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Abstract

In an L∞-framework, we present a few extension theorems for lin-
ear operators. We focus the attention on majorant preserving and
sandwich preserving types of extensions. These results are then ap-
plied to the study of price systems derived by a reasonable restriction
of the class of equivalent martingale measures applicable. First we
consider equivalent martingale measures with bounds on densities and
the corresponding prices bounded by linear minorant and majorant.
Then we consider prices bounded by bid-ask dynamics. Finally we
study price systems consistent with no-good-deal pricing measures for
given bounds on the Sharpe ratio. Within this study we introduce the
definition of dynamic no-good-deal pricing measure.
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1 Introduction

The fundamental theorem of asset pricing is the key result celebrating the
marriage between the economic principle of no-arbitrage and the mathemat-
ical tools of martingales and equivalent martingale measures. These provide
the fundamental framework for pricing. Several versions of this outstand-
ing result have appeared with progressive improved level of generality, see
e.g. [16]. A crucial observation is that, provided existence, there is no
uniqueness of equivalent martingale measure guaranteed with the exception
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of markets that are complete, namely, in markets where all claims are attain-
able. However, it is well-known that such markets are more a mathematical
abstraction than proved reality and in general markets have to be considered
incomplete. As a consequence the problem of selecting one equivalent mar-
tingale measure out of the infinite many available has been largely treated.
The literature in this direction is vast and we chose not to mention any work
in this direction.
More recently, starting with [13] and [3] (see also [12] and [25]), a new
interest developed. Instead of selecting a single measure, one can restrict
the set of equivalent martingale measures characterizing those that are in
some sense “reasonable”. The approach suggested is to rule out not only
arbitrage opportunities, but also deals that are “too good to be true”.
In the same line, but with a different criterion, [1] and [17] suggest to re-
stric the set of equivalent martingale measures by choosing those with a
density lying within pre-considered lower and upper bounds. This criterion
is motivated by the observation that some form of control on the so-called
tail events, i.e. crucial events appearing with small but positive probabil-
ity, should be maintained when shifting from the physical measure (where
statistical analysis is performed) to some equivalent martingale measure.
Another approach, developed in [7], consists in restricting the set of equiv-
alent martingale measures to those compatible with bid and ask bounds
observed for some traded options. This study is conducted under the more
general setting of a time-consistent pricing procedure allowing for convex
dynamic ask prices.

In the present paper we focus on linear price systems in incomplete markets
that are consistent with pre-considered appropriate lower and upper bounds
in connection with the various restrictions on the set of equivalent martingale
measures. Thus we consider both the case where the density is lying within
given bounds and the case where the bounds are set on the Sharpe ratio.
Moreover, we also deal with the characterization of linear price systems
consistent with bid-ask bounds.
The approach we follow is independent of specific model for price dynamics.
We assume that prices xst(X), 0 ≤ s ≤ t ≤ T , for marketed assets X ∈ Lt
are given and we describe them in axiomatic form. Here we set the bounds
on prices mst(X) ≤ xst(X) ≤ Mst(X) and we study the existence of a
pricing measures P0 that allows a linear representation

xst(X) = EP0 [X|Fs], X ∈ Lt,

fulfilling the given bounds. The pricing measure P0 will reflect the choices
of bounds.
Note that the axiomatic presentation of a time-consistent price system, al-
ready present in [6] and [17], is inspired by the literature in dynamic risk
measures. See, e.g., [24], [2], and [15], in the context of Brownian filtrations;
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[11] and [22], [4], and [5], for general filtered probability spaces, and [8] in
the case of model uncertainty.
The various applications are presented as result of a unique approach: the
existence of a pricing measure allowing a linear representation of prices and
fulfilling specific requirements corresponds to the possibility of extending
the price operators onto the whole space in an appropriate way. Thus we
study extension theorems of linear operators.
This approach is already introduced in [1], and later developed in [17] to
include the time-continuous case. However the present paper differs from
these works in several ways. Papers [1] and [17] study only applications to
pricing measures with bounds on densities in the Lp-setting, while this con-
tribution is framed an L∞-setting. We stress that a crucial difference is that
L∞ spaces are not separable for the topology induced by the norm. Thus
we cannot apply the same techniques as in [17], but we have to rely on the
theory of filters, see Appendix. Moreover, we present a version of the sand-
wich extension theorem with substantially weaker assumptions. This turns
out to be fundamental in the application to no-good-deal pricing systems.
Our study is based on a new point of view on the concept of Sharpe ratio
bounds. As a result we introduce the concept of a dynamic no-good-deal
pricing measure in a model free setting. This definition generalizes the static
notion of no-good-deal pricing measure to a continuous time framework.
This paper is organized as follows. In Section 2 we present the basic defi-
nitions and the axiomatic description of price operators and price systems.
Section 3, which is also of self-standing interest, is dedicated to the extension
theorems for linear operators on L∞. Our result present conditions for the
existence of extensions that are bounds preserving. We include the condi-
tions for a topological version of the extension theorems. A first non-trivial
application of the results of Section 3 is the version of the fundamental
theorem of asset pricing as introduced in Section 4. This theorem charac-
terizes the conditions for the existence of pricing measures consistent with
pre-defined bounds on prices. The theorem is presented for continuous-time
trading models. Here the theory of filters is used. Section 5 and 6 are dedi-
cated to the application of this general result to the specific restrictions on
prices and measures mentioned before. First we consider the case of bounds
on martingale measure densities, then the case of prices lying within the
bid and ask dynamics. Finally we study the case of no-good-deal pricing
measures. This last part require the analysis and the eventual extension of
the definition of bounds on the Sharpe ratio to their dynamic version.

2 Linear pricing rules

We consider a continuous time market model without friction on the time in-
terval [0, T ], T > 0. Let (Ω,F , P ) be a complete probability space equipped
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with the right-continuous filtration F := {Ft, 0 ≤ t ≤ T} with FT = F .
We work in an L∞-framework and consider claims as elements of the space
L∞(Ft) := L∞(Ω,Ft, P ) with finite norm

‖X‖∞ := esssup|X|, X ∈ L∞(Ft).

Whenever we use a superscript + in the notation of a space, we refer to the
corresponding cone of the non-negative elements.
For any time t ∈ [0, T ], let

Lt ⊆ L∞(Ft) (2.1)

denote the linear sub-space representing all market claims that are payable
at time t. Note that in a complete market Lt = L∞(Ft) for all t ∈ [0, T ].
However, in general Lt ( L∞(Ft) for some t ∈ [0, T ].
A numéraire Rt, t ∈ [0, T ], is fixed in the market. This is an asset that is
always payable, i.e. Rt ∈ Lt for all t ∈ [0, T ], at the price 0 < Rt <∞ P -a.s.
For simplicity in notation we will consider this to be Rt ≡ 1. Then prices
and discounted prices will coincide. Having this in mind hereafter we will
not distinguish between the two and simply refer to price operators.

Definition 2.1. For any s, t ∈ [0, T ] : s ≤ t , the operator xst defined on
Lt, with values in L∞(Fs) is a price operator if it is

• monotone, i.e. for any X ′, X ′′ ∈ Lt,

xst(X ′) ≥ xst(X ′′), X ′ ≥ X ′′, (2.2)

• strictly monotone, i.e. for any X ′, X ′′ ∈ Lt,

xst(X ′) > xst(X ′′), X ′ > X ′′, (2.3)

where the strict inequality sign is meant in the sense that in addition
to the P-a.s. inequality “≥”, the strict inequality “>” is verified on a
set of positive measure,

• additive, i.e. for any X ′, X ′′ ∈ Lt,

xst(X ′ +X ′′) = xst(X ′) + xst(X ′′), X ′, X ′′ ∈ Lt, (2.4)

• Fs-homogeneous, i.e.

xst(λX) = λxst(X) (2.5)

for all X ∈ Lt and λ ∈ L+
∞(Fs) such that λX ∈ Lt,

• and
xst(1) = 1. (2.6)
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Note that (2.6) is justified by the choice of numéraire. Note also that, from
(2.4), we have that xst(0) = 0. As a consequence of (2.5)-(2.6), xtt(X) = X
for X ∈ Lt. Moreover note that from (2.2) and (2.6) it appears natural that

‖xst(X)‖∞ <∞, X ∈ L∞(Ft).

In fact, the following observation holds.

Remark 2.1. Any monotone linear operator x : L∞(B) → L∞(A) is con-
tinuous in the norm topology ‖·‖∞, for any σ-algebras A ⊆ B. Indeed, this is
easily seen as −‖X‖∞1 ≤ X ≤ ‖X‖∞1, hence ‖x(X)‖∞ ≤ ‖X‖∞‖x(1)‖∞.
In this way the concept of tame operator defined in [17] (see also [1]) is
directly embedded in the definition.

Definition 2.2. Let s, t ∈ [0, T ] : s ≤ t. The price operator xst(X), is
continuous from above P-a.s. at X ∈ Lt if for any non-increasing sequence
Xn ∈ Lt with limit X ∈ Lt we have

xst(Xn) ↓ xst(X), n→∞ P − a.s. (2.7)

Note that, for a monotone linear operator, continuity from above is equiva-
lent to continuity from below.

