Norwegian Health Registry Act. All the analyzed data were de-identified, and the linking of MoBa to 74 

the relevant health registries was handled by NIPH and the respective registries. Our study was approved by 75 

the Regional Committee for Medical Research Ethics South East Norway.  76 

The selection of individuals for the study was based on observational data from MoBa questionnaires Q1 77 

(gestational weeks 0–13), Q3 (gestational weeks 13–29) and Q4 (gestational week 30 to delivery), the Medical 78 

Birth Registry of Norway (MBRN) and the Norwegian Patient Registry (NPR). MBRN is a national health 79 

registry containing information about all births in Norway and NPR contains diagnoses asserted by specialists 80 

in governmental hospitals and outpatient clinics. MoBa was linked to NPR and MBRN using the personal 11-81 

digit identification number unique to every permanent resident of Norway. We included 261 pregnancies from 82 

MoBa, divided into three groups: (i) children with ADHD prenatally exposed to paracetamol 20 days 83 

(exposed group; n = 61), (ii) children with ADHD and unexposed to paracetamol (ADHD-controls; n = 100), 84 

and (iii) children without ADHD and unexposed to paracetamol (population controls; n = 100). Pre-term births 85 

(<37 weeks) and twins were excluded. The definitions of the different measures and the selection of covariates 86 

are presented in the Supplementary methods (Additional File 1).  87 

DNAm was assessed using the Infinium HumanMethylation EPIC BeadChip (Illumina). Samples were 88 

randomly allocated to sample plates and beadchips, and processed as previously described [5]. All analyses 89 

were performed in the R programming language (http://www.r-project.org/). The quality control, filtering, 90 

background correction and normalization steps are detailed in the Supplementary methods (Additional File 1). 91 

The final data set included 795,515 probes and 261 samples. 92 

We used β values (ratio of methylated signal to total signal) for visualizations and M values for statistical tests 93 

[12]. Principal component analysis (PCA) on the DNAm data was used to test the strength of association 94 

between covariates and DNAm variation (tests applied on categorical and continuous variables included one-95 

way analysis of variance [ANOVA] and Spearman’s correlation test, respectively). To identify differentially 96 

methylated CpGs associated with paracetamol, we fit linear regression models onto the mean DNAm 97 

differences in limma [13]. We included the CD8+ T cell proportion as a covariate in all models. Interaction 98 

http://www.r-project.org/
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was assessed by including an interaction term in the model. We pairwise compared the exposed group to the 99 

ADHD-control and the population control groups. All comparisons were adjusted for multiple testing (false 100 

discovery rate [FDR] <0.05) [14]. We performed a surrogate variable analysis to examine unmeasured sources 101 

of variation in DNAm [15]. Further details on the statistical analyses are presented in the Supplementary 102 

methods (Additional File 1). 103 

Results 104 

To enable a systematic replication and expansion of our previous findings [5], we selected three groups: one 105 

exposed group, consisting of children with ADHD prenatally exposed to paracetamol 20 days (n = 61), and 106 

two control groups, the ADHD-control group, including children with ADHD and unexposed to paracetamol 107 

(n = 100), and the population control group, including children without ADHD and unexposed to paracetamol 108 

(n = 100). The samples were selected from MoBa, the same cohort as our previous study was based on, but 109 

only 17 (exposed) samples were included in both the original and the current study. We selected model 110 

covariates by assessing their contribution to DNAm variation using PCA (Additional file 1: Supplementary 111 

methods). These analyses identified that the estimated CD8+ T cell proportion was significantly associated 112 

with principal components (PCs) 2 and 3, and differed between the comparison groups (Additional file 1: 113 

Figure S1 and Tables S1–2), and therefore, this covariate was included in the regression models.  114 

We ran three different models to assess the impact of paracetamol and FA on DNAm in children with ADHD 115 

(Table 1): (i) a crude model to examine whether prenatal paracetamol exposure was associated with DNAm in 116 

the cord blood of children with ADHD, (ii) an adjusted model where we adjusted the crude model for FA 117 

intake during pregnancy to investigate the influence of FA status on the variance in DNAm, and (iii) an 118 

interaction model where we examined any interaction effect of FA and paracetamol on DNAm. We ran the 119 

three models comparing the exposed group to each of the two control groups separately, and also ran sensitivity 120 

analyses excluding the CD8+ T cell proportion from the models, which did not change the results (Additional 121 

file 1: Figure S2).122 



Table 1. Overview of the three models used to assess the association of prenatal paracetamol and folic acid (FA) exposure 123 

with cord blood DNA methylation (DNAm) in children with attention-deficit/hyperactivity disorder (ADHD). We ran 124 

each model separately for the exposed group compared to each of the two control groups. 125 

Model* Definition Group comparisons Purpose 

Crude** 
model 

DNAm ~ group + CD8+ T cells 

Comparison 1 
Exposed vs. ADHD-control 

Comparison 2 
Exposed vs. population control 

Replicate our previous results [5] in a

different study population from MoBa. 

Adjusted 
model 

DNAm ~ group + FA + CD8+ T cells 

Comparison 1 
Exposed vs. ADHD-control 

Comparison 2 
Exposed vs. population control 

Address the influence of FA intake on 
the variance in DNAm. 

Interaction 
model 

DNAm ~ group*FA + CD8+ T cells 

Comparison 1 
Exposed vs. ADHD-control 

Comparison 2 
Exposed vs. population control 

Assess whether there is an interaction 
effect of paracetamol and FA intake on 
DNAm. 

Abbreviations: ADHD: attention-deficit/hyperactivity disorder; DNAm: DNA methylation; FA: folic acid; MoBa: the Norwegian Mother, Father 126 
and Child Cohort Study. 127 

* Sensitivity analysis excluding CD8+ T cell proportion from the model produced similar results. 128 
** Crude with respect to folic acid intake. 129 

To test the association of DNAm with prenatal paracetamol exposure and ADHD, we ran linear regression 130 

models comparing the exposed group to the ADHD control group and the population control group (the crude 131 

model). This analysis did not identify any significant differences between the exposed group and either of the 132 

other two control groups (Figure 1A; Additional file 1: Figure S3A; Additional file 2), and thereby did not 133 

replicate our previous findings. We then assessed whether FA could influence the association between 134 

paracetamol exposure and DNAm by running an adjusted model, adjusting for FA intake during pregnancy. 135 

This analysis did not reveal any significant CpGs and the p values were largely similar to those observed in 136 

the crude model (Figure 1B; Additional file 1: Figure S3B; Additional file 2). Finally, to understand whether 137 

there is an interaction effect of paracetamol and FA intake on DNAm in children with ADHD, we ran an 138 

interaction model where the group and FA exposure variables interacted. This analysis neither revealed any 139 

significant CpGs (Figure 1C; Additional file 1: Figure S3C; Additional file 2). 140 
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141 

Figure 1. Volcano plots comparing mean differences in DNAm () for each CpG between the exposed group and either 142 

the ADHD-control group or the population control group. (A) Crude model, only adjusted for CD8+ T cell proportion. 143 

(B) Adjusted model, adjusting for FA intake during pregnancy and CD8+ T cell proportion. (C) Interaction model,144 

assessing any interaction effect of prenatal paracetamol and FA exposure on DNAm. Each CpG is plotted by the -log10145 

of the p values against the mean per-CpG difference in DNAm () of the compared groups. In (C) mean  reflects the146 

interaction term (i.e., mean no FA–FA). The red dotted line indicates the FDR-adjusted p value significance threshold147 

(FDR<0.05).148 
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Discussion 149 

Overall, we identified no impact of paracetamol nor interaction of paracetamol and FA on cord blood DNAm 150 

in children with ADHD in our data. Results from the crude model did not identify any significant differences 151 

in DNAm between the exposed group and either of the two control groups. Consequently, we did not replicate 152 

our previous results [5]. These findings were surprising, as the present study is based on a larger number of 153 

samples from the same cohort (MoBa), using the same study design and similar inclusion criteria as in the 154 

original study. However, our studies are performed five years apart and methods have evolved, including the 155 

introduction of the Illumina Infinium EPIC platform and novel analyses methods, such as normalization and 156 

cell type deconvolution procedures. While we could not explain our replication failure solely by differing 157 

DNAm measurements between platforms [16], we cannot exclude that other aspects of the analysis may have 158 

contributed to the lack of replication.  159 

Our findings also differ from two recent studies on prenatal paracetamol exposure and DNAm, which found 160 

differential DNAm at some CpGs associated with paracetamol [6, 7]. However, comparison to these studies is 161 

difficult for several reasons, including differing study designs, exposure definitions, phenotypes, tissue types 162 

and analysis pipelines. There are also other challenges when comparing current prenatal pharmacoepigenetic 163 

studies [1], which may contribute to the lack of replication and overlap of findings.  164 

When assessing whether FA contributed to the variance in DNAm or if there was an interaction effect of 165 

paracetamol and FA on DNAm, we did not find any significant CpGs, suggesting that there is no effect of 166 

paracetamol and FA intake on DNAm in children with ADHD. Previous studies have reported differential 167 

DNAm associated with maternal FA intake during pregnancy in genes linked to developmental abnormalities 168 

[8, 9]. However, these studies examined FA intake as the main exposure rather than as an interacting factor 169 

with medication use [8, 9], and therefore, are not directly comparable to the current study.  170 

While we have improved multiple aspects of our previous study [5], there are some limitations to the current 171 

study. The sample sizes of the groups are relatively small, albeit larger than in our previous study. Although 172 

the MoBa cohort is one of the world’s largest prospective birth cohorts, only 61 children with a clinical ADHD 173 

diagnosis were exposed to paracetamol 20 days. Additionally, we did not assess the dose and timing of FA 174 

intake during pregnancy. However, in Norway, the recommended FA supplement dosage is 400 g/day, 175 

starting one month prior to pregnancy and lasting throughout the first trimester of pregnancy.  176 

In conclusion, this study did not replicate previous findings in MoBa or other studies investigating the 177 

influence of paracetamol on DNAm, and did not identify any interaction effect of paracetamol and FA on 178 

DNAm in children with ADHD. Our results contribute to the growing literature on prenatal 179 

pharmacoepigenetics, but should be replicated in other cohorts. Replication of pharmacoepigenetic studies is 180 

essential to ensure robust findings and to increase the clinical relevance of such studies.  181 
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Additional File 1 

Supplementary methods 

Paracetamol exposure definition 

Paracetamol use was retrieved from self-reports in three Mother, Father and Child cohort study questionnaires 

(MoBa; Q1, Q3, and Q4). Pregnant people report use of paracetamol per every 4-week interval of their 

pregnancy, in questionnaires distributed during and after pregnancy. Q1 and Q3 are distributed around 

gestational weeks 15 (0–4; 5–8; 9–12; 13 weeks) and 30 (13–16; 17–20; 21–24; 25–28; 29 weeks), 

respectively. Q4 is distributed approximately 6 months after delivery and covers the last weeks of pregnancy 

(from gestational week 30 until delivery). Women were presented with a number of illnesses and problems, 

and could report any medications used for the respective indications. The women also reported the total number 

of days they used the medication for each specific indication. We defined long-term prenatal exposure to 

paracetamol (Anatomical Therapeutic Chemical [ATC] code: N02BE01), as the use of paracetamol for ≥20 

days during pregnancy (any indication), as in our previous study [1]. Paracetamol exposure was coded as a 

binary “yes”/“no” variable.  

Attention-deficit/hyperactivity disorder definition 

We retrieved offspring attention-deficit/hyperactivity disorder (ADHD)-diagnosis from the Norwegian Patient 

Registry (NPR; 2008–2016), which contains all diagnoses asserted by specialists in governmental hospitals 

and outpatient clinics, in accordance with the 10th revision of the International Classification of Disease (ICD-

10). ADHD was defined as an ICD-10 diagnosis of hyperkinetic disorder (HKD; F90.0, F90.1, F90.8, or F90.9) 

between 2008 and 2016. HKD corresponds to ADHD in the Diagnostic and Statistical Manual (DSM) system 

[2–5]. 

Folic acid exposure definition 

Folic acid (FA) use is recorded in both MoBa and the medical birth registry of Norway (MBRN). In MoBa, 

pregnant people report use of FA per every 4-week interval of their pregnancy, in questionnaires Q1 and Q3 

described above. Self-reported FA use in MoBa corresponds well with maternal FA serum concentrations at 

19 weeks of pregnancy [6, 7]. In MBRN, use of FA is recorded upon interview during the first antenatal 

consultation (pregnancy weeks 6–12). In this consultation, the pregnant woman is asked whether she has used 

FA prior to and/or during pregnancy. If she answers “yes”, this is recorded as FA use in the corresponding 

check box (FA prior to pregnancy and/or FA during pregnancy). We defined exposure to FA in pregnancy as 

pregnant people with recordings of FA use during pregnancy in both MoBa and MBRN (nFA = 135; nno FA = 

126).  
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Covariates 

Analyses of potential covariates for inclusion in the linear regression models were done in three steps. First, 

we performed a principal component analysis (PCA) to analyze the association between the first three principal 

components (PCs), explaining the most DNAm variation across samples, and relevant covariates (Figure S1A–

B). We assessed the relevant covariates previously included in prenatal pharmacoepigenetic studies [8]: 

maternal age, maternal education, marital status, primiparity, alcohol use, smoking, multivitamin use, 

psychotropic and analgesic use, maternal diseases, in vitro fertilisation, Caesarean section, gestational age, 

infant sex, birth weight, bisulphite conversion and the composition of all cell types (CD8+ T cells, CD4+ T 

cells, natural killer cells, B cells, monocytes, granulocytes and nuclear red blood cells [nRBCs]). Second, we 

assessed the individual contribution of the significant covariates to the variation in DNAm (Figure S1C), as 

described elsewhere [9, 10]. Briefly, we fit multivariable linear regression models for each of the first three 

PCs. The explanatory variables were the covariates associated with either of the three PCs. For each PC, we 

found the partial R2, indicating the variation each covariate contributed to the variation of the PC, when 

accounting for the contribution of all other covariates in the model. The weighted partial R2 for the three PC 

models was reported as the variability contributed to DNAm variation by the respective covariate. We found 

that all covariates except bisulphite conversion and cell type composition contributed <0.1% of the variation 

in DNAm. Finally, we tested whether the covariates contributing the most to the DNAm significantly differed 

between the comparison groups (Tables S1–2), resulting in a model including only the CD8+ T cell proportion 

as a covariate.  

We estimated cell type composition (CD8+ and CD4+ T cells, natural killer cells, B cells, monocytes, 

granulocytes and nucleated red blood cells [nRBCs]), using the “estimateCellCounts2” function of minfi [11] 

(Table S2). This function deconvolves the data using the Houseman reference-based approach [12] and 

depends on a recently published, validated cord blood reference data set 

(FlowSorted.CordBloodCombined.450k) [13, 14]. 

Processing and normalization of the DNA methylation data 

The DNAm data was quality controlled using the quality control module implemented in RnBeads (v. 2.8.1) 

[15, 16]. First, samples with >5% low-quality CpGs or low bisulphite intensity were removed (0 samples). 

