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Abstract

Various strength criteria that may be used in semi-analytical methods for ultimate strength prediction of
arbitrarily stiffened plates are studied. The main objective is to evaluate the applicability of the criteria in
ultimate strength predictions of in-plane loaded plates, both in local and global bending. The equilibrium
path is traced using large deflection theory and the Rayleigh-Ritz approach on an incremental form. The
approach is able to account for the reserve strength of slender plates in the postbuckling region. Results
are compared with fully nonlinear finite element analyses for a variety of plate dimensions and stiffeners
with regular and irregular arrangements. Good agreement is obtained with a combination of a plate and
a stiffener criterion. With the considered criteria included, the method is computationally very efficient
and gives rather high numerical accuracy.
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1 Introduction

Stiffened plates in ships and other structures
may be exposed to complex stress patterns due to
simultaneously acting in-plane biaxial and shear
stresses. In design of such elements, buckling and
ultimate strength are important issues. Each in-
dividual stiffened plate must be dimensioned such
that it is able to sustain the applied loads and de-
formations with a suitable margin of safety. In gen-
eral cases in which explicit strength formulas [1, 2]
are not applicable, due to complex geometries etc.,
ultimate strengths can be computed using nonlin-
ear finite element or semi-analytical methods. Fi-

nite element analysis is impractical in many cases
with a large number of individual stiffened plates
to be analysed. In such contexts, semi-analytical
methods represent an alternative approach as they
are very computationally efficient. Such an ap-
proach is considered here.

A stiffened plate is able to carry loads beyond
those causing yielding at the outer fibres, due to
redistribution of plate stresses caused by forma-
tion of plastic regions. In semi-analytical methods,
one approach for ultimate strength prediction is to
account for plasticity in a simplified manner, such
as in Paik and Lee [3], where the progressing plas-
ticity is treated numerically by removing material
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Figure 1. (a) Stiffened plate subjected to applied in-plane shear stress (Sxy) and in-plane, linear varying
compression or tension stress (Sx, Sy), and cross-section of an eccentric (b) flat bar and (c) T-stiffener.

in plastic regions. Another, and probably compu-
tationally more efficient approach, is to combine
an elastic model with a simplified strength crite-
rion. For instance in Byklum [4], Brubak et al. [5],
and Brubak and Hellesland [6, 7], the von Mises’
yield criterion for membrane stresses is used. This
allows for some yielding to take place.

In the latter work [7], it was found that the
membrane stress criterion may become non-
conservative for local bending cases of rather
thick plates with irregular stiffener arrangements,
in which cases the bending stress becomes more
important. In addition, this criterion does not ac-
count for the possible formation of plastic regions
in the stiffeners due to global bending. In such
cases, there is need for alternative criteria in order
to achieve reliable results.

The main objective of the present study is to in-
vestigate the applicability of various strength cri-
teria for use in semi-analytical methods of a kind
presented previously by Brubak and Hellesland [7].
The present work represents an extension of that
paper and covers ultimate strength predictions of
arbitrarily stiffened plates in both local and global
bending. The method is not able to predict failure
modes due to local buckling of the stiffener. This
is not a serious limitation in practical cases as ad-

herence to constructional design provisions in rel-
evant design codes (e.g. Eurocode 3 [8]) prevent
premature local stiffener buckling.

2 Plate definition

A structure such as a ship hull or an offshore
installation may be built up by stiffened plates
with various geometries. A typical stiffened plate
is enclosed by strong longitudinal and transverse
girders. In some cases, the stiffener arrangement
can be irregular, for instance in the bow and the
stern of a ship, or in stinger decks.

In order to model such cases, the plate in
Brubak and Hellesland [7] shown in Fig. 1(a)
is considered. The plate is subjected to a linear
varying in-plane compression or tension stress and
an in-plane shear stress. A plate edge or a part
of a plate edge may be simply supported, or by
introducing rotational springs, clamped or par-
tially clamped. The edges are free to move in the
in-plane directions, but forced to remain straight.
In the figure, only one stiffener is shown, but the
number of stiffeners and stiffener inclinations can
be arbitrarily chosen. In addition, the stiffeners
may be sniped or end-loaded (continuous). The
cross-section profile of the stiffeners can be sym-
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metric about the middle plane of the plate, or
eccentric, as illustrated in Fig. 1(b) and 1(c) for a
flat bar and T-stiffener, respectively.

3 Summary of theory

The load-deflection curve is traced using the
elastic, large deflection analysis method presented
in Brubak and Hellesland [7]. A short review of
the main aspects of the background theory is given
below.

