Highly effective conversion of CO₂ into light olefins abundant in ethene

Sen Wang,^{a,†} Li Zhang,^{a,b,†} Pengfei Wang,^{a,†} Xingchen Liu,^a Zhangfeng Qin,^a Mei Dong,^a Jianguo Wang,^{a,b} Lin He,^{c,d} Unni Olsbye,^e and Weibin Fan^{a,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P.R. China

^b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China

[°] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

^d Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, P.R. China

^e Department of Chemistry, Centre for Materials and Nanoscience, SMN, University of Oslo, Blindern, NO-0315 Oslo, Norway

[†] These authors contributed equally to this work

* Corresponding author. Tel.: +86-351-4199009; fax: +86-351-4041153. E-mail address: fanwb@sxicc.ac.cn (W. Fan)

Abstract.

Conversion of CO₂ into value-added light olefins is a potential strategy for sustainable utilization of fossil energy and biomass due to realization of carbon neutrality. However, highly selective production of light olefins, particularly of specific olefin such as ethene, from CO₂ hydrogenation is a challenge. Thus, a new catalyst system consisting of Cr₂O₃ oxide and H-SAPO-34 zeolite is manufactured here. It shows a $C_2^{=} - C_4^{=}$ selectivity in hydrocarbons as high as 95.7% along with CH_4 and $C_2^0 - C_4^0$ selectivities of only 1.2% and 2.5% respectively at CO₂ conversion of 13.1% at 370 °C and 0.5 MPa. More interestingly, about 74.2% of light olefins is ethene, and the ethene/propene ratio reaches 3.1, being more than 3 times of previously reported results. Such an unprecedented catalytic performance can be well maintained at least within 600 h. A combination of in situ spectroscopy, density functional theory (DFT) calculation and molecular dynamic (MD) simulation results reveals that ethanol is directly produced on Cr2O3 through successive hydrogenations of CH3COO* intermediate species, which is generated through the interaction of CO₂ with CH₃* formed by dissociating the C-O bond of H₃CO* intermediate, not the insertion of CO in the H₃CO*. The produced ethanol is quickly converted into ethene on H-SAPO-34 and responsible for the primary light olefins product.

The fast consumption of fossil fuels leads to massive emission of CO₂ that causes the serious greenhouse effect and global climate change. CO₂ capture, storage and further conversion into various value-added chemicals, such as methane (CH₄), methanol (CH₃OH), formic acid (HCOOH), light olefins and aromatics, can not only reduce the CO₂ amount in atmosphere, but also develop a potential route to achieve carbon neutrality.^{1–15} As an important commodity product, light olefins (C₂⁼ – C₄⁼) directly converted from CO₂ has attracted many research interests.

Direct conversion of CO₂ into light olefins has been achieved via the modified Fischer–Tropsch (FT) synthesis and the formation of methanol intermediate.^{16–20} Generally, the $C_2^{=} - C_4^{=}$ selectivity is lower than 61%, while the CH₄ selectivity reaches 25% in FT synthesis as a result of Anderson–Schultz–Flory (ASF) rule.²¹ This is because CO₂ is firstly converted into CO via the reverse water-gas shift (RWGS) reaction, and subsequently transformed into hydrocarbons in the FT synthesis route.^{22–24} To surmount the ASF rule, various metal oxides and zeolites composite catalysts have been developed as they catalytically convert CO₂ into methanol, and further into alkenes. In this way, the $C_2^{=} - C_4^{=}$ selectivity gets to 70 – 87% in hydrocarbons with a significant decrease of the CH₄ selectivity to 1 – 5% and that of $C_2^{0} - C_4^{0}$ to 10 – 25%.^{25–29}

On the other hand, control of light olefin distribution is also a challenge at a high $C_2^{=}$ – $C_4^{=}$ selectivity. Ethene is a basic building block for many petrochemicals, and thus, has a huge market demand.^{30–33} Usually, ethene is produced by steam cracking of naphtha, but it is an energy-consumption process. Therefore, development of a green and costly effective pathway to produce light olefins, particularly ethene, is of great interest, as it is scientifically

important too. Thus, direct transformation of CO₂ into ethene under mild conditions is of great interest. Recently, several Cu-based catalysts have been prepared for electrocatalytic reduction of CO₂ (CO₂ RR) into C₂ product mixture of ethene, ethanol and acetaldehyde.^{34–39} However, there is a long way to go due to its very low efficiency. With respect to thermocatalytic processes, FT synthesis generally gives a (C₂⁼ + C₂⁰) selectivity \leq 30%,^{17,40–43} It also holds true for the route via formation of methanol intermediate; the ethene selectivity is not higher than 35%.^{44–50} From both the practical and the theoretical viewpoints, it is imperative and necessary to manufacture a highly efficient catalyst system for hydrogenation of CO₂ to light olefins, and particularly of ethene.

In this context, a new composite catalyst consisting of Cr_2O_3 oxide and H-SAPO-34 zeolite is fabricated here for efficient conversion of CO_2 to light olefins. Interestingly, it shows a $C_2^{=} - C_4^{=}$ selectivity as high as 95.7% in hydrocarbons, while the selectivity to CH₄ and that to $C_2^{0} - C_4^{0}$ alkanes of only 1.2% and 2.5% respectively at 370 °C and 0.5 MPa. In particular, ethene accounts for more than 74% of light olefins at CO₂ conversion of 13.1% and CO selectivity of 36.0%. As a consequence, the ethene/propene (E/P) ratio reaches 3.1, being more than three times of previously reported results (E/P ratio: ≤ 1.0).^{44–50}

Results

Catalyst characterization. The Cr_2O_3 oxide and H-SAPO-34 zeolite were synthesized by the sol-gel and the hydrothermal methods respectively. X-ray diffraction (XRD) pattern of Cr_2O_3 oxide shows that it has a hexagonal structure (Figure 1a and 1c), as indexed to the (012), (104), (110), (113), (024), (116), (214), (030) and (220) crystal facets (JCPDS 96-900-8096). These crystal facets are further confirmed by its selected-area electron diffraction (SAED) patterns (Figure 1f). The interplanar spacing of 0.264 nm, being correspondent to the (104) crystal facet, was observed in the high-resolution transmission electron microscopy (HRTEM) image (Figure 1e). Cr_2O_3 oxide is aggregates of small nanoparticles (NPs) with a means size of 20.7 nm (Figure 1d) and a uniform and high dispersion of both Cr and O atoms (Figure 1g). Its surface area and pore volume are 60.8 m² g⁻¹ and 0.39 cm³ g⁻¹ (Figure S1 and Table S1).

