
UNIVERSITY OF OSLO
Department of Informatics

Extending
DataPool: A Tool
for Handling Input
Data in Scienti�c
Computing, Using
Python Web
Frameworks

Master thesis

Fredrik B. Fjeld

August 2009

Extending DataPool: A Tool for Handling
Input Data in Scienti�c Computing, Using

Python Web Frameworks

Fredrik B. Fjeld

August 2009

Abstract

Simulation programs frequently need a large amount of input data. Code deal-
ing with reading input data and initializing data structures can be very tedious
to write, especially if the data are to be de�ned in graphical interfaces. When
using general-purpose frameworks, the idea is that the application code should
be short, but this is often di�cult because managing input may still require
a huge e�ort. Hence, a tool for managing input data is needed such that the
application programmer can quickly put together pieces of code that handle all
aspects of supplying data to the program. A tool was implemented to address
these challenges, and the result is a package called DataPool, which can greatly
simplify the creation of user interfaces in Python programs. DataPool is a con-
�gurable Python package and tool for managing and controlling input data in
simulation programs. DataPool can only handle input for a set ofparameters.
It cannot be used to create interactive drawings, advanced widgets, or fancy
layout of a GUI. Nonetheless, DataPool may use these elements to let the user
adjust a large number of physical and numerical parameters by o�ering a fancy
layout and interactivity in simulation programs where it is necessary. This is
achieved by using the available interfaces to DataPool, as well as developing
new interfaces.

The motivation for this master thesis was to �nd a way of increasing the e�-
ciency and usability when performing computational simulations, by extending
and equipping the GUI module of the package DataPool with a highly visual,
easy-to-use and powerful user interface. The angling of a possible solution was
set on realizing this with the use of Python web frameworks. The thesis inves-
tigates the feasibility of obtaining a satisfying solution abiding loose coupling,
extendability and being generic in a framework-based implementation. The
starting point of evaluated Python web frameworks is Django. Other frame-
work for Python like TurboGears was also up for evaluation and compared and
re
ected with the former. The thesis makes an in-depth investigation and eval-
uation of the Django framework. The result is the user interface DataPool Web.
A web-based menu system designed to present the internal tree structure de�ned
through the DataPool package in the most usable and e�ective way. It focuses
on user interaction, practical functions and visual communication in order to
make the use of DataPool package easy and time saving. The interface has the
ability to present large amounts of data in an e�ective and lucid manner for the
user.

Keywords: computational science, scienti�c computing, Django,
Python, TurboGears, simulation, visualization, web, user interface

Acknowledgments

First, I would like to express my gratitude to my supervisor, professor Hans
Petter Langtangen at Simula Research Laboratory. Thank you for showing me
the world of Python, and giving me the opportunity of pursuing this passion
even further with this master thesis. Your patience, guidance, contributions and
inspiring discussions during this time were priceless.

I would like to thank Rustam Mehmandarov for the valuable team-work proving
the concept of extreme programming, the interesting and fun discussions and
the never-ending sessions of coding and xkcd humor.

I also wish to express my gratitude to everybody at Simula Research Labo-
ratory for a fantastic environment, both academically and socially. I also thank
everybody in ProsIT for making my studies a very active, fun and memorable
time.

A special thank to Christian Mikalsen for the support in my startup company
during this period. The Grunderskolen stay in Shanghai would never been re-
alized without your help.

I thank my friends for the understanding, encouragement and standing by me
during this period. You know who you are.

Finally, I thank my family for endless support and care, and for giving me
free wings.

Thank you.

Oslo, Norway
August 2009
Fredrik B. Fjeld

4

5

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Contribution . 12
1.3 Problem Statement . 13
1.4 Specifying the thesis . 14
1.5 Collaboration and overlap . 14
1.6 Outline . 15
1.7 Conventions in the thesis . 15

2 Using DataPool: User Manual 17
2.1 Introduction . 17
2.2 Basic Ideas of DataPool Usage 17

2.2.1 The Three Key Steps . 18
2.2.2 Working with Submenus 18
2.2.3 Specifying Data Items . 19
2.2.4 Starting the User Interface 22
2.2.5 Extracting Parameter Values 23
2.2.6 Specifying and Getting Multiple Parameters 23

2.3 An Introductory Worked Example 24
2.3.1 The Basic Program . 24
2.3.2 Adding DataPool Functionality 25
2.3.3 DataPool Command-Line Options 29
2.3.4 Operating the Command Line Interface 30
2.3.5 Operating the Interactive Command Interface 31
2.3.6 Operating the File Interface 32
2.3.7 Unit Conversion . 32
2.3.8 Writing the Menu Tree to File 32
2.3.9 Automatic Generation of Documentation 34
2.3.10 More Advanced Speci�cation of Data Items 35
2.3.11 Traversing Menu Tree . 38
2.3.12 Add a Menu with Minimally Intrusive Approaches 38
2.3.13 Data Items for Output Data 39

2.4 A Class-Based Example . 40
2.4.1 Adding a Menu to a Class 41
2.4.2 Add a Menu with a Non-Intrusive Approach 43
2.4.3 Another Non-Intrusive Approach 45

2.5 A Complete ball Demo . 46
2.6 A More Advanced Example . 49

6

CONTENTS 7

2.6.1 The Problem . 49
2.6.2 The Existing Simulation Code 50
2.6.3 The Menu Tree . 53
2.6.4 Creating a Menu . 54
2.6.5 Examples on Using the Interfaces 57

3 Using DataPool Web: User Manual 59
3.1 Introduction . 59
3.2 Menu system . 59
3.3 Fundamentals . 60

3.3.1 Structure . 60
3.3.2 Administration Panel . 60
3.3.3 Menu Items (submenus) 61
3.3.4 Data Items . 61

3.4 Concepts . 62
3.4.1 Hovering . 62
3.4.2 Expand & Collapse . 62
3.4.3 Linking & Scrolling . 63
3.4.4 Menu Item Dependency 65
3.4.5 Menu Chooser . 65
3.4.6 Enabled & Disabled Items 66

3.5 Usage . 67
3.5.1 Changing Data Item Values 67
3.5.2 Administration Panel . 70
3.5.3 Choosing Menu Items (submenus) 73
3.5.4 Value Unit Conversion . 78
3.5.5 Balloon Help . 80

3.6 Input Error Handling . 81
3.6.1 Python Values . 81
3.6.2 Wrong Input . 81

3.7 Output . 83
3.7.1 Plot Visualization . 83
3.7.2 Simulation data . 84
3.7.3 Combined . 87

4 Web frameworks 89
4.1 The role of Python . 90
4.2 First Approach . 90
4.3 Inter- and intra crosscutting . 91
4.4 Introducing Django . 92
4.5 Loosely coupled Django . 93
4.6 TurboGears . 93
4.7 Choice of technologies . 94
4.8 Summary . 95

5 Technicalities 96
5.1 DPW Contents . 96
5.2 Implementation . 97

5.2.1 Python . 97
5.2.2 Django Templates . 97

CONTENTS 8

5.2.3 HTML . 98
5.2.4 CSS . 98
5.2.5 JavaScript . 98
5.2.6 Design Elements . 98

5.3 System Structure . 99
5.4 Design Philosophy . 100
5.5 Core . 101

5.5.1 Django . 102
5.5.2 DataPool API . 103

5.6 Program Flow . 104
5.6.1 Approach . 104
5.6.2 Initial Browser View . 105
5.6.3 Browser Interaction . 106
5.6.4 System State Handling . 111
5.6.5 Form Creation . 113
5.6.6 Form Validation . 114
5.6.7 Menu Tree Rendering . 115
5.6.8 Interaction: JQuery . 117
5.6.9 Alternatives . 118

5.7 Variations in DataPool . 118
5.7.1 MenuAPI . 119
5.7.2 Settings . 119

6 Alternative Framework: TurboGears 120
6.1 Intro . 120
6.2 Approach . 121
6.3 Challenges . 121
6.4 Conclusion . 123

7 Conclusion 125
7.1 Summary . 125
7.2 Contributions . 125
7.3 Future Work . 127

7.3.1 Visualization of Results 127
7.3.2 Web Service . 127
7.3.3 Integration with the FEniCS Project 127

Bibliography 128

List of Figures

2.1 Interactive Command Interface. 31
2.2 Automatically generated HTML documentation for the whole

DataPool menu tree. 35
2.3 Web interface for ball2 menu1.py 48

3.1 Initial start-up of DPW . 60
3.2 Hover e�ect on data items . 62
3.3 Hover e�ect on a folded submenu 62
3.4 A collapsed data item showing its belonging attributes 63
3.5 An expanded submenu showing its �rst level of children submenus 63
3.6 Automatically slided Quick-menu 64
3.7 Parent link for a data item . 65
3.8 Anchor indicates dependency rule on a submenu level 65
3.9 A Menu Chooser data item (single dependency) 66
3.10 A Menu Chooser data item (multiple dependency) 66
3.11 A disabled submenu . 67
3.12 A disabled data item . 67
3.13 A
oat �eld . 67
3.14 An integer �eld . 68
3.15 Representation of a Python string 68
3.16 A drop-down from the valuelist attribute 69
3.17 Representation of a Python list 69
3.18 Representation of a Python tuple 69
3.19 Representation of a Python tuple (minmax) 70
3.20 Error message using minmax . 70
3.21 Error message when de�ning minmax 70
3.22 Administration Panel . 71
3.23 Administration Panel - Status - Saved parameters 72
3.24 Administration Panel - Status - started simulation 72
3.25 Administration Panel - Status - Simulation done 73
3.26 Menu item Quick-menu dependency speci�cation 74
3.27 Dependency: Submenus not chosen, but expanded 75
3.28 Single dependency: Choosing submenu 76
3.29 Single dependency: Submenu chosen 76
3.30 Multiple dependency: Both submenus chosen 77
3.31 Multiple dependency: One submenu chosen 77
3.32 Multiple dependency error: Limits 78
3.33 Multiple dependency error: None value 78

9

LIST OF FIGURES 10

3.34 Data item with de�ned unit attribute 79
3.35 Changing unit of the input value 79
3.36 Changing both data item value and the unit of the input 80
3.37 Data item value converted . 80
3.38 Balloon help . 80
3.39 Input error: Float . 81
3.40 Input error: List . 81
3.41 Input error: Integer . 81
3.42 Input error: Tuple . 81
3.43 Administration panel error links 82
3.44 Input �eld errors . 83
3.45 Simulation plot results . 84
3.46 Ball simulation in DPW . 85
3.47 Simulation data results . 86
3.48 Combined simulation results . 88

5.1 The Django project structure . 97
5.2 Program
ow - Initial Browser View 106
5.3 Program
ow - Browser Interaction - Validated 108
5.4 Program
ow - Browser Interaction - Operations 110
5.5 Program
ow - Browser Interaction - Errors 111
5.6 Program
ow - System State Handling 112
5.7 Program
ow - Form Creation . 113
5.8 Program
ow - Form Validation 115
5.9 Program
ow - Menu Tree Rendering 117

6.1 Form generated with TurboGears. 123

Chapter 1

Introduction

1.1 Motivation

In science and engineering, it is common to use software for simulating how
nature or technical devices work. Such software is commonly called simulation
programs. Most simulation programs are tailored to a particular type or class
of problems. Because development of these tailored programs is very expensive,
it has been popular to create general-purpose frameworks to simplify the devel-
opment of simulation programs by assembling various high-level objects from
the framework. The purpose of the tool described in this document is to equip
a given framework, programmable in Python, with support for easy creation of
user interfaces to simulation programs. Many types of user interfaces can be
automatically generated by a minimum of code: highly interactive web pages,
command line options, XML �le input, or a plain text command format.

Simulation programs frequently need a large amount of input data. For ex-
ample, several hundred parameters are not uncommon in complicated problems.
Code dealing with reading input data and initializing data structures can be very
tedious to write, especially if the data are to be de�ned in graphical interfaces.
Quite often, managing input demands much more lines of code than the math-
ematical calculations involved in the simulations. When using general-purpose
frameworks, the idea is that the application code should be short, but this is
often di�cult because managing input may still require a huge e�ort. Hence, a
tool for managing input data is needed such that the application programmer
can quickly put together pieces of code that handle all aspects of supplying data
to the program.

Quite surprisingly, tools for managing input to simulation programs has re-
ceived very little attention in the literature. It seems that code related to this
issue is widely accepted to be special-purpose { and lengthy. The Di�pack pro-
gramming environment [13] was one of the �rst general-purpose frameworks for
simulation that contained tools for simplifying the coding of
exible input. Di�-
pack introduced the concept of amenu system. Before going into its details, we
need to brie
y describe how the Di�pack framework is designed.

11

CHAPTER 1. INTRODUCTION 12

Di�pack contains a large number of classes, each class doing some general-
purpose operation arising in a simulation, or more precisely, when solving partial
di�erential equations. Each class knows its required input. For example, a class
for solving an ordinary di�erential equation may need (at least) three parame-
ters: the type of numerical method to be used ("method"), the time step (�t),
and the time interval for the solution (T). The class would then, in Di�pack,
have a static C++ function de�ning basic information about these input pa-
rameters: the name of the parameter, its default value, a description of the
parameter, an optional speci�cation of legal input values, etc. This information
can be collected by general-purpose code to create, together with similar infor-
mation from many other classes, a graphical user interface (GUI) or an interface
controlled by commands (for �le or "shell" input). Di�pack o�ers di�erent types
of input: command line options, a GUI, commands in a �le, and questions and
answers in the terminal window. The application programmer provides only
basic information about a menu item and decides at run time what type of user
interface that is wanted for the current simulation.

To initialize data structures in the class, a function is needed for asking the
menu system the value of the parameters. In the case of input from a GUI, the
menu system would �nd the widget corresponding to a parameter and get the
user input from this widget. In the case of providing input on the command line,
the menu system would search for an option and a value given as a command
line argument.

The idea is that the de�nition and reading of parameters in a class is coded
completely independently of whether the user wants to provide input in a GUI,
from the command line, or in a �le. Each program unit (class) is only concerned
with its own input. Moreover, the application code can limit itself to de�ning
the physical parameters in the problem, because most numerical parameters
are de�ned and read in various classes already available in the general-purpose
framework. The application code typically applies some of these classes, and
these classes often involve many other classes, which again involve other classes
in the framework. In this way, one can build the total information about input
parameters in a recursive manner. Just a few lines in the application code may
result in a menu with hundreds of parameters, arising from a large number of
layers of classes in the framework.

DOLFIN [31] and deal.II [3] share some of the Di�pack functionality. How-
ever, they have more limited mechanisms for automatically generating various
types of user interfaces and for combining parameters from di�erent program
units into a coherent menu with a coherent user interface. Another tool called
Boost Program Options [23], a part of the Boost C++ Libraries, also have
some similar functionality, but is very primitive compared to the solution and
outcome of this thesis.

1.2 Contribution

The convenience of specifying input to Di�pack-based simulators has been one
of the important reasons for Di�pack's popularity. Unfortunately, Di�pack's

CHAPTER 1. INTRODUCTION 13

menu system is speci�c to Di�pack and cannot be used in other programming
environments. Moreover, several technical aspects of Di�pack's menu system
can clearly be improved. We decided therefore to adopt the fundamental ideas
of Di�pack's menu system, but to implement them in a more general way in
Python. The result is a package called DataPool [20], which can greatly simplify
the creation of user interfaces in Python programs.

We remark that DataPool is not a general tool for creating GUIs. DataPool
can only handle input for a set of parameters. It cannot be used to create in-
teractive drawings, advanced widgets, or fancy layout of a GUI. Nonetheless,
DataPool may use these elements to let the user adjust a large number of phys-
ical and numerical parameters by o�ering a fancy layout and interactivity in
simulation programs where it is necessary. This is achieved by using the avail-
able interfaces to DataPool, as well as developing new interfaces.

Imagine that we have a simulation code that requires several hundred vari-
ables. With DataPool we can easily review and update some of the values while
leaving the rest with their default values. We can also select between several
user interfaces for updating the values. We can use command line arguments
like --radius 12 , load them from a �le, or update them via a graphical web
interface. The changes can also be saved to a �le that can be edited and loaded
back to DataPool next time we want to run the simulation. This is just a short
glimpse into DataPool's functionality that will be described in the next chapters.

1.3 Problem Statement

In the book Python scripting for Computational Science by Langtangen [14],
some real examples are shown related to this aspect in simulation and visualiza-
tion. It is particular the simviz1.py script [14, p. 46] for automating simulation
and visualization that are basically used in the examples. The section 11.4.2
explains a class hierarchy for holding an input parameter and a class for the
generation of CGI scripts [14, p. 553]. The Parameter class [14, p. 563] is used
for a data structure that holds the involved parameters. A Parameter instance
are passed along to an instance of the AutoSimVizCGI class for automatic gen-
eration of a CGI form with the corresponding parameters [14, p. 568]. The CGI
scripts generate the appropriate web page with input �elds for the parameters
to be edited. From this page it is also possible to start the simulation, and the
resulting Gnuplot and animation are presented on the same page [14, p. 573].

Parallels can be drawn from the examples to this master thesis. The Param-
eter class is implemented di�erently and taken care of with the core of DataPool
with the creation of a tree structure for the parameters. Further, the CGI cre-
ation can be compared to the main goal of this thesis, which is the creation of
a web interface for DataPool with Python web frameworks. In addition, the
use of �les as input for the generation of GUIs [14, p. 587] is also a part of
the DataPool project. Langtangen is also stating the limitation of the tools
presented and suggests an approach for bigger systems:

Applications with a large number of parameters may naturally sort

CHAPTER 1. INTRODUCTION 14

these in classes and use menu tree with nested submenus in the inter-
face. Extensions of AutoSimvisGUI and AutoSimVizCGI to menu
trees could make use of a directory-tree-like widget for navigation
and the parameter setting part of the present version of the classes
for each submenu [14, pp. 568 569].

Also, a larger extent of user control of the layout [14, p. 569], could be done
with the solution with expanding/collapsing widgets and the power of Ajax.

1.4 Specifying the thesis

The motivation for a master thesis regarding these issues, would be the develop-
ment of a system which increases the e�ciency of the task of handling, starting
and accomplishing computational simulations. One important aspect of the the-
sis should be to focus on making the system as generic as possible. In this way
make it highly usable for scientists which are performing simulations in their
research. With generic in mind, it should be both practical in use for di�erent
types of simulations, but also easy to expand in the future. The expanding could
apply new functionality and more built-in support with di�erent middleware.
To achieve a loosely coupled system would strengthen the system's position in
the future for further development and collaboration from the community, in
the spirit of research.

The master thesis are concentrated on the development of a web interface
for the DataPool module. Since the DataPool is written in Python, the core of
my master thesis will be to realize the web interface focusing on web frameworks
for Python. The weight will be on the web framework Django and the other
one evaluated is the TurboGears framework. We will compare and re
ect on
the di�erent approaches. The creation of the web interface for DataPool will in
this thesis be the case of using a web browser locally with the interface provided
through the GUI module.

1.5 Collaboration and overlap

Rustam Mehmandarov started the development of the core of DataPool as a
part of his master thesis, and had the lead of the process from day one. Later,
this master thesis was initiated in parallel, supposed to be built on top of the
DataPool core as en extension. In the early phase this process mainly consisted
of user feedback for DataPool, while developing the web interface DataPool Web
("DPW"), which is the result of this thesis.

However, this process evolved into a tight cooperation, a development pro-
cess in order to realize the creation of DPW on top of DataPool. Signi�cant
and central portions were developed in collaboration in theExtreme Program-
ming spirit, and others were developed individually. The process spanned from
technical code, tailoring of the API and de�ning new concepts for the module.

CHAPTER 1. INTRODUCTION 15

In addition to the implementation of real computer simulation examples, which
were used to optimize the usability of DataPool.

The user manual for DataPool is written in cooperation with Hans Petter
Langtangen and Rustam Mehmandarov, this also includes the example codes.

1.6 Outline

The next chapter contains the user manual for DataPool. The chapter is in-
troducing the terminology, principles and the functionality. Di�erent examples,
variating greatly in complexity, are used to show and cover the usage of the sys-
tem. Other interfaces are also examined in this user manual, and the last parts
show an example of a demo walkthrough involving the most aspects provided
by the system.

Chapter 3 contains the user manual for DPW. All fundamentals, concepts
and usage of the web interface are covered. The user manual mainly uses the
Oscillator simulation throughout the chapter, but other simulations are also in-
volved to show the functionality and system behavior.

Chapter 4 introduces the world of web frameworks for Python and discuss
the role of Python, Django and the choice of technologies for DPW.

Chapter 5 describes all the technicalities of the DPW module regarding to
implementation, design philosophy, program
ow and structure.

Chapter 6 describes the use of TurboGears as an alternative web framework
for implementing DPW.

Chapter 7 takes a look at the road for future development and conclude the
thesis.

1.7 Conventions in the thesis

The thesis are using di�erent typefaces in order to indicate programming code,
command and etc.

Code snippets are shown with a light blue box:

print('This is a python code snippet')

We indicate a complete runnable program like this, with a thin dark blue
border on the left side:

import sys

def msg():
msg = 'this is a complete program'
print msg

CHAPTER 1. INTRODUCTION 16

print sys.version

msg()

Other denoting of code and commands are done with monospace:

This is the monospace for code and commands.

Terminal commands are presented like this:

Terminal

This is a command in a terminal window.

Data in �les are denoted like this:

<?xml version="1.0" ?>
<menu name="/">

<menu name="/Hard Kick/">
<data_item name="/Hard Kick/C_D">

<attribute name="widget">entry</attribute>

Chapter 2

Using DataPool: User
Manual

2.1 Introduction

2.2 Basic Ideas of DataPool Usage

DataPool manages a (possibly large) set of input parameters in simulation pro-
grams. These input parameters are grouped in various submenus in a tree-like
fashion. For example, one may have a main menu with a submenu for nu-
merical parameters and another submenu for physical parameters entering the
mathematical model. The submenu for numerical parameters may have dif-
ferent submenus for parameters in di�erent numerical algorithms used in the
simulator. Similarly, the submenu for physical parameters may contain various
submenus for the parameters that enter various physical models.

Each submenu consists of two types of objects: data items and submenus.
A data item holds information about a parameter, typically the name of the
parameter, its default value, its current value, plus optional information about
legal values, the associated unit (meter, second, etc.), and what kind of widget
that is suitable for setting the parameter in a graphical user interface. A sub-
menu object has a name and a list of data items and other submenu objects.
Submenus are also sometimes referred to asmenu items in DataPool (especially
in the source code).

The idea behind DataPool is that various parts of a big program can make
their own nested submenus, ormenu treesas we denote them, and attach their
trees to a global menu tree for the whole simulation code. In this way, a com-
prehensive user interface can be built from many small, independent menu trees.

To provide an image of a menu tree in DataPool, we can think of a �le and
directory structure on a computer. A directory may contain �les and other di-
rectories. The �les correspond to data items, while the directories correspond to
the submenus. Having a directory tree, we know how easy it is to copy or move
it to a directory in another directory tree and extend that tree. DataPool's
menu trees are of the same nature.

17

CHAPTER 2. USING DATAPOOL: USER MANUAL 18

As soon as the global menu tree is built, the user of the program can spec-
ify values in various interfaces: in a web page, on the command line, or in a
�le. Thereafter, the program can load the parameter values into variables and
perform computations. Examples will show how this is done in practice.

2.2.1 The Three Key Steps

Using DataPool consists of three phases:

� De�ne submenus and data items.

