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Abstract

This thesis consists mainly of two parts; a testing part and a simulation part. Three
different tests are performed: four point bending, static deflection and drop weight
impact tests.

The four point bending test is a fast and simple test where a simply supported
sandwich beam is loaded at two points. Material properties in the facings and core
can be found along with the ultimate stresses in the materials. In the static deflection
test, a sandwich plate lying on a quadratic frame is loaded at the centre. Here, the
deflection of the plate and the applied load are logged. The data retrieved from this
test are then compared with static simulations. In the drop weight tests, sandwich
plates are impacted with a projectile. The acceleration of the projectile is logged
during the impact. These data reveal much about how the plates respond to the
impact. All specimen in the tests are equipped with strain gauges on the facings.
They provide strain information during the tests.

The static deflection test is modelled with both an analytical model and ANSYS.
Various ANSYS elements have been used, and their restrictions when modelling
sandwiches have been investigated. Good agreement between test and simulations
have been established. Also, ANSYS has a shell element which uses the same as-
sumptions as our analytical model, and the two models show the very same centre
deflection.

The drop weight impact is simulated with AUTODYN. From the acceleration
data found in the test, kinetic energy and deflection of the projectile were calculated
and are compared with the simulations. The AUTODYN software manage to simulate
the impacts very accurately.



List of Symbols

Next comes a list of the notation and symbols used in the text. Symbols not men-
tioned here are defined where they appear.

Latin symbol
D

Dy, Dy, D,
E

G

M

F

S

Q

J

a, b

t

d

q

u, v, w
xr, Y, =z
Wp, Wg

Greek symbol

Description

Flexural rigidity (bending stiffness)

Flexural rigidity of components in a sandwich
Young‘s modulus

Shear Modulus

Bending moment

Force

Shear stiffness

Transverse force

Joule

Sides of sandwich plate

Thickness

Distance between centroids of the faces

Pressure load

Deformation components in x, y and z-directions
Cartesian coordinate system

Deformation due to bending and shear, respectively

Description

Spatial displacement function
Strain

Curvature

Transverse shear stiffness
In-plane shear strain
Poisson‘s ration

Shear factor

Density

Mass per unit surface area
Direct stress

Shear stress

ii

Unit

Nmm

Nmm

N/mm? (MPa)
N/mm? (MPa)
Nmm

N/mm

N/mm

N/mm



Subscript Description

X,y,Z Cartesian coordinates
1,23 Cartesian coordinates
¢ Core

f Face

b Pure bending

S Pure shear

Operators Description

d/dx; Ordinary differential with respect to variable x;
0/0x; Partial differential with respect to variable x;
A Laplace operator

il
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Chapter 1

Introduction

1.1 The concept of Sandwich constructions

Several different suggestions on how sandwiches got their name have been introduced
in the literature. One is that John Montagu (1718-1792), 4th Earl of Sandwich asked
for bread, cheese and meat to be brought to the table where he was gambling. He held
the food with one hand, bread outside and the other ingredients inside while conti-
nuing gambling, whereas the other players said to request "the same as Sandwich".
A typical sandwich consists of two slices of bread with meat in between, while the
sandwich materials discussed in this thesis consist of two thin sheets of glass fibre
reinforced plastics (GRP) laminates filled with a low-density material. The American
society for testing and materials (ASTM) defines a sandwich structure as follows:

A structural sandwich is a special form of a laminated composite com-
prising of a combination of different materials that are bounded to each
other so as to utilize the properties of each separate component to the
structural advantage of the whole assembly.

Historically, the concept of using faces separated by a distance was first discussed
in the 1820s by a Frenchman. About 100 years later the concept was first applied
commercially. Prior to World War Two some use was made of sandwich panels in
small planes, but the World War II Mosquito bomber, designed and built by Havil-
land Airplane Company is often quoted as the first structure to incorporate sandwich
panels. A picture of the plane is shown in Fig. 1.1 The excellent performance demon-
strated by this airplane had convinced numerous aircraft designers of the superiority
of sandwich structure as a mean to construct more efficient airplanes. The structural
efficiency of the concept was now generally accepted.

The process of developing core materials has continued until today to reduce
the weight of sandwich panels. Honeycomb core materials, developed primarily for
the aerospace industry, began in the late 1940s. Honeycomb cores still provide the
highest shear strength and stiffness to weight ratios. However, great care is required
in ensuring adequate bonding to the faces. Generally, a hexagonal cell shape as illu-
strated in Fig. 1.2 is used. Due to high cost, the honeycomb cores are predominantly
used in the aerospace industry.

Plastic polyvinyl chloride (PVC) foams was developed in Germany in the early
1940s, but was first commercially used 15 years later. A PVC foam core is used in
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Figure 1.1: A Mosquito Bomber from World War Two. Known as the first mass
produced airplane using sandwich panels.

Figure 1.2: Hexagonal honeycomb core material.

the sandwich plates studied in this thesis.

Theoretical analysis of sandwich constructions began after the World War Two
on the strength and stability of sandwiches. Significant early works by Reissner [18],
Libove and Batdorf [13], Hoff [11] and Mindlin [14] form the basis of two important
texts on sandwich constructions published in the 1960s by Plantema [17] and Allen
[2]. Most of the sandwich theory presented in this thesis is found in the book An
Introduction to Sandwich Constructions [24] written by Dan Zenkert. This book
summarizes the results of research up till today, and the theory is presented in a
unified manner, with coherent system of notation.

For the last twenty years, the finite element method has become the main de-
sign tool for panel analysis. Sandwich design problems are usually more accurately
analysed by the finite element method than by traditional analytical theories. As a
result, little effort has been made on theoretical analysis of sandwich panels. For the
last two decades impact resistance, fatigue and fracture have been the main focus of
research work on sandwich panels.

One of the best examples on modern sandwich technology is the Visby Corvette
shown in Fig. 1.3. This corvette is built with composites and sandwiches using carbon
fibre reinforced plastics (CRP) facings.

A sandwich can be compared to an I-beam. The I-beam uses as much as possible
of the material in the flanges. Only a sufficient amount of material is left in the
connection web to make the flanges work together and to resist shear and buckling.
In a sandwich the faces take the place of the flanges and the core takes the place of
the web. The faces will act together to form an efficient stress couple counteracting
the external bending moment. The core resists the shear and stabilizes the faces
against buckling or wrinkling.

Advantages given by the sandwich concept may be summarized as: high stiffness
and strength to weight ratios, thermal and acoustic insulation, high energy absorption
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Figure 1.3: A Visby stealth corvette. The hull material is a sandwich construction
comprising a PVC core with a carbon fibre and vinyl laminate.

capability. Main drawbacks are: production methods, complicated quality control,
lack of knowledge on the effect of damage, difficult to repair. However, due to the
research and development on these subjects, the difficulties are reduced step by step.

1.2 Specification of the problem

As mentioned above, one of the main area of research on sandwiches has been impact
resistance. Due to the brittle behaviour of GRP materials, the facings suffer much
damage. Furthermore, low velocity impacts may cause a very complicated pattern of
delamination, matrix cracking and fibre failure in the facings. Also, core indentation
and the bounding between the core and face are important factors when the impact
response of the sandwich material is studied. Comparisons between static and dyna-
mic tests and simulations are of special interest. Much simulation time can be saved
if the dynamic impacts can be simulated using static models.

Advanced testing conducted in an instrumented drop-weight rig combined with
complex numerical simulations of the behaviour will give a significant contribution
to the understanding of these problems. SINTEF Materials Technology has all the
necessary equipment, e.g. drop-weight rig, fast-logging desks and software, required.

1.3 Sandwich material studied

The sandwich plates studied are produced by SINTEF in cooperation with ABB
Offshore Systems and they are manufactured at Brgdrene Aa in Hyen. The sandwich
consists of an H-80 core manufactured by Divinycell [10] and [0,90]s GRP-facings,
and it was cut into 4 rectangular plates and two beams according to Fig. 1.4.

1.4 Chapter overview

This thesis is organized as follows:

Chapter 1 gives a brief historical introduction to the sandwich concept. Also, advan-
tages and disadvantages, areas of research and applications where sandwich materials
are used are presented. Chapter 2 provides a summary of sandwich theory, and the
various simplifications that need to be made, whereas the analytical solutions to
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? 90-direction

1310 mm

—

O-direction

1310 mm

P3 P4
620 x 620 mm?| 620 x 620 mm?

Figure 1.4: One large sandwich plate was cut into smaller parts as shown in the

figure.

beams and plates are offered by the chapters 3 and 4, respectively. Chapter 5 descri-
bes the various tests conducted. Also the testing equipment used, is presented. In the
Chapter 6, 7 and 8, the tests are simulated and the results are compared. Chapter 8
contain comparisons between the static and dynamic plate tests. A summary of the
thesis is given along with a conclusion and suggestions to further work in Chapter 9.



Chapter 2

Sandwich theory

2.1 Introduction

Materials consisting of two faces separated by a core is called sandwich materials. The
advantages of sandwich materials was first appreciated by aerospace industry, who
needed light, strong and stiff materials in their planes. Today sandwich panels are
being used in a wide range of structures. The sandwich panels in this thesis consist
of Glass Fibre Reinforced Plastic faces and PVC foam cores. Theoretical analysis
of sandwich panels are complicated, and some simplifications need to be made. It
is virtually the same as engineering beam theory, but now one must account for
transverse shear deformations. Another novelty is that different loads will be carried
by different parts of the structure.

The theory presented in this section is a brief summary of the work done by Allen
[2] and Plantema [17] and is found in [24].

2.2 Flexural Rigidity

A well known problem is a straight beam subjected to a constant bending moment
giving the beam a curvature r, (inverse of radius of curvature) according to Fig. 2.1.
The strain in a fibre situated a distance z from the neutral axis is now

Figure 2.1: A beam subjected to a bending moment.

€x = KgZ (2.1)

ie, linearly varying with z. The applied moment per. unit width may be expressed
by

E 2
M = /awzdz :/R—Zdz, where EI = /Ez2dz =D. (2.2)
€T
El is the flexural rigidity, from now on denoted D for the following reason: if Young'‘s

modulus F varies along the z-coordinate then it can not be removed outside the in-
tegral in Eq. (2.2), and the definition of the moment of inertia will be lost. Therefore,
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for a general cross-section, Eq. (2.2) must be used and the flexural rigidity D will be
the only property well defined. The general expression for the strain will then be

Mz
&="5 (2.3)
Assuming small deflection theory, the radius of curvature is found to be
1 d*w
— = 24
R, dxz?’ (24)

where w is the displacement along the z-axis. The coordinate system and positive
directions are shown in Fig.2.2.

Q
M V77777
Vel= w
j V)
Z, W
Figure 2.2: Sign convention for sandwich beams
Assuming

e symmetric layup
e faces have the same thickness ¢y and are of the same material E

e core has thickness ¢. and modulus F,

the flexural rigidity D per unit width of a cross-section as shown in Fig. 2.2 is then

3 2
D= /Ez%zz _ bty Bty d | Bt 2D; + Dy + D, (2.5)
6 2 12
where d = t; +1. is the distance between the centroids of the faces. The first term of
(2.5) corresponds to the flexural rigidity of the faces alone when bending about their
individual neutral axes, the second represents the stiffness of the faces associated
with bending about the centroidal axis of the entire sandwich and the third term is

the flexural rigidity of the core.

2.3 Approximations in the Flexural Rigidity

The faces are usually thin compared with the core, and the first term of Eq. (2.5) is
therefore quite small and is less than one percent of the second if

d\? d
3 (—> > 100 or — > 5.77. (2.6)
ty ty

As a result of materials selection, the core usually has a much lower modulus than
the face. Hence, the third term is less than one percent of the second if

6Et rd?

> 100. 2.7
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Thus, for a sandwich with thin faces, t; << t., and a weak core, E. << Ey, the
flexural rigidity can be approximated as

_ Ejtyd?

D
2

(2.8)
For ordinary engineering materials used in sandwich structures, the core/face thick-
ness ratio is commonly 10 to 50 and the face/core modulus ratio between 50 and
1000. It is important to notice that the dominating term in the expression for the
flexural rigidity is that of the faces bending about the neutral axis of the entire
sandwich. This part is the one originating from a direct tension-compression of the
faces, and is called the sandwich effect.

The sandwich panels used in this thesis have core/face thickness ratio 25/3 = 8.3
and face/core modulus ratio 31500/80 = 394. Our material properties also fulfill the
approximation limits in Egs. (2.6) and (2.7),

d
— = 28/3=9.33>5.77
tr
6E ¢t pd? 6 x 31500 x 3 x 282
= = 8891 > 100.
Bt 80 x 252 ”

Therefore the error will be less than one percent when using the approximations in
flexural rigidity.

2.4 Stresses in the Sandwich Beam

From Eq. (2.3), the stresses due to bending are readily found. The face and core
stresses are
te _ MzE,

MzE t
;ffor§<|z|<50+tf, Oc =

of = for 2| < % (2.9)
Hence, the stresses vary linearly within each material, but there is a jump in the
stress at the face/core interface.

In the same manner as above, a general definition can also be found for the shear
stress. Consider an element dx of a beam as shown in Fig. 2.3. The shear force must
balance the change in the direct stress field

Toz
o ‘ {—» oz + Lrdy
‘r”’ ”””””””””””””””””””””” - xTr = x dx
T
Z 9 Txz Tz + %d'z
- - dog d
Oz — Oz + 2 ax

Figure 2.3: Beam section dx defining equilibrium for a sub-area.



CHAPTER 2. SANDWICH THEORY

doy  dTes (d+tf)/2 dog
e = [ e (210

when using that 7,.((d + tf)/2) = 0. Now, using Eq. (2.9) and dM/dz = Q we get

(d+tyg)/2
Tz = %/ Ezdz = QIZ(Z) (2.11)

where B(z) is the first moment of area. In the core material for |z| < ¢./2 the first
moment of area is

Eftpd E. [t Le
B(s) — e _ be 2.12
(2) 5 T3 <2 Z> <2 + z> (2.12)
yielding the shear stress in the core
Q [Eftyd  E. (2
2)==|——+— (= - 2.1
7e(2) 5 5 + 5 (5% (2.13)

and similarly in the faces for t./2 < |z| <t./2+tf

E. (t t Ef (t2
B(z) = =< (—C+tf—z> <5°+tf+z> (o) = 2L <£+tctf+t§—z2>.

2 \2 ~ D2 \4
(2.14)
The maximum shear stress appears at the neutral axis, i.e. for z =0
Q (Estrd Eqt?

Te,maz = TC(Z - 0) = 5 f2f + ;C (215)

and the shear stress in the core/face interface becomes

Eted
Te;min = Tf maz = % ( f2f > . (2'16)

From Eq. (2.14) it is seen that the shear stress in the outer fibre of the faces is zero
which must be the case for a free surface.

2.5 Approximations in the Shear Stress

The difference between maximum and minimum shear stress in the core is less than
one percent if
4F ft fd
E.t?

> 100. (2.17)

Inserting for our material properties gives

AEjt;d

= 212 > 100.
Et2

The error made when assuming that the shear stress in the core equals the shear
stress at the core/face interface is thus less than one percent.



2.6. SUMMARY OF APPROXIMATIONS

2.6 Summary of approximations

Assuming weak core F. << Fy, the stresses can now be written

MzEf
oc(2) =0 op(z) = Do +2D7) )is
T(z)——Eftfd T(z)——Q Ey i%-tt +t5 — 2 o
T a(Do+2D;) TV T Dy+2D; 2 \a T T '

When the core is weak, E. << E, and the faces are thin, t; << ., then the formula
reduces to the simplest possible form

M
0c(2) =0, 04(2) = :I:tf—d, To(2) = %, and 77(z) = 0. (2.19)

This simplifies the principal load carrying and stress distribution in a sandwich con-
struction to the faces carry bending moments as tensile and compressive stresses and
the core carries transverse forces as shear stresses, graphically represented in Fig.
2.4.

No Approximations FE. << Ey E. << Ey and tc. >> ty

Figure 2.4: Direct (a) and shear (b) stresses for different levels of approximations.

2.7 The Sandwich Effect

Consider a homogeneous beam with a given Young'‘s modulus ¥, and a given strength.
Calculate the weight, bending stiffness and strength of the beam and set them to
unity. Suppose we now cut the beam in two halves and separate the parts with a core.
Calculating the corresponding stiffnesses and strengths of the sandwich beam gives
the relative properties given in Fig. 2.5. Hence, by using the sandwich concept, the
flexural rigidity and flexural strength can be substantially increased in comparison
with a single skin structure without adding much weight.