Figure S2 shows the Cr(2p) x-ray photoelectron spectra (XPS) of Cr₂O₃. Two intense peaks are observed at about 577.5 and 586.9 eV, which are assigned to $2p_{3/2}$ and $2p_{1/2}$ of Cr^{3+,51} The shoulder peaks around 579.9 and 589.1 eV indicate the existence of certain amounts of Cr^{6+} species.⁵² These Cr^{6+} (r = 0.44 nm) species can be mostly reduced to Cr^{3+} (r = 0.62 nm) upon treatment at 400 °C for 2 h in H₂ (Figure S2), which is supported by the shift of x-ray diffraction peaks to lower 20 values as a result of unit cell expansion (Figure 1a, Figure S3 and Table S2). The intense peak at 531.0 eV in O(1s) XPS (Figure 1b) reveals the presence of large numbers of surface oxygen vacancies (49.3%).⁵³ It is supported by observing an obvious broad peak between 150 and 450 °C in the CO2-TPD profile (Figure S4a), which is ascribed to chemically adsorbed CO_2 on surface oxygen vacancies.⁸ In situ O(1s) XPS shows an increase of surface oxygen vacancy concentration after H₂ reduction (Figure 1b). This is consolidated by consuming large amounts of hydrogen between 150 and 250 °C in the H₂-TPR profile (Figure S4b), which is indicative of the presence of more surface reducible oxygen species.⁵⁴ It needs to point out that Cr⁶⁺ species can be reduced to Cr³ species, as indicated by the reduction peak between 250 and 450 °C (Figure S4b) in H₂

reduction and CO₂ hydrogenation processes,⁵⁵ but it is very difficult to be further reduced to metallic Cr, as confirmed by the in situ XPS and in situ XRD results (Figure 1a, Figure S5 and Table S3).

The prepared H-SAPO-34 samples have high crystallinity and their crystals are cuboid with a size of about 1 μ m (Figure S6c). Powder mixing of it with Cr₂O₃ oxide does not influence its structure (Figure S6a). SEM and TEM images show that Cr₂O₃ NPs are dispersed on the H-SAPO-34 crystal surface (Figures S6b, S6d and S6e), as a result, leading to a slight decrease of the surface area and pore volume of H-SAPO-34 (Figure S7 and Table S4).

Catalytic evaluation. Figure 2a shows the catalytic results of Cr₂O₃/SAPO-34 composite for hydrogenation of CO₂. At 370 °C and 0.5 MPa, $C_2^{=} - C_4^{=}$ selectivity in (hydrocarbons + oxygenates) and $(C_2^- - C_4^-)/(C_2^0 - C_4^0)$ (O/P) ratio reach 96.0% and 41.8 at a moderate CO₂ conversion of 12.7% along with the selectivities to undesired CH₄ and $C_2^0 - C_4^0$ of just 1.0% and 2.3%, respectively. In addition, the CO selectivity is not high (32.0%). To the best of our knowledge, this light olefins selectivity is much higher than all the reported values not matter that the hydrogenation of CO₂ occurs via the Fischer-Tropsch (FT) synthesis (35 -61%) or the methanol-intermediate (70 - 87%) route.^{16-20,40-50} More interestingly, the ethene $(C_2^{=})$ selectivity accounts for 69.3% of light olefins (Figure 2b). This leads to a ethene/propene (E/P) ratio > 2.64, which is far higher than the results obtained on $ZnZrO_x/SAPO-34$, ZnAl₂O₄/SAPO-34, ZnGa₂O₄/SAPO-34, In₂O₃/SAPO-34 and InZrO_x/SAPO-34 in CO₂ hydrogenation,⁴⁴⁻⁵⁰ where the ethene selectivity and the E/P ratio are only 20 - 35% and 0.5 - 1.0 (Figures 2c, 2d, Figure S8 and Tables S5 and S6).

Figure S9 displays the effect of reaction temperature on the catalytic performance of $Cr_2O_3/SAPO-34$ for conversion of CO_2 into light olefins. CO_2 conversion, as expected, increases with the reaction temperature, but the selectivity to $C_2^{=} - C_4^{=}$ and that to ethene both reach the highest value of 96.0% and 66.5% at 370 °C and 0.5 MPa. At lower temperature of 300 °C, CO_2 conversion, $C_2^{=} - C_4^{=}$ selectivity and ethene selectivity decrease to 6.3%, 95.1% and 57.4%, respectively. However, when the temperature is increased to 400 °C, large amounts of CH_4 , $C_2^0 - C_4^0$ and CO are generated due to enhancement of hydride transfer and RWGS reactions.^{29,44-46}

The reaction pressure also has a great effect on the catalytic performance of Cr₂O₃/SAPO-34. At 370 °C, a lower pressure of 0.25 MPa leads to a CO₂ conversion of 8.2% and a ($C_2^{=} - C_4^{=}$) selectivity of 95.3% with 65.2% of light olefins being ethene (Figure S10), while a higher pressure of 3.0 MPa decreases the $C_2^{=} - C_4^{=}$ selectivity to 76.3% while considerably increases the $C_2^{0} - C_4^{0}$ selectivity to 18.3% owing to enhancement of light olefins hydrogenation, despite that CO₂ conversion is elevated to 21.5%. In particular, the ethene selectivity is significantly declined to 32.2%. This is probably because increases of the reaction pressure from 0.5 to 3.0 MPa promotes the formation of methanol (its selectivity raises from 37.5% to 77.9%) on Cr₂O₃ at the expense of ethanol (its selectivity drastically reduced to below 0.5%) (Figure S11).

On the basis of the above results, a new program is proposed for conducting the reaction by gradually lowering the reaction pressure. First, the reaction is carried out at 3.0 MPa. As expected, a $C_2^{=} - C_4^{=}$ selectivity of 74.5% (Figures 2e and 2f, and Figure S12), including 30.0% of ethene, 32.9% of propene and 11.6% of butene, was obtained on the

Cr₂O₃/SAPO-34. Then, a rapid reduction of the reaction pressure to 1.0 MPa raised the C₂⁼ – C₄⁼ selectivity to 93.6% along with a great increase in ethene selectivity to 59.5%. A more profound elevation of C₂⁼ – C₄⁼ selectivity to 95.7% and ethene selectivity to 71.0% was observed with a CO₂ conversion of 13.1%, when the reaction pressure was subsequently lowered to 0.5 MPa. At this condition, the E/P ratio reaches as high as 3.1.