Definition 2.3. The family of price operators xst, 0 ≤ s ≤ t ≤ T is right-
continuous at s if, for every X ∈ Lt,

xs′t(X)→ xst(X), s′ ↓ s P − a.s. (2.8)

Definition 2.4. Let T ⊆ [0, T ]. The family xst, s, t ∈ T : s ≤ t, of operators
xst(X), X ∈ Lt, is time-consistent (in T ) if for all s, u, t ∈ T : s ≤ u ≤ t

xst(X) = xsu
(
xut(X)

)
, (2.9)

for all X ∈ Lt such that xut(X) ∈ Lu.

In the sequel we will consider time-consistency (2.9). This is a natural
assumption in view of standard arguments of absence of arbitrage.

Definition 2.5. A pricing system is the whole time-consistent (2.9), right-
continuous (2.8) family of price operators xst(X), X ∈ Lt, 0 ≤ s ≤ t ≤ T ,
continuous from above (2.7).

3 Representation and extension theorems for op-
erators on L∞

In this section we study extension theorems for operators which will be
applied to the case of a single period market model with trading times s, t:
s ≤ t. To keep the exposition general enough, we will consider simply two
σ-algebras A ⊆ B.
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Definition 3.1. A map M : L∞(B) → L∞(A) is regular if for every non-
increasing sequence Xn ∈ L∞(B) with Xn ↓ 0, n→∞ P -a.s, we have

M(Xn)→ 0, n→∞ P − a.s. (3.1)

3.1 Representation theorems and majorant conditions

Hereafter we deal with a representation theorem for A-homogeneous mono-
tone linear operators continuous from above (2.7) defined on L∞(B) with
values in L∞(A). The theorem relies on the following representation result
for positive linear forms on L∞(B) continuous from above. Even though
the proof follows standard arguments, we could not find a reference for this
result, hence we have chosen to present it fully.

Lemma 3.1. Let L : L∞(B)→ R be a positive linear form continuous from
above such that L(1) = 1. Then there exists f ∈ L+

1 (B) , E[f ] = 1, such
that

L(X) = E
[
fX
]
, X ∈ L∞(B). (3.2)

Proof. Denote X the space of bounded B-measurable maps. Define L̃ on X
by L̃(X) = L(X), where X is the class of X in L∞(B). From [18, Appendix
50], there is a finitely additive set function µ on (Ω,B) with bounded total
variation such that L(X) =

∫
Xdµ. Let Bn be an increasing sequence of

events in Ω such that
⋃
nBn = Ω. The sequence 1Ω−1Bn is decreasing to 0.

Hence µ(Bn) ↑ µ(Ω) = 1, by application of the continuity from above and
the additivity. Thus µ is a probability measure. Consider B ∈ B such that
P (B) = 0, i.e. 1B = 0 in L∞(B). Then L̃(1B) = 0 and thus µ� P . Hence
there exists f ∈ L+

1 (B) such that equation (3.2) is satisfied.

Theorem 3.2. Let x : L∞(B) → L∞(A) be an A-homogeneous monotone
linear operator continuous from above (2.7). Assume that there is a constant
c > 0 such that x(1) ≥ c. Then there is a probability measure Q � P on
(Ω,B) such that

x(X) = x(1)EQ
[
X|A

]
= x(1)E

[
X

f

E[f |A]
|A
]
, X ∈ L∞(B),

and f := dQ
dP ∈ L

+
1 (B). Moreover, there is a unique f = dQ

dP in L+
1 (B) such

that E[f |A] = 1 and x(X) = x(1)E[fX|A].

Proof. Since x(1) ∈ L∞(A) and c ≤ x(1). Then x(1)−1 ∈ L+
∞(A). Denote

L(X) = E
[
x(1)−1x(X)

]
. From Lemma 3.1, there is a probability measure

Q� P with dQ
dP ∈ L

+
1 (B), such that L(X) = EQ[X]. Let A ∈ A. Applying

6



the A-homogeneity of x, we obtain:

EQ[1Ax(X)] = E
[
x(1)−1x(1Ax(X))

]
= E

[
x(1)−11Ax(X)x(1)

]
= E

[
x(1)−1x(1AXx(1))

]
= EQ[1AXx(1)].

Hence, we have x(X) = EQ[Xx(1)|A] = x(1)EQ[X|A], X ∈ L∞(B).

Recall that an operator M : L+
∞(B)→ L+

∞(A) is sublinear if

M(X + Y ) ≤M(X) +M(Y ), X, Y ∈ L+
∞(B), (3.3)

M(λX) = λM(X), X ∈ L+
∞(B), λ ≥ 0.

We remark that sublinearity implies M(0) = 0.

The following result shows that any A-homogeneous monotone linear oper-
ator continuous from above admits some natural A-homogeneous sublinear
majorant.

Corollary 3.3. Let x : L∞(B) → L∞(A) be an A-homogeneous monotone
linear operator continuous from above (2.7). Assume that there is a constant
c > 0 such that x(1) ≥ c. Then x satisfies the majorant condition:

x(X) ≤M(Y ), X ∈ L∞(B), Y ∈ L+
∞(B) : X ≤ Y, (3.4)

for some regular sublinear A-homogeneous operator M : L+
∞(B) → L+

∞(A)
(3.1).

Proof. From Theorem 3.2, there is a probability measure Q� P associated
to x such that x(X) = x(1)EQ[X|A], X ∈ L∞(B). Define M : L+

∞(B) →
L+
∞(A) by

M(X) := x(X) = x(1)EQ[X|A], X ∈ L+
∞(B). (3.5)

The operator M is sublinear and it is regular. The majorant condition (3.4)
is clearly satisfied.

The following proposition shows that whenever a linear operator satisfies
a majorant condition of type (3.4), then it is also monotone and weak A-
homogeneous as defined here below.

Definition 3.2. We say that an operator x : L∞(B) → L∞(A) is weak
A-homogeneous if, for every X ∈ L∞(B) and every A ∈ A, it satisfies

x(1AX) = 1Ax(X). (3.6)
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Lemma 3.4. If M : L+
∞(B) → L+

∞(A) is a weak A-homogeneous, regular,
monotone, sublinear operator, then it is also A-homogeneous.

Proof. Recall that for f ∈ L+
∞(A) there exists an increasing sequence of

simple functions fn ↑ f , n→∞ in L+
∞(A). For any X ∈ L+

∞(B), sublinearity
and monotonicity imply

M(fX) ≤M((f − fn)X) +M(fnX) ≤M((f − fn)X) +M(fX).

Hence, from regularity and weak A-homogeneity, we conclude

fM(X) = lim
n→∞

fnM(X) = lim
n→∞

M(fnX) = M(fX).

with convergence in L∞(A).

Lemma 3.5. If x : L∞(B) → L∞(A) is a weak A-homogeneous monotone
linear operator continuous from above, then it is A-homogeneous.

Proof. From the linearity and the weak A-homogeneity of x we obtain that
for every non-negative simple A-measurable real function g we have

x(gX) = gx(X), X ∈ L∞(B). (3.7)

Any f ∈ L+
∞(A) is the P -a.s. limit of an increasing sequence of non-negative

simple A-measurable real functions fn. As x is linear, monotone, and con-
tinuous from above (and hence from below), it follows that x(fX) is the
P -a.s. limit of the increasing sequence x(fnX). This, together with (3.7),
yields x(fX) = fx(X) for X ≥ 0. For a general f ∈ L∞(A) and X ∈ L∞(B)
we have to apply that f = f+ − f− and X = X+ −X−.

Proposition 3.6. Let x : L∞(B) → L∞(A) be a linear operator. Assume
that the majorant condition (3.4):

x(X) ≤M(Y ), X ∈ L∞(B), Y ∈ L+
∞(B) : X ≤ Y,

is satisfied for some sublinear operator M : L+
∞(B) → L+

∞(A). Then x is
monotone. Moreover,

(i) if M is weak A-homogeneous, then x is weak A-homogeneous,

(ii) if M is regular, then x is continuous from above.

Proof. Let X ∈ L+
∞(B), then −X ≤ 0. Thus the sublinearity of M implies

x(−X) ≤ M(0) = 0, i.e. x(X) ≥ 0. The monotonicity of x follows then
from its linearity.
(i) Let X ≥ 0. From the monotonicity of X, the majorant condition and
the A-homogeneity of M we have

0 ≤ x(1AX) ≤ 1AM(X).
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Thus 1Acx(1AX) = 0 and x(1AX) = 1Ax(1AX). Similarly we prove that
1Ax(1AcX) = 0. Applying the linearity of x we conclude that x(1AX) =
1Ax(1AX) + 1Ax(1AcX) = 1Ax(X). Namely, weak A-homogeneity (3.6)
holds for X ≥ 0. For a general X in L∞(B), write X as X = X+ − X−,
where X+ := max{0, X}, X− := max{0,−X}. By linearity, the weak
homogeneity, equation (3.6) extends to the whole L∞(B).
(ii) Let Xn ∈ L∞(B) be an decreasing sequence with P -a.s. limit X. From
the linearity, the monotonicity of x, and the majorant condition (3.4) we
have

|x(Xn)− x(X)| ≤M(Xn −X). (3.8)

Since the sequence Xn −X is decreasing to 0, from the regularity of M , we
obtain that x is continuous from above.