CpGs with >5% low-quality values were also removed (n = 8,947). Low-quality probes either exhibited a 

detection p value >10-6 or a bead count <3. We performed background correction with the ENmix exponential-

truncated-normal out-of-band (oob) method [17], dye bias correction with RELIC (REgression on Logarithm 

of Internal Control probes) [18] and probe-type correction with RCP (Regression of Correlated Probes) [19]. 

We then removed probes with SNPs overlapping with the CpG interrogation site or the nucleotide extension 

site (n = 29,176), cross-reactive probes (n = 14,921) [20, 21] and probes on the sex chromosomes (n = 17,532). 

The final data set consisted of 795,515 probes and 261 samples. 
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Statistical analyses 

Hypothesis tests 

Significant differences of covariates between groups were tested using the Wilcoxon’s rank-sum test 

(continuous variables), and Chi-squared test or Fisher’s exact test (categorical variables), as appropriate. To 

test which covariates were significantly associated with the most DNAm variation, we used Spearman’s 

correlation test (continuous variables) and one-way analysis of variance (ANOVA; categorical variables).  

Differential DNA methylation analyses 

The β values (the ratio of methylated signal to the sum of methylated and unmethylated signal) were used for 

visualisation purposes, while M values (log2(/(1–)) were used for statistical tests, as recommended based on 

their statistical properties [22]. To identify differentially methylated sites associated with paracetamol, we fit 

linear regression models onto the mean DNAm differences, using limma [23]. Interaction was assessed by 

including an interaction term in the model. We pairwise compared the exposed group to the ADHD-control 

and the population control groups. All comparisons were adjusted for multiple testing with a false discovery 

rate (FDR) cut off <0.05, using the Benjamini and Hochberg method [24].  

Surrogate variable analysis 

We performed a surrogate variable analysis to examine any unmeasured sources of variation in DNAm. We 

used the sva package with default parameters to estimate surrogate variables [25]. 
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Supplementary figures 

Figure S1. Principal component analysis (PCA) was used to compute the principal components (PCs), which represent 

DNA methylation variation. (A) The significance of the association between the top three PCs and various covariates 

(association tests included the Spearman’s correlation test [continuous variables] and one-way analysis of variance 

[ANOVA; categorical variables]). (B) Scree plot indicating the contribution to DNAm variation by each of the 12 first 

PCs. (C) The weighted partial R2 for each covariate (i.e., the variability contributed by the respective covariate to the top 

three PCs, when accounting for the variability contribution of all other covariates in the model). Abbreviations: BMI: 

body mass index; nRBC: nucleated red blood cell; NSAID: non-steroidal anti-inflammatory drug; Tech.: technical 

covariate. 
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Figure S2. Quantile-quantile (QQ) plots and histograms of the p values of (A) the crude model, (B) the adjusted model, 

and (C) the interaction model, not adjusted for the CD8+ T cell proportion. The p values reflect the pairwise comparisons 

of the exposed group to the population control group (orange) or the ADHD-control group (purple).  is the genomic 

inflation factor. 
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Figure S3.  Quantile-quantile (QQ) plots and histograms of the p values of (A) the crude model, (B) the adjusted model, 

and (C) the interaction model, all adjusted for the CD8+ T cell proportion. The p values reflect the pairwise comparisons 

of the exposed group to the population control group (orange) or the ADHD-control group (purple).  is the genomic 

inflation factor. 
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Supplementary tables 

Table S1. Overview of the comparison group characteristics stratified by folic acid status. P values for significant 

differences between the exposed group and the two control groups, were calculated using the Wilcoxon rank-sum test 

(continuous variables), and the Chi-squared test or Fisher’s exact test (categorical variables).  

Exposed 

(n = 61) 

ADHD-control 

(n = 100) 

Population control 

(n = 100) 
p 

Folic acid 

 (n = 37) 

No folic acid  

(n = 24)  

Folic acid 

(n = 45) 

No folic acid 

 (n = 55) 

Folic acid 

(n = 52)  

No folic acid 

(n = 48) 

Maternal characteristics 

Maternal age  

(mean years ± SD) 
31.0 ± 4.5 28.8 ± 4.7 29.6 ± 4.6 27.8 ± 5.2 30.2 ± 5.1 29.2 ± 5.3 N.S. 

Pre-pregnancy BMI  

(mean BMI ± SD) 
27.0 ± 5.9 

26.8 ± 5.1 

3 NA 

25.2 ± 4.4 

1 NA 

24.9 ± 5.3 

3 NA 

23.2 ± 3.7 

1 NA 

24.1 ± 3.6 

2 NA 
a,b 

Primiparous  

(yes; n (%)) 
10 (27.0) 8 (33.3) 27 (60.0) 22 (40) 27 (51.9) 21 (43.8) c,d 

Married or cohabiting  

(yes; n (%)) 
16 (43.2) 13 (54.2) 16 (35.6) 23 (41.8) 27 (51.9) 21 (43.8) N.S. 

Maternal education 

University/college (n (%)) 

High school or lower (n (%)) 

13 (35.1) 

24 (64.9) 

12 (50.0) 

11 (45.8) 

1 NA 

24 (53.3) 

19 (42.2) 

2 NA 

17 (30.9) 

37 (67.3) 

1 NA 

35 (67.3) 

15 (28.8) 

2 NA 

23 (47.9) 

21 (43.8) 

4 NA 

e 

Smoking in pregnancy  

(yes; n (%)) 
6 (16.2) 6 (25.0) 2 (4.4) 11 (20.0) 1 (1.9) 6 (12.5) f 

Alcohol in pregnancy 

(yes; n (%)) 
8 (21.6) 

3 (12.5) 

1 NA 
9 (20.0) 

16 (29.1) 

1 NA 
10 (19.2) 

16 (33.3) 

1 NA 
N.S. 

Multivitamins in pregnancy 

(yes; n (%))  
18 (48.6) 5 (20.8) 25 (55.6) 9 (16.4) 36 (69.2) 9 (18.8) N.S. 

Maternal medications*

Days of paracetamol 

(median days; 1st–3rd quartile) 
30.0 (25.0–60.0) 27.5 (21.0–37.0) --- --- --- --- --- 

Psychotropics**  

(yes; n (%)) 
8 (21.6) 3 (12.5) 5 (11.1) 4 (7.3) 0 (0) 3 (6.3) g 

NSAIDs  

(yes; n (%)) 
13 (35.1) 9 (37.5) 1 (2.2) 9 (16.4) 4 (7.7) 3 (6.3) h,i 

Other analgesics***  

(yes; n (%)) 
7 (18.9) 10 (41.7) 2 (4.4) 1 (1.8) 2 (3.9) 3 (6.3) j,k 

Maternal morbidities 

Comorbidity index****  

(mean score ± SD) 
0.8 ± 1.6 

0.9 ± 1.0 

3 NA 

0.6 ± 1.2 

1 NA 

0.6 ± 1.1 

2 NA 

0.4 ± 1.0 

3 NA 

0.5 ± 1.0 

1 NA 
N.S. 

Chronic diseases***** 

None (n (%)) 

1–2 diseases (n (%)) 

3 diseases (n (%)) 

32 (86.5) 

5 (13.5) 

0 (0) 

22 (91.7) 

2 (8.3) 

0 (0) 

43 (95.6) 

2 (4.4) 

0 (0) 

49 (89.1) 

6 (10.9) 

0 (0) 

52 (100) 

0 (0) 

0 (0) 

45 (93.8) 

3 (6.2) 

0 (0) 

l 

Conception and birth

In vitro fertilisation  

(yes; n (%)) 
0 (0) 0 (0) 3 (6.7) 0 (0) 2 (3.8) 1 (2.1) N.S. 

Caesarean section  

(yes; n (%)) 
2 (5.4) 5 (20.8) 6 (13.3) 9 (16.4) 7 (13.5) 5 (10.4) N.S. 

Child characteristics 

Gestational age at birth  

(mean weeks ± SD) 

39.6 ± 1.4 

1 NA 
39.2 ± 1.4 39.1 ± 1.9 39.5 ± 1.6 39.7 ± 1.7 39.5 ± 1.6 N.S. 

Infant sex  

(female; n (%)) 
14 (37.8) 11 (45.8) 14 (31.1) 12 (21.8) 25 (48.1) 19 (39.6) N.S. 

Birth weight

(mean grams ± SD) 
3,601 ± 456 3,564 ± 376 3,468 ± 523 3,672 ± 540 3,603 ± 463 3,495 ± 583 N.S. 
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Technical covariates 

Bisulphite conversion 

Plate 1 (n (%)) 

Plate 2 (n (%)) 

Plate 3 (n (%)) 

16 (0.43) 

12 (0.32) 

9 (0.24) 

11 (0.46) 

9 (0.38) 

4 (0.17) 

16 (0.36) 

20 (0.44) 

9 (0.20) 

14 (0.26) 

28 (0.51) 

13 (0.24) 

20 (0.39) 

14 (0.27) 

18 (0.35) 

19 (0.40) 

13 (0.27) 

16 (0.33) 
N.S. 

Abbreviations: ADHD: attention-deficit/hyperactivity disorder; BMI: body mass index; NA: missing value; N.S.: not significant; SD: 

standard deviation.  

* Within-group percentages may add up to more than 100% as one woman may have used medications from several medication groups.

** Includes all medications with the N02 Anatomical Therapeutic Chemical (ATC) code except paracetamol (i.e., opioids, antimigraine

preparations, and other analgesics and antipyretics)

*** Includes all antidepressants, antiepileptics and antipsychotics

**** Includes all variables available in MBRN and MoBa from a list provided in Bateman et al. (2013) [26, 27]. The different

variables are given different weights (weight in parentheses).The variables included in the final score are: asthma (1), cardiovascular

disease (3), chronic renal disease (1), congenital heart disease (4), illicit substance use (2), gestational hypertension (1), mild-

unspecified preeclampsia (2), severe preeclampsia (5), placenta previa (2), pre-existing diabetes mellitus (1), pre-existing hypertension 

(1), previous Caesarean delivery (1), lupus (2), alcohol abuse (weekly consumption; 1) and maternal age group (> 44 years: 3; 40–45 

years: 2; 35–40 years: 1; < 35 years: 0).

***** Chronic diseases included were asthma, rheumatoid arthritis, epilepsy, Crohn’s disease, lupus, multiple schlerosis (MS), cancer

and diabetes mellitus. All diseases were weighted equally and each additional disease added 1 to the final score.

a p ≈ 0.04, comparing exposed to ADHD-controls  
b p < 0.0001, comparing exposed to population controls 
c p ≈ 0.02, comparing exposed to ADHD-controls 
d p ≈ 0.03, comparing exposed to population controls 
e p ≈ 0.02, comparing exposed to population controls 
f p ≈ 0.03, comparing exposed to population controls 
g p ≈ 0.01, comparing exposed to population controls 
h p < 0.0001, comparing exposed to ADHD-controls 
i p < 0.0001, comparing exposed to population controls 
j p < 0.0001, comparing exposed to ADHD-controls 
k p < 0.0001, comparing exposed to population controls 
l p ≈ 0.05, comparing exposed to population controls
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Table S2. Overview of the cell type composition of the comparison groups stratified by folic acid status. P values for 

significant differences between the exposed group and the two control groups were calculated using the Wilcoxon rank-

sum test and any significant comparisons are detailed in the caption. 

Exposed 

(n = 61) 
ADHD-control 

(n = 100) 
Population control 

(n = 100) 
p 

Folic acid 

 (n = 37) 

No folic acid  

(n = 24)  

Folic acid 

(n = 45) 

No folic acid 

 (n = 55) 

Folic acid 

(n = 52)  

No folic acid 

(n = 48) 

B cells;  

mean proportion ± s.d. 
0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 N.S. 

CD4+ T cells;  

mean proportion ± s.d. 
0.14 ± 0.06 0.16 ± 0.05 0.15 ± 0.06 0.15 ± 0.06 0.14 ± 0.05 0.14 ± 0.06 N.S. 

CD8+ T cells;  

mean proportion ± s.d. 
0.04 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 a 

Granulocytes;  

mean proportion ± s.d. 
0.57 ± 0.10 0.55 ± 0.09 0.57 ± 0.11 0.58 ± 0.09 0.59 ± 0.10 0.58 ± 0.09 N.S. 

Monocytes;  

mean proportion ± s.d. 
0.06 ± 0.04 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.06 ± 0.04 0.05 ± 0.04 N.S. 

Natural killer cells; 

mean proportion ± s.d. 
0.02 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.03 N.S. 

nRBCs;  

mean proportion ± s.d. 
0.12 ± 0.10 0.14 ± 0.10 0.14 ± 0.12 0.12 ± 0.10 0.12 ± 0.08 0.11 ± 0.09 N.S. 

Abbreviations: ADHD: attention-deficit hyperactivity disorder; nRBC: nucleated red blood cell; N.S.: not significant. 

a p ≈ 0.03, exposed to population controls 
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Abstract 

Background: There is an increasing interest in the role of epigenetics in epidemiology, but the emerging research 
field faces several critical biological and technical challenges. In particular, recent studies have shown poor correlation 
of measured DNA methylation (DNAm) levels within and across Illumina Infinium platforms in various tissues. In this 
study, we have investigated concordance between 450 k and EPIC Infinium platforms in cord blood. We could not 
replicate our previous findings on the association of prenatal paracetamol exposure with cord blood DNAm, which 
prompted an investigation of cross-platform DNAm differences.

Results: This study is based on two DNAm data sets from cord blood samples selected from the Norwegian Mother, 
Father and Child Cohort Study (MoBa). DNAm of one data set was measured using the 450 k platform and the other 
data set was measured using the EPIC platform. Initial analyses of the EPIC data could not replicate any of our previous 
significant findings in the 450 k data on associations between prenatal paracetamol exposure and cord blood DNAm. 
A subset of the samples (n = 17) was included in both data sets, which enabled analyses of technical sources poten-
tially contributing to the negative replication. Analyses of these 17 samples with repeated measurements revealed 
high per-sample correlations ( −

R≈
 0.99), but low per-CpG correlations ( −

R
 ≈ 0.24) between the platforms. 1.7% of the 

CpGs exhibited a mean DNAm difference across platforms > 0.1. Furthermore, only 26.7% of the CpGs exhibited a 
moderate or better cross-platform reliability (intra-class correlation coefficient ≥ 0.5).

Conclusion: The observations of low cross-platform probe correlation and reliability corroborate previous reports in 
other tissues. Our study cannot determine the origin of the differences between platforms. Nevertheless, it emulates 
the setting in studies using data from multiple Infinium platforms, often analysed several years apart. Therefore, the 
findings may have important implications for future epigenome-wide association studies (EWASs), in replication, 
meta-analyses and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform 
studies may enhance the interpretation, replicability and validity of EWAS results both in cord blood and other tissues, 
ultimately improving the clinical relevance of epigenetic epidemiology.
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Background
Epigenetics entails modifications of the DNA that can 
impact gene expression, but does not involve changes 
in the underlying DNA sequence. The most commonly 
studied epigenetic modification is DNA methylation 
(DNAm), which occurs at cytosine bases of cytosine–
phosphate–guanine dinucleotide sites (CpGs). DNAm 
can be impacted by the DNA sequence, as well as envi-
ronmental influences [1–4]. There is an increasing inter-
est in the role of epigenetics within epidemiology. Several 
pharmacoepidemiological studies have reported an 
association between prenatal psychotropic or analgesic 
medication exposure and neurodevelopmental outcomes 
in the offspring [5–13]. Furthermore, multiple epige-
nome-wide association studies (EWASs) have identified 
DNAm changes associated with medication exposure 
during pregnancy (e.g. valproic acid, antidepressants and 
paracetamol) [14–20]. Recently, we found an associa-
tion between cord blood DNAm and prenatal long-term 
exposure to paracetamol in children with attention-
deficit/hyperactivity disorder (ADHD) [21]. These ini-
tial findings may suggest that DNAm is involved in the 
relationship between prenatal medication exposure and 
adverse neurodevelopmental outcomes [3, 4].

