
136

Bridging the Semantic Gap betweenQualitative and
Quantitative Models of Distributed Systems

SI LIU, ETH Zürich, Switzerland

JOSÉ MESEGUER, University of Illinois Urbana-Champaign, USA

PETER CSABA ÖLVECZKY, University of Oslo, Norway

MIN ZHANG, East China Normal University, China

DAVID BASIN, ETH Zürich, Switzerland

Today’s distributed systems must satisfy both qualitative and quantitative properties. These properties are
analyzed using very different formal frameworks: expressive untimed and non-probabilistic frameworks, such
as TLA+ and Hoare/separation logics, for qualitative properties; and timed/probabilistic-automaton-based
ones, such as Uppaal and Prism, for quantitative ones. This requires developing two quite different models of
the same system, without guarantees of semantic consistency between them. Furthermore, it is very hard or
impossible to represent intrinsic features of distributed object systemsÐsuch as unbounded data structures,
dynamic object creation, and an unbounded number of messagesÐusing finite automata.

In this paper we bridge this semantic gap, overcome the problem of manually having to develop two
different models of a system, and solve the representation problem by: (i) defining a transformation from
a very general class of distributed systems (a generalization of Agha’s actor model) that maps an untimed
non-probabilistic distributed system model suitable for qualitative analysis to a probabilistic timed model
suitable for quantitative analysis; and (ii) proving the two models semantically consistent. We formalize our
models in rewriting logic, and can therefore use the Maude tool to analyze qualitative properties, and statistical
model checking with PVeStA to analyze quantitative properties. We have automated this transformation and
integrated it, together with the PVeStA statistical model checker, into the Actors2PMaude tool. We illustrate the
expressiveness of our framework and our tool’s ease of use by automatically transforming untimed, qualitative
models of numerous distributed system designsÐincluding an industrial data store and a state-of-the-art
transaction systemÐinto quantitative models to analyze and compare the performance of different designs.

CCS Concepts: • Software and its engineering → Formal methods; Model checking; Software perfor-

mance; • Computing methodologies→Model verification and validation.

Additional Key Words and Phrases: distributed systems, actors, formal model transformation, statistical model
checking, rewriting logic, Maude

ACM Reference Format:

Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin. 2022. Bridging the Semantic Gap
between Qualitative and Quantitative Models of Distributed Systems. Proc. ACM Program. Lang. 6, OOPSLA2,
Article 136 (October 2022), 30 pages. https://doi.org/10.1145/3563299

1 INTRODUCTION

Problem Description. Virtually all distributed systemsÐfrom network protocols to distributed
algorithms, and from cloud-based transaction systems to distributed cyber-physical systemsÐcan

Authors’ addresses: Si Liu, ETH Zürich, Switzerland; José Meseguer, University of Illinois Urbana-Champaign, USA; Peter
Csaba Ölveczky, University of Oslo, Norway; Min Zhang, East China Normal University, China; David Basin, ETH Zürich,
Switzerland.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART136
https://doi.org/10.1145/3563299

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3563299
https://doi.org/10.1145/3563299
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563299&domain=pdf&date_stamp=2022-10-31

136:2 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

be naturally modeled and programmed as systems of concurrent objects that communicate through
message passing. In distributed systems, logical correctness is necessary, but not sufficient, since
quantitative properties, including performance properties, are equally important. The need for model-
based analysis of both correctness and performance of distributed systems has been emphasized in
academia and industry [Alur et al. 2015; Microsoft 2018; Newcombe et al. 2015]. Having a unified
way of formally specifying and analyzing both qualitative and quantitative properties during
distributed system design, and automating system analysis as much as possible are the problems
we address in this work. By a łunified wayž we mean avoiding a modeling schizophrenia, where
very different, perhaps inconsistent, models are developed to analyze qualitative and quantitative
properties. Avoiding such modeling schizophrenia also facilitates asking important mixed property
questions, such as the following: łWe know that the Cassandra data storage system only satisfies
eventual consistency. But how often does it maintain stronger consistency properties in practice?ž

Challenges of Model Heterogeneity for Distributed Systems. Excellent methods and tools
exist for analyzing both qualitative and quantitative properties. However, many of the best-known
quantitative analysis tools are based on finite automata models enriched with probability informa-
tion, and perhaps time. The problem is that object-based distributed systems have intrinsic features
that are quite hard or impossible to represent in such models. For example: (i) object attributes
may contain unbounded data structures; (ii) asynchronous message passing and dynamic object
creation may increase the number of both messages and objects in an unbounded manner; and
(iii) as we explain in this paper, the probability distributions suitable to model their behavior may
not be fixed ones, but parametric families of user-specified distributions, whose parameter values
may change dynamically. Issues like these make bridging the semantic gap between the different
models used for qualitative and quantitative analysis highly non-trivial and practically important.

Our Approach. To avoid the schizophrenia of heterogeneous distributed system models and
support both qualitative and quantitive analysis, we define automatable semantics-preserving
transformations that turn a nondeterministic untimed system model suitable for qualitative analysis
into a probabilistic timed model suitable for analyzing quantitative properties. We target a broad
class of distributed systems: our qualitative models are generalized actor systems, which extend the
already very large class of Agha’s message-passing actor systems [Agha 1986] by allowing łactive
actorsž that can change their state without receiving a message. Since performance properties
intrinsically involve time, our main transformation adds time to a generalized actor model as well as
system-specific and user-provided probability distributions on message delays. The result is a real-
time, probabilistic actor system semantically consistent with its original non-deterministic version
and purely probabilistic, i.e., at any time 𝑡 , the state 𝑠𝑡 reached at time 𝑡 can perform at most one
probabilistic transition; this is also called the absence of nondeterminism (AND) property. It greatly
facilitates statistical model checking (SMC) analysis [Agha and Palmskog 2018], a formal method that
scales well to large distributed systems. Two other transformations make this probabilisitic model
executable by sampling, and specify the relevant events to be analyzed. These three transformations
are proved correct, and automated in a tool supporting SMC-based quantitative analysis.
Methodologically, our approach makes it possible to explore the design space and learn much

about a distributed system’s design before its implementation. Many systems are developed without
these benefits: it is often prohibitively expensive to explore alternative implementations; but quite
easy to quickly explore alternative system designs formalized as executable formal specifications and
analyze their respective qualitative and quantitative properties. Our approach is best exploited in
the development of new distributed systems to arrive at a mature, thoroughly analyzed design before
implementation. The resulting specification can then be used either as a prototype from which
code is written, or, as demonstrated in [Liu et al. 2020], to automatically generate a, currently less

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:3

efficient, correct by construction implementation. Moreover, as several of our case studies in Section
9 showÐfor example, for CassandraÐby abstracting a formal model from a system implementation
it is also possible to both analyze an existing system and to explore alternative designs for it.

Formalization andMainContributions. Our approach is very general and formalism-independent.
However, to mathematically define the theory transformations, prove their correctness, and obtain
a correct-by-construction tool implementation, we must formalize our approach in an expressive
formal framework that supports both qualitative and quantitative analysis. We use rewriting logic’s
natural way of modeling object-based distributed systems [Meseguer 1993], supported by the Maude
rewriting logic language [Clavel et al. 2007], as follows. In Section 4 we define a transformation
of rewrite theories R ↦→ RΠ , where: (1) R belongs to the class of generalized actor rewrite theories
(GARwThs), which formalize generalized actor systems and can naturally model most distributed
systems. (2) RΠ is a timed probabilisitic rewrite theory [Agha et al. 2006] suitable for quantitative
analysis by statistical model checking (SMC). (3) Π is a user-specified family of parametric proba-
bility distributions that model quantitatively the message delays.1 In Section 5 we prove that: (a)
for any R ∈ GARwTh and initial states satisfying natural requirements, all behaviors of RΠ are
purely probabilistic; (b) RΠ is related to R by means of a stuttering simulation. The probabilistic
rewrite theory RΠ is a non-executable mathematical model. In Section 6 we define a second theory
transformation RΠ ↦→ Sim(RΠ) that makes RΠ executable, and show that Sim(RΠ) simulates RΠ .
However, it is not always possible to directly express desired quantitative properties on either R
or Sim(RΠ). To support the specification and SMC analysis of quantitative properties, Section 7
defines a third theory transformation Sim(RΠ) ↦→ 𝑀 (Sim(RΠ)) that adds to Sim(RΠ) a monitor
that łrecordsž the events needed to measure quantitative properties during a run.

These transformations allow automatic generation of correct-by-construction, executable, purely
probabilistic, quantitative models from nondeterministic ones for a large class of distributed systems.
This enables automatic SMC analysis of quantitative system properties, which we accomplish by:

• automating the transformations R ↦→ RΠ ↦→ Sim(RΠ) ↦→ 𝑀 (Sim(RΠ)) in Maude; and
• automating within the same environment the quantitative analysis of 𝑀 (Sim(RΠ)) in the
PVeStA SMC tool [AlTurki and Meseguer 2011], a parallelized tool for SMC analysis.

This automation of theory transformations and SMC analysis is supported by the Actors2PMaude
tool described in Section 8. We present in Section 9 a collection of case studies that apply the
Actors2PMaude tool to different kinds of distributed system designs. Our case studies focus on the
SMC analysis of quantitative and mixed properties. However, we show in Section 8 how qualitative
safety or liveness properties expressed in linear temporal logic (LTL) can also be verified on the
same distributed system model R (no model schizophrenia!) using other tools.

Prior Maude-Based Work and Missing Links. We discuss related work in Section 10. Here
we focus on previous work using Maude and probabilistic rewrite theories for the quantitative
analysis of distributed systems. The paper [Agha et al. 2006] introduced the notion of a probabilistic

1Quantitative properties of distributed systems often involve time. For example, key performance metrics in transaction
systems include throughput (completed transactions per second) and the average latency of each transaction. For analysis
purposes, message delays can be modeled as following certain probability distributions (see, e.g., [Benson et al. 2010]).
However, care must be taken to choose probability distributions that approximate well the communication delays in actual
systems. Furthermore, as shown in Section 9.2, the same implementation can have quite different performance results
on different execution platforms. Message delays on different execution platforms therefore need to be approximated by
different probability distributions. This is one reason for the expressiveness of our framework: In most simulation and
formal (performance) analysis tools, the designer is given a fixed set of (parametric) probability distributions. Instead, while
we provide a library of predefined parametric probability distributions, our framework and tool allow the user to define her
own distributions, to best approximate the message delay distribution on her execution platform. We also explain (this is the
contribution of Section 6) how the user can obtain a correct simulation model based on her user-defined delay distributions.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:4 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

rewrite theory and the QuaTEx quantitative probabilistic temporal logic, and used the VeStA tool
[Sen et al. 2005b] for SMC verification of QuaTEx properties. Follow-up work, using VeStA or its
PVeStA parallelization, includes applications to the quantitative analysis of, e.g., sensor networks
[Katelman et al. 2008], protocols protecting systems against distributed denial of service (DDoS)
attacks [Agha et al. 2005; AlTurki et al. 2009; Eckhardt et al. 2012], stochastic hybrid systems
[Meseguer and Sharykin 2006], inter-domain bandwidth reservation infrastructure [Weghorn et al.
2022], cloud-based data storage systems [Bobba et al. 2018; Liu et al. 2019a,b, 2020], and blockchain
algorithms [Alturki and Rosu 2019]. In comparison to that prior work, our work solves important
problems associated with critical missing links between qualitative and quantitative models:

(1) The enrichment process of an object-based rewrite theory into a probabilistic one was
previously an awkward, time-consuming, and error-prone manual process.

(2) The passage from a non-executable probabilistic rewrite theory to its executable version for
simulation and SMC analysis was also performed by hand, raising similar concerns.

(3) The specification of the measurable events of interest needed to express relevant quantitative
properties likewise had to be added by hand.

(4) Even if all these manual transformations were correct, for SMC verification in VeStA and
PVeStA, the rewrite theory had to be purely probabilisitic; however, no theory-generic meta-
theorems of the kind proved in Sections 5ś7 were available.

(5) The combined effect of all thesemissing linksmade quantitative modeling and analysis difficult
and error prone, requiring substantial user expertise. Furthermore, there was no automated
support at any stage, except for the last, SMC verification step.

This work fills all these foundational and automation gaps in the passage from qualitative to
quantitative models. Moreover, by automating most of the steps, it greatly simplifies the quantitative
analysis of distributed systems, supporting the use of advanced verification tools by non-experts.

2 PRELIMINARIES

Maude [Clavel et al. 2007] is a formal specification language and analysis tool for distributed
systems. A Maude module specifies a rewrite theory [Meseguer 1992] R = (Σ, 𝐸, 𝐿, 𝑅), where:

• Σ is an algebraic signature, i.e., a set of sorts, subsorts, and function symbols.
• (Σ, 𝐸) is an order-sorted equational logic theory [Goguen and Meseguer 1992] specifying the
system’s data types, with 𝐸 a set of (possibly conditional) equations and axioms.

• 𝐿 is a set of rule labels.
• 𝑅 is a collection of labeled conditional rewrite rules [𝑙] : 𝑡 −→ 𝑡 ′ if cond, with 𝑡, 𝑡 ′ Σ-terms
and 𝑙 ∈ 𝐿, that specify the system’s local transitions.

We summarize Maude’s syntax and refer to [Clavel et al. 2007] for details. Operators are declared
op 𝑓 : 𝑠1 . . . 𝑠𝑛 -> 𝑠 and can have user-definable syntax, with ‘_’ denoting argument positions, as in
+. (Unconditional and conditional) equations and rewrite rules are introduced with, resp., the
keywords eq and ceq, and rl and crl . Mathematical variables are declared with the keywords var
and vars. Comments start with ‘***’. The following example illustrates how a Maude specification
is just a mathematical definition of a rewrite theory R = (Σ, 𝐸, 𝐿, 𝑅), given in typewriter notation.

Example 2.1. The rewrite theory R = (Σ, 𝐸, 𝐿, 𝑅) specifying an actor system of bank accounts im-
ports the module NAT of natural numbers of sort Nat. Its signature Σ extends that of NAT by adding
sorts 𝑂𝑖𝑑 of object identifiers, Accnt, of bank account objects, Msg of messages, and Configuration

of distributed states, called configurations, with subsort inclusions Accnt,Msg < Configuration and:
(i) an account-building operator ⟨_ : Accnt | bal :_⟩ : Oid Nat → Accnt, (ii) a configuration union
operator with empty syntax (juxtaposition) _ _ : Configuration Configuration → Configuration,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:5

with a constant none of sort Configuration (the empty configuration), and (iii) message operators
credit : Oid Nat → 𝑀𝑠𝑔, debit : Oid Nat → 𝑀𝑠𝑔. Equations 𝐸 are the equations of NAT as well
as the associativity (𝑋 𝑌) 𝑍 = 𝑋 (𝑌 𝑋), commutativity 𝑋 𝑌 = 𝑌 𝑋 , and identity 𝑋 none = 𝑋

axioms, with 𝑋,𝑌, 𝑍 of sort Configuration, making configurations into multisets of messages and
bank account objects. The set 𝐿 of labels is 𝐿 = {cred, deb}. The rewrite rules 𝑅 are

[cred] : credit (𝐴, 𝑁) ⟨ 𝐴 :Accnt | bal :𝑀⟩ → ⟨ 𝐴 :Accnt | bal :𝑀 + 𝑁 ⟩
[deb] : debit (𝐴, 𝑁) ⟨ 𝐴 :Accnt | bal :𝑀⟩ → ⟨ 𝐴 :Accnt | bal :𝑀 − 𝑁 ⟩ if 𝑀 ≥ 𝑁

with𝐴 of sortQid and𝑁,𝑀 of sortNat. InMaude, all these declarations are specifiedwith isomorphic
typewriter notation. For example, credit : Oid Nat → 𝑀𝑠𝑔 is declared as op credit : Oid Nat ->

Msg . Likewise, the two rules are declared as:

rl [cred] : credit(A,N) < A : Accnt | bal : M > => < A : Accnt | bal : M + N > .

crl [deb] : debit(A,N) < A : Accnt | bal : M > => < A : Accnt | bal : M - N > if M >= N .