The material is assumed to be linearly elastic
with Young’s modulus E and Poisson’s ratio ν. In-
ternal axial stresses (σx, σy) and strains (εx, εy) are
defined positive in tension, i.e., opposite to the def-
inition of the applied normal stresses at the edges
in Fig. 1(a). Positive definition of shear stresses
(τxy) is the same as of Sxy in the figure.

The classical large deflection theory [9] is used
(large rotations, but small in-plane strains). The
membrane components of the in-plane axial strain
(ε) and shear strain (γ) are in that theory defined
by [10]

εm
x = u,x +

1

2
w2

,x + w0,xw,x (1)

εm
y = v,y +

1

2
w2

,y + w0,yw,y (2)

γm
xy = u,y + v,x + w,xw,y + w0,xw,y + w0,yw,x (3)

for a plate with an initial out-of-plane imperfec-
tion w0 and additional out-of-plane displacement
w. Here, u and v are the displacements of the mid-
dle plane of the plate in the x- and y-direction,
respectively. The conventional “comma” notation
w,xy for ∂2w/∂x∂y , etc., is adopted. The theory
implies Kirchhoff’s two classical thin plate assump-
tions that (1) normals to the middle plane remain
normal to the deflected middle plane, and that (2)
normal stresses in the transverse direction are neg-
ligible.

The out-of-plane equilibrium is satisfied us-
ing the principle of stationary potential energy
(Rayleigh-Ritz method) on an incremental form
(rate form). The assumed displacement field and

initial imperfection field are defined by

w(x, y) =
M
∑

i=1

N
∑

j=1

aijsin(
πix

L
)sin(

πjy

b
) (4)

w0(x, y) =
M
∑

i=1

N
∑

j=1

bijsin(
πix

L
)sin(

πjy

b
) (5)

where aij and bij are amplitudes. The incremental
form of the stationary potential energy principle,
δΠ̇ = 0, where Π is the total potential energy, leads
to M×N linear equations in M×N +1 unknowns.
A dot above a symbol (Π̇, etc.) means differenti-
ation with respect to an arc length parameter η,
which can be considered a pseudo-time. The ad-
ditional equation required is obtained by relating
the arc length increment parameter ∆η to a load
increment ∆Λ and an increment ∆aij in displace-
ment amplitudes. The final set of M×N +1 equa-
tions can be written as

∂Π̇

∂afg

= Kfgpqȧpq + GfgΛ̇ = 0 (6)

Λ̇2 +
M
∑

i=1

N
∑

j=1

ȧ2
ij

t2
= 1 (7)

where Λ is a load parameter, Kfgpq is a generalised,
incremental (tangential) stiffness matrix, −GfgΛ̇
is a generalised, incremental load vector.

At a specific state “k” in the propagation pro-
cess, the displacement rates ȧij and the load pa-
rameter rate Λ̇ can be determined from Eqs. 6 and
7. The solution at state “k + 1” is then obtained
from linear Taylor series expansion as

ak+1
ij = ak

ij + ȧk
ij∆η; Λk+1 = Λk + Λ̇k∆η (8)

By using this first order expansion, usually called
the Euler or Euler-Cauchy method, the solution
propagation continues until a given criterion is
reached. The incremental procedure, based on a
previous work presented by Steen [11], and the ex-
pressions for the total potential energy are given
in more detail elsewhere [7, 12].

The in-plane equilibrium of the plate is identi-
cally satisfied by the use of Airy’s stress function
F (x, y), defined by σm

x = F,yy, σm
y = F,xx and
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τm
xy = −F,xy, where σm

x and σm
y are the in-plane ax-

ial membrane stresses in the x- and y-direction, re-
spectively, and τm

xy is the in-plane membrane shear
stress. By substituting Airy’s stress function and
strains from Hooke’s law for plane stresses into a
strain compatibility equation, obtained by differ-
entiation and combination of Eqs. 1-3, the nonlin-
ear plate compatibility equation [10] given by

∇
4F = E(w2

,xy − w,xxw,yy + 2w0,xyw,xy

−w0,xxw,yy − w0,yyw,xx)
(9)

is obtained. A solution of Eq. 9, similar to one pro-
posed by Levy [13] for perfect plates, is assumed.
It can be written on the form

F (x, y) = F L + F NL (10)

where

FL = − S1
x

y2

2
− (S1

x − S2
x)

y3

6b

−S1
y

x2

2
− (S1

y − S2
y)

x2

6L
− Sxyxy

(11)

FNL =

2M
∑

i=0

2N
∑

j=0

fijcos(
iπ

L
x)cos(

jπ

b
y) (12)

where the coefficients fij can be found in the lit-
erature [7, 12]. The linear term F L and the non-
linear term F NL represent the initial stresses and
the redistribution of the plate stresses due to the
displacements (w, w0), respectively.