Despite a growing interest in epigenetics, and an 
increasing number of published EWASs, there are several 
critical biological and technical challenges in epigenetic 
epidemiology, which have important implications for the 
interpretation, validity and clinical translation of the find-
ings [1, 22, 23]. One key challenge is the paucity in the 
replication of findings. For instance, two systematic lit-
erature reviews on the association of offspring epigenetic 
patterns with medication use [20] and maternal well-
being in pregnancy [24] uncovered largely inconsistent 
findings. These reviews suggest multiple origins of the 
discrepant results, such as small sample sizes resulting in 
low statistical power and poor study designs [20, 24]. The 
majority of EWASs are based on DNAm data generated 
using the Illumina Infinium HumanMethylation Bead-
Chip platforms, including the 27  k (n > 27,000 CpGs), 
450 k (n > 450,000 CpGs) and the EPIC arrays (n > 850,000 
CpGs) [25]. Recent studies have elucidated technical 
aspects related to the Infinium platforms, which have 
significant influences on the analyses and interpretation 
of results. These studies have shown significant per-CpG 
differences and poor per-CpG correlation both within 
[26–35] and across [31, 32, 36–40] microarray platforms, 
which challenges combined analyses of DNAm data from 

both platforms (e.g. [41–45]). In cord blood, the median 
correlation of individual CpGs across platforms was only 
0.24 [37]. Furthermore, 2.4% of the CpGs exhibited a 
mean difference in measured DNAm level between the 
platforms ≥ 0.1 [37], on the same order as the low effect
sizes often observed within epigenetic epidemiology [1, 
22, 46]. Furthermore, only 18.0% of CpGs in adult whole-
blood exhibit a moderate or better reliability across plat-
forms (intra-class correlation coefficient [ICC] ≥ 0.5) 
[31]. The technical aspects contributing to low reliabili-
ties of CpGs may affect the power of EWASs [28, 47]. 
Consequently, poor concordance of measured DNAm 
levels across platforms may impact both the replicability 
and validity of EWAS results.

In an ongoing study, we aim to replicate and expand our 
previous findings showing associations between long-
term prenatal exposure to paracetamol (≥ 20  days) and 
DNAm in children with ADHD [21]. Analyses of DNAm 
data generated from a larger number of samples selected 
from the same cohort using the Infinium EPIC platform 
find no significant CpGs associated with paracetamol 
exposure. Accordingly, we fail to replicate any of our 
previous significant findings [21]. Examining a subset of 
samples with repeated measurements in both data sets 
has enabled a thorough investigation of potential techni-
cal origins of the negative replication. Our findings could 
not explain the failure to replicate our previous results, 
but are still important for replication EWASs, as well as 
studies combining DNAm from different Infinium plat-
forms, such as longitudinal studies or meta-analyses.

Results
Lack of replicability may originate from several technical 
sources
This study is based on a subset of samples (n = 17) 
included in two datasets and consists of repeated meas-
urements using the Infinium 450 k and EPIC platforms. 
The samples were selected from the Norwegian Mother, 
Father and Child Cohort Study (MoBa). In the data set 
assessed on the 450 k platform (n = 384 samples), we have
previously published associations between prenatal expo-
sure to paracetamol and DNAm differences in children 
with ADHD [21]. Analysis of the second data set (n = 261 
samples), which was designed to expand on these findings 
using the EPIC platform, has failed to replicate our previ-
ous findings (data not shown). This prompted a thorough 
investigation of whether technical aspects of the Infinium 
platforms could explain the negative replication. Using 

Keywords: Epigenetic epidemiology, Epigenetics, EWAS, MoBa, MBRN, Validity, Replication, Reliability, Illumina 
Infinium platforms, Microarrays
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a subset of samples with repeated measurements from 
both studies (n = 17 samples), we conducted system-
atic analyses to assess the integrity and reliability of the 
DNAm data between the Infinium platforms.

The DNAm data separate into clusters explained 
by microarray platforms
We performed stringent quality control, normalisation 
and probe filtering procedures of the DNAm data from 
the two data sets containing the samples with repeated 
measurements, to minimise technical variation related 
to pre-processing of the data. First, we examined DNAm 
data measured for a set of genotyping probes on each 
platform (n = 59 probes). Clustered heatmaps of DNAm 
values at these genotyping probes showed that the 
repeated cross-platform measurements of each sample 
grouped together and hence, excluded potential mix-up 
of samples (Additional file 1: Fig. S1). Second, we exam-
ined whether pre-processing steps such as background 
and probe-type correction impacted the cross-platform 
concordance. To do this, we used the intra-class correla-
tion coefficient (ICC), which equals 1 if there is perfect 
per-CpG concordance between the measured DNAm in 
the 450  k and EPIC data sets. Generally, an ICC < 0.5 is 
considered poor [48, 49]. We computed the ICCs after 

pre-processing the 450  k and EPIC data sets separately, 
using the default settings of five commonly used pre-
processing pipelines ChAMP [50, 51], ENmix [34], minfi 
[52], RnBeads [53] and wateRmelon [54] (Additional File 
1: Table  S1). We also included one pipeline commonly 
reported in the literature, namely RnBeads with the 
background and probe-type corrections ENmix.oob [34] 
and BMIQ [55], respectively. This analysis revealed that 
the ENmix pipeline exhibited larger ICCs than the other 
pipelines (Fig. 1). Therefore, we performed the rest of the 
analyses on data sets normalised using the default set-
tings of the ENmix pipeline.

Next, we performed principal component analysis 
(PCA) to explore technical variation in the DNAm data 
related to the 450  k and EPIC platforms. As expected, 
PCA revealed distinct clustering of samples correspond-
ing to the 450 k and EPIC platforms (Fig. 2). Similar plots 
were observed when pooling all the available 450 k and 
EPIC samples (n = 628 samples; data not shown).

DNAm levels differ between the 450 k and EPIC platforms
To further investigate the dissimilarities between the 
450  k and EPIC platforms, we computed the difference 
in and correlation of DNAm at overlapping CpGs on 
the two platforms (n = 397,813 CpGs). These analyses 

Fig. 1 Overview of the ICC distribution computed from raw data and from data pre-processed using the default settings of five common EWAS 
analysis pipelines. Additionally, we included one common analysis pipeline (“RnBeads (customised)”, including the normalisation methods ENmix.
oob and BMIQ). All pipelines examined also exhibited ICCs lower than –2, but these were removed from the illustration for visualisation purposes. 
The default settings of each analysis pipeline are detailed in Additional file 1: Table S1
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revealed small per-sample absolute differences in DNAm 
at overlapping CpGs between the two arrays (median 
≈ 0.008 and mean ≈ 0.017 absolute DNAm differences). 
For 0.1% (n = 454) of CpGs, the mean DNAm difference 
over all replicates was > 0.25, while 0.007% (n = 27) of 
CpGs exhibited a mean DNAm difference > 0.5 (Fig.  3). 
These numbers are largely in line with previous studies, 
comparing differences in measured DNAm between the 
450  k and EPIC arrays in cord blood [37], whole-blood 
[31, 32, 36, 37], placenta [38] and cartilage [39]. Further-
more, of the 27 CpGs with an absolute mean DNAm 
difference > 0.5, 5 of these CpGs also exhibited absolute 
mean DNAm difference > 0.5 in both cord blood [37], 
whole-blood [37], placenta [38] and cartilage [39] (Addi-
tional file 1: Fig. S2).

We observed a high per-sample correlation of DNAm 
between the platforms, both when comparing replicates, 
and when comparing two independent samples across 
the platforms (Fig.  4A). The median per-sample Pear-
son’s correlation coefficient was 0.996 and the mean was 
0.992, with the lowest correlation between any two sam-
ples being 0.969 and the highest being 0.998. In contrast, 
the per-CpG correlations of measured DNAm between 
the platforms were significantly lower: the median corre-
lation was 0.237 and the mean was 0.238, with the low-
est correlation being -0.822 and the highest being 1.00 

(Fig. 4B). The per-CpG correlation appeared to be related 
to the variance of each CpG, which were similar for 
both platforms; CpGs with high correlation also exhib-
ited larger variance (Fig.  4B). The high per-sample cor-
relation, low per-CpG correlation, and the relationship 
between CpG variance and correlation, have previously 
been reported for cord blood [37], and multiple other tis-
sues [31, 32, 36–39].

Few CpGs are reliable between the 450 k and EPIC platforms
In order to examine concordance of cross-platform 
DNAm levels, we assessed the reliability of the CpGs, 
reflecting both correlation and agreement. To do this, we 
computed the ICC, as previously suggested by Sugden 
et  al. (2020) comparing cross-platform DNAm levels in 
adult whole-blood [31]. Overall, the ICCs of the overlap-
ping CpGs were poor (median = 0.246 and mean = 0.230; 
Fig.  5A). Approximately 26.7% (n = 106,078) of the 
CpGs exhibited an ICC ≥ 0.5. This is similar to the find-
ings of the recent study by Sugden et al. in adult whole-
blood, where 18.0% of CpGs exhibited an ICC ≥ 0.5 [31]. 
Approximately 38.6% (n = 40,916) of the CpGs with an 
ICC ≥ 0.5 in the current  study overlapped with the CpGs 
with an ICC ≥ 0.5 reported by Sugden et  al. [31] (Addi-
tional File 2). The microarray type II probes exhibited 
slightly better ICCs and correlation coefficients than type 

Fig. 2 (A–C) Scatter plots of the first three principal components (PC1–3) from PCA of DNAm data from samples with repeated measurements 
(n = 17 samples) using the 450 k and EPIC platforms, and (D) a scree plot showing the amount of variance explained by the first nine PCs
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I probes (Additional File 1: Fig. S3). Probes with poor 
ICCs and correlation coefficients appear more frequently 
in CpG islands (Additional File 1: Figs. S4 and S5), pos-
sibly due to an increased proportion of largely unmethyl-
ated CpGs in these regions (Additional File 1: Fig. S6).

Considering the poor CpG reliabilities, we investi-
gated if the ICCs of the repeated measurements were 

higher than expected for two randomly paired samples. 
Therefore, we paired each EPIC sample with a randomly 
selected 450  k sample. The distribution of ICCs com-
puted from the 17 repeated measurements (Fig.  5A) is 
significantly different from the ICC distributions com-
puted from the 17 random 450 k-EPIC pairs (Kolmogo-
rov–Smirnov test: p < 2.2*10–16; Additional file 1: Fig. S7). 

Fig. 3 Mean absolute difference in measured DNA methylation (Δβ) per CpG, on the 450 k and EPIC platforms. Red dotted lines indicate a mean 
Δβ > 0.1, > 0.25 and > 0.5. Illumina CpG IDs are named if the mean Δβ > 0.5

Fig. 4 Pearson’s correlation coefficients of DNAm in replicates of the 450 k and EPIC platforms, for (A) per-sample correlations in a correlogram, and 
(B) per-CpG correlations as distributions stratified by variance quartiles, based on the variance of the respective CpGs on the EPIC platform
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Furthermore, only a small percentage of the CpGs of the 
random pairs (2.4%–4.8%) exhibited an ICC ≥ 0.5, which 
are significantly different proportions from the ICCs of 
the repeated measurements (Pearson’s Chi-squared test: 
p < 2.2*10–16).

The ICC reflects both correlation and agreement 
across microarray platforms
To investigate if the ICCs reflect both agreement and 
correlation across platforms, we examined the distribu-
tion of mean differences in DNAm and Pearson’s cor-
relation coefficients, for each of four ICC categories: 

poor (ICC < 0.5), moderate (0.5 ≤ ICC < 0.75), good 
(0.75 ≤ ICC < 0.9) and excellent (ICC≥ 0.9) [48]. The 
distribution of mean differences in DNAm is relatively 
similar between the ICC categories. However, there are 
far more of the poor CpGs displaying large differences 
in mean DNAm levels across platforms compared to the 
other ICC categories (Fig.  5B). In contrast, the correla-
tion coefficient increases with improving ICC category; 
the poor ICC category exhibits a wide range of low cor-
relation coefficients (median ≈ 0.12), while the distribu-
tion of the correlation in the excellent category is highly 
skewed to the right (median ≈ 0.92). The moderate and 

Fig. 5 (A) Histogram of the ICCs computed from the 17 samples assessed on both the 450 k and EPIC platforms. (B) Density distribution of mean 
difference in DNAm level, stratified by ICC category. (C) Density distribution of Pearson’s correlation coefficient, stratified by ICC category. The ICC 
categories are defined as follows: poor: ICC < 0.5; moderate: 0.5 ≤ ICC < 0.75; good: 0.75 ≤ ICC < 0.9;  and excellent: ICC ≥ 0.9. The dark grey, dotted 
line indicates the median ICC, and the light grey, dotted line indicates the mean ICC. Outlying CpGs with ICCs less than the mean ICC minus three 
standard deviations were removed for visualisation purposes, but were included for summary statistic calculations
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good categories exhibit a wider range of correlation coef-
ficients than the excellent CpGs, with a median of 0.52 
and 0.74, respectively (Fig. 5C).

These observations demonstrate that the reliability of 
each CpG depends on both the correlation and the agree-
ment between the two platforms [48]. An excellent CpG 
will have both a low mean difference in DNAm between 
platforms  and a high correlation, explaining the small 
range in values of both the mean DNAm differences and 
the correlation coefficients. In contrast, a poor probe 
(including a larger range of ICCs) may exhibit an accept-
able correlation but have a large mean DNAm difference 
(Additional file 1: Fig. S8). For instance, 685 of the 5407 
CpGs with an R≥ 0.9 nevertheless have an ICC ≤ 0.9, with 
22 CpGs even having a poor ICC (< 0.5). Furthermore, of 
the 395,286 CpGs with a mean DNAm difference ≤ 0.1, 
289,327 exhibit a poor ICC (< 0.5). This is likely due to 
low correlations, as the median R for these CpGs is 0.12, 
while the median R was 0.59 for the 105,959 CpGs with a 
mean DNAm difference ≤ 0.1 and an ICC ≥ 0.5. Hence, 
the ICC better  reflects reliability  across platforms than 
either accuracy or correlation on their own.

The significant CpGs in the 450 k data have low reliabilities
We then asked if our failure to replicate the findings in 
our original study [21] could be explained by poor-per-
forming probes, by examining the ICCs of the significant 
CpGs from the 450 k data set. The significant CpGs for 
the three group comparisons performed in the original 
study have median ICCs of 0.119, 0.122 and 0.135 (Addi-
tional file 1: Fig. S9). These reliabilities are low compared 
to the overall mean and median of the ICCs including all 
common CpGs across platforms.