� Start user interface.

� Load data from DataPool into variables used for computation.

DataPool's application programming interface (API) allows a variety of syn-
tax for performing the �rst and third steps. Some syntax is tailored to small
programs that rapidly need to be equipped with a user interface, while other
parts of the syntax are better suited for larger software systems with a lot of
parameters and submenus scattered around in numerous program units.

Here we brie
y present a simple subset of the DataPool API needed in
the �rst examples. Using DataPool starts with an import and is followed by
grabbing its global menu tree1:

import DataPool
menu = DataPool.menu # global menu tree

With the menuvariable we can add data items and submenus to the global menu
tree. Di�erent parts of a Python application may access the global menu tree
as a global variable in the application.

2.2.2 Working with Submenus

Initially, the tree will consist of a root submenu containing all other submenus
and data items that can be added by the user. The root submenu, like the root
directory in Unix-like operating systems, is designated by a forward slash (/).
It is possible to set this submenu delimiter to another character2.

Creating a new submenu with its name in a stringnameis done by

menu.submenu(name)

When creating new submenus and data items, they will automatically be added
to the current submenu (also calledcurrent working menu). The submenucom-
mand is also used for navigating in the menu tree3. As an example, think of

1Global menu tree is a global object in the DataPool package. Di�erent parts of a system
can access this object and add submenus, and thereby contribute to building a (possibly large)
common menu tree.

2The forward slash is used as a default path delimiter. However, it can be modi�ed in
settings.py located at the root directory of the package.

3 In Unix terms, using a directory tree as a model of DataPool's menu tree, one may say
that menu.submenucorresponds to a cd command, but mkdir is automatically run �rst if one
moves to a non-existing directory.

CHAPTER 2. USING DATAPOOL: USER MANUAL 19

moving to submenu s3 that is in submenu s2, again contained in submenus1.
Being in the s1 submenu we can use a local path:

menu.submenu('s2/s3')

Being anywhere in the menu tree, we can also use an absolute path. It will
always have a slash (/) at the beginning of the string:

menu.submenu('/s1/s2/s3')

The local, or relative, path is interpreted relatively to the current working
menu. After eachmenu.submenucommand, DataPool updates its current work-
ing menu and sets it to be the speci�ed menu.

This usage of paths can remind users of handing paths in the most common
operating systems. As expected, it is possible to use one or several ".." in the
relative paths for moving to a parent submenu. For instance:

menu.submenu('../../')
menu.submenu('../s4/s5')

The former statement will move us two levels up in the menu hierarchy (i.e. to
s1), while the latter will �rst move us up to submenu s2, and then go to, and
if necessary create,s4 and s5.

2.2.3 Specifying Data Items

As we will see, theadd command o�ers various ways of adding input data which
can be used interchangeably depending on the problem at hand.

Method 1: Positional Parameters

Suppose we have a parameter called "time step". Its default value is 0.1, and it
is measured in seconds. The minimal speci�cation of this data item is to set its
name and default value:

menu.add('time step', 0.1)

However, we may specify more information if desired:

menu.add('time step', 0.1, unit='s',
help='time discretization parameter in the ODE solver',
widget='entry')

Now we specify the unit as's' for second. If a graphical user interface is avail-
able, we want to use an entry widget ('entry') in that user interface (entry
means a simple one-line text box). We also specify a help or documentation
string that will appear in automatically generated documentation of the whole
menu tree. In graphical user interfaces this help string will typically pop up on
mouse-overs for the item.

CHAPTER 2. USING DATAPOOL: USER MANUAL 20

It is worth noticing that the add command will always add data items to
the current working menu, which is set to the menu tree root by default on
initialization of a new tree. To add data items to the correct submenu, this
command should be used in combination with themenu.submenucommand.

An alternative to specify input parameters is to use a Python list notation
to add several data items with one command:

menu.add([('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),

])

This way of adding data items requires the information to be given in a spe-
ci�c order: name, default value, help string, unit, widget type, tuple containing
minimum and maximum values. There are other attributes that can be set, and
these must be speci�ed as keyword arguments of the formname=value.

Method 2: Dictionaries

More
exibility in de�ning data items can be achieved by using Python dictio-
naries:

create dictionaries:
dict1 = dict(name='density', value=1.2, help='density of air',

unit='kg*m**(-3)'),
dict2 = dict(name='radius', value=0.11, help='radius of ball',

unit='m'),
dict3 = dict(name='mass', value=0.43, help='mass of ball', unit='kg')

single add:
menu.add(dict1)

multiple add:
menu.add([dict2, dict3])

Method 3: DataItem Objects

Not surprisingly, data items are found in the DataPool source code as instances
of classDataItem . We may de�ne such instances directly when creating menus:

create objects:
obj1 = DataItem('density', 1.2, 'density of air', 'kg*m**(-3)')
obj2 = DataItem('radius', 0.11, help='radius of ball', unit='m')
obj3 = DataItem('mass', 0.43, unit='kg', help='mass of ball',)

single add:
menu.add(obj1)

multiple add:
menu.add([obj2, obj3])

Method 4: Nested Dictionaries

Sometimes menu subtrees can be easier to de�ne as nested dictionaries. For pro-
grams written in languages not supporting Python objects, nested dictionaries

CHAPTER 2. USING DATAPOOL: USER MANUAL 21

might facilitate the generation of DataPool menu subtrees. Let us see how this
can be done. Assume that we have a subtree with the following structure:

Submenu 'main'/
Data item 'x', 'value':1, 'unit':'cm'
Data item 'y', 'value':0.1
Data item 'z', 'value':0.2
Submenu 'sub1'/

Data item 'a', 'default':'3'
Data item 'b', 'value':0.01
Data item 'c', 'value':0.11
Submenu 'sub2'/

Data item 'd', 'value':10
Submenu 'sub3'/

Data item 'e', 'value':'e1'
Data item 'f', 'value':'f1'

This can be represented as nested dictionary and added to the global menu
tree:

the subtree to be added
tree = ['main', [{'name':'x', 'value':1, 'unit':'cm'},

{'name':'y','value':0.1},
{'name':'z','value':0.2},
'sub1', [{'name':'a', 'default':'3'},

{'name':'b','value':0.01},
{'name':'c','value':0.11},
'sub2', [{'name':'d','value':10},

],
],

'sub3', [{'name':'e','value':'e1'},
{'name':'f','value':'f1'},
],

],
]

add to the global menu tree:
menu.add(tree)

This solution also provides more
exibility with respect to the number and
the position of the attributes that each data item may have, as well as the ability
to de�ne submenu structures in a simple way.

Method 5: Menu Trees

Imagine that you have several Python modules with a menu tree each, and you
want to add these trees somewhere in a global tree. In this case you can simply
move to the correct submenu, and do the following for each of the subtrees you
wish to add:

single add:
menu.add(submenu_tree_obj)

It is also possible to use lists to add several objects:

multiple add:
menu.add([submenu_tree_obj1, submenu_tree_obj2, submenu_tree_obj3])

The submenu_tree_obj objects are the instances of the MenuItem class, and
can be instantiated as shown in this example:

CHAPTER 2. USING DATAPOOL: USER MANUAL 22

submenu_tree_obj1 = MenuItem(menu, 'test_menu1', None)
submenu_tree_obj2 = MenuItem(menu, 'test_menu2', submenu_tree_obj1)
submenu_tree_obj3 = MenuItem(menu, 'test_menu3', submenu_tree_obj2)

2.2.4 Starting the User Interface

When all submenus and data items are speci�ed, the program must ask the
user for input. DataPool o�ers several di�erent types of user interfaces. For
some of them, like the graphical user interface, the control is handed over to the
user, who can examine submenus and data items and modify parameter values.
Other interfaces, like the command line or a �le with menu commands, just
reads user-provided information to update the values in data items.

To read user input, or "start the user interface" as we say in this tutorial,
the program must have a call on the form

menu.start_ui('desired_ui', <other args>)

The command expects a string de�ning which user interface it will be run-
ning, and other user interface-speci�c arguments. This command performs ac-
tions that strongly depend on the user interface that was chosen when the
program was started.

Operating each interface will be described in detail in Section 2.3. Now, let
us have a brief look at the available interfaces.

Command-Line Arguments

The command-line interface allows the values of the data items to be speci�ed
through command-line arguments, provided when the program is started. The
speci�c menu.start_ui call for this user interface reads

command line interface:
menu.start_ui('cmd')

Interactive Command Interface

The interactive command line interface is built on the principle of an interactive
dialog in a terminal window where the user can view the menu tree, move
around, and assign values to data items (the interface works much like a Unix
shell).

interactive command interface:
menu.start_ui('shell')

File Interface

It is also possible to write a �le with commands for setting values of data items.
This �le can be given to the menu.start_ui call, and DataPool will then read
the �le and update values in the menu tree:

CHAPTER 2. USING DATAPOOL: USER MANUAL 23

interactive command interface with
commands saved in a text file:
menu.start_ui('shell', file_name.i)

The commands in the �le have the same syntax as the commands in the inter-
active command-line interface (i.e., if the latter is thought of as a Unix shell,
the �le interface is a Unix shell script).

Web Interface

DataPool has a graphical user interface, which is operated through a web
browser. The user is presented with a web page containing a graphic represen-
tation of the menu tree, with a possibility to navigate and update data item's
values. This interface is started with the following options:

web interface (default port number and URL):
menu.start_ui('web')

web interface (customized):
menu.start_ui('web', 8010, "http://localhost:8010/new_datapool/")

2.2.5 Extracting Parameter Values

After the user of the program has provided information about parameter values
in the menu tree, it is possible to access a particular value by its name:

dt = menu.get('time step')

This command is successful as long as we are in the right submenu or if there
is only one data item with name "time step" in the whole menu tree. Otherwise
we have to navigate to the right submenu with the menu.submenucommand
before calling menu.get, or use a relative or a full path to the data item.

example of get() with a relative path:
dt = menu.get('../another_submenu/time step')

2.2.6 Specifying and Getting Multiple Parameters

Sometimes it is tedious to write a set of separateadd and get calls to specify
and read several parameters. The DataPool API o�ers a shortcut in this case.
For instance, we may specify a list of data items, where each item can be a
tuple with elements for the name, the default value, the help string, the unit,
the widget, and the tuple with minimum and maximum allowed values { in that
order. As a minimum, the name and the default value must be provided. All
possible ways of adding multiple parameters are described in Section 2.2.3. Here
is a short example:

data_items = [
('C_D', 0.2, 'drag coefficient'),
('rho', 1.2),
('V', 1, 'velocity', 'm/s')]

menu.add(data_items)

CHAPTER 2. USING DATAPOOL: USER MANUAL 24

Loading the parameter values associated with these items can also be done
with a single call:

C_D, rho, V = menu.get(['C_D', 'rho', 'V'])

or:
C_D, rho, V = menu.get([d[0] for d in data_items])

It is also worth noticing that the names in the list sent to the function can
consist of a simple item name or a full or a relative path to this item. For
instance:

C_D, rho, V = menu.get(['../C_D', 'rho', '/volume/V'])

The return value will always be a tuple with all values, or just a single value
if only one parameter was speci�ed.

2.3 An Introductory Worked Example

After having reviewed the basic ideas of DataPool usage, it is time to apply
the methods in an example. This section presents a very simple program hav-
ing a few input parameters and trivial mathematical computations. We �rst
describe the program with hardcoded values of all parameters. Then we show
alternative ways of using DataPool to equip the program with a menu for
ex-
ible reading of input. The �rst version of the program is just a simple, \
at"
code. A class-based version is treated in Section 2.4. The basic usage of Dat-
aPool explained in Sections 2.3 and 2.4 is demonstrated in a more complicated
and realistic simulation code in Section 2.6 where a quite general ordinary di�er-
ential equation describing nonlinear oscillations with many parameters is solved.

The purpose of our introductory simulation program is to compute the drag
and gravity forces on a body moving through air. Such computations help to
determine if the drag can be neglected in certain applications. A rough formula
for the drag force is 1

2 CD �AV 2, where CD is a dimensionless drag coe�cient
for the body, � is the density of the surrounding
uid (e.g., air), A is the cross-
section area of the body normal to the velocity direction, andV is the velocity
of the body. In case of a ball of radiusa, we have that A = �a 2. The gravity
force ismg, wherem is the mass of the body andg is the acceleration of gravity.

2.3.1 The Basic Program

Let us make a simple program that computes the drag and gravity forces in the
case of a soft and hard kick of a football4:

def drag(C_D, rho, A, V):
return 0.5*C_D*rho*A*V**2

4For the fun of it we may run this code and realize that the drag force is negligible for a
soft kick (10 km/h), while in a really hard kick (120 km/h) the drag force is as important as
gravity. This is important information for deciding whether one can neglect air resistance or
not.

CHAPTER 2. USING DATAPOOL: USER MANUAL 25

def gravity(m):
g = 9.81 # m*s**(-2)
return m*g

C_D = 0.2 # drag coefficient, dimensionless
rho = 1.2 # density of air, kg*m**(-3)
a = 0.11 # radius of a ball (standard football), m
from math import pi
A = pi*a**2 # cross section area normal to movement, m^2
m = 0.43 # mass of body, kg
V_hi = 120 # velocity, hard football kick, km/h
V_hi = V_hi/3.6 # velocity in m/s
V_lo = 10 # velocity, soft football kick, km/h
V_lo = V_lo/3.6 # velocity in m/s

"simulate":
hard_kick_drag = drag(C_D, rho, A, V_hi)
soft_kick_drag = drag(C_D, rho, A, V_lo)
gravity_force = gravity(m)

print """
Gravity force = %.2f N
Drag force, hard kick = %.2f N
Drag force, soft kick = %.2f N
""" % (gravity_force, hard_kick_drag, soft_kick_drag)

This program is stored in the �le ball1.py in the doc/samples/ball direc-
tory of the DataPool source code.

2.3.2 Adding DataPool Functionality

Let us add statements to theball1.py code so that we can set and get param-
eters via the DataPool tool instead of hardcoding values in the program.

Working with Separate Calls for Each Data Item. We start with �lling
a main menu with data items by calling menu.addas outlined in Section 2.2.3:

import DataPool
menu = DataPool.menu

menu.add('C_D', 0.2, help='drag coefficient', minmax=[0,1])
menu.add('density', 1.2, help='density of air', unit='kg*m**(-3)')
menu.add('radius', 0.11, 'help=radius of ball', unit='m')
menu.add('mass', 0.43, help='mass of ball', unit='kg')
menu.add('V high', 120, help='velocity of hard football kick',

unit='km/h')
menu.add('V low', 10, help='velocity of soft football kick',

unit='km/h')

Now the menu contains all necessary information about the input parame-
ters to the program. Note that the help , unit , and minmaxkeywords constitute
optional information that we could have skipped.

The next step is to ask the user for input,

menu.start_ui()

This enables the user to provide values for the various data items, but we post-
pone to Sections 2.3.4{2.3.6 to show how to operate the various interfaces and

CHAPTER 2. USING DATAPOOL: USER MANUAL 26

set the parameter values.

After this prompt phase we are ready to load the user-given data into vari-
ables and continue with the mathematical computations. Retrieval of parameter
values is done withmenu.get:

C_D = menu.get('C_D')
rho = menu.get('density')
a = menu.get('radius')
m = menu.get('mass')
V_hi = menu.get('V high')
V_lo = menu.get('V low')

At this stage we have �lled the same variables as in the original program
and we can perform the same computations. The complete program utilizing
DataPool (and stored in the �le ball1_sep1.py) looks as follows:

def drag(C_D, rho, A, V):
return 0.5*C_D*rho*A*V**2

def gravity(m):
g = 9.81 # m*s**(-2)
return m*g

import DataPool
menu = DataPool.menu

menu.add('C_D', 0.2, help='drag coefficient', minmax=[0,1])
menu.add('density', 1.2, help='density of air', unit='kg*m**(-3)')
menu.add('radius', 0.11, 'help=radius of ball', unit='m')
menu.add('mass', 0.43, help='mass of ball', unit='kg')
menu.add('V high', 120, help='velocity of hard football kick',

unit='km/h')
menu.add('V low', 10, help='velocity of soft football kick',

unit='km/h')

menu ready, prompt user:
menu.start_ui()

extract user's input:
C_D = menu.get('C_D')
rho = menu.get('density')
a = menu.get('radius')
m = menu.get('mass')
V_hi = menu.get('V high')
V_lo = menu.get('V low')

from math import pi
A = pi*a**2 # cross section area normal to movement, m^2
V_hi = V_hi/3.6 # velocity in m/s
V_lo = V_lo/3.6 # velocity in m/s

"simulate":
hard_kick_drag = drag(C_D, rho, A, V_hi)
soft_kick_drag = drag(C_D, rho, A, V_lo)
gravity_force = gravity(m)

print """
Gravity force = %.2f N
Drag force, hard kick = %.2f N
Drag force, soft kick = %.2f N
""" % (gravity_force, hard_kick_drag, soft_kick_drag)

CHAPTER 2. USING DATAPOOL: USER MANUAL 27

Putting the Data Items in a Submenu. The above example stored all the
data items in the nameless root menu. We can explicitly create a submenu, say
"Ball Simulation", and let all data items be members of this submenu. This is
easily done by inserting amenu.submenucall right before the menu.addcalls:

menu.submenu('Ball Simulation')

menu.add('C_D', 0.2, help='drag coefficient', minmax=[0,1])
menu.add('density', 1.2, help='density of air', unit='kg*m**(-3)')
...

Di�erent submenus may have data items with the same name, so we some-
times need thefull path of a data item, which is the name pre�xed by all submenu
names separated by a forward slash. For example, the namedensity has the full
path Ball Simulation/density in the current example. This is the same nam-
ing convention as used for �les and directories in Unix systems. However, in Dat-
aPool, we may skip the submenu pre�x if the data item name is unique. Since
we in the present example have only one item with the namedensity , we can
use the short namedensity instead of the full path Ball Simulation/density .

In the menu.get calls we must either use full paths, or move to the right
submenu �rst, or be sure that the short name is unique:

C_D = menu.get('/Ball Simulation/C_D') # full path

or move to the right submenu,
menu.submenu('/Ball Simulation')
C_D = menu.get('C_D')

or, if C_D is a unique name,
C_D = menu.get('C_D')

The complete program that has all data items on a submenu can be found
in the �le ball1_sep2.py .

Working with Bulk Calls for Multiple Data Items. Instead of making
separate calls tomenu.addand menu.get we can perform bulk operations on a
list of items. As mentioned in Section 2.2.6, we �rst create a list of tuples or
lists holding information about each data item. The elements making up the
data about one item are (in order): The name of the item, the default value,
and optionally a help string, a unit speci�cation, a data type speci�cation, and
a widget speci�cation. Our six input parameters can be speci�ed as follows:

data_items = [
('C_D', 0.2, 'drag coefficient'),
('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),
('V high', 120, 'velocity of hard football kick', 'km/h'),
('V low', 10 , 'velocity of soft football kick', 'km/h'),
]

menu.add(data_items)

Note that we here just add the items to the root menu. We could add them
to a submenu by calling menu.submenuprior to menu.add. (Recall that with

CHAPTER 2. USING DATAPOOL: USER MANUAL 28

separate menu.add calls, or with a list of dictionaries, or a list of DataItem
objects, we can provide more optional information.)

The retrieval of all parameter values at once is done by

names = [item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

Accuracy is important here: The sequence of variables on the left-hand side of
the menu.get call must exactly match the right order and number of names in
the data_items list! If we add the data items to a submenu, we need in the
general case to specify full paths, i.e., pre�x the item names by their submenu
paths:

names = ['/Ball Simulation/%s' % item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

In the present examples the submenu pre�x is not required since the short names
are unique within the whole menu.

The rest of the program is the same as in the previous examples. For com-
pleteness we show the whole code (found inball1_bulk.py):

def drag(C_D, rho, A, V):
return 0.5*C_D*rho*A*V**2

def gravity(m):
g = 9.81 # m*s**(-2)
return m*g

import DataPool
menu = DataPool.menu

data_items = [
('C_D', 0.2, 'drag coefficient'),
('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),
('V high', 120, 'velocity of hard football kick', 'km/h'),
('V low', 10 , 'velocity of soft football kick', 'km/h'),
]

menu.add(data_items)

menu ready, prompt user:
menu.start_ui()

extract user's input:
names = [item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

from math import pi
A = pi*a**2 # cross section area normal to movement, m^2
V_hi = V_hi/3.6 # velocity in m/s
V_lo = V_lo/3.6 # velocity in m/s

"simulate":
hard_kick_drag = drag(C_D, rho, A, V_hi)
soft_kick_drag = drag(C_D, rho, A, V_lo)
gravity_force = gravity(m)

CHAPTER 2. USING DATAPOOL: USER MANUAL 29

print """
Gravity force = %.2f N
Drag force, hard kick = %.2f N
Drag force, soft kick = %.2f N
""" % (gravity_force, hard_kick_drag, soft_kick_drag)

2.3.3 DataPool Command-Line Options

The --datapool-ui command-line option can always be used for setting the
type of interface. By default, its value is set to command line interface. It is
important to note that this argument will always override the interface speci�ed
in a start_ui() call. For example, say we want to run our program with a web-
based graphical interface:

Terminal

python ball1_sep2.py --datapool-ui "web"

Alternatively, we can set data item values through commands in a �le with path
mypath/somefile.i :

Terminal

python ball1_sep2.py --datapool-ui "mypath/somefile.i"

Another important command-line option is --datapool-file , which allows
default values for data items to be speci�ed in a �le. This �le has the same
syntax as the �le or shell interface. Values in this �le override default values set
when data items are de�ned in the code. Say we have created a �levalues.i
with the contents
submenu Ball Simulation
C_D = 0.3
density = 1.3

Running

Terminal

python ball1_sep2.py --datapool-file values.i --datapool.ui web

will set the C_Dand density items to have default values 0.3 and 1.3 (instead
of 0.2 and 1.2). That is, when the web-based graphical interface appears on the
screen, we see the values 0.3 and 1.3 in the text �elds forC_Dand density .

The default values set bymenu.addcommands are hardcoded. Some appli-
cations may require changes of hundreds of default values in a large menu. We
can then have more relevant default values in a �le and load this �le with the
--datapool-file option before operating an interface. In that interface we can
perhaps change just a few values for the particular run.

To see the di�erent options that are available, we can type

Terminal

python ball1_sep2.py --help

CHAPTER 2. USING DATAPOOL: USER MANUAL 30

The result will be as follows:

Terminal

rustamm@ubuntu:~$ python ball1_sep2.py --help
Usage:

scriptname.py [--data_item_name1 value1 ...] [--datapool-ui] [--datapool-file]

datapool-file -- is the path to a file with DataPool commands
datapool-ui -- is the desired UI.

A more comprehensive help is printed by the--help-all option. This
command will show all command-line arguments and the full list of data items
that can be adjusted on the command line.

2.3.4 Operating the Command Line Interface

DataPool's simplest user interface reads option-value pairs from the command
line. A data item with name "name" gives rise to an option --name, and the
proceeding command-line argument represents the user-speci�ed value of the
item. In case of item names with blanks, the blanks are substituted by under-
scores in the option name. For example, the name "V high" implies the option
--V_high , and to set this parameter to 100, we specify--V_high 100 .

In our example in the �le ball1_sep1.py from Section 2.3.2, DataPool cre-
ates six command-line options:--C_D, --density , --radius , --mass, --V_high ,
and --V_low .