Remark 3.1. Note that if M : L+
∞(B) → L+

∞(A) is a sublinear operator
such that

x(X) ≤M(Y ), X ∈ L, Y ∈ L+
∞(B) : X ≤ Y,

for some linear operator x : L → L∞(A), where L ⊆ L∞(B) is a linear
subspace, then it is always possible to construct a monotone sublinear M̃ :
L+
∞(B)→ L+

∞(A) such that

x(X) ≤ M̃(Y ) ≤M(Y ), X ∈ L, Y ∈ L+
∞(B) : X ≤ Y.

Moreover, if M is regular, then M̃ is regular.

Proof. It is enough to consider M̃(Y ) := infY ′≥Y M(Y ′), Y ∈ L+
∞(B).

3.2 A majorant preserving extension theorem

In the previous subsection we have seen that any A-homogeneous monotone
linear operator x : L∞(B) → L∞(A), continuous from above (such that
x(1) ≥ c for some c > 0) satisfies the majorant condition (3.4):

x(X) ≤M(Y ), X ∈ L∞(B), Y ∈ L+
∞(B) : X ≤ Y,

for some regular sublinear A-homogeneous operator M : L+
∞(B) → L+

∞(A)
(see Corollary 3.3). Now we prove that the majorant condition is a sufficient
condition for a monotone linear operator defined on a linear subspace L ⊆
L∞(B) in order to have a linear monotone extension to the whole L∞(B).
In the sequel we assume that the σ-algebra B is generated by a countable
family of events An, n ∈ IN , by which we mean that the σ-algebra B is the
smallest σ- algebra on Ω containing both the sets An, n ∈ IN and the P -null
events. It is for example the case for the Borel σ-algebra of a metrizable
separable space.
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Theorem 3.7. Let x be a monotone linear operator defined on a linear
subspace L of L∞(B). Assume that the majorant condition

x(X) ≤M(Y ), X ∈ L, Y ∈ L+
∞(B) : X ≤ Y, (3.9)

is satisfied for some regular, weak A-homogeneous, and sublinear operator
M : L+

∞(B) → L+
∞(A). Then x can be extended into a monotone linear

operator defined on L∞(B) such that the majorant condition

x(X) ≤M(Y ), X ∈ L∞(B), Y ∈ L+
∞(B) : X ≤ Y, (3.10)

is satisfied.
Furthermore x is continuous from above (2.7) and A-homogeneous.

Proof. As in the proof of Theorem 4.1 in [1], we begin by a one-step exten-
sion. This is a classical approach already present in the original proof of the
Hahn-Banach theorem. Let Y 0 ∈ L∞(B)− L. We want to extend x by the
formula x(X + λY 0) = x(X) + λZ for some Z ∈ L∞(A). Let

a = esssupX′∈L,Y′∈L+
∞(B):−X′−Y′≤Y0 [−x(X′)−M(Y′)]

b = essinfX′′∈L,Y′′∈L+
∞(B): X′′+Y′′≥Y0 [x(X′′) + M(Y′′)].

Note that −X ′ − Y ′ ≤ Y 0 ≤ X ′′ + Y ′′. Thus −X ′ − X ′′ ≤ Y ′ + Y ′′.
From the majorant condition (3.9) and the sublinearity of M it follows that
−x(X ′) − x(X ′′) ≤ M(Y ′) + M(Y ′′). Thus a ≤ b. Choose Z such that
a ≤ Z ≤ b. It is then easy to verify that the extension of x to the linear
space L+ RY 0 satisfies the majorant condition. Then, since M(0) = 0, the
monotonicity of the extension of x follows from the majorant condition.
Now, let An, n ∈ IN , be a countable family of events in Ω generating the
σ-algebra B. Consider the linear subspace K of L∞(B) generated by L and
the indicator functions 1B where B is the intersection of only a finite number
of sets among An, n ∈ IN and their complements Acn = Ω − An, n ∈ IN .
Applying the argument above, x can be extended to K as a linear monotone
operator satisfying the majorant condition.
Let E be a linear subspace of L∞(B). Assume that x is extended to E and
that this extension is linear monotone and satisfies the majorant condition.
Let Xn and Yn be two increasing sequences of elements of E having the same
limit X ∈ L∞(B). The sequences x(Xn) and x(sup(Xn, Yn)), are increasing
and both majorized by M(|X|). Therefore they converge in L∞(A) with
limit Y and Z, respectively, and such that Y ≤ Z. Note that

x(sup(Xn, Yn))− x(Xn) ≤M(sup(Xn, Yn)−Xn). (3.11)

The sequence ln := supk≥n(sup(Xk, Yk)−Xk) is decreasing and has limit 0.
Thus, as M is regular, from (3.11) and the majorant condition we conclude
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that Z − Y = 0. Then the sequences x(Xn) and x(Yn) have the same limit.
In the same manner if Xn and Yn are two decreasing sequences of elements
of E having the same limit X ∈ L∞(B), the corresponding sequences x(Xn)
and x(Yn) have the same limit. Moreover, if Xn is increasing to X and Yn
decreasing to X, from the majorant condition and the regularity of M , it
follows that x(Yn)− x(Xn) has limit 0.
Therefore x can be extended in a unique way to a linear subspace E of
L∞(B) containing K and containing the limit of all increasing and decreasing
sequences of elements of E. From the monotone class theorem, it follows
that E contains 1A for every set A belonging to the σ-algebra generated
by the sets An, n = 1, 2, ... (i.e. the σ-algebra B). Recall that any non-
negative B-measurable function is the increasing P -a.s. limit of a sequence
of linear combinations of indicators 1A, A ∈ B. As E is a sublinear space
of L∞(B), this proves that E = L∞(B). Furthermore this extension is
obviously monotone.
Denote S the subset of all X ∈ E satisfying the majorant condition, i.e.
x(X) ≤ M(Y ), Y ∈ L+

∞(B): X ≤ Y . Then S is obviously stable for the
limit of increasing sequences. On the other hand, if X ∈ E is the limit of a
decreasing sequence Xn of elements of S, X ≤ Y and Xn ≤ sup(Y,Xn), then
x(Xn) ≤M(sup(Y,Xn). From the monotonicity and the sublinearity of M ,
it follows that M(Y ) ≤M(sup(Y,Xn)) ≤M(Y ) +M(sup(Y,Xn)− Y ). As
M is regular, it follows that M(sup(Y,Xn)) has limit M(Y ). Thus we have

x(X) = lim
n→∞

x(Xn) ≤ lim
n→∞

M(sup(Y,Xn)) = M(Y ).

Namely, X satisfies the majorant condition. HenceX ∈ S. We conclude that
the set S is stable for limits of both increasing and decreasing sequences.
Hence S = E = L∞(B). From Proposition 3.6 we conclude directly that
x is continuous from above (2.7), from Lemma 3.5 we conclude that it is
A-homogeneous.

3.3 A sandwich preserving extension theorem

This section deals with the sandwich condition for operators in L∞-spaces
and related extension theorems.
Let M : L+

∞(B) → L+
∞(A) be a sublinear operator, see (3.3), and m :

L+
∞(B)→ L+

∞(A) be a superlinear operator, i.e.

m(X + Y ) ≥ m(X) +m(Y ) (3.12)

m(λX) = λm(X) λ ≥ 0.

Let x : L∞(B) → L∞(A) be a linear operator satisfying the sandwich con-
dition:

m(X) ≤ x(X) ≤M(X), for all X ∈ L+
∞(B). (3.13)

11



Note that the sandwich condition (3.13) is equivalent to the following con-
dition:

m(Z)+x(X ′′) ≤ x(X ′) +M(Y ),
for all X ′, X ′′, Y, Z ∈ L+

∞(B) : Z +X ′′ ≤ X ′ + Y.
(3.14)

Moreover, it is also equivalent to:

m(Z)+x(X) ≤M(Y ),
for all X ∈ L∞(B), Y, Z ∈ L+

∞(B) : Z +X ≤ Y.
(3.15)

To see that (3.15) implies (3.14), it is enough to apply the first one with
X = X ′′−X ′. Conversely, note that, for any X ∈ L∞(B), the elements X+

and X− also belong to L∞(B). We can then apply (3.14) with X ′′ = X+ and
X ′ = X−. Using the linearity of x, it is easy to see that (3.13) is equivalent
to (3.15).
Note that, in case our operator x was defined on a convex cone instead of a
linear subspace, then the sandwich condition should be expressed as (3.14)
only.

We adress the question of the existence of a sandwich extension to L∞(B)
of a monotone linear operator x defined on a linear subspace L ⊆ L∞(B)
and taking values in L∞(A). In [1], the characterization of the existence of
such an extension was adressed for operators x defined on convex subcones
of Lp(B), p ∈ [1,∞). The proof given in [1] is using the König sandwich
theorem for functionals proved in [19] crucially relying on Zorn lemma. In
the present paper, we work in the context of L∞-spaces and we give a
different constructive proof inspired by the proof of Theorem 3.7. This idea
could also be applied in the Lp-context to give a new proof for Theorem 5.1
in [1], if the operators were defined on linear subspaces instead of convex
subcones.
We stress that, for a general linear subspace L ⊆ L∞(B), the fact that X ∈ L
does not imply that X+ ∈ L. The sandwich relation (3.15), applied with
X ∈ L, will then play a crucial role in the results that follow.