Discussion
Replication of association studies is important to ensure 
robust and valid findings. In an ongoing study, we aimed 
to replicate and expand on findings in our previous study, 
where we found an association between long-term pre-
natal paracetamol exposure and differences in DNAm 
in children with ADHD, using the Infinium 450  k plat-
form [21]. Surprisingly, analyses of the follow-up data 
consisting of a larger sample and use of the Infinium 
EPIC platform have not replicated the results from our 
original study. Indeed, a challenge of EWASs is to dis-
cern spurious findings from true positives, rendering 
the replication of significant associations challenging 
[1, 22, 23]. Recent studies have shown low concordance 
across 450 k and EPIC platforms in different tissues [31, 
32, 36–40]. Therefore, we have conducted a systematic 
evaluation of technical aspects related to concordance of 
DNAm data across the Infinium platforms in our studies 

in cord blood, by using data from a subset of samples 
with repeated measurements from the 450  k and EPIC 
platforms.

Technical variation such as batch effects is systematic 
variation caused by, for example, processing by differ-
ent technicians, varying reagent batches and differences 
in the scanner performance. PCA of DNAm data from 
the samples with repeated measurements demonstrated 
distinct clustering of samples corresponding to the plat-
form. If these differences in DNAm were independent of 
the platform and resulted entirely from positioning on 
the beadchip or bisulphite conversion plate, we would 
expect the changes to be relative and to not impact the 
replicability. Considering the general challenge of replica-
tion of EWASs [1, 22, 23] and the low per-CpG concord-
ance across platforms reported in several recent studies 
[31, 32, 36–40], we were encouraged to examine possible 
cross-platform differences in DNAm. Corroborating pre-
vious studies, we observed a high per-sample correlation 
even between the randomly paired samples [32, 36–40]. 
In contrast, the per-CpG correlation was significantly 
lower, and some probes exhibited large differences in 
mean measured DNAm for overlapping CpGs on the two 
platforms.

Considering the highly concerning findings by Sugden 
et al. [31], reporting low reliabilities (measured by ICCs) 
for most CpGs across the 450  k and EPIC platforms in 
adult whole-blood, we estimated the ICCs of each CpG 
across the two platforms in our cord blood samples. Ide-
ally, the ICC will approach 1 if the between-sample vari-
ation is much larger than the within-sample variation, 
suggesting larger biological variation than technical vari-
ation. However, most CpGs in our study exhibited poor 
reliabilities (ICC < 0.5) [31, 48]  and we found that only 
26.7% of CpGs in cord blood had an acceptable reliability 
across platforms. Interestingly, 38.6% of these CpGs over-
lapped with the 18.0% reliable CpGs identified in adult 
whole-blood [31]. This may suggest that some probes are 
generally unreliable in different tissues, possibly due to 
cell-type specific variability in DNAm. In contrast, other 
CpGs may perform worse in specific tissues, similar to 
what has been suggested for both per-CpG correlations 
and differences in DNAm between platforms [37–39]. 
In future studies, it would be interesting to examine the 
ICCs between Infinium platforms and other DNAm 
measuring technologies, such as whole-genome bisul-
phite sequencing (WGBS) or methylated immunopre-
cipitation (MeDIP).

We observed a substantial difference in the distribution 
of ICCs for different pre-processing steps used in com-
mon analysis pipelines. The ENmix pipeline exhibited 
the largest median ICC, suggesting that this pipeline may 
be better to best conserve the similarity of normalised 
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repeated measurements from different platforms. In con-
trast, both the default RnBeads, minfi and wateRmelon 
pipelines have no better ICC distributions than the raw 
data. Notably, compared to a recent study reporting 
the ICC distribution of multiple different pipelines for 
within-platform repeated measurements [35], the distri-
bution of cross-platform ICCs varies more dependent on 
the analysis pipeline used. However, the analysis pipeline 
with the highest median ICC is ENmix for both cross-
platform and within-platform comparisons [35].

Interestingly, some studies have reported that cross-
platform differences in DNAm and poor per-CpG cor-
relations do not substantially impact the outcome of 
EWASs [32, 37]. However, when investigating the rela-
tionship of ICCs with the likelihood of replication of 
CpGs, Sugden et  al. observed a positive relationship 
between increasing ICC and increasing replication rate 
for the association of DNAm with smoking [31]. Similar 
associations of ICCs with replicability have been found 
when ICCs were estimated from 450  k-450  k replicates 
[26, 49]. For instance, smoking-DNAm associations in 
whole-blood are highly replicable [56], and in one study, 
96% of CpGs associated with smoking exhibit high reli-
ability [26]. Additionally, poor ICCs have been shown 
to decrease the power of individual CpGs in EWASs, i.e. 
reducing the positive predictive value (PPV) by decreas-
ing the number of true positives [28, 31, 47]. The median 
ICC of the significant CpGs in our original study was 
poor. However, if these findings were explained by the 
low reliability of the probes, we would expect none or 
very few significant CpGs. Consequently, based on the 
calculated ICCs using our 17 samples with repeated 
measurements, we have no explanation for the lack of 
replicability of our original findings.

A limitation of the present study is the small sample 
size used to assess the ICCs. However, ICC calculations 
generally require relatively small sample sizes [47, 57], 
and Sugden et al. found that sample sizes as small as 25 
would be sufficient to detect 80% of all CpGs with an 
ICC ≥ 0.75 [31]. Furthermore, our results on both per-
CpG correlations, differences in mean DNAm and ICCs 
are in line with other studies reporting one or more of 
these measurements for various tissues [31, 32, 36–40]. 
Nevertheless, a study including a larger number of 
repeated measurements in cord blood across the 450  k 
and EPIC platforms should be performed to strengthen 
our findings. Another limitation of our study is our ina-
bility to assess which technical variable(s) associated with 
the platform are contributing to the differences between 
platforms. Firstly, the DNAm on the 450 k and EPIC plat-
forms was measured three years apart. Yet, this largely 
emulates the setting in most studies relying on data pro-
cessed at different times and in different facilities (e.g., 

longitudinal studies and meta-analyses). Furthermore, 
all samples included in the current study were processed 
in the same core facility and by the same technician. 
Secondly, batches of bisulphite conversion reagents and 
scanners may also contribute to the cross-platform dif-
ferences. Nevertheless, we expect that such technical 
variation is relative within the platforms and, conse-
quently, that probes are mainly affected equally within 
the platform. Finally, it is challenging to assess the poten-
tial contribution of sample plate and beadchip to cross-
platform differences, due to the different platform layouts 
(the 450 k beadchip can load 12 samples, while the EPIC 
beadchip can load 8 samples). To limit the contribution of 
variation from sample plate and beadchip in our data, the 
samples were randomly positioned on plates and bead-
chips. Accordingly, technical variation contributed by 
these variables should be random and should not inflict 
much bias when comparing DNAm between platforms.

The substantial differences across platforms revealed 
in this and previous studies [31, 32, 36–40] are trou-
bling when trying to replicate findings using a different 
platform than in the original study. Replication of find-
ings has long been considered a major challenge within 
epigenetic epidemiology [1, 22, 23], and to our knowl-
edge, only one study has highlighted the potential impact 
of unreliable CpGs for replication of findings using 
data from different microarray platforms [31]. Chal-
lenges associated with differences in mean DNAm lev-
els across platforms are not necessarily limited to issues 
of replication. For instance, longitudinal studies based 
on DNAm measured at multiple timepoints may suffer 
under the development of new microarray technologies 
(e.g., [41, 42]). Furthermore, this is also relevant for large 
meta-analyses combining data from multiple cohorts to 
increase the power of EWASs (e.g. [43, 44]), often based 
on large consortia such as the Pregnancy And Childhood 
Epigenetics (PACE) consortium [45]. Such strategies 
may be impacted by unreliable probes when combining 
data sets from different platforms. Similarly, unreliable 
CpGs across platforms may have implications for current 
EWAS knowledgebases, such as the EWAS Atlas [58] and 
the EWAS catalogue [59], which curate EWAS publica-
tions to report DNAm-trait associations.

Conclusion
In conclusion, our failure to replicate significant CpGs 
associated with prenatal paracetamol exposure prompted 
a thorough investigation of potential technical origins of 
our null findings. The observation of low cross-platform 
per-CpG correlation and reliability corroborates previous 
reports. However, the low-reliability probes could not 
explain the inability to replicate previous findings in our 
case. Nevertheless, the poor cross-platform reliabilities 
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may have important implications for future EWASs, 
in replication, meta-analyses and longitudinal studies. 
Therefore, we encourage researchers performing EWASs 
to examine the reliability of probes within and across tis-
sues and to establish which probes are most comparable 
across microarray platforms. However, in many cases, the 
availability of repeated measurements from individual 
samples may be limited for reasons such as extra cost 
and limited availability of sample material. To this end, 
we encourage joint efforts to more extensively outline 
reliable probes in different tissues. If such investigations 
reveal common poor-performing probes across or within 
tissues, other studies may rely on this information when 
performing cross-platform studies. We hope our find-
ings, supporting the results by Sugden et al. [31], increase 
awareness of possible challenges in including both 450 k 
and EPIC data in the same study. Cognisance and trans-
parency of these challenges as well as appropriate pre-
cautions when performing cross-platform epigenetic 
investigations, may enhance the interpretation, replica-
bility and validity of results, and could ultimately improve 
the clinical relevance of epigenetic epidemiology.

Methods
Sample population
We analysed cord blood samples from the Mother, 
Father and Child Cohort Study (MoBa). MoBa is a pop-
ulation-based pregnancy cohort study conducted by the 
Norwegian Institute of Public Health (NIPH) [60–63]. 
Participants were recruited from all over Norway from 
1999–2008 [60, 61]. The women consented to partici-
pation in 41% of the pregnancies [60, 61]. The cohort 
includes approximately 114,500 children, 95,200 mothers 
and 75,200 fathers [60, 61]. The current study is based on 
Data Version 8 of the quality-assured data files released 
for research in 2015. Observational data from MoBa 
questionnaires Q1 (gestational week 0–13), Q3 (gesta-
tional week 13–29) and Q4 (gestational week 30 to deliv-
ery) were used to select individuals for the study. The 
personal, 11-digit identification number, unique to every 
permanent resident of Norway, was used to link MoBa to 
the Norwegian Patient Registry (NPR) and the Medical 
Birth Registry of Norway (MBRN). MBRN is a national 
health registry containing information about all births in 
Norway. We also analysed umbilical cord blood samples 
retrieved from the MoBa biobank [62, 63]. The biobank 
stores blood samples obtained from both parents dur-
ing pregnancy, and from mothers and children (umbilical 
cord) at birth [62, 63].

The establishment of MoBa and initial data collection 
was based on a license from the Norwegian Data Pro-
tection Agency and approval from the Regional Com-
mittees for Medical and Health Research Ethics (REC). 

MoBa is currently regulated by the Norwegian Health 
Registry Act. All MoBa participants have given their 
written informed consent to participate in the cohort 
study. The current study has been approved by REC 
South East Norway (REC reference: 23,136, 2014/163). 
All data are de-identified, and the linkage between 
MoBa and the different health registries was handled by 
NIPH along with the relevant registries.

Study design and measurements
The MoBa biobank contains 90,000 cord blood sam-
ples drawn at birth [63]. In our original study using 
the 450  k platform, we selected 384 samples from the 
biobank, and in the study using the EPIC platform, 
we selected 261 samples. Out of these samples, 611 
samples were unique to either the 450  k data set or 
the EPIC data set, and 17 samples were measured on 
both the 450 k and EPIC platforms. The samples were 
selected based on prenatal exposure to paracetamol 
and child ADHD diagnosis, and all samples were term 
births (≥ 37  weeks). The 17 samples available in both 
data sets were all prenatally long-term exposed to par-
acetamol and had received an ADHD diagnosis.

Long-term prenatal exposure to paracetamol (Ana-
tomical Therapeutic Chemical [ATC] code: N02BE01) 
was defined as the use of paracetamol for ≥ 20  days 
during pregnancy (coded as “yes” or “no”), based on a 
threshold from previous studies [64–68]. Use was self-
reported and collected from three MoBa question-
naires (Q1, Q3 and Q4). Offspring diagnosis of ADHD 
was retrieved from the NPR (2008), containing all indi-
vidual diagnoses asserted by specialists according to 
the  10th revision of the International Classification of 
Disease (ICD-10), as reported by governmental hos-
pitals and outpatient clinics. Children were defined as 
having ADHD if they had received an ICD-10 diagno-
sis of hyperkinetic disorder (HKD; F90.0, F90.1, F90.8 
or F90.9) between 2008 and 2016. HKD corresponds to 
ADHD in the Diagnostic and Statistical Manual (DSM) 
system [69–72], as an HKD diagnosis requires both 
inattentiveness and hyperactivity symptoms.

DNA methylation
Generation of DNAm data
The 450  k DNAm data from the samples in our origi-
nal study are described elsewhere [21]. The samples 
assessed on the Infinium HumanMethylation EPIC 
BeadChip (Illumina) were processed similar to the 
450  k data set [21]. Samples were randomly allocated 
to sample plates and beadchips, as previously described 
[21].
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Quality control and pre‑processing
Analyses were performed in the R programming lan-
guage (http:// www.r- proje ct. org/). Quality control, 
normalisation and filtering of the data (Table  1) were 
performed using the default pipeline of ENmix [34]. The 
EPIC and 450 k data sets were pre-processed separately 
and all samples were included in the pre-processing 
(nEPIC = 261; n450k = 384). Subsequently, the 17 samples 
with repeated, cross-platform measurements were used 
for further analyses.

First, samples with > 5% low-quality CpGs or low bisul-
phite intensity were removed (7 samples from the 450 k 
data set and 0 samples from the EPIC data set). Then, 
CpGs with > 5% low-quality values were also removed 
(5598 and 8947 CpGs from the 450 k and EPIC data sets, 
respectively). Background correction was performed 
using the ENmix exponential-truncated-normal out-of-
band (oob) method [34], dye bias correction was exe-
cuted using RELIC (REgression on Logarithm of Internal 
Control probes) [73], and probe-type correction was 
achieved using RCP (Regression of Correlated Probes) 
[74]. We removed probes with SNPs overlapping with 
the CpG interrogation site or the nucleotide extension 
site (nEPIC = 29,176; n450k = 16,803), cross-reactive probes 
(nEPIC = 14,921; n450k = 21,563) [36, 75–77] and probes 
on the sex chromosomes (nEPIC = 17,532; n450k = 10,012). 
These pre-processing steps resulted in a total of 795,515 
probes in the EPIC data set and 431,536 probes in the 
450  k data set. Of these, 397,813 CpGs overlapped 
between the two platforms.

Pre‑processing using the default settings of common analysis 
pipelines
The raw data were also pre-processed using the default 
settings of four other common EWAS analysis pipelines: 
ChAMP [50, 51], minfi [52], RnBeads [53] and wateR-
melon [54]. Additionally, we used the default RnBeads 
pipeline [53], but changed the background and probe-
type correction methods to Enmix.oob [34] and BMIQ 
[55], respectively. The CpGs were annotated based on 
ilm10b4.hg19 [78].