The catalytic activity and light olefins distribution of $Cr_2O_3/SAPO-34$ are also related to the gas hourly space velocity (GHSV), the synthesis method of Cr_2O_3 and its integration manner with zeolite. An increase in the GHSV from 1700 to 4000 mL/(g·h) and powder mixing Cr_2O_3 and H-SAPO-34 benefit to the formation of ethene (Figures S13 and S14). $Cr_2O_3(SG)/SAPO-34$ shows higher CO₂ conversion than $Cr_2O_3(CP)/SAPO-34$, as the Cr_2O_3 prepared by the sol-gel method (designated as $Cr_2O_3(SG)$) has larger numbers of surface oxygen vacancies, which facilitate the adsorption and activation of CO₂, than the sample prepared by the co-precipitation method ($Cr_2O_3(CP)$) (Figures S15 and S16).

Catalytic stability. $Cr_2O_3/SAPO-34$ composite shows excellent catalytic stability in CO_2 hydrogenation to light olefins. At least within 600 h, the CO_2 conversion, $C_2^{=} - C_4^{=}$ selectivity and E/P ratio are well maintained at around 8.2%, 91.0% (ethene selectivity of 62.5%) and 2.6, along with a CO selectivity of about 35.0% (Figures 3a and 3b). XRD, N₂ sorption, SEM and TEM measurements evidence that compared to the fresh catalyst, the crystal structure and the dispersion of Cr_2O_3 NPs on H-SAPO-34 of the used sample have no significant change, although the surface area and pore volume reduce due to the formation of carbonaceous species in SAPO-34 (Figures S17).

Reaction mechanism. Figure S18 displays the catalytic results obtained on pure Cr2O3

oxide at 370 °C and 0.5 MPa in CO₂ hydrogenation. As expected, CH₃OH (selectivity of 37.5%) and CH₄ (selectivity of 24.1%) are the main components in (hydrocarbons + oxygenates) with a CO₂ conversion of around 5.0%. Nonetheless, appreciable amounts of ethanol (C₂H₅OH) were unexpectedly detected and its selectivity reaches 30.5% at initial stage. This suggests that the increases of the ethene selectivity on the Cr₂O₃/SAPO-34 should mainly arise from the quick conversion of the generated ethanol on Cr₂O₃ into ethene over H-SAPO-34.56,57 Indeed, when a methanol and ethanol mixture with the same mass ratio (methanol/ethanol = 1.60/1) as that produced at initial stage over pure Cr₂O₃ oxide in CO₂ hydrogenation (Figure S18) was fed on H-SAPO-34, a selectivity to $C_2^{=} - C_4^{=}$ of 96.2% with an ethene selectivity of 71.8% and an E/P ratio of 4.12 was obtained (Table S7 and Figure S19d), which are highly comparable to those attained on Cr₂O₃/SAPO-34 composite in CO₂ hydrogenation (Figures 2a and 2b). In contrast, in the methanol-to-olefins (MTO) reaction, the light olefins distribution is similar to those generally reported results with ethene, propene and butene selectivities of 25.6%, 45.7% and 18.7%, respectively (Table S7 and Figure S19a).^{58–62} One may think that methylation of ethene occurs when feeding methanol and ethanol mixtures, but it is not significant, as supported by an obvious reduction in propene and butene selectivities with increasing ethanol content in the feedstock at iso-conversions (75-85%) (Table S7 and Figure S19). Difficult transformation of produced ethene into other hydrocarbons is further confirmed by the catalytic result of H-SAPO-34 for conversion of pure ethanol; ethene selectivity gets to 98.4% (Table S7 and Figure S19e).

The detailed mechanisms for formation of methanol and ethanol on Cr₂O₃ oxide were investigated by combining in situ diffuse reflectance infrared Fourier transform spectroscopy

(DRIFTS), gas chromatography-mass spectrometry (GC-MS), density functional theory (DFT) calculation and molecular dynamic simulation (MD). After being exposed to a H_2/CO_2 flow ($H_2/CO_2 = 3/1$, 40 mL/min) for 1 min at 300 °C, the sample shows two board peaks in the ranges of 1470 - 1530 and 1200 - 1300 cm⁻¹ (Figure 4a), which are assigned to monodentate and/or bidentate carbonate species^{63,64} that are formed through adsorption of CO₂ on the surface oxygen vacancies of Cr₂O₃. Interestingly, the characteristic bands of formate species at 1592, 1562, 1354 and 1307 cm⁻¹ and methoxy species between 1025 and 1090 cm⁻¹ are subsequently identified, and gradually increase in the intensity with the reaction time.^{65–67} This suggests that the adsorbed CO₂ on the surface oxygen vacancies quickly transform into carbonate species, and further into formate and methoxy species, which are followed by hydrogenation to methanol.^{68,69} It is worth noting that the bands attributed to acetate (CH₃COO*),^{70,71} acetaldehyde (CH₃CHO*)⁷² and ethoxy (CH₃CH₂O*) species⁷³ are simultaneously observed at 1541, 1575 and 1715, and 1012 cm⁻¹, respectively (Figures 4a and 4b) in the beginning of the reaction. These species are the intermediates for formation of ethanol.

The evolution of formate, methoxy and acetate, acetaldehyde and ethoxy species with the reaction time is followed by in situ DRIFTS. The peaks for formate and methoxy species gradually intensify with prolonging reaction time, whereas those assigned to acetate, acetaldehyde and ethoxy species are enhanced up to around 20 min, and then weakened (Figures 4c and 4d), which is supported by the catalytic result that the ethanol selectivity rapidly reduces with the reaction time (Figure S18). A similar phenomenon was observed by Zhu and co-workers over Cu embedded in defect carbon.⁷³ Increase of the reaction

temperature from 300 to 340 and 370 °C leads to a more rapid weakening of the bands of acetate and acetaldehyde with the time on stream, along with the enhancement of the vibration bands of formate species (Figure S20).

The effluents in CO_2 hydrogenation at different reaction times are further analyzed by GC-MS spectra. Besides methanol, the ethanol is also distinctly detected on Cr_2O_3 at 370 °C and 0.5 MPa despite that its amount is much lower than that of methanol (Figures 5a, 5b, 5d and 5e). Moreover, some acetic acid species are observed at initial reaction stage, although their amount is quickly decreased with the reaction time (Figures 5c and 5f).