When the data items are put on a submenu "Ball Simulation", as in the pro-
gram ball1_sep2.py , the option names equal the full path pre�xed by a dou-
ble hyphen: --/Ball_Simulation/C_D , --/Ball_Simulation/density , and so
forth.

However, if the data item name is unique in the menu tree, the submenu pre-
�x can be skipped, so--density is a legal shortcut for--/Ball_Simulation/density .

Here are two examples running three of our sample codes with a command
line interface:

Terminal

python ball1_sep1.py --radius 12 --V_high 100 --V_low 8
python ball1_sep2.py --/Ball_Simulation/V_high 100
python ball1_bulk.py --density 1000 --V_high 10 --V_low 1

We only set the options where we want to change the default value.

To see the full list of available command-line arguments one must issue a
--help-all option.

CHAPTER 2. USING DATAPOOL: USER MANUAL 31

2.3.5 Operating the Interactive Command Interface

The interactive command interface is an text-based shell-like user interface that
can interpret a set of commands necessary for navigating the menu tree and
updating data item's values. A screenshot of this interface is presented in Fig-
ure 2.1.

Figure 2.1: Interactive Command Interface.

The interface can be started with the start_ui('shell') command. A list
of all available commands can be seen when thehelp command is issued. It is
also possible to typehelp <desired command>that will show a more detailed
description of each command:

Terminal

datapool> help tree
Print item tree starting form current working directory. Options:
i - show with items, r - show tree structure from root.
Usage: tree [-i] [-r]
datapool>

To update a value we need to move to the correct submenu using thesubmenu
command, and type the data item name followed by the value. Here is a sample
session:

Terminal

datapool> tree

|-- /
|-- Ball Simulation/

datapool> submenu Ball Simulation
datapool> ls
./
../
C_D
density

CHAPTER 2. USING DATAPOOL: USER MANUAL 32

radius
mass
V high
V low

Total: 0 menu(s) and 6 item(s).
datapool> V high = 100
datapool> print V high
DataItem: name=V high (default_value=120)
{'enumerator': None,
'help': 'velocity of hard football kick',
'minmax': None,
'str2type': <type 'int'>,
'uncertainty': None,
'unit': 'km/h',
'validate': None,
'value': 100,
'valuelist': None,
'widget': 'entry'}

2.3.6 Operating the File Interface

The �le-based interface consists of ASCII text in a �le, using the shell-like syntax
explained in the previous section. (The interactive command interface resembles
an interactive Unix shell, while the �le interface is the counterpart to a Unix
shell script.) The �le interface can be started with the

start_ui('shell', path='data.i')

command. Alternatively, it can be started by adding the --datapool-ui data.i
command line arguments (as shown in Section 2.3.3).

2.3.7 Unit Conversion

Mixing units in input is known to be a frequent and serious type of error in engi-
neering, so DataPool's support of automatic unit conversion is a very important
feature [15]. For example, we may in the �le write

radius = 10 cm

or we may on the command line set--radius '10 cm' , or we may in a graphical
user interface �ll in 10 cmin the text �eld for the radius item. If a unit was
provided along with a value, the value is automatically converted if the unit
di�ers from the unit speci�ed for this data item in the menu.add call. In the
example above, the value10 cmbecomes 0.1 sinceradius was speci�ed to have
unit measured in meters ('m').

2.3.8 Writing the Menu Tree to File

It may be convenient to dump the menu tree, with new values �lled out by the
user, to a �le. The values in the �le can then be used as default values in a
future run of the program.

We can write out the de�nition of the data items and submenus in several
formats, using the write command:

CHAPTER 2. USING DATAPOOL: USER MANUAL 33

plain file:
menu.write('data.i')
or:
menu.write('data.i', format='shell')

With the 'shell' as format we get a �le data.i with the shell-like syntax,
so we can set--datapool-file data.i in a future run and hence start the
(say) web interface in that run by the set of values from the current run. This
feature may minimize the need for adjusting values in the interface, which is
important in simulation programs with a large number of data items and hence
a potentially large number of edits in the interface.

Here is an example of a �le with 'shell' syntax, created by themenu.write
command above:

submenu /Hard Kick/
C_D = 0.2
density = 1.2 kg*m**(-3)
radius = 0.11 m
mass = 0.43 kg
velocity = 120 km/h
submenu /Soft Kick/
C_D = 0.2
density = 1.2 kg*m**(-3)
radius = 0.11 m
mass = 0.43 kg
velocity = 10 km/h

DataPool o�ers several other �le formats: a list of command-line arguments,
XML code, and pure (DataPool) Python code. The �les in all formats, except
XML, contain each data item's path, name, value, and unit (if any). The XML
format contains all attributes of all data items.

For example, the following call generates a complete set of all command-line
options and values from the current menu:

command-line options and values:
menu.write('data.i', format='cmd')

The generateddata.i �le contains the text

--/Hard Kick/C_D 0.2 --/Hard Kick/density '1.2 kg*m**(-3)' \
--/Hard Kick/radius '0.11 m' --/Hard Kick/mass '0.43 kg' \
--/Hard Kick/velocity '120 km/h' --/Soft Kick/C_D 0.2 \
--/Soft Kick/density '1.2 kg*m**(-3)' --/Soft Kick/radius '0.11 m' \
--/Soft Kick/mass '0.43 kg' --/Soft Kick/velocity '10 km/h'

This text, or parts of it, can be cut and pasted into a terminal window in a
future run of the program.

The Python code format is speci�ed by a call like

Python code for updating the values in the menu:
menu.write('data.i', format='python')

The resulting data.i �le now contains code for creating the current menu with
DataPool calls:

CHAPTER 2. USING DATAPOOL: USER MANUAL 34

import DataPool
menu = DataPool.menu
menu.submenu('/Hard Kick/')
menu.set('C_D', '0.2')
menu.set('density', '1.2 kg*m**(-3)')
menu.set('radius', '0.11 m')
menu.set('mass', '0.43 kg')
menu.set('velocity', '120 km/h')
menu.submenu('/Soft Kick/')
menu.set('C_D', '0.2')
menu.set('density', '1.2 kg*m**(-3)')
menu.set('radius', '0.11 m')
menu.set('mass', '0.43 kg')
menu.set('velocity', '10 km/h')

Running

XML format:
menu.write('data.i', format='xml')

generates an XML �le with has a look similar to the following text (the output
was simpli�ed to contain only one data item in each menu):

<?xml version="1.0" ?>
<menu name="/">

<menu name="/Hard Kick/">
<data_item name="/Hard Kick/C_D">

<attribute name="widget">entry</attribute>
<attribute name="enumerator">None</attribute>
<attribute name="help">drag coefficient</attribute>
<attribute name="uncertainty">None</attribute>
<attribute name="value">0.2</attribute>
<attribute name="valuelist">None</attribute>
<attribute name="minmax">None</attribute>
<attribute name="validate">None</attribute>
<attribute name="str2type"><type 'float'></attribute>
<attribute name="unit">None</attribute>

</data_item>
</menu>
<menu name="/Soft Kick/">

<data_item name="/Soft Kick/density">
<attribute name="widget">entry</attribute>
<attribute name="enumerator">None</attribute>
<attribute name="help">density of air</attribute>
<attribute name="uncertainty">None</attribute>
<attribute name="value">1.2</attribute>
<attribute name="valuelist">None</attribute>
<attribute name="minmax">None</attribute>
<attribute name="validate">None</attribute>
<attribute name="str2type"><type 'float'></attribute>
<attribute name="unit">kg*m**(-3)</attribute>

</data_item>
</menu>

</menu>

The mentioned �le formats can also be used to let another program read the
menu and generate an interface. The user can operate this interface, and the
program can write the data items and their values to �le using the shell-like
syntax. This �le can be loaded into a program using DataPool. In this way, one
can let another program supply the user interface, but de�ne the menu with
DataPool and get the values also by asking a DataPool menu tree.

2.3.9 Automatic Generation of Documentation

For large menu trees containing several hundreds of parameters it is essential
to have a proper detailed documentation for each data item and its attributes.

CHAPTER 2. USING DATAPOOL: USER MANUAL 35

Although one can use, e.g., the graphical web interface to browse the whole
tree and learn about data items and submenus, many will prefer to look up
information about all input parameters to a program in a separate manual,
either on the screen or on paper. Such a manual can be generated by a call
to the menu.write() function with the format='*-doc' argument, as in this
example:

menu.write('/home/myusername/documents/', format='html-doc')

A complete documentation of all data items and submenus is now written to
documents in the speci�ed folder. The present call results in an HTML page5

as shown in Figure 2.2. As we can see from the �gure, the page contains an
overview of the menu tree with all the submenus and their corresponding data
items, and the right-hand side contains links to ease the navigation between
submenus.

Figure 2.2: Automatically generated HTML documentation for the whole Dat-
aPool menu tree.

2.3.10 More Advanced Speci�cation of Data Items

There is even more to the DataPool API than shown so far. Each data item
is, quite naturally, an instance of type DataItem . We can build such instances
directly:

5Currently, the only format available is HTML. However, this function is designed to
support several formats that could be implemented in a future version.

CHAPTER 2. USING DATAPOOL: USER MANUAL 36

data_items = [
DataItem('C_D', 0.2, help='drag coefficient', minmax=[0,1],

widget='slider'),
DataItem('density', 1, help='density of air',

unit='kg*m**(-3)', str2type=float),
DataItem('radius', 0.11, help='radius of ball', unit='m'),
DataItem('mass', 0.43, help='mass of ball', unit='kg'),
DataItem('V high', 120,

help='velocity of hard football kick', unit='km/h'),
DataItem('V low', 10 ,

help='velocity of soft football kick', unit='km/h'),
]

Note that some new keyword arguments are introduced here. These are
also available in menu.addcalls (but not when making simple lists of tuples of
information as in the ball1_bulk.py code). One argument,minmax, speci�es an
interval in which the parameter value must lie. The argument widget speci�es
the type of graphical element (widget) that is used in a graphical user interface
to set values. In the present sample call toDataItem , we specify "slider", which
leads to a slider that can be dragged to the right value. The slider is only
meaningful if we have an associated keyword argumentminmaxwith the limits
of the slider. The default widget value is entry , which gives a simple one-line
text entry where the user can write the parameter value. The following widget
types are valid in DataPool:

� entry { a simple entry �eld element that allows the user to enter text

� textbox { an entry �eld element that allows the user to enter multi-line
text

� slider { an element that allows the user to choose a value within a de�ned
interval by moving an indicator

� radiobutton { an element that allows the user to choose one option from
a prede�ned set of options

� checkbox { an element that allows the user to choose one or several option
from a prede�ned set of options

� optionlist { a drop-down list that allows the user to choose one option
from a prede�ned set of options

� fileupload { a dialog that allows the user to upload a �le and save the
path to the �le in the data item as a value.

It is also worth noticing that the minmaxattribute will always be ignored
if the data item also has the valuelist attribute. When set or updated, the
value will always be checked to satisfy rules de�ned by those two attributes.

Another argument, str2type , speci�es a Python function that turns a string
with the user's input into the right Python object. By default, str2type is str ,
but is replaced with a proper function when the data item is created. For ex-
ample, a default value of3.5 makes DataPool setstr2type to float . The user
can of course assign any function taking a string as argument and returning a

CHAPTER 2. USING DATAPOOL: USER MANUAL 37

python object.

Giving bool as the str2type argument could seem natural if the value is
supposed to be boolean, but the plain Pythonbool causes trouble. For exam-
ple, bool('False') or bool('false') is True since'False' and 'false' are
non-empty strings and therefore evaluate toTrue. It would be convenient to
write false as a data item value, so to obtain this functionality, the function
scitools.misc.str2bool is used as the default choice ofstr2type for boolean
values. This functions turns case insensitive strings "false", "true", "on", "o�",
"yes", and "no" to the right boolean value.

To retrieve values from the menu in a bulk call, we need a list of the data
item names as before. EachDataItem instance has an attribute nameholding
the name. A list of item names is therefore easily constructed as

names = [item.name for item in data_items]

Other DataItem attributes have the same name as those that can be used for
keyword arguments in the DataItem constructor: default_value , help , unit ,
str2type , widget , minmax.

The nameand default_value are required attributes for any data item.
The other attributes are optional, with Noneas default value.

In addition, the programmer can supply an unlimited set of other keyword
arguments, each leading to an attribute with the same name. These attributes
are calledmeta attributes and can be used for any purpose by the programmer.
For example, one may use a meta attribute to attach an object for processing a
parameter value, say convert a �lename to an interpretation of the �le contents.
Meta attributes can also be used to add functionality missing in DataPool.

Imagine that we have a data item with name data_file that has a �le
name we want to process as a value. To extend DataPool with a function for
processing this particular type of data �les we de�ne an attribute (say) process .
It will contain a function that processes the �le contents, and returns a desired
result:

def do_stuff(filename):
Pseudo code:
1. read the file
2. process data
3. create and return the data structure
return data_structure

menu.add('data_file', 'mypath/datafile.ext', help='data file', \
process=do_stuff)

later, at some other place:
my_func = menu.get_attr('data_file', 'process')
value = my_func(menu.get('data_file'))

CHAPTER 2. USING DATAPOOL: USER MANUAL 38

2.3.11 Traversing Menu Tree

DataPool's Python API also allows users to traverse the menu tree starting from
a desired submenu:

menu.walk(submenu)

This is a generator function that for each data item (submenu) rooted at sub-
menu (including submenuitself) returns a tuple consisting of a full path to each
item in the tree structure, a list of child menu items (submenus) and a list of
data items6.

For instance, we can use this function to traverse the menu tree to generate
documentation using a custom user-de�ned format, or search the menu tree for
data items that have some particular attribute de�ned.

Let us look at a simple snippet that collects the path, name and value for each
submenu under the starting submenu in a list. Later, this list can be processed
to generate a LATEX or HTML table that can be used as documentation:

item_list = []
for path, menu_items, data_items in self.walk(submenu):

for item in data_items:
item_list.append([path, item.name, item.attributes['value']])

2.3.12 Add a Menu with Minimally Intrusive Approaches

The above examples add quite some new code to the original program. Some-
times we do not want major modi�cations to a program that works. We simply
want to add a menu with a minimum of new statements in existing program
�les. To this end, one can de�ne data items in a separate �le, say the �le has
the name ball1_dataitems.py :

data_items = [
('C_D', 0.2, 'drag coefficient'),
('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),
('V high', 120, 'velocity of hard football kick', 'km/h'),
('V low', 10 , 'velocity of soft football kick', 'km/h'),
]

In the original code we now need to add the following set of quite generic
statements to make a menu, ask the user for input, and load the user-given
values into variables:

import DataPool
menu = DataPool.menu
from ball1_dataitems import data_items
menu.submenu('/Ball Simulation')

6You might have noticed resemblance between DataPool's walk() and os.walk() . The be-
havior was designed to be identical. The only di�erence is that the former traverses the menu
tree, while the latter is written for directory trees.

CHAPTER 2. USING DATAPOOL: USER MANUAL 39

menu.add(data_items)
menu.start_ui()
names = [item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

The �le ball_import1.py contains a complete program using this strategy.

The idea can be extended further to putall DataPool related code externally
in a �le:

import DataPool
menu = DataPool.menu

data_items = [
('C_D', 0.2, 'drag coefficient'),
('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),
('V high', 120, 'velocity of hard football kick', 'km/h'),
('V low', 10 , 'velocity of soft football kick', 'km/h'),
]

menu.submenu('Ball Simulation')
menu.add(data_items)
menu.start_ui()
names = [item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

remove variables not necessary for the computational code:
del names, data_items

This �le must be constructed as a module such that we can import it. During
the import, the code will be executed. The idea is to do a

from module import *

type of import. We therefore clean up variables that are not useful in the ap-
plication code doing the computations. All variables for data item values and
the menuvariable are useful to have in the present case (but notnamesand
data_items).

The original ball1.py code now needs onlyone statement (!):

from ball1_menu import *

if the module with the menu functionality is called ball1_menu.py . This is the
non-intrusive way of adding menu functionality to our original program. The
modi�ed ball1.py �le is called ball1_import.py .

To summarize, DataPool makes it possible to take our original program with
hardcoded parameters and equip it with fancy user interfaces by (i) adding only
one statement and (ii) creating a new module with eight statements!

2.3.13 Data Items for Output Data

We can de�ne a set of data items representing results of computations, i.e.,
output data from the program. In the present case, the drag and gravity forces

CHAPTER 2. USING DATAPOOL: USER MANUAL 40

constitute output data items. By including them on the menu, we can in a
graphical interface view their values after the computations are performed. In
this way, DataPool can be used for both input and output in a program, and
in particular, graphical interfaces may become a more problem solving environ-
ment than just a way of setting input.

This is described in details in section 3.7 in the chapterUsing DataPool Web:
User Manual.

2.4 A Class-Based Example

Our next example is a re�ned version of the simple programball1.py from
Section 2.3. Instead of a "
at" program, we create a class for holding the
physical parameters and computing the drag and gravity force. The complete
code is found in the �le ball2.py :

"""
Class version of the code in ball1.py.
"""
from math import pi

class BallForces:
"""
Compute gravity and drag force on a ball moving in a fluid.
m: mass in kg
a: radius of ball in m
C_D: drag coefficient (dimensionless)
rho: density of surrounding fluid in kg/m**3 (1.2 for air)
V: velocity of ball in km/h
"""
def __init__(self, m, a, C_D=0.2, rho=1.2, V=1):

self.m = m
self.a = a
self.C_D = C_D
self.rho = rho
self.set_velocity(V)
self.A = pi*a**2
self.g = 9.81

def set_velocity(self, V):
"""Set velocity V in km/h."""
self.V = V/3.6 # convert to m/s

def gravity(self):
"""Compute, store and return gravity force."""
self.gravity_force = self.m*self.g
return self.gravity_force

def drag(self):
"""Compute, store and return drag force."""
self.drag_force = 0.5*self.C_D*self.rho*self.A*self.V**2
return self.drag_force

def compute(self):
"""Compute drag and gravity force and their ratio."""
self.gravity()
self.drag()
self.force_ratio = self.drag_force/self.gravity_force

def __str__(self):

CHAPTER 2. USING DATAPOOL: USER MANUAL 41

"""Print data and the gravity and drag forces."""
s = repr(self) + '\n' # print out input parameters
try:

s += 'Gravity force: %.2f N\nDrag force: %.2f N\n'\
'ratio (drag to gravity): %.4f' % \
(self.gravity_force, self.drag_force,
self.force_ratio)

return s
except AttributeError:

raise Exception, \
'You must call compute before you can print results'

def __repr__(self):
"""Return string s such that eval(s) recreates the instance."""
V = 3.6*self.V # convert m/s to km/h
return 'BallForces(m=%s, a=%s, C_D=%s, rho=%s, V=%s)' % \

(self.m, self.a, self.C_D, self.rho, V)

if __name__ == '__main__':
m = 0.43
a = 0.11
hard = BallForces(m, a, V=120)
soft = BallForces(m, a, V=10)
hard.compute()
soft.compute()
print 'Hard kick of a football:\n', hard
print 'Soft kick of a football:\n', soft

2.4.1 Adding a Menu to a Class

Our �rst attempt to add a DataPool-based menu to our BallForces class will
be based on three modi�cations:

1. Allow the constructor to take no arguments (no input). This is necessary
if we want to create empty instances that are later �lled with data from
the menu.

2. Introduce a method define for de�ning all data items in the class. We
put the data items in a submenu with the same name as the class.

3. Introduce a method scan for retrieving user-given data from the menu
and loading the data into class attributes.

There are two basic strategies for de�ning and reading data items: we can
do separate calls for each parameter or we can collect parameter information
in lists and do a bulk call. In a class, the latter approach may be the simplest
one since the list of data items is handy to have as a static variable in the class.
This list and the modi�ed constructor look as follows:

import DataPool
menu = DataPool.menu

class BallForces:
"""
Compute gravity and drag force on a ball moving in a fluid.

CHAPTER 2. USING DATAPOOL: USER MANUAL 42

m: mass in kg
a: radius of ball in m
C_D: drag coefficient (dimensionless)
rho: density of surrounding fluid in kg/m**3 (1.2 for air)
V: velocity of ball in km/h
"""

data_items = [
('C_D', 0.2, 'drag coefficient'),
('density', 1.2, 'density of air', 'kg*m**(-3)'),
('radius', 0.11, 'radius of ball', 'm'),
('mass', 0.43, 'mass of ball', 'kg'),
('velocity', 120, 'velocity of a football kick', 'km/h'),
]

def __init__(self, m=0.5, a=0.1, C_D=0.2, rho=1.2, V=1):
self.m = m
self.a = a
self.C_D = C_D
self.rho = rho
self.set_velocity(V)
self.A = pi*a**2
self.g = 9.81

Note that we now de�ne a menu without a low and high velocity. Instead
we create all parameters for one ball in one submenu. If we want to compare
the drag force for a soft and a hard kick, we create two submenus, one for each
ball, and �ll in velocity values in both submenus. The menu becomes less tai-
lored, but the class with its own menu is a more reusable piece of code for other
applications.

The de�nition of items is now just a short method, and the scan method
should also be straightforward to understand:

def define(self, submenu_name=None):
if submenu_name is None:

submenu_name = self.__class__.__name__
self.submenu_name = "/"+submenu_name
menu.submenu(self.submenu_name)
menu.add(BallForces.data_items)

def scan(self):
menu.submenu(self.submenu_name)
names = [item[0] for item in BallForces.data_items]
self.C_D, self.rho, self.a, self.m, self.V = menu.get(names)

The main program is a�ected by the presence of a menu as we need to call
the define and scan methods, plus menu.start_ui . We put all the code in a
function main:

def main():
hard = BallForces()
soft = BallForces()
hard.define('Hard Kick')
soft.define('Soft Kick')
menu.set("/Hard Kick/velocity", 100)
menu.set("/Soft Kick/velocity", 8)
menu.start_ui()
hard.scan()
soft.scan()
hard.compute()

CHAPTER 2. USING DATAPOOL: USER MANUAL 43

soft.compute()
print 'Hard kick of a football:\n', hard
print 'Soft kick of a football:\n', soft

if __name__ == '__main__':
main()

The complete code is found in the �le ball2_bulk.py . Let us try out the
program with various types of user interfaces. The goal is to set values for
a hard and soft kick of a football with velocities 100 km/h and 8 km/h, re-
spectively. All default values, except for the velocities, are then correct. Note
that we have two velocity items, in separate submenus. We therefore need to
use the full path to reach a particular velocity item: Soft Kick/velocity and
Hard Kick/velocity .

We start with the command line interface:

Terminal

python ball2_bulk.py --/Soft_Kick/velocity 8 \
--/Hard_Kick/velocity 100

A �le interface requires us to make a �le, say data.i ,

submenu /Soft Kick
velocity = 8 km/h
submenu /Hard Kick
velocity = 100 km/h

The �le interface is required by running

Terminal

python ball2_bulk.py --datapool-ui data.i

2.4.2 Add a Menu with a Non-Intrusive Approach

The next step is to modify the code in the previous section such that we min-
imize the number of modi�cations in the original BallForces class. We follow
the ideas from Section 2.3.12. In the present case, it is wise to leaveball2.py
as it is since the module may be used in other applications. The additional
menu-related code is added in a separate, second �le. A third �le can import
this second �le and perform an execution, or the execution can be realized as a
test block in the second (module) �le.

We remark that the code we end up with in this example requires quite
some advanced Python constructs, but the example shows the power of modi-
fying code in one �le, without touching the text in this �le, but instead adding
new code in a separate �le.