Statistical analyses
The β values (the ratio of methylated signal to the sum 
of methylated and unmethylated signal) were used for 
visualisations and calculation of all concordance meas-
urements. To test for differences in distributions, we used 
the Kolmogorov–Smirnov test, and to test for differences 
in proportions, we used the Pearson’s Chi-squared test. 
To examine the correlations between both samples and 
CpGs from the different microarrays, we estimated the 
Pearson’s correlation coefficient. The ICC of each CpG 
was computed using the irr package [79]. We estimated 
the ICC by fitting an absolute agreement and mean of k 
raters (k = 2), two-way random effects model, as has pre-
viously been suggested for such comparisons [31]. The 
visualisation of the overlaps between studies of CpGs 
with mean DNAm differences > 0.5 across platforms was 
generated using the UpSetR package [80]
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Abstract 32 

Studies assessing associations between prenatal exposure to antidepressants, maternal depression and offspring 33 

DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to 34 

citalopram or escitalopram ((es)citalopram), and maternal depression is associated with differences in DNAm. 35 

Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring 36 

neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with 37 

neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, 38 

Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram 39 

use and depression during pregnancy, and information about child neurodevelopmental outcomes assessed by 40 

internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian 41 

Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 42 

newborn cord blood samples were divided into three groups: (i) prenatal (es)citalopram exposed (n = 306), (ii) 43 

prenatal maternal depression exposed (n = 308), and (iii) propensity score-matched controls (n = 344). Among 44 

children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms, and delayed 45 

communication and psychomotor development. We did not identify differential DNAm associated with 46 

(es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout 47 

childhood. Trajectory modelling identified subgroups of children following similar developmental patterns. 48 

Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were 49 

associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are 50 

involved in neuronal processes and development. These results suggest DNAm as a potential predictive 51 

molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm 52 

links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes. 53 

Introduction 54 

More than 1 in 10 women experience perinatal depression [1], and lasting depressive symptoms during 55 

pregnancy may contribute both adverse maternal and child outcomes [2, 3]. To treat moderate to severe 56 

depression, pregnant women are increasingly prescribed antidepressants [4–6], with 1–7% of pregnant women 57 

using selective serotonin reuptake inhibitors (SSRIs) [4, 5, 7–9]. The structurally similar citalopram and 58 

escitalopram (hereafter, (es)citalopram) are collectively the most frequently prescribed SSRIs to pregnant 59 
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women [4, 5, 9]. Pharmacoepidemiological studies have linked prenatal antidepressant exposure and maternal 60 

depression during pregnancy to an increased risk of abnormal neurodevelopmental outcomes in the child [10–61 

12]. The underlying mechanisms are not known, but it has been shown that prenatal antidepressant exposure 62 

is associated with epigenetic differences in cord blood (in particular, DNA methylation [DNAm] of cytosine-63 

phosphate-guanine sites [CpGs]) [13–15]. However, studies show conflicting results and are based on small 64 

sample sizes, candidate genes, broad exposure definitions and some lack a depression group to control for 65 

indication [14]. In five epigenome-wide association studies (EWASs) on prenatal antidepressant exposure and 66 

newborn cord blood DNAm, none of the differentially methylated CpGs overlap between any of the studies 67 

[15–19].  68 

Studies have also investigated associations between prenatal exposure to antidepressants, DNAm in candidate 69 

genes and child outcomes related to the central nervous system, without significant findings [20–22]. While 70 

these studies are limited to a few candidate genes and investigated short-term outcomes, larger EWASs of 71 

long-term neurodevelopmental outcomes are needed. Associations between poor maternal mental health 72 

during pregnancy and DNAm differences in the offspring have also been shown, with several CpGs relevant 73 

to child neurodevelopment [23, 24]. Therefore, it is equally important to deconvolve the effect of prenatal 74 

exposure to antidepressants and unmedicated maternal depression on DNAm and altered neurodevelopment 75 

in the offspring.   76 

Children with certain neurodevelopmental outcomes such as attention-deficit/hyperactivity disorder (ADHD), 77 

show heterogeneity related to both phenotypic presentation and developmental course [25]. Interestingly, 78 

prospective studies have shown that DNAm measured at birth before symptom onset is associated with 79 

different ADHD symptom trajectories [26, 27]. Such results lend epigenetic insights into neurodevelopmental 80 

trajectories in childhood. However, whether prenatal environmental factors like prenatal antidepressant 81 

exposure and maternal depression may influence DNAm patterns associated with neurodevelopmental 82 

trajectories are not known. 83 

In the present study, we have conducted epigenome-wide association analyses and investigated (i) whether 84 

prenatal exposure to (es)citalopram or maternal depression is associated with differences in DNAm in newborn 85 

cord blood, (ii) the interaction effects of (es)citalopram and DNAm on long-term neurodevelopmental 86 

outcomes in the child, and (iii) whether DNAm at birth is associated with later neurodevelopmental 87 
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trajectories. This enabled a systematic investigation of the different aspects previously linked to neurotoxicity 88 

of antidepressants by integrating maternal unmedicated depression and child neurodevelopmental outcomes in 89 

our EWAS.  90 

Methods 91 

Study population  92 

This study is based on data and cord blood samples from the Norwegian Mother, Father and Child Cohort 93 

Study (MoBa), conducted by the Norwegian Institute of Public Health (NIPH) [28]. MoBa is an ongoing 94 

prospective, population-based birth cohort study (n = 114 500 children, n = 95 200 mothers and n = 75 200 95 

fathers), and 40.6% of women giving birth in Norway between 1998 and 2008 consented to participate. 96 

Participants complete questionnaires throughout pregnancy and in childhood. Cord blood samples were 97 

retrieved from the MoBa biobank, which contains blood samples from both parents during pregnancy, and 98 

from mothers and children (umbilical cord) at birth [29]. This study is based on data version 12 released by 99 

MoBa in 2020. MoBa was also linked to the Norwegian Patient Registry (NPR) and the Medical Birth Registry 100 

of Norway (MBRN).  101 

The establishment of MoBa and initial data collection was based on a license from the Norwegian Data 102 

Protection Agency and approval from the Regional Committees for Medical and Health Research Ethics 103 

(REC). The MoBa cohort is currently regulated by the Norwegian Health Registry Act. All data were de-104 

identified and the linking of MoBa to health registries was handled by NIPH and the respective registries. Our 105 

study was approved by the REC South East Norway (reference: 23136, 2014/163). 106 

Sample selection and study design 107 

Samples were selected into three groups: (i) prenatally (es)citalopram exposed, (ii) prenatally maternal 108 

depression exposed, and (iii) propensity score-matched controls (unexposed to antidepressants and maternal 109 

depression). Selection was based on MoBa questionnaires Q1 (gestational weeks 0–13), Q3 (weeks 13–29) 110 

and Q4 (week 30 to 6 months after delivery). Only live, singleton births with cord blood samples available in 111 

the MoBa biobank were included. Women using antiepileptics and psycholeptics were excluded due to the 112 

potential teratogenic effects of these medications [30–37]. 113 
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In the (es)citalopram group, other antidepressants were allowed, except when used concomitantly with 114 

(es)citalopram on the same indication. The indications for (es)citalopram were depression, anxiety and other 115 

mental health problems. The depression group included women reporting depression, anxiety or other mental 116 

health problems, and exhibiting a mean depression symptom score ≥2.0 on either the Hopkins Symptom 117 

Checklist (SCL) -5 or -8. All samples available based on these selection criteria were included in the 118 

(es)citalopram or depression groups. The control group included women with no self-reported mental health 119 

problems and mean SCL-5 and -8 scores of 1.0 (no depressive symptoms), replying to both Q1, Q3 and Q4. 120 

Of the 17 228 women fulfilling these criteria, the final control group was selected by propensity score matching 121 

to the (es)citalopram group. 122 

Exposures 123 

Prenatal (es)citalopram exposure 124 

Citalopram (Anatomical Therapeutic Chemical [ATC]: N06AB04) is a mixture of the two stereoisomers R-125 

citalopram and S-citalopram, and escitalopram (ATC: N06AB10) contains only the S-citalopram stereoisomer. 126 

Maternal use of (es)citalopram was collected from the questionnaires Q1, Q3 and Q4 for four-week intervals 127 

(gestational weeks 0–4; 5–8; 9–12; 13–16; 17–20; 21–24; 25–28; 30–birth). Prenatal (es)citalopram exposure 128 

was defined as reported use at either of these timepoints (see self-report validity in the Supplementary 129 

Methods).  130 

Maternal depression 131 

Depression was assessed by two measures. The first measure was based on self-reported depression and 132 

recorded as answering “Yes” to having depression (Q1, Q3), anxiety (Q1), other psychological problems (Q3) 133 

or mental health problems (Q4) during pregnancy. Second, for the depression and control groups, we also 134 

included selection criteria on mean depression symptom scores from short versions of the SCL (SCL-5 in Q1 135 

and SCL-8 in Q3; Supplementary Methods) [38–40]. A mean SCL-5 score ≥2.0 is indicative of depression 136 

[41, 42].  137 

Outcomes 138 

DNA methylation 139 
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DNAm levels were measured using the Infinium MethylationEPIC BeadChip at Life & Brain 140 

(www.lifeandbrain.com/en/). Samples were randomly allocated to plates and beadchips, and processed as 141 

described previously [43]. The quality of the DNAm data were examined in the quality control module of 142 

RnBeads [44, 45]. Probes and samples that could bias the normalization and down-stream analyses were 143 

removed, including probes with SNPs (n = 17 371), cross-reactive probes (n = 43 463) [46], and poor-144 

performing probes and samples with a detection p value >0.01 (n = 18 435 probes; n = 1 sample). Then, 145 

background correction was done using the exponential-truncated-normal (ENmix) out-of-band (oob) method 146 

[47], followed by beta-mixture quantile (BMIQ) normalization [48]. After normalization, non-CpG probes (n 147 

= 1 033) and probes on the sex chromosomes (n = 16 941) were removed. Finally, if RnBeads-estimated and 148 

MBRN-registered newborn sex differed, the sample was removed (n = 4). The final, filtered data included 769 149 

652 probes and 958 samples. 150 

Neurodevelopmental outcomes 151 

Child neurodevelopment was assessed using parental self-reports on internationally recognized psychometric 152 

tests at ages 0.5 years (Q4), 1.5 years (Q5), 3 years (Q6) and 5 years (Q5y). In addition, we retrieved ADHD 153 

diagnoses from the NPR recorded by specialists, registered as F90 in the 10th revision of the International 154 

Classification of Disease (ICD-10). The psychometric instruments included were the Child Behavior Checklist 155 

DSM-oriented (CBCL-DSM) ADHD subscale [49, 50] and the Ages and Stages Questionnaire (ASQ) 156 

communication and psychomotor subscales [51] (Table 1). These tests cover different domains of 157 

neurodevelopment. The psychomotor subscale covers both the fine and gross motor items of the ASQ. Age-158 

of-onset of independent walking is an important milestone in gross motor development, and therefore, was 159 

also included in the analyses. In the CBCL-DSM, higher scores indicate more ADHD symptoms, and in the 160 

ASQ subscales, lower scores indicate possible developmental delays (Table 1; Supplementary Tables 1–2). 161 

Raw mean scores were standardized to T scores prior to statistical analysis (standardized to the entire MoBa 162 

population).  163 

Covariate assessment 164 

http://www.lifeandbrain.com/en/
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We assessed potential covariates (listed in Supplementary Methods) in three steps. First, we performed 165 

principal component analysis (PCA) on the DNAm data, and tested the associations between principal 166 

components (PCs) 1–3 and the covariates (one-way analysis of variance [categorical variables] and 167 

Spearman’s correlation test [continuous variables]; Supplementary Figure 1A–B). Second, the individual 168 

contribution of the covariates significantly associated with DNAm variation was assessed by PC-PR2 169 

(Supplementary methods) [52, 53]. All covariates except bisulfite conversion and cell types contributed <1% 170 

of the DNAm variation (Supplementary Figure 1C). Finally, we tested whether the covariates contributing the 171 

most to the DNAm variation differed between the comparison groups (Wilcoxon’s rank-sum test [continuous 172 

variables] and Chi-squared or Fisher’s exact test [categorical variables]; Supplementary Tables 3–4).  173 

Cell type composition (CD8+ and CD4+ T cells, natural killer cells, B cells, monocytes, granulocytes and 174 

nucleated red blood cells [nRBCs]) was estimated using the estimateCellCounts2 function implemented in 175 

minfi [54] and a validated cord blood reference (FlowSorted.CordBloodCombined.450k) [55, 56]. 176 

Statistical analyses 177 

Propensity score matching 178 

We generated the propensity scores using a logistic regression model to estimate the conditional probability 179 

of receiving (es)citalopram given defined pretreatment characteristics (prenatal paracetamol exposure, non-180 

steroidal anti-inflammatory drugs [NSAIDs], opioid and antimigraine medication exposure, siblings, and 181 

maternal age, pre-pregnancy body mass index [BMI], education, income, lifetime history of major depression 182 

[LTHMD], smoking and alcohol consumption) [57, 58]. From these, we selected the covariates with a p value 183 

<0.1 for inclusion in the final model matching the (es)citalopram subjects to controls: maternal income, BMI, 184 

LTHMD, smoking and alcohol at the start of pregnancy, and parity. We used nearest neighbor matching with 185 

a caliper width of 0.20 of the pooled standard deviation of the regression model (≈ 0.22) [58].  186 

Trajectory analyses 187 

Trajectory analyses of psychometric test scores over multiple timepoints were performed using latent class 188 

growth analysis (LCGA; also called group-based trajectory models), which is an unsupervised clustering 189 

method for longitudinal data [59]. Models were run using the lcmm function in the lcmm R package [60], with 190 
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maximum likelihood estimation (Supplementary Figure 2). We examined 1–5 classes, using a linear or 191 

quadratic shape of time, and the thresholds link function, as suggested for psychometric test data [61]. Initial 192 

values were selected using an automatic grid search of 100 random value vectors. Each model was run for a 193 

maximum of 100 iterations, if a model did not converge, we increased to maximum 10,000 iterations. The 194 

final models were selected based on the goodness-of-fit and discriminatory power of the models, using the 195 

Akaike information criterion (AIC), the Bayesian information criterion (BIC), the sample size-corrected BIC 196 

(c-BIC) and entropy (Supplementary Tables 5–7). Lower AIC, BIC and c-BIC indicate better relative model 197 

fit, while entropy close to 1 indicates good classification.  198 

Differential DNAm analyses 199 

We used β values for visualization purposes and M values for statistical analyses [62]. Pairwise group 200 

comparisons were performed by fitting linear regression models to mean DNAm in limma [63], defined by: 201 

DNAm  1 * group + . 202 

Interaction was assessed by running logistic (ADHD diagnosis) or ordinal logistic regression models (T scores 203 

and age-of-onset of walking): 204 

Neurodevelopmental outcome  0 + 1 * DNAm + 2 * (es)citalopram + 3 * DNAm * (es)citalopram + , 205 

where 3 represents the interaction between DNAm and (es)citalopram exposure. Ordinal logistic regression 206 

was used due to the highly skewed distributions of the T scores for some of the neurodevelopmental outcomes 207 