10
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Weight Flexural Bending
L rigidity strength

= ! 1 1

.

Figure 2.5: Comparison between homogeneous and sandwich cross-sections.

2.8 Shear Stiffness and Deformations

When a structural element is subjected to shear forces it will deform without volume
change. This shear force can be divided into two parts, transverse and in-plane shear
force as illustrated in Fig. 2.6.

—_—
—
< Transverse
[ , shear stress
—_—
—

In-plane shear stress

Figure 2.6: Illustration of in-plane and transverse shear forces.

T L T L T L
— T — T — T
v | vdx
70
7o
dx
total transverse in-plane

Figure 2.7: Deformations of a structural element subjected to shear forces.
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2.8. SHEAR STIFFNESS AND DEFORMATIONS

The transverse deformation of an element is according to Fig. 2.7 equal to vydz.
To find this, we need to perform an integration over the length of the beam, but first
the shear stiffness must be known. For a general cross-section the shear stiffness S
can be calculated by using an energy balance equation, so that the potential energy
of the applied load equals the strain energy of the system. The shear stiffness S is
found by calculating the average shear angle of the cross-section, dd“g’;, where wjy is

the displacement due to shear as

1 dws 1 o odws  Q
= = 3 Tz zx 5 h fi =< 2.2
2@ T = 3 /7‘ (2)722(2)dz, where by definition =S (2.20)

Using the approximations for a sandwich with thin faces, weak core and that the shear
modulus of the faces are large, it is seen that 7,, = @}/d and Eq. (2.20) becomes

1 dws_1/tc/2Q Q

2 o d God

2= oG m =55 5= (2.21)

de 2

The shear deformation, divided into transverse and in-plane, is illustrated in Fig.
2.8. It is assumed here that the shear deformations only occur in the core(Gy = 00)
and that this deformation is linear, F. << Ky, giving a constant core shear stress
and a constant shear strain. Denote the transverse shear in the core by v and the

[ e N
-0

Figure 2.8: Shear deformations of a sandwich element

in-plane core shear by vg. By studying the geometry, the following relation is found:

dws

dx

dws ~te Yote
d e — tC _ — = — — .

And using the relations

gives

= _We (2.22)
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Chapter 3

Analytical solutions to sandwich
beams

3.1 Introduction

In classical plate theory shear deformations are neglectable compared to the bending
deflection. However for short beams or cross-sections with low shear stiffness this
deformation must be included. This is usually called Timoshenko beam theory. The
deformation consists of two parts

(i) deformation due to bending moments -bending- wy
(ii) deformation due to transverse forces -shear- ws

For a sandwich with thin faces the two deformation parts may be superimposed as

w = wp + Ws. (3.1)

dwp dws
%dl‘ dx dx dx da

— |
(a) (b) (©)

Figure 3.1: Total, bending and shear deformation.

3.2 Deriving the beam equation

Both Classical and Timoshenko models rest on the assumptions of small deformations
and linear elastic isotropic material behaviour. In addition, both models neglect
changes in dimensions of the cross sections as the beam deforms. The theory described

13



3.2. DERIVING THE BEAM EQUATION

in this section is mainly based on [24], and supplemented with information from
[5]. For simplicity all beams are assumed to have unit width. The beam equation
arises from four different subsets of beam theory: the kinematic, constitutive, force
resultant, and equilibrium definition equations. Combining these parts results in the
beam equation.

Kinematic equation

Kinematics describe how the beam’s deflections are tracked. We need to make some
assumptions on how the cross-section rotates. Classical beam theory or the engine-
ering beam theory accounts for the effects of bending moment upon stresses and
deformations. Transverse shear forces are recovered from equilibrium, but their ef-
fect on beam deformations is neglected. Its fundamental assumption is that cross
sections remain plane and normal to the deformed longitudinal axis. This rotation
occurs about a neutral axis that passes through the centroid of the cross section. The
Timoshenko model corrects the classical beam theory with first-order shear defor-
mation effects. In this theory cross sections remain plane and rotate about the same
neutral axis as the classical beam theory, but do not remain normal to the deformed
longitudinal axis. The deviation from normality is produced by a transverse shear
that is assumed to be constant over the cross section. The kinematic assumptions for
the in-plane and out-of-plane deformations can be written as

u(z) = ug + 21, and w = wy + ws, (3.2)

where the in-plane deformation u is thus a linear function in z, and 1, is the cross-
section rotation which only depends on the bending deformation wp of the beam
(since shear only causes sliding of the cross-section). Thus,

dwb

% = _%- (3.3)

Constitutive equations

The constitutive equation describes how the direct stress ¢ and direct strain ¢ within
the beam are related. Direct means perpendicular to a beam cross section; if we were
to cut the beam at a given location, we would find a distribution of direct stress
acting on the beam face. In beam theory we use the simple one-dimensional Hooke‘s
equation

oy = Ee,. (3.4)

The faces of our sandwich panels are thin enough to behave like membranes when
shear deformation is studied. Thus any transverse shear deformation may take place
without being resisted by any bending of the faces about their individual neutral
axes. This is equivalent to the concept of partial deflections; bending causes in-plane
stresses and transverse forces causes shear stresses and deformations. This study only
considers stresses and strains arising from the bending moment and transverse forces
of the beam, ie. ug = 0. With the assumptions from Eq. (2.19) the in-plane normal
stress is obtained as
d>wy

of=—Epr 5 (35)
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CHAPTER 3. ANALYTICAL SOLUTIONS TO SANDWICH BEAMS

and the transverse shear stress

Te(2) = (3.6)

Q
=

Force and Moment Resultants

Force resultants are a convenient mean for tracking the important stresses in a beam.
If we consider a cross-section of a sandwich beam at a point x, we would find a
distribution of direct stresses o, (a) and shear stresses 7., (b) as shown in Fig. 3.2
when the approximations from Eq. (2.19) is applied. The lower figure (c) shows the
resultant forces without any approximations. Each portion of direct stress acting

My

Figure 3.2: The two upper figures shows direct and shear stresses in a sandwich
when thin face and soft core approximations are applied. Resultant forces without
any approximations are shown in the bottom figure.

on the cross section creates a moment about the neutral plane (z = 0). Summing
these individual moments over the area of the cross-section we obtain the resultant

moment M, definition by
M://zaxdzdy, (3.7)

where y is in the direction of the beam width. The sum of the shear stresses on the
cross-section is the definition of the shear resultant Q,

Q= / / raadady. (3.8)

The sum of all direct stresses acting on the cross-section is denoted N,

N = / / opdzdy. (3.9)

The resultant force N does not play a role in linear beam theory since it does not
contribute to the deflection w. The width of the beam is set to unity, so the integral

15



3.2. DERIVING THE BEAM EQUATION

J 1dy becomes unity. From Fig. 3.2, the in-plane force in the upper and lower face
can be written

ty/2 d>wy Erted d*w Do d*w
flf b 0 b

Ny = — Ef(z—d/2 dz = = —
! /tf/g [ sz —df2) dx2} c 2 da? d dx?

tr/2 d? wp, Estrd dzwb Do deb
Ny = — E d/2 dz = ———— =
2 /tf/2 [ sEH A2 } : > 42 d di?

and the moment due to the in-plane forces becomes

d d d?w
My = Ni(—5) + (—Na)5 = —Do——. (3.10)
2 2 dx?
The resultant moment in the core is
(d—tg)/2 2 F43 2 2
o= [ B = g =g e
(d—tf)/2 diL‘ 12 dl’ dSL‘

and the faces

ty/2 d>wy Est} 2w d*w
f b b
M, =— Fiz(z—d/2 dz = ——— =—-Dy——. 3.12

! /tf/z [ 72( / ) } 12 dx? I dz? ( )

The total bending moment is hence

d2wb dzwb
M=—(Dyg+ D¢+ D =—-D——. 3.13
( ot Dyr+ ) dx2 dr2 ( )
The response of the sandwich beam is now described by two constants; the flexural
rigidity D and the shear stiffness S from Eq. (2.21),

D:—LandS Q

= 3.14
d?wy/dx? dwg/dx (3:14)

Using (3.2), the contribution to the curvature becomes

d?w M 1dQ
dax? D * S dx (3.15)

Equilibrium equations

The equilibrium equations can be derived using Fig. 3.3 which shows an element
dzx in its distorted condition with forces acting on it in positive directions. From
equilibrium of bending moments, it is found that

dM/dx = @, and by using the definitions of Eq. (3.14) we find a relation between

the partial deflections as
dwg D d3wy,

=_==2 1
dz S dx3 (3.16)
and from vertical equilibrium
dq
g+ o=+ ngc2 = 0. (3.17)
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Loading ¢ = f(z)

Figure 3.3: Distorted beam element.

Governing Beam Equations
Rewriting Eq. (3.17) gives

d?ws n Nde

Saz TNz

= —q. (3.18)

In the case of pure bending or small deformations when N is zero, an equation in wy
only is obtained. Rewriting Eq. (3.18) using Eq. (3.16) gives the governing equation
in Wy . )

D+ % - N% =q. (3.19)
Rewriting this equation using the relation between w; and wy the governing equation
can be written without the use of partial deflection as

d*w Dg d*w

This equation will be used to study four-point bending of sandwich beams.

3.3 Analytical solution to four-point bending (FPB)

Four-point bending tests are used to study material properties. The four-point bend
specimen is schematically illustrated in Fig. 3.4 along with moment and shear force
diagrams. As seen, the transverse force is constant and equal to P between the
inner and outer supports. This means that the shear stress in the core is constant
over a long part of the beam. Between the inner supports, over a length of L, the
bending moment is constant and equals P(Ls — L1)/2 and the shear force is zero.

17



3.3. ANALYTICAL SOLUTION TO FOUR-POINT BENDING (FPB)

Ly
o
P VP
VP L i
z
y (=)
Pz P(L2 —x)
P(L2— L1)/2
A | |
Q
o +P
-
—P |

Figure 3.4: Moment and Shear diagram, P = maximum failure load

The deflection of the beam is now easily found from the sandwich theory outlined in
the previous chapters.
Boundary conditions

L] wb(O) = wS(O) = wb(Lz) = ws(LQ) =0

o Mb(1,/2) = de(L,/2) = 0 symmetri conditions

e continuity at points of loading

The deflection at the points of loading is equal to the displacement of the testing
machine. Solving for the bending and shear deflections by superposition one obtains

w(LQ — Ll) _ P(L2 — L1)2(L2 + 2L1) n P(L2 — Ll)
2 48D 45 ’

by superposition. The maximum deflection at the centre of the beam can be written

(3.21)

@) _ P(Ly— L1)(2L3 + 2L, Ly — L}) N P(Ly — L)
2 96D 45

The maximum direct stress in the faces appears between the inner supports and the
maximum transverse shear stress appears between the outer and inner support. The

w( . (3.22)
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corresponding values read

M _ P(L2—L1)
tfdb - Qtfdb

P
, and T.= — (3.23)

-4
of db

respectively, where b is the width of the beam. The fact that the transverse forces are
zero and the bending forces are constant in the midsection ensures that the bending
stiffness can be easily measured. The equations developed in this section will be used
in Section 5.6.
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Chapter 4

Analytical solutions to sandwich
plates

4.1 Introduction

In the following section analytical solutions to plate bending will be developed. The
theory is based on small-deformation plate bending analysis by Timoshenko and
Woinowsky-Krieger [21] which is extended to account for transverse shear deforma-
tion following the work by Libove and Batdorf [13]. It is assumed that the transverse
normal stiffness of the core is infinite and thus keeping the distance between the
centroids of the faces, d, constant. The theory is developed for orthotropic plates
with x— and y—axis being the principal axes of orthotropy. This means that the
properties of the plate are fully described by seven constants, the flexural rigidities
D, and D,, the twisting stiffness D,,, the Poisson‘s ratios v,, and v,,, and the
shear stiffnesses S, and S,. An isotropic solution is also found by simplifying the
orthortopic solution.

The coordinate system and the positive directions are defined in Fig. 4.1. It is
assumed that the shear strain is constant over the cross-section (thin-face approxi-
mation) so the in-plane deformations for the classic Reissner/Mindlin kinematics can
be used. These are

u = ug + Tzy, V=109 + 2ytPy and w = wo, (4.1)

where subscript 0 refers to the middle plane. v, and v, are defined as the cross-
section rotations in the x— and y—directions, respectively. Assuming strains to be
much smaller than unity, the strain-displacement relations are defined as

% € —@and _8_u+@
oz’ Y oy %y_ﬁy ox’

for strains much smaller than unity.

(4.2)

€Er —

4.2 Deriving the plate equation

4.2.1 Governing equations

The bending moments and transverse forces can be written as functions of the dis-
placement field w. The curvatures k. and r, (inverse of the radius of curvature) and
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| Taz
M, V»D/IVI?/ Ty

Figure 4.1: Sign convention used in plate analysis

Kzy can be written

d*w 82w d*w

Ky = ——F—, HKy=— and Kgy = 836—8y

Ox?’
The component ., is a twisting curvature, stating how the x-direction midplane
slope changes with y (or equivalently how the y-direction slope changes with x). The
Poisson‘s ratios may be expressed by
0%w/0y? 0?w/0x?

Vpy = *W and Vyr = *W (44)

(4.3)

Assuming that only a single load is allowed to act on the plate at a time, the plate
equations can be derived by collecting the contributions from each load. This leads
to the following equations for the curvatures

9w M, My 1 0Q,
22 = D, T, TS o (45)
azw M:): Mw 1 8Qy
2 D, T S, dy (4.6)
8211) sz 1 8@1‘ 1 aQy

_ R 1 9Qy 4,
920y w29, Dy 28, oz (4.7)

Next, equilibrium equations are defined by studying Fig. 4.2, assuming an increment
change in all forces and bending moments over the differential element. and By
projecting all forces onto the z—axis, the vertical equilibrium is found. As seen in
Fig 4.3, the projection of the normal force N, onto the z-axis gives

w ON, ow 0w
—N,—d N, + ——dx)dy(— —d 4.
Sy + (N, + 2 dn)dy(5o + 55 d) (48)
and the projection of the shear force N, is similarly
ow ON, ow 0w
~Nyp—d Ny + —Ldy)dx dz). 4.
YT 0 v+ (Nya + oy y) ((%U + 0xdy z) (4.9)

By including the rest of the terms and omitting higher order terms in dx and dy one
arrives at
0Q, 0Qy 0%w 0%w 0%w 0%w

—Z N, N, N, Nyp——
oz oy 1T Negm TG T g, T Mg a,

=0.  (4.10)
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My M,
M, + 2 dz

OMg,
Mgy + — 2 dx

/ J |
=
oM
M, + Oyy dy
Q?/
N,
Qs Nyz !
Ngy
N, N, + 2o gy
ONye
| T Qu + 2 da
=
oN,
Ny, + ay" dy

29Q
Qy + Tt dy

Figure 4.2: Bending moments and forces acting on a differential element.

U

O

w
ox

Qf

a a2
Bw T 524

dx -

|
Ng + aa%dx

Figure 4.3: Force projections.

From equilibrium of the bending moments about the z-, y- and z-axes the following
equations are obtained

COM,  0My,

Qo — - By 0 (4.11)
OM, OM,
P (4.12)

Here we have applied the relation M,,=M,, since Ty = Ty;.

By assuming that the normal forces NV are constant throughout the plate and that
they do not change as the plate bends the analysis is restricted to small deformations.
Inverting the relations above the following expression for the bending moments arise

_ Dy o (0o Qz o (0 Q

M= i & (B - 8) +oed (5 - %)) (4.14)
_ D a (0 Q o (9 Qx

My = -0 |:8_y (6_1;/) - S_j) T Vaygs (% a S_w)} (4.15)
_ Dy g (9 Q o (0 Qx

- E(e(E-2)8(E-9)] wo

Now we have six fundamental equations to determine the deflection field, the forces
and the bending moments. It might be more convenient to rewrite these equations
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to obtain equations in one single variable, ie. for the deflection only as a function of
the applied loads. Thus, by rearranging Eq. (4.10), one obtains

0*M,, 282Mxy+82My 0Q, 0Qy .