In contrast, no bands characteristic of acetate, acetaldehyde and ethoxy species but those of formate and methoxy species were observed in the in situ DRIFTS of ZnZrO_x for CO₂ hydrogenation (Figure S21), as reported in the previous literatures.^{44,74} This is further confirmed by the GC-MS analysis results that no ethanol and acetic acid species were detected during the whole reaction process in the effluents obtained on ZnZrO_x at 370 °C and 0.5 MPa (Figures 5g, 5h and 5i). Thus, ZnZrO_x/SAPO-34 shows an ethene selectivity of 38.6%, which is similar to typical MTO results (Figure 2d).

The intrinsic reaction kinetics for formation of methanol and ethanol on Cr_2O_3 are further investigated by density functional theory (DFT) calculation. CO_2 is firstly adsorbed on the Cr_2O_3 surface oxygen vacancies, and interacts with H* to form formate (HCOO*) and methoxy (H₃CO*) species through hydrogenations (Figure 6c). Then, CH₃OH* is generated through hydrogenation of H₃CO*.^{75,76} On the other hand, the H₃CO* can be dissociated into CH₃* species, and further interact with CO₂ to give acetate species (CH₃COO*). The CH₃COO* is subsequently transformed into CH₃CHO*, CH₃CH₂O* and CH₃CH₂OH* through sequential C-O breaking and hydrogenation reactions.^{77–80} The detailed optimized transition states of various steps and the calculated kinetic results are depicted in Figure 6a, 6b, Figure S22 and Table S8. The formations of HCOO* (TS2) and H₃CO* (TS6) intermediates require to overcome free energy barriers of 2.09 and 2.52 eV, with enthalpy barriers of 2.11 and 2.48 eV, and entropy losses of -0.02 and 0.04 eV, respectively, while hydrogenation of H₃CO* to CH₃OH* (TS7) just needs to surmount a free energy barrier of 1.72 eV and an enthalpy barrier of 1.60 eV, with a slight endothermic amount of 0.27 eV.

In comparison, the dissociation of C-O bond of H₃CO* to form CH₃* (TS1*) is more difficult, because its free energy barrier and enthalpy barrier reach 2.57 eV and 2.45 eV respectively. Once the CH₃* species is formed, it can rapidly interact with CO₂ to generate CH₃COO* species as results of lower free energy (1.48 eV) and enthalpy barriers (1.76 eV). Subsequently, the CH₃COO* is hydrogenated into CH₃CHO*, CH₃CH₂O* and CH₃CH₂OH* by overcoming free energy barriers of 1.76, 0.18 and 1.41 eV, with enthalpy barriers of 1.82, 0.22 and 1.39 eV, respectively (Table S8). The lower free energy barrier for the hydrogenation of H₃CO* to CH₃OH* suggests that methanol is more easily formed than ethanol on Cr₂O₃. Nevertheless, the energetic span model shows that the highest free energy surface and enthalpy surface for ethanol formation are only 1.30 and 1.74 eV respectively (Figure 6b).^{81,82} In addition, formation of ethanol is thermodynamically more favorable than that of methanol (–2.36 eV vs. –1.07 eV). Thus, CO₂ hydrogenation to ethanol is feasible on Cr₂O₃, although the activity is lower than that of methanol formation.

For $ZnZrO_x$ oxide, it gives a slightly lower free energy barrier and enthalpy barrier for hydrogenation of H₃CO* than Cr₂O₃ (1.67 and 1.45 eV vs. 1.72 and 1.60 eV); however, the

free energy barrier and enthalpy barrier for the dissociation of C-O bond of H_3CO^* to form CH_3^* (3.71 eV and 3.69 eV) and the generation of CH_3COO^* via the interaction of CH_3^* with CO_2 (4.80 eV and 4.67 eV) are much higher than those on Cr_2O_3 (2.57 and 2.45 eV, and 1.48 and 1.76 eV) (Table S9). Therefore, ethanol is much more difficult to be formed on $ZnZrO_x$ than on Cr_2O_3 .

It has been reported that the CH₃COO* species is produced on Pd-Cu and Rh nano particles through insertion of CO into the C-O bond of H₃CO* species.^{77,78} However, it requires overcoming a free energy barrier and an enthalpy barrier as high as 4.00 and 3.50 eV respectively on Cr₂O₃ (Figure S23). This shows that the formation of CH₃COO* species on Cr₂O₃ is energetically much more favorable through the interaction of CO₂ with CH₃* formed by dissociating the C-O bond of H₃CO* than through the insertion of CO into the C-O bond of H₃CO* species.

Another notable point is that the free energy barrier (1.92 eV) for methane formation on Cr₂O₃ through CO dissociation and subsequent hydrogenation^{83–85} is highly comparable to that for methanol formation (1.72 eV), but lower than that for ethanol formation (2.57 eV) (Tables S8 and S10). This implies that addition of CO is not good for the production of methanol and ethanol, as it would lead to formation of more CH₄ and other alkanes. Indeed, addition of CO into the feedstock (H₂/(CO₂+CO) = 3/1) heavily decreases the C₂⁼ - C₄⁼ selectivity, and especially, the ethene selectivity, while more CH₄ and C₂⁰ - C₄⁰ are produced (Figure S24). This is consolidated by the catalytic result for CO hydrogenation; much more CH₄ and C₂ - C₄ hydrocarbons (including alkenes and alkanes) are produced than in CO₂ hydrogenation at the serious expense of methanol and ethanol (Figure S25).

The in situ DRIFTS shows that the peaks characteristic of formate, methoxy, acetate and acetaldehyde species in CO hydrogenation are significantly weaker than those in CO₂ hydrogenation (Figure S26). This confirms that more methanol and ethanol are formed on Cr_2O_3 in CO_2 hydrogenation than in CO hydrogenation. One might say that the CO_2 hydrogenation process generates CO through the RWGS reaction, but the overwhelming amount of CO₂ inhibits the adsorption and the dissociation of CO, as CO₂ is more strongly adsorbed on the Cr₂O₃ surface than CO (Table S11). The molecular dynamic (MD) simulation results at realistic reaction conditions (370 °C and 0.5 MPa) further corroborated this point. Although the CO₂/CO molar ratio (45/5) in the reaction mixture in the initial optimized reaction system is lower than the experimental result (95/3.5) calculated from CO₂ conversion and CO selectivity in CO₂ hydrogenation (Figure S25), the strong adsorption of CO₂ completely expels CO from approaching the surface of Cr₂O₃ (Figure S27a and Video S1). Nevertheless, when the proportion of CO₂ was decreased to the CO₂/CO molar ratio of 1/49, which is higher than the actual value (0.4/99) in CO hydrogenation (Figure S25), the Cr₂O₃ surface is almost entirely occupied by the CO (Figure S27b and Video S2). As a result, significant amounts of C_1 – C_4 hydrocarbons are produced due to the dissociation of adsorbed CO and coupling of CH_x* species.