We will use Maude notation in the remainder of the paper.

Maude supports the following syntactic sugar and translates it into standard R = (Σ, 𝐸, 𝐿, 𝑅)
notation: A declaration class 𝐶 | att1 : s1, . . . , att𝑛 : s𝑛 declares an object class 𝐶 with
attributes 𝑎𝑡𝑡1 to 𝑎𝑡𝑡𝑛 of sorts 𝑠1 to 𝑠𝑛 . For example, class Accnt | bal : Nat . An object of class
𝐶 is a term <𝑜 : 𝐶 | att1 : val1, . . . , att𝑛 : val𝑛 >, where 𝑜 (of sort Oid) is the object’s identifier, and
𝑣𝑎𝑙1 to 𝑣𝑎𝑙𝑛 are the current values of the attributes 𝑎𝑡𝑡1 to 𝑎𝑡𝑡𝑛 . Messages are terms of sort Msg.

Maude’s built-in function random(𝑘) returns the 𝑘-th pseudo-random number as a number
between 0 and 232 − 1, and a built-in constant counter with a rewrite rule counter => N:Nat.

which rewrites counter to a different natural number each time it is rewritten. The rule

rl [rnd] : rand => real(random(counter + 1) / 4294967295) .

rewrites the constant rand (used in Section 8) to a real number between 0 and 1, pseudo-randomly
chosen according to the uniform distribution.

Probabilistic Rewrite Theories [Agha et al. 2006] can express a wide range of probabilistic sys-
tems, including discrete- and continuous-time Markov chains, Markov decision processes (MDPs),
probabilistic (timed) automata [Bentea and Ölveczky 2011], probabilistic Petri nets, object-based
probabilistic real-time systems [Bobba et al. 2018; Eckhardt et al. 2012; Katelman et al. 2008], and
object-based stochastic hybrid systems [Meseguer and Sharykin 2006]. They have rules of the form

[𝑙] : 𝑡 (®𝑥) −→ 𝑡 ′(®𝑥, ®𝑦) if 𝑐𝑜𝑛𝑑 (®𝑥) with probability ®𝑦 := 𝜋 (®𝑥)

where the term 𝑡 ′ has new variables ®𝑦 disjoint from the variables ®𝑥 in 𝑡 . The concrete values of ®𝑦 are
chosen probabilistically according to the parametric probability distribution 𝜋 (®𝑥): each matching
substitution {®𝑥 ↦→ ®𝑎} of the left-hand side’s variables defines a concrete distribution 𝜋 (®𝑎).

Statistical Model Checking (SMC) [Agha and Palmskog 2018; Sen et al. 2005a; Younes and
Simmons 2006] trades off the exactness of probabilistic model checking [Baier et al. 2018] in
exchange for greater performance and scalability. Quantitative system properties expressed in
a probabilistic temporal logic are evaluated by Monte Carlo simulation up to a chosen level of
statistical confidence. Although the model was originally required to be purely probabilistic, this
requirement has been relaxed to allow SMC of MDP models in, e.g., [Ashok et al. 2019; Bogdoll
et al. 2011; Henriques et al. 2012; Lassaigne and Peyronnet 2012; Wang et al. 2020]. In this work,
only purely probabilistic models will be used.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:6 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

Quantitative Temporal Expressions (QuaTEx) [Agha et al. 2006] is a quantitative temporal
logic that extends probabilistic computation tree logic [Hansson and Jonsson 1994] by supporting
real-valued expressions. A QuaTEx query𝑄 consists of a set of definitions 𝐷 followed by a query of
the expected value of a path expression PExp interpreted over an execution path. A state expression
SExp is interpreted over a state.

𝑄 ::= 𝐷 eval E[PExp] ; 𝐷 ::= set of Def

Def ::= 𝑁 (𝑥1, ..., 𝑥𝑚) = PExp ; SExp ::= 𝑐 | 𝑓 | 𝐹 (SExp1, ..., SExp𝑘) | 𝑥𝑖
PExp ::= SExp | ⃝ 𝑁 (SExp1, ..., SExp𝑛) | if SExp then PExp1 else PExp2 fi

A definition Def of a temporal operator consists of a name 𝑁 and a set of (freeze) formal parameters
on the left-hand side, and a path expression on the right-hand side. A state expression can be
a constant 𝑐 , a function 𝑓 mapping a state to a concrete value, a 𝑘-ary function 𝐹 mapping 𝑘

state expressions to a state expression, or a formal parameter 𝑥 . A path expression can be a state
expression, a next operator ⃝ followed by an application of a temporal operator defined in 𝐷 ,
where the formal parameters are replaced by state expressions or a conditional expression. The ⃝
operator takes an expression at the next state and makes it an expression for the current state.
For example, a QuaTEx query on łthe number of clients connected to the server within 10 time

unitsž can be given as follows:

numberOfConnected(t, cls) = if 𝑡 < currentTime() then cls

else if connected () then ⃝(numberOfConnected(𝑡, cls + 1))

else ⃝(numberOfConnected(𝑡, cls)) fi fi ;

eval E[numberOfConnected(currentTime() + 10, 0)]

The first three lines define the operator numberOfConnected(t, cls), which increments the count of
the number of connected clients if along an execution path any client is connected to the server in
the state2 (state function connected ()) within time 𝑡 , and returns the current number of connected
clients cls otherwise. Function currentTime() returns the state’s global time. The fourth line returns
the expected number of connected clients within 10 time units from a given initial state.

The PVeStA Statistical Model Checker. Since QuaTEx path expressions are real-valued, they
can naturally express quantitative properties. For a purely probabilistic Maude model they can be
analyzed by SMC using the VeStA family of tools [AlTurki and Meseguer 2011; Sebastio and Vandin
2013; Sen et al. 2005b]. They are evaluated by Monte Carlo simulation up to a given statistical
confidence level. The expected value of the path expression is iteratively evaluated w.r.t. two
parameters 𝛼 and 𝛿 until a value 𝑣 is obtained such that with (1 − 𝛼) statistical confidence, the
expected value lies in the interval [𝑣 − 𝛿

2
, 𝑣 + 𝛿

2
]. Our Actors2PMaude tool incorporates PVeStA

[AlTurki and Meseguer 2011]. PVeStA invokes the Maude interpreter to execute purely probabilistic
Maude models, and verifies QuaTEx formulas on model simulations by parallel SMC.

Transition Systems, Stuttering Simulations, and Bisimulations. A transition system A is
a triple (𝐴,→A, 𝑎0), where 𝐴 is a set of states, →A ⊆ 𝐴 ×𝐴 is a transition relation on states, and
𝑎0 ∈ 𝐴 is the initial state. A = (𝐴,→A, 𝑎0) is called total (or deadlock-free) iff its transition relation
→A is so, i.e., iff ∀𝑎 ∈ 𝐴 ∃𝑎′ ∈ 𝐴 s.t. 𝑎 →A 𝑎′. We use Reach(𝑎) to denote the set of states reachable
from 𝑎 ∈ 𝐴 in A, i.e., Reach(𝑎) = {𝑎′ ∈ 𝐴 | 𝑎 →∗

A
𝑎′}, where→∗

A
denotes the reflexive-transitive

closure of →A . Any transition system A = (𝐴,→A, 𝑎0) can be totalized as A•
= (𝐴,→•

A
, 𝑎0),

with (→•
A
) = (→A) ∪ {(𝑎, 𝑎) | ¬∃𝑎′ ∈ 𝐴 𝑠.𝑡 . 𝑎 →A 𝑎′}. A path 𝜋 in a total transition system A

is a function 𝜋 : N→ 𝐴 such that 𝜋 (0) = 𝑎0 and ∀𝑛 ∈ N, 𝜋 (𝑛) →A 𝜋 (𝑛 + 1).

2In an execution path, we assume that at most one client is connected to the server at any state.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:7

Definition 2.2. [Meseguer et al. 2010] Given total transition systems A = (𝐴,→A, 𝑎0) and
B = (𝐵,→B, 𝑏0), a stuttering simulation map, denoted ℎ : A → B, is a function ℎ : Reach(𝑎0) →
Reach(𝑏0) such that: (1) ℎ(𝑎0) = 𝑏0, (2) given any path 𝜋 in A starting at 𝑎0 (i.e., 𝜋 (0) = 𝑎0), there
is a path 𝜌 in B starting at 𝑏0 and a strictly monotonic function 𝜅 : N → N such that, for each
𝑛 ∈ N and each 𝑖 with 𝜅 (𝑛) ≤ 𝑖 < 𝜅 (𝑛 + 1), ℎ(𝜋 (𝜅 (𝑛))) = ℎ(𝜋 (𝜅 (𝑖))) = 𝜌 (𝑛).

A function ℎ : Reach(𝑎0) → Reach(𝑏0) is called a bisimulation map ℎ : A → B from A to B iff:
(i) ℎ(𝑎0) = 𝑏0; and (ii) for any 𝑎 ∈ Reach(𝑎0), if 𝑎 →A 𝑎′ then ℎ(𝑎) →B ℎ(𝑎′), and if ℎ(𝑎) →B 𝑏

then there exists 𝑎′′ ∈ Reach(𝑎0) with 𝑎 →A 𝑎′′ and ℎ(𝑎′′) = 𝑏.

We can associate to a rewrite theory R = (Σ, 𝐸, 𝐿, 𝑅) and an initial state init ∈ 𝑇Σ/𝐸,𝑘
3 a total

transition system (R, init)• defined by (R, init)• = (𝑇Σ/𝐸,𝑘 ,→
•
R
, init), where →•

R
is the totalization

of the one-step rewrite relation on states→R defined by R.

3 GENERALIZED ACTOR SYSTEMS AND THEIR FORMALIZATION

The goal of this section is to develop a general and widely applicable model of distributed systems,
called generalized actor systems, which is formalized in rewriting logic in Section 3.2.

3.1 Generalized Actor Systems

Actors [Agha 1986] are a popular model for distributed systems, where distributed objects commu-
nicate through asynchronous message passing. When an actor receives a message it can change its
state, send messages, and create new actors. Furthermore, these actions are deterministic [Agha
1986]: the actor’s new state, the generated messages, and the newly created actors are uniquely
determined by the received message and the actor’s internal state. This captures local determinism
in distributed systems: the state change of a node in response to an event is typically deterministic.

In practice it is convenient (or even necessary) to allow nodes in a distributed system to exhibit
łinternal actionsž that are not triggered by messages. We therefore introduce generalized actor
systems (GASs), which extend (Agha’s) actors by allowing actors to exhibit autonomous behaviors
(łinternal actionsž) that are uniquely determined by the actor’s state. Furthermore, in a GAS, no
actor can perform an infinite sequence of such internal actions, and an actor can always read a
message addressed to it, unless it (first) can perform an internal action.
We also assume that at most one actor in a GAS can perform an internal action in the initial

state. This does not restrict the systems that can be seen as GASs, since we can trigger an actor’s
initial action by adding to the initial state an łinitialization messagež for that actor.

3.2 Formalizing GASs: Generalized Actor Rewrite Theories

We formalize generalized actor systems as generalized actor rewrite theories (GARwThs). These are
object-oriented rewrite theories that (together with an initial state) satisfy natural requirements.

The distributed states of a GARwTh (terms of sort Configuration) are multisets of objects (terms
of sort Object) and messages (terms of sort Msg). Multiset union is modeled by an associative and
commutative operator _ _ (juxtaposition), where null is the empty multiset.

The rewrite rules in a GARwTh have the form4 (where ‘[. . .]’ are optional parts)

[l] : (to 𝑜 [from 𝑜'] : mp) < 𝑜 :𝐶 | atts > => < 𝑜 : 𝐶 | atts' > msgs newobjs [if cond] (†)

or

[l] : < 𝑜 : 𝐶 | atts > => < 𝑜 : 𝐶 | atts' > msgs newobjs [if cond] (‡)

where:

3𝑇Σ/𝐸,𝑘 denotes the 𝐸-equivalence classes of ground Σ-terms of kind 𝑘 [Clavel et al. 2007].
4Logical variables appearing in rules are written in capital letters, while terms are written in italics.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:8 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

• msgs is a (possibly null) term of sort Configurationwhich, applying the equations, reduces
to a set of messages (𝑛 ≥ 0), each of which is a term of sort Msg, of the form:

(to 𝑜1 from 𝑜𝜃 : mp1) ... (to 𝑜𝑛 from 𝑜𝜃 : mp𝑛)

where 𝜃 is the matching substitution used when applying the rule; the termmp𝑖 is the payload
of the message sent to the receiver 𝑜𝑖 from the sender 𝑜𝜃 .

• newobjs is a (possibly null) term of sort Configuration which, applying the equations,
reduces, for each matching substitution 𝜃 , to a set of new objects which are added to the
configuration. The names of the new objects must all be distinct and different from the object
names in the current configuration; this can be achieved as described in [Meseguer 1993].

We call (†) and (‡) message-triggered and object-triggered rules, respectively.
An initial state initconf (of sort Configuration) of a generalized actor rewrite theory consists

of a set of objects (with distinct names) and messages of the form:

< 𝑜1 :𝐶1 | atts1 > ... < 𝑜𝑛 :𝐶𝑛 | atts𝑛 > (to 𝑜𝑖1 [from 𝑜𝑙1] : mp𝑖1) ... (to 𝑜𝑖𝑘 [from 𝑜𝑙𝑘] : mp𝑖𝑘)

with 1 ≤ 𝑖1 < ... < 𝑖𝑘 ≤ 𝑛, and {𝑙1, . . . , 𝑙𝑘 } ⊆ {1, . . . , 𝑛}, so that the rewrite theory and the initial
state initconf together satisfy the following requirements:

(1) In any concrete configuration of objects and messages, any object enabled by a message-
triggered rule to receive a given message addressed to it, is enabled to receive that message
by the application of a unique message-triggered rule with a unique substitution.

(2) In any concrete configuration, any object enabled to perform a transition by an object-
triggered rule, is so enabled by a unique object-triggered rule with a unique substitution.

(3) At most one object in initconf is enabled to be rewritten by an object-triggered rule.
(4) In initconf , if an object has a message addressed to it, then it is enabled to receive it, and it is

not enabled to be rewritten by an object-triggered rule.
(5) In any configuration reachable from initconf , if an object is in a state not enabled by any

object-triggered rule and the configuration contains a message addressed to it, then it is
enabled to receive such a message.

(6) In any configuration reachable from initconf , if a (†) or (‡) rule applies to an object with the
ground substitution 𝜃 , then all addressees in the (normal form of the) ground set of messages
msgs𝜃 in the instance of the applied rewrite rule are objects that either: (i) belong to the
current configuration, or (ii) are among the new objects in the set newobjs𝜃 introduced in the
instance of the applied rewrite rule.

(7) Any rewrite sequence where in each step some object-triggered rule is applied to the same
object must be finite.

By requirements 1 and 2 an actor’s message-reception actions and internal actions are locally
deterministic.5 By requirements 3 and 4 at most one actor can perform an internal action in the initial
state and the other actors can receive initialization messages in their initial states. By requirement
5 sooner or later any message in the system can be received. By requirement 6 messages created
are only addressed to existing (including newly created) objects. Requirement 7 means that no
actor can perform an uninterrupted infinite sequence of internal actions.
Note that a GARwTh abstracts from time. This reflects common design practice, where models

usually are untimed, since timers constitute implementation choices and an algorithm’s correctness
is generally independent of the choices. For more on this, see the applications in Sections 3.3 and 9.