Ox2 + Oxdy oy? " Or + Oy -4 (4.17)

with ) ) )
0“w 0“w 0“w
* = N,—— + 2N, N, . 4.18
¢ =0t O0x? + 2Ny 0x0y Ny Oy? (4.18)

4.2.2 Partial deflections

Partial deflections due to bending and shear are introduced by assuming only one
mode of deformations at a time, and that we can separate the displacement fields
due to bending wy, and transverse shear ws. The total deflection is then found by
superimposing these contributions. We also introduce a specific relation between the
transverse forces and the shear part of the deformations as

Ows Ow,

B and Qy =S, 9y (4.19)

w = Wy + W, Qx:SJ:

The two field variables (), and @), have now become linked to a single variable wy, and
this is in essence the simplification. It also means that the bending moments will be
independent of the transverse force field and vice versa. This assumption will only be
correct for isotropic plates but will be a very good approximation for plates that have
equal rigidities in both z- and y-directions, or rather for cross-sections shearing the
same neutral axis. Most sandwiches used in practical applications are quite close to
this condition. But with these simplifications, the very complex governing equations
can be transformed into much simpler equations to be solved for the bending and
shear separately.

Assuming that z, = 2z, = z are measured from the geometric middle plane of the
plate, we get the following approximate set of cross-section rotations

Oowy, Owy,

By letting ug = vg = 0 one may then obtain
=2 O
B or’ Oy
9 9 9 (4.21)
N 0 Wy 0 Wy and 9 19} Wy
€r = —Z——5, €y = —Z—— an = —2z2—.
v ox2’ Y Oy oy Oxdy
Equations (4.14), (4.15) and (4.16) can now be transformed to
D 0? 0? D 0? 0?
My = — . U;b"'yy:v u;b » My == . u;b""”fvy u;b ’
1 — Vpylye | Ox oy 1 — Vgylyz | Oy ox
9wy, ow ow
M:By = —nym7 Q.’E = Sxa—; and Qy = Sya—ys
(4.22)
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4.3. SOLVING THE PLATE EQUATION, ISOTROPIC FACINGS

It is now seen that the partial deflection w; represents the classical plate bending
deformation. Since the shear deflection does not rotate the cross-section, all bending
moments will depend solely on wy,. The relation between w, and ws is found by
substituting the above equations into Eq. (4.11) and (4.12), which yield

Ows D, OPwy, Pwy, DPwy,
S or 1 — Ugylya [ 73 e 8:1:83/2] T 5roy? (4.23)
8w8 Dy 83wb 8311){, 8371){,
—_— = - = | —Dpy=—5——- 4.24
Y oy 1 — Vgylys [ oy3 thy 0x2dy Y 0x20y (424)

By differentiating the above equation, using Eq. (4.22) and inserting into the equili-
brium equation (4.17) we get
D%w,

F8y Gy =" (4.25)

s, Aws
Ox?
Using (4.23) and (4.24) the equilibrium equation above may be expressed by

8471)5 D 8411)1,
Y4+2D Y =q* (4.26
T2y 0220y? 1 VayVyz Oy q (4.26)

D, 0wy, Vye Dy + Vay D
T T
1 — Vpylye Ox 1 — vayVyz

which is the differential equation in pure bending of an ordinary orthotropic plate.
If we accept the concept of partial deflections, we can now assume Eq. (4.25) to be
valid for the case when the bending stiffnesses goes to infinity. Then all components
in ¢* takes the value of ws so that Eq. (4.25) is truly an equation in ws only. In the
same manner, Eq. (4.26) can be solved with respect to wy by setting the deflection
components on the right hand side equal to w;. The two solutions do not depend on
each other and the total solution can be obtained by superposition.

4.3 Solving the plate equation, isotropic facings

Fourier solutions to the differential equations governing plate deflections, assuming
isotropic facings are presented in this section. The equations are implemented in a
computer using MAPLE in Section 6.2.4 where the deflections are compared with
the static compression test described in Section 5.5.

4.3.1 Simplifications

For isotropic sandwich plates we have

D

Dszy:Dﬂ Vﬁy:VyQJZVa Sx:Sy:S, andDmy:H—y

(4.27)

The concept of partial deflections introduced here, will now be exact. By using (4.27)
the expressions relating wy to ws in Eqgs. (4.23) and (4.24) reduces to the simple form

D
Awy = ———A? 4.2
w S =) Wh (4.28)
while the governing equation in Eq. (4.26) reduces to
D 2 *
1_V2A wy =¢q". (4.29)
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Here A is the Laplacian operator. In general, Eq. (4.28) can not yield edge values
ws = 0 since Awy, will vary along the edge. Thus, wp and w, will not vanish separately
on the boundary but only their sum will equal zero. By combining Eqgs. (4.28) and
(4.29) we can make the partial deflections vanish and we arrive at an equation for
the total deflection

D

1—12

DA

2, —
Alw = S(1—v2

1— 7. (4.30)

4.3.2 Equations

oo _ | X

Figure 4.4: Rectangular simply supported plate

The boundary conditions for a simply supported plate is

w=0, M, =0atz=0andx=a
w=0, My=0aty=0and z =0

The deflection can be represented by a double Fourier sine serie

oo o0

w = Z Z Wy, SIN mre sin? (4.31)
a

n=1m=1

which satisfies all the boundary conditions. A transverse load can in a general form
be written as

oo [e.e]
q= Z Z Gmn SIN mre sin% (4.32)
a
n=1m=1

where ¢,,, are the Fourier coefficients that are determined by

a rb
Gmn = %/0 /0 q(x,y)sin m;r:): sin nibxdxdy (4.33)
for a prescribed surface load ¢(z,y).

For a concentrated load Q) acting in the centre of the plate the coefficients are
obtained by expressing the pointload as the Dirac delta function. Let p be the inten-
sity of a load uniformly distributed over a small square with sides ¢ parallel to those
of the plate. Set the point load Q = pc?. Then

a+c b+c

4 e
Qmn = —7 /1; /b; Q sin " gin n%;yda:dy (4.34)

c? a
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for odd values of n and m. Eq. (4.34) was approximated as

4Q . mmwm . nw
Gmn = —-sin— = sin == (4.35)

in [24] which is obiously wrong when solving Eq. (4.34). The correct approximated
expression for the concentrated load is

4Q . mmw . nmw
Gmn = —-sin —=sin —-. (4.36)

When substituting into Eq. (4.30) we get

D [(mw mT. nw mi

)2 +2(—) () + (=
1—1v2|" a a b b (4.37)

which gives

dmn
w 5 (4.38)

D mm\2 nm\2
b Gmn(1 — V?) L sav [( )+ () } mrr . nux
w = Z 5 5 sin sin — (4.39)
n,m=1 mm 2 nmy2 a
, e+ o]

This expression can now be divided into the partial deflections as follows

nmwx nmwxT

k 2\ oty MTT L3 k . MTT 3

1 — v*) sin ™= gin &7= nsin ™7 gin M

wy = Zan( ) a 2b’andeZE:Qm a b
WDl () S| 4 (]

(4.40)

When solving for the deflection, k must be taken large enough to give accurate results.

4.4 Solving the plate equation, orthotropic facings

To find expressions for the deflection for sandwich plates with orthotropic facings
the full solution must be used. In short, by introducing the field assumptions from
Egs. (4.31) and (4.32) into Eq. (4.10) the relation between the unknown coefficients
Winns Temn and Ty, can be derived. The Fourier representation of the load gy, is
the same as used for isotropic facings in Eq. (4.34).

The cross-section properties are now calculated for the directions of orthotrophy.
D;, the relation between the bending moment M, and the corresponding curvature
0?w/0x? is defined in the same manner as for the beam;

ExtfdQ

D, = [ E,2%dz ~
/ z az 2
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CHAPTER 4. ANALYTICAL SOLUTIONS TO SANDWICH PLATES

Similarly, D, may be defined as follows

E,trd?
D, = /Eyszz ~ %

An exact expression for the torsional stiffness D, is more difficult to assess. However,
through use of Egs. (4.21) and (4.22) we can write

2

assuming thin faces and weak core [24]. The shear stiffnesses S, and S, are calculated
in the same manner as for the beam, ie.

since the core is isotropic.

4.4.1 Equations

The field assumptions are now

o0 o0
WonQmn . mmx . nwx
w :E g - sin sin
Zmn, a b

n=1m=1

Q. = i i Xmnlmn gy L oy 1T (4.41)
v Zmn a b )

n=1m=1

o o
0 YonmQmn . mmr | nwx
y = E E sin sin
Zmn a b

n=1m=1

where the coefficients are

oo L iy f(ma\' D (mm\? () vy De + vy D,
mn Sz Sy |2 Y a 1 — Vgylye a b 1 — Uyl
(N Dy O\ (mr\(nm\’_DeDy ] [(mr\'_ D.
b 1 — VayVya a b 1 — VpyVye a Sa(1 = Vaylya)
FRE. = R U S I 0 R 0
b Sy(1 — vgylys) 2 S\ a Sy \ b
(4.42)

27



4.4. SOLVING THE PLATE EQUATION, ORTHOTROPIC FACINGS
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Eq. (4.44) was found to have a few typing errors, but these are corrected here.
The deflection of a sandwich plate with orthotropic facings can now be found by

implementing the above equations in a computer code. This is done in Section 6.2.4.
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Chapter 5

Testing

5.1 Introduction

Materials are classified by how they behave when loads are applied. Material pro-
perties such as the elastic modulus and the shear modulus are found by loading the
materials in the appropriate directions and studying the load-reaction curve from the
test. In this thesis low-velocity impacts onto sandwich plates are studied and com-
plex reactions such as delamination in the facings and crushing of the core strongly
dictate the behaviour of our plates. Such complex behaviour is hard to predict and
thorough testing is therefore necessary.

The tests in this Chapter is performed together with another student who studies
low-velocity impacts onto glass-fibre reinforced plastics (GFRP) laminates.

5.2 Instrumentation

5.2.1 Introduction

A description of the instruments used to retrieve data from our tests and how they
are used is presented here. Instrumentation of the test specimens and use of the
logging equipment are done under supervision by scientists at SINTEF Materials
technology.

5.2.2 Strain Gauges

The use of strain gauges is based on the fact that the resistance of a conductor
changes when the conductor is subjected to strain. The relationship between strain
and resistance variation is almost linear, and the constant of proportionately is known
as the "sensitivity factor", or the "K factor" [15]:

_ AR/R
- AL/L
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5.2. INSTRUMENTATION

where

R : gauge resistance
AR : resistance change due to strain
L : original length

AL : wvariation due to external forces

Quality of the data acquired from the strain gauges depend strongly on the skills of
the engineer. Extreme accuracy are imperative for the data to be usable. Testing is
also very expensive, and time and money are wasted while redoing tests because a
strain gauge failed to deliver any results. Next comes a "cookbook" on how to mount
strain gauges:

1. Inspection the strain gauge visually. Filter out useless gauges at an early start.

2. Measuring the resistance before mounting the strain gauges gives a clear in-
dication if the gauge are working properly. The strain gauges used in this thesis
have a resistance 120 €.

3. Where to place the gauges depend on what you want to measure. They must
not be placed so they get crushed in the impact. Mark where and in what
direction the gauges are to be placed. Rub with a fine sandpaper and clean
with spirit. Make sure that the surface is smooth.

Figure 5.1: Solding wires onto the strain gauges

4. Gluing the gauges onto the specimen must be done with great care. If the
strain gauges are not correctly aligned, the data obtained are not the data we
are looking for. Place the gauge onto an adhesive tape with a pincette and
mount the tape so the gauge will be in the right place. Put super glue onto the
gauge and press down for 20-30 second using a Teflon strip (super glue will not
stick to Teflon). Remove the adhesive tape and the gauge should be securely
mounted.

5. Scrape the contact points on the gauge with a scalpel and clean with spirit to
assure good contact. Solder cables onto the gauges, and measure the resistance.
Always number the cables in both ends.
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CHAPTER 5. TESTING

6. Attach the cables onto the sample with tape. Make sure that the cables will
not stretch and tear off the strain gauges during the impact.

5.2.3 Accelerometer

‘ Acceleration

Mass(m)

+ Signal
- Leads

Figure 5.2: Illustration of accelerometer.

The impactor is equipped with an FGP FA 101 + 500g piezoelectric accelerome-
ter, shown in Fig. 5.2. Piezoelectric accelerometres rely on the piezoelectric effect of
quartz or ceramic crystals to generate an electrical output that is proportional to ap-
plied acceleration. In an accelerometer, the stress on the crystals occurs as a result of
the seismic mass imposing a force on the crystal. Over its specified frequency range,
this structure approximately obeys Newton’s law of motion, F=ma. Therefore, the
total amount of accumulated charge is proportional to the applied force, and the
applied force is proportional to acceleration. The electric charge can be measured by
the fast logging equipment described in Section 5.2.4.

5.2.4 Fast logging

The stain gauges and accelerometer are connected to the Switching Box as seen in
Fig. 5.3. The signals are sent from the Switching Box to the Strain Gauge Amplifier.
Here the signal is filtered and amplified. The data is then transformed to digital
data in the Digital/Analog Converter (DAC) and finally recorded on the computer.

v
DAC

Switching Box

Strain Gauge Strain Gauge Amplifie

=]

Figure 5.3: Illustration of the fast logging equipment
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The Switching box is set up for 8 channels. With the Strain Gauge Amplifier we
can adjust all parameters, but this is done more conveniently with the software on
the computer. Beneath each contact on the Switching Box there is a button used to
reset the resistance measured in the strain gauge and accelerometer to zero. These
buttons should be pressed right before the test is about to begin so the signals is
zeroed out.

Figure 5.4: Picture of the fast logging station

Calibrate the strain gauge amplifier so that 10 Volt equals maximum strain mea-
sured by the strain gauges. Maximum strain likely to occur during the test can be
found from a simulation or results from previous tests. Best accuracy is achieved
when the full scale are used as illustrated in Fig. 5.5. The accelerometer is calibrated
so that 10 V equals 500 g. The next step is to set up the correct logging frequency.
Each channel can log maximum 40000 points in each test. With logging frequency
10000 Hz the time period logged is

40000
100001

But the entire impact lasts only about 10 ms. Thus it is important to set the right
logging frequency and number of points measured to assure reasonable accuracy
during the impact. The logging starts when a pretrigger value set on one of the
channels is reached. In our tests a pretrigger value 1/10 the maximum voltage was
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Volt (V)

Strain 1 ——  Strain 2 Strain 3 ------

Figure 5.5: The figure shows volt signals from strain gauges for different scalings.
Strain 1: scaled correct and uses the whole scale. Strain 2: maximum strain is higher
in the test than predicted and data is lost. Strain 3: maximum strain is much lower
than predicted and the accuracy is poor.

used on the acceleration channel and the logging started therefore when 1 V was
reached.

To get the best quality data, a low-pass Bessel hardware filter in the amplifier is
used in our tests, allowing only the signal below our cutoff value to pass. The purpose
is to remove as much of the obscuring components of the signal as possible, without
compromising the desired signal.

5.2.5 Rosand instrumented falling weight impactor

The Rosand instrumented falling weight impactor allows us to control all parameters
from the computer. The software takes energy, velocity or height as input, and adjusts
the impactor so it is dropped from the correct height. This assures accurate input
values and a reliable and reproducible testing environment. The machine can catch
the impactor so there will not be a second strike on the test specimen. A chamber
covering the test specimen makes temperatures from —40°C to +200 °C possible.

A force sensor is attached to the impactor logging the force felt on the impactor
during the impact. From the force vs. time trace the computer software calculates
acceleration, velocity, energy and deflection during the impact.

Unfortunately, our sandwich plates are to large to fit in this machine and the
maximum energy level possible is to low for the sandwich impact tests. A larger
test rig is therefore constructed for our tests. However, the Rosand instrumented
impact machine is used while calibrating the accelerometer and learning to use the
fast logging instruments.

5.3 Calibrating the accelerometer

5.3.1 Introduction

To get the same information from our tests as from the Rosand impact machine, we
equipped the projectile in our constructed drop weight test rig with an accelerometer.
Before using the accelerometer in our tests, we had to calibrate and test it to make
sure that it was working correct. A common way to test and verify an accelerometer
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5.3. CALIBRATING THE ACCELEROMETER

Figure 5.6: Picture of the Rosand impact machine.

is to attach it to an oscillator. However, in lack of a oscillator, we had to use a
different, but equally good, approach with the equipment available to us.