The �le with menu-related code is given the nameball2_menu1.py . It �rst
contains the list of data item information, either as a plain list of tuples, or a
list of dictionaries, or a list of DataItem instances. The two latter approaches

CHAPTER 2. USING DATAPOOL: USER MANUAL 44

are needed if we want to set some of the more advanced data item attributes
such asstr2type . Here we exemplify the use of a list of dictionaries7:

import DataPool
menu = DataPool.menu

data_items = [
dict(name='C_D', default=0.2, help='drag coefficient'),
dict(name='density', default=1.2,

help='density of air', unit='kg*m**(-3)'),
dict(name='radius', default=0.11,

help='radius of ball', unit='m'),
dict(name='mass', default=0.43,

help='mass of ball', unit='kg'),
dict(name='velocity', default=120,

help='velocity of a football kick', unit='km/h'),
]

from ball2 import BallForces
BallForces.data_items = data_items

The next step is to add adefine and ascan method to the original BallForces
class in the �le ball2.py without editing the ball2.py �le. This can be done by
de�ning new methods as functions and then attaching them to the class object.
The following code in ball2_menu1.py does the job:

def define(self, submenu_name=None):
if submenu_name is None:

submenu_name = self.__class__.__name__
self.submenu_name = "/"+submenu_name
menu.submenu(self.submenu_name)
menu.add(BallForces.data_items)

def scan(self):
menu.submenu(self.submenu_name)
names = [item['name'] for item in BallForces.data_items]
self.C_D, self.rho, self.a, self.m, self.V = menu.get(names)
self.A = pi*self.a**2
self.g = 9.81

from ball2 import BallForces
from scitools.misc import func_to_method
func_to_method(define, BallForces)
func_to_method(scan, BallForces)

We also want to replace the constructor in classBallForces by a constructor
that does not need any input data, because we provide the input data elsewhere
and call scan to initialize attributes. Contrary to the previous example where
we just added default values to positional arguments in the constructor and ini-
tialized all input data attributes, we now simply provide an empty constructor:

def dummy_constructor(self):
pass

func_to_method(dummy_constructor, BallForces, '__init__')

Now, we basically have the same modi�ed classBallForces as in the ex-
ample �le ball2_bulk.py . It remains to write a main function that does the

7Every dictionary is just passed as argument to the DataItem constructor, so the keys in
the dictionaries correspond to the keyword arguments in the DataItem constructor.

CHAPTER 2. USING DATAPOOL: USER MANUAL 45

same main steps as themain in ball2_bulk.py . We could import that function
from ball2_bulk.py , but since this example is meant to be separate from and
alternative to the code in ball2_bulk.py , we copy the function. The code can
be found in ball2_menu1.py .

2.4.3 Another Non-Intrusive Approach

The previous example let aBallForces object build a submenu, and then we
constructed a global menu from two such submenus. This principle is useful
in large program systems. An alternative way, which is closer to the starting
example in ball1_bulk.py , is to separate the menu and the original class code
completely. We build a separate menu, prompt the user, and then we load data
from the menu and create the relevant objects of typeBallForces and use these
as in the initial example ball2.py . In a way, this is a non-intrusive example
combining the menu in ball1_bulk.py with the class de�nition in ball2.py .
The Python code is simpler than in the previous example and should speak for
itself without further explanation.

import DataPool
menu = DataPool.menu

data_items = [
dict(name='C_D', default=0.2, help='drag coefficient'),
dict(name='density', default=1.2,

help='density of air', unit='kg*m**(-3)'),
dict(name='radius', default=0.11,

help='radius of ball', unit='m'),
dict(name='mass', default=0.43,

help='mass of ball', unit='kg'),
dict(name='V high', default=120,

help='velocity of a hard football kick', unit='km/h'),
dict(name='V low', default=10,

help='velocity of a hard football kick', unit='km/h'),
]

def scan():
"""Load menu data into hard and soft objects (BallForces)."""
names = [item['name'] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)
from ball2 import BallForces
hard = BallForces(m, a, C_D, rho, V_hi)
soft = BallForces(m, a, C_D, rho, V_lo)
return hard, soft

def main():
menu.add(data_items)
hard, soft = scan()
hard.compute()
soft.compute()
print 'Hard kick of a football:\n', hard
print 'Soft kick of a football:\n', soft

if __name__ == '__main__':
main()

CHAPTER 2. USING DATAPOOL: USER MANUAL 46

2.5 A Complete ball Demo

Now that we have seen di�erent functions of DataPool applied to a simple pro-
gram that computes drag and gravity forces in the case of a soft and hard kick
of a football, we will try to sum up some of the central DataPool functions in
this demo walkthrough.

In this demo, we will start our "simulation" program, de�ne a desired user
interface, and update the velocity for a soft kick of the football from the com-
mand line. Afterwards, we will review and update some of the values in the web
interface. At the end, we will proceed with the simulation code, and save our
new parameter data to a �le in DataPool's "shell" format.

Before we start our demo, we have to copy and modify the �le

samples/ball/ball2_menu1.py

Copy the �le to another folder, and rename it ball2_menu1_demo.py. Then,
open it in your favorite text editor, and at the end of the main function add the
menu.write() with correct parameters. At the end, the main function should
look like this:

def main():
hard = BallForces()
soft = BallForces()
hard.define('Hard Kick')
soft.define('Soft Kick')
menu.set('velocity', 10)
menu.start_ui()
hard.scan()
soft.scan()
hard.compute()
soft.compute()
print 'Hard kick of a football:\n', hard
print 'Soft kick of a football:\n', soft
menu.write("<your/path>/ball2_menu1_demo.py", "shell")

Now, let us start our demo!

To update the velocity value for a soft kick we have to use the correct com-
mand line option with the full path to the data item 8. If we are not sure about
the path to this parameter we may issue the following command

Terminal

python ball2_menu1.py --help-all
Usage:

scriptname.py [--data_item_name1 value1 ...] [--datapool-ui] [--datapool-file]

datapool-file -- is the path to a file with DataPool commands
datapool-ui -- is the desired UI.

List of the available data items:
--/Hard_Kick/C_D

8We have to use full paths since we have two di�erent velocities: one for soft kick, and
another for hard kick.

CHAPTER 2. USING DATAPOOL: USER MANUAL 47

--/Hard_Kick/density
--/Hard_Kick/radius
--/Hard_Kick/mass
--/Hard_Kick/velocity
--/Soft_Kick/C_D
--/Soft_Kick/density
--/Soft_Kick/radius
--/Soft_Kick/mass
--/Soft_Kick/velocity

This will show us a list of all available parameters. Now, we know that we
should update --/Soft_Kick/velocity :

Terminal

python ball2_menu1.py --datapool-ui web --/Soft_Kick/velocity 25

A second later, we will be presented with a web interface as seen in Figure 2.3.
Here we can observe that the velocity has been updated with the new value (as
we can see from the code, it was previously set to 10 in themain()).

CHAPTER 2. USING DATAPOOL: USER MANUAL 48

Figure 2.3: Web interface for ball2 menu1.py

Also, we can review and update some of the parameters, for instance, we
can update the mass for both kicks to 0.7. Now, when we are satis�ed with all
values, we can start the simulation. When the simulation is done, proceeding
with the ball2_menu1_demo.py script, and save the values with their units (if
any) to the �le in DataPool "shell" format.

Here we have seen how we can easily modify parameters from both the
command line and the graphical user interface, save the new values to a �le,
and run the simulation. The new values can later be loaded into DataPool
via its �le interface as described in Section 2.3.6. Note that all interfaces were

CHAPTER 2. USING DATAPOOL: USER MANUAL 49

generated automatically from the submenu and data item de�nitions in the
script.

2.6 A More Advanced Example

Our next example is more comprehensive as it needs a real tree of submenus
and performs a real simulation.

2.6.1 The Problem

The purpose is to solve the following di�erential equation describing the motion
of oscillating systems:

m•u + f (_u) + s(u) = F (t); t > 0; u(0) = U0; _u(0) = V0

This equation is nothing but Newton's 2nd law of motion, where m is the mass,
u is a displacement of a body, _u is the body's velocity, •u its acceleration, U0 is
the initial displacement, and V0 the initial velocity. The terms f , s, and F are
forces acting on the body.

Di�erent physical problems lead to di�erent choices of the friction force term
f (_u), the spring (restoring) force term s(u), and the external force term F (t).
Some common choices are listed below.

1. Linear friction force (low velocities): f (_u) = 6 ��R _u (Stokes drag), where
R is the radius of a spherical approximation to the body's geometry, and
� is the viscosity of the surrounding
uid.

2. Quadratic friction force (high velocities): f (_u) = 1
2 CD %Aj _uj _u, where CD

is a drag coe�cient, A is the area of a cross section of the body normal to
the motion, and %is the density of the surrounding
uid.

3. Linear spring force: s(u) = ku, where k is a constant.

4. Sinusoidal "spring" force (pendulum): s(u) = k sinu, where k is a con-
stant.

5. Cubic spring force: s(u) = k(u � 1
6 u3), where k is a spring constant.

6. Sinusoidal external force:F (t) = F0 + A sin !t , whereF0 is the mean value
of the force, A is the amplitude, and ! is the frequency.

7. "Bump" force: F (t) = H (t � t1)(1 � H (t � t2)F0, where H (t) is the
Heaviside function (0 if t < 1, otherwise 1), t1 and t2 are two given time
points, and F0 is the size of the force. ThisF (t) is zero for t < t 1 and
t > t 2, and F0 for t 2 [t1; t2].

8. Random force 1:F (t) = F0+ A�U(t; B), whereF0 and A are constants, and
U(t; B) denotes a function whose value at timet is random and uniformly
distributed in the interval [� B; B].

9. Random force 2:F (t) = F0 + A � N (t; �; �), where F0 and A are constants,
and N (t; �; �) denotes a function whose value at timet is a random, Gaus-
sian distributed number with mean � and standard deviation � .

CHAPTER 2. USING DATAPOOL: USER MANUAL 50

A program for simulating the system described by the shown di�erential
equation must be able to deal with all these choices of input, plus input param-
eters related to the mass parameterm, the type of di�erential equation solver,
the solver's time step (� t), and the end time of the simulation (T). We will now
show how the concept of a menu system can be used to quickly de�ne all infor-
mation needed to create a menu tree which can be displayed as a web interface
or operated on the command line or in a �le.

2.6.2 The Existing Simulation Code

We assume that there exists some kind of a simulator with solver classes and
classes for the various force models, etc. The application code will put instances
of these classes together for solving a particular problem.

We have made a minimalistic general-purpose framework consisting of two
modules: functions and oscillator . The functions module contains classes
for the di�erent force models above:

from math import *
import random

class Zero:
def __call__(self, x):

return 0.0

class LinearFriction: # Stokes drag
def __init__(self, mu, R):

self.mu, self.R = mu, R

def __call__(self, dudt):
return 6*pi*self.mu*self.R*dudt

class QuadraticFriction:
def __init__(self, C_D, rho, A):

self.C_D, self.rho, self.A = C_D, rho, A

def __call__(self, dudt):
return 0.5*self.C_D*self.rho*self.A*abs(dudt)*dudt

class Spring:
"""Base class for all springs (holds the spring constant k)."""
def __init__(self, k):

self.k = k

class LinearSpring(Spring):
def __call__(self, u):

return self.k*u

class CubicSpring(Spring):
def __call__(self, u):

return self.k*(u - 1./6*u**3)

class SineSpring(Spring):
def __call__(self, u):

return self.k*sin(u)

CHAPTER 2. USING DATAPOOL: USER MANUAL 51

class SineForce:
def __init__(self, F0, A, omega):

self.F0, self.A, self.omega = F0, A, omega

def __call__(self, t):
return self.F0 + self.A*sin(self.omega*t)

class BumpForce:
def __init__(self, F0, t1, t2):

self.F0, self.t1, self.t2 = F0, t1, t2

def __call__(self, t):
if self.t1 <= t <= self.t2:

return self.F0
else:

return 0.0

class RandomForce1:
def __init__(self, F0, A, B):

self.F0, self.A, self.B = F0, A, B

def __call__(self, t):
return self.F0 + self.A*random.uniform(-self.B, self.B)

class RandomForce2:
def __init__(self, F0, A, mu, sigma):

self.F0, self.A, self.mu, self.sigma = F0, A, mu, sigma

def __call__(self, t):
return self.F0 + self.A*random.gauss(self.mu, self.sigma)

The oscillator module contains aProblem class and aSolver class. The
class Problem holds all information about the physical problem to be solved,
but it knows nothing about how the problem can be technically solved. Therhs
method applies the information about the problem and de�nes the right-hand
side of a system of ordinary di�erential equations. This is the only information
about the problem that is needed for a solver.

The class Solver knows how to solve the problem, but it knows noth-
ing about the problem itself, it only has access to a function (in our case
Problem.rhs) that can de�ne the system of ordinary di�erential equations to
be solved. This design gives a clear distinction between the particular physical
problem and the general mathematical methods used for solving equations.

An implementation of classesProblem and Solver may read:

from ODESolver import *
from functions import *
from scitools.all import *
from scitools.misc import read_cml, read_cml_func

class Problem:
def initialize(self):

"""Read option-value pairs from sys.argv."""
self.m = eval(read_cml('--m', 1.0))
self.friction = read_cml_func(

'--friction', lambda dudt: 0, 'dudt', globals())
self.spring = read_cml_func(

'--spring', lambda u: u, 'u', globals())

CHAPTER 2. USING DATAPOOL: USER MANUAL 52

self.external = read_cml_func(
'--external', lambda t: 0, 't', globals())

self.initial_u = eval(read_cml('--initial_u', 1.0))
self.initial_dudt = eval(read_cml('--initial_dtdu', 0))

def rhs(self, u, t):
"""Define the right-hand side in the ODE system."""
m, f, s, F = \

self.m, self.friction, self.spring, self.external
u, dudt = u
return [dudt,

(1./m)*(F(t) - f(dudt) - s(u))]

class Solver:
def initialize(self):

self.T = eval(read_cml('--T', 4*pi))
self.dt = eval(read_cml('--dt', pi/20))
self.method = read_cml('--method', 'RungeKutta4')

def solve(self, problem):
self.solver = eval(self.method)(problem.rhs, self.dt)
self.N = int(self.T/self.dt)
ic = [problem.initial_u, problem.initial_dudt]
self.solver.set_initial_condition(ic)
self.u, self.t = self.solver.solve(self.N)

Both classes have aninitialize function whose purpose is to initialize at-
tributes by reading information from the command line. The read_cml and
read_cml_func functions are utilities for reading command-line arguments in
a
exible way. Typically, we can specify the --spring option as, for example,
CubicSpring(2.5) (i.e., we make an instance ofCubicSpring and this can be
called as a function since the instance has a__call__ special method). The
details of the command line reading utilities are not important here { this code
is just from a �rst version of the simulator and we want to replace this code by
constructions based on DataPool.

We may also want to visualize theu(t) and u0(t) curves. This can be done by
a Visualizer class, which gets the solution from classSolver and that can tag
plots by physical parameters from classProblem (the shown code is a simpli�ed
version of what is found in oscillator.py):

class Visualizer:
def __init__(self, problem, solver):

self.problem = problem
self.solver = solver

def visualize(self):
u, t = self.solver.u, self.solver.t # short forms
tag all plots with numerical and physical input values:
title = 'solver=%s, dt=%g, m=%g' % \

(self.solver.method, self.solver.dt, self.problem.m)
plot(t, u[:,0], 'r-',

legend='%s, dt=%g' % \
(self.solver.method, self.solver.dt),
title='Plot of u: ' + title)

if self.problem.u_exact is not None:
hold('on')
plot(t, self.problem.u_exact(t), 'b-',

legend='exact solution')
show()
hardcopy('tmp_u.eps')

CHAPTER 2. USING DATAPOOL: USER MANUAL 53

A possible main routine goes as follows:

def main():
problem = Problem()
problem.initialize()
solver = Solver()
solver.initialize()
visualizer = Visualizer(problem, solver)

solver.solve(problem)
visualizer.visualize()

De�ning a physical problem (m, f (_u), s(u), F (t), u(0), u0(0)) or specifying a
solver (T, � t, method) is supposed to be done on the command line in the code
above, using the command-line options speci�ed in theinitialize functions.
Here is an example of what we can run with this simulator, found in the �le
oscillator.py :

Terminal

python oscillator.py --method RungeKutta4 \
--friction "LinearFriction(1/(6*pi), 0.1)" \
--external "SineForce(0, 1, 0.5)" --dt "pi/80" \
--T "40*pi" --m 10

2.6.3 The Menu Tree

The above mentionedoscillator module had to get all its input data from
the command line. We shall now address how we can extend theoscillator
and functions modules, without touching their source codes, so that all in-
put parameters can be speci�ed on a menu. The input will then be easier to
understand because we avoid requiring constructions like

LinearFriction(mu=0.1, R=0.5)

Instead we let the user pick a linear friction model and set the two parameters
to the constructor, � and R, separately.

In the present application, it is natural to group input data into a menu
with submenus. The physical and numerical parameters are two obvious can-
didates for submenus. Also, if we want to control what kind of plots the class
Visualizer should make, we can have a third submenu for this, although we
postpone this possibility right now.

The submenu for physical parameters should containm and the force model.
Since each force model involves several physical parameters, it is natural to
include new submenus for the di�erent types of forces, and for each of these,
submenus for the di�erent types of force models. To summarize, the menu is
organized as a tree, where the indentation for each line below illustrates the
submenu level:

Physical parameters:
m
friction force f (_u):

CHAPTER 2. USING DATAPOOL: USER MANUAL 54

model
linear:

�
R

quadratic:
CD

�
A

spring force s(u):
k
model

external force F (t):
model
sine:

F0

A
!

bump:
F0

t1

t2

random1:
F0

A
B

random2:
F0

A
�
�

Solver parameters:
T
� t
method

Note that several parameters have the same name, e.g.,F0. However, the
paths in the menu are di�erent: Physical parameters/external forceF (t)/bump/ F0

versus Physical parameters/external forceF (t)/sine/ F0. Sometimes the name
of a parameter is unique, and sometimes one needs (at least a part of) the path
to uniquely identify the parameter, as previously mentioned.

2.6.4 Creating a Menu

We shall now realize the menu tree from the previous section by means of the
DataPool package. The implementation should be as non-intrusive as possible
so we avoid modifying the original code. That is, we shall add all the menu func-
tionality outside the module �les oscillator.py and function.py displayed
above.

The technique consists in making a modulefunctions_menu , where we de-

CHAPTER 2. USING DATAPOOL: USER MANUAL 55

�ne menu items and load data given by the user into data structures from the
functions module. Consider the class

class QuadraticFriction:
def __init__(self, C_D, rho, A):

self.C_D, self.rho, self.A = C_D, rho, A

def __call__(self, dudt):
return 0.5*self.C_D*self.rho*self.A*abs(dudt)*dudt

This class needs three parameters to be initialized, and we want these to be
speci�ed by the user through a menu. In the functions_menu module we list
the parameters by name, description, and default values and attach this list as
a static attribute to the class QuadraticFriction :

from functions import QuadraticFriction

QuadraticFriction.__data_items__ = [
("C_D", "drag coefficient", 0.2),
("rho", "density of air", 1.2),
("A", "cross section area, normal to the flow", pi)]

There is no strict need to add the list to the class, the list could well be a
stand-alone global list, but many programmers will �nd it natural to let it be
a part of an extension of theQuadraticFriction class in the extended module
functions_menu .

For the other classes in thefunctions module, we make similar lists. A
function friction_menu can now add friction models and their parameters to
the menu:

def friction_menu(submenu):
menu.submenu(submenu)
menu.add('model', help='zero, linear, quadratic',

valuelist=('zero', 'linear', 'quadratic')
widget='optionlist')

menu.submenu(submenu + '/linear')
menu.add(LinearFriction.__data_items__)
menu.submenu(submenu + '/quadratic')
menu.add(QuadraticFriction.__data_items__)

Similar functions are created for the spring and external force models, called
spring_menu and external_menu . (Of course, we could drop the list and
manually call menu.add for all parameters in each relevant class inside the
friction_menu function, however there will be more manual work and longer
code.)

Some of the data items will be the name of a class, for instance a force model
class. Based on this name, we need to create the right instance and then extract
more information from the menu to initialize the instance. All these actions are
carried out in factory functions. The factory function for the friction model
reads

CHAPTER 2. USING DATAPOOL: USER MANUAL 56

def friction_factory(submenu):
menu.submenu(submenu)
model = menu.get('model')

get arguments for initializing the friction model:
if model == 'linear':

menu.submenu(submenu + '/' + model)
mu, R = menu.get(['mu', 'R'])
obj = LinearFriction(mu, R)

elif model == 'quadratic':
menu.submenu(submenu + '/' + model)
C_D, rho, A = menu.get(['C_D', 'rho', 'A'])
obj = QuadraticFriction(C_D, rho, A)

elif model == 'zero':
obj = Zero()

else:
raise ValueError, 'friction model name "%s" invalid' % model

return obj

Similar factory functions, spring_factory and external_factory , are made
for the two other force models.

With the *_menuand *_factory functions in the functions_menu module,
we can easily populate a menu created in theProblem class with (a lot of) pa-
rameters for force models.

The menu made by theProblem class must also contain some other param-
eters. Typically, we would make a method like the following in classProblem:

def define(self, submenu='/physics'):
first define local parameters related to the physics:
menu.submenu(submenu)
menu.add('m', 1.0, help='mass')
menu.add('initial u', 1.0, help="u(0) initial condition")
menu.add('initial du_dt', 1.0, help="u'(0) initial condition")
menu.add('u exact', None, str2type=str,

help="analytical solution u(t)")
menu.add('du_dt exact', None, str2type=str,

help="analytical solution u'(t)")

module functions_menu allow flexible choice of force
models through submenus:
friction_menu(submenu+'/friction')
spring_menu(submenu+'/spring')
external_menu(submenu+'/external')

Observe how easily we call external functionality in the functions_menu
module to make other submenus. That is, the menu tree built in classProblem
is recursively de�ned.

The same idea applies to retrieving data from the menu. After the user is
prompted (graphics displayed, for example) and input data provided, a method
in classProblem must load data into attributes in that class:

def scan(self, submenu='/physics'):
menu.submenu(submenu)
self.m = menu.get('m')
self.initial_u = menu.get('initial u')
self.u_exact,menu.get('u exact')

CHAPTER 2. USING DATAPOOL: USER MANUAL 57

if self.u_exact is not None:
self.u_exact = StringFunction(self.u_exact,

independent_variable='t',
globals=globals())

...

these will be instances from the functions module:
self.friction = friction_factory(submenu + '/friction')
self.spring = spring_factory(submenu + '/spring')
self.external = external_factory(submenu + '/external')

Again, the initialization of data is performed recursively. The StringFunction
tools from the module scitools.StringFunction turns a string with a mathe-
matical formula into a callable Python function (as if the string expression had
been hardcoded in the function).

The define and scan methods are de�ned as ordinary functions in the
module oscillator_menu . Then we simply attach these functions as methods
in the Problem class. This can be done in theoscillator_menu module (using
a well-known recipe from the Python Cookbook [19]):

from scitools.misc import func_to_method
func_to_method(define_menu, Problem)
func_to_method(scan_menu, Problem)

Similar de�ne and scan methods are made for theSolver and Visualizer
classes as well, and we refer to theoscillator_menu.py �le for details.