Discussion

In summary, a new catalyst system consisting of Cr_2O_3 oxide and H-SAPO-34 zeolite has been prepared, and it shows outstanding catalytic performance for direct hydrogenation of CO_2 into light olefins at 370 °C and 0.5 MPa; the $C_2^{=} - C_4^{=}$ selectivity in hydrocarbons reaches 95.7% with ethene accounting for 74.2% of light olefins (E/P = 3.1), but those of undesired CH₄, C₂⁰ – C₄⁰ and CO are only 1.2%, 2.5% and 36.0%, respectively, at CO₂ conversion of 13.1%. Such a catalytic performance can well be maintained at least within 600 h. In situ DRIFTS, GC-MS, DFT calculation and MD simulation results reveal that appreciable amount of ethanol is generated on Cr₂O₃ despite that methanol is the major product. The ethanol is formed through the interaction of CO₂ with CH₃*, which is produced by dissociating the C-O bond of H₃CO* intermediate species, and subsequent successive hydrogenations. It is then quickly converted into ethene on H-SAPO-34 molecular sieve, and thereof, leading to production of unexpectedly large amounts of light olefins with ethene as major product. This work provides not only a highly effective catalyst for conversion of CO₂ into light olefins abundant in ethene but also a new strategy for rational design of catalysts with the purpose of controlling light olefins distribution.

Methods

Catalyst preparation. Cr₂O₃ oxide was prepared by the sol-gel method. First, designed amounts of chromic nitrates (Cr(NO₃)₃•9H₂O) were dissolved in 150 mL of deionized water and stirred at room temperature for 2 h. Then, the glucose was slowly added at 80 °C and vigorously stirred for at least 8 h. The obtained colloid was dried at 100 °C for 12 h, and calcined at 300 and 500 °C for 1 and 3 h respectively in air.

SAPO-34 molecular sieve was synthesized with silica sol (JN-40), phosphoric acid (H₃PO₄), pseudo-boehmite (Al₂O₃) and tetraethyl ammonium hydroxide (TEAOH). The mixture with a composition of 2.0TEAOH: 0.05SiO₂: 1.0Al₂O₃: 1.0P₂O₅: 70H₂O was stirred at room temperature for 2 h. The obtained synthesis gel was sealed into a Teflon-lined stainless steel autoclave and crystallized at 200 °C for 20 h with rotation speed of 15 rpm. The H-SAPO-34 was attained by directly calcining the as-synthesized sample at 550 °C for 10 h in air.

Catalyst characterization. Catalysts were characterized with in situ X-ray diffraction (XRD), N₂ sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), scanning transmission electron microscopy (STEM) equipped with energy-dispersive x-ray spectroscopy (EDX), in situ X-ray photoelectron spectra (XPS), temperature-programmed reduction by hydrogen (H₂-TPR), temperature programmed desorption of CO₂ (CO₂-TPD), in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) and gas chromatography–mass spectrometry (GC-MS) techniques. Details about the catalyst characterizations are described in Supplementary

Information.

DFT calculation. Periodic density functional theory (DFT) calculations within the generalized gradient approximation (GGA) were performed with the Vienna *ab initio* Simulation Package (VASP 5.3.5). The Perdew, Burke, and Ernzrhof (PBE) exchange-correlation functional was applied, and the projected augmented wave (PAW) method was employed to represent the electron–cation interactions. More information about the calculation methods are shown in Supplementary Information.

Catalytic evaluation. CO₂ conversion was carried out in a stainless steel tubular fixed-bed reactor with an inner diameter of 10 mm. 0.6 g Composite catalyst (20-40 mesh) prepared by power mixing of Cr₂O₃ oxide and H-SAPO-34 molecular sieve with a mass ratio of 1/2 was loaded unless being specifically stated. Before the reaction, the catalyst was pre-reduced at 400 °C and atmospheric pressure for 2 h in a pure H_2 flow (30 mL/min). Then, it was cooled to 370 °C in a N₂ flow (30 mL/min), and the CO₂ and H₂ gaseous mixture with a CO₂/H₂ of 1/3 (with 3 vol.% N₂ as internal standard) was introduced in the reactor at 370 °C, 0.5 MPa and 4000 mL/(g·h) unless otherwise stated. The effluent products were online analyzed using an Agilent 7890A gas chromatograph (GC) equipped with one TCD and two flame ionization detectors (FID) and two capillary columns (J&W 127-7031, 30 m \times 530 μ m \times 0.25µm; Agilent 19095P-S25, 50 m \times 530 µm \times 15 µm). The product selectivity (not include CO) was calculated on a molar carbon basis. The CO₂ conversion was calculated by the equation (1), and the selectivity of hydrocarbons (including alkenes and alkanes, C_nH_m) and that of oxygenates (including methanol (CH₃OH), dimethyl ether (DME) and ethanol (C_2H_5OH)) were calculated by the equations (3) and (4), respectively, without considering

CO. The CO emission was separately evaluated by the equation (2), as reported by other researchers.^{44–46} Both the carbon and oxygen molar balances were $\geq 95\%$.

$$CO_2 \text{ conversion } = \frac{CO_{2in} - CO_{2out}}{CO_{2in}} \times 100\%$$
(1)

$$CO selectivity = \frac{CO_{out}}{CO_{2in} - CO_{2out}} \times 100\%$$
(2)

where CO_{2in} and CO_{2out} are the inlet and outlet amounts (moles) of CO_2 respectively; CO_{out} is the outlet amount (mole) of CO.

$$C_nH_m$$
 selectivity = $n_{CnHm}/\sum (C_nH_m + \text{ oxygenates}) \times 100\%;$ (3)

oxygenates selectivity =
$$n_{oxygenates} / \sum (C_n H_m + oxygenates) \times 100\%;$$
 (4)

where n_{CnHm} is the carbon moles of individual hydrocarbon product at the outlet, and $\sum (C_nH_m + \text{ oxygenates})$ is the total carbon moles of hydrocarbons and oxygenates. The catalytic results obtained at reaction time of 30 h were used for comparison.

Data Availability. The data that support the findings of this study including the article and its Supplementary Information are available from the corresponding authors upon a reasonable request.