5.3.2 Test setup and specifications

The Rosand instrumented drop weight machine has a force sensor in the impactor.
Thus, it can calculate the acceleration in the impactor during the impact. Our ac-
celerometer is taped onto the impactor and connected to the fast logging equipment
described in Section 5.2.4. The acceleration from our accelerometer is now directly
comparable with the acceleration from the Rosand impact machine. Two GRP plates
were used in the impact tests. Each plate was impacted twice. In the first two tests
we used impact energy 10 J while 20 J impact energy was applied in the last two
tests.

5.3.3 Test results

The results from the calibration are shown in Fig. 5.7. As seen the accelerometer
oscillates much more than the Rosand acceleration. These oscillations are most li-
kely due to the weak mounting of the accelerometer which allows the accelerometer
to move independently of the impactor. At about one ms the accelerometer curves
show a distinct drop in all the tests. This is due to the wire connected to the acce-
lerometer pulling the accelerometer. Apart from the fluctuations are the results from
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(a) Test 1 and 2 are done with impact energy 10 J.
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(b) Test 3 and 4 are done with impact energy 20 J.

Figure 5.7: Plot of acceleration vs. time (g/ms)

the accelerometer and from the Rosand impact machine in very good agreement.
The accelerometer are therefore ready for further use in impact experiments.

The second strike on each plate (Test 2 and 4) shows less oscillations in the
first part of the impact. The plate is now softer due to delamination from the first
impact. This gives lower accelerations and less oscillations when the impactor hits
the plate. The second impact on each plate also shows slightly higher maximum
acceleration. Thus from Newton‘s 2nd law F' = mua, slightly higher force is observed
by the impactor. This is because less energy is used to delaminate the plate and the
projectile is not slowed down so gradually resulting in higher accelerations.

35



5.4. DROP WEIGHT IMPACT TESTS

5.4 Drop Weight Impact Tests

5.4.1 Introduction

Structures may respond differently when subjected to dynamic rather than static
loads. The ability of sandwich plates to withstand dynamic loads depend on the
properties of the core and faces and how they behave together as a sandwich con-
struction. Understanding how the energy is absorbed in the core and faces during
impact is important when studying the dynamic behaviour in our sandwich pla-
tes. Impact tests are therefore necessary in order to fully understand the dynamic
response of our plates.

Three sandwich plates are tested in a drop weight test rig and the results are
discussed later in this Section. The data from the tests also give valuable information
when calibrating and understanding the behaviour of our dynamic simulations.

5.4.2 Drop weight impact setup

The test rig is schematically illustrated in Fig. 5.8. It consists mainly of a 4 m long
Perspex tube holding the projectile and a frame supporting the sandwich plates.
Vibrations are reduced to a minimum during the impact by securely mounting the
tube to the rig, while the rig is adjusted carefully to keep the tube perpendicular.
Furthermore, the tube is ventilated to avoid turbulence giving rise to undesired
vibrations in the accelerometer data. This will be explained later. A quadratic frame
with light opening 570 mm x 570 mm supports the sandwich plates. The frame

Accelerometer —]

Figure 5.8: Drop weight rig and projectile with accelerometer attached.

is made from steel pipes with diameter 40 mm which are welded together at the
corners. Steel u-beams placed on Leca-blocks support the frame. Leca-blocks are
used to prevent the plate from reaching the floor during impact. Both the frame and
the u-beams are strapped onto the Leca blocks so the frame is kept steady and rigid.

Our projectile, which is made of steel, has a mass 6.2 kg and diameter 75 mm.
At the top of the projectile the accelerometer is mounted as illustrated in Fig. 5.8.
The second impact is prevented with a thick rubber plate.
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(a) Frame supporting the sandwich plate. (b) Projectile with accelerometer

Figure 5.9: Test rig and projectile.

5.4.3 Difficulties with the test rig setup

A lot of impacts onto test specimens were conducted prior to the final impacts onto
our sandwich plates. The first results from the accelerometer did not offer significant
insight into the impact behaviour of the plate, resulting in a long and instructive
road towards obtaining reasonable data.

The main part of the noise in our data came from to the air flow in the tube.
Due to the relative high speed of the projectile, a lot of air had to be pressed away
during the impact. This caused the projectile to vibrate as air was flowing between
the tube wall and the projectile, giving rise to major oscillations in our acceleration
data. The problem was solved by drilling several long holes in the tube, allowing the
air to flow out of the tube during the impact.

In our early attempts, the rope used to hoist the projectile into position was
pulled after the projectile when the projectile fell towards the plate. The pull from
the rope disturbed the acceleration of the projectile and made the acceleration results
unusable. This was solved by hoisting the projectile into position with the rope and
then cut it, allowing the projectile to fall free.

The wires connected to the accelerometer could also disturb the results by pulling
the projectile during the impact. This was prevented by curling up the wire above
the projectile, allowing the projectile to fall without the extra pull from the wire.

Due to the drilled holes in the tube, the accelerometer wire was cut or damaged
as the projectile bounced back up the tube after the impact. The damaged parts had
to be cut of, and new wires solded on for each test. Along with the cutting of the
rope, this made the preparations for each test very time consuming. However, our
test results were now reproducible and reliable.

5.4.4 Mechanical filters in the amplifier

The amplifier in the fast logging setup has a built in mechanical filter. Some of the
acceleration data were corrupted because a wrong filter frequency was applied. Fig.
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TH R ‘ﬂ
a) Air holes in the tube, allowing the air (b) Projectile and wire ready for the next
to flow out of the tube during impact. impact test

(

Figure 5.10: Pictures of the drilled air channels in our tube and the projectile ready

for the next impact.

5.11(a) shows how the acceleration varies with different filters. The first acceleration
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(a) Acceleration vs. time with different filters. (b) Accelerations from the second, fifth and
tenth impact on the same plate filtered

through 100 Hz.
Figure 5.11: Accelerations with different filters applied.

data were filtered through 100 Hz, and the data where therefore smoothed too much.
Although the curves are fairly similar the acceleration starts a bit too late and
the maximum acceleration is a bit too small compared to the less filtered curves.
According to the amplifier manual [12], are the signal delayed with about 1.8 ms
when using the 100 Hz filter and 0.03 ms when the 10000 Hz filter is applied.

Our third plate was impacted 10 times. Fig. 5.11(b) shows the acceleration filte-
red with 100 Hz for impact 2, 5 and 10. According to the figure, the acceleration does
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not change significantly as the plate is impacted several times. When calibrating the
accelerometer two impacts were conducted on each GRP-laminate as shown in Fig.
5.7. The differences between the first and second strike are very small according to
the deflection-acceleration curves. As explained later the acceleration data will be
processed further calculating the velocity, kinetic energy and deflection by nume-
rical integration. Any differences will be further reduced as illustrated in Fig. 5.12.
Encouraged by this results, sandwich plates 1 and 2, which had been subjected to a

= )
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< 0 2 4 6 8 10 - 0 2 4 6 8 10
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Second impact Second impact

Figure 5.12: The acceleration data from the first and second strike onto plate 1. As
seen the differences in the acceleration data is reduced as the velocity, energy and
deflection is calculated.

simple impact each, were now impacted a second time using the 10000 Hz filter on
the acceleration. The acceleration data from the second strikes onto sandwich plates
1 and 2 are therefore used further in this thesis.

All strain data from the test were filtered with the right frequency and was not
inflicted by the problems described above.

5.4.5 Test specifications and instrumentation

Three sandwich plates with equal properties and dimensions are tested in the drop
weight rig. The plate dimensions are shown in Fig. 5.13. Two different drop heights
are used; 3.0 m and 3.5 m. Due to the preparations described in Section 5.4.3, friction
and air resistance are neglected and the energy of the projectile as it reaches the plate
is calculated from E = mgh, giving impact energies £; = 182 J and Es = 213 J.

The test plates are instrumented with strain gauges, and the gauges are placed
in a way to register both local and global strains. Seven gauges were mounted on
each plate. The position of the gauges are illustrated on the strain figures. A FGP
FA 101 + 500 g accelerometer is bolted in silicone to the 6.2 kg projectile [£].
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Figure 5.13: Geometric properties of the sandwich plates.

5.4.6 Accelerometer results

One of the impacts were filmed with a digital camera. Fig. 5.14 shows some pictures
of the sandwich plate during the impact. The rubber plate used to catch the second
strike can also be seen, along with the projectile.

(a) Ready for impact (b) The projectile on the way (c) Right after the impact. The

down the tube right above projectile is bouncing back
the plate up the tube. The sandwich

plate is lifted off the frame.

(d) The rubber plate is pla- (e) The projectile hits the rub- (f) The impact is over.
ced between the tube and ber plate without causing
plate right after the impact damage to the sandwich
to prevent the projectile to plate
cause and damage on the
second strike.

Figure 5.14: Impact onto a sandwich plate

Plate 1 was hit from 3.0 m, while plate 2 and 3 were hit from 3.5 m. Due to the

problem described in Section 5.4.4, were plate 1 and 2 rehit with the correct filter
on the acceleration data. The resulting accelerometer vs. time curves are plotted in
Fig. 5.15. As seen, the curves show exactly the same behaviour. At about 2.3 ms the
indentator and plate lose contact with each other. At 4 ms, the indentator reaches
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maximum acceleration. After about 10 ms the indentator leaves the plate and the
impact is over. The projectile might hit the tube walls and cause some distortions in
the acceleration data while it goes back up the tube at the end of the impact.
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Figure 5.15: Acceleration vs. time curves for plate one and two. The first plate was
impacted from 3.0 m and the second from 3.5 m.

The accelerometer data can be further examined, giving valuable information
about the material tested. By integrating the acceleration, the velocity of the pro-
jectile during the impact can be found, and thus also the kinetic energy given by
E, = %va. Integrating the velocity, gives the deflection of the projectile during the
impact. Finding the kinetic energy is also necessary when comparing the simulations
with the test results. The trapezoidal integration scheme defined by

e )

is applied. Here, h = =2 is the step size. The integration scheme was coded using

MAPLE, and the programme can be found in Appendix B.2.

The load applied on the plate is found from F' = ma. In Fig. 5.16, the load-time
and energy-time traces are plotted. The available energy FEy is 213 J. The energy-time
trace is found from F = Ey — Ej. At point 1 the energy absorbed by the specimen
is 69 J. Oscillations in the load-time trace at this point indicate visible incipient
damage. At point 2 there is loss of contact between the indentator and the plate.
Between point 2 and 3, at approximately 15000 N a change in the gradient of the
trace takes place. This change in the loading rate is believed to represent specimen
relaxation as damage occurs. At peak load (point 3) the absorbed energy is 207 J.
The absorbed energy at point 4 is 213 J, which is equal to the initial impact energy.
The indentator is stopped at this point, and the specimen has incurred damage. At
point 5 the absorbed energy is 63 J. This result indicates that 150 J, the difference
between the available impact energy FEy and the final absorbed energy, has been
returned to the indentator.
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From the force-time traces, several important impact mechanisms can be exami-
ned. The force-time curves reflect the damage inflicted on the specimen, and changes
in the gradient reflect changes in the deformation mechanism. More information on
studying force-time traces can be found in [22].
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Figure 5.16: Plot of the acceleration and kinematic energy for the projectile found
for plate 2. The numbers 1, 2, 3, 4 and 5 are explained in the text.

5.4.7 Strain gauge results

Each plate was instrumented with seven strain gauges. The strain gauges were placed
so that they would bring results from both local and global strain in the sandwich
facings. Each gauge was oriented in either the 0 or 90 fibre direction or in between at
45 degrees. The placing of the strain gauges on each plate are indicated on the time-
strain traces for each plate. Due to symmetry, only 1/4 of the plate was instrumented.
On the top-face, the strain gauges were placed close to the point of impact to retrieve
information on local effects due to indentation of the core. The gauges on the bottom
face bring results on the global deflection of the plate. Strain gauges are very fragile
and easily broken, and gauges situated on areas where matrix-cracks appears during
the impact, are likely to break due to the matrix cracking. When using the rubber
plate to prevent the second strike from the projectile, the strain gauges might suffer
damage and stop working.

Fig. 5.17 show the strain gauge traces for the first impact onto plate 1. Strain
gauge 2 and 6 broke during the impact, and are not plotted in the figure. The largest
strains take place on the top face. Strain gauges 5, 6 and 7 on the bottom face give
less than half the strain of the top face. The local deflection due to indentation of the
core close to the projectile are therefore greater than the more global deflection of
the sandwich plate. The strains at points 5 and 7 were expected to be almost equal,
but strain 7 is smaller. This behaviour is explained in Section 5.4.8. The maximum
observed strain is 1.1 %. This is much lower than the failure strain, oy = 3% in the
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face. Therefore, the face sheets are not going to fail due to tensile strain in our tests.
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Figure 5.17: Strain gauge traces for plate 1

Fig. 5.18 show the strain gauge results from the first impact onto plate 2. All
our strain gauges worked properly in this test. Strains at the points 1 and 2 are now
in the 0 direction, while being in the 90 direction for plate 1. As seen, the strain in
the 0-direction is smaller than in the 45-direction, indicating higher strains in the
90-direction than in the 0-direction. When comparing gauges that lies on the same
place on each side, i.e. gauge 1 and 5, 2 and 6 and 3 and 7, it is clear that the
deflection on the top face is largest.

Due to an interference problem with other electrical equipment, the pretrigger
value was reached to early, and the first impact onto plate three was not logged. Fig.
5.19 shows therefore the strain gauge results from the second impact onto plate 3.
Strain gauge 4 and 5 broke during the impact, and the results from these gauges
are therefore not plotted in the figure. The results clearly follow the trend that the
strains are largest in the 90 direction, and lowest in the 0 direction.

Comparing the strain from gauge one on plate 1 and 3, shows that the strain is
about 0.2% higher on plate 1. The largest strain values were expected in plate three
since this plate was impacted with higher energy. However, since the data from plate
3 is from the second impact onto the plate, the first impact has crushed the core and
reduced the strains at the points where the gauges were placed as illustrated in Fig.
5.20.

5.4.8 Differences in the 0- and 90 direction

When symmetric laminates are tested in uniaxial stress, the 0 and 90 directions show
the same strength. The results from our tests show that the strain is largest in the
90 direction. Fig. 5.21 illustrates the bending of the face close to the indentator in
the 0 and 90 direction. The effect of the core supporting the face is neglected along
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Figure 5.19: Strain gauge traces for plate 3

with the contribution from the fibres lying parallel to the bending axis. Assuming
pure bending of the face the flexural rigidity for the 0 and 90 direction becomes

Est¢h? Etsh
Do = =L 70 and Dgg = M7 (5.1)
2 2
where
ty ty
h() = 1.5Z and hgo = OSZ (52)
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(a) First impact onto the plate. The strain in the (b) Second impact onto the plate. The core under
face close to the projectile is high. the impact area is crushed from the first strike
resulting in lower strains close to the projectile

because less bending action take place.

Figure 5.20: Illustration of first and second impact onto a sandwich plate. The first
impact crushes the core, resulting in lower strains in the face during the second
impact.

The strains in the fibres in the 0 and 90 direction becomes

_ Mho and € _ Mhyo
~ 2Dy N 9Dy

€0 (53)

Dividing €9y by €9 shows that the strain is 3 times larger in the 90 direction than
in the 0 direction. This explains why our test results show largest strains in the 90
direction.

0-direction 90-direction

Figure 5.21: Tllustration of the fibres in the top face close to the indentator in both
0 and 90 direction along with the strain gauge glued to the surface.

All three plates have one gauge placed 45 mm from the centre at 45 degrees on
the top face. The data from these gauges are plotted in Fig. 5.22. The strain values
in plate 2 were expected to be larger than the strain values in plate 1 for the top
face gauges, since the impact energy was higher in plate 2. Plate 3 has the lowest
strains in the top face. This is because the data is from the second strike on the
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5.5. STATIC DEFLECTION OF SANDWICH PLATES

plate as illustrated in Fig. 5.20. The first strike has crushed the face and softened
the sandwich, resulting in lower strains.
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Figure 5.22: Comparing strains from a strain gauge placed 45 mm from the centre
and at 45 degrees.