(Supplementary Figure 3). 208 

To assess the effect of (es)citalopram and limit the impact of depression, the interaction models were run 209 

including the (es)citalopram and depression groups only.  210 

Finally, trajectory classes and DNAm associations were assessed by pairwise comparisons of trajectory classes 211 

in linear regression models:  212 

DNAm  0 + 1 * trajectory class + . 213 



Page 9 of 30 

All comparisons were adjusted for multiple testing with a false discovery rate (FDR) <0.05, using the 214 

Benjamini and Hochberg method [64].  215 

Analyses of significant CpGs 216 

The annotation of CpGs was performed using the IlluminaHumanMethylationEPICanno.ilm10b4.hg19 217 

package [65]. Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 218 

enrichment analyses were performed with missMethyl [66]. The BECon web application [67] was used to 219 

assess the blood-brain correlation of the significant CpGs.  220 

Results 221 

Prenatal exposure to (es)citalopram and maternal depression, and DNA methylation patterns 222 

in cord blood 223 

We selected samples into three groups: (i) prenatally (es)citalopram exposed (n = 306), (ii) prenatally maternal 224 

depression exposed (n = 308), and (iii) propensity score-matched controls (n = 344). Sample characteristics 225 

are presented in Table 2. First, we ran PCA to identify potential covariates associated with variation in DNAm 226 

(Supplementary Figure 1). This analysis revealed an association of the estimated nRBC proportion with 227 

DNAm variation, which contributed >5% of the variation explained by PCs 1–3 and was significantly different 228 

between the groups (Supplementary Figure 1 and Tables 1–2). However, as the difference in mean nRBC 229 

proportion between groups was negligible (0.01–0.02), it was not included as a covariate in our models. Then, 230 

we performed pairwise epigenome-wide association analyses between the groups to identify differential 231 

DNAm associated with prenatal exposure to (es)citalopram and maternal depression. These analyses did not 232 

reveal any significant differences in DNAm associated with prenatal (es)citalopram exposure or maternal 233 

depression (Figure 1). However, inspecting the distributions of p values revealed that the comparison of the 234 

(es)citalopram group to the control group exhibited lower p values than the other two comparisons. GO 235 

analyses of the top 1,000 CpGs ranked according to significance for the pairwise comparison of the 236 

(es)citalopram group to the controls did not reveal any enriched GO terms or KEGG pathways. Future studies 237 

including more samples will be important to increase the power to replicate and further evaluate the apparent 238 

trend in our data.   239 
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More ADHD symptoms and delayed communication and psychomotor skills among children 240 

exposed to (es)citalopram during pregnancy    241 

Studies have reported an association between prenatal antidepressant exposure and child ADHD diagnosis, 242 

but results have been conflicting [10–12]. We observed a significantly higher proportion of children with 243 

ADHD in this study (n = 51, 5.3%) compared to the whole MoBa cohort (n = 3 014, 3.0%; Fisher’s exact test, 244 

p<0.00001). This was also evident when comparing the three sample groups in our study, where children 245 

prenatally exposed to (es)citalopram (7.5%) were significantly more likely to have an ADHD diagnosis 246 

compared to the controls (2.9%, Table 3). Children prenatally exposed to maternal depression also exhibited 247 

a higher proportion of ADHD diagnoses (5.8%) than the control group, but this difference was not significant. 248 

There were also significant differences between the comparison groups for several parent-reported 249 

neurodevelopmental outcomes (Table 3). ADHD symptoms were assessed using the CBCL-DSM, and 250 

communication and psychomotor skills were measured with the ASQ and age-of-onset of walking, assessed 251 

at 0.5 years, 1.5 years, 3 years and 5 years. The raw mean scores of the questionnaires were standardized to T 252 

scores based on the entire MoBa population. In the CBCL-DSM higher T scores indicate more ADHD 253 

symptoms and in the ASQ lower T scores indicate possible developmental delays (Table 1).  254 

Interaction effects of DNAm and prenatal exposure to (es)citalopram on neurodevelopmental 255 

outcomes 256 

While some studies suggest that prenatal exposure to antidepressants is associated with abnormal 257 

neurodevelopmental outcomes such as ADHD [10–12], little is known about molecular mechanisms 258 

underlying such associations. We investigated the potential interaction of DNAm and prenatal (es)citalopram 259 

exposure on several neurodevelopmental outcomes. Specifically, we examined the interaction effect of 260 

(es)citalopram exposure and DNAm on ADHD diagnosis and symptoms (CBCL-DSM), and on 261 

communication and psychomotor skills, by comparing the children exposed to (es)citalopram and depression 262 

only. These analyses did not identify any significant interaction effects of (es)citalopram exposure and DNAm 263 

on any of the neurodevelopmental outcomes.  264 

DNAm at birth and later neurodevelopmental trajectories 265 
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Children with abnormal neurodevelopmental outcomes often present heterogeneity in developmental course 266 

and studies have shown that DNAm is associated with different neurodevelopmental trajectories [26, 27]. 267 

Hence, we investigated whether DNAm measured in cord blood at birth before symptom onset was associated 268 

with later neurodevelopmental trajectories of ADHD symptoms, and communication and psychomotor 269 

development. Trajectories were estimated over three or four timepoints from 0.5 to 5 years after birth, 270 

depending on the neurodevelopmental outcome (Supplementary Tables 5–7).  271 

Children were classified into trajectories following similar developmental patterns (Figure 2). Specifically, 272 

trajectory analysis of the CBCL-DSM ADHD subscale classified children into 4 trajectories (Figure 2A). 273 

Children in the two trajectories with the lowest CBCL-DSM T scores, indicating fewer ADHD symptoms 274 

(classes 1 and 2), showed similar developmental courses. A large proportion of children were classified into 275 

the class 3 showing a moderate CBCL-DSM T score. Children in the highest trajectory (class 4) had a 276 

consistently high CBCL-DSM T score from 62 to 68 between 1.5 and 5 years of age, indicating more 277 

pronounced and slightly increasing ADHD symptomatology. As expected, the class 4 was significantly 278 

enriched with ADHD diagnosed children, and notably, also exhibited a significantly higher proportion of 279 

children exposed to maternal depression (Supplementary Table 9).  280 

The trajectory analyses of the ASQ communication and psychomotor subscales classified children into 3 and 281 

5 trajectory classes, respectively (Figure 2B–C, Supplementary Tables 10–11). Of note, the ASQ 282 

communication trajectory class 3 contained only 6 children following a very different developmental course 283 

compared to the other children (Figure 2B). The children in the three study comparison groups were evenly 284 

distributed between the trajectory classes (Supplementary Tables 10–11). In conclusion, these results clearly 285 

demonstrate heterogeneity in the developmental course of the different outcome measures between children.  286 

Next, to investigate whether DNAm at birth may be a potential biomarker of later developmental trajectories 287 

reflecting symptom severity, we performed epigenome-wide analyses and compared DNAm between the 288 

identified trajectories. For the CBCL-DSM ADHD subscale trajectories, children in the two classes showing 289 

the lowest T scores (class 1 and 2; Figure 2) and therefore, unlikely to have ADHD, were grouped together in 290 

the analyses. We pairwise compared the three trajectories and found no significant associations between cord 291 

blood DNAm at birth and the trajectories. 292 
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For the ASQ communication subscale trajectories, we excluded trajectory class 3 containing only 6 children, 293 

and compared DNAm between classes 1 and 2 (Figure 2B). Multiple CpGs (n = 254) were differentially 294 

methylated between the two ASQ communication trajectories (Supplementary Table 8). Interestingly, two 295 

CpGs annotated to PEX10, involved in peroxisomal processes, have previously been identified in child saliva 296 

associated with ADHD [68], in cord blood associated with ADHD trajectories [26] and upon prenatal exposure 297 

to paracetamol in children with ADHD [43]. Also, four CpGs are annotated to the BEGAIN gene, which is 298 

involved in regulation of postsynaptic neurotransmitter receptor activity in the brain. Other genes of interest 299 

are 3 CpGs located in HOXC4, which is involved in the development of the nervous system, 1 CpG in KCNJ5 300 

previously associated with ADHD [43], and 1 CpG in SHANK2 which is involved in transmission in excitatory 301 

neurons. Mutations in the SHANK2 gene has been associated with both ADHD and autism spectrum disorder 302 

[69].  303 

For the ASQ psychomotor subscale trajectories, pairwise comparisons of DNAm between all 5 trajectory 304 

classes (Figure 2C), revealed differentially methylated CpGs between trajectory classes 3 and 4 (n = 32 CpGs 305 

annotated to 24 genes). Interestingly, several of these overlapped with differentially methylated CpGs 306 

identified between the communication trajectories, which are annotated to the RFTN1, ERV3-1, RBM39, 307 

SHANK2, DYRK2, GABPA, ATP5J, PEX10, FAM45A, FAM45B, RNASEH2C, PPP1R12B and PRKXP1 genes 308 

(n = 16 CpGs annotated to 13 genes; Figure 3A). In addition to the functions of the PEX10 and SHANK2 genes 309 

described above, several of the overlapping genes are involved in for example cellular growth and development 310 

(e.g., DYRK2 and TGFB), neuronal differentiation (GABPA) and neurological phenotypes (RNASEH2C). 311 

Blood-brain DNAm correlation 312 

To strengthen the mechanistic insights and interpretation of the significant DNAm findings in cord blood, we 313 

used BECon [67] to look up the correlation of DNAm in blood and brain tissue for the CpGs associated with 314 

the communication or psychomotor trajectories. Data on blood-brain correlations were available for 145 of the 315 

254 CpGs associated with the communication trajectories. Of these, most CpGs exhibited relatively weak 316 

correlations between –0.5 and 0.5 (n = 141 CpGs), while 4 CpGs were positively correlated (>0.5) between 317 

blood and brain (Supplementary Table 12). Of the 32 significant CpGs associated with the psychomotor 318 

trajectory classes 3 and 4, 14 had blood-brain correlation data available in BECon. Among these CpGs, 12 319 
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showed weak correlation (-0.5 < R < 0.5) and 2 CpGs were positively correlated (Supplementary Table 12). 320 

In Figure 3B, the 5 CpGs available in BECon of the 16 CpGs associated with both the communication and 321 

psychomotor trajectories are shown. A CpG annotated to the PRKXP1 gene was positively correlated with 322 

overall brain DNAm at this CpG (Figure 3B). Further, one of the CpGs annotated to the PEX10 gene exhibited 323 

positive correlation with one brain area (BA10; Figure 3B). In summary, these findings suggest that several of 324 

the significant CpGs identified in our study likely reflect DNAm levels in the brain. 325 

Discussion 326 

We performed epigenome-wide association analyses and investigated whether prenatal exposure to 327 

(es)citalopram or maternal depression was associated with differences in cord blood DNAm at birth. To 328 

explore the role of DNAm on child neurodevelopmental outcomes associated with prenatal (es)citalopram 329 

exposure, we investigated the interaction effect on neurodevelopment. We also examined whether DNAm at 330 

birth was associated with later developmental trajectories of ADHD symptoms, and communication and 331 

psychomotor skills. To our knowledge, this is the largest EWAS to date deconvolving associations of DNAm, 332 

and prenatal (es)citalopram exposure and maternal depression, and assessing the potential effects on long-term 333 

neurodevelopmental outcomes.  334 

The initial EWAS on (es)citalopram and maternal depression did not identify any differentially methylated 335 

CpGs compared to controls. However, inspecting the distributions of p values revealed that the comparison of 336 

the (es)citalopram group to the controls exhibited lower p values than the other two comparisons. Future 337 

studies including more samples and DNAm analyses at a single cell level will be necessary to replicate and 338 

further interpret this non-significant signal. We did not replicate previous findings showing association 339 

between prenatal antidepressant exposure or maternal depression and DNAm [15–19, 70], and there are several 340 

possible explanations for this [13, 14]. For example, previous EWASs are based on small sample sizes, varying 341 

genome coverage and heterogenous methodologies [13, 14].    342 

In line with previous studies [10–12], we observed differences in proportions of ADHD diagnoses across the 343 

study groups, specifically when comparing children prenatally exposed to (es)citalopram to controls. There 344 

was also an increased proportion of ADHD diagnoses in the depression group compared to controls, albeit not 345 
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significant. In MoBa, there are several parent-reported psychometric tests of neurodevelopment, including 346 

CBCL and ASQ, assessed between 0.5 and 5 years of age. We chose the CBCL-DSM ADHD subscale to 347 

measure ADHD symptoms and symptom heterogeneity [25, 71], and to possibly identify children with 348 

subthreshold ADHD. The ASQ communication and psychomotor subscales were included as the ASQ is an 349 

internationally recognized and widely used psychometric test, and covers other domains of neurodevelopment 350 

which can be, but are not necessarily, related to ADHD [25]. There were significant differences in several of 351 

the psychometric test T scores between the different groups. Trajectory analyses classified children into 352 

developmental trajectories of the CBCL-DSM ADHD subscale, and the ASQ subscales of communication and 353 

psychomotor skills. The trajectories of ADHD symptom development are similar to trajectories identified 354 

previously [26]. Taken together, our results emphasize the importance of taking symptom heterogeneity and 355 

developmental course into consideration when assessing neurodevelopment in the prenatal 356 

pharmacoepigenetic context. 357 

Whether and how DNAm potentially mediates an increased risk of abnormal neurodevelopment in children 358 

prenatally exposed to antidepressants and/or maternal depression is not known. Identification of molecular 359 

biomarkers for early risk detection of ADHD and related neurodevelopmental outcomes could potentially aid 360 

in the identification of children in need of early intervention and support. In this respect, DNAm patterns in 361 

cord blood measured at birth before manifestation of symptoms are potentially particularly useful. Trajectories 362 

of communication and psychomotor development were associated with differential cord blood DNAm of genes 363 

previously associated with ADHD and autism spectrum disorder trajectories in childhood [26, 68]. Multiple 364 

genes were also involved in cellular growth development and neurological phenotypes. Interestingly, several 365 

of the differentially methylated genes also overlapped between the communication and psychomotor 366 

trajectories, suggesting a common effect. We found differential DNAm of PEX10, which encodes a protein 367 

functioning in peroxisomal processes. Such processes have been implicated in fatty acid oxidation in ADHD, 368 

and have also been reported by Walton et al. [26] and Wilmot et al. [68]. Although communication and 369 

psychomotor trajectories are not specific to ADHD, the complex etiology underlying ADHD is often 370 

accompanied by learning problems, and motor and/or speech delays [25]. While only one CpG in PEX10 371 

appeared to positively correlate between blood and brain, our results nevertheless suggest DNAm at birth as a 372 
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potential molecular biomarker of later neurodevelopmental trajectories in children prenatally exposed to 373 

(es)citalopram and depression.  374 

Our study has several limitations and strengths. While this study to our knowledge is the largest prospective 375 