References

Centi, G., Quadrelli, E. A. & Perathoner, S. Catalysis for CO₂ conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. *Energy Environ. Sci.* 6, 1711–1731 (2013).

- (2) Porosoff, M. D. Yan, B. & Chen, J. G. Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. *Energy Environ. Sci.* 9, 62–73 (2016).
- (3) Alvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., Gascon, J. & Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO₂ hydrogenation processes. *Chem. Rev.* **117**, 9804–9838 (2017).
- (4) Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. *Chem. Soc. Rev.* 40, 3703–3727 (2011).
- (5) Studt, F., Sharafutdinov, I., Abild-Pedersen, F., Elkjaer, C. F., Hummelshoj, J. S., Dahl, S., Chorkendorff, I. & Norskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. *Nat. Chem.* 6, 320–324 (2014).
- (6) Gutterod, E. S., Lazzarini, A., Fjermestad, T., Kaur, G., Manzoli, M., Bordiga, S., Svelle, S., Lillerud, K. P., Skulason, E., Oien-Odegaard, S., Nova, A. & Olsbye, U. Hydrogenation of CO₂ to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal–organic framework. *J. Am. Chem. Soc.* 142, 999–1009 (2020).
- (7) Frei, M. S., Mondelli, C., Cesarini, A., Krumeich, F., Hauert, R., Stewart, J. A., Ferre, D. C. & Perez-Ramirez, J. Role of zirconia in indium oxide-catalyzed CO₂ hydrogenation to methanol. *ACS Catal.* 10, 1133–1145 (2020).
- (8) Dang, S. S., Qin, B., Yang, Y., Wang, H., Cai, J., Han, Y., Li, S. G., Gao, P. & Sun, Y.
 H. Rationally designed indium oxide catalysts for CO₂ hydrogenation to methanol with high activity and selectivity. *Sci. Adv.* 6, eaaz2060 (2020).
- (9) Wang, J. J., Li, G. N., Li, Z. L., Tang, C. Z., Feng, Z. C., An, H. Y., Liu, H. L., Liu, T. F. & Li, C. A highly selective and stable ZnO-ZrO₂ solid solution catalyst for CO₂ hydrogenation to methanol. *Sci. Adv.* **3**, e1701290 (2017).

- (10) Wang, Y., Tan, L., Tan, M. H., Zhang, P. P., Fang, Y., Yoneyama, Y. Yang, G. H. & Tsubaki, N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO₂ hydrogenation producing value-added aromatics. *ACS Catal.* **9**, 895–901 (2019).
- Wei, J., Ge, Q. J., Yao, R. W., Wen, Z. Y., Fang, C. Y., Guo, L. S., Xu, H. Y. & Sun, J. Directly converting CO₂ into a gasoline fuel. *Nat. Commun.* 8, 16170 (2017).
- (12) Ni, Y. M., Chen, Z. Y., Fu, Y., Liu, Y., Zhu, W. L. & Liu, Z. M. Selective conversion of CO₂ and H₂ into aromatics. *Nat. Commun.* 9, 3457 (2018).
- (13) Zhong, J. W., Yang, X. F., Wu, Z. L., Liang, B. L., Huang, Y. Q. & Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO₂ hydrogenation to methanol. *Chem. Soc. Rev.* **49**, 1385–1413 (2020).
- Xu, Y. B., Shi, C. M., Liu, B., Wang, T., Zheng, J., Li, W. P., Liu, D. P. & Liu, X. H.
 Selective production of aromatics from CO₂. *Catal. Sci. Technol.* 9, 593–610 (2019).
- (15) Wang, S. W., Wu, T. J., Lin, J., Tian, J., Ji, Y. S., Pei, Y., Yan, S. R., Qiao, M. H., Xu, H. L. & Zong, B. N. FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO₂ conversion to aromatics. *ACS Sustainable Chem. Eng.* 7, 17825–17833 (2019).
- (16) Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).
- (17) Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., Abou-Hamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K., Van Speybroeck, V. & Gascon, J. Effect of zeolite topology and reactor configuration on the direct conversion of CO₂ to light olefins and aromatics. *ACS Catal.* 9, 6320–6334 (2019).
- (18) Wang, P., Chen, W., Chiang, F. K., Dugulan, A. L., Song, Y. J., Pestman, R., Zhang, K., Yao, J. S., Feng, B., Miao, P., Xu, W. N. & Hensen, E. J. M. Synthesis of stable and low CO₂ selective ε-iron carbide Fischer-Tropsch catalysts. *Sci. Adv.* **4**, eaau2947 (2018).

- (19) Bao, J., Yang, G. H., Yoneyama, Y. & Tsubaki, N. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal. 9, 3026–3053 (2019).
- (20) Zhou, W., Cheng, K., Kang, J. C., Zhou, C., Subramanian, V., Zhang, Q. H. & Wang,
 Y. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO₂ into hydrocarbon chemicals and fuels. *Chem. Soc. Rev.* 48, 3193–3228 (2019).
- (21) Li, J., He, Y. L., Tan, L., Zhang, P. P., Peng, X. B., Oruganti, A., Yang, G. H., Abe, H., Wang, Y. & Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. *Nat. Catal.* 1, 787–793 (2018).
- (22) Paalanen, P. P., Van Vreeswijk, S. H. & Weckhuysen, B. M. Combined In situ x-ray powder diffractometry/raman spectroscopy of iron carbide and carbon species evolution in Fe(-Na-S)/α-Al₂O₃ catalysts during Fischer-Tropsch synthesis. *ACS Catal*. **10**, 9837–9855 (2020).
- (23) Torres Galvis, H. M. Bitter, J. H., Davidian, T., Ruitenbeek, M., Dugulan, A. I. & de Jong, K. P. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 134, 16207–16215 (2012).
- (24) Zhang, Z. P., Zhang, J., Wang, X., Si, R., Xu, J. & Han, Y. F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins. *J. Catal.* 365, 71–85 (2018).
- Jiao, F., Li, J. J., Pan, X. L., Xiao, J. P., Li, H. B., Ma, H., Wei, M. M., Pan, Y., Zhou,
 Z. Y., Li, M. R., Miao, S., Li, J., Zhu, Y. F., Xiao, D., He, T., Yang, J. H., Qi, F., Fu,
 Q. & Bao, X. H. Selective conversion of syngas to light olefins. *Science* 351, 1065–1068 (2016).
- (26) Cheng, K., Gu, B., Liu, X. L., Kang, J. C., Zhang, Q. H. & Wang, Y. Direct and highly selective conversion of synthesis gas to lower olefins: design of a bifunctional

catalyst combining methanol synthesis and carbon-carbon coupling. *Angew. Chem. Int. Ed.* **55**, 4725–4728 (2016).