For the plate stresses, both F L and F NL are
included, and the stiffener stresses are expressed
by the plate stresses at the intersection. However,
in the strain energy of the stiffeners, the nonlin-
ear term F NL is neglected, but asymmetric effects
of eccentric stiffeners are included. This simplified
stiffener modelling approach is computationally
very efficient. The results presented in the consec-
utive sections would not be significantly affected if
also the nonlinear terms due to plate stress redis-
tribution had been included in the stiffener strain
energy. For a detailed discussion of these aspects,
reference is made to Brubak and Hellesland [7].

4 Strength criteria

In preliminary strength analyses carried out
in conjunction with another study [7], the au-

thors found that predicted strengths using the von
Mises’ yield criterion for the membrane stresses
can be non-conservative in cases where the bend-
ing stresses are important. In particular, this was
found to be the case for 1) stiffened plates in global
bending, and for 2) irregularly stiffened, thick
plates in local bending. In the former case, forma-
tion of plasticity in the stiffeners may occur due to
global bending. This can not be accounted for in
a criterion that does not include bending stresses
and results in a plate model that is too stiff. In
the latter case, the non-conservative predictions
indicate that the bending stresses at critical parts
are important for the ultimate strength.

These two cases demonstrate that there is a
need to establish more reliable strength criteria
for general cases. Alternative criteria are consid-
ered below. It was found to be convenient to first
consider separate criteria for the plate and for the
stiffeners. A finial criterion for general stiffened
plates may consist of a combination of a plate and
a stiffener criterion.

4.1 Plate criteria

The criteria considered are all expressed in
terms of the yield stress fY and the conventional
equivalent plate stress given by

σe =
√

σ2
x + σ2

y − σxσy + 3τ2
xy (13)

where each stress component is a sum of a mem-
brane “m” and a bending “b” component:

σ = σm + σb(z) ; τ = τm + τ b(z) (14)

In order to model collapse, strength criteria
can be applied at critical points of the plate. The
location of these critical points is dependent on
the load case. For predominantly lateral pressure,
these points can be located in interior plate fields
where yielded regions are developed due to large
bending stresses. In such cases, bending stresses
must be included in the strength criteria. This load
case is not studied here, and the strength criteria
presented below are only verified for plates with-
out lateral pressure loads.

For plates with predominantly in-plane loads,
membrane stresses are redistributed due to out-of-
plane displacements from the interior of the plate
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to the parts of the plate with the largest stiffness.
These parts are at the edges and, in addition, at
the stiffeners in local bending cases, and it is these
parts that are critical for the ultimate strength.
When the capacity of these parts are exhausted,
no more stresses can be redistributed, and addi-
tional in-plane loading can not be applied without
causing collapse.

In some cases, the exact location of the critical
points are known and in other cases these points
must be found as a part of the analysis procedure.
Typical cases for plates subjected to in-plane axial
stresses, but no shear, are

- unstiffened plates as illustrated in Fig. 2(b)
where it is necessary to check three possible
locations of critical points;

- regularly stiffened plates with four possible
check-locations of critical points in the plate,
as illustrated in Fig. 2(a); and

- irregularly stiffened plates in which case the
critical points are located along the edges and
the stiffeners, but where the exact location is
not known beforehand.

Unlike in the two first cases, it is necessary to
search for the critical points in general cases with
irregular stiffeners etc., and a search procedure is
a part of the analysis. It must be noted that such
searching is time consuming, and in this respect,
the present model can be optimised.

The proposed strength criteria for the plate are
given below. All but the first criterion are related
to stresses in the critical parts for a plate with in-
plane loads.

P1) “No yield criterion” at any surface point:

σe(z = t/2) = fY

This criterion is defined by first yield in the ex-
treme fibres of any point in the entire plate, and
may also be applied to plates with lateral pres-
sure. Since yielding will give permanent deforma-
tions in the structure, this may be a sound design
criterion in practise when combined with a similar
criterion for the stiffeners. However, in the context
of ultimate strength predictions, this is normally

(a) (b)

= Critical point

Figure 2. Critical points in the plate for (a) a reg-
ularly stiffened plate and (b) an unstiffened plate.

too conservative and therefore no results with cri-
terion P1 are presented.

P2) “Quarter point criterion” in critical parts:

σe(z = 3t/8) = fY

This strength criterion, defined by first yield at the
quarter point of the plate thickness in critical parts
of the plate, has been considered in order to ac-
count for some bending stresses, typical for irreg-
ularly stiffened, thick plates. This criterion allows
for the formation of some plasticity. Such criteria
applied also at other z-values have been consid-
ered. However, it was found that criterion P2 gave
the better agreement with finite element analysis
in most cases.