Theorem 3.8. Let L be a linear subspace of L∞(B). Let M : L+
∞(B) →

L+
∞(A) be a regular sublinear operator and m : L+

∞(B) → L+
∞(A) be a su-

perlinear operator. Let x : L → L∞(A) be a linear operator satisfying the
sandwich condition:

m(Z)+x(X) ≤M(Y ),
for all X ∈ L, Y, Z ∈ L+

∞(B) : Z +X ≤ Y.
(3.16)

Then x admits a monotone linear extension on the whole L∞(B). Moreover,
the extension x : L∞(B) → L∞(A) is continuous from above (2.7) and
satisfies the sandwich condition:

m(Z)+x(X) ≤M(Y ),
for all X ∈ L∞(B), Y, Z ∈ L+

∞(B) : Z +X ≤ Y.
(3.17)

12



which can equivalently be written as:

m(X) ≤ x(X) ≤M(X), X ∈ L+
∞(B).

Proof. The proof follows the same lines as the proof of Theorem 3.7.
Step 1. We begin with a one step extension. Let Y 0 ∈ L∞(B)− L. Let

c = esssupX′∈L,Y′,Z′∈L+
∞(B): Z′−X′−Y′≤Y0 [m(Z′)− x(X′)−M(Y′)]

and

d = essinfX′′∈L,Y′′,Z′′∈L+
∞(B): X′′+Y′′−Z′′≥Y0 [x(X′′) + M(Y′′)−m(Z′′)].

Note that Z ′ −X ′ − Y ′ ≤ Y 0 ≤ X ′′ + Y ′′ −Z ′′. Thus Z ′′ +Z ′ −X ′′ −X ′ ≤
Y ′ + Y ′′. From the sandwich condition (3.16), the sublinearity of M , and
the superlinearity of m, it follows that m(Z ′′) + m(Z ′) − x(X ′′) − x(X ′) ≤
M(Y ′) + M(Y ′′). Hence c ≤ d. Choose y0 ∈ L∞(A) such that c ≤ y0 ≤ d.
Define the operator x on L+ RY 0 by x(X + λY 0) := x(X) + λy0. We now
prove that the sandwich inequality (3.16) is satisfied for all X ∈ L + RY 0.
Let Y,Z ∈ L+

∞(B), X ∈ L, λ ∈ R: Z+X+λY 0 ≤ Y . If λ = 0, the sandwich
condition is just the same as in the hypothesis. Assume that λ > 0. Then
Y 0 ≤ 1

λY −
1
λZ −

1
λX. Since y0 ≤ d, from the definition of d, it follows that

m(Z) + x(X) + λy0 ≤ m(Z) + x(X) + λ
(
M( 1

λY ) −m( 1
λZ) + x(− 1

λX)
)

=
M(Y ). Here we have applied the homogeneity of m, M and the linearity
of x. This proves the sandwich condition (3.16) for X ∈ L + λY 0 with
λ > 0. The proof of the sandwich inequality for λ < 0 is similar, using the
inequality c ≤ y0. Moreover, for every X ∈ L + RY 0 and Y ∈ L+

∞(B) such
that X ≤ Y , we have x(X) ≤M(Y ).
Step 2. As in the proof of Theorem 3.7, we proceed by extending x to
the sublinear space of L∞(B) generated by L and the indicators 1B, where
B is either the intersection or the union of a finite number of An or Acn =
Ω− An, n ∈ IN , generating B. Then we perform a further extension to the
whole space L∞(B). In order to prove that the sandwich condition (3.16) is
satisfied, it is enough to show it for every X ∈ L∞(B) which is the increasing
(and also for the decreasing) limit of a sequence Xn of elements of L∞(B)
satisfying the sandwich inequality. Let Z, Y ∈ L+

∞(B) such that Z+X ≤ Y .
If X is the increasing limit of Xn, by monotonicity of x, we just take the
limit in the inequality m(Z)+x(Xn) ≤M(Y ). If X is the decreasing limit of
Xn, then Z+Xn ≤ Y +(Xn−X) and m(Z)+x(Xn) ≤M(Y )+M(Xn−X).
Letting n→∞ and using the regularity of M , we complete the proof of the
result.

The preceding proof gives also a constructive new proof of Theorem 5.1. of
[1] in the case the operator x is defined on a linear subspace L ⊆ Lp(B),
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1 ≤ p < ∞. Note that in the Lp-spaces, the continuity is with respect to
the norm.

Proposition 3.9. Let L be a linear subspace of Lp(B), for 1 ≤ p < ∞.
Let M be a sublinear continuous operator M : Lp(B) → Lp(A). Let m be
a superlinear operator m : Lp(B),→ Lp(A). Let x : L → Lp(A) be a linear
operator. Assume that the sandwich condition

m(Z)+x(X) ≤M(Y ),
for allY,Z ∈ Lp(B) X ∈ L : Z +X ≤ Y,

(3.18)

is satisfied. Then x admits a monotone, continuous, linear extension pre-
serving the sandwich condition:

m(Z)+x(X) ≤M(Y ),
for all X ∈ Lp(B), Y, Z ∈ L+

p (B) : Z +X ≤ Y.
(3.19)

This condition can also be written:

m(X) ≤ x(X) ≤M(X), for allX ∈ Lp(B). (3.20)

Proof. Step 1. The one-step extension is proved following the same lines
as in Theorem 3.8.
Step 2. Consider a countable family fn of elements of Lp(B) such that the
linear subspace K generated by fn is dense in Lp(B). Applying the first
step we get the extension of x to L + K, such that the sandwich condition
is satisfied. From the majorant condition x is continuous and thus uniquely
extended to the whole Lp(B). In order to prove the sandwich condition,
for Z + X ≤ Y we consider Yn = Y + |Xn − X|, then Z + Xn ≤ Yn. The
sandwich inequality follows then from the norm continuity of M .

3.4 Topological versions of the extension theorems

Recall that the weak*topology on L∞(B) denoted σ(L∞(B), L1(B)) is the
coarsest topology on L∞(B) such that for every f ∈ L1(B), the map X ∈
L∞(B) → E(fX) ∈ R is continuous.

Lemma 3.10. Let M : L+
∞(B) → L+

∞(A) be a weak* continuous operator.
Then M is regular.

Proof. Let Xn ∈ L+
∞(B) such that Xn ↓ 0. From the dominated convergence

theorem, Xn → 0 for the weak* topoplogy, thus M(Xn)→ 0.

Proposition 3.11. Let x : L∞(B) → L∞(A) be a A-homogeneous mono-
tone linear operator. Assume that x(1) = 1. The following conditions are
equivalent:

1. x is continuous from below.
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2. x is continuous from above.

3. x is weak* continuous, which means that x is continuous when both
L∞(B) and L∞(A) are endowed with the weak* topology.

Proof. The equivalence of 1. and 2. follows from the linearity of x, consid-
ering −X,−Xn instead of X,Xn.
Next we prove that 2 implies 3. From Theorem 3.2, for every x continuous
from above there is a probability measure Q such that

x(X) = EQ[X|A], X ∈ L∞(B).

There is then g ∈ L+
1 (B) with E[g|A] = 1 such that EQ[X|A] = E[gX|A],

X ∈ L∞(B). For every f ∈ L1(A), fg ∈ L1(B), indeed E[|f |g] = E[|f |E[g|A]] =
E[|f |]. Assume now that Xn → X for the weak* topology. Let f ∈ L1(A).

E(fEQ(Xn|A)) = E(fE(gXn|A) = E(fgXn)

As fg ∈ L1(B) and Xn → X for the weak* topology, it follows that
E(fgXn) → E(fgX) = E(fEQ(X|A)). Thus EQ(Xn|A) → EQ(X|A) for
the weak* topology of L∞(A). This means that x is weak* continuous.
Finally we prove that 3 implies 2. Assume that x is weak* continuous. Let
Xn ↓ X i.e. Xn − X ↓ 0. Thus from Lemma 3.10, and linearity of x it
follows that x(Xn) ↓ x(X). thus x is continuous from above.

Now we can give a topological version of the Theorems 3.7 and 3.8.

Proposition 3.12. Theorems 3.7 and 3.8 admit a topological version re-
placing in the hypotheses the regularity by the weak* continuity of M and in
the conclusion the continuity from above of x by its weak* continuity.

Proof. The result follows from Lemma 3.10, Proposition 3.11 and from The-
orems 3.7 and 3.8.

4 A version of the fundamental theorem of asset
pricing

In this section we consider a time-consistent family of price operators xst, s, t ∈
[0, T ] : s ≤ t, where xst : Lt → Ls. We assume that for every t, Lt ⊆ LT .

Remark 4.1. For any s ≤ t ≤ T , xst is the restriction to Lt of xsT .

Indeed let X ∈ Lt, then xtT (X) = XxtT (1) = X. Thus by time-consistency
we have xst(X) = xst(xtT (X)) = xsT (X), for all X ∈ Lt.
We now introduce a definition of weak time-consistency for a family of sub-
linear (or superlinear) operators.

15



Definition 4.1. • The family Mst, s, t ∈ [0, T ] : s ≤ t, of Fs-homogeneous,
sublinear operators Mst : L+

∞(Ft) → L+
∞(Fs) is weak time-consistent

if, for every X ∈ L+
∞(Ft),

Mrs(Mst(X)) ≤Mrt(X), ∀r ≤ s ≤ t, (4.1)

and
Mst(X) = limt′>t,t′↓tMst′(X). (4.2)

• The family mst, s, t ∈ [0, T ] : s ≤ t, of Fs-homogeneous, superlinear
operators mst : L+

∞(Ft) → L+
∞(Fs) is weak time-consistent if, for

every X ∈ L+
∞(Ft),

mrs(mst(X)) ≥ mrt(X), ∀r ≤ s ≤ t, (4.3)

and
mst(X) = limt′>t,t′↓tmst′(X). (4.4)

Remark 4.2. Every time-consistent family Mst of Fs-homogeneous, sublin-
ear operators such that (4.2) is satisfied is weak time-consistent. Note that,
if Mst(1) = 1, then (4.2) is trivially satisfied. Similar arguments work for
the superlinear case.