5The same object could be simultaneously enabled by requirement 2 and by requirement 1 with different messages; i.e.,
łlocal determinismž does not rule out nondeterministic choice between the local transitions currently possible for an object.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:9

3.3 GARwThs in Practice

A wide range of distributed systems that have been formally modeled in Maude are directly, or
with minor adaptation, generalized actor rewrite theories. These include: textbook distributed
algorithms [Ölveczky 2017]; internetworking protocols [Agha et al. 2005; Wang et al. 2011, 2000];
mobile ad-hoc network (MANET) protocols [Liu et al. 2015, 2016a]; industrial distributed computing
services such as Apache Zookeeper [Skeirik et al. 2013]; and cloud data storage systems, including
the industrial data stores such as Apache Cassandra [Liu et al. 2014] and Google’s Megastore [Grov
and Ölveczky 2014], and distributed transaction systems [Liu 2022; Liu et al. 2016b, 2019a, 2018].

The following GARwTh, specified in Maude, defines a simple query protocol for handling łreadž
requests in a database system where multiple distributed servers may store the same data item.

The Query Protocol. For each user read request, a client issues read requests to the servers
replicating the data item, and stores the read operation’s result, which should be the latest written
value among all returned values. This protocol can be seen as a simplified version of the protocol
processing reads in the Cassandra key-value store [Cassandra 2022] (see also Section 9).

A client buffers the user requests, each of which is an operation read(id,𝑘) on some data item or
key 𝑘 , in the queries queue (rule req). In rule issue, the client starts processing the first query in
this queue: it finds the servers R[K] replicating the key K, and propagates the message read(ID,K)
to them. Each server (called a replica) replies with the locally stored < value, timestamp > pair for
the requested key (rule reply), with timestamp denoting when value was written. Upon receiving
the reply, the client updates the corresponding record with the most recent value (with the latest
timestamp) it has seen so far, removes the sender from its waiting list, and keeps waiting for the
others (rule update). When all responses have been collected (the waiting list is empty), the client
prepares to issue the next query in the queue by removing the current one (rule finish).
The following shows the Maude module QUERY, with some definitions omitted for brevity:

mod QUERY is

...

vars O O' : Oid . var OS : Oids . var K : Key . vars V V' : Value . var ID : Id .

vars TS TS' : Timestamp . vars DAT DAT' : Data . var Q : Query . vars QS QS' : Queries .

var R : Map{Key,Oids} . var DB : Map{Key,Data} . var RS : Map{Id,Data} .

class Client | queries : Queries, waiting : Oids, replicas : Map{Key,Oids}, results : Map{Id,Data}.

class Server | database : Map{Key,Data} . *** key-value stores map keys to data

op propagate_to_from_ : Query Oids Oid -> Msgs .

eq propagate Q to (O' ; OS) from O = (propagate Q to OS from O) (to O' from O : Q) .

eq propagate Q to empty from O = null .

rl [req] : (to O : QS') < O : Client | queries: QS > => < O : Client | queries: QS :: QS' > .

crl [issue] : < O : Client | queries : read(ID,K) :: QS, waiting : empty,

replicas : R, results : RS >

=> < O : Client | waiting : R[K], results : insert(ID,null,RS) >

(propagate read(ID,K) to R[K] from O) if not $hasMapping(RS,ID) .

rl [reply] : (to O from O' : read(ID,K)) < O : Server | database : DB >

=> < O : Server | > (to O' from O : reply(ID,DB[K])) .

rl [update] : (to O from O' : reply(ID,DAT'))

< O : Client | waiting : (O' ; OS), results : (RS, ID |-> DAT) >

=> < O : Client | waiting : OS, results : (RS, ID |-> latest(DAT,DAT')) > .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:10 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

rl [finish] : < O : Client | queries : read(ID,K) :: QS, waiting : empty, results : (RS, ID |-> DAT) >

=> < O : Client | queries : QS > .

endm

The term propagate read(ID,K) to R[K] from O in rule issue reduces to a set of messages sent
to K’s replicas by the corresponding equations above. The module INIT-QUERY specifies an initial
state with two clients, with incoming requests, and three servers, each storing two keys:
mod INIT-QUERY is including QUERY .

ops c1 c2 s1 s2 s3 : -> Oid [ctor] . ops k1 k2 k3 : -> Key [ctor] .

op initconf : -> Configuration .

eq initconf = (to c1 : (read(1,k1) :: read(2,k3))) (to c2 : read(3,k2))

< c1 : Client | queries : nil, waiting : empty, results : empty,

replicas : k1 |-> s1 s2, k2 |-> s2 s3, k3 |-> s1 s3 >

< c2 : Client | queries : nil, waiting : empty, results : empty,

replicas : k1 |-> s1 s2, k2 |-> s2 s3, k3 |-> s1 s3 >

< s1 : Server | database : k1 |-> < 23, 1 >, k3 |-> < 8, 4 > >

< s2 : Server | database : k1 |-> < 10, 5 >, k2 |-> < 7, 3 > >

< s3 : Server | database : k2 |-> < 14, 2 >, k3 |-> < 3, 6 > > .

endm

4 THE 𝑃 TRANSFORMATION

Quantitative properties of distributed systems often involve time. For example, important perfor-
mance metrics in transaction systems are throughput (completed transactions per second) and
the average latency of each transaction. The time łdelaysž in a distributed system can often be
attributed to communication, i.e., to message delays. For analysis purposes, message delays can
be seen as following certain probability distributions (see, e.g., [Benson et al. 2010]), possibly also
accounting for parameters such as payload size and the distance between sender and recipient.6

We automatically transform a generalized actor system into a timed probabilistic one by enriching
it with user-defined probability distributions Π on communication delays: each message-triggered
or internal action that generates new messages has a continuous distribution governing the delays
of the generated messages. Also, GAS’s internal actions are applied eagerly, i.e., as soon as enabled.
Section 4.2 formalizes this 𝑃 transformation, mapping a nondeterministic untimed GARwTh R

with an initial state initconf , which together satisfy the requirements 1ś7 in Section 3, and a family
Π of parametric probability distributions specifying the distributions of the delays of the generated
messages, into a corresponding probabilistic rewrite theory RΠ and initial state initconf

Π
.

4.1 Defining Probabilistic Message Delay Distributions

We need to define the message delays for (a) messages created by the application of a rewrite
rule, and (b) the messages in the initial state. For (a), in a probabilistic rewrite rule [𝑙] : 𝑡 (®𝑥) −→
𝑡 ′(®𝑥, ®𝑦) if 𝑐𝑜𝑛𝑑 (®𝑥) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ®𝑦 := 𝜋𝑙 (®𝑥), the probability distribution 𝜋𝑙 , from which the
values of the new variables ®𝑦 are sampled, is parametric on the instantiation ®𝑥𝜃 , where 𝜃 is the
matching substitution when applying the rule. For each rewrite rule 𝑙 (which may generate new
messages), we must therefore define a parametric probability distribution 𝜋𝑙 (®𝑥) fromwhich message
delays can be sampled. 𝜋𝑙 (®𝑥) and 𝜋𝑙 ′ (®𝑥 ′) may be completely different for [𝑙] ≠ [𝑙 ′]. For example,
𝜋𝑙 (®𝑥) may model message delays from clients to servers, while 𝜋𝑙 ′ (®𝑥 ′) may model the frequency of
process failures, which can naturally be modeled by łfailure messagesž [Ölveczky 2017].

6 The realistic modeling of message delay times, taking into account factors such as the above, as well as of, e.g., local
processing times, is supported in two ways: (i) by using parametric probability distributions whose parameter values may
vary depending on some of those factors; and (ii) by allowing the possibility of łmodulatingž the actual value of a delay as a
value 𝑑 sampled from a distribution by applying to 𝑑 a modulating function 𝛿 , accounting for additional factors.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:11

As explained in Footnote 6, in some applications we may need to modulate the sampled val-
ues to define more complex message delays that account for extra factors such as a transition’s
internal computation time. For this purpose, we allow the user to define a modulation function
𝛿𝑙 (®𝑥,𝑂,𝑂

′,MC) for each rule 𝑙 , which is parametric on ®𝑥𝑙 and on the message’s receiver 𝑂 , sender
𝑂 ′, and message content MC, such that for each instantiation of its parameters, 𝛿𝑙 (®𝑥𝑙 ,𝑂,𝑂 ′, 𝑀𝐶)
becomes a function on the reals, so that the actual delay of a message (to 𝑜 ′ from 𝑜 : msgContent)

is 𝛿𝑙 (®𝑥𝜃, 𝑜, 𝑜 ′,msgContent) (𝑑), where 𝑑 is the łbasic sampled delayž obtained by sampling 𝜋𝑙 .
Likewise, for (b), themessages in the initial state, wemust also define the łbasicž delay distribution

𝜋init and the modulation function 𝛿init (𝑂,𝑂
′,MC).

Assumptions on 𝜋 and 𝛿 and Notation. We explain next: (1) the density function defining (2)
a rule’s continuous distribution; (3) a safe łenvelopež for sampling values; (4) how 𝛿 modulates
sampled delays; and (5) how Π gathers all 𝜋 ’s and 𝛿’s. (1) For each rule label 𝑙 ∈ 𝐿 and ground
substitution 𝜃 = {®𝑥𝑙 ↦→ ®𝑎}, instantiating the parameters ®𝑥𝑙 of rule 𝑙 ’s left-hand side (resp. for 𝑙 = init)
there is a piecewise continuous probability density function 𝑓𝑙 (®𝑎) : R→ [0, +∞) (resp. 𝑓init) such
thatÐsince message delays are always non-negativeÐfor 𝑥 < 0, 𝑓𝑙 (®𝑎) (𝑥) = 0 (resp. 𝑓init (𝑥) = 0).
(2) Each such density function defines a probability distribution function 𝜋𝑙 (®𝑎) : R → [0, 1]
(resp. 𝜋init : R → [0, 1]) as a continuous and almost everywhere differentiable function of the
form 𝜋𝑙 (®𝑎) = 𝜆𝑥 ∈ R.

∫ 𝑥

−∞
𝑓𝑙 (®𝑎) (𝑡) 𝑑𝑡 (likewise for 𝜋init). By the assumptions on 𝑓𝑙 (®𝑎) and 𝑓init ,

𝜋𝑙 (®𝑎) (𝑥) = 0 and 𝜋init (𝑥) = 0, for 𝑥 ≤ 0. More generally, yet equivalently ([Klenke 2006], Theorem
1.88), 𝑓𝑙 (®𝑎) defines a probability measure 𝜇𝑙 (®𝑎) : B(R) → [0, 1] on the Borel 𝜎-algebra of R, defined
by 𝜇𝑙 (®𝑎) = 𝜆𝐵 ∈ B(R) .

∫
𝑡 ∈𝐵

𝑓𝑙 (®𝑎) (𝑡) 𝑑𝑡 . (3) In what follows, 𝑋𝑓𝑙 (®𝑎) , which we call the support of

𝑓𝑙 (®𝑎), will denote the set 𝑋𝑓𝑙 (®𝑎) = {𝑥 ∈ R | 𝑓𝑙 (®𝑎) (𝑥) > 0}, and 𝑋 𝑓𝑙 (®𝑎) will denote its topological

closure, obtained by adding to 𝑋𝑓𝑙 (®𝑎) its limit points. The set 𝑋 𝑓𝑙 (®𝑎) provides a useful łenvelopež

for the values obtained by sampling 𝜋𝑙 (®𝑎). Indeed, by openness, for any 𝑥 ∈ R \ 𝑋 𝑓𝑙 (®𝑎) there is an

open interval (𝑎, 𝑏) ⊆ R \ 𝑋 𝑓𝑙 (®𝑎) with 𝑥 ∈ (𝑎, 𝑏), so that 𝜇𝑙 (®𝑎) ((𝑎, 𝑏)) = 𝜋𝑙 (®𝑎) (𝑏) − 𝜋𝑙 (®𝑎) (𝑎) = 0.
Therefore, any real number 𝑟 obtained by sampling the distribution 𝜋𝑙 (®𝑎) must be inside the
envelope 𝑋 𝑓𝑙 (®𝑎) . Notice, furthermore, that the assumption on 𝑓𝑙 (®𝑎) and 𝑓init forces the inclusions

𝑋 𝑓𝑙 (®𝑎) ⊆ [0, +∞) and 𝑋 𝑓init ⊆ [0, +∞). This is because, in all modules RΠ , the intended meaning of a
number 𝑟 obtained by sampling 𝜋𝑙 (®𝑎) (resp. 𝜋init) is that of a message delay. (4) We also allow users
to specify that a time delay 𝑟 is modulated by applying to 𝑟 the function 𝛿𝑙 (®𝑎, 𝑜, 𝑜

′,mc) (for the
initial configuration, 𝛿init (𝑜, 𝑜 ′,mc)). The main requirement about 𝛿𝑙 (®𝑎, 𝑜, 𝑜 ′,mc) (and likewise for
𝛿init (𝑜, 𝑜

′,mc)) is that it defines a function 𝜆𝑟 . 𝛿𝑙 (®𝑎, 𝑜, 𝑜 ′,mc) (𝑟) : [0, +∞) → [0, +∞) that is strictly
monotonic, i.e., 𝑟 < 𝑟 ′ ⇒ 𝛿𝑙 (®𝑎, 𝑜, 𝑜

′,mc) (𝑟) < 𝛿𝑙 (®𝑎, 𝑜, 𝑜
′,mc) (𝑟 ′). (5) All this information about the

𝜋𝑙 and 𝛿𝑙 functions is denoted by Π and is specified by the user as an input to the 𝑃 transformation.

4.2 Defining the 𝑃 Transformation

In this section we define the transformation 𝑃 : (R, initconf ,Π) ↦→ (RΠ, initconf Π), where:

• R = (Σ, 𝐸, 𝐿, 𝑅) is a generalized actor rewrite theory.
• initconf is an initial state consisting of a set of objects and messages, so that R, together with
initconf , is a GARwTh satisfying requirements 1ś7 in Section 3.

• Π = {(𝜋𝑙 (®𝑥𝑙), 𝛿𝑙 (®𝑥𝑙 ,𝑂,𝑂
′, 𝑀𝐶))}𝑙 ∈𝐿∪{(𝜋init, 𝛿init (𝑂,𝑂

′, 𝑀𝐶))} is a family of pairs of paramet-
ric functions, with init ∉ 𝐿, defining the message delay distributions as explained in Sect. 4.1:
𝜋𝑙 (®𝑥𝑙) is a continuous probability distribution for rule 𝑙 , parametric on ®𝑥𝑙 , and 𝛿𝑙 (®𝑥𝑙 ,𝑂,𝑂 ′, 𝑀𝐶)
is a message delay modulation function, parametric on ®𝑥𝑙 and on the message’s receiver 𝑂 ,
sender 𝑂 ′, and message content𝑀𝐶 . Likewise, 𝜋init is a continuous probability distribution
and 𝛿init (𝑂,𝑂 ′, 𝑀𝐶) is a real-valued function parametric on 𝑂 , 𝑂 ′, and𝑀𝐶 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:12 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

• RΠ = (ΣΠ, 𝐸Π, 𝐿Π, 𝑅Π) is the resulting probabilistic rewrite theory defined below.
• initconf

Π
is the corresponding 𝑃-transformed initial state, also defined below.