P3) “Membrane stress criterion” in critical parts:

σm
e = σe(z = 0) = fY

This strength criterion, defined by first yield at
the midplane (z = 0) in critical parts, is the von
Mises’ yield criterion for the membrane stress men-
tioned previously. This criterion allows for more
plasticity than criterion P2. Results using this cri-
terion are included to demonstrate that it is a non-
conservative approach in cases where the bending
stresses in the plate are important.

P4) “Interaction curve criterion” in critical parts:

(

σm
e

fY

)2

+
1

α

σb
e,max

fY

= 1 where α = 1.5

This strength criterion is applied to critical parts of
the plate, and is defined by the interaction between
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the membrane stress and the maximum equivalent
bending stress σb

e,max in the outer plate fibres (z =
t/2).

Strength criterion P4 is based on an analogy
to the plastic capacity interaction formula for a
rectangular cross-section with area A, given by

(

N

Np

)2

+
M

Mp

= 1 (15)

Here, N and M are the applied axial load and
moment, respectively, as defined in Fig. 3 along
with a typical plastic stress distribution, and Np (=
fY A) and Mp are the corresponding plastic section
capacities when they are acting alone. Substituting
N = σm

e A, Np = fY A, M = σb
e,maxW and Mp =

fY Z, where W and Z are the elastic and plastic
section modulus, respectively, Eq. 15 yields the
criterion P4. For a rectangular cross-section, the
shape factor becomes α = Z/W = 1.5.

Similar interaction formulas for the cross-
section capacity have also been considered, e.g.,
by using other shape factor values or by cal-
culating the equivalent membrane stress as the
equivalent stress of the total stresses at the outer
fibres minus the equivalent bending stress σb

e,max.
However, analyses showed that criterion P4 gives
better results than these alternative approaches.

4.2 Stiffener criteria

For global bending cases, it may be important
to use a stiffener criterion in addition to the plate
strength criterion, because the stiffener stress may
be critical for the ultimate strength in such cases.
The criteria for the stiffeners will be given in terms
of the stiffener stress σs, which is a sum of a mem-
brane stress component expressed by the redis-
tributed plate membrane stresses and a bending
stress component expressed by the curvature in the
stiffener direction [7].

A prerequisite for reliable results by the present
model is that no failure due to local stiffener buck-
ling occurs. Premature local stiffener buckling can
be prevented by using constructional design provi-
sions, as discussed later, in combination with the
presented stiffener criteria. Two possible criteria
for the stiffeners, S1 and S2, are proposed and given
below:

fY

−fY

N
M

Figure 3. Plastic stress distribution for a
cross-section subjected to an axial load and a mo-
ment.

S1) “No stiffener yield criterion”:

σs,max = fY

This criterion is defined by first yield in tension or
compression at the location of the maximum stiff-
ener stress σs,max. Stiffeners in compression must
be capable of developing first yield in extreme fi-
bres prior to local stiffener buckling. Criterion S1
may give very conservative ultimate strength pre-
dictions for global bending cases, and therefore
no results using criterion S1 are included in the
present paper. As mentioned before, this criterion
in combination with plate criterion P1 may a sound
criterion in practical design in order to prevent
permanent deformations.

S2) “Stiffener reduction criterion”:

Cross-sections along the total stiffener
length are reduced with the yielded area in
which σs ≥ fY (Fig. 4) in the most strained
cross-section of the stiffener.

This is a stiffener reduction criterion and accounts
for the plasticity in stiffeners either in tension or
compression in a simplified manner. Stiffeners in
compression must be able to develop plastic de-
formations prior to local stiffener buckling. Fig. 4
illustrates how the cross-section of a stiffener is re-
duced due to large stresses from global bending
about the axis of bending at z = zc. All the cross-
sections along the entire stiffener length are re-
duced with an equal portion as at the cross-section
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with the largest stresses. This is a conservative
choice.

Due to the reduced stiffener area, the axis of
bending (at z = zc) and the moment of inertia
will change. In the same manner as in Brubak
and Hellesland [7], the axis of bending zc and
the moment of inertia are calculated for a cross-
section consisting of the stiffener and an effective
plate width be as illustrated in the figure. A value
be = 30t is used in [7] and in the present compu-
tations.

In criterion S2, the reduced stiffener cross-
sections at a specific state “k” in the propagation
process, are used in the stiffness computation. In
this manner, the progression of plasticity is calcu-
lated a posteriori. This is a non-conservative ap-
proach, but not significantly so for small incremen-
tal step sizes. In addition, this is partly or totally
compensated for by the conservative assumption
that all the cross-sections along the entire stiffener
length are equally reduced. Convergence tests,
similar to a test presented in Brubak and Helles-
land [7], showed that the incremental step size
used in the analysis presented in the consecutive
sections (∆η = 0.01), gives satisfactory results.