Theorem 4.1. Let Mst, s, t ∈ [0, T ] : s ≤ t, be a weak time-consistent fam-
ily of regular (or weak* continuous), Fs-homogeneous, sublinear operators
Mst : L+

∞(Ft) → L+
∞(Fs); let mst, s, t ∈ [0, T ] : s ≤ t, be a weak time-

consistent family of Fs-homogeneous, superlinear operators mst : L+
∞(Ft)→

L+
∞(Fs). Assume that m0T (X) > 0 P − a.s. for every X > 0 and that, for

every X ∈ L+
∞(Ft), for every sequence sn decreasing to s, we have

Mst(X) ≥ lim inf Msnt(X); mst(X) ≤ lim supmsnt(X) (4.5)

Let
xst(X), X ∈ Lt, 0 ≤ s ≤ t ≤ T, (4.6)

be a time-consistent and right-continuous family of price operators. Suppose
that the following sandwich condition is satisfied:

mst(Z) + xst(X) ≤Mst(Y ) (4.7)

for all X ∈ Lt and Y,Z ∈ L+
∞(Ft) such that Z +X ≤ Y .

Then there exists a probability measure P 0 ∼ P :

P 0(A) =
∫
A
f(ω)P (dω), A ∈ F ,
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with f ∈ L+
1 (F) and E[f |F0] = 1 such that

mst(X) ≤ EP0 [X|Fs] ≤Mst(X), X ∈ L+
∞(Ft). (4.8)

and allowing the representation:

xst(X) = EP0 [X|Fs] = E
[
X

f

E[f |Fs]
|Fs
]
, X ∈ Lt,

for all price operators.

Note that the last hypothesis on Mst and mst (equation 4.5) is obviously
satisfied if Mst and mst are rightcontinuous in s.
The above theorem appears in the same line as Theorem 4.1 in [17] where the
study was carried out for operators in separable Lp-spaces with 1 ≤ p <∞,
and for specific majorants and minorants. However we stress that the present
result deals with weaker assumptions on the majorant and minorant opera-
tors. Moreover we remark a crucial difference: the dual of L∞ endowed with
the weak* topology is not metrizable. Then, to deal with the compactness
features that follow, we call on the concept of filters, see e.g. [10]. The most
important notions used are summarized in the Appendix.

Proof. We have to prove that the set of probability measures

P :=
{
P 0| dP

0

dP
= f, E[f |F0] = 1, ∀s, t ∈ [0, T ],

∀X ∈ L+
∞(Ft),mst(X) ≤ EP0 [X|Fs] ≤Mst(X);

∀X ∈ Lt, xst(X) = EP0 [X|Fs]
}
, (4.9)

is non-empty if (4.7) holds. We consider first the discrete time case

P(T ) :=
{
P 0| dP

0

dP
= f, E[f |F0] = 1, ∀s, t ∈ T , s ≤ t ,

∀X ∈ L+
∞(Ft),mst(X) ≤ EP0 [X|Fs] ≤Mst(X);

∀X ∈ Lt, xst(X) = EP0 [X|Fs]
}
, (4.10)

where T is some partition of [0, T ] of the form

T = {s0, s1, . . . , sK}, with 0 = s0 < s1 < · · · < sK = T. (4.11)

Further, we consider a sequence {Tn}∞n=1 of increasingly refined partitions,
such that Tn ⊂ Tn+1 and mesh(Tn) −→ 0 as n −→ ∞. Clearly P(Tn+1) ⊂
P(Tn). It is then sufficient to prove that

A. P(T ) is non-empty for any finite partition T ,
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B. the infinite intersection
⋂∞
n=1 P(Tn) is non-empty, and

C. any P 0 ∈
⋂∞
n=1 P(Tn) is also in P.

To prove A, first of all note that by Theorem 3.8 (or Proposition 3.12),
the sandwich condition (4.7) ensures that for every s ≤ t the price operators
(4.6) admit extensions x̃st on the whole L∞(Ft) and Theorem 3.2 guarantees
that there exists fst ∈ L+

1 (Ft): E[fst|Fs] = 1 such that

x̃st(X) = E
[
Xfst

∣∣Fs], X ∈ L∞(Ft). (4.12)

However, though the family of operators (4.6) is time-consistent, we cannot
say, in general, that the extensions (4.12) are also time-consistent. Then we
proceed as follows. Let us consider the partition points T and define

f :=
K∏
k=1

fsk−1sk
. (4.13)

Define x̂st(X) := E
[
X f

E[f |Fs]

∣∣Fs] = EP0

[
X|Fs

]
, X ∈ L∞(Ft), where

P0(A) =
∫
A
f(ω)P (dω), A ∈ FT . (4.14)

Then the family x̂st, s, t ∈ [0, T ] is time-consistent. Moreover for every
X ∈ Lsk

,

xsk−1sk
(X) = E

[
Xfsk−1sk

∣∣Fsk−1

]
= E

[
X

f

E[f |Fsk−1
]

∣∣Fsk−1

]
= x̂sk−1sk

(X)

By iteration on j − i, it follows that for all i ≤ j, for every X ∈ Lsj ,

xsisj (X) = x̂sisj (X)

We can thus conclude that the probability measure P0 defined by (4.14)
allows the representation

xst(X) = xsT (X) = E
[
X

f

E[f |Fs]
∣∣Fs] = x̂sT (X) = x̂st(X), X ∈ Lt,

for every s ∈ T and t ∈ [s, T ]. Moreover, from Theorem 3.8 or Proposition
3.12, it follows from time consistency of x̂st and weak time consistency of
mst and Mst that for every s, t ∈ T ,

mst(X) ≤ x̂st(X) ≤Mst(X), X ∈ L+
∞(Ft)

Thus PT is non-empty and A holds.
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The set
⋂∞
n=1 P(Tn) is non empty if the corresponding sets P(Tn) are weak∗

compact. Here we are applying the finite intersection property.
Then we have to prove that, for any partition (T ) the set P(T ), is weak∗

compact. As announced we use the concept of filters, see Appendix.
Denote B+ the non negative part of the unit ball of the dual of L∞(FT ).
Note that

PT :=
{
L ∈ B+, L(1) = 1,∀s ≤ t ∈ T ∀A ∈ Fs

∀X ∈ L+
∞(Ft), L(mst(X)1A) ≤ L(X1A) ≤ L(Mst(X)1A);

∀X ∈ Lt, L(xst(X)1A) = L(X1A)
}
,

Indeed the majoration L ≤M0T (which is a special case of the first inequal-
ity) implies from Proposition 3.6 that L is continuous from above i. e. that
there is a probability measure P0 such that ∀X, L(X) = EP0 [X]. Further-
more, since L belongs to the dual of L∞(FT ), we conclude that P0 � P .
Then the second condition tells that xst(X) = EP0 [X|Fs] for all X in Lt.
Note that

PT = PT1 ∩ PT2
where

PT1 :=
{
L ∈ B+,∀s ≤ t ∈ T ∀X ∈ L+

∞(Ft), ∀A ∈ Fs,

L(mst(X)1A) ≤ L(X1A) ≤ L(Mst(X)1A)
}
,

PT2 =
{
L ∈ B+, L(1) = 1, ∀s ≤ t ∈ T ,

L(xst(X)1A) = L(X1A) ∀A ∈ Fs, ∀X ∈ Lt
}

We prove separately that both PT1 and PT2 are weak* compact.
First we recall that B+ is weak* compact.
As the weak* topology is not metrizable, in order to prove that PT1 is a
compact we show that every filter on PT1 has an adherent point.
Let U be a filter in PT1 , then it is a base of filter in B+. As B+ is compact, U
has an adherent point here denoted L in B+. Hence to prove compactness
of PT1 we only need to verify that L ∈ PT1 .
Denote V(L) the filter of the neighbourhoods V (L) of L. In our context the
neighbourhoods have the following form:

V (L) = Vε,X1,...,XK
(L) =

{
L′ ∈ B+ : |L(Xk)− L′(Xk)| < ε, k = 1, ...,K

}
for ε > 0,K ∈ N, X1, ..., XK ∈ L∞(FT ). Recall that, being L an adherent
point, we have that V (L) ∩U 6= ∅ for every neighbourhood V (L) and every
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U ∈ U . Let us consider X ∈ L+
∞(Ft), A ∈ Fs and ε > 0. Let L′ ∈

Vε,X1A,mst(X)1A,Mst(X)1A
(L) ∩ U ⊆ Vε,X1A,mst(X)1A,Mst(X)1A

(L) ∩ PT1 . Then,
from

L′(mst(X)1A) ≤ L′(X1A) ≤ L′(Mst(X)1A)

and the inequalities

|L(mst(X)1A)− L′(mst(X)1A)| ≤ ε

|L(X1A)− L′(X1A)| ≤ ε
|L(Mst(X)1A)− L′(Mst(X)1A)| ≤ ε

letting ε→ 0, we conclude that L ∈ PT1 . Hence PT1 is weak* compact.
In the case of PT2 , we consider U filter on PT2 . Since PT2 ⊆ B+, we pro-
ceed with similar arguments. To conclude that the adherent point L ∈ B+

belongs to PT2 , we consider in particular the neighbourhoods V (L) of L of
type

V (L) = Vε,1,1AX,1Axst(X)(L) =
{
L′ ∈ B+ : |L′(1)− L(1)| ≤ ε, |

L′(1AX)− L(1AX)| < ε, |L′(1Axst(X))− L(1Axst(X))| < ε
}

for any s ≤ t ∈ T , any A ∈ Fs, any X ∈ Lt ⊆ L∞(FT ), and any ε > 0. In
this case an element L′ ∈ Vε,1,1AX,1Axst(X)(L)∩U ⊆ Vε,1,1AX,1Axst(X)(L)∩PT2
satisfies

L′(1AX) = L′(1Axst(X)).