At about 2.5 ms, the loss of contact between the projectile and facing was found
from studying the acceleration data. As seen in Fig. 5.22, the loss of contact is also
clearly visible in the data from the top face gauges.

At about 9 ms, the acceleration goes towards zero and the projectile leaves the
plate. Then the strain data stabilize and the impact is over.

5.4.9 Visual inspection

Fig. 5.23 show plate one after being subjected to two impacts. Visible damages are
only observed within a small circle of radius 20 mm.

Plate two was cut so the internal damage could be studied. Fig. 5.24(a) shows
the upper facing close to the point of impact. Matrix cracks are clearly visible in the
0-direction. Also, delamination takes place in the facing under the point of impact.
This can be seen in Fig. 5.24(b), where the lower 0-lamina is clearly separated from
the 90-layer above.

There is no visible damage in the core and bottom face. However, when pressing
down on the point of impact, the sandwich flex a lot. This is not possible in the other
corners. The residual stiffness is therefore reduced due to the impact.

5.5 Static deflection of sandwich plates

5.5.1 Introduction

By applying static loads on our test specimens, a lot of information on the behaviour
and performance of the plates can be found. One sandwich plate is therefore tested
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Figure 5.23: Picture of upper facing of plate one after impact.

in static compression.

5.5.2 Test specifications

One sandwich plate was tested in static compression in a Schenck TREBEL RM100
Electro Hydraulic Strain Machine, which allows loads up to 100 kN. The frame and
projectile used in our dynamic impact tests are also used here. The indentator is
lowered vertically with a rate of 10 mm/min.

5.5.3 Instrumentation

The plate is instrumented with seven strain gauges as shown in Fig. 5.25. The Schenk
test machine logs the deflection of the indentator and the force on the indentator
during the test.

5.5.4 Test results

Fig. 5.26 shows the load-deflection trace from the static test. As seen are the load-
deflection trace almost linear up to failure. A key question here is; how much of
this deflection is due to global deflection of the whole plate and how much is due to
indentation of the face? We do not know this exactly, but studying the strain gauge
results give a few indications.

Fig. 5.27 shows the strain gauge results plotted against the load. At about 7500
N or 12 mm deflection, some significant changes occurs in the strain curves. Gauge 1
and 4, the two gauges closest to the impactor show less strain, while the strains from
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F

Matrix cracks D

(a) Top face of sandwich plate. Matrix cracks in the 0-direction has occurred.

4
0

90

90

(b) Delamination between the two bottom layers are clearly visible.

Figure 5.24: Pictures of plate two after impact.
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Figure 5.25: Strain gauge placement on the plate.
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Figure 5.26: Load plotted against deflection of the indentator.

gauge 3 on the top face along with the bottom face gauges starts to increase. This
means that the local indentation of the core decreases, while the global deflection of

the sandwich starts to increase.
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Figure 5.27: Strain results from the test plotted against time.

Gauge 1 and 2 show another interesting mechanism from the test. The strain
at gauge 1 increases up to about 0.6 % before stabilizing. The strain at gauge 2,
which lies 75 mm away from the centre of contact, starts to increase at about 5000 N
and continue to increase during the test. This means that the area where gauge 1 is
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situated starts to deflect without stretching at about 9000 N, and gauge 2 which lies
further away from the indentator starts to stretch. This indicates that the indentator
continues to press the face sheet into the core during the entire test.

Static deflection of sandwich plates will be simulated in ANSYS later, and the
simulation results will be compared to the load-deflection and strain gauge curves
from the test described in this Section.

5.5.5 Visual inspection

Fig. 5.28 shows the top face of the indented sandwich plate. The facings have a
[0,90]s stacking of the laminaes, and as we have seen, the largest delamination takes
place in the O-direction. As the projectile is pressed into the plate, the upper 0-lamina

Figure 5.28: Top facing of the sandwich plate subjected to a load applied at centre
of the plate. Material directions (Fibre directions) and damage area are shown.

gets pulled towards centre of the plate. Delamination occurs as the stress between
the laminae becomes larger than the ultimate interlaminer shear stress. In the 90-
direction, the upper laminae are much softer and thus less stress are introduced
between the laminae resulting in little delamination. This behaviour is the same as
found from the strain gauge results described in Section 5.4.8.

Fibre failure also takes place in the 0-direction close to the contact area. The
facing under the load gets stamped into the core, and large bending and tension
stresses in the facing results in fibre failure.
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5.6 4 point bending of sandwich beams

5.6.1 Introduction

The mechanical properties of the sandwich face and core materials are known from
tests performed on each material separately. However, when used together in a
sandwich construction, the performance of the sandwich might differ from what we
expect according to theory. Therefore mechanical tests of sandwich materials are of
great interest.

5.6.2 Test specifications

Two sandwich beams were tested in 4 point bending. A Schenk TREBEL RM100
Electro Hydraulic Strain Machine with 100 kN load cells was used to perform the
tests. The tests were conducted according to ASTM C393 standard [20]. From this

(a) The sandwich beam and bearings before the (b) The indentation of the core under the load-
load is applied. bearing.

Figure 5.29: Sandwich beam before and during the 4 point bending test.

test the tensile modulus £y and the ultimate tensile stresses oy, of the face material
and the shear modulus G, and the ultimate shear stresses 7, of the core material can
be found. The test setup and machine are shown in Fig. 5.29(a). The load bearings

Ly

Lo

Figure 5.30: Description of the test rig measures L and L.

are illustrated in Fig. 5.30. The diameter of the bearings were 50 mmand they were
lowered with a rate 10 mm/min. Two tests with different spans L; were performed:
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5.6. 4 POINT BENDING OF SANDWICH BEAMS

Test 1: Ly = 1/2L9 and Ly = 1000 mm (Quarter point bending).
Test 2: L1 = 1/3L9 and Lo = 1000 mm (Third point bending).

The width b of the beams were 70 mm.

5.6.3 Instrumentation

Each beam specimen was instrumented with three 10 mm strain gauges on each
facing. Fig. 5.6.3 shows the strain gauges glued to the centre of the beams. The
strain gauges were connected to the logging equipment illustrated in Fig. 5.3.

Figure 5.31: The sandwich beams instrumented with strain gauges.

5.6.4 Test results

Unfortunately, the test results were corrupted because the beams broke under the
load bearings and not in the middle of the beam as predicted by theory. At an early
stage of the tests everything seemed to work fine, but after a while the core was
crushed under one of the load bearings. The picture in Fig. 5.29(b) is taken right
before the beam broke. It clearly shows the indentation of the core under the load
bearing. From Fig. 5.35 we find that the failure load was approximately 4000 N for
the Quarter point load and 3000 N for the Third point loading.

A simulation of the sandwich beam in Quarter point load was performed in
ANSYS. Taking advantage of symmetry, only one half of the beam was simulated.
The sandwich beam is illustrated in Fig. 5.32(a) along with the element division used
in the simulation. The Quarter point failure load is applied as a surface load over
eight elements as shown in Fig. 5.32(b). The intensity of the surface load is thus

P/2 2000 N 20 , 10
A T 20 xT0mmZ 14 V/mmt = MPa

g
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(a) Illustration of the sandwich beam.

Surface load Bearing

Symmetry

(b) Element grid used in the ANSYS simulation of the sandwich beam in Quarter point
bending. Only one half is simulated due to symmetry.

Figure 5.32: Sandwich beam dimensions and mesh used in ANSYS.

The load is applied in small increments using automatic time stepping to ensure that
the analysis will follow the structure‘s load-response curve. Both the core and the
facings are simulated using the elastic material properties listed in Table 6.3.

From the simulation results the compressive stress in the foam under the load
bearings was found to be 1.0 MPa. A plot of the transverse stresses o, in the part of
the beam under the load bearing is shown in Fig. 5.33(a). The ultimate compressive
strength of the core is 1.0-1.2 MPa according to the manufacturer [10]. Thus the
simulation results also lead to the conclusion that the crushing of the core under
the load bearing caused the early failure of the beam. The ANSYS simulations also
showed that the faces had not reached their failure tensile strength. Fig. 5.33(c)
shows the shear stresses in the beam which corresponds to the shear diagram in Fig.
3.4. The shear stresses are zero in the centre of the beam between the load bearings
and constant on the sides.

The result from the centre top and bottom strain gauges in each test are plotted
in Fig. 5.34. Since the gauges were placed in the middle of the beam and not under
the load bearings were failure took place, the results does not give any information
on maximum failure strain in the facings.
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Although the ultimate tensile strength oy, of the face and the ultimate shear
strength 7¢, of the core can not be found from the test results, it may be possible to
find the tensile modulus Ey in the face and the shear modulus G. in the core when
studying the linear part of the load/deflection curve in Fig. 5.35 before failure.

5.6.5 Face tensile modulus F; and core shear modulus G.

From beam theory failure is supposed to take place at the centre of the beam. If we
know the deflection at the centre of the beam and the applied force, we can solve
the beam equations and find the flexural rigidity D and shear stiffness .S as shown
in Appendix B.1. The maximum deflection at the centre of the beam in Quarter and
Third point bending become

11 pL* 1PL
T8 D8 S 5.0
23 BL? 1PL
1296 D 6 S

1

2

and solving for D and S gives

p_ " P L3P,
1728 \ 3P Ay — APy A

o 7 P,LP,
2\ 207P Ay — 368P,/\¢

where

P, = ultimate load in Quarter point benfing
P, = ultimate load in Third point benfing
L = L2, length between outer bearings

From Eq. (2.8) and Eq. (2.21) the tensile modulus of the face and the shear modulus
of the core may be expressed by

2D St.
. —— = _—— 5.6
where

ts = face thickness [mm]
t. = core thickness [mm]

d =ty +t., distance between the centre of the faces [mm]

In our tests we do not know the deflection at the centre of the beam, and since the
failure took place under one of the load bearings, we calculate the above equations
so they use the deflection under the load bearings as input:

p_ 1 P L3P,
216 \ 3P, Ay — AP,/

o 1 P LP,
2 \40P,A, — 27PNy )

o4
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-1.754 -1.264 -. 775052 -.285792 . 203467
-1.509 -1.02 -. 530422 -.041163 . 483044

(a) Transverse stress 0. in a section of the beam under one bearing.

-138.155 -83.156 -28.158 26.841 81.84 ‘
-110. 655 -55. 657 -.658344 54. 34 113. 267

(b) Tension and compression stresses oy in the sandvich.

-2.219 -1.158 -. 09597 . 965788 2.028
-1.689 -. 626849 . 434909 1.497 2.634

(c) Shear stress 7. in the sandwich.

Figure 5.33: Stresses in th&sandwich beam at failure.
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Figure 5.34: Strain vs. load. Plots of the strain in each facing at the centre of the
beam.

From the machine log we can get the applied force/time curve, and since the loading
velocity is known we find the deflection at the load bearings from the relation § = vt.
This is shown in Fig. 5.35 where the applied load is plotted as a function of the
displacement. When selecting values for the loads and deflections from the curves

3500
3000
2500
2000
1500
1000

500

Force|N]|

10 20 30 40 50 60
Deflection[mm)]

Quarter point load Third point load -----

Figure 5.35: Force vs. deflection. As seen, it takes more power to deflect the beam
the same distance in Quarter point loading than in Third point loading as the load
bearings are closer to the middle of the beam.

in Fig. 5.35, we need to make sure that the values are accurate and within the
linear regime of the test. Studying Fig. 5.35 indicates that values between 18-28
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mm deflection is usable, and selecting values at 20 mm deflection gives the following
loads:

Ay =20.94 = P, =2259/b
Ay =20.53 = P, =1621/b.

This gives

D = 63784098 = B = 54238 [N/mm?|
S =275 — G.=9[N/mm?

where b is the width of the beam'. From the Nordsandwich report [3] the face tensile
modulus Ey is found to be 31500 [N/mm?] and Divinycell, the manufacturer of
the foam provides a shear modulus G.=31 [N/mm?]. The errors in our results are
therefore

54238 — 31500
21500 00% = 72% (5.8)
31-9
e, = “gp100% = 65%. (5.9)

The main reason for these poor results are the very low normal strains in the face

eEf

o

Oful------------5

€

Figure 5.36: Typical o/e curve. The small part within the circle indicates the curves
in Fig. 5.35.

of the beam due to the early indentation and failure of the core. The curve inside
the circle in Fig. 5.36 illustrates our force/deflection curves, while the large curve
illustrates the force/deflection curve from a test without early failure due to core
crushing. The measured values become very inaccurate and lead to poor results
when calculating the material properties.

5.6.6 Test procedure

The test outlined above contains a fast and simple procedure for determining sandwich
properties based on experience from this test. The steps in the test can be written
as

!Since beam theory assumes unit beam width, we have to divide the applied force with the beam
width b.
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1. Run numerical simulations to make some predictions on the setup of the test-
rig. Try to avoid local failure by adjusting L1 and L2.

2. Perform two 4 point bending tests of sandwich beams with different spans. Log
midpoint deflection and load up to failure.

3. Calculate Ey, G, oy, and 7, as follows

g 28 _ 2 ( P L*P, >
7 @t; T 216d%t; \3P1Ay — 4PA,
a - Ste_ te ( P LP; >
C 2 2d2 \40RA; —2TP A,
- LM P(2-L1)
trd 2tsd
_r
Te = E?

where P is the failure load.
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Chapter 6

Static simulations

6.1 Introduction

The main goal in this thesis is analyzing low velocity impact dynamics onto sandwich
panels. However, analysis of sandwich panels subjected to static loading gives valu-
able information about stiffness, strength and material properties and is therefore of
great interest.

The static simulations are performed with ANSYS, a commercial finite element
code used in industry to solve large scale problems. ANSYS is a general-purpose
program, meaning that you can use it for almost any type of finite element analysis.
The program is used to find out how a given design (ea. car parts) work under
operating conditions. Such programs give results cheap and fast compared to testing.
You can check out "worst case scenarios" and several "what if‘s" in a short time. But
testing is still required to verify the results and for calibrating the input variables
in the FEM models. The analytical solutions to sandwich plate deflections derived
in Section 4 have been implemented in MAPLE using the same input parameters as
the ANSYS simulations, and the results are also presented here.

In this chapter are we going to simulate static deflection of sandwich plates. The
sandwich plates are simulated with ANSYS and an analytical solution and the results
are compared with the static compression test described in Section 5.5.

6.2 Elements and material models

6.2.1 Introduction

ANSYS provides more than 100 different element types, and each element type has
a vide range of parameters and adjustable features. Sandwich panels with GRP-
faces and a soft foam core are much more complicated to model than homogeneous
isotropic materials such as steel and aluminium.

At first, an isotropic aluminium plate is modelled and the results are compared
with an analytical solution. This aluminium plate is modelled to reassure that ele-
ments and simulation files works properly. The next step is then to start modelling
sandwich plates, which are more challenging with weak core and thin faces. Due to
the thin faces, many elements has to be used to maintain a reasonable ratio be-
tween the height and width in the element and simulations tend to become very
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expensive. It is therefore of great interest to examine how layered solid and shell ele-
ments, which have only one ore two nodes in the through thickness direction, models
sandwich plates.

6.2.2 Element descriptions

A short description of the elements with illustrations in Fig. 6.2.2 and Fig. 6.2.2 are
presented in this section [4]:

e SOLID45 - 3-D 8-Node Structural Solid

— defined by eight nodes and orthotropic material properties
— three degrees of freedom at each node: translations in the nodal x, y, and
z directions

e SOLID46 - 3-D 8-Node Layered Structural Solid

— layered version of SOLID45

— defined by eight nodes, layer thickness, layer material direction angles and
orthotropic material properties

— three degrees of freedom at each node: translations in the nodal x, y, and
z directions

Element Coordinate
Systern (shown for
KEYOPTH) =1)

BOTTOM

¥

Surface coordinate system

(a) SOLID45 element. (b) SOLID46 element.

Figure 6.1: Tllustration of SOLID45 and SOLID46 elements.

e SHELLY1 - 8-Node Layered Structural Shell
— defined by eight nodes, layer thicknesses, layer material direction angles,
and orthotropic material properties

— six degrees of freedom at each node: translations in the nodal x, y, and z
directions and rotations about the nodal x, y, and z-axes

— sandwich option (explained in detail later in this chapter)
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e SHELL181 - 4-Node Finite Strain Layered Shell

— defined by four nodes, thickness may be defined at each node

— six degrees of freedom at each node: translations in the x, y, and z di-
rections, and rotations about the x, y, and z-axes

— models transverse shear deflection using as energy equivalence method

EOTTOM

(a) SHELL91 element. As seen does the ele- (b) SHELL181 element.
ment have eight nodes.