The stress distributions shown in Fig. 4(b) and
(c) are typical for global bending in the positive
and negative z-direction, respectively. The former
one is usually the most critical for sniped stiffeners
because the out-of-plane displacements usually are
largest in stiffener direction due to the eccentric
loading (at the plate edges only). The latter dis-
tribution is usually critical for continuous stiffen-
ers in global bending. In order to achieve the most
conservative results, analysis for both global bend-
ing in the positive and negative z-direction may be
necessary, and with the imperfection added in the
corresponding direction. For both stress distribu-
tions in the figure, the stiffener criteria S1 and S2
can be used, independent of whether a stiffener is
end-loaded or not.

As mentioned above, for a stiffener subjected
to compression, premature local stiffener buckling
must be prevented. This is a prerequisite for cri-
teria S1 and S2. Without more refined buckling
analysis of the stiffeners, this can be done by ap-
plying constructional design provisions such as for
instance given in Eurocode 3 [8]. There, provisions

fY fY

zc

z

area removed

reduced
stiffener σs(z)

compressionbe

(a) (b) (c)

Figure 4. Stiffener cross-section with the maxi-
mum elastic stress: (a) reduced stiffener area due
to yielding, and possible stress distribution due to
global bending in (b) positive z-direction and (c)
negative z-direction.

are given for three different cross-section classes,
Class 1, 2 and 3. Class 1 cross-sections are able to
develop plastic hinges without reduction of the re-
sistance, Class 2 can develop plastic deformations,
but have limited rotation capacity and Class 3
cross-sections are capable of developing first yield
at extreme fibres.

In conjunction with the stiffener reduction cri-
terion S2, the requirements for Class 2 are proba-
bly acceptable. These requirements are expressed
in terms of the cross-section dimensions. For in-
stance, compression parts of T-stiffeners with a
Class 2 cross-section, subjected to a constant stress
according to Eurocode 3, must satisfy

cw/tw ≤ 38
√

235/fY ; cf/tf ≤ 10
√

235/fY

(16)
where cw is the free or unsupported web height
(e.g., the clear distance between the welds at the
ends of the web), and cf is the unsupported flange
outstand. More slender stiffeners are allowed for
stiffeners subjected to both membrane and bend-
ing stress.

Without a more refined analysis, it may be nec-
essary to use stiffener criterion P1 instead of P2 for
stiffeners which satisfy the cross-sections require-
ments for Class 3, but not for Class 2. This is not
necessary for the stiffened plates presented in the
consecutive sections as the stiffener cross-sections
satisfy Eq. 16.
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5 Analysis premises

The present criteria for strength predictions
are incorporated into a Fortran computer program
based on a semi-analytical method presented pre-
viously by Brubak and Hellesland [7]. For a variety
of plate and stiffener dimensions, ultimate strength
limit (USL) predictions by this program have been
compared with fully nonlinear, finite element anal-
yses by ANSYS [14] using Shell93 elements. The
comparisons include simply supported plates with
both regular and irregular stiffener arrangements
with eccentric, sniped stiffeners. In USL predic-
tions by ANSYS, both geometric and material non-
linearities are considered.

For verification purposes, the imperfection
shape is taken equal to the first buckling mode
of the stiffened plate, with a maximum value
w0,max = 5 mm in the stiffener direction. For
both the present model and the ANSYS model,
the elastic material properties used are E =
208000 MPa and ν = 0.3, and the yield strength
is fY = 235 MPa. In the fully nonlinear ANSYS
analyses, a bilinear stress–strain relationship is
used that is defined by the material properties
above, and additionally by a hardening modulus
ET = 1000 MPa.

The number of degrees of freedom is about
20000 in a typical USL analysis by ANSYS, which
is believed to ensure satisfactory results. In com-
parison, the displacement field in the present
model is defined with 15 terms in each direction
(225 degrees of freedom), which generally provides
sufficient numerical accuracy. A rather small rate
parameter ∆η = 0.01 is used, and it is discussed
in more detail elsewhere [7], along with load appli-
cation details and convergence tests for decreasing
step size.

6 Local and global bending – Single,

regular stiffener

A stiffener arrangement is considered to be reg-
ular if the stiffeners are oriented parallel to the
edges and, in the case of simply supported plates,
are equally distributed over the entire plate, i.e.,
with the same spacing between each stiffener. A va-

(a)

(b)

Figure 5. (a) Global and (b) local bending mode
of plate 1 computed by ANSYS.

riety of such stiffened plates subjected to in-plane
loading have been analysed.