Thus we have
|L(1AX)− L(1Axst(X))| < 2ε.

|L(1)− 1| ≤ 2ε.

Since the above estimate holds for every A ∈ Fs, letting ε→ 0, we conclude
that the set PT2 is weak* compact. This concludes the proof of B.

Assume that P0 ∈
⋂∞
n=1 P(Tn). As the partitions form a dense subset of [0, T ],

then for any s ∈ [0, T ] there is a sequence {sn ∈ Tn}∞n=1 such that sn ↓ s as
n −→ ∞. By the right-continuity of the filtration, and the right-continuity
(2.8) of the price operators we have

xst(X) = lim
n−→∞

xsnt(X) = lim
n−→∞

EP0 [X|Fsn ] = EP0 [X|Fs] X ∈ Lt

for any s ∈ [0, T ] and t ∈
⋃
Tn. As xst(x) = xsT (X) for every X ∈ Lt,

the above equality is satisfied for every s, t ∈ [0, T ]. By the right-continuity
of the filtration and the hypothesis (4.5) on Mst and mst, we also have for
every s ∈ [0, T ] and t ∈

⋃
Tn,

mst(X) ≤ EP0 [X|Fs] ≤Mst(X) ∀X ∈ L∞(X)+

Considering a sequence {tn ∈ Tn}∞n=1 such that tn ↓ t as n −→ ∞ as
Mst(X) = limMstn(X) and mst(X) = limmstn(X), see definition 4.1, we
conclude that P0 ∈ P and C holds.
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5 Applications to price systems

With this section we study several applications of the previous result. Our
focus is in the characterization of price systems in connection with various
forms of restrictions on prices or on the pricing measures.

5.1 Pricing measures with bounds on density

First of all we present the case in which some restriction on the pricing
measures is given in the form of lower and upper bounds for the martingale
measure densities. This criterion is motivated by the observation that some
form of control on the so-called tail events should be maintained when shift-
ing from the physical measure P , where statistical analysis is performed,
to some pricing measure P0. This result is in line with [1] and [17] where
this application was studied for price operators in an Lp-setting. The first
paper deals with the one-period market only, the second one extends this
result to the dynamic framework. In [17], some specific examples derived
from insurance pricing can also be found.

Proposition 5.1. Let mst,Mst ∈ L1(Ft), 0 ≤ s ≤ t ≤ T , such that

0 < mst ≤Mst P − a.s.

and mrsmst = mrt, MrsMst = Mrt, for any r ≤ s ≤ t. Assume that
mtt′ → mtt = 1 and Mtt′ →Mtt = 1, for t′ ↓ t. Then define

Mst(X) := E(MstX|Fs), X ∈ L+
∞(Ft),

mst(X) := E(mstX|Fs), X ∈ L+
∞(Ft).

(5.1)

Let xst(X), X ∈ Lt, 0 ≤ s ≤ t ≤ T , be price opertaors as in Theorem
(4.1) satisfying the sandwich condition (4.7). Then there exists a probability
measure P 0 ∼ P allowing the representation:

xst(X) = EP0 [X|Fs] = E
[
X

f

E[f |Fs]
|Fs
]
, ∀X ∈ Lt

with f ∈ L+
1 (F) and E[f |F0] = 1 such that

mst ≤
E(f |Ft)
E(f |Fs)

≤Mst

Proof. The operators Mst and mst are linear, Fs-homogeneous, and regular.
Moreover, the families mst, Mst, 0 ≤ s ≤ t ≤ T are time-consistent and
right-continuous. Then Theorem 4.1 gives the result.
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Remark 5.1. A particular example of mst,Mst ∈ L1(Fs), 0 ≤ s ≤ t ≤ T
satisfying the hypothesis of the theorem is given by

Mst :=
(
E[M |F0]

) t−s
T
E[M |Ft]
E[M |Fs]

mst :=
(
E[m|F0]

) t−s
T
E[m|Ft]
E[m|Fs]

(5.2)

for m,M > 0 P − a.s. and m
E[m|Fs] ≤

M
E[M |Fs] ∈ L+

1 (FT ). In this case
m0T = m M0T = M .

5.2 Price systems compatible with bid-ask dynamics

Delbaen has introduced in [14] the notion of m-stability for a set of proba-
bility measures all absolutely continuous with respect to a given probability
measure P . A set Q is m-stable if for all probability measures Q1 � P
and Q2 ∼ P in Q and for every stopping time τ the probability measure
Q such that dQ

dP = (dQ1

dP )τ dQ2

dP (dQ2

dP )−1
τ belongs to Q. We adopt the nota-

tion (dQdP )τ = EP (dQdP |Fτ ). Q also contains every probability measure whose
Radon Nikodym derivative belongs to F0. It is proved in [14] that every
m-stable set Q defines a time consistent right continuous family of homoge-
neous superlinear operators : Mst(X) = supQ∈QEQ(X|Fs).
In the case of a non complete financial market, admitting no arbitrage, the
set M of equivalent martingale measures for a family of reference assets is
a m-stable set of equivalent probability measures (see [14]). This motivates
the following application:

Proposition 5.2. Let Q1 and Q2 be m-stable subsets of the setM of equiv-
alent martingale measures for the choosen reference assets. Let

Mst(X) = esssupQ∈Q1
EQ[X|Fs]

mst(x) = essinfQ∈Q2EQ[X|Fs]
(5.3)

Assume that m0T (X) > 0 P − a.s., for every X > 0. Every time-consistent
and right-continuous family of price operators satisfying the sandwich con-
dition can be extended into a time-consistent and right-continuous family of
price operator xst such that xst(X) = EP0 [X|Fs], X ∈ L∞(Ft), where P0 is
an equivalent martingale measure satisfying

essinfQ∈Q2EQ[X|Fs] ≤ EP0 [X|Fs] ≤ esssupQ∈Q1
EQ[X|Fs], X ∈ L∞(FT).

(5.4)

Proof. As Q1 and Q2 are m-stable sets of probability measures all equivalent
with P , Mst and mst satisfie all the hypothesis of Theorem 4.1.
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Note that from the linearity of EP0 [XFs], multiplying the inequality (5.4)
by −1, we obtain that

−M̃st(−X) =essinfQ∈Q1∩Q2EQ[X|Fs] ≤ EP0 [X|Fs]

≤ esssupQ∈Q1∩Q2
EQ[X|Fs] = M̃st(X),

for all X ∈ L∞(FT ). The set Q1 ∩ Q2 is also m-stable For every t, the
process M̃st(X), 0 ≤ s ≤ T , admits then a càdlàg version for every X
(see [14]). Thus it has an extension to stopping times. The operator M̃στ ,
0 ≤ σ ≤ τ ≤ T is then a no-free-lunch sublinear time-consistent pricing
procedure according to the definition in [6].
In a summary Proposition 5.2 tells that every linear price system defined
on the subspace Lt of marketed assets at time t, and compatible with the
bid and ask dynamics associated to a no-free-lunch time consistent pricing
procedure can be represented by an equivalent martingale measure itself
compatible with the bid and ask dynamics.

6 Dynamic no good-deal price systems

Good-deal bounds were introduced simultaneously by Cochrane and Saa
Requejo [13] and Bernardo and Ledoit [3] as a way to restrict the choice
of equivalent martingale measures in incomplete markets. The idea is to
consider martingale measures that not only rule out arbitrage possibilities,
but also deals that are “too good to be true”. Following [13] we consider the
characterization of no good-deals based on a restriction of the Sharpe ratio.
Cochrane and Saa Requejo [13], and then Björk and Slinko [9] start from
a specific model for the traded assets: diffusions in [13] and more general
processes including jumps in [9]. They define an upper good deal price pro-
cess restricting the set of equivalent martingale measures. Their definition
of this set of measures strongly depends on the shape of the dynamics of
the traded assets. Klöppel and Schweizer [21] introduce a utility-based ap-
proach to restrict the set of equivalent probability measures. In the case of
the exponential utility, and in the particular case of the completed filtration
generated by a Levy process, a m-stable set of equivalent martingale mea-
sures is constructed. Thus Mst(X) = esssupQ∈QEQ(X|Fs) defines a time-
consistent family of sublinear regular operators. However the definition of
Q relies on the particular shape of the densities of equivalent probability
measures in the filtration of a Levy process, furthermore it is not closely
related to the Sharp ratio. For further discussion on the link between risk
measures and no good deal pricing, we refer to [20] in the static case and to
[6] in the dynamic case.
Hereafter we study the bounds on the Sharpe ratio to extract the minorant
and majorant operators bounding the prices. We consider first the static
one-period setting and then the multi-period one. We then motivate and
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extend in an appropriate way the definition of good-deal bounds to a contin-
uous time dynamic version. To this purpose we interpret the bounds on the
Sharpe ratio as bounds on the Radon-Nykodim density of the corresponding
equivalent martingale measure. As usual in this paper we work with general
price systems and not with specific price dynamics. In doing this we differ
from large part of the literature related to good-deal bounds on continu-
ous time market models. However, to keep the presentation consistent, we
work with payoffs in L∞(FT ). This can be motivated recalling that if mar-
keted assets are locally bounded adapted processes, then the corresponding
stopped processes by a given stopping time are uniformly bounded.