- (27) Jiao, F., Pan, X. L., Gong, K., Chen, Y. X., Li, G. & Bao, X. H. Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. *Angew. Chem. Int. Ed.* 57, 4692–4696 (2018).
- (28) Zhu, Y. F. Pan, X. L., Jiao, F., Li, J., Yang, J. H., Ding, M. Z., Han, Y., Liu, Z. & Bao, X. H. Role of manganese oxide in syngas conversion to light olefins. *ACS Catal.* 7, 2800–2804 (2017).
- Wang, S., Zhang, L., Zhang, W. Y., Wang, P. F., Qin, Z. F., Yan, W. J., Dong, M., Li, J. F., Wang, J. G., He, L., Olsbye, U. & Fan, W. B. Selective conversion of CO₂ into propene and butene. *Chem* 6, 3344–3363 (2020).
- Ma, W. C., Xie, S. J., Liu, T. T., Fan, Q. Y., Ye, J. Y., Sun, F. F., Jiang, Z., Zhang, Q. H., Cheng, J. & Wang, Y. Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. *Nat. Catal.* 3, 478–487 (2020).
- (31) Zhou, X., Wang, C., Chu, Y. Y., Xu, J., Wang, Q., Qi, G. D., Zhao, X. L. Feng, N. D. & Deng, F. Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. *Nat. Commun.* 10, 1961 (2019).
- (32) Zhou, J. B., Zhi, Y. C., Zhang, J. L., Liu, Z. Q., Zhang, T., He, Y. L., Zheng, A. M., Ye, M., Wei, Y. X. & Liu, Z. M. Pre-situated "coke"-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst. *J. Catal.* 377, 153–162 (2019).
- (33) Hoang, T. T. H., Verma, S., Ma, S. C., Fister, T. T., Timoshenko, J., Frenkel, A. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO₂ to ethylene and ethanol. *J. Am. Chem. Soc.* **140**, 5791–5797 (2018).

- (34) Jiang, K., Sandberg, R. B., Akey, A. J., Liu, X.; Bell, D. C., Nørskov, J. K., Chan, K. & Wang, H. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO₂ reduction. *Nat. Catal.* 1, 111–119 (2018).
- Jung, H., Lee, S. Y., Lee, C. W., Cho, M. K., Won, D. H., Kim, C., Oh, H. S., Min, B. K. & Hwang, Y. J. Electrochemical fragmentation of Cu₂O nanoparticles enhancing selective C–C coupling from CO₂ reduction reaction. *J. Am. Chem. Soc.* 141, 4624–4633 (2019).
- (36) Zhou, Y., Che, F., Liu, M., Zou, C., Liang, Z., De Luna, P., Yuan, H., Li, J., Wang, Z., Xie, H., Li, H., Chen, P., Bladt, E., Quintero-Bermudez, R., Sham, T.-K., Bals, S., Hofkens, J., Sinton, D., Chen, G. & Sargent, E. H., Dopant-induced electron localization drives CO₂ reduction to C2 hydrocarbons. *Nat. Chem.* 10, 974–980 (2018).
- (37) Dinh, C. T., Burdyny, T., Kibria, M. G., Seifitokaldani, A., Gabardo, C. M., García de Arquer, F. P., Kiani, A., Edwards, J. P., De Luna, P., Bushuyev, O. S., Zou, C., Quintero-Bermudez, R., Pang, Y., Sinton, D. & Sargent, E. H. CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science* 360, 783 (2018).
- (38) Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO₂ electroreduction towards multicarbon products. *Nat. Catal.* 2, 198–210 (2019).
- (39) Zhang, B. X., Zhang, J. L., Hua, M. L., Wan, Q., Su, Z. Z., Tan, X. N., Liu, L. F., Zhang, F. Y., Chen, G., Tan, D. X., Cheng, X. Y., Han, B. X., Zheng, L. R. & Mo, G. Highly electrocatalytic ethylene production from CO₂ on nanodefective Cu nanosheets. *J. Am. Chem. Soc.* 142, 13606–13613 (2020).
- (40) Torres Galvis, H. M., Bitter, J. H., Khare, C. B., Ruitenbeek, M., Dugulan, A. I. & de Jong, K. P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. *Science* 335, 835–838 (2012).

- (41) Zhong, L., Yu, F., An, Y., Zhao, Y., Sun, Y., Li, Z., Lin, T., Lin, Y., Qi, X., Dai, Y., Gu, L., Hu, J., Jin, S., Shen, Q. & Wang, H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. *Nature* **538**, 84–87 (2016).
- (42) Xu, Y., Zhai, P., Deng, Y. C., Xie, J. L., Liu, X., Wang, S. & Ma, D. Highly selective olefin production from CO₂ hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. *Angew. Chem. Int. Ed.* 59, 21736–21744 (2020).
- (43) Wang, X., Wu, D. K., Zhang, J. L., Gao, X. H., Ma, Q. X., Fan, S. B. & Zhao, T. S. Highly selective conversion of CO₂ to light olefins via Fischer-Tropsch synthesis over stable layered K–Fe–Ti catalysts. *Appl. Catal. A.* **573**, 32–40 (2019).
- (44) Li, Z. L., Wang, J. J., Qu, Y. Z., Liu, H. L., Tang, C. Z., Miao, S., Feng, Z. C., An, H. Y. & Li, C. Highly selective conversion of carbon dioxide to lower olefins. *ACS Catal.* 7, 8544–8548 (2017).
- (45) Gao, P., Dang, S. S., Li, S. G., Bu, X. N., Liu, Z. Y., Qiu, M. H., Yang, C. G., Wang, H., Zhong, L. S., Han, Y., Liu, Q., Wei, W. & Sun, Y. H. Direct production of lower olefins from CO₂ conversion via bifunctional catalysis. *ACS Catal.* 8, 571–578 (2018).
- (46) Liu, X. L., Wang, M. H., Zhou, C., Zhou, W., Cheng, K., Kang, J. C., Zhang, Q. H., Deng, W. P. & Wang, Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa₂O₄ and SAPO-34. *Chem. Commun.* 54,140–143 (2018).
- (47) Numpilai, T., Wattanakit, C., Chareonpanich M. & Limtrakul, J. Optimization of synthesis condition for CO₂ hydrogenation to light olefins over In₂O₃ admixed with SAPO-34. *Energ. Convers. Manage.* **180**, 511–523 (2019).
- (48) Dang, S. S., Gao, P., Liu, Z. Y., Chen, X. Q., Yang, C. G., Wang, H., Zhong, L. S., Li,
 S. G. & Sun, Y. H. Role of zirconium in direct CO₂ hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. *J. Catal.* 364, 382–393 (2018).