Although it is most common, and economical,
in practical design to proportion the stiffeners
with a sufficiently large stiffness so as to prevent
a global bending mode, it is still of interest also
to be able to compute the global bending be-
haviour and strength with satisfactory accuracy.
Therefore, both global and local bending cases are
considered for selected plates.

First, the quadratic plates labelled 1 and 2 in
Table 1, are considered. The plates are simply sup-
ported, and each have a single, eccentric sniped
stiffener located at y = b/2. The stiffener of the
first plate is a flat bar and of the second a T-bar.
By varying the stiffener height hw, both global
and local bending cases can be obtained, as illus-
trated by Fig. 5(a) and 5(b), respectively. Typical
ultimate strength limit (USL) results and elastic
buckling stress limits (ESL), are shown in Fig. 6.
The ranges with global and local buckling are in-
dicated in the figure.

The USL model predictions with strength crite-
rion P4 in combination with the stiffener reduction
criterion S2 (“criterion P4+S2”, thick, solid line)
are in close agreement with the ANSYS results,
both in the local and the global bending range. In
the global range, the ANSYS analyses have shown
that there are significant plastic regions in the stiff-
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Figure 6. Uniaxial USL and ESL predictions versus stiffener height hw of quadratic plates with a single
regular stiffener: (a) flat bar stiffener (Plate 1) and (b) T-stiffener (Plate 2).

ener due to large tensile stresses from global bend-
ing. This plasticity is clearly reflected quite well
by the additional stiffener criterion S2, which ac-
counts for the progressing plasticity in a simplified
manner by reducing the stiffness (removing area)
of the stiffener.

By excluding criterion S2, plasticity in the stiff-
ener will not be accounted for, and the resulting
model will be too stiff. This is clearly demonstrated
in the figure by the USL results obtained with cri-
terion P4 alone (dashed line), which are seen to sig-
nificantly overestimate the strength in the global
range.

The bending modes for the plates, shown in
Fig. 5(a) and (b), are typical for simply supported
plates with regular stiffeners. Along the edges, the
bending stresses are zero because the plates are
simply supported. In addition, in the local bend-
ing range, the bending stresses (or curvature) are
small in each direction (x and y) along the stiff-
ener. For such cases, with small (or zero) bending
stresses at the locations where the strength cri-
teria are applied (“critical parts”), the difference
in results using strength criterion P2, P3 or P4 is
small. Consequently, results with criterion P2 and
P3 are not shown.

The elastic buckling stress limits (ESL), or first
eigenvalues, computed by present model (Fig. 6;

Table 1
Dimensions (mm) of plates with regular, eccentric
stiffeners of variable height hw. (s = number of
stiffeners)

L b t tw bf tf s

Plate 1 2000 2000 20 12 0 0 1

Plate 2 2000 2000 20 12 0.75hw 20 1

Plate 3 2000 6000 20 12 0 0 5

Plate 4 2000 6000 20 12 0.75hw 20 5

thin, solid curve) and by ANSYS (open dots), can
be seen to be in very good agreement for both
plates. The minor discrepancy in the local bending
range, is believed to be primarily due to the effect
that the torsional stiffener stiffness is neglected in
the present model. The discrepancy is, as expected,
somewhat greater for the T-stiffener.

With increasing stiffener stiffness, the buckling
mode changes from a fully global mode to an al-
most fully local mode at the threshold value, at
which the rather flat plateau begins. It can also
be seen in the figure that the USL predictions are
larger than the ESL predictions in the first half of
the global bending range. In this range, the plates
are slender and have reserve strengths beyond the
elastic buckling load.
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Figure 7. Uniaxial USL and ESL predictions versus stiffener height hw of plates with five identical regular
stiffeners: (a) flat bar stiffeners (Plate 3) and (b) T-stiffeners (Plate 4).

7 Local and global bending – Multiple,

regular stiffeners

Similar results to those above are shown in Fig.
7 for plates 3 and 4 (Table 1). Each plate is simply
supported and is provided with five identical and
regularly spaced, eccentric sniped stiffeners.

As for the quadratic plate, USL model predic-
tions with criterion P4 combined with criterion S2
(“criteria P4+S2”, thick, solid line in the figure)
are in good agreement with the corresponding USL
results by ANSYS. By omitting the stiffness re-
duction criterion S2, the resulting USL model pre-
dictions with strength criterion P4 alone (dashed
line), become even more non-conservative in the
global bending range than was the case for the
quadratic plates above. This is due to the greater
number of stiffeners.