6.1 Static setting: one-period market

Following Cochrane and Saa Requejo [13], a good-deal of level δ > 0 is a
non-negative FT -measurable payoff X such that

E(X)− EQ(X)√
V ar(X)

≥ δ.

Accordingly, a probability measure Q equivalent to P is a no good-deal
pricing measure if there are no good-deals of level δ under Q, i.e.,

EQ[X] ≥ E[X]− δ
√
V ar(X), X ≥ 0. (6.1)

Note that (6.1) holds for all X ∈ L∞(FT ) as we have that X + ‖X‖∞ ≥ 0.
Hence also the relation

EQ[X] ≤ E[X] + δ
√
V ar(X) (6.2)

holds true for all X ∈ L∞(FT ). This motivates the following extended
general definition of no-good-deal pricing measure.

Definition 6.1. A probability measure Q equivalent to P is a no good-deal
pricing measure if there are no good-deals of level δ > 0 under Q, i.e.,

−δ ≤
E(X)− EQ(X)√

V ar(X)
≤ δ, (6.3)

for all X ∈ L2(FT , P ) ∩ L1(FT , Q).

In this forthcoming application F0 is the trivial σ-algebra. At first we study
the static setting of a one-period market with trading times 0, T and we
consider a linear pricing operator x0T defined on the linear subspace LT ⊆
L∞(FT ) representing the marketed assets. Hence we assume that

m(Z) + x0T (X) ≤M(Y ),

for every X ∈ LT and Y,Z,∈ L+
∞(FT ): Z+X ≤ Y . Here we have considered

m(X) := E(X) − δ
√
V ar(X) and M(X) := E(X) + δ

√
V ar(X), X ∈

L+
∞(FT ) for some positive δ.
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Proposition 6.1. The functionals m(X) = E(X)−δ
√
V ar(X) and M(X) =

E(X) + δ
√
V ar(X)), X ∈ L+

∞(FT ), are respectively superlinear and sublin-
ear. Moreover, the operator M is regular.

Proof. The functionals m and M are clearly homogeneous. By application
of the Cauchy-Schwarz inequality, we see that, for every X,Y , E(X+Y )2 ≤
(
√
E(X2) +

√
E(Y 2))2. Then superlinearity of m and sublinearity of M

follow. The regularity of M follows from the dominated convergence theo-
rem.

Being the conditions of Theorem 3.8 satisfied, we can conclude that x0T

admits an extension into a linear pricing operator defined on the whole
L∞(FT ) preserving the sandwich condition with price bounds given by the
no good-deal restriction.

6.2 Dynamic setting: multi-period market

In the remain of this section we discuss extensions of the previous approach
to a dynamic setting. First we consider a multi-period market model with
trading times 0 = s0 < s1 < · · · < sk = T .

Lemma 6.2. For any s ≤ t, let cst : L∞(Ft) → L∞(Fs) be defined by

cst(X) = δst

√(
E[X2|Fs]

)
for some positive δst. The operator cst is Fs-

homogeneous, sublinear, and regular. Assume that, for every r ≤ s ≤ t,
δrt = δrsδst. Then cst, s, t ∈ [0, T ] : s < t, is a time-consistent family of
operators.

Proof. For any s ≤ t, the operator cst is trivially Fs-homogeneous. Sublin-
earity follows directly from the following inequality:

E
[
(X + Y )2|Fs

]
≤
((
E[X2|Fs]

) 1
2 +

(
E[Y 2|Fs]

) 1
2

)2
,

that follows from the conditional Hölder inequality:

E[XY |Fs] ≤
(
E[X2|Fs]

) 1
2
(
E[Y 2|Fs]

) 1
2 .

Consider r ≤ s ≤ t. Then we have

crs(cst(X)) = δrsδst

(
E
[(
E[X2|Fs]

) 1
2

2

|Fr
]) 1

2 = crt(X)

This proves the time consistency. The regularity follows directly from the
dominated convergence theorem.

The following proposition appears as a direct application of the sandwich
extension theorem 3.8.
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Proposition 6.3. Let T be a finite subset of [0, T ]. Fix T := {s0, s1, ..sk}.
For every 0 ≤ i ≤ k − 1, let

Msi,si+1 = E(X|Fsi) + δsi,si+1

√
(E((X − E(X|Fsi))2|Fsi), X ∈ L+

∞(Fsi+1),

msi,si+1 = E(X|Fsi)− δsi,si+1

√
(E((X − E(X|Fsi))2|Fsi), X ∈ L+

∞(Fsi+1).

Define recusively Msi,sj for j − i > 1 by Msi,sj (X) = Msi,si+1(Msi+1,sj (X)),
similarly for msi,sj . Hence Msi,sj (X), X ∈ L+

∞(Fsj ), 0 ≤ i ≤ j ≤ k, is a
time-consistent family of regular Fsi-homogeneous and sublinear operators
with Msi,sj (1) = 1; msi,sj (X), X ∈ L+

∞(Fsi+1), 0 ≤ i ≤ j ≤ k, is a time-
consistent family of superlinear operators with msi,sj (1) = 1.
Let xsi,sj , i = 0, ..., k − 1, be a family of time-consistent price operators
defined, for each j, on the linear subspace Lsj ⊆ L∞(Fsj ) with values in
L∞(Fsi) and satisfying the following sandwich inequality:

msi,si+1(Z) + xsi,si+1(X) ≤Msi,si+1(Y )

for all X ∈ Lsi+1 and Y,Z,∈ L+
∞(Fsi+1): Z +X ≤ Y .

Then xsi,si+1,i = 0, ..., k − 1, extends into a time-consistent family of linear
price operators preserving the sandwich condition above.

Note that in the result above, each operator xsi,si+1 satisfies the sandwich
inequality with majorant and minorant directly connected with the Sharpe
ration bounds, as in the static setting. However, when we consider the
operator xsi,sj (i + 1 < j), which also satisfies the sandwich inequality, the
structure of the majorant and minorant operators is more complicated as it is
defined by composition: Msi,sj (X) = Msi,si+1(Msi+1,si+2(...(Msj−1,sj (X)))),
and similarly for msi,sj (X). Note, in fact, that the use of the time consis-
tency of the corresponding family csi,si+1 , i = 0, ..., k−1, as given in Lemma
6.2 does not really help in finding simple expressions for M0T and m0T .
Hence, in this case, it is not easy to compare these values with the Sharpe
ratio bounds and this theorem cannot be generalized to continuous time.
This is the motivation for introducing a different approach.

6.3 Dynamic setting: continuous time market

First of all, we observe that, due to the Cauchy-Schwarz inequality, Defini-
tion 6.1 is equivalent to:

Definition 6.2. A probability measure Q equivalent to P is a no good-deal
pricing measure if dQ

dP ∈ L2(FT ) satisfies

E
[(dQ
dP
− 1
)2] ≤ δ2. (6.4)
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Lemma 6.4. Define the set Qst of probability measures on Ft as

Qst :=
{
Q� P |Q|Fs

=Pand ∃ gst ∈ L2(Ft) :
dQ

dP
= 1+gst, E

[
g2
st|Fs

]
≤ δ2

st

}
.

Assume that the family of non negative real numbers δst, s, t ∈ [0, T ]: s ≤ t,
satisfies the following condition:

(δrsδst + δrs + δst) = δrt, ∀r ≤ s ≤ t. (6.5)

Then,

1. for every probability measures Q ∈ Qrs and R ∈ Qst, the probability
measure S � P with dS

dP = dQ
dP

dR
dP belongs to Qrt.

2. for all A ∈ Fs and all Q1, Q2 ∈ Qst, there exists Q ∈ Qst such that
dQ
dP = dQ1

dP 1A + dQ2

dP 1Ac.

Proof. Note that

dS

dP
= (1 + grs)(1 + gst) = 1 + grsgst + grs + gst

and also that E((grsgst+grs+gst)2|Fr) = E(g2
rsE(g2

st|Fs)|Fr)+E(g2
rs|Fr)+

E(g2
st|Fr) + 2E(g2

rsgst|Fr) + 2E(g2
stgrs|Fr) + 2E(grsgst|Fr). Hence, using

the properties of the conditional expectation, the inequalities of the kind
E(g2

st|Fs) ≤ δ2
st, and the Cauchy Schwarz inequality, we obtain that

E
[( dS
dP
− 1
)2|Fr] ≤ (δrsδst + δrs + δst

)2 ≤ δ2
rt.

Thus S ∈ Qrt. The last assertion is obvious.