Figure 6.2: Ilustration of SHELLY1 and SHELL181 elements.

These elements are used to simulate the aluminium plate described in the next chap-
ter and the sandwich plates used in our static and dynamic tests. Due to symmetry
only one quarter of the plates are simulated, as illustrated in Fig. 6.3.

Figure 6.3: Only one quarter of the plates are modelled due to symmetry.

6.2.3 Aluminium plate

Modelling an isotropic aluminium plate subjected to static load in the through thick-
ness direction is relatively simple, and there are only a few parameters to adjust.
Table 6.1 shows the material properties and the size of the plate used in our models.

Each element model uses 20 elements in the x- and y-direction. Two elements, ie.
3 nodes are used in the through thickness direction for the SOLID45 element. The
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Table 6.1: Properties of the aluminium plate.

Material properties

Young's modulus E | 70000 MPa
Poisson v 0.3
Plate size

Side length a=b 125 mm
Thickness t 1.2 mm

model using the layered SOLID46 elements has one element in the through thickness
direction, and therefore 2 nodes while the layered SHELL181 and SHELL91 elements
has only one node in the vertical direction. The load is applied both as a point load
with magnitude 1000 N on one node and as a surface load on one element. The
surface load applied becomes

_F/4  F/4  1000/4N
7774 T a2b2 T (62.5/20)2 mm
20 20

> =25.6 N/mm® = 25.6 MPa

and is applied at the centre of the plate.
Fraulein [9] used a simple analytical model to predict the deflection at the centre

of the plate. This model, which can also be found in Roark‘s formulae for stress

and strain [23], predicts the maximum deflection of a quadratic plate (a=b) with

Poisson‘s ratio v = 0.3 given by

a2

Wnaz = 0.0611F 5.

(6.1)

The input parameters are the same as for our ANSYS simulation resulting in maxi-
mum deflection at centre of the plate:

1000 N x 1252 mm?
— 0.0611 — 7.89 mm. 6.2
Wmaz = 0-0611 X 2500 Fram? x 1.23 mm? mm (62)

Maximum deflections from each ANSYS simulation are listed in Table 6.2. As seen

Table 6.2: Deflection of the aluminium plate.

Element ‘ Degrees of freedom ‘ Point load ‘ Element load ‘ Unit
SOLID45 3969 7.879 7.794 mm
SOLID46 2646 7.912 7.796 "
SHELL181 2646 7.821 7.942 "
SHELLI1 7686 7.853 7.952 "

from the table, all the finite element results agree well with the analytical solution.
This shows that our meshes have the necessary fineness and that both the solid and
the less expensive shell elements give accurate results. The ANSYS input file used
to calculated the element load deflections can be found in Appendix A.1
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6.2.4 Analytical solution

Analytical models are of great interest when studying sandwich plates. After imple-
mented in a computer, solutions are easy and fast to retrieve. The analytical solutions
derived in Chapter 4 are implemented in MAPLE and solved using the same input
parameters as the ANSYS simulations.

The point load Q is taken as maximum load applied in the static deflection test,
Q=30000 N. This load is expressed as the Dirac delta function where the load is
applied as an surface load over a small square with sides ¢ = /20 = 28.5 mm. When
using the approximated solution for the load

4Q . mm . nw

= — sin — sin —

mn ="y S g ST
the solution would not converge. In Fig. 6.4, both convergence traces for the full
and the approximated load functions are plotted. The iteration is stopped when
the difference between the new and previous solution is less than 0.1 %. With the
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Figure 6.4: Convergence plots of solutions with load applied as an approximated and
a full Dirac delta function.

full Dirac delta function used for the load, the solution converges after 37 iterations
which took about 10 second to compute, while the approximated solution needed 295
iterations and took 2 hours and 15 minutes to compute. The deflection also becomes
too large, and the approximated load function is therefore not used any further. The
analytical solutions are compared with the ANSYS simulations in Section 6.2.6.

The MAPLE sheet used to find the deflection for sandwich plates with orthotropic
plates is presented in Appendix B.3.

6.2.5 Sandwich plate with isotropic facings

Now we start modelling the sandwich plates studied in this thesis. The sandwich pla-
tes are first modelled using isotropic material properties for both the face and core,
which are listed in Table 6.3 along with the plate size. The material properties for
the core are given by the manufacturer while the face properties are the same used
by Feuerlein [9]. According to Section 5.5, the static test is performed by pressing a
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Table 6.3: Isotropic material properties and size of the sandwich plate.

Face

Young'‘s modulus E 31500 MPa
Poissons‘ ratio v 0.2
Core

Young's modulus E 80 MPa
Poisson v 0.32
Plate size

Side length width 285 mm
Face thickness iy 3 mm
Core thickness te 25 mm

hemispheric projectile into the sandwich plate lying on a steel frame. This is simula-
ted by applying a point load and element loads on the sandwich plate modelled with
simply supported boundary conditions. Fig 6.5 shows one quarter of the sandwich
plate, where the number of elements used in the through thickness direction for the
SOLID45 element model is shown.

The SOLID45 model contains 10 elements in the vertical direction, and 20 in the
x- and y-directions. This gives 14553 degrees of freedom for the SOLID45 model,
while the layered elements SOLID46, SHELL181 and SHELL91 have the same de-
grees of freedom as for the aluminium model. The material properties for the faces
and the core are implemented in the layered element models as follows:

1
!T_F=Thickness face, T_C=Thickness core

1

ET,1,S0LID46 !Layered solid element
KEYOPT,1,8,1 !Store data for all layers
R,1,3,1 !Symmetric stacking

RMORE

RMORE,1,,T_F,2,,T_C

1

ET,1,SHELL181 !Layered shell element
KEYOPT,1,8,1 !Store data for all layers
SECTYPE, 1,SHELL
SECDATA,T_F,1,,
SECDATA,T_C,2,,
SECDATA,T_F,1,,3

1

ET,1,SHELL91,3,1 !Layered shell element
KEYOQPT,1,8,1 !Store data for all layers
KEYOPT,1,9,1 !Sandwich option

R,1,3,1 !Symmetric stacking

RMORE

RMORE,1,,T_F

RMORE,2,,T_C

3
3

The vertical load is applied on the top face as a point load with magnitude 30000
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I height

Point load

Surface loa

Iaml

width

Figure 6.5: Sandwich plate modelled in ANSYS. Two elements are used in the facings
and six elements in the core for the SOLID45 model.

N on one node and as a surface load over one element. The surface load becomes

F/4 F/4 30000/4 N )
_ 2 - = 36.93 N = 36.93 MPa.
A (width/20)2 ~ (285/20)% mm? /mm .

The loads are applied at the mid-point of the real sandwich plates, which means
that they act at the "free" corner of the simulated quarter model. This gives the
deflections of the top node at (0,0) as listed in Table 6.4, where SHELLI1 is used
without the sandwich option. As seen, the deflection related to the point load vary

Table 6.4: Deflection of the plate subjected to a point load and a surface load.

Element ‘ Degrees of freedom ‘ Point load ‘ Element load ‘ Unit
SOLID45 14553 22.60 19.93 mm
SOLID46 2646 42.75 21.57 "
SHELL181 2646 30.29 20.19 »
SHELL91 7686 5.02 4.53 »

a lot, while the surface load deflections are in good agreement with each other when
neglecting the results obtained from the SHELLI91 model. When the load is applied
on a single node only, high stresses are introduced on a very local area and more
elements are needed to get accurate results. Applying the load as a surface load
over one element gives almost no difference between the elements. The load is now
applied over more nodes, and less local effects are introduced. Fig. 6.6 shows the
deflection for SOLID46 when the point load and element load is applied. As seen,
the displacements connected to the vertical point load and element load are quite
different.

The SHELL91 element model show very little deflection, which is most likely due
to the weak core and that the shear stiffness of the faces dominates. SHELL9I1 element
has an sandwich option that uses the same assumptions as our analytical models.
The core is assumed to carry all the transverse shear, the facings none. Conversely,
the face plates carry all of the bending load. The deflection of a sandwich beam
without and with the sandwich option is illustrated in Fig. 6.7. The sandwich option
gives maximum deflection 25.73 mm when the load is applied as a surface load over
one element. But the sandwich option demands the core to be at least 5/6 of the
total element thickness. This is not fulfilled for our sandwich plates since

te 25

TR 31 = 0.806 < 5/6 = 0.833,
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(a) Point load deflection. Large local deflection under the load.

(b) Element load deflection. More global and less local deflection.

Figure 6.6: ANSYS plot of the deflection for elements situated at y=0. High local
and less global deflection becomes the result when our SOLID46 element model is
loaded with a point load. The surface load applied over one element gives less local
indentation and more global deflection of the sandwich plate.

W~ Faceplate(up to 7 layers)

C 1 1 t least
6r eof t(§i Eirﬂ?lck%%sés

I Faceplate(up to 7 layers)

(a) SHELL91, undeformed

| —

(b) Deformed shape without sandwich op- (c) Deformed shape with sandwich option
tion

Figure 6.7: Deformation of SHELL91 without and with the sandwich option. (a)
illustrates the layup of a sandwich element. The core must be at least 5/6 of total
thickness for the sandwich option to be used. This value is set as the limit for the

assumption t. >> ty in ANSYS.
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and consequently the SHELL91 element is not used further in this thesis. The
SHELL181 element models the transverse shear deflection using an energy equi-
valence model that makes the need for an sandwich option unnecessary.

6.2.6 Orthotropic material properties

In Section 6.2.5 the facings were assumed to be isotropic. However, the face material
of the sandwich plates of consideration are in fact orthotropic. Thus, a more accurate
description of the materials are listed in Table 6.5.

The maximum deflections for isotropic and orthotropic facings, when the sandwich
plates are subjected to element loads are listed in Table 6.6. The differences are

Table 6.5: Orthotropic material properties

Face
Young's modulus FE, 31500 MPa

E, 31500 MPa

E, 8230 MPa
Shear modulus Gy 6000 MPa
G
G

y2 | 5140 MPa
+» | 5140 MPa

Major Poissons’ PR, 0.2

Minor Poissons* PRy, 0.2
PR, 0.2

Core

Young's modulus FE 80 MPa

Major Poissons PR 0.32

Table 6.6: Comparing maximum deflections, isotropic and orthotropic facings.

Element Degrees of freedom | Isotropic | Orthotropic | Unit
SOLID45 14533 19.93 20.03 mm
SOLID46 2646 21.57 21.63 »
SHELL181 2646 20.19 21.53 »
ANALYTICAL 19.99 24.48 »
(SHELL91) 7686 25.72 25.66 »

very small since the in-plane properties are the same for the isotropic and orthotro-
pic facings, and these properties are decisive in sandwich plate bending (see Section
2.3, Approximations in the Flexural Rigidity). Nevertheless, the orthotropic material
properties are used further in this section.

The SHELL91 element is not within its working range due to a two low core/face
ratio, but the results are used here to compare with our analytical solution since they
both uses the same assumptions. As seen are both the analytical deflections within
the range from the ANSYS deflections. The full solution with orthotropic facings
are very close to the solution from the SHELL91 element. This indicates that our
analytical model with orthotropic facings models the sandwich with good accuracy.
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The isotropic approximation on the other hand yields poor results for the midpoint
deflection. In the next sections, the ANSYS models are implemented using nonlinear
material properties. This is not possible to implement in the analytical solutions,
and they are therefore not studied any further.

6.2.7 Yield criteria in the core and Solution

A semi-rigid PVC core with high ductility and very nonlinear material properties is
used in the sandwich plates. Three compression tests were performed on our core
material in a Zwick Z250 test machine and the results are plotted in Fig. 6.8. As
seen, all three tests show the same behaviour. At first the compression of the core
show a linear behaviour up to about 1.175 MPa, before it suddenly falls down to
about 1 MPa. This means that the cell-walls in the core starts to crush, and the
curve becomes nearly linear again while the cell-walls in the core continue to crush.
At about 12 mm deflection, ie. at almost 50% compression strain, all the cells are
compressed.

Estimated bilinear yield -«
XI’ieldI strfless fl;om Ithe 1Inan1|1factlorerl

0.2

OII ||
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Deflection (mm)

—~ 18

£ 16}

S 121 : st

2 0sH

.g ' Compression test 1 ——
z 06 Compression test 2

% 04 Compression test 3 ------
g

o

O

Figure 6.8: Stress-deflection curves from three compression tests of our core material.
Bilinear yield criterion estimated from the test results and o, from the manufacturer
are also plotted.

A straight line at 1.2 MPa is also plotted in Fig. 6.8. This is the yield strength
estimated by the manufacturer of the core material and is a bit higher than the
ultimate yield stress from our compression tests. From our test data yield stress
occurs at 1.0 MPa and the gradient is 0.0268.

Both the yield data from the manufacturer and our estimated yield data are
implemented in ANSYS using the BISO option. This option uses the von Mises
yield criterion coupled with an isotropic work hardening assumption. The material
behaviour is described by a bilinear stress-strain curve starting at the origin with
positive stress and strain values. The initial slope of the curve is taken as the elastic
modulus of the material. At the specified yield stress, the curve continues along the
second slope defined by the tangent modulus (having the same unit as the elastic
modulus). The material properties are implemented as:
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!Yield stress without hardening
TB,BISO0,2

TBDATA,1,1.2 !Yield stress
TBDATA,2,0 !No hardening

!Yield stress with hardening
TB,BISO,2

TBDATA,1,1.0 !Yield stress
TBDATA,2,0.0268 !Hardening

When implementing the nonlinear material properties above, the solution pro-
cedure in ANSYS has to be nonlinear. The simulation is also geometric nonlinear,
because the load is now applied in small steps and applied on the deformed solution.
Below are the commands used to solve the nonlinear equations:

but not the program execution
if the solution fails to converge

/SOLU ! Entering the solution processor
ANTYPE,STATIC ! Static analysis
NLGEOM,ON ! Include large deformation effects
SOLCONTROL,ON ! Use optimised nonlinear solution
! defaults. Let ANSYS control most
! of the parameters
NSUBST,10,100,5 ! First load step, max load step,
! minimum load step
KBC,0 ! Ramped loading within a load step
AUTOTS,ON ! ANSYS control the time step
NEQIT, 100 ! Maximum number of equilibrium iterations
! for nonlinear analyses
NCNV, 2 ! Terminate the analysis,
'
1

Both yield criteria described above are simulated using SOLID45, SOLID46 and
SHELL181 elements which uses the same meshes as described in Section 6.2.5. The
force-deflection traces from each simulation are plotted in Fig. 6.9. As seen, the lay-
ered shell element SHELL181 does not show any significant change in the deflection.
Shell elements do not offer the possibility to model indentation and they are therefore
less affected by the core compression yield criteria. The layered SOLID46 element
has one element and two nodes in the vertical direction and can therefore simulate
indentation. However, they are not affected by the change in the core properties. The
SOLID45 model, with 10 elements in the through thickness direction show higher
deflection when the core becomes softer. Layered elements are therefore less suited
to model sandwich plates when local indentation of the core takes place.

6.3 Comparing ANSYS simulations with static deflection
of sandwich plate

6.3.1 Introduction

Section 5.5 contains a description of a sandwich plate tested in a Schenk RM100 test
machine. An indentator was pressed into the sandwich plate which was lying on a
frame. The indentator and frame were the same as used in our impact tests.
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Figure 6.9: Maximum deflection with three different element types using two different
yield models. The linear yield model uses a constant yield value 1.2 MPa, while the
bilinear yield model uses a yield value 1.0 MPa and includes hardening.

From the static deflection test of the sandwich plate, the load-deflection trace was
found along with strain gauge results from the upper and lower facing. The deflection
consists of both global deflection of the entire sandwich and local indentation of
the core. In the previous subsections, several different element types are shown to
model sandwich plates with good results. However, the layered models are not able
to simulate local indentation of the top face into the core since they only have one
element and one node in the out-of-plane direction. The sandwich plate will therefore
be simulated using the SOLID45 elements when comparing numerical predictions
with the static test results.