Also the ESL model results are still in good
agreement with the ESL results by ANSYS. The
difference between these results in the local bend-
ing range, as well as between the USL results in
that range, are somewhat greater than before. This
was to be expected, since the effect of neglect-
ing the torsional stiffness of the stiffeners increases
with increasing number of stiffeners.

8 Local bending – Irregular, inclined

stiffeners

In practise, it is failure associated with local
bending modes that is most common since prop-
erly designed stiffeners generally prevent global
bending modes. For this reason, the suitability of
the various criteria for strength prediction have
been studied more closely for local bending cases
of in-plane loaded plates with small and large slen-
derness values.

Typical cases studied are the plates defined by
the dimensions given in Table 2 and by the rather
irregular stiffener arrangement illustrated in Fig.
8(a). The stiffener arrangements, consisting of ec-
centric T-stiffeners (Fig. 1(b)), are chosen solely in
order to provide severe test cases for the different
criteria.

Bending shapes calculated by the present model
and by ANSYS are found to be very similar. As ex-
pected with the chosen stiffeners, bending modes
are found to be local for all the plates. Since the
bending modes are local, stiffener stiffness reduc-
tion criterion S2 does not have any influence on
the computed results.

USL and ESL predictions by the present model
and by ANSYS are presented in Fig. 8 and 9 by
interaction curves in the applied in-plane stress
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Table 2
Dimensions [mm] of plates with two inclined, ec-
centric T-stiffeners.

L b t hw tw bf tf

Plate 5 1200 2400 22 211 12 150 22

Plate 6 1600 2400 22 211 12 150 22

Plate 7 1000 3000 16 208 8 100 16

Plate 8 1000 3000 10 205 8 100 10

space Sx-Sy for various combinations of in-plane
compression or tension. No external shear stress is
applied. Also included in the figures are the von
Mises’ yield ellipse, which represents the material
as such. The ESL results are included in order to
indicate to what extent the plates may be consid-
ered thick or slender (thin). The greater the ESL
value is for a given load combination, the smaller
is the slenderness.

USL model predictions obtained with the
“membrane stress criterion” P3 (dash-dot lines
in the figures) can be seen to be quite non-
conservative compared to the ANSYS results
(filled dots) for the three plates 5, 6 and 7 in Fig.
8. These plates have small to intermediate slen-
derness values and can be considered relatively
thick to moderately thick plates.

For plate 8, Fig. 9, USL predictions with
the membrane stress criterion P3 is better than
found above. This plate has a considerable re-
serve strength, typical for slender plates, beyond
the elastic buckling load (ESL curves) for major
biaxial compression combinations. Consequently,
the neglect of bending stresses in the criterion
would seem not to be so important for thin,
slender plates. However, predictions are still non-
conservative in one region near Sx = 0.5Sy. This
could partly be alleviated by considering several
imperfection shapes, and selecting the most un-
favourable one. This is discussed more elsewhere
[7] for this particular case.

In the figures, USL model predictions with the
quarter point criterion P2 (dashed lines) are seen
to be in generally good agreement with the AN-
SYS results for all the plates studied, although
somewhat conservative for some load combina-
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Figure 9. Interaction curves in the stress space
Sx-Sy for the slender plate no. 8 with two eccen-
tric, inclined T-stiffeners (Fig. 8(a)).

tions. The agreement is significantly better than
that obtained with the membrane stress criterion
P3. This indicates the importance of including
bending stresses in the strength criterion (P2) in
the general case.

On the overall, it would seem from the figures
that the best USL model predictions are obtained
with the interaction curve criterion P4 (thick, solid
lines). Like criterion P2, P4 also reflects the effect
of bending stresses. Compared to predictions by
criterion P4, criterion P2 results in predictions that
are slightly more conservative for most, but not
all, axial load combinations.

9 Local bending – Irregular, parallel

stiffeners

Similar interaction results (in-plane, no shear)
to those presented above for the plates with in-
clined stiffeners, are given in Fig. 10 for an irregular
stiffener arrangement defined by the insert in the
figure. The plate (L/b/t = 1000/2000/10 mm) is
simply supported and provided with two eccentric
T-bar stiffeners (hw/tw/bf/tf = 295/10/150/10
mm) parallel to the edges, and located at y = b/4
and y = 3b/4, respectively.
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Figure 10. Interaction curves in the stress space
Sx-Sy for a slender plate with two parallel
T-stiffeners with unequal spacing.

Bending modes calculated by the present model
and by ANSYS are still similar for all load combi-
nations, and, also in this case, they are found to be
local modes due to the chosen, strong stiffeners. As
mentioned before, the stiffener stiffness reduction
criterion S2 does not affect predicted strengths in
such cases.