Remark 6.1. An example of constants δst, s ≤ t, satisfying (6.5) is given
by δst := δt−s − 1 for some δ > 1. In fact, it is easy to see that the relation:

(1 + δrt) = (1 + δrs)(1 + δst)

is satisfied. Note also that, if δ is the Sharpe ratio bound as in (6.4), then
δ0T = δT − 1 = δ.

In view of the previous result we can give the following definition of a dy-
namic Sharpe ratio.

Definition 6.3. A probability measure Q equivalent to P is a dynamic no-
good-deal pricing measure if dQ

dP ∈ L2(FT ) satisfies

E
[((dQ

dP

)
t

(dQ
dP

)−1

s
− 1
)2|Fs] ≤ δ2

st, (6.6)

for every s ≤ t and constants δst > 0 satisfying (6.5). we recall that
(dQ
dP

)
t

:=
E
[dQ
dP |Ft

]
.
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It is immediate to see that, if s = 0, t = T , then the definition above
corresponds to the one in the static setting with δ0,T = δ.

The next result gives a characterization of operators acting as majorant and
minorant of prices. These are directly connected to the dynamic Sharpe
ratio bounds as in Definition 6.3.

Proposition 6.5. Let

mst(X) := essinfQ∈QstEQ[X|Fs], X ∈ L+
∞(Ft),

Mst(X) := esssupQ∈Qst
EQ[X|Fs], X ∈ L+

∞(Ft),

where Qst is defined as in Lemma 6.4. Assume that the constants δst, s, t ∈
[0, T ] : s ≤ t, satisfy the relation (6.5) and that δst → 0, t ↓ s.
Then Mst(X), X ∈ L+

∞(Ft), s, t ∈ [0, T ] : s ≤ t, is a weakly time-consistent,
regular family of sublinear, monotone, Fs-homogeneous operators. Moreover
(4.5) holds:

Mst(X) ≥ lim inf
n→∞

Msnt(X), X ∈ L+
∞(Ft).

Furthermore mst(X), X ∈ L+
∞(Ft), s, t ∈ [0, T ] : s ≤ t, is a weakly

time-consistent, regular family of superlinear, monotone, Fs- homogeneous.
Moreover, (4.5) holds:

mst(X) ≤ lim sup
n→∞

msnt(X), X ∈ L+
∞(Ft).

Proof. For any s, t ∈ [0, T ] : s ≤ t, the properties of the operators Mst(X),
mst(X), X ∈ L+

∞(Ft), are immediate. For what concerns weak time-
consistency, the proof of (4.1) and (4.3) is a simple adaptation of the proof
of Theorem 4.4 of [4]: {ER(X|Fs), R ∈ Qst} is a lattice upward directed,
from Lemma 6.4 point 2. Then from Proposition VI.1.1 of [23], it follows
that ∀Q ∈ Qst,

EQ(Mst(X)|Fr) ≤ esssupR∈Qst
EQ(ER(X|Fs)|Fr))

From Lemma 6.4 point 1, it follows that Mrs(Mst(X)) ≤Mrt(X).
Hereafter we discuss the proof of (4.2). The arguments can be easily adapted
for the proof of (4.4).
Let tn ↓ t and consider Q ∈ Qstn with dQ

dP = 1 + gstn and consider a measure
Q′ << P on Ft given by:

dQ′

dP
= 1 + kst := 1 +

δst
δstn

E
[
gstn |Ft

]
.

Then we can see that

E
[dQ′
dP
|Fs
]

= 1 +
δst
δstn

E
[
gstn |Fs

]
= 1.
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Hence Q′|Fs
= P . Moreover, we have

E
[
k2
st|Fs

]
≤ δ2

st

δ2
stn

E
[
g2
stn |Fs

]
≤ δ2

st.

Then we conclude that Q′ ∈ Qst. Now consider X ∈ L+
∞(Ft). We can see

that

EQ
[
X|Fs

]
= E

[
(1 + gstn)X|Fs

]
=
δstn
δst

EQ′
[
X|Fs

]
+
(

1− δstn
δst

)
E
[
X|Fs

]
.

Thus we obtain

Mstn(X) ≤ δstn
δst

Mst(X) +
(

1− δstn
δst

)
E
[
X|Fs

]
. (6.7)

Taking the limit for n → ∞, we can see that δstn → δst, as a direct ap-
plication of (6.5) and the assumptions. On the other side we have that
Mst(X) ≤ Mstn(X) as Qst ⊆ Qstn . Thus it follows from (6.7) that ∀X ∈
L+
∞(Ft), Mst(X) = limn→∞Mstn(X).

At last we prove relationships (4.5). As before we study the majorant oper-
ators only as the arguments for the minorant operators are easily adapted.
Let s < sn < t, sn ↓ s. From weak time-consistency we know that for all
X ∈ L+

∞(Ft), Mst(X) ≥ Mssn(Msnt(X)). Moreover, for every Y ≥ 0, we
have Mssn(Y ) ≥ E

[
Y |Fs

]
as P ∈ Qssn . Thus we have

Mst(X) ≥ E
[
Msnt(X)|Fs

]
≥ E

[
lim inf
n→∞

Msnt(X)|Fs
]

and lim infn→∞Msnt(X) is Fs-measurable as the filtration is right-continuous.
By this we end the proof.

Finaly we get the following result.

Theorem 6.6. Let xst, 0 ≤ s ≤ t ≤ T , be a right-continuous time-consistent
family of price operators defined on the linear space of marketed financial
assets Lt. Assume that the family xst satisfies the following sandwich con-
dition:

ms,t(Z) + xs,t(X) ≤Ms,t(Y )

for all X ∈ Lt and for every Y,Z,∈ L+
∞(Ft): Z + X ≤ Y , where Mst and

mst are defined as in Proposition 6.5. Assume that m0T (X) > 0 for every
X > 0. Then xst extends to a time-consistent family of linear price operators
x̂st defined on all L∞(Ft) with values in L∞(Fs), such that

mst(X) ≤ x̂st(X) ≤Mst(X), X ∈ L+
∞(FT ), (6.8)

and admitting representation

x̂st(X) = EP0(X|Fs), X ∈ L∞(Ft),

for some dynamic no-good-deal pricing measure P0 equivalent with P .
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Proof. By Proposition 6.5, we can apply Theorem 4.1 and obtain x̂st(X) =
EP0(X|Fs), X ∈ L∞(Ft) and (6.8) for X ≥ 0. Next we show that P0 is
satisfying Definition 6.3. Consider X ∈ L∞(Ft). Then, from (6.8), we see
that

EP0

[
X|Fs

]
≤ esssupQ∈Qst

EQ

[
X|Fs

]
.

Recall that, for any Q ∈ Qst, we have dQ
dP = 1 + gst and E[g2

st|Fs] ≤ δ2
st.

Similarly we denote the conditional Radon-Nikodym derivative of P0 by(
dP0
dP

)
t

(
dP0
dP

)−1

s
= 1 + kst. Hence we have

E
[
kstX|Fs

]
≤ esssupQ∈Qst

E
[
gstX|Fs

]
≤ esssupQ∈Qst

√
E
[
g2

st|Fs

]
E
[
X2|Fs

]
≤ δst

√
E
[
X2|Fs

]
.

We can then conclude that√
E
[
k2
st|Fs

]
= sup

X∈L∞(Ft)

E
[
kstX|Fs

]√
E
[
X2|Fs

] ≤ δst.
By this the proof is complete.

We can therefore give the following definition.

Definition 6.4. A dynamic no-good-deal price system xst(X), X ∈ L∞(Ft),
0 ≤ s ≤ t ≤ T , is a time-consistent family of linear price operators satisfying
the dynamic sandwich condition:

mst(X) ≤ xst(X) ≤Mst(X)

for every X ∈ L+
∞(FT ), where mst and Mst are defined as in Proposition

6.5.

7 Appendix: Filters on a topological space and
compactness

In this section we briefly report the basic definitions related to filters in
general topological spaces as in [10]. These notions are used in the proof of
Theorem 4.1.

Definition 7.1. A filter U on the set D is a non empty family of subsets
of D satisfying the following properties:

• Any C ⊆ D for which there exists U ∈ U such that C ⊇ U belongs to
U ;
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• For any Uk ∈ U , k = 1, ...,K (K ∈ N), the set
⋂K
k=1 Uk belongs to U ;

• ∅ /∈ U .

Note that from the two last properties we see that any finite intersection of
elements of the filter is non-empty.
Example. If D is a topological space, then the family of all neighbourhoods
V (f) of a point f ∈ D is a filter.

Definition 7.2. A non empty family B of subsets of D is a filter base on D
if the intersection of a finite number of elements of B contains an element
of B and ∅ /∈ B.

Note that any filter is a filter base . Moreover, form the definition, it is easy
to see that if U is a filter base on D and E ⊇ D, then U is a filter base on
E.

Let D be a topological space and consider the subset C ⊆ D. Recall that a
point f ∈ D is called adherent to C if for every neighbourhood V (f) of f it
is verified that V (f) ∩ C 6= ∅.

Definition 7.3. Let D be a topological space. A point f ∈ D is adherent
to the filter base B on D if for every neighbourhood V (f) and every U ∈ B
it is verified that V (f) ∩ U 6= ∅.

Definition 7.4. Let D be a topological space satisfying the Hausdorff sepa-
ration axiom. We say that D is compact if for any filter on D there exists
an adherent point.
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