A new main method is needed, where we must de�ne the menus, start the
interface, and call all the scan operations, before the classes are ready for com-
putations:

def main():
problem = Problem()
problem.define()
solver = Solver()
solver.define()
viz = Visualizer(problem, solver)
viz.define()

force a web-based GUI:
menu.prompt('web')

read input data:
problem.scan()
solver.scan()
viz.scan()

simulate and visualize:
solver.solve(problem)
viz.visualize()

2.6.5 Examples on Using the Interfaces

The oscillator_menu.py program can now be run as a substitute for the orig-
inal oscillator.py program, the di�erence being that the former has a menu
for providing input.

CHAPTER 2. USING DATAPOOL: USER MANUAL 58

Command Line. Let us �rst exemplify the command line interface.

Terminal

python oscillator_menu.py --/physics/m 2 \
--/numerics/T 20*pi --/physics/friction/model linear \
--/physics/friction/linear/mu 0.2/(6*pi) \
--/physics/external/model sine --/physics/external/sine/omega 4

File. A �le interface requires commands in a �le, for example:

submenu /physics/
m = 2
submenu /numerics/
T = 20*pi
submenu /physics/friction/
model = linear
submenu /physics/friction/linear/
mu = 0.2/(6*pi)
submenu /physics/external/
model = sine
submenu /physics/external/sine/
omega = 4

We could also use the relative paths when moving between submenus:

submenu /physics/
m = 2
submenu /numerics/
T = 20*pi
submenu ../physics/friction/
model = linear
submenu linear/
mu = 0.2/(6*pi)
submenu /physics/external/
model = sine
submenu sine/
omega = 4

Web-Based GUI. The DPW user manual in chapter 3 will cover this since
it uses the Oscillator simulation throughout the manual.

Required Software for This Example. The following �les make up the
software necessary for doing the run above:

functions.py
oscillator.py
functions_menu.py
oscillator_menu.py

In addition, one needs SciTools version 0.51. To see plots on the screen it
is necessary to have, the Gnuplot program and theGnuplot.py module �le
installed.

Chapter 3

Using DataPool Web: User
Manual

3.1 Introduction

This chapter covers all the aspects of the DPW regarding to concepts, details
and available functions that are provided through this system. The manual �rst
presents the structure and concepts of the web module and then goes more in-
depth on details on the di�erent types of use in a real software simulation. The
starting point for the manual is the Oscillator simulation, and all the belonging
screenshots are from a real walkthrough and test of this simulation. For new-
comers it is recommended to read the manual from start to end, but of course
possible and also encourage, to use it as quick reference when needed.

3.2 Menu system

DPW is a web-based menu system designed to present the internal tree struc-
ture of the DataPool module in the most usable and e�ective way according to
user interaction. An active session of DataPool could contain huge amounts of
data which could be hard to present for the user in an e�ective and highly lucid
manner. The goal of DPW is to provide a solution to this challenge. DPW
focuses on user interaction, practical functions and visual communication in or-
der to make the process of using the DataPool module easy and time saving
in extensive and large computer simulations with a lot of parameters. Visual
elements and functions are of real value when implemented with care. DPW is
designed with this in mind, using the visual communication and usable func-
tions in balance, not a�ecting the real user experience for the end-users with
distracting and unnecessary elements.

The design and layout are based upon so called web 2.0 design elements
which have dominated a lot of web services and internet sites the last few years.
The main purpose for this approach is to keep the visual �rst impression fresh,
clean and minimalistic, but also to obtain a modern environment when work-
ing with complex simulations. In most cases computer scientists are on daily
basis dealing with terminal windows, hard coding and �le dumping, and DPW

59

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 60

is created in this manner because scientists deserve to have both inspiring en-
vironments and e�ciency in their work. The choice of colors and layouts are
chosen to make the system distinct and easily recognizable as a certain system
among the users, but also in di�erent �elds within computer science.

3.3 Fundamentals

3.3.1 Structure

The DPW menu structure is identical to the concept of an ordinary directory
structure. Submenus(instances ofMenuItem) are visualized with orange color,
while the parameters/data items (instances ofDataItem) are presented in light
blue color. All belonging submenu children of a parent or parameters (data
items), are indented one level to the right, making it similar like a directory
structure. This is the most natural way to visualize an internal tree structure
of parameters. On startup of a new session the root submenu is �rst shown in
the upper-left corner:

Figure 3.1: Initial start-up of DPW

This is the starting point and makes it possible to do a manual navigation
through clicking, or take use of the administration panel for fast manipulation
of the menu structure.

3.3.2 Administration Panel

The interface is equipped with an administration panel which is statically placed
in the upper right corner. This panel is always available and visualmenu ele-
ments (either data items or menu items) will be overlapped by it if the interface
is handling a large and deep menu tree structure. The main idea of a static
admin panel is to avoid tedious scrolling to either the top or bottom for doing
common tasks on the menu tree.

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 61

3.3.3 Menu Items (submenus)

Submenus are colored orange and are used for grouping parameters with sim-
ilarities to certain criterias, but can also contain other sub groups (submenus)
to contain further more de�ned parameters for the simulation. DPW has no
constraints on the level of deepness of the internal tree structure that is visu-
alized in the interface. In most cases all submenus will �t to the web browser
without need for scrolling horizontally. In theory, DPW will try to show an
in�nite levels of submenus, and in those cases the web browser will naturally
activate horizontal scrolling. Potential errors will most probably occur because
of memory overload or crash of the web browser due to other limitations outside
of DataPool's scope.

3.3.3.1 Quick-links

Submenus provide a nifty feature for fast and easy navigation and automatic
scrolling through the menu structure. This is one of the most time saving
features o�ered by the web interface. Quick-links are available in the Quick-
menuswhich are present on all submenus. Quick-menus have shortcuts for both
data items and other children submenus.

3.3.3.2 Children & Data Items

Submenus have both other children (submenus) and belonging data items on
same level. Belonging parameters to a speci�c submenu will always be listed
before other submenu children. This is a choice of design to save time, since in
the long run we will be looking more frequent for the parameters.

3.3.4 Data Items

A data item holds information about and visually represents a parameter. This
includes the name of the parameter, value and other user de�ned attributes that
are needed for the speci�c parameter. Data items are colored light blue, and
the reason for giving parameters this color and not orange (as for submenus),
is the majority of data items over submenus in a menu tree. Hence, light blue
as the most frequent color gives a more comfortable visual expression. Orange
and light blue can also be stated to be easy to distinguish from each other and
clearly works �ne together.

3.3.4.1 Header

The header of the data item is holding the light blue color, the name of the
parameter and the current assigned value. A question mark is also provided
and can be used to get more information about the purpose of the parameter.
Absence of a question mark means there are no help information added by the
user.

3.3.4.2 Fields & Attributes

The body of the data item element exists of �elds for each of the belonging
attributes, including the value itself. The number of �elds will variate between

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 62

the data items in the menu structure depending on the provided data in the
DataPool module. All changes of values will be performed here, including all
�eld related error messages. The type of �elds used for each value and/or
attributes in the web interface depends on the Python data type of the attributes
in the internal DataPool menu tree.

3.4 Concepts

3.4.1 Hovering

DPW is implemented with a visual e�ect when hovering over the menu elements.
This reason is to keep focus when the menu tree becomes complex and to assure
complete awareness of interaction.

Figure 3.2: Hover e�ect on data items

Figure 3.3: Hover e�ect on a folded submenu

3.4.2 Expand & Collapse

The body of data items are initially hidden when �rst navigating a menu tree,
with the reason of saving space and maintaining the focus. A normal approach
is to click the hovered head of a data item to expand or collapse the content
of the element body. DPW is designed in this way since it usually are only a
moderate number of parameters and/or attributes that are up for change during
a session, and it would make it distracting if each and all of the data item bodies
were expanded.

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 63

Figure 3.4: A collapsed data item showing its belonging attributes

Submenus have an expanded/collapsed symbol to show whether or not the
submenu is expanded. Since submenus have the feature of always slide down a
Quick-menu automatically when hovering, this black direction symbol makes it
easy to keep track of the state.

Figure 3.5: An expanded submenu showing its �rst level of children submenus

3.4.3 Linking & Scrolling

Potentially a DataPool tree structure can contain a signi�cant number of menu
elements at each level, leading to a very long menu tree structure in the web
interface. This is a case leading to tedious and time consuming scrolling in the
web browser for each data item that is up for change. Also number of levels (of
submenus) can result in a wide set of menu elements �lling the browser window

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 64

when expanded. From a user's perspective the simulation to be performed could
be well-known, hence the scientist has already obtained pretty good overview of
the menu structure. It could be frustrating for experienced users to scroll several
pages when only a few and speci�c values need to be addressed between each
run. It is of very high bene�ts for end users to avoid scrolling and �ne-tuning
in a complex structure if only few values are going to be changed on a regular
basis in typical try-and-fail sessions. For this DPW provides di�erent types of
automatic scrolling on the generated menu structure.

3.4.3.1 Menu Item Quick-links

Each submenu will automatically slide down a Quick-menu when hovering over
the submenu header. This handy extra menu shows all belonging submenus
(menu items) and data items to the owner of the triggered Quick-menu. This
feature makes it possible to get a fast hands-on preview of what lay further down
on the next menu level without the need for a manual navigation to expand the
submenu in order to get this information. In the list, the Quick-links for data
items and menu items are presented with corresponding colors to match the right
type, making it intuitive to do the appropriate click. A click on Quick-links will
automatically start a smooth animated scrolling e�ect in the web browser to
the chosen menu element, either another submenu or data item.

Figure 3.6: Automatically slided Quick-menu

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 65

3.4.3.2 Parent Links

A Quick-link will in most cases scroll and move the focus to a menu element
placed longer down in the menu structure. In some situation it could be of great
help to move the other way, vertically upwards in the interface. The structure
can on certain levels be holding a huge set of data items and submenus. In some
cases this will make it hard to keep track and remember the parent submenu of
the visible menu elements because the parent menu will go out of sight. DPW
provides a feature for automatically scrolling up one level to the owner of the
menu elements if the user loses track. This is provided for both data items and
submenus:

Figure 3.7: Parent link for a data item

3.4.3.3 Administration Panel Links

The administration panel will always be displaying status and error messages.
The messages are presented with a fully clickable path to the a�ected menu
elements. This a feature working as the two former linking concepts described,
when clicked the interface will automatically animate and scroll to the chosen
element. In this way it is easy to go through a list of errors and locate the
a�ected ones to do preferred and needed changes without manual scrolling.

3.4.4 Menu Item Dependency

The DataPool API is equipped with the option to make dependency rules on
the internal menu tree. These rules set limitations regarding the allowed num-
bers of submenus to be chosen and activated at a certain submenu level. This
registration through the API is controlled by the scientists and the API pro-
vides di�erent attributes in order to cover the most needs. DPW will generate
the menu tree and attach the dependency information and denote where rules
exist. This symbol indicates the existence of a dependency rule on the children
submenus of the owner:

Figure 3.8: Anchor indicates dependency rule on a submenu level

3.4.5 Menu Chooser

The web interface will dedicate and visualize a data item to be theMenu Chooser
at a submenu level with a dependency rule. A Menu Chooser is used to switch
between the available children submenus and the Menu Chooser will show the
possible choices according to the rule de�ned with the DataPool API.

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 66

3.4.5.1 Single

The system operates with two di�erent types of dependencies, either single or
multiple. The Menu Chooser will provide the correct type of input �eld in order
to choose between the children submenus. If the de�ned dependency is allowing
a maximum of one children submenu to be chosen, a select �eld is generated in
the interface:

Figure 3.9: A Menu Chooser data item (single dependency)

3.4.5.2 Multiple

If the de�ned dependency is allowing more than one children submenus to be
chosen, a SelectMultiple �eld is provided:

Figure 3.10: A Menu Chooser data item (multiple dependency)

3.4.6 Enabled & Disabled Items

When dependencies are involved in a menu structure there will most likely
be several disabled menu elements present. The menu elements are disabled
because they are not chosen by the Menu Chooser, meaning they will not be
taken into account if the simulation were started. DPW will always visually
show disabled menu elements with lighter colors and a red mark. This is a
design decision made to abet focus and to assure that the users are changing
the values and attributes at the right place. Disabled menu elements are not
slidable and the color of submenus and data items will be faded accordingly:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 67

Figure 3.11: A disabled submenu

Figure 3.12: A disabled data item

3.5 Usage

3.5.1 Changing Data Item Values

Changing values of data items and belonging attributes are done in the body
where the �elds are located. How the value types are showed in the interface
depends on how the values were assigned in the DataPool API. The concept is
that the interface will follow the same syntax as when declaring Python values.
This makes the interface consistent, pythonic and easy to relate. Using the same
syntax also makes it easy to evaluate the input values in the core and produce
eventual error messages. The next section shows how the di�erent types are
handled.

3.5.1.1 Numerics

Data items with a
oat value de�ned through the API will result in a �eld type
that accepts
oats. In contrast to a integer �eld type, the
oat �eld will also
automatically convert a provided integer value to a
oat. In most cases the
integer type �eld will only be used for a special reason and it is natural to allow
the
oat �eld to accept both integers and
oats and do the conversion for the
user. Therefore, the integer �eld will only accept its own type.

De�ning a data item with a
oat value:

Menu.add('m', 1.0, unit='kg', help='mass')

Figure 3.13: A
oat �eld

De�ning a data item with an integer value:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 68

Menu.add('tuple value', value=2)

Figure 3.14: An integer �eld

3.5.1.2 Strings

Fields of string type will allow a combination of characters and numbers treating
it like a string, but also numbers alone. In the interface the string type �eld
will accept any input, but will only treat it like a pure string. In the Oscillator
simulation the solver method is de�ned as a string:

Menu.add(
[dict(name='T', value=4*pi, help="stop time for simulation"),
dict(name='dt', value=0.05, help="time step"),
dict(name='method', value='RungeKutta4',
help="ODE solver method (classname ForwardEuler, RungeKutta4)")
])

Figure 3.15: Representation of a Python string

3.5.1.3 Valuelists

It is possible to assign a python list to the attribute valuelist . This will create
a drop-down �eld in the interface and is very convenient if only a special set of
values are allowed. When setting the value in the code below it must be one of
the values provided in the python list, or an error message will be shown from
DataPool in the command line. The interface also know how to include both
numbers and strings in the web interface in order to convert and save them with
the correct type.

Menu.add('value list', 2, valuelist=['one', 2, 'three'])

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 69

Figure 3.16: A drop-down from the valuelist attribute

3.5.1.4 Lists (Python)

If the value provided in a data item is a Python list, the interface will show it
like a string. However, the �eld will be dedicated for a list and the result is a
�eld only treating the input as a declaration of a real Python list. When saving,
the system will keep track of mixed elements of numericals and strings in the
representation of the list declaration and convert it to an ordinary Python list.

Menu.add('list value', ['var1','var2', 100, 200])

Figure 3.17: Representation of a Python list

3.5.1.5 Tuples (Python)

Data items de�ned with Python tuples as value can be represented through the
web interface. This will result in a special �eld expecting only a tuple declaration
with Python syntax.

Menu.add('tuple value', (10, 10))

Figure 3.18: Representation of a Python tuple

3.5.1.6 MinMax

It is possible to add a minmaxattribute when de�ning a data item in the Dat-
aPool API. The minmaxattribute must be a tuple on the form (min, max) and

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 70

the interface will show the minmax attribute with its own input �eld. Usually
this value will not be up for change, but a design choice to still show it. The
data item with a minmaxde�ned will attach a built-in rule towards the assigned
value of the data item itself. As shown under, the value of the data item is2,
hence inside the allowed (min,max) interval. Otherwise, an error message will
be shown before the web interface starts.

Menu.add('minmax interval value', value=2, minmax=(1,5))

The user has the option of changing theminmaxon-the-
y in special cases
when the value of the data item still needs to be in another interval. This could
be looked upon as an extra security.

Figure 3.19: Representation of a Python tuple (minmax)

If the value is changed outside of the interval an error message will be dis-
played:

Figure 3.20: Error message using minmax

When de�ning and changing the minmaxtuple, the values must be correct
according to the valid (min,max) limits or an error will show:

Figure 3.21: Error message when de�ning minmax

3.5.2 Administration Panel

3.5.2.1 Manipulating Menu Tree

The administration panel o�ers three di�erent actions that can be performed
on the whole menu structure with just one click. As mentioned, the structure

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 71

is initially collapsed showing only the root at start-up. From this point the
users are free to navigate manually, but dealing with di�erent kinds of menu
structures and simulations will create di�erent needs from time to time. In
DPW the user can perform these procedures:

Figure 3.22: Administration Panel

Expand all. Pressing this button will expand all submenus and data items
in the menu structure. This also includes disabled menu elements due to de-
pendency rules. The function is very helpful when it is desirable to take a deep
look into a menu structure with many levels. Especially, the action is convenient
when in need for a closer look at parameters of disabled submenus, as instead
of using the Menu Chooser in order to �rst activate the submenu (and branch)
and then slide down the data item body before �nally looking at the attributes.

Expand menus. This action is almost similar to the former described and
the di�erence is to not show the data item leaves at the very last submenu level.
A reason to use this function could be the need for a quick overview of the menu
tree only focusing on submenus. This action is similar just excluding the data
item leaves at the last level. This is useful when large numbers of data items
are present at this last level, avoiding distraction in those situations.

Expand everything. A press of this button will expand all submenus, data
items and their belonging bodies. The result is a complete expanded menu
tree showing absolutely all �elds. The action will also a�ect disabled menu
elements. A typical example of use is simulations that need a lot of adjustments
of attributes prior to start, and this makes it convenient to systematically go
from top to bottom �lling out the �elds.

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 72

Collapse all. This will collapse the complete menu structure just showing the
root, equal to the initial start-up. This useful if the scientist wish to start from
scratch at the root and do a manual navigation.

3.5.2.2 Saving Values

During a session of DPW it is possible to save the menu structure state unlimited
times before starting the simulation. This is done in the administration panel.
Validation and value conversion will be performed on each save. This gives a
safe environment for periodical savings when handling a large menu structure
that takes long time to plan.

Figure 3.23: Administration Panel - Status - Saved parameters

3.5.2.3 Starting Simulations

The simulation is started in the administration panel and an indicator will show
while the simulation is running.

Figure 3.24: Administration Panel - Status - started simulation

The administration panel will also indicate when the simulation is �nished:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 73

Figure 3.25: Administration Panel - Status - Simulation done

3.5.3 Choosing Menu Items (submenus)

As mentioned in section 3.4.5, the Menu Chooser will be the place to choose
between the available submenus at a level with a dependency rule assigned.
In a practical situation, the concept of choosing between submenus with an
existing dependency on the parent, is to adjust the web interface for better user
interaction. This means DPW will activate/disable submenus and data items
and the purpose is to indicate which parts of the menu structure that will be
included if the simulation was started. The web interface will be adjusted real-
time on each choice with the Menu Chooser. In addition DPW will disable input
�elds belonging to disabled data items, and restore the state when signaled.

Using the DataPool API it is possible to de�ne the dependency rules in
di�erent ways. First of all it is important to be sure we are at the right level
for which the rule should be assigned. Thecurrent working menu (cwm) will
be given the dependency rule:

Go back to 'friction' (this menu) to add the dependency
Menu.submenu(submenu)
Add dependency
Menu.dependency('model', min=0, max=1, none_menu='zero')

Three of the parameters are required, and the fourth,none_menu, is semi-
required and only needed ifmin=0, since DataPool need to know about a fall
back value when none of the children submenus are chosen.

� chooser { the name of the data item which is used as Menu Chooser.
This must be an existing data item belonging to the current cwm.

� min { minimum number of menu items that must be chosen.

� max{ maximum number of menu items that can be chosen.

� none_menu{ must be set if the dependency allows none of the children
submenus to be chosen (min=0). This is the value that is used when none
submenus are chosen, typically'zero' . This parameter is semi-required.

We can as explained in section 3.4.5, de�ne two types of dependencies which
results in di�erent user interactions in the web interface. This is decided by the
parameters provided when calling:
Menu.dependency('menu_chooser', <other args>) .

This results in a dependency rule that allows maximum one children sub-
menu to be chosen, but not compulsory to chose any at all:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 74

Menu.dependency('model', min=0, max=1, none_menu='zero')

This results in a dependency rule that demands one and only one children
submenu to be chosen:

Menu.dependency('model', min=1, max=1)

This results in a dependency rule where it is possible to choose maximum
two children submenus, but still not compulsory to chose any:

Menu.dependency('model', min=0, max=2, none_menu='zero')

This results in a dependency rule that demands minimum one children sub-
menu to be chosen with a maximum of two:

Menu.dependency('model', min=1, max=2)

This results in a dependency rule that demands exactly two submenus to be
chosen:

Menu.dependency('model', min=2, max=2)

Taking the Oscillator simulation as a starting point and the earlier shown
creation of the dependency rule for the submenu'friction' , the interface
will show the attached rule with the anchor symbol next to the menu element
header. The interface will also append more information in the Quick-menu to
the submenu if a rule is created. The Quick-menu will show the dependency
speci�cation, and denote which of the data items that is set to be the Menu
Chooser. This makes it easy to get full control over the possible choices of
actions regarding the children submenus.

Figure 3.26: Menu item Quick-menu dependency speci�cation

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 75

The initial state of the children submenus belonging to the parent'Friction'
shows that both of them are disabled because the Menu Chooser holds the value
'zero' . This value indicates that none of the submenus are chosen. Disabled
submenus are not possible to expand in order to handle other menu elements
beneath the level. However, DPW is designed to still make it possible to hover
the submenu header to slide down the Quick-menu for a glimpse of the under-
lying elements. The scientist should still be able to use this future, no matter if
the submenu is disabled for expanding/collapsing, to �nd out what the submenu
has to o�er. This choice of design is at the same time clearly showing the user
the state of the menu structure while preserving the user mobility. therefore,
two di�erent concepts with the goal of increasing the e�ciency, should never
counteract each other.