The resulting probabilistic rewrite theoryRΠ is as follows. The state has the form { config | clock },
with config the current configuration (consisting of objects and messages with their delivery times)
and clock the current time. Object-triggered rules are applied eagerly: time does not advance when
they are enabled. When there is a message ready to be received in the state, a message-triggered
rule is applied. The messages created when applying an object-triggered or a message-triggered
rule are then łprepared to get their delays assignedž in a łdelayed task object.ž If there is such
a łdelayed taskž in the state, then its messages are individually assigned delays by sampling the
corresponding distribution (rules delay𝑙 .1 and delay𝑙 .2, and delayinit .1 and delayinit .1 for messages
in the initial state). When none of these rules can be applied, a łtickž rewrite rule advances the
system’s global time by increasing the clock to the value of the delivery time of the łnextž message.
In what follows, we define in detail the probabilistic rewrite theory RΠ and the initial state

initconf
Π
obtained by applying 𝑃 to (R, initconf ,Π).

4.2.1 The Equational Logic Theory (ΣΠ, 𝐸Π). The equational theory (ΣΠ, 𝐸Π) extends (Σ, 𝐸). It
contains a sort Real for the real numbers, as well as the real number functions required to define
the terms 𝜋𝑙 (®𝑥𝑙), 𝜋init , 𝛿𝑙 (®𝑥𝑙 ,𝑂,𝑂 ′, 𝑀𝐶), and 𝛿init (𝑂,𝑂 ′, 𝑀𝐶) by equations in 𝐸Π .

To represent timed probabilistic systems, the states in RΠ have the form {config | clock }:

op {_|_} : Configuration Real -> ClockedState [ctor] .

Besides objects and messages from R, config may also contain: a delay-task term (of sort DTask)
with a list of outgoing messages yet to be assigned a delay, and a set of already delayed messages
(of sort DMsgs, with each message of sort DMsg) not yet ready to be received. A subsort Objects
defines configurations consisting only of actor objects. A sort MsgList models a list of messages
with concatenation operator _;_ and identity nil. 𝑃 adds to Σ the following sorts and subsorts:

sorts Real Objects DMsg DMsgs DTask Msgs MsgList ClockedState .

subsort Object < Objects . subsorts Msg < Msgs MsgList . subsort DMsg < DMsgs .

subsorts DMsgs DTask Msgs Objects < Configuration .

The state is a term {objects msgs dmsgs dtask | clock} consisting of (with cardinality): actor
objects (≥ 1) denoted by objects, messages ready to be consumed (≤ 1) denoted by msgs, delayed
messages not ready for consumption (≥ 0) denoted by dmsgs, and a delay-task term dtask (≤ 1).
The following variables are used in the definition of RΠ :

vars O O' : Oid . var MP : Payload . vars T T' D : Real .

var OBJ : Object . var OBJS : Objects . var CF : Configuration .

var MSG : Msg . var MSGS : Msgs . var DMS : DMsgs . var ML : MsgList .

𝑃 also defines the following operators used in RΠ and initconf
Π
:

• A function sort : Msgs -> MsgList that turns a set of messages into a sorted list.7

• For each rule (labeled) 𝑙 , an operator delayl : 𝑠1 ... 𝑠𝑛 MsgList -> DTask is used
to generate the łdelay taskž which will assign the delays to the messages generated by
the application of rule 𝑙 . This operator takes as input a vector ®𝑎𝑙 of ground terms of sorts
®𝑠𝑙 = 𝑠1, . . . , 𝑠𝑛 instantiating the corresponding variables ®𝑥𝑙 = 𝑥1, . . . , 𝑥𝑛 appearing in the
left-hand side of rule 𝑙 , and a list of messages, and outputs a term of sort DTask.

• A delayed message of sort DMsg has the form [time,msg] indicating that msg (of sort Msg)
will be delivered at global time time.

7The reason for sorting messages is explained in Footnote 8. Sorting can be implemented by using Maude’s total order on
terms available through Maude’s META-LEVEL module.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:13

• The predicate objectEnabled checks whether an object-triggered rule (type (‡)) is enabled
on a set of objects. For each rule of the form (‡) a (possibly conditional) equation

ceq objectEnabled(< 𝑜 : 𝐶 | atts >) = true [if cond] .

is generated; two additional equations make objectEnabled(objects) true whenever an
object in objects can be rewritten by an object-triggered rule.

• The function init converts initconf into the corresponding initial configuration initconf
Π
:

op init : Configuration -> ClockedState .

eq init(OBJS MSGS) = { delayinit(sort(MSGS)) OBJS | 0.0 } .

where the operator delayinit is declared as op delayinit : MsgList -> DTask [ctor] .

4.2.2 The Rewrite Rules RΠ . Each rule 𝑙 of the form (†), resp. (‡), in R is transformed into a rule

[l.p] : { (to 𝑜 from 𝑜' : mc) < 𝑜 : 𝐶 | atts > OBJS DMS | T }

=> { < 𝑜 : 𝐶 | atts' > delay𝑙(®𝑥𝑙, sort(msgs)) newobjs OBJS DMS | T } [if cond]

respectively,

[l.p] : { < 𝑜 : 𝐶 | atts > OBJS DMS | T }

=> { < 𝑜 : 𝐶 | atts' > delay𝑙(®𝑥𝑙, sort(msgs)) newobjs OBJS DMS | T } [if cond]

When the configuration contains a term of sort DTask, the following lifting rules assign delays
to the list of new messages one by one:

[delay𝑙 .1] : { delay𝑙(®𝑥𝑙, (to O from O' : MP) ; ML) CF | T }

=> { delay𝑙(®𝑥𝑙, ML) [T + 𝛿𝑙 (®𝑥𝑙,O,O',MP)(D), (to O from O' : MP)] CF | T }

with probability D := 𝜋𝑙(®𝑥𝑙) .

where CF matches the rest of the configuration. The first message in the list is assigned a delay
𝛿𝑙 (®𝑥𝑙 , O, O’, MP) (𝐷), where the new variable D is assigned a value 𝐷 sampled from 𝜋𝑙 (®𝑥𝑙).

When each message in the delay task list has been assigned a delay, the delay𝑙 operator is
removed from the configuration:

[delay𝑙 .2] : delay𝑙(®𝑥𝑙, nil) => null .

Likewise, similar rewrite rules assign delays to the messages in the initial state:8

[delayinit .1] : { delayinit((to O from O' : MP) ; ML) CF | T }

=> { delayinit(ML) [T + 𝛿init(O,O',MP)(D), (to O from O' : MP)] CF | T }

with probability D := 𝜋init .

[delay𝑖𝑛𝑖𝑡 .2] : delayinit(nil) => null .

When none of the above rules can be applied (see below), the following łtickž rewrite rule
advances global time in the system to the delivery time T’ of the next message to be delivered:

[tick] : { OBJS DMS [T', MSG] | T } => { OBJS DMS MSG | T' }

if (not objectEnabled(OBJS)) /\ (T' <= times(DMS)) .

times gives the delivery times of the delayed messages DMS. The delayed message [T’, MSG]

becomes ready, as MSG, to be consumed. This rule can only be applied when no other rule is enabled:

• No object-triggered rule is enabled, because of the condition not objectEnabled(OBJS).
• No message-triggered rule is enabled, since there cannot be any message without the ‘[_,_]’
operator (i.e., of sort Msg) in the configuration in left-hand side of the tick rule.

• No lifting rule is enabled, since there is no term of sort DTask in the configuration.

8Note that since the samplings for the delays of messages in the sorted list of messages are independent of each other, the
order of messages in the sorted list of messages is statistically immaterial, i.e., it does not affect the modeling. The only
purpose of using a sorted list instead of a multiset of messages is to eliminate the nondeterminism implicit in an arbitrary
choice of a message to be delayed in a message multiset. Similar rules are defined for initial messages without a sender.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:14 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

4.3 Applying P: An Example

We now illustrate how we can specify in Maude the input Π to the 𝑃 transformation, and the results
of performing the 𝑃 transformation, using the running example introduced in Section 3.3.

Specifying Probability Distributions. To automate the 𝑃 transformation, the 𝜋 and 𝛿 functions
in Π must be specified in a machine-processable way. This can be achieved by using the following
Maude module DISTR-LIB, which defines a user-extensible probability distribution library:

fmod DISTR-LIB is

sort RFun . *** functions on reals
op _[_] : RFun Real -> Real . *** function application

op uniform : Real Real -> RFun [ctor] . *** min, max
op exponential : Real -> RFun [ctor] . *** rate: lambda
ops normal lognormal : Real Real -> RFun [ctor] . *** mean: mu, sd: sigma
op weibull : Real Real -> RFun [ctor] . *** shape: k, scale: lambda
op zipfian : Real Real -> RFun [ctor] . *** skew: s, cardinality: n

vars X MIN MAX RATE : Real .

eq uniform(MIN,MAX)[X] = if MIN <= X and X <= MAX then 1.0 / (MAX - MIN) else 0.0 fi .

eq exponential(RATE)[X] = e^(-RATE * X) .

...

endfm

This module includes equational definitions for six commonly used parametric probability distri-
butions: the uniform, exponential, normal, lognormal, Weibull, and Zipfian distributions. These
distributions are defined as elements of a sort RFun, for real-valued functions, with a function
application operator _[_]. Users can use this data type to define additional distributions.

Specifying Π. To specify Π, we must specify the modulation functions 𝛿𝑙 and the map associating
rewrite rules (and the initial state) to their corresponding probability distributions and modulation
functions. For our QUERY running example, this is done in the following module PI-QUERY:

mod PI-QUERY is including DISTR-LIB + QUERY .

op delta-reply : Oid Oid Id Key Map{Key,Data} -> RFun . *** 'delta' for rule 'reply'
eq delta-reply(O,O',ID,K,DB)[D] = distance(O,O') * D .

... *** delta functions for the other rules

op tpls : -> Tuples . *** Rule-specific tuples
*** Here delay follows the lognormal distribution parametric on message payload:
eq tpls = ['reply,lognormal(size(DB[K]),0.1),delta-reply(O,O',ID,K,DB)] ;;

['init,exponential(0.1)] ;;

... *** tuples for the other rules
[nonexec] .

endm

where nonexec declares a non-executable equation.
For example, in 𝛿reply, written delta-reply in Maude, the sampled delay, whose lognormal

probability distribution is parametric on the message’s payload (given by the function size), is
further modulated according to the distance (function distance) between the sender and receiver.
The mapping from rule labels to their distributions and modulation functions is given as a

set of ;;-separated tuples of the form [l,𝜋𝑙 (®𝑥),𝛿𝑙 (®𝑥, 𝑜, O’:Oid, MC:Content)], indicating that the
message delays in rule l follow the probability distribution 𝜋𝑙 (®𝑥) with the modulation 𝛿𝑙 , or of the
form [l,𝜋𝑙 (®𝑥)] when 𝛿𝑙 is the identity function. In 𝛿𝑙 , the term 𝑜 for the sender is taken directly

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:15

from the left-hand side of rule 𝑙 , while the variables O’ and MC, for the receiver and message content,
respectively, are introduced on the fly as they may not be present in the rule (see, e.g., rule issue).
A rule label is represented as a quoted identifier (of sort Qid), e.g., ’reply, where ’init is the

special label for the initial state. The constant tpls then defines the mapping Π.

The Resulting System. We exemplify the 𝑃 transformation by showing how the rule reply has
been transformed into a rewrite rule reply.p and a probabilistic rewrite rule delayreply.1.

rl [reply.p] :

{(to O from O' : read(ID,K)) < O : Server | database : DB > OBJS DMS | T }

=> {< O : Server | > delay-reply(O,O',ID,K,DB,sort(to O' from O : reply(ID,DB[K]))

OBJS DMS | T } .

rl [delayreply.1] :

{delay-reply(O ,O',ID,K, DB, (MSG ; ML)) CF | T }

=> {delay-reply(O,O',ID,K,DB,ML) [T + delta-reply(O,O',ID,K,DB)[D], MSG] CF | T }

with probability D := lognormal(size(DB[K]),0.1) .

The initial state initconf is transformed into:

{ objs delay-init(sort((to c1 : (read(1,k1) :: read(2,k3))) (to c2 : read(3,k2)))) | 0.0 }

where objs denotes the client and server objects in initconf. The global clock is initialized to 0.0.
The initial messages are assigned different delays sampled from the exponential distribution with
the rate 0.1 (given by [’init,exponential(0.1)] in tpls (Π)):

rl [delayinit.1] : {delay-init(MSG ; ML) CF | T }

=> {delay-init(ML) [T + D, MSG] CF | T } with probability D := exponential(0.1) .

rl [delayinit.1] : delay-init(nil) => null .

5 CORRECTNESS OF THE 𝑃 TRANSFORMATION

Does RΠ support correct quantitative analysis of R? Most statistical model checkers require that
the system is purely probabilistic. In Section 5.1 we show that RΠ is purely probabilistic by proving
that it satisfies the absence of nondeterminism property. Intuitively, this holds for three reasons: (i)
since the distributions in Π are continuous, the probability that any two messages are delivered at
the same time is 0; (ii) rules in R are locally deterministic (see Section 3.2); (iii) internal actions are
applied eagerly. In Section 5.2 we show that R and RΠ are semantically consistent: RΠ’s behaviors
faithfully model those of R without any loss of information. Section 5.2 formalizes this by proving
that RΠ and R are related by a stuttering simulation map, mapping states in RΠ to states in R.

5.1 Absence of Nondeterminism (AND)

Suppose that in the theory RΠ we: (i) execute each non-probabilistic rewrite rule in RΠ by the
standard rewriting logic methods (as supported by Maude), and (ii) execute each probabilistic
rewrite rule 𝑙 in RΠ with matching substitution 𝜃 by choosing the value for the extra variable
of message delay in its right-hand side by sampling the probability distribution 𝜋𝑙 (®𝑥𝑙𝜃) (𝜋init for
the rule associated to delayinit). Then, the set of states reachable from init(initconf) and their
transitions define a purely probabilistic system, in the sense that the following AND property holds.

Definition 5.1 (AND). With probability 1, for any reachable state there is at most one rewrite
rule applicable, with a unique matching substitution 𝜃 ; i.e., two different rules, or the same rule but
with different matching substitutions, can never be applied to a reachable state.

AND is a property enjoyed by the states reachable from the initial state init(initconf) that can
be proved by induction on the length of a path from init(initconf) by proving that:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:16 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

• It holds for init(initconf).
• For applications of non-probabilistic rules, if it holds for a given reachable state, then it always
holds for the next state.

• For applications of probabilistic rules, if it holds for a given reachable state, then it also holds
for the next state 𝜋𝑙 (®𝑥𝑙)𝜃 -almost surely [Grimmett and Stirzaker 2001] (resp. 𝜋init (®𝑥init)𝜃 -
almost surely), i.e., with probability 1.

Theorem 5.2. The 𝑃-transformed module RΠ satisfies the AND property.

The proof of Theorem 5.2 is given in the technical report [Liu et al. 2022a].

5.2 Faithful Behavioral Correspondence (FBC)

The simulations of RΠ from init(initconf) faithfully model corresponding behaviors of R from
initconf , i.e., sequences of state transitions. The simulations ofRΠ do not usuallymodel all behaviors
of R, since R can have behaviors impossible in RΠ . For example, in RΠ some messages may always
arrive to a given object before other messages, due to their different communication delays, but in
the asynchronous model R they might arrive in any order. By łfaithful behavioral correspondencež
we do not mean a bisimulation between RΠ and R. We mean that a simulation between them exists.
Moreover, such a simulation should not be expected to be in lockstep: we should look for a stuttering
simulation (see Section 2). Since R is executable while RΠ is not, for a simpler apples-to-apples
comparison we define a theory transformation RΠ ↦→ NdEnv(RΠ), where we call NdEnv(RΠ) the
nondeterministic envelope of RΠ , such that: (i) any state transition corresponding to a simulation
step for RΠ has a corresponding state transition in NdEnv(RΠ), and (ii) we define a function ℎ from
states in NdEnv(RΠ) to configurations in R that is a stuttering simulation of NdEnv(RΠ) by R.