EWAS on antidepressants and DNAm, it may still be underpowered to detect DNAm differences associated 376 

with (es)citalopram and maternal depression. In particular, interaction models may inherently decrease power 377 

and the psychometric tests at higher ages exhibit a pronounced decrease in respondents, mostly due to loss to 378 

follow-up [72]. To partly circumvent this limitation, the LCGA handled missing data when score for at least 379 

one timepoint was known using maximum likelihood estimation. The loss to follow-up seemed to be 380 

differentially distributed among the comparison groups, with more depressed women lost to follow-up. This 381 

may bias our results towards the null, as women with more depressive symptoms are missing. We attempted 382 

to limit confounding by indication by including a depression group. However, the depression group scored 383 

significantly higher on the SCL-5 and -8, suggesting more severe depression symptoms at the time of reporting, 384 

likely due to being unmedicated. Therefore, we cannot exclude residual confounding by the severity of 385 

depression, as well as other unmeasured confounders. Finally, there is a known genetic component of ADHD, 386 

which we could not assess in the present study. Future studies including integrated analyses of genetic 387 

information, would enable investigations of a genetic susceptibility to ADHD. The main strengths of the 388 

present study include the relatively large sample size, and a focus on one specific antidepressant. Moreover, 389 

we also applied propensity score matching to select the unexposed control group, thereby improving inference 390 

of causation [57]. Finally, we cover multiple different domains of neurodevelopment at several timepoints 391 

throughout early life, and also assess ADHD at both the diagnosis and symptoms level [73]. 392 

In conclusion, we did not identify significant differences in DNAm associated with prenatal exposure to 393 

(es)citalopram or maternal depression. There were more ADHD symptoms, as well as delayed communication 394 

and psychomotor skills among children exposed to (es)citalopram compared to the controls. Differences in 395 

DNAm were associated with child neurodevelopmental trajectory classes reflecting symptom severity. 396 

Consequently, DNAm may be potential predictive molecular markers of later abnormal neurodevelopmental 397 

outcomes. Future studies are needed for replication and assessment of a functional impact on neuronal 398 

differentiation and developmental processes in model systems. Additionally, it will also be important to 399 

improve causal inference by integrating genetic data and simulate causal relationships using machine learning 400 
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approaches on real-world and artificial data. This can elucidate the properties of causal relationships in 401 

observational studies using molecular data. 402 
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Figures 637 

638 

Figure 1. Modified Manhattan plots of difference in DNAm between groups. 639 

Log10 p value against the genomic positions of the CpGs. Each dot represents a CpG, colored according to the 640 

DNAm difference between (A) the (es)citalopram and depression groups, (B) the (es)citalopram and control groups, 641 

and (C) the depression and control groups. The red lines indicate the FDR significance cutoff (<0.05) and the blue 642 

lines indicate a liberal FDR significance cutoff (<0.25). 643 
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644 

Figure 2. Neurodevelopmental trajectories identified using latent class growth analysis.  645 

Trajectories were identified for (A) the CBCL-DSM ADHD subscale, (B) the ASQ communication subscale, and 646 

(C) the ASQ psychomotor subscale.647 

648 

Figure 3. CpGs associated with developmental trajectories and blood-brain correlation of DNAm. 649 

(A) Upset plot [70, 71] showing overlap of significant CpGs associated with communication and/or psychomotor650 

developmental trajectories. Overlapping CpGs are indicated by filled dots for the respective outcomes. The vertical651 

bar plot indicates the number of CpGs for the particular intersection. (B) Blood-brain correlation of significant CpGs652 

associated with both communication and psychomotor trajectories. Correlation is reported as the Spearman’s653 

correlation coefficient of DNAm between blood and brain. Modified plot from the BECon web application [67].654 
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Supplementary Information 

Supplementary Methods 

Validity of exposure and outcome measures 

Prenatal (es)citalopram exposure 

We used maternal self-reports of (es)citalopram use in MoBa. MoBa antidepressant self-reports and redeemed 

prescriptions registered in the Norwegian Prescription Database (NorPD) have shown good agreement, with 

87.0% of reports of antidepressant use in MoBa also found to have filled a prescription for the antidepressant 

[1]. 

Maternal depression and depressive symptoms 

The Hopkins Symptom Checklist is an internationally recognized instrument to measure symptoms of mental 

disorders, including depression and anxiety [2, 3]. The original instrument consists of 90 items. However, 

MoBa includes shorter versions of 5 or 8 items (SCL-5 and -8, respectively), relating specifically to symptoms 

of depression and anxiety [4]. SCL-5 and -8 have been shown to correlate well with the full-item instrument 

(0.90 and 0.92 respectively) [4]. The SCL-5 has a sensitivity 82.0% and a specificity of 96.0% [5].  

Neurodevelopmental outcomes 

The Child Behavior Checklist DSM-oriented (CBCL-DSM) ADHD subscale, and the Ages and Stages 

Questionnaire (ASQ) communication and psychomotor (covering fine and gross motor) subscales were used 

to measure different domains of neurodevelopment. When compared to ADHD diagnoses from semi-

structured clinical interviews, the CBCL-DSM ADHD subscale exhibits a moderate agreement ( = 0.51), a 

sensitivity of 81% and a specificity of 70% [6]. Only a subset of the original ASQ items were included in 

MoBa and these items span different age ranges in the ASQ questionnaires, to introduce more variation in 

scores across individuals (Supplementary Table 2). Overall, the ASQ exhibits good agreement (84%) 

compared to standardized assessments, having a sensitivity of 72% and a specificity of 86% [7]. The 

Norwegian version of the ASQ has also been validated [8]. 

Covariate assessment 

When assessing covariates for inclusion in the regression models, we analyzed covariates previously included 

in prenatal pharmacoepigenetic studies [9]: maternal age and BMI, marital status, maternal education, alcohol 

use, smoking, multivitamin use, psychotropic and analgesic use, maternal morbidities, Caesarean section, 

gestational age, infant sex, birth weight, bisulfite conversion and the estimated composition of white blood 

cells. The PC-PR2 method is extensively described elsewhere [10, 11]. Briefly, for each of the PCs 1–3 we fit 
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linear regression models on the covariates. We computed the partial R2 for each covariate, reflecting the 

variation contribution of individual covariates to the total variation in the DNAm PC, when accounting for the 

contribution of the other covariates. 
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Supplementary Figures 

Supplementary Figure 1. Principal component analysis (PCA) and PC-PR2 to investigate potential covariates. 

(A) Heat map of the association between different covariates and the top three principal components (PCs) representing

the most DNAm variation. (B) Scree plot indicating the 10 first PCs’ contribution to DNAm variation. (C) Weighted

partial R2 for each covariate significantly associated with either of the first 3 PCs (i.e., the variability contributed by the

respective covariate to the top three PCs, when accounting for the variability contribution of all other covariates in the

model). Abbreviations: BMI: body mass index; nRBC: nucleated red blood cell; LTHMD: life-time history of major

depression; NSAID: non-steroidal anti-inflammatory drug; Tech.: technical covariate.

Supplementary Figure 2. Lasagna plots showing the T score for every participant per time point reported.  

The development of the T score for each participant over the time points at which the respective psychometric test was 

distributed, for (A) CBCL-DSM (ADHD subscale), (B) ASQ (communication subscale), and (C) ASQ (motor subscale). 

Subjects with T scores < 0 were removed for visualization purposes, but were included in statistical analyses (ncomm = 6 

subjects and nmotor = 4 subjects). Abbreviations: ADHD: attention-deficit/hyperactivity disorder; ASQ: Ages and Stages 

Questionnaire; CBCL-DSM: Child Behavior Checklist, Diagnostic and Statistical Manual of Mental Disorders subscale. 
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Supplementary Figure 3. Histograms of T scores for the psychometric tests per timepoint.  

Distribution of T scores for subscales of the CBCL-DSM and ASQ questionnaires (columns) across multiple timepoints 

(rows). Abbreviations: ADHD: attention-deficit/hyperactivity disorder; ASQ: Ages and Stages Questionnaire; CBCL-

DSM: Child Behavior Checklist, Diagnostic and Statistical Manual of Mental Disorders subscale. 
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Supplementary Tables 

Supplementary Table 1. Overview of the Child Behaviour Checklist (CBCL) items included in the study [12]. Only 

items of the ADHD subscale were included.  

Item 

(Q5/Q6/Q5y) 
To what extent are the following statements true of your child’s behavior during the last two months? 

1 / 2 / 2 Can’t concentrate, can’t pay attention for long 

3 / 3 / 3 Can’t sit still, restless or overactive  

NA / 4 / 4 Can’t stand waiting, wants everything now 

NA / 8 / 8 Demands must be met immediately 

4 / 15 / 14 Gets into everything 

NA / 18 / 24 Poorly coordinated or clumsy 

2 / 20 / 19 Quickly shifts from one activity to another 

Response options (score): “Not true” (0); “Somewhat or sometimes true” (1); “Very true or often true” (2). 

Supplementary Table 2. Overview of the Ages and Stages Questionnaire (ASQ) items included in the study [7]. 

Only items of the communication and psychomotor subscales were included.  

Item Question 

0
.5

 y
e
a
r
s 

Communication 

4 When you “chat” to your child, does he/she try to “chat” back to you?  

5 Does your child babble and make sounds when he/she is lying on his/her own? 

8 When you call your child, does he/she turn towards you one of the first times you say his/her name? 

Gross motor 

2 When your child is on his/her tummy, does he/she straighten both arms and push her whole chest off the bed or floor? 

3 Does your child roll over from his/her back onto his/her tummy? 

Fine motor 

9 Does your child grab a toy you offer and then put it in his/her mouth or hold it? 

10 When your child is sitting on your lap, does he/she stretch out for a toy or something else on the table in front of you? 

11 Does your child hold onto a toy with both hands when he/she is examining it? 

1
.5

 y
e
a
r
s 

Communication 

1 
When you ask him/her, does your child go into another room to find a familiar toy or object? (You might ask, “Where 

is your ball?”, or say, “Bring me your coat” or “Go get your blanket”)  

2 Does your child say eight or more words in addition to “mama” and “dada”? 

3 
Without showing him/her first, does your child point to the correct picture when you say, “Show me the kitty” or ask, 

“Where is the dog”?  

Gross motor 

4 Does your child move around by walking, rather than by crawling on his/her hands and knees? 

5 Can your child walk well and seldom fall?  

6 Does your child walk down stairs if you hold onto one of his/her hands?  
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Fine motor 

7 Does your child throw a small ball or toy with a forward arm motion? (If he/she drops the ball, mark “Not yet”) 

8 Does your child stack a small block or toy on top of another one? (E.g. small boxes or toys about 3 cm in size)  

9 Does your child turn the pages of a book by himself/herself? (He/she may turn more than one page at a time.)  

3
 y

e
a
r
s 

Communication 

5 
Without showing him/her first, does your child point to the correct picture when you say, “Where is the cat” or 

“Where is the dog”? Your child must only point at the correct picture 

6 
When you ask your child to point to his/her eyes, nose, hair, feet, ears, and so forth, does he/she correctly point to at 

least seven body parts? (The child can point to parts of himself/herself, you, or a doll.) 

7 Does your child make sentences that are three or four words long? 

8 
Without giving him/her help by pointing or using gestures, ask your child to “Put the shoe on the table” and “Put the 

book under the chair”. Does your child carry out both of these directions correctly? 

9 

When looking at a picture book, does your child tell you what is happening or what action is taking place in the 

picture? (For example, “Barking”, “Running”, “Eating” and “Crying”?) You may ask, “What is the dog (or boy) 

doing?” 

10 
Can your child tell you at least two things about an object he/she is familiar with? If you say, for example, “Tell me 

about your ball”, will your child answer by saying something like “It is round, I can throw it, it is big.” 

Gross motor 

1 Without holding onto anything for support, does your child kick a ball by swinging his/her leg forward? 

2 Can your child catch a large ball with both hands? 

Fine motor 

3 When drawing, does your child hold a pencil, crayon, or pen between his/her fingers and thumb like an adult does? 

4 Can your child undo one or more buttons? 

Communication 

5
 y

e
a
r
s 

1 
Can your child tell you at least two things about common object? For example, if you say to your child, “Tell me 

about the ball”, does he say something like, “It is round. I throw it. It is big”? 

2 

Without giving your child help by pointing or repeating directions, does your child follow three directions that are 

unrelated to one another? Give all three directions before your child starts. For example, you may ask your child to 

“Clap your hands, walk to the door, and sit down” or “Give me the pen, open the book, and stand up.” 

3 Does your child use four- and five- word sentences? For example, does your child say, “I want the car”? 

4 

When talking about something that already happened, does your child use words that end in “ed” such as walked, 

jumped or played? Ask your child questions, such as “How did you get to the store?” (“We walked.”) “What did you 

do at your friend’s house?” (“We played.”) 

5 

Does your child use comparison words, such as heavier, stronger or shorter? Ask your child questions, such as “A car 

is big, but a bus is _____” (bigger); “A cat is heavy, but a man is ____” (heavier); A TV is small, but a book is ____ ” 

(smaller). 

6 

Does your child answer the following questions: 1. “What do you do when you are hungry?” (Acceptable answers 

include: “Get food”, “Eat”, “Ask for something to eat”, and “Have a snack”.) 2. “What do you do when you are 

tired?” (Acceptable answers include: “Take a nap”, “Rest”, “Go to sleep”, “Go to bed”, “Lie down”, and “Sit down.”) 

7 

Does your child repeat the sentences shown below back to you, without any mistakes? You may repeat each sentence 

one time. Mark “yes” if your child repeats both sentences without mistakes or “sometimes” if your child repeats one 

sentence without mistakes. “Jane hides her shoes for Maria to find.” “Al read the blue book under his bed.” 

Response options (score): “No, not yet” (0); “Yes, but seldom / Sometimes / A few times” (5); “Yes, often” (10). 
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Supplementary Table 3. Extended overview of the comparison group characteristics. 

(Es)citalopram group 

(n = 306) 

Depression group 

(n = 308) 

Control group 

(n = 344) 
p 

Maternal characteristics 

Maternal age  
(mean years ± SD) 

30.3 ± 5.2 28.4 ± 5.3 30.9 ± 4.6 a,b 

Pre-pregnancy BMI 
(mean BMI ± SD) 

24.5 ± 5.1 

8 NA 

24.3 ± 4.8 

7 NA 

23.8 ± 4.2 

2 NA 
N.S. 

Maternal education 

University/college (n (%)) 

High school or lower (n (%)) 

178 (58.2) 

124 (40.5) 

4 NA 

136 (44.2) 

163 (52.9) 

9 NA 

247 (71.8) 

89 (25.9) 

8 NA 

c,d,e 

Smoking in pregnancy 
(yes; n (%)) 

43 (14.1) 

2 NA 
52 (16.9) 28 (8.1) f,g 

Alcohol in pregnancy 
(yes; n (%)) 

36 (11.8) 

49 NA 

28 (9.1) 

45 NA 

64 (18.6) 

15 NA 
h 

Folic acid in pregnancy 
(yes; n (%)) 

182 (59.5) 168 (54.6) 205 (59.6) N.S. 

Multivitamins in pregnancy 
(yes; n (%))  

109 (35.6) 127 (41.2) 119 (34.6) N.S. 