It is important to point out the possibility to expand the whole menu struc-
ture if this is needed regardless of disabled submenus. This is accomplished by
using the administration panel in the former explained way. However the �elds
will be disabled and read-only, preventing user input:

Figure 3.27: Dependency: Submenus not chosen, but expanded

Calling the Menu.dependency('model', min=0, max=1, none_menu='zero')
will result in a Menu Chooser that is presented with a select drop down list,
assuring the choice of only one submenu:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 76

Figure 3.28: Single dependency: Choosing submenu

The choice will immediately activate the chosen submenu which are re
ected
with restoring it to the normal color and indicated with a 'chosen' mark. All
menu elements at the lower levels will also be activated:

Figure 3.29: Single dependency: Submenu chosen

The other type of dependency is multiple and visualized by MultipleSelect
�eld allowing more than one value to be chosen. Here is a hypothetical ex-
ample with both submenus selected after calling the DataPool API with these
parameters: Menu.dependency('model', min=1, max=2) :

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 77

Figure 3.30: Multiple dependency: Both submenus chosen

When dealing with a multiple dependency the menu structure must be saved
in the administration panel in order to be updated with the values from the
Menu Chooser. Here is only one submenu selected from the list of choices:

Figure 3.31: Multiple dependency: One submenu chosen

A SelectMultiple �eld introduces the possibility of choosing a combination

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 78

which is not allowed compared to the single select �eld. The most obvious one
in this example is breaking the rule of choosing below the de�ned minimum
limit. Through the API, a following call:

Menu.dependency(model, min=2, max=2)

will result in a convenient error message according to the speci�cation of the
dependency rule:

Figure 3.32: Multiple dependency error: Limits

The following call, de�ning a multiple dependency with the possibility for a
none value:

Menu.dependency('model', min=0, max=2, none_menu='zero')

will result in an explaining error message when making a wrong combination
with the none_menuvalued 'zero' :

Figure 3.33: Multiple dependency error: None value

3.5.4 Value Unit Conversion

The DPW is equipped with an automatic value unit conversion. Handling units
are a source for errors in scienti�c computing. Especially manual calculation as
a tool for conversion demands a high degree of control and accuracy by the sci-
entist. Therefore, the web interface will be adjusted if the user have provided a
unit when de�ning data items through the DataPool API. In the Oscillator sim-
ulation, the Physics parameter 'm' could be de�ned in this manner, providing
the parameter 'unit' :

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 79

Menu.add('m', 1.0, unit='kg', help='mass')

Creating a data item with a unit will be read-only in the web interface, and
will be labeled Unit in the body of the data item. The �eld for inputing a unit
type for the value of the data item is labeled Value Unit . The functionality
becomes an optional built-in automatic conversion. On every load of the web
interface the Value Unit and Unit �eld will naturally contain the same unit
when no changes are made:

Figure 3.34: Data item with de�ned unit attribute

In the last �gure the value mcould be read like1.0 kg . If we were in need
to change the unit of the input value to g instead of kg, this could easily be
done like this:

Figure 3.35: Changing unit of the input value

Further it is possible to change both the new value and the preferred unit
for the new value at the same time:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 80

Figure 3.36: Changing both data item value and the unit of the input

The automatic conversion feature will convert5 g into the previously de�ned
unit (read-only) of the data item which is kg, hence the value will be converted
accordingly. The automatic conversion supports all quantities in the module
Scientific.Physics.PhysicalQuantities .

Figure 3.37: Data item value converted

3.5.5 Balloon Help

The help parameter can be speci�ed when creating data items:

Menu.add('initial u', 1.0, help="u(0) initial condition")

This is an optional but a very helpful description of the data item parameter
and the purpose of it. The web interface will provide a question mark in the
data item header if the help information is added by the user in the API. To
view the help text, hovering over the mark will show the information in a new
box
oating at the right side. Choosing this hover approach in DPW is to avoid
the amounts of information presented through the web interface, but still be
easy to obtain when needed.

Figure 3.38: Balloon help

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 81

3.6 Input Error Handling

3.6.1 Python Values

DPW will on each saving do validation and return possible error messages. The
errors will be appended to each of the corresponding input �elds. The system
uses a comprehensive set of technicalities in order to give the user appropriate
messages. The web interface is designed to stop all possible errors at an early
stage to save time in the long run. The interface is designed to be generic
and easy maintainable for the user, but the underlying goal is to never allow a
simulation to start if the input are not totally valid. Under are some examples
on how the system will react upon di�erent wrong input:

Figure 3.39: Input error: Float

Figure 3.40: Input error: List

Figure 3.41: Input error: Integer

Figure 3.42: Input error: Tuple

3.6.2 Wrong Input

The administration panel will always show errors that needs to be �xed before
the simulation can be started. The panel will show a list over the existing errors
and take use of the helpful aspect of being placed statically. The user can easily
go through each and all of the errors in the list to handle them in a systematic

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 82

way if wanted. The panel will provide the full path to the a�ected data items
that are concerned with input errors. The path is constructed to be clickable on
all levels, making it very useful for fast navigation using the automatic scrolling
feature when the menu structure is large. A centralized static overview with
clickable paths with animation scrolling to the a�ected area is a feature which
saves a lot of time. The a�ected attribute of the data item will also be denoted
in the panel with the belonging error messages. Also, these messages are stated
locally under the input �eld in the data item body.

Figure 3.43: Administration panel error links

Here are some of the error messages caught in the same view which also can
be found in the error listings in the administration panel in the last �gure:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 83

Figure 3.44: Input �eld errors

3.7 Output

DPW provides functionality to output results from the actual simulations. The
normal approach and outcome from computer simulations are dumping of results
to �les and/or plots. When this web interface can provide results integrated in
the same environment from which the simulation were started, the whole system
can be compared to be more like a problem solving environment (PSE).

3.7.1 Plot Visualization

The web interface o�ers a dynamic real-time visualization of plot results from
simulations. The scientist activates this feature through the creation of a sub-
menu with a special reserved keyword:

Show Visualization in DataPool Web
Menu.submenu('/ShowPlots')
Define image types to show in web
Menu.add('image_types', ['png'])
Menu.add('source', os.getcwd())

� '/ShowPlots' { This is the required name of the submenu in order to
activate the DPW to show plot results from a simulation.

� image_types { This is a list over the �le formats the DPW should look
for, and all �les of the provided formats will be shown in the web interface.

� source { This is the location where the web interface should fetch the
plot �les. In this example we are using the cwm, but this is made
exible
to suit di�erent needs.

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 84

The creation of the submenu to visualize results is done as the last step before
sending the quit signal Menu.quit() in the running simulation code. After
the factory/scan methods are �nished with collecting the values from the web
interface, the scientists will probably �rst call the solver methods in order to
start the simulation internally. As the last step involving the DataPool module,
the Menu.quit() method must be called in order to send signal for change of
state, and to do necessary internal adjustments before the main method in the
calling simulation script is �nished.

When the simulation is �nished the interface will be updated instantly with
the plot results underneath the administration panel. The results from the sim-
ulation can be scrolled through, depending on the amount of produced results.

Figure 3.45: Simulation plot results

3.7.2 Simulation data

In addition to plot results the web interface can show data results also. Using
another simulation calledball1_import , a version of the originalfootball1.py

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 85

script, we are measuring di�erent drag and gravity forces on a kicked football.
This is a simulation not involving any plot results, and ordinary results from
this simulation in the web interface can be accomplished by de�ning a special
reserved'/Results' submenu:

Create the needed 'Results' submenu
menu.submenu('/Results')
menu.add('hard kick drag force', hard_kick_drag, str2type=float)
menu.add('soft kick drag force', soft_kick_drag, str2type=float)
menu.add('gravity force', gravity_force, str2type=float)

Figure 3.46: Ball simulation in DPW

The web interface will be updated with the preferred results upon a successful
simulation:

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 86

Figure 3.47: Simulation data results

This is the whole and extended code for running theball1_import.py sim-
ulation and almost similar to de�ning plot results:

"""
Compare the drag and the gravity forces on a body moving through air.
In particular, compare the forces for a hard and a soft kick of a football.

This version applies the DataPool module and defines data items and
retrieves values with bulk calls involving multiple items at a time.
The definition of the data items are put in a separate file.
"""

def drag(C_D, rho, A, V):
return 0.5*C_D*rho*A*V**2

def gravity(m):
g = 9.81 # m*s**(-2)
return m*g

import DataPool
menu = DataPool.menu
from ball1_dataitems import data_items
menu.submenu('Ball Simulation')
menu.add(data_items)

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 87

Prompt for web ui
menu.start_ui(ui='web', port='8001')

names = [item[0] for item in data_items]
C_D, rho, a, m, V_hi, V_lo = menu.get(names)

from math import pi
A = pi*a**2 # cross section area normal to movement, m^2
V_hi = V_hi/3.6 # velocity in m/s
V_lo = V_lo/3.6 # velocity in m/s

"simulate":
hard_kick_drag = drag(C_D, rho, A, V_hi)
soft_kick_drag = drag(C_D, rho, A, V_lo)
gravity_force = gravity(m)

Create the needed 'Results' submenu
menu.submenu('/Results')
menu.add('hard kick drag force', hard_kick_drag, str2type=float)
menu.add('soft kick drag force', soft_kick_drag, str2type=float)
menu.add('gravity force', gravity_force, str2type=float)

Always send quit signal
menu.quit()

3.7.3 Combined

DPW is designed to handle both plot and ordinary data results integrated in the
web interface. The users are free to de�ne both'/Results' and '/ShowPlots'
submenus in the same simulation to initiate both types of results. Beneath is a
hypothetical example based on the Oscillator simulation which implements both
functionalities. The results data ('/Results') showed here are only for example
and proof-of-concept and would not be of any real use in this simulation, but it
shows the possibilities:

def main():
problem = Problem()
problem.define_menu()
solver = Solver()
solver.define_menu()
viz = Visualizer(problem, solver)
viz.define_menu()

print dir(problem)
print dir(solver)
print dir(viz)
import pprint

Promt for UI
Menu.start_ui(ui='web', port='8001')

Read input data:
problem.scan_menu()
solver.scan_menu()
viz.scan_menu()

Simulate and visualize:
solver.solve(problem)
viz.visualize()

Show Visualization in DataPool Web

CHAPTER 3. USING DATAPOOL WEB: USER MANUAL 88

Menu.submenu('/ShowPlots')
Define image types to show in web
Menu.add('image_types', ['png'])
Menu.add('source', os.getcwd())

Show results in DataPool Web
Menu.submenu('/Results')
Menu.add('T', self.T)
Menu.add('dt', self.dt)
Menu.add('method', self.method)

Simulation done signal
Menu.quit()

print Menu.get_tree(show_items=True)

Figure 3.48: Combined simulation results

Chapter 4

Web frameworks

If we go back to the old days of the Internet, the Web 1.0 era, web pages mostly
consisted of static pages or in best case generated pages, but they were still
static. The term Web 1.0 is actually named after the heavily used term of
today, Web 2.0, not the opposite. During this era web developers designed sim-
ple web pages that only returned plain HTML to the end-user for each server
request. Regarding generated pages at this time, CGI (Common Gateway In-
terface) was the main actor, a protocol for web servers that made it possible
to run external programs that generated the requested web page [21, p. 25].
After the CGI generation of the content, the pages were redirected back to the
end-users browser in the same way as non-generated static web pages. How the
server requests were handled, regarding CGI or not, were solely based on the
server con�guration. Because of this con�guration, the server could redirect the
di�erent requests (URL) to corresponding CGI-scripts for speci�c sub pages.
A CGI program or script could be implemented in any programming language,
but usually Perl or Python were chosen.

If we were to make rich web applications (RIA) today with everything the
task concerns, several technologies are involved behind the scenes. Those tech-
nologies are actually the foundation used in di�erent compounds in so called
Web 2.0 applications; JavaScript, Python/Perl/PHP/Ruby, CGI, HTML and
HTTP [21, p. 17]. It is of course possible to make spectacular and advanced
web application while using the technologies separate from the start, but this
will no doubt make things very time consuming and laborious as the size of
the application increases. Brie
y, the HTML-code is the structure of the web
page and belonging CSS speci�es the layout and the visual style of the page.
JavaScript are integrated code in the HTML-code on the client-side control-
ling page interaction and communication towards the server. The CGI-script
(or a Python-script) receives requests from the JavaScript-code or the browser,
and answers with generated HTML/XHTML/XML/JSON. HTTP is a simple
text-based network protocol on the top of the TCP/IP stack, which de�nes
requests or responses to/from the user. With use of the independent technolo-
gies together in their pure form in development of web applications of a certain
size, the developers will often experience a stall in the development process very
quickly and makes further progress hard. The use of these technologies together
illustrate all the server- and client-side components involved in the process of

89

CHAPTER 4. WEB FRAMEWORKS 90

producing dynamic content.

4.1 The role of Python

Experienced users of Python from earlier days have noticed that Python as a
programming language has expanded it's user mass, especially in the web busi-
ness, from just being a web page generator, to becoming a server-side software
for control of web pages [21, p. 17]. I want to point out that Python always has
been, and is, most used for scienti�c computations like simulations and visual-
izations, but also for typical desktop applications, 3D engines and diverse forms
of scripting. The reason of why Python has gained a solid share within web
development is mainly because Pythons is fast, high-level, completely object
oriented and interpreted. For a web developer this means coding and testing
can be done in several small rounds along the road, and very valuable under
iterative development [21, p. 12]. This results in a great starting point for exper-
imental development that encourage an agile strategy, which often is a necessity
for the creation of creative and useful web applications. The explanation is quite
simple, the applications are changing fast and the small core teams usually con-
sist of developers working close together. A language that o�ers compact and
dynamic code is a huge bene�t in this context of web development, in addition
to the possibility of self-modifying code under runtime [21, p. 13]. One of the
main advantages of Python is the massive selection of extension modules made
by the enormous Python community. With this solid collection of functionality
and add-ons, advanced problems on the server-side are also highly manageable
if the web application is dependent o� some speci�c underlying functionality or
some other services. Independent programs can actually be run on the same
server hosting the web application, and in these cases both the logic of the main
application and the needed add-on programs, which make up the total system,
are written in Python.

4.2 First Approach

The �rst try to ease the pain for the many web developers was PHP (Hypertext
Preprocessor), a server side scripting language that generated the HTML in an
easy way [21, p. 47]. PHP became enormously widespread and also the most
popular language used for the web. Today PHP is still used in a large scale in
all types of projects. Web frameworks for also exists for PHP, but the obvious
trend of older PHP developers turning their back to this language is also the
reason for the decreasing user mass. The observed pattern among developers
is soon as they get experience with the web frameworks for Python, or Ruby
however, they tend to not fall back to PHP. The clear point of using a web
framework is primarily to save time writing the same code like handling database
interaction and URL mapping, but also to avoid all types of duplications of the
same type of code written several places. Without the use of a web framework
the developer actually has to reinvent the wheel every time an application is
started from scratch when it comes to settings, con�guration and other general
code, which has to be present to even make the web application work in the

CHAPTER 4. WEB FRAMEWORKS 91

�rst place [21, p. 48]. It is considered hard, impossible and a waste of time to
hard-code extensive solutions in this manner. One of the signi�cant obstacles is
the fact of tangled code, and a little change dealing with one page can result in
several other changes that has to be done around in the system. Further, this
results in tangled code with a tight coupling because of lack of a higher level
of abstraction. Typical boilerplate code can be separated from the rest of the
system and considerably reduced with a web framework, and the achievement
of cross-browser compatibility is a also assured.

4.3 Inter- and intra crosscutting

In a journal [12] by Kojarski and Lorenz, the problem of pure CGI-scripting
in large projects are discussed in great detail. They have a clear vision of
the problems: We distinguish between intra-crosscutting that results in code
tangling and inter-crosscutting that results in code scattering [12, p. 53].
Intra-crosscutting occurs by code tangling within individual pages, and inter-
crosscutting happens because of code scattering across all the pages of the web
application [12, p. 54]. The intra-crosscutting does only map problems within
one isolated page, in a way that functionality, presentation and control are
tangled together on the page. Intra-crosscutting is a shortcoming of dynamic
pages by design, and depends only upon the speci�c functionality, presentation,
and control code within the a�ected page [12, p. 54]. The more severe inter-
crosscutting, deals with the total underlying structure of the web application
regardless of existence of tangled functionality- or presentation code, that of-
ten leads to multiple changes of several belonging pages of the web application.
Inter-crosscutting a�ects most of (sometimes all) the application pages, both
dynamic and static. [12, p. 56].

As mentioned earlier, the intra-crosscutting results in strong dependence
between the di�erent types of content on the web pages. Groups of developers
have to cooperate closely if their gonna accomplish to maintain the code on the
speci�c pages in this coincidence. The clear division is drawn between web de-
signers and web programmers, which will be especially evident during redesign
where the other divisions have to handle documents with code exceeding their
ability and area of expertize [12, p. 56]. In this context the web designers
normally handles all types of HTML/CSS and some JavaScript in few cases,
and the web programmers maintain and develop all types of template-language,
scripting-language, server-side, settings and con�guration and even most of the
JavaScript code.

On the other hand the inter-crosscutting a�ects both static pages and dy-
namic pages, compared to the intra-crosscutting which only concerns dynamic
pages. This involves the structure of the web application as a whole, and is tied
to the underlying resource structure of the application: The structure concern
is a rigid skeleton thats cross-cuts multiple application �les coupling the web
application to a particular underlying resource structure [3, p. 56]. The inter-
crosscutting problem can be compared to the sync state towards the underlying
resource's structure of the application. This can typically be hard-coded name
of variables, parameters and relations to the database. A clear example is the

CHAPTER 4. WEB FRAMEWORKS 92

need for a developer to go over all a�ected locations in the code and edit them
manually, and usually includes most of the pages that integrated such informa-
tion in their context [3, p. 57]. This can also go under the terms of unweaving
the application, before weaving it together when changing the existing structure
of the web application [3, p. 57]. However, there is a demand to maintain the
sync and the consistency with the structure, and the these issues involved result
in a high development and maintenance cost.

The MVC pattern of Django is a clever example of attacking this problem,
but only the intra-crosscutting problem. Inter-crosscutting is also getting under
control with Django, but that is solved due to the underlying structure of Django
as a web framework itself, not the resulting MVC pattern of the web application
made with Django. Kojarski and Lorenz are stating that: Despite its obvious
severity, no comprehensive solution for the inter-crosscutting problem exists
to date [12, p. 57]. This thesis will investigate and present the aspects of
this web framework for Python, and even using it in highly advanced tasks in
computational science. As mentioned under the specifying the thesis about the
importance of making the DataPool system as generic as possible, we can avoid
the common way for advanced developers making very speci�c ad-hoc systems
which comes short in being generic: Having no institutional support, advanced
developers sometimes build their own ad-hoc tools to tackle speci�c cases [12,
p. 57].

4.4 Introducing Django

Django [27] is the web framework for Python that has received most atten-
tion. The framework also uses the model-view-controller (MVC) pattern for the
underlying architecture for applications. The MVC pattern was originally devel-
oped and implemented with the language Smalltalk, and gives a clean structure
with separation of presentation-, control- and business logic [21, p. 48]. It is
very common for all desktop applications to use a sort of MVC in their archi-
tecture, and by using this in the web framework as well, gives a solid convention
and a steady foundation from the start. Django was originally a project of the
World Online team, a web team maintaining several newspapers on the web
such as the Lawrence Journal-World. It was created from scratch with one clear
goal, a system for faster production of newspapers on the web. The Web Frame-
work for perfectionists with deadlines, is the mantra of Django [27]. Compared
with the TurboGears web framework, Django is not built upon already existing
components, but only on self produced parts [21, p. 71]. Django was developed
based on the need for frequent updates of the websites with new articles and
blog entries. In other words, a CMS (Content Management System) with high
capabilities of producing scalable and dynamic newspapers on the web with a lot
of data. Django is dynamic in all senses and follows principles like DRY (Don't
Repeat Yourself), MVC and KISS (Keep it Simple, Stupid), in addition to the
framework architecture being built upon modules for easy expansion of function-
ality from the large community that also has taken over the future development
of the framework. By following this combination of principles the amount of re-
dundant code are taken to a minimum, like the speci�cation of database models
which is intuitive in Django. The framework is built upon di�erent components:

CHAPTER 4. WEB FRAMEWORKS 93

Templates

Django templates contains HTML and control logic in form of a template lan-
guage specially developed for Django. This language provides contexts of vari-
ables and control logic which makes the dynamic generation of the markup and
HTML content on the web pages.

Views

This is Python functions with the purpose of gathering data from the database,
and also carry out calculations or processing of data before the resulting data
is sent for further handling by Django templates.

URL-mapping

This consists of the important urls.py �les, which provides proper handling and
redirecting of the incoming URL-requests to the right view functions (see over).
The real power behind this module is the regular expression (regex) implemen-
tation which manage the matching of URL-patterns and fetches the the desired
data from the URL-string and attaches this to the right view function.

Model

This is the Django ORM (Object-relational mapping) providing automatic map-
ping between database models and model-objects. Worth mentioning is the ab-
straction of ordinary SQL queries. With the built-in ORM, the writing of SQL
queries can be completely avoided and the task of analyzing long and complex
SQL queries is replaced with an intuitive and e�ective database API. Django is
also o�ering the opportunity to write SQL queries if this is needed.

4.5 Loosely coupled Django

Django's philosophy of being a loosely coupled web framework makes the com-
ponents of the framework independent from each other. Web designers and
HTML-coders should avoid to concentrate about other code in the system be-
cause this can be disturbing and a big source of errors. Isolated components
makes it easier to learn the di�erent parts of the framework. Practically this
structure arranges a simple way to e�ectively switch parts in the system without
huge rewrites of the remaining parts of the system. Django's focus on not doing
too much magical tricks behind the lines, is what makes Django a good web
framework. As mentioned, the code is compact, but in no way resulting in a
bad overview of how the information
ow is related in Django.

4.6 TurboGears

TurboGears [8] is the web framework for Python that relates to the more typical
Web 2.0 term. Compared to Django, this framework were not built from scratch

CHAPTER 4. WEB FRAMEWORKS 94

using its own written components, but consists on these existing independent
technologies: SQLObject [24], CherryPy [6], Kid [11] and MochiKit [18]. Tur-
boGears can be said to be the answer to Ruby's well-known web framework
Rails. As if TurboGears is Python's real competitor against Ruby On Rails
and have a strong and integrated support for Ajax, Django on the other side
can be stated to be more a generic web framework. TurboGears vision is to
be an out of the box engine towards making database driven web applications
focusing on the Ajax-power, in a typical Web 2.0 spirit. Django on the other
hand originates from the need of a CMS. In the journal Python for Scienti�c
Gateways Development by Heiland et al [1, p. 1], they point out that:

However, what are known as Enterprise Frameworks has dominated
much of that landscape for the past several years. In this paper,
we o�er some alternatives that, we believe, are lighter weights in
the terms if their development and deployment costs yet empower
scienti�c communities more than ever.

This journal is one of very few which mentions these two web frameworks for
Python in a context of computational science [1, p. 3], and also describes the
new trends among web development in this area. Actually, in computational
science, TurboGears have support for some pretty complex widgets for visual-
ization like data grids, 2-D plots and di�erent multiple-value selection [1, p. 3].
This journal also presents the need of allowing users to easily de�ne input param-
eters and o�er remote execution of simulations. Providing a gateway component
for parameter sweeps could greatly improve a researcher's productivity [1, p. 5].

However, this master thesis gives priority to Django because of the need for
a generic approach for the DataPool and the web interfaces developed for this
system. At this time, DataPool is not using databases that is an assumption in
TurboGears. Regarding the use of databases in scienti�c computing, this can be
considered low of several reasons. The di�erent concerns are pointed out in the
journal [1, p. 39]. In any case of sudden need for a database, this can be handled
by Django as mentioned. Implementation of technologies like Ajax is used in
the development with Django in the thesis, even though it is not supported out
of the box. The loose coupling of Django gives us the opportunity to integrate a
preferred JavaScript library for the creation of Ajax-features, and is one of the
main reasons for using Django, even if we could have used the same MochiKit
JavaScript-library TurboGears have integrated.