The RΠ ↦→ NdEnv(RΠ) Transformation. The theory NdEnv(RΠ) transforms RΠ as follows. The
rewrite rules are all the same, except for the probabilistic rules in RΠ , namely, rules of the form
delay𝑙 .1, 𝑙 ∈ 𝐿 ∪ {init}, which are replaced by rules of the form:

[delay𝑙 .1] : { delay𝑙(®𝑥𝑙, (to O from O' : MC) ; ML) CF | T }

=> { delay𝑙(®𝑥𝑙, ML) [T +𝛿𝑙(®𝑥𝑙,O,O',MC)(D), (to O from O' : MC)] CF | T } if D ∈ 𝑋 𝑓𝑙 (®𝑥𝑙)
.

where the parametric set 𝑋 𝑓𝑙 (®𝑥𝑙) is instantiated for each 𝜃 = {®𝑥𝑙 ↦→ ®𝑎} to the set 𝑋 𝑓𝑙 (®𝑎) , i.e., to the
closure under limits of the support set 𝑋𝑓𝑙 (®𝑎) of the density function 𝑓𝑙 (®𝑎) specifying the probability
distribution 𝜋𝑙 (®𝑎), as defined in Section 4.1. NdEnv(RΠ) is a nondeterministic envelope of RΠ in
the following sense: any rewrite 𝑢 → 𝑣 obtained by simulating RΠ (see Section 6), so that 𝑢 and
𝑣 are reachable from init𝑃 , is also a rewrite 𝑢 → 𝑣 in NdEnv(RΠ). If the rewrite 𝑢 → 𝑣 uses a
non-probabilistic rule, this follows from the definition of NdEnv(RΠ). If a probabilistic rule of the
form delay𝑙 .1, 𝑙 ∈ 𝐿 ∪ {init}, is used, this follows from the definition of 𝑋 𝑓𝑙 (®𝑎) , which, as explained

in the assumptions on 𝜋 and 𝛿 , forces any D sampled from 𝜋𝑙 (®𝑎) to belong to 𝑋 𝑓𝑙 (®𝑎) . In summary,
all simulation-based behaviors of RΠ are therefore contained in the behaviors of NdEnv(RΠ).

To prove the FBC property, we show that the behaviors of NdEnv(RΠ) łfaithfully modelž those
of R because there is a stuttering simulation ℎ : (NdEnv(RΠ), init(initconf))

• → (R, initconf)•.
We need to understand what states reachable for init𝑃 look like in NdEnv(RΠ). They look just like
states of types (1)ś(4) for states reachable from init𝑃 by simulating RΠ , in the proof of Theorem 5.2
(see [Liu et al. 2022a]), except that in all types (1)ś(4) we drop the requirement that łdifferent delayed
messages in dmsgs have different delivery times,ž since this need not longer hold in NdEnv(RΠ).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:17

The desired stuttering simulation map is provided by a function ℎ : Reach(init(initconf)) →
𝑇Σ/𝐸∪𝐵,Config , where (Σ/𝐸 ∪ 𝐵) is the underlying equational theory of R, which is defined by cases
according to the types of reachable states in Reach(init(initconf)) as follows:

(1) ℎ({qobjs dtsk dmsgs | 𝑡}) = (qobjs msgs(dtsk) undel(dmsgs)), andℎ({qobjs odo dtsk dmsgs |
𝑡}) = (qobjs odo msgs(dtsk) undel(dmsgs)), where: (i) msgs(delay𝑙(®𝑥𝑙 ,ml)) = list2mset (ml)
with list2mset the function sending a list of messages to its associated multiset of messages;
and (ii) undel(dmsgs) erases all delays and delay operators and keeps the messages.

(2) ℎ({qobjs dmsgs | 𝑡}) = (qobjs undel(dmsgs)).
(3) ℎ({qobjs msg dmsgs | 𝑡}) = (qobjs msg undel(dmsgs)).
(4) ℎ({qobjs odo dmsgs | 𝑡}) = (qobjs odo undel(dmsgs)).

Theorem 5.3. ℎ : (NdEnv(RΠ), init(initconf))
• → (R, initconf)• is a stuttering simulation.

In the technical report [Liu et al. 2022a] we furthermore prove that simulations cannot stop
prematurely: any terminating state in NdEnv(RΠ) is mapped by ℎ to a terminating state in R.

6 SIMULATING RΠ: THE Sim TRANSFORMATION

RΠ is a non-executable model. For SMC analysis, RΠ must be transformed into an executable rewrite
theory Sim(RΠ) that simulates the experiments that randomly produce delays 𝑑 governed by
probability distributions 𝜋𝑙 (®𝑎) for the rules 𝑙 in RΠ . Sim(RΠ) is obtained by applying the inverse
transform method (see, e.g., [Grimmett and Stirzaker 2001; Rubinstein and Kroese 2017]) that
generates sequences of values {𝑑𝑛} enjoying the statistical properties of random sequences for the
distribution 𝜋𝑙 (®𝑎). We show that a general definition of the inverse function 𝜋−1 together with
Lemmas 6.1ś6.2 in Section 6.1 ensure that Sim(RΠ), as defined in Section 6.2, correctly simulates
RΠ . The format in Section 6.3 supports the automation of the RΠ ↦→ Sim(RΠ) transformation.

6.1 The Inverse Transform Method

Wefirst explain the inverse transformmethod for the simpler case of a strictly increasing distribution
function 𝜋 ; then treat the general case where 𝜋 is just increasing. Since for all distribution functions
of the form 𝜋𝑙 (®𝑎) for our probabilistic rewrite theory RΠ we have 𝜋𝑙 (®𝑎) (𝑥) = 0 for all 𝑥 < 0, we
can disregard negative numbers and consider distribution functions 𝜋 : [0, +∞) ↦→ [0, 1]. Since 𝜋
is the integral of a density function 𝑓 , 𝜋 is always an increasing function, i.e., 0 ≤ 𝑥 ≤ 𝑦 implies
𝜋 (𝑥) ≤ 𝜋 (𝑦). The simplest case is when 𝜋 is strictly increasing, i.e., 0 ≤ 𝑥 < 𝑦 implies 𝜋 (𝑥) < 𝜋 (𝑦).
Then, 𝜋 : [0, +∞) ↦→ [0, 1) is both bijective and a homeomorphism, because the inverse function
𝜋−1 : [0, 1) ↦→ [0, +∞) is continuous, since 𝜋 (𝐴) is open for any open 𝐴 ⊆ [0, +∞). Consider the
uniform distribution on [0, 1). It has density function 𝑓 (𝑥) = 1, 0 ≤ 𝑥 < 1. Therefore, its distribution
function maps each 𝑥 , 0 ≤ 𝑥 < 1, to

∫ 𝑥

0
1 𝑑𝑡 = 𝑥 . That is, it is just the identity function id [0,1) .

The inverse transform method uses the inverse function9 𝜋−1 : [0, 1) → [0, +∞) to reduce the
problem of sampling 𝜋 to the much easier problem of sampling the uniform distribution, which is
solved by means of (pseudo-)random number generation algorithms, that is, algorithms that can
produce sequences of numbers in [0, 1] enjoying the good statistical properties of a true uniformly
distributed random sequence (see, e.g., [Rubinstein and Kroese 2017]). Random sequences sampling
𝜋 are obtained by: (i) using a random number generator to generate uniformly distributed random
numbers 𝑟𝑖 ∈ [0, 1), 𝑖 = 1, 2, . . . , 𝑛, . . . and (ii) generating for those 𝑟𝑖 the 𝜋-distributed random
values 𝜋−1 (𝑟𝑖). When 𝜋 is increasing but not strictly so, 𝜋−1 is only a binary relation. However, 𝜋−1

contains a function, also denoted 𝜋−1 by abuse of notation, namely, the function:

𝜋−1 (0) = sup{𝑥 |𝜋 (𝑥) = 0} and 𝜋−1 (𝑦) = inf {𝑥 |𝜋 (𝑥) ≥ 𝑦} if 𝑦 > 0.

9When 𝜋 is strictly increasing, 𝜋−1 becomes an isomorphism of probability spaces [Liu et al. 2022a].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:18 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

We then generate {𝜋−1 (𝑟𝑖)} as a 𝜋-distributed random sequence from the uniformly distributed
random sequence {𝑟𝑖 } obtained using a random number generator following steps (i)ś(ii) as before
(see, e.g., [Rubinstein and Kroese 2017], ğ2.3.1, where the above definition of 𝜋−1 (𝑦) for 𝑦 > 1

is also applied to 0, which can cause 𝜋−1 (0) ∉ 𝑋 𝑓 ; the definition of 𝜋−1 given above avoids this
problem). Depending on whether 𝜋 (𝑥) = 1 for some 𝑥 ∈ [0, +∞) or not, in our definition of the
𝜋−1 (𝑦) function we have 0 ≤ 𝑦 ≤ 1, or 0 ≤ 𝑦 < 1. 𝜋−1 enjoys the following key property:

Lemma 6.1. For 𝜋 : [0, +∞) → [0, 1] a continuous distribution: (1) if ∃𝑥 ∈ [0, +∞) s.t. 𝜋 (𝑥) = 1,

then ∀𝑦 ∈ [0, 1], 𝜋−1 (𝑦) ∈ 𝑋 𝑓 ; (2) otherwise, ∀𝑦 ∈ [0, 1), 𝜋−1 (𝑦) ∈ 𝑋 𝑓 .

Another key property enjoyed by 𝜋−1 is the following section property:

Lemma 6.2. ∀𝑦 ∈ dom(𝜋−1), 𝜋 (𝜋−1 (𝑦)) = 𝑦.

Lemma 6.1 ensures that all behaviors of Sim(RΠ) (defined below) are a subset of those ofNdEnv(RΠ)
and Lemma 6.2 forces 𝜋 (𝜋−1 (𝑟𝑖)) = 𝑟𝑖 , 𝑖 ∈ N. They ensure the correct simulation of RΠ by Sim(RΠ).
The proofs of both lemmas are given in the technical report [Liu et al. 2022a].

6.2 Defining the RΠ ↦→ Sim(RΠ) Transformation

Sim(RΠ) must support sampling the uniform distribution by random number generation. The key
point is that, as explained in Section 2 and in [Clavel et al. 2007], subsequent rewritings of rand
will produce a sequence of floating point numbers in [0, 1] enjoying the statistical properties of
a uniformly distributed random sequence. Since the signature and equations are left unchanged,
all that is left to define the RΠ ↦→ Sim(RΠ) transformation is to explain how the rewrite rules of
RΠ are transformed into corresponding rewrite rules in Sim(RΠ): All executable rules in RΠ are
imported unchanged into Sim(RΠ). This only leaves the probabilistic non-executable, rules delay𝑙 .1
for each 𝑙 , and delayinit .1, which are respectively transformed into the executable conditional rules:

[delay𝑙 .1] : { delay𝑙(®𝑥𝑙, (to O from O' : MP) ; ML) CF | T }

=> { delay𝑙(®𝑥𝑙, ML) [T +𝛿𝑙 (®𝑥𝑙 , O, O’, MP)(D), (to O from O' : MP)] CF | T }

if D := 𝜋𝑙(®𝑥𝑙)
-1(rand) .

[delayinit .1] : { delayinit((to O from O' : MP) ; ML) CF | T }

=> { delayinit(ML) [T +𝛿init (O, O’, MP)(D), (to O from O' : MP)] CF | T }

if D := 𝜋init
-1(rand) .

That is, the probabilistic rules delay𝑙 .1 and delayinit .1 become executable by sampling their corre-
sponding distributions 𝜋𝑙 (®𝑥𝑙) and 𝜋init using the Inverse Transform Method.

6.3 How the RΠ ↦→ Sim(RΠ) Transformation is Automated in Practice

To automate theRΠ ↦→ Sim(RΠ) transformation, the inverse functions 𝜋𝑙 (®𝑥𝑙)−1 and 𝜋−1
init in the trans-

formed rules must be explicitly specified in each case. This is achieved by means of a user-extensible
module SAMPLING-LIB analogous to the DIST-LIB module used to specify Π. In SAMPLING-LIB we
specify the inverse function foo(®𝑝)−1 = 𝜆𝑦. 𝑣 (𝑦, ®𝑝) for each distribution foo(®𝑝), parametric on ®𝑝 ,
similarly to how foo(®𝑝) is specified in DIST-LIB. The inverse function foo(®𝑝)−1 is defined using the
operator sample as follows: (1) foo(®𝑝)−1 is syntactically specified as the term sample(foo(®𝑝)), and
(2) it is then semantically specified by the equation: sample(foo(®𝑝))[𝑦] = 𝑣 (𝑦, ®𝑝). The following
fragment of SAMPLING-LIB illustrates this specification format:
fmod SAMPLING-LIB is including DISTR-LIB .

op sample : RFun -> RFun [ctor] . *** operator for defining sampling functions
*** sampling function for the exponential distribution:
eq sample(exponential(RATE))[RAND] = (- log(RAND)) / RATE .

*** sampling lognormal, with 'pi' approximating the value of 𝜋:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:19

eq sample(lognormal(MEAN,SD))[RAND]

= exp(MEAN + SD * sqrt(- 2.0 * log(RAND)) * cos(2.0 * pi * RAND)) .

... *** sampling functions for the other distributions
endfm

We illustrate the automatic transformation RΠ ↦→ Sim(RΠ) for our running example as follows:

Example 6.3. The delay-reply.1 rule (in Section 4.3) is transformed into:

crl [delay-reply.1] :

{delay-reply(O,O',ID,K,DB,(MSG ; ML)) CF | T }

=> {delay-reply(O,O',ID,K,DB,ML) [T + delta-reply(O,O',ID,K,DB)[D], MSG] CF | T }

if D := sample(lognormal(size(DB[K]),0.1))[rand] .

7 OBSERVING EVENTS: THE𝑀 TRANSFORMATION

Many properties cannot be defined on the models R and Sim(RΠ). For example, estimating the
average delay of all queries in the distributed transaction system in Section 3.3 cannot be defined
using QuaTEx on Sim(RΠ). One can manually modify a given specification to log relevant events.
But this would defeat the dual purpose of this work: avoiding developing multiple models man-
ually, and ensuring the semantic consistency between different models. We therefore define a
transformation 𝑀 that logs events during execution. 𝑀 transforms a model Sim(RΠ) and initial
state init(initconf), together with a partial function𝑚 from rewrite rules in R to łeventsž to be
observed, into a theory𝑀 (Sim(RΠ),𝑚) with initial state𝑀 (init(initconf)).

7.1 Defining Events and the Event Map𝑚

Events are terms of a user-defined sort Event. An event map𝑚 maps rule labels 𝑙 in R to terms
𝑡𝑙 (®𝑥) of sort Event, where ®𝑥 is a subset of the variables occurring in the left-hand side of the rule 𝑙 .

Example 7.1. To measure the duration of each query in the distributed transaction protocol in
Section 3.3, we record the beginning and end of the processing of each query, which happen in the
rules issue and finish, respectively. We can define the corresponding events as follows:

ops startQuery endQuery : Id -> Event [ctor] .

The desired event map𝑚 is then {issue ↦→ startQuery(ID), finish ↦→ endQuery(ID)}.