6.3.2 Force-deflection traces

Fig. 6.10 shows the force-deflection traces from the static test and the ANSYS si-
mulation with the estimated bilinear yield criterion as shown in Fig. 6.9. As can be
seen, the deflections predicted are too small. In particular, the initial slope of the
simulated force-deflection curve is too high. One reason for this could be the varia-
tion in the contact area between the projectile and plate during the test because of
the hemispheric shape of the projectile. The contact area becomes larger when the
projectile is pressed into the sandwich as illustrated in Fig. 6.11. This effect may be
investigated by applying the load on smaller areas with higher load intensities. Four
simulations are conducted with load areas varying as shown in Fig. 6.12. The width
of the simulated sandwich plate is defined by Width=570/2=285 mm. The element
load intensities is calculated for

o = —.

A
where A is the contact area between the projectile and sandwich plate and P is the
maximum load from the static test. A point load applied on a single node is also
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Figure 6.10: Force-deflection traces from test and simulation.
—-
o O
Figure 6.11: The contact area increases during the test.
simulated.
Width/20: o 37  MPa
Width /20 W%dth/40: o = 148 MPa
) Width/80: o = 591 MPa
R 40 Point load: P = 30000 N
hl
& Width/80
Pointload

Figure 6.12: Load applied over different areas.

The ANSYS models are solved by the nonlinear solution methods described in
Section 6.2.7 and the foam core is modelled using the estimated bilinear Yield crite-
rion. Each simulation uses the same grid, shown in Fig. 6.13. The lines at x=0 and
y=0 are divided into 80 elements and the lines at x=285 and y=285 are divided into
20 elements. Two elements are used through the thickness of each face, while there
are 6 elements in the vertical direction of the core. The lines at x=285 and y=285 are
divided using a ratio 4.5, ie. the largest element is 4.5 times larger than the smallest
in either the x- or y-direction. The ANSYS input file can be found in Appendix A.2.
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Figure 6.13: Grid used when applying the load over different areas. The coordinate
system is also shown.

Fig. 6.14 shows the resulting force-deflection traces. We would expect the de-
flection of the centre area to increase with decreasing load area. However, this is not
reflected by the ANSYS simulations. Nevertheless, the stiffness in the simulations
becomes very accurate as the deflection increases. The model using a point load
shows slightly higher deflection, but this is mostly due to compression of the face
element where the point load is applied. This behaviour is not physical since the face
material is too stiff to become compressed, and the point load model is not used
further. Using failure criteria on the faces might reduce the stiffness of the simulated
problem, but this is not further investigated in this thesis.

30000 B
25000 — —1.1‘1':_..’,__’-_,1-"‘
—~ 20000
z
g 15000 |
: : Test
= 10000 - ' Width/20 -----
o Width/40 ------
5000 Width/80 -
-~ Pointload
0 1 ] |
0 5 10 15 20 25 30

Deflection (mm)
Figure 6.14: Force-deflection traces from simulations with different contact areas.

The upper and lower elements of the facings are plotted in Fig. 6.15. As can
be seen the upper face is pressed into the core, and the deflection of the upper face
becomes larger than the lower face. Local indentation of the sandwich is estimated by
subtracting the deflections from the top and bottom face nodes. The global deflection
of the sandwich plate is taken as the deflection of the bottom face. Local deflection
is plotted in Fig. 6.16 along with the bottom deflection for each simulation. It is
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Figure 6.15: ANSYS plot of the elements at top and bottom of the sandwich plate

before and after the load is applied.

seen that the bottom deflections are not affected by the load area, while the local
deflections on the top face increases slightly as the load area decreases.

30000
oso00 - /4
—~ 20000
Z
§ 19000 Width /20, local
= Width,/20, global
10000 Width/40, local ------
Width/40, global -
5000 Widt éSO, local
Width/80, global
0 5 10 15 20 25

Deflection (mm)

Figure 6.16: Global and local deflection. Local deflection is estimated by subtracting
the upper and lower node deflection of the nodes at x=0 and y=0 while global de-
flection is taken as the bottom node deflection. The bottom deflection is not affected

by the load area.
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6.3.3 Strain gauge results

The sandwich plate tested in static deflection was instrumented with strain gauges
on both faces. These values will now be compared with ANSY'S simulations with load
area Width/80 conducted in the previous section. The simulated strains are taken
from the nodes on the upper and lower facings located at the same places as the
strain gauges in the static deflection test. Fig. 6.17 shows where the strain gauges
are situated on the facings.

04 Top-face 04 Bottom-face
3 5
150 150
2 ) 6
L C
'/ 4 ///’ ,»
wal 8
j . -
90 90

Figure 6.17: Strain gauge placement on the plate.

In the upper facing the strain gauges 1, 2 and 3 are studied. The resulting strain-
force traces from the test and simulation are plotted in Fig. 6.18. It is seen that
the simulated strain at gauge 1 initially are too small, but follows closely after a
while. The strain at gauge 2 is much to low throughout the entire simulation, while
the predicted strain at gauge 3 are in good agreement with the corresponding strain
from the test.
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Figure 6.18: Traces of the strains from gauge 1 and 2 in the static compression
test and from nodes located at the same place on the upper facing in the ANSYS

simulation with load area Width/80 from the previous Section.

For the bottom facing the measured and predicted strains at gauges 5 and 6 are
plotted in Fig. 6.19. The strains at the bottom facing seem to be very small, in fact
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the maximum strain is only about 0.4 %. Now, the simulated strain at gauge 6 is
larger than the strain from the test, while the strains at gauge 5 are almost equal.

0.5
Test, strain gauge 6
0.45 |- Test, strain gauge b -----
0.4 | ANSYS, strain gauge 6 ------
" | ANSYS, strain gauge 5 -
0.35 -
X 03|
g 025
©
& 0.2
0.15 S .
0.1 i
005 ‘o" ____”—.-—“:,’ -
0 bz | |
0 5000 10000 15000 20000 25000 30000

Force (N)

Figure 6.19: Traces of the strains from gauge 1 and 2 in the static compression
test and from nodes located at the same place on the upper facing in the ANSYS
simulation with load area Width/80 from the previous Section.

The layup of our facings are [0, 90]s, where the subscript s indicates that only one
half of the laminate is shown, with the other half symmetric about the middle plane
[1]. In standard uniaxial tension tests the facings show the same strength in each
material direction. However, in the static test performed in this thesis the response
differs as described in Section 5.4.8. This behaviour is not reflected in the simulations
and the predicted strains are therefore less accurate.
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Chapter 7

Dynamic simulations

7.1 Introduction

The AUTODYN programs are general-purpose engineering software packages that
use finite difference, finite volume, and finite element techniques to solve a wide va-
riety of nonlinear problems in solid, fluid and gas dynamics. The phenomena to be
studied with such programs can be characterized as highly time dependent with both
geometric nonlinearities (eg. large strains and deformations) and material nonlinea-
rities (eg. plasticity, failure, strain-hardening and softening, multiphase equations of
state). AUTODYN is therefore an appropriate tool for simulating the impact dyna-
mics of our tests.

A Dbrief introduction to AUTODYN is presented in the next section. The simu-
lation setup and results are studied and compared with the impact tests in Section
7.3.

7.2 AUTODYN theory

The theory presented here are based on the manuals [6] and [7] provided with the
AUTODYN software.

7.2.1 Processors

AUTODYN employs a coupled methodology that allows different physical domains
of a problem to be modelled with the most appropriate numerical method, and then
couples these domains in space and time to provide the solution. Each numerical
method are termed "processor", and the various processors are listed below:

e Lagrange (solid structures)

Euler (gas,fluid)

ALE (Arbitrary Lagrange Euler for specialized flow models)

Shell (thin structural elements)

Layered Composite Shell element in 3D (beta)
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e SPH (Smooth Particle Hydrodynamics)

The numerical processors generally use a coupled finite difference/finite volume ap-
proach, and allows alternative numerical processors to be selectively used to model
different components/regimes of a problem. Individual structured meshes operated
on by these different numerical processors can be coupled together in space and time
to efficiently compute structural, fluid, or gas dynamics problems including coupled
problems (eg. fluid-structure, gas-structure, structure-structure, etc.).

In AUTODYN V4.3, all the above processors use explicit time integration. To
ensure a stable and reasonable solution, some restrictions has to be applied on the
time-step of integration. The value of this time step depends on several parameters of
the numerical method and solution so the local time step ensuring stability is calcu-
lated for each mesh point. The minimum value of all these local values is multiplied
by a safety factor (currently a default value of 2/3 is built into the code) and this
is chosen as the time step for the next update. In a Lagrangian mesh the time step

must satisfy

Ar=1
c

where d is a typical length of a zone (defined as the volume of the zone divided by
the square of the longest diagonal of the zone and scaled by 2/3) and c is the local
sound speed. This ensures that a disturbance does not propagate across a zone in a
single time step.

Lagrange Processor A Lagrangian coordinate system, in which the coordinates
move with the material, is ideal for following the flow in regions of relatively low
distortion, and possibly large displacement, where mesh tangling, if it does occur, will
only occur at later times and in regions of low to moderate pressure gradients. The
Lagrange coordinate system can accurately follow particle histories, and therefore
accurately define material interfaces and also follow stress histories of material in
elasticplastic flow. Materials are defined on a structured (I, J, K) numerical mesh
of six sided bricktype (hexahedral) elements and the eight vertices or nodes of the
mesh move with the material flow velocity. Material remains within its initial element
definition with no transport of material from cell to cell.

The partial differential equations to be solved express the conservation of mass,
momentum and energy in Lagrangian coordinates. These, together with a material
model and a set of initial and boundary conditions, define the complete solution of
the problem. Material associated with a Lagrangian zone stays with that zone under
any deformation. Thus a Lagrangian grid moves and distorts with the material it
models and conservation of mass is automatically satisfied.

The main drawback with Lagrange mesh is that for severe deformations the
numerical mesh may become overly distorted with a resulting small timestep and
possible loss of accuracy. However, AUTODYN has included some features who deals
with this situations. In 2D only, a rezoning utility allow a re-establishment of a
"regular" mesh through mapping of the distorted mesh quantities onto a newly zoned
mesh. Another feature is the erosion option which allow the user to specify a limit
for the strain in an element. When this limiting strain is reached, the element is
eroded, ie. transformed from a solid element to a free mass node disconnected from
the original mesh thereby avoiding the mesh distortion problem.
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Shell Processor For thin structures, the solution may become prohibitively ex-
pensive as the timestep due to small elements through the thickness becomes very
small. To overcome this problem a shell processor is introduced assuming;:

e The normal stress through the thickness is neglectable, thus a biaxial stress
distribution exists

e A line initially normal to the of the shell remains straight and normal to the
deformed mid surface as the shell deforms (ie. transverse shear is neglected).

e The density of the shell is assumed to remain constant so there is no volume
change during deformation of the shell. As a consequence, significant changes
in the shell thickness can occur during plastic deformation.

This processor is not suited for modelling sandwich plates, since neglecting transverse
shear in the core can not be allowed without loosing accuracy. However, modelling
the faces with shell elements and joining them with a core modelled with Lagrange
elements might give good results, but are not further examined here.

Layered Composite Shell Element In AUTODYN v4.3 a layered composite
shell has been implemented, but for the same reasons as above, it will not be further
examined in this thesis.

Interaction AUTODYN has the ability to couple numerical grids across Lagrange-
Lagrange and Lagrange-Euler interfaces. When two subgrids are defined to interact
(Lagrange-Lagrange interfaces in this thesis), then at each time step all surface nodes
of the target are tested to see if they have penetrated any of the impacting faces
during the current time step. If any of the target nodes would penetrate, momentum
conserving interactions are computed to prohibit penetration. When this is completed
the surface nodes of the impacting faces are tested for penetrating the target faces,
providing symmetry to the process.

If the pre-defined strain is exceeded, the erosion algorithms allow a Lagrangian
cell to be removed from the calculations. When a cell is eroded, the mass of the cell
can either be discarded or retained at the corner nodes of the cell. If the mass is re-
tained, conservation of inertia and spatial continuity of inertia are maintained during
the erosion process. If the retained inertia option is used and the cells surrounding
a particular node are eroded, the node becomes a free node. This node can continue
to interact, and load other bodies.

Erosion does not necessarily simulate a physical phenomenon. It is basically a
numerical technique introduced to overcome the problems associated with mesh dis-
tortions caused by gross motions of a Lagrangian grid. Typical erosion strains are
taken to be in excess of 150%. Because of the losses of internal energy, strength and
(possibly) mass, care must be taken in using this option and erosion strain limits
chosen wisely so that cells are not discarded (eroded) until they are severely defor-
med and their compressive strength and/or mass are not likely to affect the overall
results.

78



CHAPTER 7. DYNAMIC SIMULATIONS

7.2.2 Material properties

Four basic types of information must be specified for each material:
Equation of State: Pressure as function of density and internal energy.

- Linear: A bulk modulus and reference density are defined.

- Orthotropic: Used to model anisotropic (orthotropic) materials.
Strength model: Strength model which defines the yield surface.

- None (Hydro): No yield surface and no shear modulus. Material is a
strengthless fluid.

Elastic: No yield surface. A constant shear modulus is defined.
- Von Mises: A constant yield surface and shear modulus are defined.

Johnson Cook: Strain hardening model. Strain rate and temperature de-
pendent.

Piecewise linear: Strain hardening model. Modified Johnson-Cook with
piecewise linear function of yield stress.

Failure model: Failure model prescribing when the material no longer has strength.

- None: The material will never fail.

- Hydro: A hydrostatic tensile stress. If this negative pressure is reached
failure occurs.

- Bulk strain: If the effective plastic strain in the material exceeds the ulti-
mate bulk strain limit, failure occurs.

- Principal stress: Failure is initiated if the maximum principal stress, or
the maximum shear stress, exceed their respective failure stresses.

- Principal stress/Principal strain: Failure is initiated if the maximum prin-
cipal stress or strain, or the maximum shear strain or stress, exceed their
respective failure limits.

- Material stress: Principal material stress failure. The principal directions
are defined by the principal material directions. This model is useful for
materials which fail along predefined material planes, such as where dela-
mination failure

Erosion model: Erosion criteria. When a material is eroded it is transformed from
a solid element to a free mass node (Lagrange only).

- None

- Instantaneous Geometric Strain: Geometric strain is defined solely by ele-
ment deformation and is not dependent on material properties. Used in
situations where elastic oscillations tend to monotonically inflate the value
of the geometric strain.

79



7.3. AUTODYN IMPACT SIMULATIONS

7.3 AUTODYN impact simulations

7.3.1 Energy law

The projectile used in our dynamic tests weights 6.2 kg and is dropped from 3.0 m
and 3.5 m. Neglecting the friction from the tube walls and from the air allows us
to use the energy law E, = FEj. This energy law gives us the relation between the
velocity, dropheight and kinetic energy of the impactor as follows:

E, = E
h L ?
m = —mv
g 2
E 2
h o= Zk_ U
mg 29

v = 1/2gh

The velocity and kinetic energy of the projectile as it hits the sandwich plate becomes:

h = 30m=v="77m/sand Fy, =1824]
h = 35m=v=_83m/sand Ej, =212.8 J.

7.3.2 Input parameters

Taking advantage of the symmetry, only one quarter of the plate and projectile is
modelled. The simulated sandwich plate have dimensions [285x285x31] mm? (one
quarter of the tested plate).

Projectile and Frame properties The projectile has radius 3.75 cm and height
18.75 cm. AUTODYN takes the density as input and since the modelled projectile
must have the same weight as the projectile used in the tests the density is calculated
from p = m/V, where V is the volume and m=6200 g is the mass of the projectile
used in the tests. The volume is calculated as

V =nar’h + % %71’7"3 =7 x3.75% x 15 + ; x 7 X% 3.75% = 773.1 cm?

and the density becomes

m 6200 g

VT iems - 002 g/cm’.

p =
Fig. 7.1(a) shows the mesh used to model the projectile. The frame is modelled as
two half cylinders with radius 20 mm. Each node in the frame is clamped, and the
mesh is shown in Fig. 7.3.2. The projectile and frame are modelled using material
properties for stainless steel and the same grids are used in all the simulations. Table
7.1 lists the properties as they are given in AUTODYN.

Face properties The faces consist of two multiaxial GRP-laminates with symme-

tric layup and the thickness of each face is 3 mm. The layup of one face is illustrated
in Fig. 7.2 and the material properties given by Feuerlein [9] are listed in Table 7.2.
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(a) Mesh used to model (b) Mesh used to model the frame.
the projectile.