4.7 Choice of technologies

To choose the right set of technologies for use in a web-based interaction, de-
pends on many factors that needs to be weighted. Several journals are discussing
this and a common pattern are clearly showing among the authors. Flash, Java,
JSP, JavaScript, HTML, CSS and other plug-ins are mentioned concerning tech-
nologies for web interaction. Bethel et al [2, p. 4] presents AMR WebSheet that
is completely implemented in JavaScript and HTML, which is an interface pro-
viding a display of the visualization parameter space. Holmberg et al [7] have

CHAPTER 4. WEB FRAMEWORKS 95

a solid focus on using JavaScript as the base for all types of technologies for
web interaction and what JS can provide [7, pp. 5 6]. They also argument
for DOM integration [7, p. 6] with JavaScript and CSS, and the wide browser
support. Hamann et al [9] also touch the aspects of using Flash, Java or plug-ins
[9, p. 42], but are concluding that a platform-independent solution is the main
priority. One of the journals also discuss the use of SVG for the interaction,
but are suggested only to be used if its also intended for the visualization of
simulation, because of lack of native support [7, p. 5]. The dynamic integration
of new content into active web page, the Ajax technology are discussed and used
by several authors [1, 2, 7, 22, 9]. In this technology, JavaScript is the central
actor [7, p. 6], and is showing consistency with the authors use of JavaScript as
base for the interaction [9, p. 44]. Heiland et al [1] also points out like Langtan-
gen [14], the possibility of editing the layout for end-user: Imagine, during the
prototyping phase, that end-users (scientists) make incremental changes to the
gateway input and functionality, evolving it to be optimal for their needs [1, p.
6].

Holmberg et al [7] discuss several technologies for visualization of results from
simulations, in addition to Gnuplot images, GIF-animations and reports. Tech-
nologies like SVG, SMIL, Java3D, VRML and X3D are presented and discussed
in the context of choosing the right technology to obtain the highest compat-
ibility. The central of this journal is the importance of a more generic system
with the possibilities of adding the di�erent technologies when needed. They
are concluding with a general consensus that there is no tool or technology that
can be best suited for all types of visualization [7, p. 8]. With DataPool being
highly generic, the ability of choosing the appropriate visualization technology
can be one opportunity for the system.

4.8 Summary

A developer should only need to write the parts of the web application that
makes it unique and compelling, and not the fundamental and general code,
which all web applications must have to be running and actually work. However,
not meaning the applications will be simpler or have reduced usefulness, the
reason are wholly to write minimal of code to get up and running from scratch,
and of course be able to do fast changes on the way for the complete system with
no hard e�ort and problems. With other words, totally overview and control,
keeping the developers concentration at the right place and where it should be,
to create interesting and compelling web applications with outstanding usability.

Chapter 5

Technicalities

5.1 DPW Contents

DPW is located in the DataPool.gui.webui_django package. The contents of
the webui_django have the identical structure like any normal Django project.
Django comes with an utility that automatically sets up the conventional direc-
tory structure for projects and applications. The frameworks operates with two
di�erent concepts which are important to be aware of. A Django project (like
webui_django) is a collection of con�guration and applications for a particular
web site. In this context a Django application is a web application used in the
web site, like a blog system which is a part of the web site. Therefore, a Django
project can contain multiple Django applications, and an application can be
present in multiple projects.

The �rst level contains the mandatory �les for the Django project:

� manage.py{ A utility (command line) for interaction with the project. In
this context mainly used for starting and handling the Django server.

� settings.py { All global Django settings for the project.

� urls.py { The top level URL pattern handler and declarations for the
Django project.

Inside the webui_django project we also �nd the module datapoolweb, the
application that makes up the DPW. As mentioned, at this level several ap-
plications can exist, but in this implementation we are only using one Django
application for everything.

Our datapoolweb application contains the mandatory �les:

� models.py { Contains the data model de�nition which gives a database-
abstraction API used for interaction towards a database for the applica-
tion. DPW is not using a database, leaving this �le empty.

96

CHAPTER 5. TECHNICALITIES 97

� views.py { The �le contains all the functions that handles the web re-
quests (from urls.py) and returns a Web response. The server-side code
are located here.

datapoolweb contains two other packages that makes up the total DPW
system:

� media { The package holds all CSS, images, JavaScript and visualization
�les for the web interface. This package is the only part of the project
that are accessible directly outside of the Django application.

� templates { Contains all template �les used by the server-side code in
order to render certain HTML code.

The correlation is presented under:

Figure 5.1: The Django project structure

5.2 Implementation

DPW is implemented using a di�erent set of technologies for code and markup.
According to the MVC pattern they are used with hard focus on keeping them
separated.

5.2.1 Python

All server-side code, con�guration and settings are written in Python.

5.2.2 Django Templates

It is especially the Django template engine with its belonging template language
we are using for producing the HTML read by the web browser. The system

CHAPTER 5. TECHNICALITIES 98

have di�erent template �les for the various data models represented in the web
interface. The Django server-side code will fetch the templates stored in the
templates directory, avoiding hardcoding them into the view code. The tem-
plates could been located in the view code, but this demands a lot of string in-
terpolation in Python, and it would be hard to get a satisfying and full overview
over the context to be rendered. The solution is to construct the context for the
di�erent data models in the view code, before shipping them of to the Django
template engine for easy rendering using the template language. The template
language o�ers a very usable set of logic constructs on how the context should
be rendered. Django performs this without destroying the MVC pattern.

5.2.3 HTML

We are using only one base template,datapool.html , which contains the typical
HTML header, doctype, meta headers and script inclusions. This template de-
�nes the basic semantic markup for the whole web interface and it only includes
Django template language for the generation of the global error list located in
the administration panel. In addition, the template only includes one template
language statement for the inclusion of the whole menu tree(!). Behind this
single expression there is a comprehensive procedure on the server-side and in
the template engine, which will be covered later. This approach keeps the base
template to an absolute minimum. Actually, it is approximately the shortest
possible. The base template is the only one that are rendered to the end-user in
the web browser. All other templates mentioned in the previous section, will be
rendered and used as a step in the server-side code,before the main rendering
of the web interface using the base template.

5.2.4 CSS

The semantic HTML code is also fully separated from the CSS code, which
de�nes the visual presentation. The CSS code consists of 470 lines of code and
is located in datapoolweb.media.css . The style sheet here takes care of the
concepts of the hovering e�ects, the visual elements of the DPW like rounded
corners etc, fonts, placing and so on. However, the complete HTML generated
by the Django template engine, were designed in a fashion to be fully operational
and visualized correct without the CSS by abiding design principles. It should
be pointed out that the DPW will always be using the style sheet.

5.2.5 JavaScript

The web interface is using the powerful, but lightweight, jQuery JavaScript
library [10] to realize the di�erent e�ects and interaction. This code for DPW
is written from scratch, consists of 250 lines and is located inmedia.js . Ajax
handling and DOM manipulation are implemented using this library.

5.2.6 Design Elements

The design elements used in the web interface are modi�ed and/or extended
versions of free design techniques and elements. All composition, layout, pre-
sentation and colors are special and distinct for DPW.

CHAPTER 5. TECHNICALITIES 99

5.3 System Structure

We will now cover the system structure and the architecture of the whole sys-
tem. Due to several distinct parts that need to cooperate and work together in
correlation, it demanded a special solution. First we introduce the parts of the
total system behind DPW:

Simulation code. The simulation code to be run will import the DataPool
module and start using the API. The code have the responsibility of calling the
methods for prompting for desired UI, and �nally ending the session.

DataPool (menu tree structure). The internal DataPool menu tree struc-
ture that will be built from the simulation code through using the API.

DataPool API. The API (MenuAPI.py) on top of the DataPool core internals
and works as the service towards the scientists taking this in use from the
simulation code.

State handling. \.datapool is a special folder located at the local machine
on the path de�ned in the settings.py . The folder have responsibility for
holding a set of .dat-�les that keeps track of di�erent states in the total system.

Django server. The Django development server which is practically initiated
by calling the function start_ui() using the API from the simulation code. The
internals of the API will start the server locally.

Server-side view code. All server-side code and functions are located in the
views.py in the application of our Django project. This module have a special
method index which has the responsibility for receiving all incoming requests
from the web browser.

Web interaction (front end). This is the user's web browser running locally
on the Django development server. The browser will use the Ajax technology in
order to signal the rest of the system when to start the simulation. In addition,
the Ajax will handle the dynamic update of returned results from the server-side
view code.

Because DPW is using the Django server locally on the machine, we instantly
get the issue of not being able to communicate with the active internal menu
structure tree in DataPool from the view code in the Django project. The user
of the API will call the start_ui() method when ready to prompt for the web
interface. This method, located in MenuAPI.py, will start the server and open
the system default web browser. Unfortunately, but naturally, the server will
be started in a new process and context, when a new command line window is
created especially for the server (usingmanage.py). The actual standard com-
mand for starting the web browser is:

CHAPTER 5. TECHNICALITIES 100

Terminal

> python manage.py runserver <port>

From the API internals, the Django server is started like this:

os.system('gnome-terminal --execute python %s runserver %s &'
% (django_server_path, port))

Another option tried was starting the server in the same command window as
the simulation. Considered a semi-success the server started, but interfered with
the on going handling by the API internals, making it very unstable. Research-
ing heavily on this challenge and several approaches, the conclusion became to
welcome the solution of using serializing/de-serializing of the internal menu tree
structure in Python.

Surprisingly this solution turned out to be the best one in order to prove
the DPW system to be powerful enough to accomplish the job without touching
the active menu tree session of DataPool, using no synchronousPython com-
munication. We were able to dump the internal menu tree structure using the
cPickle module to �le, not a�ecting the active internal tree at all and leaving
it on pause/hold. Further, work on a copy of the identical menu structure in a
new workspace in the server-side code, successfully making the web interface.

However, the solution required the introduction of state handling in a new
environment which was chosen to be based onstate �les. The �les are con-
tained in the .datapool folder de�ned in the location by TREE_LOCATIONin the
Django project settings �le. They consist each of a single'0' or '1' , meaning
on/o�. In this situation several new functions were written in the API, func-
tions for setting/clearing the di�erent states. The state �les are not part of the
DataPool internal data structure, but they were chosen to still be placed in the
API. The Django view code should not be responsible for creating, open and
reading �les, and therefore dedicated the API. Another good reason, the API
is also dependent of calling internal functions operating on the state �les when
called directly from the simulation code, strengthening the argument to be a
consistent location for them. In the next section we will go deeper on how this
is implemented.

5.4 Design Philosophy

The web interface was realized using the Django framework following a certain
set of guidelines. These guidelines were de�ned prior to the development pro-
cess to emphasize the importance of planning the implementation. One of the
main goals of this thesis were to test and explore the framework regarding to
functionality, conventions, design philosophy and type of approaches. This gives
a natural environment and reason to involve the most important aspects of the
framework and use those together in the same project. In this way we can high-
light all the unique feature of the framework, try to use them in cooperation in
the same project in the means of creating a proof-of-concept. We involve the

CHAPTER 5. TECHNICALITIES 101

central structures, approaches and functionality of Django in one space while fo-
cusing on well-known general design principles. The result should be a compact,
e�ective and smart code that proofs the power of the framework. Under are the
development guidelines for implementing the DPW using the Django framework:

Use the most aspects of Django. Include all the important and central
functionality provided by the Django framework. The solution should show
what the framework has to o�er.

Use the aspects to the fullest. The implemented aspects from Django
used in our solution should re
ect correct and expected use of them. The
solution uses those aspects to the fullest showing their potential. However, the
implementation should maintain the integrity while using the features of Django,
using them for only what they were meant. Shortcuts in the implementation
should be highly avoided.

Override Django source code. The code should re
ect complexity that
goes beyond the out-of-box functionality. We will try to subclass parts of the
Django source code in order to preserve compact code and long term solutions.
This will integrate special needed functionality close to the rest of the Django
principles, obtaining a seamless and consistent solution.

Maintain extensibility. Avoid hardcoding when possible and make the way
for more functionality in the future.

Minimal use of code. The implementation should only contain crucial and
necessary code, keeping redundant code to a minimum. Most code in the im-
plementation should be obvious, and re
ect a balanced optimization retaining
code readability.

Isolate the web interface from DataPool. The DataPool module should
be isolated from the web module in highest possible degree. In theory, DPW
should not be aware of the underlaying DataPool module. In this way providing
the MVC pattern for both systems.

5.5 Core

This chapter will explain the essential data models and belonging functions
which are used together in order to ful�ll the behavior of the system. Function
arguments are simpli�ed or let out, and we will only cover the main responsi-
bilities for the di�erent parts.

It is important to point out one central design architectural concept in the
core that everything are based upon. As explained in section 5.3, we will be
working on an identical copy of the menu tree structure in the view code on the
server side. Hence, we are free to alter and modify the internal DataPool menu
tree in the view code in the best bene�t for the e�ciency. The algorithm for

CHAPTER 5. TECHNICALITIES 102

traversing the tree recursively will be the same every time we are performing
something on the whole tree. It is very convenient preserving this structure and
the belonging algorithm to maintain consistency and pattern throughout the
implementation. Another aspect which makes this approach e�ective, are the
Django forms created for each parameter (data item). The forms are instances
of a subclassed Django form class, holding their set of �elds for the respective
attributes of each data item. The system needs those forms to be able to do
validation and render them in the web interface a number of times during a
session. In the end of a DPW session, the new values from the user input also
needs to be fetched and converted back to the matching data item object in the
menu tree.

This makes it convenient to keep the menu tree structure and objects, and
only extend the tree by making a data item wrapper object for each data item.
The wrapper object will contain the real data item object, the Django form
object and a pre�x id in order to distinguish the forms when updating from
post data. The wrapper can contain all related information for each data item.
The approach keeps everything tidy and gives complete control. In the end, the
extended tree is cleaned when all operations on the menu tree are done, result-
ing in both updates values for the data items and the tree set back to normal
before serializing the tree again.

5.5.1 Django

Data model related in the Django application:

� DataItemWrapper { The class that operates as the wrapper for the data
item on server-side. Contains the id, data item and the form.

� LinkedTextInput(forms.TextInput) { A subclass of the Django
forms.TextInput . Similar to the super class, but altered to append an
anchor tag with a name attribute around the input �eld. This link are
used for linking in the animated scrolling e�ect to �nd the right one.

� DataTupleField(RegexField) { A subclass of the Django RegexField.
De�nes a new custom �eld type used for a representation of Python tuple
input in the web interface. The class provides a custom regular expression
for Python tuple syntax validation and conversion.

� DataListField(RegexField) { A subclass of the Django RegexField. De-
�nes a new custom �eld type used for a representation of Python list input
in the web interface. The class provides a custom regular expression for
Python list syntax validation and conversion.

� DataItemForm(forms.Form) { A subclass of Django forms.Form and rep-
resents the form belonging to all data items in the menu tree structure.
The form is wrapped by being put in the wrapper object during a web
session.

CHAPTER 5. TECHNICALITIES 103

� DataItemForm.__init__(self, data_item, parent, *args, **kwargs)
{ The constructor of the DataItemForm class. It contains all the logic for
creating the di�erent form instances for data items.

� _create_field(self, show_attr, attr_value) { A function called from
the constructor of the DataItemForm class. Responsibility for making the
appropriate �eld types for the data item attributes in the form instance.

Control handling in the Django application:

� index(request) { The main function of views.py and gets all incoming
HTTP request from the web browser.

� _traverse_tree_controller(action, node, data=None) { A central
function working as a controller and typically called from the index func-
tion. It controls all calls to other functions performing actions on the whole
menu tree. The function also provides a clean namespace convention for
calling tree procedures from theindex function.

� mi { The essential pointer to DataPool.menu, the DataPool API.

5.5.2 DataPool API

State-, server- and result handling in theMenuAPI.py:

� start_ui() { API function called from a simulation code in order to start
the preferred user interface. Responsible for starting the Django server.

� quit() { API function called at the end of a simulation code. A cleanup
and signaling function that cleans up old results and plots. Also responsi-
ble for checking for the reserved keywords'/Results' and '/ShowPlots'
in the menu tree for triggering and producing new results. Calls the quit
signal set_quit_signal() .

� set_quit_signal() {API function called from quit() . Setting the state
�le quit_status.dat in TREE_LOCATION.

� reset_quit_status() { API function called from start_ui() . Resets
the state �le quit_status.dat in TREE_LOCATIONto indicate normal state
and simulation code could be running again.

� clear_old_results() { API function called from quit() . Removes the
old results �le results.dat in TREE_LOCATION.

� remove_old_plots() {API function called from quit() . Removing old
plot �les from visualization in MEDIA_ROOT.

� check_for_plots() { API function called from the server-side view code.
Checking after plot �les in visualization in MEDIA_ROOT. Returns a list
of names of present plot �les.

CHAPTER 5. TECHNICALITIES 104

� check_for_results() { API function called from the server-side view
code. Checking for results inresults.dat . Converts present results to a
Python list which are returned.

� status_web_done() { API function called from the server-side view code.
Setting the state �le status.dat for signaling the 'start' action from the
web interface.

� wait_for_signal_web() { API function called from start_ui() . Con-
tinuously checking for an alteration of the state �le status.dat that in-
dicates the 'start' signal sent from the web interface, and than gives the
control back to the caller (start_ui()).

� wait_for_quit_signal() { API function called from the server-side view
code. API function continuously checking for an alteration of the state �le
quit_status.dat which indicates the simulation code is done, and than
gives the control back to the caller (server side).

Settings:

� DATAPOOL_ROOT = '/path/to/DataPool/root' { Location of DataPool
module on system (forward slashes on Unix).

� TREE_LOCATION = '/path/to/.datapool/' { Work directory .datapool
for the DataPool module (forward slashes on Unix).

� DEFAULT_WEB_URL = 'http://localhost:8000/datapool/' { Default web
URL for DPW.

� DEFAULT_PORT = '8000'{ Default web URL port.

5.6 Program Flow

In this section we will cover the internal program
ow of our implementation of
DPW and argument for the system design. The thesis will show the total con-
junction, involving the di�erent modules of the system and explain the di�erent

ows in detail and why they were made like this. Describing speci�c source code
will not be included here.

5.6.1 Approach

The design philosophy regarding the distinction between DataPool and DPW is
central for the chosen program
ows described. Regardless of the web interface
working on an identical copy in its own space, we continue to follow this angle.
In practice, meaning the Django implementation avoids the use of DataPool
core functions. The implementation of DPW does not make any calls to the
DataPool core functions directly. Calls touching the core, comes from the calls
made from the called API functions. However, no core functions called, but the
view code takes use of direct contact in the core, tough only for fetching the
root menu pointer: mi.menu.root

CHAPTER 5. TECHNICALITIES 105

In addition we got the di�erent API calls described in the previous section,
not working on the menu tree structure at all, but the state �les. This results
in complete separation of the systems. Under is the description of the involving
functions.

Use of API functions which works on the menu tree structure:

� mi.set() { O�ers interface for updating the value of a DataItem.

� mi.get_fullpath() { Get the path to a MenuItem(submenu).

� mi.write(<file>, 'bin-pkl') { O�ers interface for saving data struc-
ture to binary �le.

� mi.load_from_bin('param_tree.pkl', path=settings.TREE_LOCATION)
{ O�ers interface for loading data structure from binary pickle �le.

Use of other API functions that only works on state or result �les:

� mi.status_web_done()

� mi.wait_for_quit_signal()

� mi.check_for_plots()

� mi.check_for_results()

5.6.2 Initial Browser View

All numbers refers to steps in Figure 5.2.
The �rst and initial view of the DPW in the web browser will be a result of a
HTTP GET towards the server. In short, behind the scenes this process consists
of �rst fetching the binary pickle �le to load the menu tree structure internally
in the server-side code to get it up running (3). Further, the process involves
traversing the whole tree while creating Django forms for all data items (4). As
mentioned in previous sections, this process swaps out the elements in theitems
of MenuItemwith DataItemWrapper objects for eachDataItem (7). The data
item object itself is put in this wrapper object together with the newly created
form object. The last thing added in the wrapper is a id number. At last, the
�nal part in this process will traverse the menu tree once more transforming
it into a nested Python list (8). Rendering the �nal HTML code for all data
items (10) and menu items (11) are also accomplished in this process. This
nested list represents the menu tree structure, holding rendered HTML strings
as elements instead of menu element objects. Finally, the returned list will be
sent for rendering in the base template in the web browser, which ends this
request (12).

CHAPTER 5. TECHNICALITIES 106

Figure 5.2: Program
ow - Initial Browser View

5.6.3 Browser Interaction

This section explains the underlying actions when the user presses either the
'save' or 'start' button in the web interface. The result of the click is an Ajax call
making a HTTP POST to the Django server. There is a lot going on here and
therefore split up in portions. The POST data can either be valid or invalid,
resulting in to di�erent operation blocks. If the data are valid, the validated
block in the diagram is performed. If the data contains issues, theerrors block
is performed.

1. Step - Validated

All numbers refers to steps in Figure 5.3.
The server side code will recognize the incoming request as POST. Before val-
idating the posted data, the system will update the already existing forms in
the menu tree with new data and the wrappers accordingly (3). Further, all
forms in the menu tree will be validated with the validation routine (6). Val-
idated data are safe to feed the data items in the tree, and is done by the
_update_tree_data() function (9). The menu tree now contains the new val-
ues from the POST, but we need to clean (11) the tree before saving it to a

CHAPTER 5. TECHNICALITIES 107

binary �le (13). The cleaning removes the wrappers and resets the extended
tree back to normal state ready for saving. As the last step, before either start-
ing the simulation or saving the values and returning to the web interface, we
prepare the system by extending the tree with the forms (14) and
attening
(16) it again.

CHAPTER 5. TECHNICALITIES 108

Figure 5.3: Program
ow - Browser Interaction - Validated

CHAPTER 5. TECHNICALITIES 109

2. Step - Operations

All numbers refers to steps in Figure 5.4.
If the post was only for saving the menu tree in an ongoing web session, the
system will render the menu tree back to the web browser ending the request (3).

In the case of a simulation start, the server-side code will signaling the API
and rest of the system the simulation code can continue its work (4). Then,
the server-side goes into a rest, giving the simulation code time to �nish (5).
The resting will last until the server-side gets a signal back again. When the
simulation code signals complete �nish, the process goes on with checking for
possible plots (6) and results (7) to be included in the �nal Ajax call to the web
browser for visualization (8). This ends the request.

CHAPTER 5. TECHNICALITIES 110

Figure 5.4: Program
ow - Browser Interaction - Operations

Errors

All numbers refers to steps in Figure 5.5.
If the post data turned out to be invalid, the system will
atten the menu tree
to a rendered nested list (3), create a global error list (4) for the administration
panel in the web interface and then rendering it in the web browser (7).

CHAPTER 5. TECHNICALITIES 111

Figure 5.5: Program
ow - Browser Interaction - Errors

5.6.4 System State Handling

All numbers refers to steps in Figure 5.6.
This subsection goes deep into the important state handling system involving
the signals and the state �les. New aspects introduced here is the role of the
.datapool storageholding state and result �les. The simulation start operation
described earlier is also presented here with its lifeline put into the total context
(10, 11, 16, 17). The sequence-state diagram shows the API initially saves the
menu tree structure to binary (3) so the server-side can load this when started
(4, 6). Then the API goes into waiting-state, letting the web interface get the
lead (7). The API will continue and load the new menu tree (12), dumped to bi-
nary by the web again (10), when the server-side sends thestatus_web_done()
signal (11).

The API will �nish its start_ui() and let the simulation code perform the
remaining steps before ending the code by sending the cleanup signalquit()

CHAPTER 5. TECHNICALITIES 112

(13). The server-side will pick up this signal, return from the waiting-state (16),
fetch generated plots and results (17), made by the cleanup signal, before �nally
making an Ajax call back to the web browser ending the whole process (18).

Figure 5.6: Program
ow - System State Handling

CHAPTER 5. TECHNICALITIES 113

5.6.5 Form Creation

All numbers refers to steps in Figure 5.7.
Now we go deeper into the very central internal process of creating the Django
forms for all data items in the menu tree. This involves the longest functions
measured in lines of code. The constructor of the form class (1) steer the pro-
cess, while the class function_create_field() analyze the attributes of the
data item and creates and sets up the correct �elds for the corresponding form.
A highly similar process is also performed when the system runs the form up-
dating function.