7.2 The𝑀 Transformation

The effect of the𝑀 transformation is to add to the state a new object

< log : Monitor | events : 𝑒1 @ 𝑡1 ; ... ; 𝑒𝑛 @ 𝑡𝑛 >

where 𝑒1 @ 𝑡1 ; ... ; 𝑒𝑛 @ 𝑡𝑛 is a list of time-stamped events 𝑒𝑖 @ 𝑡𝑖 , denoting that an event 𝑒𝑖
occurred at time 𝑡𝑖 . This can be achieved by adding to Sim(RΠ) the following declarations:

sorts Event TimedEvent TimedEvents . subsort TimedEvent < TimedEvents .

op empty : -> TimedEvents [ctor] .

op _;_ : TimedEvents TimedEvents -> TimedEvents [ctor assoc id: empty] .

op _@_ : Event Real -> TimedEvent [ctor] .

class Monitor | events : TimedEvents .

op log : -> Oid [ctor] . var TES : TimedEvents .

and transforming each rewrite rule 𝑙 .p, for 𝑙 ∈ dom(𝑚), in Sim(RΠ) to

[l.p.m] : {(to 𝑜 from 𝑜' : mc) < 𝑜 : 𝐶 | atts > < log : Monitor | events : TES > OBJS DMS | T }

=> {< 𝑜 : 𝐶 | atts' > delay𝑙(®𝑥𝑙, sort(msgs)) newobjs

< log : Monitor | events : TES ; 𝑚(𝑙) @ T > OBJS DMS | T } [if cond]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:20 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

Actors2PMaude

Initial
State

GARwTh

Non-Exec.
PRwTh

New
Prob.

Distrs.

PMaude2Sim

Executable
Simulation Spec.

SMChecker PVeStA

QuaTEx
Formula

SMC
Params.

Server
List

Analysis
Result

New

Sampling
Funcs.

Prob. Distrs. &
Modul. Funcs.

P-Transf.
Initial State

Sim2Monitor

Monitored
Events

Executable
Monitored Spec.

M-Transf.
Initial State

Ext. Prob.
Distr. Library

Ext. Distr.
Sampling Library

Fig. 1. Architecture of the Actors2PMaude tool (components in rectangular boxes).

(And similarly for object-triggered 𝑙 .p rules.) The𝑀 transformation also adds an object
< log : Monitor | events : empty > to the initial configuration.

Example 7.2. In our running example,𝑀 transforms the rule finish.p into the rewrite rule

rl [finish.p.m] : {< log : Monitor | events : TES >

< O : Client | queries : read(ID,K) :: QS, waiting : empty,

results : (RS, ID |-> DAT) > OBJS DMS | T}

=> {< log : Monitor | events : TES ; (endQuery(ID) @ T) >

< O : Client | queries : QS > OBJS DMS | T} .

Given an event map𝑚, (𝑀 (Sim(RΠ),𝑚) and Sim(RΠ) are bisimilar, with respective initial states
𝑀 (init(initconf)) and init(initconf) (see [Liu et al. 2022a] for the proof):

Theorem 7.3. The function ℎ that removes the monitoring object from the state is a bisimulation
map ℎ : (𝑀 (Sim(RΠ),𝑚), 𝑀 (init(initconf)) → (Sim(RΠ), init(initconf)).

7.3 Specifying𝑀 in Practice

The module EVENTS (see [Liu et al. 2022a]) defines the class Monitor and sorts for event maps. The
user can then define the sort Event and the map𝑚 in a module EVENTS-MOD, where MOD is the
name of the original module. The event map𝑚 is given by specifying the value of the constant
eventMap as a ;;-separated set of pairs [𝑙,𝑡𝑙 (®𝑥)], where ®𝑥 is a subset of the variables in the rule 𝑙 .

Example 7.4. The user provides the following module to specify the event map in Example 7.1:

mod EVENTS-QUERY is including EVENTS + QUERY .

ops startQuery endQuery : Id -> Event [ctor] .

eq eventMap = ['issue, startQuery(ID)] ;; ['finish, endQuery(ID)] [nonexec] .

endm

8 THE ACTORS2PMAUDE TOOL

We have implemented in Maude the 𝑃 , Sim, and𝑀 transformations. We have also incorporated the
parallelized PVeStA statistical model checker into a single tool Actors2PMaude [Liu et al. 2022b] to
analyze the resulting model𝑀 (Sim(RΠ),𝑚). This tool consists of the four components in Figure 1:

(1) The Actors2PMaude component implements the 𝑃 transformation and includes the probability
distribution library DISTR-LIB. The inputs are defined as in Example 4.3.

(2) The PMaude2Sim component applies the Sim transformation to the resulting module, and
includes the extensible sampling library SAMPLE-LIB.

(3) The Sim2Monitor component performs the𝑀 transformation with the additional input of
łinterestingž events defined as in Example 7.4.

(4) The SMChecker component carries out the SMC analysis on PVeStA, with simulations
obtained by executing the𝑀-transformed model on the initial state.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:21

PVeStA takes as input: the𝑀 (Sim(RΠ),𝑚) model and the initial state; the quantitative property
defined as a QuaTEx formula; the SMC parameters, i.e., the confidence level and threshold (see
Section 2); and a list of servers, each given as ładdress:portž on which to run the SMC simulations.
Each analysis result consists of the expected value of the QuaTEx formula (returned by PVeStA).

The following exemplifies the use of Actors2PMaude on our running example (Section 3.3). We
refer to [Liu et al. 2022b] for details about the tool and its usage.

Example 8.1. In our running example, themodules QUERY, INIT-QUERY, PI-QUERY, and EVENTS-QUERY
specify the GARwTh, the initial state, Π, and the event map, respectively. In addition to the SMC
parameters and the server list, we also provide the tool with the following QuaTEx formula for
statistically measuring the average latency (łprocessing timež) of a query.

avgLatForThisSimul() =

if { s.sat(0) } then { s.rval(1) } else # avgLatForThisSimul() fi ;

eval E[avgLatForThisSimul()] ;

The first two lines define the temporal operator avgLatForThisSimul(): PVeStA returns the average
latency (computed by theMaude function to which rval(1) refers) if all queries are finished (checked
by the predicate sat(0)) in the current state s. Otherwise, it evaluates avgLatForThisSimul() on
the next state, where ⃝ is denoted by #. The last line computes the expected average latency.
The functions are defined over the timed events recorded in the Monitor object log:
*** QuaTEx interaction with Maude
op sat : Nat ClockedState -> Bool . op val : Nat ClockedState -> Real .

op allFinished : TimedEvents -> Bool . op avgLatency : TimedEvents -> Real .

eq sat(0,{ OBJS < log : Monitor | events : TES > | T }) = allFinished(TES) .

eq val(1,{ OBJS < log : Monitor | events : TES > | T }) = avgLatency(TES) .

The predicate allFinished checks whether all queries have been successfully completed:
eq allFinished(TES1 ; (startQuery(ID) @ T) ; TES2 ; (endQuery(ID) @ T') ; TES3)

= allFinished(TES1 ; TES2 ; TES3) .

eq allFinished(empty) = true . eq allFinished(TES) = false [owise] .

The function avgLatency computes the average latency of all recorded queries by dividing the total
latency (totalLatency) by the number of queries (numberOfQueries, whose definition is not shown):

eq avgLatency(TES) = totalLatency(TES) / numbOfQueries(TES) .

ops totalLatency numberOfQueries : TimedEvents -> Real .

eq totalLatency(TES1 ; (startQuery(ID) @ T) ; TES2 ; (endQuery(ID) @ T') ; TES3)

= totalLatency(TES1 ; TES2 ; TES3) + (T' - T) .

eq totalLatency(TES) = 0.0 [owise] .

Avoiding Model Schizophrenia and Supporting Tool Independence. Model schizophrenia
is avoided by analyzing the same distributed system model R with respect to both qualitative
properties in, e.g., temporal logic using R, and quantitative ones in some probabilistic temporal
logic usingRΠ . To illustrate the use of different tools for these purposes, we first analyze a distributed
transaction system R (an extension of our running example10) with respect to eventual and strong
consistency using three well-known LTL model checkers: Maude LTL [Clavel et al. 2007], LTSmin
[Kant et al. 2015], and Spot [Duret-Lutz et al. 2016]. We provide the same (nondeterministic,
untimed) Maude model to all three model checkers, with the connection between Maude and
LTSmin (resp. Spot) supported by the umaudemc tool [Rubio et al. 2021]. The three model checkers
all verify eventual consistency and find counterexamples to strong consistency.

10The main extension consists of adding write operations, since both properties are trivially satisfied with only reads. The
new models, and the user-input modules (i.e., PI-QUERY and EVENTS-QUERY) can be found at [Liu et al. 2022b].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:22 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

Table 1. Qualitative/quantitative analysis of the extended running example with six tools.

Property Metric LTL Model Checker Statistical Model Checker

Maude LTL LTSmin Spot PVeStA MultiVeStA MC2
Strong Time 2.366ms 82.865ms 205.461ms 8min 35s 136min 13s 11min 14s

Consistency Mem (Mb) 32.44 43.68 67.62 205.48 136.76 732.28
Eventual Time 140.057ms 243.294ms 208.169ms 1s 11s 1s

Consistency Mem (Mb) 47.58 75.38 67.30 148.42 134.25 39.00

We then ask mixed property questions: How often does strong (resp. weak) consistency hold?
They can be answered for RΠ using three well-known SMC tools: PVeStA, MultiVeStA [Sebastio
and Vandin 2013], and MC2 [Donaldson and Gilbert 2008], which are the only tools that, to the
best of our knowledge, can analyze RΠ . Other SMC tools require input models incompatible with
models like RΠ based on user-definable continuous probability distributions [Agha and Palmskog
2018; Bakir et al. 2017]. The properties were formalized in QuaTEx for PVeStA and MultiVeStA, and
in PTLc for MC2. The probabilities estimated by these tools for strong consistency to hold are in
the (50%, 60%) interval; for eventual consistency all yield a 100% probability. Since PVeStA has been
integrated into our tool, the PVeStA SMC analysis is performed by providing to Actors2PMaude the
model used in the qualitative analysis, together with the probability distribution and monitoring
information, and the QuaTEx formulas. MultiVeStA has a built-in connection to Maude. For MC2,
the simulations were generated with the Maude Python library prior to running its SMC algorithm.
The probabilistic model analyzed by MultiVeStA and MC2 is the one generated by Actors2PMaude.

For a fair comparison to MC2, all analyses were performed on a single machine with a 2.1 GHz
32 cores Intel Xeon Silver 4216 processor and 16 GB RAM. For time and memory usage for all
properties see Table 1. Further details are provided in [Liu et al. 2022b].

9 APPLICATIONS, AND PREDICTIVE POWER OF SMC-BASED ANALYSIS

9.1 Case Studies

We have applied our tool to 13 applications of different kinds:11 our running example and its
extension; a well-known token ring distributed mutual exclusion algorithm; the N-Tube inter-
domain bandwidth reservation algorithm [Weghorn et al. 2022]; the FBAR [Wang et al. 2000]
internetworking protocol; the AODV IETF-standardized mobile ad-hoc network protocol [Perkins
et al. 2003]; the Apache Cassandra [Cassandra 2022] industrial data storage system and its variant
Cassandra-TA [Liu et al. 2017a]; and five variations and extensions of the RAMP state-of-the-art
academic transaction system [Bailis et al. 2016; Liu et al. 2016b].
We discuss eight of these applications below and showcase the analysis of:

• quantitative properties, such as transaction throughput and data staleness; and
• mixed properties, such as the probability of satisfying data consistency guarantees.

Table 2 summarizes the main system features modeled in each case study, with the runtime and
memory usage of the analyses. System models were derived in different ways: the Cassandra model
was developed by studying both high-level descriptions of Cassandra and the actual Cassandra
implementation; the RAMP-F, RAMP-S, and N-Tube models were developed based on the high-level
and pseudo-code descriptions published by the system designers; the alternative Cassandra design,
RAMP-1PW, and the two replicated RAMP algorithms were formalized directly in Maude.
To parallelize the SMC analysis with PVeStA we employed 50 Emulab machines [White et al.

2002], each with a 2.4 GHz Quad Core Xeon processor and 12 GB RAM. We set the statistical
confidence to 95% (𝛼 = 0.05) and the error margin 𝛿 to 0.01. We used the lognormal or exponential

11Details about the executable models for the case studies are available at [Liu et al. 2022b].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:23

Table 2. Summary of the case studies, with the size of theQuaTEx properties (including state expressions
defined in Maude), and memory usage and execution times of their SMC analysis. Mixed properties are in
italics. The experimental results are aligned with the properties, since, for the same property, execution time
and memory usage are quite similar for different variants of a system.

System Model Model Features Modeled Property QuaTEx Mem SMC Time
LOC LOC (Mb)

N-Tube 1088 path-aware architecture; attacker model; attack resistance 15 105.3 4.9s
bandwidth reservation; reservation renewal

RAMP Family read/write transactions; two-phase commit; throughput; 24 729.4 21min 2s
RAMP-F 503 multi-version database; database sharding; data consistency; 28 301.8 27min 36s
RAMP-S 521 RA concurrency control mechanisms read your writes 36 320.6 43.5s
RAMP-1PW 517

Replicated RAMP the above for RAMP family; average latency 20 314.4 2min 48s
Sticky HA 1141 replication strategies; multi-datacenter
Prepare-F HA 994

Cassandra key partitioning; key-value store; data staleness 104 326.9 1hr 40min
Original Design TB 905 consistency levels; quorum replication;
Alter. Design TA 1010 timestamp policies

(a) N-Tube: Attack Resistance

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

R
e
d
u
c
ti
o
n
 a

ft
e
r

s
ta

b
ili

z
a
ti
o
n
 (

%
)

Malicious Demand (Gbps)

δ=0.9

δ=0.7

δ=0.5

(b) RAMP: Throughput

0

1K

2K

3K

4K

5K

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Transaction size (operations)

RAMP-F

RAMP-S

RAMP-1PW

(c) RAMP-F: Data Consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 o

f
s
a
ti
s
fy

in
g
 L

F

Read proportion

uniform

hotspot

zipfian

(d) RAMP-1PW: Read Your Writes

 0

 0.2

 0.4

 0.6

 0.8

 1

5% (write-heavy) 50% (medium) 95% (read-heavy)

P
ro

b
a
b
ili

ty
 o

f
s
a
ti
s
fy

in
g
 R

Y
W

Read proportion

uniform

hotspot

zipfian

(e) Replicated RAMP: Avg. Latency

 0

 10

 20

 30

 40

5% (write-heavy) 50% (medium) 95% (read-heavy)

A
ve

ra
g
e
 L

a
te

n
c
y
 (

ti
m

e
 u

n
it
)

Read proportion

Prepare-F HA

Sticky HA

(f) Cassandra: Data Staleness

 0

 0.03

 0.06

 0.09

10 20 40 80

P
ro

p
o
rt

io
n
 G

a
m

m
a
 >

 0

Key space size (keys)

TB: hotspot

TA: hotspot

TB: uniform

TA: uniform

Fig. 2. Statistical model checking analysis results obtained using the Actors2PMaude tool.

distribution characterizing the network latency in realistic deployments [Benson et al. 2010; Ghosh
and Ramchandran 2018]. We also considered a linear modulation for message payload size and
distance [Günther and Hoene 2005]. The transformation of each model takes around 1 second.

N-Tube. The N-Tube distributed bandwidth reservation algorithm [Weghorn et al. 2022] reserves
end-to-end bandwidth along network paths. It guarantees available bandwidth allocations for benign
bandwidth demands even during adversarial demand bursts. N-Tube is currently being integrated
into the SCION Internet architecture [Giuliari et al. 2021; SCION 2022]. We use Actors2PMaude to
generate a probabilistic model and to statistically estimate N-Tube’s resistance to attacks.

Figure 2(a) plots themalicious demand reduction after N-Tube stabilizes the bandwidth allocations
for different proportions 𝛿 of free bandwidth that can be reserved. N-Tube effectively resists
increasing malicious power: The reduction increases as the adversaries demand more bandwidth.
Our analysis helped the developers validate their hand proofs of N-Tube’s correctness properties and
quantitatively explore N-Tube’s resistance to adversaries prior to the algorithm’s implementation.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:24 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

RAMP. The Read Atomic Multi-Partition (RAMP) transaction system [Bailis et al. 2016] provides
high-performance operations for large-scale partitioned data stores (in a non-replicated setting) and
guarantees read atomicity data consistency. RAMP has different versions; RAMP-F and RAMP-S
offer different trade-offs between the size of the messages and system performance. The developers
also sketched alternative designs such as RAMP with one-phase writes (RAMP-1PW).