Maternal medications

Analgesics* 
(yes; n (%)) 

190 (62.1) 191 (62.0) 178 (51.7) I,j 

Antidepressants except (es)citalopram 
(yes; n (%)) 

19 (6.2) --- --- --- 

NSAIDs 
(yes; n (%)) 

55 (18.0) 45 (14.6) 30 (8.7) k,l 

Maternal morbidities 

Comorbidity index** 
(mean score ± SD) 

0.5 ± 0.9 

27 NA 

0.5 ± 0.9 

6 NA 

0.4 ± 0.9 

13 NA 
N.S. 

Chronic diseases*** 

None (n (%)) 

1–2 diseases (n (%)) 

3 diseases (n (%)) 

277 (90.5) 

27 (8.8) 

0 (0) 

2 NA 

280 (90.9) 

28 (9.1) 

0 (0) 

325 (94.5) 

19 (5.5) 

0 (0) 

N.S. 

SCL-5 
(mean score ± SD) 

1.9 ± 0.8 

16 NA 
2.8 ± 0.5 1.0 ± 0 m,n,o 

SCL-8 
(mean score ± SD) 

1.7 ± 0.6 

44 NA 
2.7 ± 0.5 1.0 ± 0 p,q,r 

LTHMD 
(yes; n (%)) 

136 (44.4) 

7 NA 

101 (32.8) 

9 NA 

114 (33.1) 

1 NA 
s,t 

Birth 

Caesarean section 
(yes; n (%)) 

48 (15.7) 51 (16.6) 27 (7.9) u,v 

Child characteristics 

Birth weight 
(mean grams ± SD) 

3,568 ± 501 3,579 ± 512 
3,629 ± 503 

1 NA 
w 

Gestational age 
(mean weeks ± SD) 

39.4 ± 1.5 

1 NA 

39.4 ± 1.6 

1 NA 

39.7 ± 1.5 

1 NA 
x,y 

Infant sex 
(female; n (%)) 

148 (48.4) 149 (48.4) 181 (52.6) N.S. 

Malformation 
(yes; n (%)) 

16 (5.2) 15 (4,9) 9 (2.6) N.S. 
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Technical covariates 

Bisulphite conversion 

Plate 1 (n (%)) 

Plate 2 (n (%)) 

Plate 3 (n (%)) 

Plate 4 (n (%)) 

Plate 5 (n (%)) 

Plate 6 (n (%)) 

Plate 7 (n (%)) 

Plate 8 (n (%)) 

Plate 9 (n (%)) 

Plate 10 (n (%)) 

Plate 11 (n (%)) 

Plate 12 (n (%)) 

 

30 (9.8) 

28 (9.2) 

28 (9.2) 

3 (1.0) 

24 (7.8) 

33 (10.8) 

29 (9.5) 

32 (10.5) 

26 (8.5) 

13 (4.2) 

30 (9.8) 

30 (9.8) 

 

29 (9.4) 

32 (10.4) 

24 (7.8) 

5 (1.6) 

29 (9.4) 

30 (9.7) 

28 (9.1) 

32 (10.4) 

30 (9.7) 

17 (5.5) 

27 (8.8) 

25 (8.1) 

 

31 (9.0) 

34 (9.9) 

38 (11.1) 

5 (1.5) 

35 (10.2) 

28 (8.1) 

35 (10.2) 

27 (7.9) 

30 (8.7) 

12 (3.5) 

32 (9.3) 

37 (10.8) 

N.S. 

Abbreviations: ADHD: attention-deficit/hyperactivity disorder; BMI: body mass index; NA: missing value; N.S.: not significant; SD: standard 

deviation.  

* Includes all medications with the N02 Anatomical Therapeutic Chemical (ATC) code except paracetamol (i.e., opioids, antimigraine preparations, 

and other analgesics and antipyretics) 

** Includes all variables available in MBRN and MoBa from a list provided in Bateman et al. (2013) [13, 14]. The different variables are given different 

weights (weight in parentheses).The variables included in the final score are: asthma (1), cardiovascular disease (3), chronic renal disease (1), congenital 

heart disease (4), illicit substance use (2), gestational hypertension (1), mild-unspecified preeclampsia (2), severe preeclampsia (5), placenta previa (2), 

pre-existing diabetes mellitus (1), pre-existing hypertension (1), previous Caesarean delivery (1), lupus (2), alcohol abuse (weekly consumption; 1) and 

maternal age group (> 44 years: 3; 40–45 years: 2; 35–40 years: 1; < 35 years: 0).  

*** Chronic diseases included were asthma, rheumatoid arthritis, epilepsy, Crohn’s disease, lupus, multiple schlerosis (MS), cancer and diabetes 

mellitus. All diseases were weighted equally and each additional disease added 1 to the final score.  

a p < 0.0001, comparing (es)citalopram to depression  
b p < 0.0001, comparing depression to controls 
c p ≈ 0.001, comparing (es)citalopram to depression  
d p < 0.0001, comparing (es)citalopram to controls 
e p < 0.0001, comparing depression to controls 
f p ≈ 0.02, comparing (es)citalopram to controls  

g p ≈ 0.001, comparing depression to controls 
h p ≈ 0.01, comparing depression to controls 
i p ≈ 0.01, comparing (es)citalopram to controls 
j p ≈ 0.01, comparing depression to controls 
k p ≈ 0.001, comparing (es)citalopram to controls 
l p ≈ 0.03, comparing depression to controls 
m p < 0.0001, comparing (es)citalopram to controls 
n p < 0.0001, comparing (es)citalopram to controls 
o p < 0.0001, comparing depression to controls 
p p < 0.0001, comparing (es)citalopram to depression  
q p < 0.0001, comparing (es)citalopram to controls 
r p < 0.0001, comparing depression to controls 
s p ≈ 0.004, comparing (es)citalopram to depression  
t p ≈ 0.002, comparing (es)citalopram to controls 
u p ≈ 0.003, comparing (es)citalopram to controls 
v p ≈ 0.001, comparing depression to controls 
w p ≈ 0.05, comparing (es)citalopram to controls 
x p ≈ 0.001, comparing (es)citalopram to controls 
y p ≈ 0.03, comparing depression to controls 
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Supplementary Table 4. Overview of the cell type proportions of the comparison groups.  

 
(Es)citalopram 

(n = 306) 
Depression control 

(n = 308) 
Healthy control 

(n = 344) 
p 

B cells;  

mean proportion ± SD 
0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 N.S. 

CD4+ T cells;  

mean proportion ± SD 
0.12 ± 0.05 0.13 ± 0.05 0.13 ± 0.05 N.S. 

CD8+ T cells;  

mean proportion ± SD 
0.05 ± 0.02 0.05 ± 0.03 0.05 ± 0.02 N.S. 

Granulocytes;  

mean proportion ± SD 
0.57 ± 0.10 0.57 ± 0.10 0.58 ± 0.10 N.S. 

Monocytes;  

mean proportion ± SD 
0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.03 N.S. 

Natural killer cells; 

mean proportion ± SD 
0.02 ± 0.02 0.03 ± 0.03 0.03 ± 0.02 N.S. 

nRBCs;  

mean proportion ± SD 
0.12 ± 0.11 0.11 ± 0.10 0.10 ± 0.10 a,b 

Abbreviations: ADHD: attention-deficit hyperactivity disorder; nRBC: nucleated red blood cell; N.S.: not significant; SD: standard 

deviation. 

a p < 0.01, (es)citalopram to controls 
b p < 0.05, depression to controls 

Supplementary Table 5. Model specification and fit, classification quality and distribution across classes for the 

latent class growth analysis of the CBCL-DSM ADHD subscale (n = 786). The selected model is shaded in grey. 

Model specifications Goodness-of-fit/classification quality Classification (% of samples) 

Number of 

classes 

Time 

function 
AIC BIC c-BIC Entropy Class 1 Class 2 Class 3 Class 4 Class 5 

1 Linear 9430.7 9547.4 9468.0 1.00 100.0 --- --- --- --- 

1 
2nd degree 

polynomial 
9432.5 9553.8 9471.2 1.00 100.0 --- --- --- --- 

2 Linear 9243.3 9373.9 9285.0 0.52 63.0 37.0 --- --- --- 

2 
2nd degree 

polynomial 
9247.2 9387.2 9291.9 0.52 63.1 36.9 --- --- --- 

3 Linear 9193.5 9338.2 9239.8 0.59 66.9 10.6 22.5 --- --- 

3 
2nd degree 

polynomial 
9199.2 9357.8 9249.9 0.59 69.7 19.6 10.7 --- --- 

4 Linear 9186.3 9344.9 9237.0 0.58 3.7 23.8 63.5 9.0 --- 

4 
2nd degree 

polynomial 
9170.1 9347.5 9226.8 0.69 9.5 7.9 71.2 11.3 --- 

5 Linear 9178.0 9350.7 9233.2 0.64 40.2 0.5 3.7 48.5 7.1 

5 
2nd degree 

polynomial 
   Did not converge --- --- --- --- --- 

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; c-BIC: sample size-corrected Bayesian information criterion; 

LCGA: Latent class growth analysis.  
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Supplementary Table 6. Model specification and fit, classification quality and distribution across classes for the 

latent class growth analysis of the ASQ communication subscale (n = 899). The selected model is shaded in grey. 

Model specifications Goodness-of-fit/classification quality Classification (% of samples) 

Number of 

classes 

Time 

function 
AIC BIC c-BIC Entropy Class 1 Class 2 Class 3 Class 4 Class 5 

1 Linear 9910.6 10030.6 9951.2 1.00 100.0 --- --- --- --- 

1 
2nd degree 

polynomial 
9904.1 10028.9 9946.3 1.00 100.0 --- --- --- --- 

2 Linear 9784.6 9919.1 9830.2 0.49 27.6 72.4 --- --- --- 

2 
2nd degree 

polynomial 
9690.4 9834.4 9739.1 0.54 55.2 44.8 --- --- --- 

3 Linear 9765.2 9914.1 9815.6 0.66 28.8 70.5 0.7 --- --- 

3 
2nd degree 

polynomial 
9669.8 9833.0 9725.0 0.68 1.0 43.8 55.2 --- --- 

4 Linear 9771.2 9934.5 9826.5 0.68 28.8 70.5 0.7 0.0 --- 

4 
2nd degree 

polynomial 
9677.8 9860.2 9739.5 0.55 44.9 1.0 54.1 0.0 --- 

5 Linear 9777.2 9954.9 9837.4 0.72 28.8 0.0 70.5 0.0 0.7 

5 
2nd degree 

polynomial 
9685.8 9887.4 9754.0 0.44 61.6 1.0 0.0 37.4 0.0 

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; c-BIC: sample size-corrected Bayesian information criterion; 

LCGA: Latent class growth analysis.  

Supplementary Table 7. Model specification and fit, classification quality and distribution across classes for the 

latent class growth analysis of the ASQ motor subscale (n = 895). The selected model is shaded in grey. 

Model specifications Goodness-of-fit/classification quality Classification (% of samples) 

Number of 

classes 

Time 

function 
AIC BIC c-BIC Entropy Class 1 Class 2 Class 3 Class 4 Class 5 

1 Linear 8091.7 8202.0 8129.0 1.00 100.0 --- --- --- --- 

1 
2nd degree 

polynomial 
8085.9 8201.0 8124.8 1.00 100.0 --- --- --- --- 

2 Linear 7492.2 7617.0 7534.4 0.69 27.9 72.1 --- --- --- 

2 
2nd degree 

polynomial 
7177.5 7311.8 7222.8 0.66 65.5 34.5 --- --- --- 

3 Linear 7383.6 7522.7 7430.6 0.66 15.8 30.1 54.2 --- --- 

3 
2nd degree 

polynomial 
7050.8 7204.3 7102.7 0.63 16.9 53.1 30.1 --- --- 

4 Linear 7374.1 7527.6 7426.0 0.65 18.0 54.0 24.4 3.7 --- 

4 
2nd degree 

polynomial 
7014.1 7186.8 7072.4 0.67 15.6 47.7 7.9 28.7 --- 

5 Linear 7365.2 7533.1 7421.9 0.70 0.1 53.9 18.0 25.1 2.9 

5 
2nd degree 

polynomial 
6966.2 7158.1 7031.1 0.68 15.1 8.2 50.2 12.3 14.3 

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; c-BIC: sample size-corrected Bayesian information criterion; 

LCGA: Latent class growth analysis.  
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Supplementary Table 8. Listed significant CpGs from the models run in the study (statistics and annotation). 

Please see separate .xlsx file (“Supplementary Information, Supplementary Table 8.xlsx”). 

Supplementary Table 9. Distribution of comparison groups in the trajectory classes identified for the CBCL-DSM 

ADHD subscale using latent class growth analysis. 

Class 1 

(n = 75) 

Class 2 

(n = 62) 

Class 3 

(n = 560) 

Class 4 

(n = 89) 
p 

Group 
(Es)citalopram (n (%)) 
Depression (n (%)) 
Control (n (%)) 

21 (28.0) 

18 (24.0) 

36 (48.0) 

24 (38.7) 

9 (14.5) 

29 (46.8) 

172 (30.7) 

162 (28.9) 

226 (40.4) 

23 (25.8) 

44 (49.4) 

22 (24.7) 

N.S. 

<0.001 

<0.01 

ADHD diagnosis 
(yes; n (%)) 

0 (0) 2 (3.2) 29 (5.2) 12 (13.5) <0.001 

n = 786, as women not answering to the CBCL at any of the time points were removed from the analysis. 

Abbreviations: ADHD: attention-deficit/hyperactivity disorder; N.S.: not significant.  

Supplementary Table 10. Distribution of comparison groups in the trajectory classes identified for the ASQ 

communication subscale using latent class growth analysis.  

Class 1 

(n = 259) 

Class 2 

(n = 634) 

Class 3 

(n = 6) 
p 

Group 
(Es)citalopram (n (%)) 
Depression (n (%)) 
Control (n (%)) 

87 (33.6) 

84 (32.4) 

88 (34.0) 

188 (29.7) 

191 (30.1) 

255 (40.2) 

1 (16.7) 

4 (66.7) 

1 (16.7) 

N.S. 

N.S. 

N.S. 

n = 899; women not answering to the ASQ at any of the time points were removed from the analysis. 

Abbreviations: N.S.: not significant.  

Supplementary Table 11. Distribution of comparison groups in the trajectory classes identified for the ASQ total 

motor subscale using latent class growth analysis.  

Class 1 

(n = 135) 

Class 2 

(n = 73) 

Class 3 

(n = 449) 

Class 4 

(n = 110) 

Class 5 

(n = 128) 
p 

Group 
(Es)citalopram (n (%)) 
Depression (n (%)) 
Control (n (%)) 

45 (33.3) 

49 (36.3) 

41 (30.4) 

26 (35.6) 

23 (31.5) 

24 (32.9) 

129 (28.7) 

145 (32.3) 

175 (39.0) 

35 (31.8) 

29 (26.4) 

46 (41.8) 

40 (31.3) 

32 (25.0) 

56 (43.8) 

N.S. 

N.S. 

N.S. 

n = 895; women not answering to the ASQ at any of the time points were removed from the analysis. 

Abbreviations: N.S.: not significant.  

Supplementary Table 12. BECon output: blood-brain correlation of the significant CpGs identified in the study. 

Please see separate .xlsx file (“Supplementary Information, Supplementary Table 12.xlsx”). 
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