Figure 5.7: Program
ow - Form Creation

CHAPTER 5. TECHNICALITIES 114

5.6.6 Form Validation

All numbers refers to steps in Figure 5.8.
Django has a validation system following a certain convention. The normal
procedure for doing data validation on a Django form is calling the form class
method is_valid() . This starts the whole validation process which are divided
into 3 actions. The term clean, is to validate data and send it along to the next
step. The sequence:

1. Field type cleaning. This is the �rst part of the cleaning process. All
�elds are cleaned in a generic way for a �eld type. This is typical validation to
check if the input type is correct, like
oat, int, string etc.

2. Field-speci�c cleaning. This gets the cleaned data from the �eld type
cleaning. This step performs cleaning speci�c for the attribute. Hence, aspects
not related to the type of �eld. If the �rst validation step succeeded and sent
a valid string to this process, this step could be the place for checking special
required patterns in a string or similar. It is important to state that this step
will not be done on �elds that did not pass the �rst step, but step 2 will always
do validation for the cleaned ones from step 1 without breaking the sequence.

3. Form cleaning This �nal process starts when step 1 and 2 are completed
on all the �elds in the form. This step involves optional validation logic on all
previous cleaned �elds. This is the place to do dependency validation that spans
several �elds. This step is always performed.

In our implementation of DPW we have several �elds to validate for each data
item depending on the variating number of attributes in the form (2-11). Two
�eld-speci�c clean functions (step 2) are also de�ned for thevalue attribute and
the minmaxattribute, respectively: clean_value() (12) and clean_minmax()
(13). The form validation will as mentioned always be performed (14). In the
implementation of DPW this results in the following sequence
ow when form
validation is performed on the whole menu tree:

CHAPTER 5. TECHNICALITIES 115

Figure 5.8: Program
ow - Form Validation

5.6.7 Menu Tree Rendering

All numbers refers to steps in Figure 5.9.
We will now cover the last step in the server side view code before everything are
rendered in the web browser. This process is the most transforming one in the
whole system, and is a direct solution tailored to the built-in Django template

CHAPTER 5. TECHNICALITIES 116

�lter called unordered_list . This template �lter provided by Django o�ers
automatic generation of an unordered list. It takes a self-nested python list
as input and automatically transforms it into a HTML unordered list without
opening and closing the tags. In our base template,template.html , the
�lter is used on the menu tree variable sent from the view code with one single
statement. This template code block is only needed in the template:

{{ data|unordered_list }}

A nested Python list of this structure:

['Items', ['Menu1', ['Data_item_1', 'Data_item_2'], 'Menu2']]

Would result in the following HTML using the template �lter through the
Django template engine:

Items

Menu1

Data_item_1
Data_item_2

Menu2

Taking use of this powerful template �lter, the implemented solution is tai-
lored to take advantage of this feature. Following the usual recursive algorithm
for traversing the menu tree, we build up a nested list structure for all the
menu element objects in the tree (2). During the recursion, the form objects
belonging to menu items and data items are rendered (3, 8) into HTML and
appended to the nested list. The render methods are using the templates stored
in the templates directory, and rendered ad-hoc (7, 12)) as the nested list is
constructed. The procedure will for each menu item and data item de�ne the
context, by gathering the necessary data (4, 5, 6, 9, 10, 11), before rendering
it. Finally the view code will call render_to_response , which is the built-in
Django function that ends the session by sending the data to the web browser
(13). In this last step, we take use of the convenient template �lter in the base
template, keeping the template exceptionally clean (14).

CHAPTER 5. TECHNICALITIES 117

Figure 5.9: Program
ow - Menu Tree Rendering

5.6.8 Interaction: JQuery

Four JavaScript �les makes up the DPW implementation and have the respon-
sibility for web interface interaction:

� anchor.jquery.js { Special code for animation scroll linking. A modi�ed
and tailored version of this script for our implementation.

� datapoolweb.js { The main DPW source code written from scratch han-
dling all aspects of interaction.

� jquery.livequery.js { Special code for real-time update of DOM [4]
tree when doing manipulation with the jQuery library (plug-in).

� jquery-1.2.6.min.js - The source code of the jQuery library.

CHAPTER 5. TECHNICALITIES 118

The JavaScript handles di�erent functionality in the web interface:

� Initiation of the tree state, and show the �rst submenu.

� Initiation of the tree state when errors are present.

� Show data item bodies with errors slided.

� Set expanded e�ect on all submenus in the path to data items with errors.

� The toggle sliding e�ect on data item bodies.

� Animation scroll e�ect (anchor linking).

� Ajax call for simulation start.

� Submitting the forms.

� Menu Chooser handling.

� Global tree functions.

� Expanding/collapsing submenus (and the collapse-symbol).

� Sliding submenu Quick-menus.

5.6.9 Alternatives

In the early start of the thesis a JavaScript library named EXT JavaScript [16]
was investigated. A highly out-of-box widget based library with a solid appear-
ance. However the library was too comprehensive in this context and gave a an
unacceptable overhead to the rest. The functionality needed for DPW turned
out to be hard to implement using this library. The main reason could be stated
to be strong coupling to the prede�ned and lengthy built in objects. Emphasiz-
ing that EXT JavaScript is a powerful and outstanding library, but not optimal
for our needed solutions.

For user input validation, the LiveValidation JavaScript library [17] for client
side form �eld validation could be satisfying. It provides a large toolbox and
platform for de�ning validation rules in JavaScript. This is very convenient for
stopping errors before submitting forms, and will probably reduce the server
load. Anyway, it was avoided in the end since it demands heavy embedding of
dynamic JavaScript de�ned on server-side to be of any use in our implementa-
tion, resulting in even more work. The most obvious reason is to take use of the
powerful Django validation, which is one of the main aspects of this thesis.

5.7 Variations in DataPool

The implementation of DPW comes with a slightly di�erent modi�cation com-
pared to the original DataPool source code.

CHAPTER 5. TECHNICALITIES 119

5.7.1 MenuAPI

MenuAPI.py�le has several functions needed especially for DPW. However, this
is according to the design principles of DataPool, the API should be exchange-
able to �t di�erent needs. All other functions in this �le is similar to the original
DataPool source code.

5.7.2 Settings

The settings �les inclusion di�ers from the one in the DataPool source code.

Chapter 6

Alternative Framework:
TurboGears

6.1 Intro

The contents described in this section concerns the TurboGears 1.0 version.
During this thesis the framework released a 2.0 version in parallel. The Tur-
boGears project exists today of two di�erent versions, where the 1.0 version is
still maintained for old users, and the 2.0 is fronted as the future road for the
framework. The main di�erence between the editions are changes regarding the
underlying modules of TurboGears. The concept of TurboGears which makes
up its architecture, is the collection of the independent technologies and how
they are related and used together. As of version 1.0 the involved constructs of
the framework are:

SQLObject. A Object Relational Manager providing the object interface to
the database with a Python-object-based query language.SQLAlchemy [5] will
be used as default in TurboGears� 1.1.

CherryPy. Object-oriented HTTP web application framework written in Python.
Handles the data
ow and HTTP requests in the web application. TurboGears
� 1.1 will actually be using the third-largest Python web framework Pylons [30]
using it as a middleware for back-end logic.

Kid. A template engine where all templates are valid XHTML/XML. This
gives the opportunity to open the template as simple XHTML �les to check
the design. The template language use a technique to embed Python code
snippets inside the markup tags, like XML. Genshi [29] is the successor to Kid
in TurboGears � 1.1.

MochiKit. MochiKit is the preferred (optional) and default JavaScript library
for TurboGears. The library is written to make development in JavaScript
more Pythonic. In TurboGears it is mainly used for Ajax handling and widgets
developed for the web framework.

120

CHAPTER 6. ALTERNATIVE FRAMEWORK: TURBOGEARS 121

6.2 Approach

Before trying to implement DPW using this framework the decided approach
were to carry through this using the API function walk() . In this way making
a proof-of-concept for developing alternative web interfaces using this generator
function provided by the DataPool.

The chosen method for form creation was copied from the implementation
made with Django. The inclusion and fetching of the binary �le in order to
make the internal menu tree was also done.

The TurboGears framework is di�erent in many ways when it comes to the
handling of the MVC pattern of an application. The most obvious di�erences
from Django regards the URL handling and request mapping to the internal
view functions. All view code is located in the controllers.py �le. The �le
contains the di�erent controller classes for the application. The required class
are the Root class:

class Root(controllers.RootController):

@expose(template='datapoolwebturbo.templates.index')
def index(self, tg_errors=None):

for f in static_tableform.fields:
print f.render()

return dict(forms=forms, submit="Save")

@expose()
@validate(form=static_tableform)
@error_handler(index)
def save(self, **data):

"""Handle submission from the form and save."""

redirect(url('/'))

The framework has a strong concept of using Python decorators for di�erent
types of actions. The@exposedecorator with a template path provided de�nes
which template to use for the speci�c view function. The mapping of incoming
URL requests to the right view functions is magically done behind the scenes.
The framework will automatically �nd the function name at runtime, meaning a
request for http://localhost:8080/index , will result in calling the index function
of the root controller class. There are plenty of di�erent validators that can be
appended to the functions, making the connections to other functionality in the
system, and validation and error handling are just examples (@validate and
@error_handler).

6.3 Challenges

After getting an overview over the basic functions, concepts and approaches of
the framework, the usual concepts were put into practice. However this turned

CHAPTER 6. ALTERNATIVE FRAMEWORK: TURBOGEARS 122

out to be a highly cumbersome task from the start. It seemed hard to copy
the same approaches and concepts from the Django implementation using the
typical and standard user patterns of the TurboGears framework. The decision
were made to take a look at the source code of the framework in the hope of
manage to subclass and tailor it for our need. This drove the process a little bit
further and generated a form from the test data, though being very buggy.

Thoroughly study of the source code and long sessions of experiments lead
to a solution using three di�erent widgets in a type of connection. The imple-
mentation using the three widget in a connection are shown under sequential:

1. widgets.TableForm :

forms = _traverse_tree()
static_tableform = widgets.TableForm(fields=_create_static_form(forms),

name='form')

2. FormFieldsContainer :

def _traverse_tree():
prefix = 0
forms = []

Create field widgets
for item in mi.walk(mi.menu.root):

for dataitem in item[2]:
prefix += 1
form_fields = widgets.FormFieldsContainer(

fields=_create_fields(dataitem, prefix))

forms.append(form_fields)
Set validator
_set_required_validator(forms, DataItem._required_attr)

return forms

3. widgets.TextField :

def _create_fields(data_item, prefix):
fields = []
Traverse the defined attributes to show and create fields
for show_attr in data_item.attr_show_order:

'attributes' dict where attribute belong
if data_item.attributes.has_key(show_attr):

Only show attributes with a value set (not None)
if data_item.attributes[show_attr] != None:

fields.append(widgets.TextField(
name='form_'+show_attr+'_'+str(prefix),
label=show_attr,
default=data_item.attributes[show_attr]))

'user_def' dict where attribute belong
elif data_item.user_def_attr.has_key(show_attr):

Only show attributes with a value set (not None)
if data_item.user_def_attr[show_attr] != None:

fields.append(widgets.TextField(

CHAPTER 6. ALTERNATIVE FRAMEWORK: TURBOGEARS 123

name='form_'+show_attr+'_'+str(prefix),
label=show_attr,
default=data_item.attributes[show_attr]))

return fields

Here is the outcome of the form considered semi-functional and not complete:

Figure 6.1: Form generated with TurboGears.

6.4 Conclusion

The TurboGears approach of attacking the same concepts of the Django imple-
mentation resulted in challenges. The result was neither satisfying regarding
all the struggling behind it, proving the obviousness of TurboGears not being
optimal for our needs. The framework speaks of itself of being an out-of-the-box
framework focusing on rapid web application and the creation of Ajax power.
We were able to make other small applications which were very easy to set up
(not DataPool related), proving TurboGears on the other side to has succeeded
in being production ready.

The conclusion is clear, TurboGears not being constructed to be
exible
enough for our demands and not meant for this kind of use. Django is in
addition to its application MVC, also designed to be easily extended in the
means of subclassing. This is also re
ected through Django's documentation,

CHAPTER 6. ALTERNATIVE FRAMEWORK: TURBOGEARS 124

which is not the case for TurboGears, which arguments further for the other
characteristics for the latter. In the case of realizing web applications in the
web 2.0 spirit with easy shortcuts for Ajax technicalities, TurboGears will stand
for itself. The last point to be stated, are the higher level of magic in the
TurboGears framework re
ected through its di�erent conventions. Django gives
the user much more power in these situation. The magic behind the scenes in
TurboGears hide details of the application, and this could be an argument to
be more appropriate for developers who accept the conventions as long it serves
their needs of creating typical web 2.0 applications. However, as mentioned
in section 4.6 there has actually been made some widgets with the roots in
Scienti�c Computing by using TurboGears, but this demands further research.

Chapter 7

Conclusion

This section summarizes the purpose of this thesis and presents our main con-
tributions. Also, a possible future road for development is also proposed and
described.

7.1 Summary

The motivation for this master thesis was to �nd a way of increasing the e�-
ciency and usability when performing computational simulations, by extending
and equipping the GUI module of the package DataPool with a highly visual,
easy-to-use and powerful user interface. DataPool is a con�gurable Python
package and tool for managing and controlling input data in simulation pro-
grams, by building up a menu tree structure for the involved parameters and
attributes. The angling of a possible solution was set on realizing this with the
use of Python web frameworks, since the package is used for simulation code
written in Python. The thesis were to investigate the feasibility of obtaining a
satisfying solution abiding loose coupling, extendability and being generic in a
framework-based implementation. The starting point of evaluated Python web
frameworks was Django, which also become the main focus and aim for the
process. Other framework for Python like TurboGears was also up for evalua-
tion and compared and re
ected with the former. The thesis made an in-depth
investigation and evaluation of the Django framework in order to follow a set of
implementation guidelines in best possible manner.

7.2 Contributions

We have through a process with two thesis with a certain overlap been able to
realize the creation of an user interface built on top and tailored for the Dat-
aPool package as an extension. The result is the user interface DPW (DataPool
Web). DPW is a web-based menu system designed to present the internal tree
structure de�ned through the DataPool package in the most usable and e�ective
way according to user interaction. It focuses on user interaction, practical func-
tions and visual communication in order to make the use of DataPool package
easy and time saving in extensive and large computer simulations with a lot of
parameters. The interface has the ability to present large amounts of data in

125

CHAPTER 7. CONCLUSION 126

an e�ective and lucid manner for the user.

DPW was created with the help of the Django framework, and in this thesis
has introduced the present situation of Python web frameworks and highlighted
the two most important of them. We have rati�ed the increasing use of Python
as a language in the web business shown though the arising trend of web frame-
works. The importance of utilizing and focusing on web frameworks outside of
the normal web-scope have been stated, and also proved to be of high bene�ts.
The Django framework have clearly a remedy for inter- and intra crosscutting
in web applications. In the context of using tools from the world of web 2.0
in the scienti�c computing domain, we decided to base the design and layout
upon web 2.0 design elements to equip our solution with a modern and inspiring
environment when working with complex simulation.

The creation of concepts of visual e�ects in order to increase e�ciency have
been done in DPW, in addition to introducing a visual function for controlling
de�ned dependencies in the menu tree structure, built-in value unit conversion,
input error handling, handling of Python type representations. The feature pro-
viding support for visualization of results in form of plots and numeric result,
is making the DPW characteristics more a problem solving environment.

Furthermore, during our research and implementation some challenges were
met along the road. The integration of a solution for a system state handling
had to be made in order to make the communication between the di�erent mod-
ules complete. The main reason for this challenge has the roots in the Django
web server running in its own environment and Python context. This aspect
will be up for further discussion in the section 7.3, covering possible future en-
hancements. We ful�lled all the implementation guidelines de�ned prior to the
implementation, and the �nal technical implementation proved to be utilizing
the core feature of Django to the fullest. Last, but not least, we succeeded in
creating DPW without touching the core of the DataPool package. We also
managed to keep the use of the DataPool API to a minimum. We can conclude
the outcome of the thesis is an useful scienti�c web interface and a proof-of-
concept regarding to both the use of Django and how it was implemented. Our
�nal result is an interface implemented with a non-intrusive approach towards
the DataPool package. On the other hand, our solution gives the users a a
non-intrusive approach towards the simulation code utilizing DataPool. The
simulation code is not aware of the DataPool package, and the latter is not
aware of the DPW. Three systems built independently, but functioning per-
fectly together, using the exchangeable API as the glue.

Finally, as an alternative we evaluated the second most known Python web
framework TurboGears. The usual concepts of the framework were put into
practice, and turned out to be a highly non-productive task from the start. We
were able to implement a simple prototype in the end, but the framework was
quickly considered not being optimal for our needs. We have proven in this
thesis that a framework stating to be equal and an out-of-the-box framework
focusing on rapid web application and the creation of Ajax power, is not
exible
enough and meant for our type of implementation.

CHAPTER 7. CONCLUSION 127

7.3 Future Work

7.3.1 Visualization of Results

Future possibilities regarding DPW functionality could be extending its result
visualization. We could introduce new API functions with more complex fea-
tures for de�ning di�erent simulation output. One suggestion is more interactive
plots or matrices. A matrix could be holding di�erent result quantities calcu-
lated on di�erent series of moments in time. Those matrices could be operated
hovering over them showing the di�erent values generated from the simulation.
Also, the plots could operated hovering over regions of the graph presenting the
di�erent values.

7.3.2 Web Service

DataPool is run locally with the web browser for the web interface, and the
simulation systems involved are located together with DataPool on the same
hardware. A future aspect of the DataPool system could be expanding the ser-
vices towards a more distributed service system. This can be done connecting
DataPool to existing web services with SOAP and WSDL [25, p. 94]. In this
way DataPool could support a collection of SOAP web services in addition to
the built-in technology it o�ers, without worrying about programming imple-
mentation of the services [7, p. 94]. This kind of SOA support could be easily
plugged in and tailored for users with special needs. In this way, as Puppin and
Tonelotto stating: Scientists are not anymore bound to a single machine (or a
single cluster of machines) and a single source of data.... [28, p. 1].

In the coming era with cloud computing, the obvious enhancement of Dat-
aPool and DPW is to transform them into web services. Moving everything
over to a stand-alone server o�ering its own DataPool web service. The sys-
tem could handle multiple users in time sharing several simulation programs in
collaboration. The web service could o�er an intuitive and highly interactive
in-line editor for the hosted simulation programs. Further, the solution could
provide drag-and-drop functionality for de�ning the menu tree structure. Fi-
nally, simulation results could be embedded into a comprehensive visualization
engine in the same workspace. With other words, a PSE web service, o�ering the
DataPool functionality without the need for local con�guration and installation.

7.3.3 Integration with the FEniCS Project

DataPool/DPW could also be tailored and integrated for the FEniCS Project
[26]. FEniCS is a free software for automated solution of di�erential equations,
involving tools for working with computational meshes, �nite element varia-
tional formulations of PDEs, ODE solvers and linear algebra. Since FEniCS is
based on a collection of interoperable components/projects, DataPool could be
a part of this software. DOLFIN mentioned in section 1.1, is the C++/Python
interface of FEniCS, providing a consistent PSE (Problem Solving Environment)
for ordinary and partial di�erential equations and DataPool could be tailored
and function as a complement.

Bibliography

[1] Python for scienti�c gateways development. Grid Computing Environments
(GCE), 2007.

[2] Wes Bethel, Cristina Siegrist, John Shalf, Praveenkumar Shetty, T.J.
Jankun-Kelly, Oliver Kreylos, and Kwan-Liu Ma. Visportal: Deploying
grid-enabled visualization tools through a web-portal interface. InProceed-
ings of 3rd Annual Workshop on Advanced Collaborative Environments,
June 2003.

[3] deal.II O�cial Website. http://www.dealii.org/ .

[4] W3C Document Object Model (DOM). http://www.w3.org/DOM/ .

[5] SQLAlchemy The Database Toolkit for Python. http://www.sqlalchemy.
org/ .

[6] CherryPy framework. http://www.cherrypy.org/ .

[7] Nathan Holmberg, Burkhard W•unsche, and Ewan Tempero. A framework
for interactive web-based visualization. In AUIC '06: Proceedings of the
7th Australasian User interface conference, pages 137{144, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

[8] TurboGears Homepage.http://www.turbogears.org/ .

[9] T. J. Jankun-Kelly, Oliver Kreylos, Kwan-Liu Ma, Bernd Hamann, Ken-
neth I. Joy, John Shalf, and E. Wes Bethel. Deploying web-based visual
exploration tools on the grid. IEEE Comput. Graph. Appl. , 23(2):40{50,
2003.

[10] jQuery JavaScript Library. http://jquery.com/ .

[11] XML-based Templating Kid Pythonic. http://www.kid-templating.
org/ .

[12] Sergei Kojarski and David H. Lorenz. Domain driven web development with
webjinn. In OOPSLA '03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and appli-
cations, pages 53{65, New York, NY, USA, 2003. ACM.

[13] H. P. Langtangen. Computational Partial Di�erential Equations - Numer-
ical Methods and Di�pack Programming. Texts in Computational Science
and Engineering, vol 1. Springer, second edition, 2003.

128

BIBLIOGRAPHY 129

[14] H. P. Langtangen. Python Scripting for Computational Science. Springer,
second edition, 2005.

[15] H. P. Langtangen. Python Scripting for Computational Science. Texts
in Computational Science and Engineering, vol 3. Springer, third edition,
2009.

[16] EXT JavaScript library. http://www.extjs.com/ .

[17] LiveValidation JavaScript library. http://www.livevalidation.com/ .

[18] MochiKit A lightweight Javascript library. http://mochikit.com/ .

[19] A. Martelli and D. Ascher. Python Cookbook. O'Reilly, second edition,
2005.

[20] Rustam Mehmandarov.DataPool: A Tool for Handling Input Data in Sim-
ulation Programs. Master's thesis, University Of Oslo and Simula Research
Laboratory, 2009.

[21] D. Moore, R. Budd, and W. Wright. Professional Python Frameworks:
Web 2.0 Programming with Django and TurboGears. Wrox, 2007.

[22] B. Nron, P. Tu�ry, and C. Letondal. Mobyle: a web portal framework for
bioinformatics analyses. 2008.

[23] Boost C++ Libraries Program Options. http://www.boost.org/doc/
libs/1_39_0/doc/html/program_options.html .

[24] SQLObject ORM. http://www.sqlobject.org/ .

[25] Marlon Pierce and Geo�rey Fox. Making scienti�c applications as web
services.Computing in Science and Engg., 6(1):93{96, 2004.

[26] FEniCS Project. http://www.fenics.org/wiki/FEniCS_Project .

[27] The Django Project. http://www.djangoproject.com/ .

[28] Diego Puppin, Nicola Tonellotto, and Domenico Laforenza. How to run
scienti�c applications over web services. InICPPW '05: Proceedings of the
2005 International Conference on Parallel Processing Workshops, pages
29{33, Washington, DC, USA, 2005. IEEE Computer Society.

[29] Genshi Python toolkit for generation of output for the web. http:
//genshi.edgewall.org/ .

[30] Pylons Python web framework. http://pylonshq.com/ .

[31] DOLFIN O�cial Website. http://www.fenics.org/wiki/DOLFIN/ .