Figure 7.1: Plot of the meshes used in the projectile and frame.

Table 7.1: Projectile and Frame properties

Projectile/Frame: | Unit:
Equation of state: Linear -
Strength Model: Elastic -
Failure Model: None -
Erosion Model: None -
Reference density: 7.90500E+00 g/cm?®
Bulk Modulus: 4.01300E+08 kPa
Ref. Temperature: 0.0 K
Specific Heat: 0.0 J/kgK
Shear modulus: 8.70000E+07 kPa
CSM
0
90
90
0
CSM

Figure 7.2: Symmetric layup of multiaxial GRP-laminates. A thin layer of CSM
(Cutted Straw Mat) are used to protect the load carrying fibres underneath.

81



7.3. AUTODYN IMPACT SIMULATIONS

Table 7.2: Face properties

Strength Properties Failure Properties
Young'‘s modulus E;: | 31500 | MPa Tensile Failure Stress o,: | 482.0 | MPa
Young‘s modulus E,: | 31500 » Tensile Failure Stress o,: | 482.0 »
Young'‘s modulus E.: 8230 ” Tensile Failure Stress o.: 65.0 »
Poisson‘s ratio vzy: 0.2 Shear Failure Stress 7qy: 55.9 »
Poisson‘s ratio vy,: 0.2 Shear Failure Stress 7,.: 30.0 »
Poisson‘s ratio v.,: 0.2 Shear Failure Stress 7..: 30.0 »
Shear Modulus G,: | 6000.0 | MPa Tensile Failure Strain €,: 2.2 %
Shear Modulus Gy.: | 5143.6 » Tensile Failure Strain ¢,: 2.2 ”
Shear Modulus G..: | 5143.6 » Tensile Failure Strain ¢,: 3.87 »
Density p: 1.9785 | g/cm® || Shear Failure Strain 7y,: 4.0 »

Shear Failure Strain ~,.: 4.0 ”
Shear Failure Strain -.,: 4.0 »

Core properties Divinicell H80 is an advanced polymer foam used in the con-
struction of high performance cored laminates. It provides the right combination of
strength, stiffness, temperature resistance and buoyancy with little weight. The ma-
terial properties are listed in Table 7.3 and are provided by the manufacturer [10].

Table 7.3: Core properties

Strength and Failure Properties
Compression  Tension
Young'‘s modulus E: 85 80 MPa
Failure Stress o: 1.2 2.2 MPa
Shear Modulus G: 31 MPa
Poisson'‘s ratio v: 0.32
Density p: 0.08 g/cm?

7.3.3 Face and Core material modelling

The facings are modelled using the orthotropic material properties listed in Table
7.2 and are implemented using the following models:

EQUATION OF STATE: Orthotropic
STRENGTH MODEL: Elastic
FAILURE MODEL: Material Stress/Strain
EROSION MODEL: None

Since the GRP-facings are very brittle, only an elastic strength model is implemented
assuming perfectly elastic behaviour of the facings up to failure. Failure values are fo-
und from testing in the material directions of the facings and a Material Stress/Strain
failure model is therefore used. The facings have a 0-90 multilayered layup with the
material directions corresponding to the global directions of the sandwich. The ero-
sion model is not used since no penetration takes place in the impact tests. Appendix
C.1 shows how the facings are implemented in AUTODYN.

The core is made of a isotropic foam with material properties as shown in Table.
7.3 and is implemented in AUTODYN as follows:
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EQUATION OF STATE: Linear
STRENGTH MODEL: Vonmises / Johnson-Cook / Piecewise linear
FAILURE MODEL: Principal stress
EROSION MODEL: None

Three strength models are used to model the core, Von Mises, Johnson-Cook and a
piecewise linear version of Johnson-Cook.

The Von Mises yield criteria assumes that the material deforms elastic-perfectly
plastic. In a three-dimensional state of stress the Von Mises yield criterion is given

by
O = i [(0'1 — 0'2)2 + (0'2 — 03)2 + (0'3 — 0’1)2}

V2

When o, reaches oy, the yield stress in simple tension, the materials is deemed to
have yielded. The compressive failure stress provided by the manufacturer is taken
as the yield criteria in this model.

The Johnson-Cook model makes the yield function a function of material pro-
perties without excessively complicating the resultant calculations. It also includes
hardening effects and the yield stress is given by

1/2

oe = [A+ Bey] [1+ Clogé,] [1 - TH'],

where
e, = effective plastic strain
¢, = mnormalised effective plastic strain
Ty = homologous temperature = (T - Tyoom)/(Timert - Troom) = 0 in our case
A = basic yield stress
B = strain hardening.

By approximating the stress-strain curves from the compression tests of the core
shown in Fig. 6.8, the following parameters were found:

A = 116.40 MPa
= 839.27 MPa
=0

= 0.1453.

s QW

The piecewise linear model is a modification of the Johnson-Cook model where
the dependence on the effective plastic strain (A + Beg) is replaced by a piecewise
linear function of yield stress Y versus effective plastic strain €,. Again are the stress-
strain curves in Fig. 6.8 approximated, and a line between the points

e= 0, oy =1000
e= 15, oy = 1402

is used to model the yield.
Appendix C.2 shows how the material properties of the core are implemented in
AUTODYN.
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7.3.4 Strength models in the core

The three core failure models described above is simulated using the grid shown in
Fig. 7.3. As seen, a uniform grid with 10 elements in the height and 31 elements in
the width is used to model the sandwich. The thickness of the whole sandwich plate
is 31 mm and each face is 3 mm. With 10 elements in the height, the thickness of each
element becomes 3.1 mm and thus, the elements at top and bottom of the sandwich
plate are given face properties and the elements in-between are given core properties.
The results are compared with the data from the impact onto the first plate which
were conducted from 3.0 m. The velocity and kinetic energy of the projectile as it
hits the plate is therefore 7.67 m/s and 182.3 J.

Figure 7.3: Figure of the uniform grid used in the simulations where the traces in
Fig. 7.3.4 were calculated. The sandwich has a uniform grid with 10 elements in the
height and 31 elements in the width.

The figures 7.4(a) and 7.4(b) shows how the various failure modes for the core
compare to the tested values in kinetic energy and deflection. The kinematic energy
and deflection from the test were found by integrating the acceleration test data
numerically as described in Section 5.4.6.

As seen in the figures the simulations with core models approximated from our
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180 = r SIS
= 150 = w0t HE.
— 120 ~ 5L o
B 90 g 0
é’ 60 3 ‘
30 | T -
0 | | | J A | | | | | | | J
01 2 3 45 6 78 01 2 3 4 5 6 7 8
Time (ms) Time (ms)
Test Test
Von Mises —---- Von Mises —----
Johnson-Cook ------ Johnson-Cook ------
Piecewise Model Piecewise Model -
(a) Kinematic energy traces. (b) Deflection traces.

Figure 7.4: Plots of the kinematic energies and deflections from the test and the
simulation with various failure modes in the core. The acceleration data used to find
the kinematic energy and deflection are from the impact onto plate one.

compression tests are slightly too soft. Less kinetic energy is returned to the projectile
at the end of the impact because more energy is used as plastic work in the sandwich
core as shown in Fig. 7.5. The deflection of the projectile also becomes to large.

wo-
80 - i
= S
iy 60
20
& 40F
= Von Mises
20 Johnson-Cook -----
Piecewise linear ------
0 I ] |

Time (ms)

Figure 7.5: Plastic work in the sandwich panel simulated with three different strength
models for the core. At about 4.5 ms, when the projectile leaves the sandwich plate,
no more plastic work are conducted.

However, the Von Mises yield criteria models the test data very accurate, and this
failure model is therefore used further.

7.3.5 Failure models in the facings

The above simulations were conducted with the Material Stress/Strain failure model
in the facings. To find out how our material failure properties in stress and strain
agree with each other, simulations were also conducted with failure models Material
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Stress and Material Strain. The kinematic energy and deflection of the projectile is
plotted in Fig. 7.6(a) and Fig. 7.6(b). It is seen that the difference in the stress

g 2 50
= 140 g 20
~ 120 = 15 F
> 100 g
%D 80 B ‘S ].0 — “\
g 60 3
S 40 € 5|
28 C 1 e A T N T B
0 1 2 01 2 3 4 5 6 7 8
Time (ms)
Test —— Test ——
Mat. Stress/Strain ----- Mat. Stress/Strain -----
Mat. Stress ------ Mat. Stress ------
Mat. Strain - Mat. Strain -
(a) Kinematic energy traces for the failure (b) Deflection traces for the failure models
models used in the face. used in the face.

Figure 7.6: Plot of the kinematic energy and deflection of the projectile from the test
and three simulations using failure models Material Stress/Strain, Material Stress
and Material Strain.

and strain failure criteria result in small changes in the results. The curves from
the Material Stress/Strain and Material Stress show the exact same results and
failure occurs therefore when the stress criterions are reached. However, the Material
Stress/Strain failure criteria for the facings is used further.

One large simulation was conducted using the Von Mises yield criteria in the
core and the Material Stress/Strain failure criteria in the facings. Now the grid have
20 elements in the height and 62 in the width as shown in Fig. 7.7, and the results
are compared with a simulation using the grid in Fig. 7.3 and the same material
properties. The kinetic energies and deflections from the simulations and the test are

Figure 7.7: Large grid used to simulate sandwich plates. 20 elements in the height
and 62 elements in the width.
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plotted in Fig. 7.8. It can be seen that the small and large grid simulations show a

180 2 et
~ ok E 20k ‘
= g
> 100 = N
o0 Q Q
g 80 E 10
5 60 - 3
40 |- T 5p
20 - A
0 11 -t J 0 | | | | | | | J
01 2 3 45 6 7 8 012 3 45 6 7 8
Time (ms) Time (ms)
Test Test
Small grid ----- Small grid -----
Large grid ------ Large grid ------
(a) Kinematic energy traces. (b) Deflection traces.

Figure 7.8: Kinematic energies and deflections from simulations conducted on a small
grid with few elements and a large grid with many elements.

varying behaviour. The large model becomes softer, allowing larger deflection and
thus a longer lasting impact. This behaviour was not expected, and complicates the
modelling of our sandwich plates significantly. To check whether the grid in Fig. 7.7
is too small and therefore too stiff, the two grids are simulated again, but without
any failure models in the facings. The results are plotted in Fig. 7.9 and as seen the
changes are very small. This means that the difference in our small and large grid
simulations is not due to the meshes used.

180 25
160 )
— 140 — E 20 B T
= 120 =
= 100 g 1O
o0 S
g 80 Z 10 -
s 60 3
M40 E) 5
28 B || | | || 0 | | | | | | | J
01 2 3 45 6 7 8 01 2 3 4 5 6 7 8
Time (ms) Time (ms)
Small Large ----- Small Large -----
(a) Kinematic energy traces. (b) Deflection traces.

Figure 7.9: Kinematic energies and deflections from simulations with few and many
elements when the failure model is not used in the facings.

The softening in the large simulation must therefore be connected with our failure

model in the facings. Fig. 7.10 show the failure in the facings for the small and large
element model. When more elements are used more local failure around the projectile
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takes place. The internal energy in failed elements are lost and not returned to the
projectile when the impact is over. Since the local stiffness of the faces under the
projectile is reduced due to the failed elements, local indentation of the core also
becomes larger.

Fig. 7.10 also show the plastic behaviour in the core. Large parts of the core
near the impacted area suffers plastic deformation during the impact. Fig. 7.11 show
traces of the internal energies in the facings and the core and for the hole sandwich
for both the small and large grid simulation. From about 4.5 ms the internal energy

Material Status Material Status

Void Void

Hydro Hydro

Elastic Elastic

Plastic Plastic

Bulk Fail Bulk Fail

ailed 23

Failed 31 Failed 31

(a) Failure plot, 10 elements in the height and (b) Failure plot, 20 elements in the height and
31 in the width of the plate. 62 in the width of the plate.

Figure 7.10: Failure plots two simulation with small and large elements at 3.75 ms.
The 1, 2 and 3 axes are according to the right hand rule with the 3-direction pointing
upwards.

in the small grid simulation is reduced, while less internal energy in the large grid
simulation is returned because more is used when failure takes place during the
impact. However, the large grid simulation is still in good agreement with our test
results despite the fact that the small grid simulation are closer. More elements gives
generally more accurate results, and Fig. 7.10(b) show the most realistic failure plot.
The visual delamination pattern from the test shown in Fig. 5.23 is very local as in
Fig. 7.10(b).

The simulation data are compared with the test data by numerically integrating
the acceleration from the projectile. Due to the problems described in Section 5.4.4
the acceleration data is taken from the second impact onto the plate. This might
give a somewhat too fast impact, since the work with crushing the face and core are
mostly done in the first impact. As the projectile hits the plate the second time most
of the internal work is done and the impact becomes more elastic.

Due to these observations the large grid is used further in the next Section.

7.3.6 Strain gauge results

Our impacted sandwich plates were equipped with strain gauges on the top and
bottom faces. These gauges measure the strain in the facings during the impact.
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Figure 7.11: Internal energies in the facings, the core and for the hole sandwich
compared for simulations with a small and a large grid.

Plate 2, which was impacted from 3.5 m has strain gauges placed as shown in Fig.
5.18. In AUTODYN, it is possible to declare elements as target elements. These target
elements logs various parameters during the simulation. Unfortunately, strains are
not logged in these elements, but the stress traces can be retrieved. The large mesh
described in the previous section was used to model the sandwich, and target points
according to the strain gauges in the impact test were defined. Stresses from these
target points were found and strains calculated from Hook‘s law in three dimensions
defined as
Oy UV
€r — E — E(Uy + O'z>.

The stresses in the z-direction are small and neglectable compared to o, and o,. The
strain in the x-direction is therefore calculated as

€@ =% ~ Vg
where £ = E, = E, = 31500 MPa and v = 0.2. Two strain gauges from the top
facing, situated at 45 mm and 75 mm from the centre of the plate in the 0-direction
are compared with the simulated strains. Fig. 7.12 shows the traces from the test
and the simulation. As seen the simulated strains are much to low. At about 1.5 ms
reaches the element taken as strain gauge 1 the failure mode limit, and the stress are
set to zero. Strain gauge 2 situated further away from the load area show very little
strain.

Strain gauge 5 and 6 from the bottom plate are also compared with the simulation
and the traces are plotted in Fig. 7.13. According to the figure both test and simulated
strain start at about 0.8 ms. Up to about 3 ms are the strains in good agreement
with each others, but from there gauge 6 increases too much.

Strains are generally hard to simulate. In our tests, strains in the 0- and 90-
direction varies a lot due to the stacking of the facings, and this behaviour is not
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Figure 7.12: Strain plots from test and simulation of two gauges on the top facing.
The strain gauges are situated in the 0-direction, at 75 and 45 mm from the centre
of the plate, respectively.
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Figure 7.13: Strain plots from test and simulation of two gauges on the bottom facing.
The strain gauges are situated in the 0-direction, at 75 and 45 mm from the centre
of the plate respectively.
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reflected in our simulations. No further attempts are therefore conducted in simula-
ting strains in the facings using AUTODYN.
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Chapter 8

Comparing Static and Dynamic
tests and simulations

8.1 Introduction

Dynamic impact simulations are generally much more expensive and complicated
than static simulations. Finding out whether static simulations can be used to model
dynamic tests is therefore of great interest.

In the previous chapters sandwich plates have been tested and simulated for
static and dynamic loads. In this chapter some comparisons between the static and
dynamic tests and simulations are carried out.

8.2 Force vs. Deflection

The force from a dynamic impact test is found by multiplying the acceleration trace
by the weight of the projectile according to Newtons 2nd law, F' = ma. Numerical
integration is performed twice on the acceleration data to retrieve the deflection.

Four force-deflection traces are plotted in Fig. 8.1. The dynamic test data are
taken from the impact onto plate 1 described in Section 5.4.6 and the static test
data are from the test described in Section 5.5. The AUTODYN impact trace is
obtained using the mesh in Fig. 7.3 and the ANSYS static trace is from the simulation
conduction in Section 6.3.2 with load area Width/80. Also, the deflection from the
analytical solution with orthotropic facings described in Section 4.4 is calculated.

It can be seen that the traces from the static and dynamic tests are in very good
agreement with each other. However, the maximum forces calculated in the static
and