This plate is even more slender than plate 8
above. It has, as seen, considerable reserve strength
above the elastic buckling load (ESL) for most load
combinations. As for plate 8, USL model predic-
tions computed with the membrane stress criterion
P3 compare well with the ANSYS results, except
for some biaxial load cases, in which the model
predictions become somewhat non-conservative.

USL predictions with the quarter point crite-
rion P2 and the interaction curve criterion P4 are
seen to be almost identical. They are in excellent
agreement with, or somewhat conservative com-
pared to, ANSYS results. The conservativeness is
largest when the dominant applied stress compo-
nent (Sx in this case) is acting in the same direc-
tion as the stiffeners.

The abrupt change in the USL interaction
curves obtained by the present model, in the sec-
ond and fourth quadrant, is due to a corresponding
abrupt change in the imperfection shape (taken

equal to the ESL eigenmode). The change in eigen-
mode is reflected by a marked change in the slope
of the ESL curve in the figure. For the plates with
the inclined stiffeners, the buckling mode changes
more gradually in the applied stress space Sx-Sy.

Thicker plates with the same stiffener arrange-
ment as the present slender plate, have also been
analysed. The conclusions of that study are the
same found above for thicker plates with inclined
stiffeners (criterion P3 is non-conservative; criteria
P2 and P4 give generally good predictions).

10 Summary of proposed criteria and

recommendations

Four criteria related to the plate (P1, P2, P3,
P4) and two criteria related to the stiffener (S1,
S2) have been defined. In the general case, a com-
plete criterion is defined by a combination of one
plate criterion and one stiffener criterion. The stiff-
ener criteria S1 and S2 affect results only in global
bending cases.

In practical design cases in which it may be
called for to limit development of plastic regions,
the combined criterion that prevents yield at any
location in the plate or stiffener (P1+S1) may be
applied. However, such a criterion is not of partic-
ular interest when the aim is to predict the ulti-
mate strength limit (USL) as correctly as possible
with a semi-analytical method. Therefore, a com-
bination of some of the other criteria, which allow
for some formation of plasticity, must be used.

For stiffeners with compression in the extreme
fibres, premature local stiffener buckling must be
prevented as a prerequisite for using the stiffener
criteria S1 and S2. This can be done by apply-
ing constructional design provisions such as for in-
stance given in codes [8], if not more refined buck-
ling analysis of the stiffeners is carried out.

Conclusions and recommendations of this study
can be summarised as follows.

1) The results confirm a previous observation [7]
that the membrane stress criterion P3 (yield
at the midplane) may become significantly
non-conservative in general cases in which the
effect of bending stresses become important.
Typically, this has been found to be case for
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plates in global bending and for irregularly
stiffened, thick plates in local bending. Also,
the membrane stress criterion can be non-
conservative for plates subjected to a lateral
loading [12]. Consequently, this criterion is
not recommended in the general case.

2) The importance of the bending stresses in the
plate on the ultimate strength of irregularly
stiffened, thick plates in local bending is ac-
counted for in the quarter point criterion P2
and the interaction curve criterion P4. These
criteria combined with the stiffener reduction
criterion, both provide predictions that are in
good agreement with results from fully non-
linear ANSYS analyses. Criterion P2 is gen-
erally, although not always, more conserva-
tive than P4.

3) By including the stiffener reduction criterion
S2 in an analysis, the formation of plasticity
in the stiffener can be modelled. This is doc-
umented by comparisons with finite element
analyses (ANSYS) for a wide variety of plate
and stiffener dimensions.

4) The combined criterion P4+S2(S1) is on the
overall found to provide best predictions and
is recommended on the basis of the wide vari-
ety of cases studied, including local and global
bending of arbitrarily stiffened plates with
small or large slenderness values.

5) For regularly stiffened, simply supported
plates subjected to in-plane loads, the bend-
ing stresses at the critical parts are normally
small (or zero). Then it makes little differ-
ence for the ultimate strength which of the
criteria P2, P3 or P4 that are used in the
computation.

6) For predominantly lateral pressure loads, a
strength criterion with bending stresses in-
cluded, similar to criterion P2 or P4, may
have to be applied also at the interior plate
fields. This loading is not considered in the
present paper.

11 Concluding remarks

Various strength criteria that may be used in
semi-analytical methods for ultimate strength pre-
diction of arbitrarily stiffened plates in local and
global bending have been studied. Results are com-
pared with fully nonlinear finite element analyses
for a variety of plate dimensions and stiffeners with
regular and irregular arrangements. Good agree-
ment is obtained with a combination of a plate and
a stiffener criterion, in particular for an interaction
curve criterion in combination with a stiffener re-
duction criterion. The method is computationally
very efficient, and it is suitable for incorporation
into computerised analysis and design codes.
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