Figure 2(b) shows the throughput (completed transactions per time unit) of RAMP-F, RAMP-S, and
RAMP-1PW, with varying transaction sizes. RAMP-F and RAMP-1PW perform worse than RAMP-S
when the number of operations per transaction increases. The Actors2PMaude-generated models
refine the manually developed probabilistic versions [Liu et al. 2017b] of the Maude models in [Liu
et al. 2016b], which do not account for the effect of message payload size on transmission delays.
We therefore now obtain statistical results that are consistent with the Java-implementation-based
comparisons between RAMP-F and RAMP-S in Figures 3(c) and 3(f).
We also investigate the probability of satisfying strongerÐbut not guaranteedÐconsistency

properties. Figure 2(c) shows the probability of RAMP-F satisfying the latest freshness (LF) property
(reads always return the latest committed writes), and Figure 2(d) shows the probability of RAMP-
1PW satisfying the read your writes (RYW) property (all writes performed by a client are visible to
its subsequent reads); both for different key-access distributions and workloads.
The RAMP developers also sketched two designs, Sticky HA and Prepare-F HA, in a replicated

setting. Sticky HA is expected to incur lower latency due to the client’s short distance to its local
data center. We used Actors2Maude to transform the Maude models in [Liang and Liu 2021] to
performance estimation models. Figure 2(e) shows the transaction latency with varying workloads.
By taking into account the effect of the distance between the client and the server on message
delays, our performance estimates agree with the conjectures of the RAMP developers.

Cassandra. Apache Cassandra [Cassandra 2022] is a distributed NoSQL database design used by
Apple, Netflix, and many other companies. In the Cassandra design (called TB), a coordinator uses
timestamps to decide which value to return to the client. In [Liu et al. 2017a], an alternative design
(called TA) was proposed using the values themselves to determine which value to return. The
paper [Liu et al. 2017a] compared the designs on the probability of satisfying certain consistency
properties. In this paper we compare the two designs in terms of the staleness (łagež) of the
client-observed data. Figure 2(f) shows the SMC results obtained by our tool. We use the Gamma
metric [Golab et al. 2014] to count the proportion of values involved in consistency anomalies. Our
results show that the two designs are incomparable, with varying key-space size under different
key-access distributions (hotspot and uniform [Cooper et al. 2010]). Our results for TB are consistent
with the Java-implementation-based evaluations in [Golab et al. 2014] (see also [Liu et al. 2022a]).

9.2 Relating Probabilistic Model Simulations to Actual System Evaluations

SMC-based analysis can be used to predict the performance of a system design prior to its implemen-
tation. But under what assumptions are model-based performance predictions likely to agree with
the actual performance of a subsequent system deployment? We first discuss some caveats to avoid
unrealistic expectations about the performance predictions produced by model-based analysis. We
next discuss ways of choosing probabilistic models with good predictive power, and how such
models can account for other phenomena besides message transmission. We then discuss how to
increase the confidence in, and robustness of, SMC-based predictions about a design before it is
implemented. Finally, since various factors are unknown before a deployed system is evaluated, we
discuss how a posteriori information about a system’s evaluation can be used to further instantiate
a model to reach quantitative predictions reasonably close to actual system evaluation values.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:25

Statistical Model Checking Impl. Evaluation

(a) Weibull Distribution

0

1K

2K

3K

4K

5K

6K

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Transaction size (operations)

RAMP-F

RAMP-S

(b) Exponential Distribution (𝜆 = 1)

0

1K

2K

3K

4K

5K

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Transaction size (operations)

RAMP-F

RAMP-S

(c) CloudLab Deployment

0

50K

100K

150K

200K

250K

 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Transaction size (operations)

RAMP-F

RAMP-S

(d) Lognormal Distribution

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Transaction size (operations)

RAMP-F

RAMP-S

(e) Exponential Distribution (𝜆 = 0.01)

 0

 10

 20

 30

 40

 50

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Transaction size (operations)

RAMP-F

RAMP-S

(f) Amazon EC2 Deployment

(figure given in [Bailis et al. 2016])

Fig. 3. Throughput comparison of two RAMP algorithms: SMC-based performance estimations and
implementation-based performance evaluations.

9.2.1 Caveats. A model’s SMC estimation and a deployment’s experimental evaluation should
exhibit closely similar behaviors up to some scaling factors. Taking the two alternative RAMP designs
as examples, the conjecture is that RAMP-S outperforms RAMP-F for large transactions. There are
at least five reasons why sound predictions will rarely numerically agree with experimental values:

• Different Platforms. Figures 3(c) and (f) confirm experimentally on different platforms that
RAMP-S outperforms RAMP-F for large transactions. Figure 3(c) gives our experimental
results on the CloudLab platform [CloudLab 2022], and Figure 3(f) reports those by the RAMP
designers using Amazon EC2 [Amazon 2022]. They show that identical Java implementations
have different throughput values, crossover points, and curve shapes on the two platforms.

• Different Distribution Parameters. SMC analysis requires specific parameter choices.
Figures 3(b) and (e) plot the throughput predictions under two different choices for the 𝜆
parameter in the exponential distribution.

• Different Distributions.We present SMC-based analyses for the exponential, lognormal,
and Weibull distributions. All of them have been shown to faithfully model network delay in
different cloud storage systems and data centers [Benson et al. 2010; Ghosh and Ramchandran
2018]. Figures 3(a), (b), (d), and (e) all predict that RAMP-S outperforms RAMP-F for large
transactions, but with different throughput and crossover values.

• Different Initial States. Since Monte Carlo simulation cost increases substantially for large
states, the initial states used in SMC-based analysis and in experimental evaluations may
differ significantly. Often we cannot compare predicted values and experimentally measured
ones for the same initial states: we can only do so for initial states with similar features.

• Simulation vs. Actual Time. The probabilistic model RΠ is a real-time model in which
quantitative values are relative to a unit of time. Thus, many quantitative values predicted
by the model can only approximate the values observed in a system’s deployment up to a
scaling factor unknown at design time.

9.2.2 Defining Probabilistic Models with Good Predictive Power. Distributions should be validated
empirically to closely model actual message communication delays. To account for additional
phenomenaÐsuch as message processing time, message size, or actual physical distance between

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:26 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

the sender and the receiverÐour framework allows RΠ to include user-definedmodulation functions
𝛿𝑙 in probabilistic rules. For example, our probabilistic models of RAMP-F and RAMP-S in Table 2
account for the size of message payloads. This is not done in the probabilistic models in [Liu et al.
2017b], which therefore do not exhibit the crossover point of both algorithms.

9.2.3 Prediction Robustness. As explained above, more than one distribution can closely model
communication delays. To increase one’s confidence in a distributed system design before it is built,
one can analyze it, not for a single choice of distribution (and parameters), but for several such
sound choices. For instance, the confidence in the conjecture that RAMP-S outperforms RAMP-F
for larger transactions would be increased if, as illustrated in our examples, it holds true not just for
a single probabilistic model, but for several such models based on different choices of distributions.

0

50K

100K

150K

200K

250K

 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)
Transaction size (operations)

RAMP-F Impl

RAMP-S Impl

RAMP-F SMC

RAMP-S SMC

Fig. 4. Comparison between the SMC
predictions with Weibull (1 t.u. = 34 s)
and the CloudLab evaluation of RAMP-
F and RAMP-S.

9.2.4 A Posteriori Agreement betweenModel-Based Predictions

and Experimental Evaluations. For a given system deployment
and evaluation, one can asses a posteriori whether a prob-
abilistic model agrees quantitatively with the experimental
evaluation. Such an agreement should not be reached by łcook-
ingž the model: it should follow from general principles. For
example, among our RAMP models, the Weibull-based one
has the best prediction of the crossover point compared with
the CloudLab evaluation. As shown in Figures 3(a) and (c),
the predicted throughput values are still quite different from
the values as measured in CloudLab. Since throughput is the
number of transactions processed per time unit, this is due to
the abstract nature of a time unit (t.u.) in the model, whose
scaling factor with respect to actual time in a concrete deployment can only be assessed a posteriori.
Slowing time in Figure 3(a) by the factor 1 𝑡 .𝑢. = 34 𝑠 ., Figure 4 shows a significant quantitative
agreement between the Weibull-based SMC predictions and the CloudLab evaluation.

10 RELATED WORK

The most closely related work is earlier research on using probabilistic rewrite theories and Maude
to analyze performance properties of distributed systems [Agha et al. 2005; AlTurki et al. 2009;
Alturki and Rosu 2019; Bobba et al. 2018; Eckhardt et al. 2012; Katelman et al. 2008; Liu et al. 2017a,b,
2019a,b, 2020; Skeirik et al. 2013; Urquiza et al. 2019]. Compared to that work, we resolve the
łmissing linksž mentioned in the introduction and support objects with internal actions.

Formal frameworks for quantitative analysis are based on statistical or probabilistic model
checking. Uppaal-SMC [David et al. 2015] is an SMC tool for purely probabilistic networks of
stochastic timed automata. Whereas our probability distributions can be any parametric continuous
ones, in their models the distributions are uniform or exponential. We introduce time on message
delays, while in Uppaal-SMC communication is instantaneous and the delays apply to how long
a node stays in a location. PRISM [Kwiatkowska et al. 2011; PRISM 2022] supports probabilistic
and statistical model checking of MDPs and probabilistic timed automata, restricted to uniform
and exponential distributions. For SMC, nondeterministic choices are resolved by simple random
choice. SBIP [Mediouni et al. 2018] is a statistical model checker for stochastic real-time BIP models
(i.e., stochastic timed automata composed using multi-party interactions). SBIP also supports user-
defined probability distributions. There is no unquantified nondeterminism to resolve since BIP’s
modeling formalism guarantees that all nondeterminism is resolved through stochastic choices
over interactions. The main difference between these frameworks and our work is that, to the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:27

best of our knowledge, no semantic mappings have been worked out from models of distributed
systems, such as the actor model (or even untimed BIP [Basu et al. 2011]), to these frameworks.

The Modest research group has unified a variety of probabilistic and stochastic automata-based
models and tools, including the Modest language and toolset [Hartmanns and Hermanns 2014],
and the JANI modeling and tool interaction language [Budde et al. 2017]. A key idea is to derive a
rich hierarchy of probabilistic and timed automata-based models as special cases of (networked)
stochastic hybrid automata (SHA). Models in Uppaal, Prism, Generalized Stochastic Petri Nets, I/O
Stochastic Automata, and Probabilistic Guarded Command languages can be specified and various
tools can be invoked for probabilistic or statistical model checking. However, this work does not
seem to provide a method of mapping qualitative distributed system models to quantitative ones.

Timed Rebeca [Aceto et al. 2011] extends the Rebeca actor language [Sirjani et al. 2004] to (non-
probabilistic) discrete real-time systems, and supports SMC analysis by randomly choosing the next
transition based on a uniform distribution [Jafari et al. 2016a]. The PTRebeca extension [Jafari et al.
2016b] allows random assignment to variables of values using discrete probability distributions.
Continuous distributions, important for performance analysis, are not supported. We are unaware
of any work automatically enriching Rebeca models to timed and probabilistic versions.
More recent work [Ashok et al. 2019; Bogdoll et al. 2011; Henriques et al. 2012; Lassaigne and

Peyronnet 2012; Wang et al. 2020] on statistical model checking has relaxed the requirement that
models must be purely probabilistic by using techniques like reinforcement learning to reduce an
MDP to a purely probabilistic model. In contrast to those approaches, our R ↦→ RΠ transformation
ensures that RΠ is purely probabilistic, thereby making SMC verification simpler and more efficient.

11 CONCLUDING REMARKS

We have addressed the challenge of bridging the gap between qualitative and quantitative models
of distributed systems in a semantically consistent manner. We have proposed the very general
semantic framework of generalized actor rewrite theories for this purpose. By composing the 𝑃 ,
Sim, and𝑀 theory transformations, we have shown how the gap can be bridged in a semantically
consistent way and that the entire process can be automated all the way to the SMC analysis of
quantitative properties. We have demonstrated this automation by applying the Actors2PMaude
tool to a rich variety of state-of-the-art case studies. This automation makes it much easier for
non-specialists to analyze the quantitative properties of complex distributed systems.

Our results and methods are widely applicable and language-independent. They have been demon-
strated using Maude, PVeStA, and QuaTEx; but they can be applied to any actor-based concurrent
programming language to soundly enrich actor-based distributed systems into quantitative models
and then analyze them using any suitable statistical model checker and any chosen probabilistic
logic. For example, developing language-specific versions of the 𝑃 , Sim, and𝑀 transformations for
actor languages like Erlang and Scala Akka would provide automated support for the quantitative
analysis of actor systems in these languages and seems a promising topic for future research.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments which have significantly improved the paper.
The ETH team gratefully acknowledges support from the Werner Siemens-Stiftung. We thank
Rubén Rubio for help with the umaudemc tool and Ziwei Zhou for help setting up the experiments.

REFERENCES

Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Arni Hermann Reynisson, Steinar Hugi Sigurdarson, and Marjan Sirjani.
2011. Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca. Electronic Proceedings in
Theoretical Computer Science 58 (2011), 1ś19.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

136:28 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.
Gul Agha, Carl Gunter, Michael Greenwald, Sanjeev Khanna, Jose Meseguer, Koushik Sen, and Prasanna Thati. 2005. Formal

Modeling and Analysis of DoS Using Probabilistic Rewrite Theories. InWorkshop on Foundations of Computer Security

(FCS).
Gul Agha and Karl Palmskog. 2018. A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul. 28, 1 (2018),

6:1ś6:39.
Gul A. Agha, José Meseguer, and Koushik Sen. 2006. PMaude: Rewrite-based Specification Language for Probabilistic Object

Systems. Electr. Notes Theor. Comput. Sci. 153, 2 (2006).
Musab AlTurki and José Meseguer. 2011. PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis Tool. In

CALCO’11 (LNCS, Vol. 6859). Springer, 386ś392.
M. AlTurki, J. Meseguer, and C. Gunter. 2009. Probabilistic Modeling and Analysis of DoS Protection for the ASV Protocol.

Electr. Notes Theor. Comput. Sci. 234 (2009), 3ś18.
Musab A. Alturki and Grigore Rosu. 2019. Statistical Model Checking of RANDAO’s Resilience to Pre-computed Reveal

Strategies. In Formal Methods. FM 2019 International Workshops (LNCS, Vol. 12232). Springer, 337ś349.
Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. 2015. Theory in Practice for System Design and Verification. ACM

SIGLOG News 2, 1 (2015).
Amazon. Accessed April, 2022. Amazon EC2. https://aws.amazon.com/ec2/.
Pranav Ashok, Jan Kretínský, and Maximilian Weininger. 2019. PAC Statistical Model Checking for Markov Decision

Processes and Stochastic Games. In Proc. CAV 2019 (LNCS, Vol. 11561). Springer, 497ś519.
Christel Baier, Luca de Alfaro, Vojtech Forejt, and Marta Kwiatkowska. 2018. Model Checking Probabilistic Systems. In

Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.).
Springer, 963ś999.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2016. Scalable Atomic Visibility with RAMP
Transactions. ACM Trans. Database Syst. 41, 3 (2016), 15:1ś15:45.

Mehmet Emin Bakir, Marian Gheorghe, Savas Konur, and Mike Stannett. 2017. Comparative Analysis of Statistical Model
Checking Tools. In Membrane Computing - 17th International Conference, CMC 2016 (Lecture Notes in Computer Science,

Vol. 10105). Springer, 119ś135.
Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis.

2011. Rigorous Component-Based System Design Using the BIP Framework. IEEE Softw. 28, 3 (2011), 41ś48.
Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traffic characteristics of data centers in the wild. In

IMC’10. ACM, 267ś280.
Lucian Bentea and Peter Csaba Ölveczky. 2011. Probabilistic Real-Time Rewrite Theories and Their Expressive Power. In

Proc. FORMATS 2011 (LNCS, Vol. 6919). Springer.
Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer, Peter Csaba Ölveczky, and Stephen Skeirik. 2018. Survivability:

Design, FormalModeling, and Validation of Cloud Storage Systems UsingMaude. InAssured Cloud Computing. Wiley-IEEE
Computer Society Press, Chapter 2, 10ś48.

Jonathan Bogdoll, Luis María Ferrer Fioriti, Arnd Hartmanns, and Holger Hermanns. 2011. Partial Order Methods for
Statistical Model Checking and Simulation. In Proc. FMOODS/FORTE 2011 (LNCS, Vol. 6722). Springer, 59ś74.

Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges, and Andrea Turrini. 2017. JANI:
Quantitative Model and Tool Interaction. In Proc. TACAS 2017 (LNCS, Vol. 10206). Springer, 151ś168.

Apache Cassandra. Accessed April, 2022. Open Source NoSQL Database. https://cassandra.apache.org.
Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott.

2007. All About Maude. LNCS, Vol. 4350. Springer.
CloudLab. Accessed April, 2022. CloudLab: Flexible, scientific infrastructure for research on the future of cloud computing.

https://www.cloudlab.us/.
Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud serving

systems with YCSB. In SOCC’10. ACM, 143ś154.
Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Danny Bùgsted Poulsen. 2015. Uppaal SMC tutorial.

Int. J. Softw. Tools Technol. Transf. 17, 4 (2015), 397ś415.
Robin Donaldson and David R. Gilbert. 2008. A Model Checking Approach to the Parameter Estimation of Biochemical

Pathways. In CMSB 2008 (LNCS, Vol. 5307). Springer, 269ś287.
Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault, and Laurent Xu. 2016.

Spot 2.0 Ð a framework for LTL and 𝜔-automata manipulation. In ATVA 2016 (LNCS, Vol. 9938). Springer, 122ś129.
Jonas Eckhardt, Tobias Mühlbauer, Musab AlTurki, José Meseguer, and Martin Wirsing. 2012. Stable Availability under

Denial of Service Attacks through Formal Patterns. In Proc. FASE (LNCS, Vol. 7212). Springer, 78ś93.
Avishek Ghosh and Kannan Ramchandran. 2018. Faster Data-access in Large-scale Systems: Network-scale Latency Analysis

under General Service-time Distributions. In 56th Annual Allerton Conference on Communication, Control, and Computing,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

https://aws.amazon.com/ec2/
https://cassandra.apache.org
https://www.cloudlab.us/

Bridging the Semantic Gap betweenQualitative andQuantitative Models of Distributed Systems 136:29

Allerton 2018, Monticello, IL, USA, October 2-5, 2018. IEEE, 757ś764.
Giacomo Giuliari, Dominik Roos, Marc Wyss, Juan Ángel García-Pardo, Markus Legner, and Adrian Perrig. 2021. Colibri: a

cooperative lightweight inter-domain bandwidth-reservation infrastructure. In CoNEXT’21. ACM, 104ś118.
Joseph Goguen and JoséMeseguer. 1992. Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading,

Exceptions and Partial Operations. Theoretical Computer Science 105 (1992), 217ś273.
Wojciech M. Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Keeton, and Indranil Gupta. 2014. Client-Centric

Benchmarking of Eventual Consistency for Cloud Storage Systems. In ICDCS. IEEE Computer Society, 493ś502.
G. Grimmett and D. Stirzaker. 2001. Probability and Random Processes (3rd, Ed.). Oxford University Press.
Jon Grov and Peter Csaba Ölveczky. 2014. Formal Modeling and Analysis of Google’s Megastore in Real-Time Maude. In

Specification, Algebra, and Software (LNCS, Vol. 8373). Springer.
André Günther and Christian Hoene. 2005. Measuring Round Trip Times to Determine the Distance Between WLAN Nodes.

In NETWORKING 2005 (LNCS, Vol. 3462). Springer, 768ś779.
Hans Hansson and Bengt Jonsson. 1994. A Logic for Reasoning about Time and Reliability. Formal Asp. Comput. 6, 5 (1994),

512ś535.
Arnd Hartmanns and Holger Hermanns. 2014. The Modest Toolset: An Integrated Environment for Quantitative Modelling

and Verification. In Proc. TACAS 2014 (LNCS, Vol. 8413). Springer, 593ś598.
David Henriques, João G. Martins, Paolo Zuliani, André Platzer, and Edmund M. Clarke. 2012. Statistical Model Checking

for Markov Decision Processes. In Proc. QEST 2012. IEEE Computer Society, 84ś93.
Ali Jafari, Ehsan Khamespanah, Haukur Kristinsson, Marjan Sirjani, and Brynjar Magnusson. 2016a. Statistical model

checking of Timed Rebeca models. Comput. Lang. Syst. Struct. 45 (2016), 53ś79.
Ali Jafari, Ehsan Khamespanah, Marjan Sirjani, Holger Hermanns, and Matteo Cimini. 2016b. PTRebeca: Modeling and

analysis of distributed and asynchronous systems. Science of Computer Programming 128 (2016), 22ś50.
Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk. 2015. LTSmin: High-Performance

Language-Independent Model Checking. In TACAS 2015 (LNCS, Vol. 9035). Springer, 692ś707.
Michael Katelman, José Meseguer, and Jennifer C. Hou. 2008. Redesign of the LMST Wireless Sensor Protocol through

Formal Modeling and Statistical Model Checking. In Proc. FMOODS 2008 (LNCS, Vol. 5051). Springer, 150ś169.
Achim Klenke. 2006. Probability Theory. Springer.
M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In CAV’11

(LNCS, Vol. 6806). Springer, 585ś591.
Richard Lassaigne and Sylvain Peyronnet. 2012. Approximate planning and verification for large Markov decision processes.

In Proceedings of the ACM Symposium on Applied Computing, SAC 2012. ACM, 1314ś1319.
Lei Liang and Si Liu. 2021. Exploring Design Alternatives for Replicated RAMP Transactions Using Maude. In TASE. IEEE,

111ś118.
Si Liu. 2022. All in One: Design, Verification, and Implementation of SNOW-Optimal Read Atomic Transactions. ACM

Trans. Softw. Eng. Methodol. 31, 3, Article 43 (mar 2022), 44 pages. https://doi.org/10.1145/3494517
Si Liu, Jatin Ganhotra, Muntasir Rahman, Son Nguyen, Indranil Gupta, and José Meseguer. 2017a. Quantitative Analysis of

Consistency in NoSQL Key-Value Stores. Leibniz Transactions on Embedded Systems 4, 1 (2017), 03:1ś03:26.
Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin. 2022a. Bridging the Semantic Gap between

Qualitative and Quantitative Models of Distributed Systems. Technical Report. http://hdl.handle.net/20.500.11850/563291.
Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin. 2022b. The Actors2PMaude Tool. https:

//doi.org/10.5281/zenodo.7071693.
Si Liu, Peter Csaba Ölveczky, Jatin Ganhotra, Indranil Gupta, and José Meseguer. 2017b. Exploring Design Alternatives for

RAMP Transactions through Statistical Model Checking. In ICFEM (LNCS, Vol. 10610). Springer, 298ś314.
Si Liu, Peter Csaba Ölveczky, and José Meseguer. 2015. Formal Analysis of Leader Election in MANETs Using Real-Time

Maude. In Software, Services, and Systems (LNCS, Vol. 8950). Springer, 231ś252.
Si Liu, Peter Csaba Ölveczky, and José Meseguer. 2016a. Modeling and analyzing mobile ad hoc networks in Real-Time

Maude. J. Log. Algebraic Methods Program. 85, 1 (2016), 34ś66.
Si Liu, Peter Csaba Ölveczky, Muntasir Raihan Rahman, Jatin Ganhotra, Indranil Gupta, and José Meseguer. 2016b. Formal

modeling and analysis of RAMP transaction systems. In SAC. ACM.
Si Liu, Peter Csaba Ölveczky, Qi Wang, Indranil Gupta, and José Meseguer. 2019a. Read atomic transactions with prevention

of lost updates: ROLA and its formal analysis. Formal Asp. Comput. 31, 5 (2019), 503ś540.
Si Liu, Peter Csaba Ölveczky, Qi Wang, and José Meseguer. 2018. Formal Modeling and Analysis of the Walter Transactional

Data Store. InWRLA (LNCS, Vol. 11152). Springer, 136ś152.
Si Liu, Peter Csaba Ölveczky, Min Zhang, Qi Wang, and José Meseguer. 2019b. Automatic Analysis of Consistency Properties

of Distributed Transaction Systems in Maude. In TACAS’19 (LNCS, Vol. 11428). Springer, 40ś57.
Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil Gupta, and José Meseguer. 2014. Formal Modeling and Analysis

of Cassandra in Maude. In ICFEM (LNCS, Vol. 8829). Springer.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

https://doi.org/10.1145/3494517
http://hdl.handle.net/20.500.11850/563291
https://doi.org/10.5281/zenodo.7071693
https://doi.org/10.5281/zenodo.7071693

136:30 Si Liu, José Meseguer, Peter Csaba Ölveczky, Min Zhang, and David Basin

Si Liu, Atul Sandur, José Meseguer, Peter Csaba Ölveczky, and Qi Wang. 2020. Generating Correct-by-Construction
Distributed Implementations from Formal Maude Designs. In NFM’20 (LNCS, Vol. 12229). Springer.

Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Axel Legay, and Saddek Bensalem. 2018. SBIP
2.0: Statistical Model Checking Stochastic Real-Time Systems. In ATVA’18 (LNCS, Vol. 11138). Springer, 536ś542.

José Meseguer. 1992. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96, 1
(1992), 73ś155.

José Meseguer. 1993. A Logical Theory of Concurrent Objects and its realization in the Maude Language. In Research

Directions in Concurrent Object-Oriented Programming, Gul Agha, Peter Wegner, and Akinori Yonezawa (Eds.). MIT Press,
314ś390.

J. Meseguer, M. Palomino, and N. Martí-Oliet. 2010. Algebraic simulations. J. Log. Algebr. Program. 79, 2 (2010), 103ś143.
J. Meseguer and R. Sharykin. 2006. Specification and Analysis of Distributed Object-Based Stochastic Hybrid Systems. In

HSCC (LNCS, Vol. 3927). Springer, 460ś475.
Microsoft. 2018. High-level TLA+ specifications for the five consistency levels offered by Azure Cosmos DB. https:

//github.com/Azure/azure-cosmos-tla.
C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff. 2015. How Amazon Web Services Uses Formal

Methods. Commun. ACM 58, 4 (April 2015), 66ś73.
Peter Csaba Ölveczky. 2017. Designing Reliable Distributed Systems - A Formal Methods Approach Based on Executable

Modeling in Maude. Springer.
Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. 2003. Ad hoc On-Demand Distance Vector (AODV)

Routing. RFC 3561 (2003), 1ś37.
PRISM. Accessed April, 2022. PRISM-SMC. https://www.prismmodelchecker.org/manual/RunningPRISM/

StatisticalModelChecking.
R. Rubinstein and D.P. Kroese. 2017. Simulation and the Monte Carlo Method (3rd, Ed.). J. Wiley & Sons.
Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, and Alberto Verdejo. 2021. Strategies, model checking and branching-time

properties in Maude. J. Log. Algebraic Methods Program. 123 (2021), 100700. https://doi.org/10.1016/j.jlamp.2021.100700
SCION. Accessed April, 2022. SCION: Scalability, Control, and Isolation on Next-Generation Networks. https://scion-

architecture.net/.
Stefano Sebastio and Andrea Vandin. 2013. MultiVeStA: Statistical Model Checking for Discrete Event Simulators. In

ValueTools. ICST/ACM, 310ś315.
Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2005a. On Statistical Model Checking of Stochastic Systems. In CAV’05

(LNCS, Vol. 3576). Springer.
Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. 2005b. VESTA: A Statistical Model-checker and Analyzer for

Probabilistic Systems. In QEST’05. IEEE Computer Society, 251ś252.
Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. 2004. Modeling and Verification of Reactive Systems using

Rebeca. Fundamenta Informaticae 63, 4 (2004), 385ś410.
Stephen Skeirik, Rakesh B. Bobba, and José Meseguer. 2013. Formal Analysis of Fault-tolerant Group Key Management

Using ZooKeeper. In CCGRID. 636ś641.
Abraão Aires Urquiza, Musab A. AlTurki, Max I. Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, and Carolyn L.

Talcott. 2019. Resource-Bounded Intruders in Denial of Service Attacks. In CSF. IEEE, 382ś396.
Anduo Wang, Carolyn L. Talcott, Limin Jia, Boon Thau Loo, and Andre Scedrov. 2011. Analyzing BGP Instances in Maude.

In FMOODS’11 (LNCS, Vol. 6722). Springer, 334ś348.
Bow-Yaw Wang, José Meseguer, and Carl A. Gunter. 2000. Specification and Formal Analysis of a PLAN Algorithm in

Maude. In ICDCS Workshop on Distributed System Validation and Verification 2000. E49śE56.
Yu Wang, Nima Roohi, Matthew West, Mahesh Viswanathan, and Geir E. Dullerud. 2020. Statistically Model Checking

PCTL Specifications on Markov Decision Processes via Reinforcement Learning. In 59th IEEE Conference on Decision and

Control, CDC 2020. IEEE, 1392ś1397.
Thilo Weghorn, Si Liu, Christoph Sprenger, Adrian Perrig, and David Basin. 2022. N-Tube: Formally Verified Secure

Bandwidth Reservation in Path-Aware Internet Architectures. In CSF 2022. IEEE. To appear.
Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and

Abhijeet Joglekar. 2002. An Integrated Experimental Environment for Distributed Systems and Networks. In OSDI.
USENIX Association.

Håkan L. S. Younes and Reid G. Simmons. 2006. Statistical probabilistic model checking with a focus on time-bounded
properties. Inf. Comput. 204, 9 (2006), 1368ś1409.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 136. Publication date: October 2022.

https://github.com/Azure/azure-cosmos-tla
https://github.com/Azure/azure-cosmos-tla
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
https://doi.org/10.1016/j.jlamp.2021.100700
https://scion-architecture.net/
https://scion-architecture.net/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Generalized Actor Systems and Their Formalization
	3.1 Generalized Actor Systems
	3.2 Formalizing GASs: Generalized Actor Rewrite Theories
	3.3 GARwThs in Practice

	4 The P Transformation
	4.1 Defining Probabilistic Message Delay Distributions
	4.2 Defining the P Transformation
	4.3 Applying P: An Example

	5 Correctness of the P Transformation
	5.1 Absence of Nondeterminism (AND)
	5.2 Faithful Behavioral Correspondence (FBC)

	6 Simulating R: The Sim Transformation
	6.1 The Inverse Transform Method
	6.2 Defining the R Sim(R) Transformation
	6.3 How the R Sim(R) Transformation is Automated in Practice

	7 Observing Events: The M Transformation
	7.1 Defining Events and the Event Map m
	7.2 The M Transformation
	7.3 Specifying M in Practice

	8 The Actors2PMaude Tool
	9 Applications, and Predictive Power of SMC-based Analysis
	9.1 Case Studies
	9.2 Relating Probabilistic Model Simulations to Actual System Evaluations

	10 Related Work
	11 Concluding Remarks
	Acknowledgments
	References