- (49) Gao, J. J., Jia, C. M. & Liu, B. Direct and selective hydrogenation of CO₂ to ethylene and propene by bifunctional catalysts. *Catal. Sci. Technol.* 7, 5602–5607 (2017).
- (50) Liu, X. L., Wang, M. H., Yin, H. R., Hu, J. T., Cheng, K., Kang, J. C., Zhang, Q. H. & Wang, Y. Tandem catalysis for hydrogenation of CO and CO₂ to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).
- (51) Hosseini, S. A., Alvarez-Galvan, M. C., Fierro, J. L. G., Niaei, A. & Salari, D. MCr₂O₄ (M=Co, Cu, and Zn) nanospinels for 2-propanol combustion: Correlation of structural properties with catalytic performance and stability. *Ceramics International* **39**, 9253–9261 (2013).
- (52) Gao, X. F., Wu, Y. Q., Zhang, T., Wang, L. Y., Li, X. L., Xie, H. J. & Tan, Y. S. Binary ZnO/Zn–Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas. *Catal. Sci. Technol.* 8, 2975–2986 (2018).
- (53) Zhang, Z. X., Wang, Y. H., Lu, J. M., Zhang, J., Li, M. R., Liu, X. B. & Wang, F. Pr-doped CeO₂ catalyst in the prins condensation-hydrolysis reaction: are all of the defect sites catalytically active? ACS Catal. 8, 2635–2644 (2018).
- (54) Piumetti, M., Bensaid, S., Russo, N. & Fino, D. Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. *Appl. Catal. B* 165, 742– 751 (2015).
- (55) Kanervo, J. M. & Krause, A. O. I. Characterisation of Supported Chromium Oxide Catalysts by Kinetic Analysis of H₂-TPR Data. J. Catal. 207, 57–65 (2002).
- (56) Masih, D., Rohani, S., Kondo, J. N. & Tatsumi, T. Catalytic dehydration of ethanol-to-ethylene over Rho zeolite under mild reaction conditions. *Microporous Mesoporous Mater.* 282, 91–99 (2019).

- (57) Li, X., Rezaei, F., Ludlow, D. K. & Rownaghi, A. A. Synthesis of SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 Core–Shell Zeolite Composites for Ethanol Dehydration. *Ind. Eng. Chem. Res.* 57, 1446–1453 (2018).
- (58) Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K. P., Bjorgen, M., Weckhuysen, B. M. & Olsbye, U. Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. *J. Catal.* 264, 77–87 (2009).
- (59) Li, J. F., Wei, Z. H., Chen, Y. Y., Jing, B. Q., He, Y., Dong, M., Jiao, H. J., Li, X. K., Qin, Z. F., Wang, J. G. & Fan, W. B. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. *J. Catal.* **317**, 277–283 (2014).
- (60) Li, J. Z., Wei, Y. X., Liu, G. Y., Qi, Y., Tian, P., Li, B., He, Y. L. & Liu, Z. M. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. *Catal. Today* **171**, 221–228 (2011).
- (61) Gao, S. S., Xu, S. T., Wei, Y. X., Qiao, Q. L., Xu, Z. C., Wu, X. Q., Zhang, M. Z., He, Y. L., Xu, S. L. & Liu, Z. M. Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility. *J. Catal.* 367, 306–314 (2018).
- (62) Dai, W. L., Wang, X., Wu, G. J., Guan, N. J., Hunger, M. & Li, L. D. Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catal. 1, 292–299 (2011).
- (63) Yao, L. B., Shen, X. C., Pan, Y. B. & Peng, Z. M. Synergy between active sites of Cu-In-Zr-O catalyst in CO₂ hydrogenation to methanol. *J. Catal.* **372**, 74–85 (2019).
- (64) Wang, Y. H., Kattel, S., Gao, W. G., Li, K. Z., Liu, P., Chen, J. G. G. & Wang, H. Exploring the ternary interactions in Cu-ZnO-ZrO₂ catalysts for efficient CO₂ hydrogenation to methanol. *Nat. Commun.* **10**, 1166 (2019).

- (65) Yan, B. H., Zhao, B. H., Kattel, S., Wu, Q. Y., Yao, S. Y., Su, D. & Chen, J. G. G. Tuning CO₂ hydrogenation selectivity via metal-oxide interfacial sites. *J. Catal.* 374, 60–71 (2019).
- (66) Feng, O. Y., Kondo, J. N., Maruya, K. & Domen, K. Site conversion of methoxy species on ZrO₂. J. Phys. Chem. B 101, 4867–4869 (1997).
- (67) Kattel, S., Yan, B., Yang, Y., Chen, J. G. & Liu, P. Optimizing binding energies of key intermediates for CO₂ hydrogenation to methanol over oxide-supported copper. *J. Am. Chem. Soc.* **138**, 12440–12450 (2016).
- Jiang, X., Nie, X. W., Wang, X. X., Wang, H. Z., Koizumi, N., Chen, Y. G., Guo, X.
 W. & Song, C. S. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO₂ hydrogenation. *J. Catal.* 369, 21–32 (2019).
- (69) Zhang, L., Mao, F. X., Zheng, L. R., Wang, H. F., Yang, X. H. & Yang, H. G. Tuning Metal Catalyst with Metal–C₃N₄ Interaction for Efficient CO₂ Electroreduction. ACS Catal. 8, 11035–11041 (2018).
- (70) Wang, L. X., He, S. X., Wang, L., Lei, Y., Meng, X. J. & Xiao, F. S. Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catal. 9, 11335–11340 (2019).
- (71) Wang, L. X., Wang, L., Zhang, J. Liu, X. L., Wang, H., Zhang, W., Yang, Q., Ma, J. Y., Dong, X., Yoo, S. J., Kim, J. G., Meng, X. J. & Xiao, F. S. Selective hydrogenation of CO₂ to ethanol over cobalt catalysts. *Angew. Chem. Int. Ed.* 57, 1–6 (2018).
- (72) Xu, D., Ding, M. Y., Hong, X. L., Liu, G. L. & Tsang, S. C. E. Selective C₂₊ Alcohol Synthesis from Direct CO₂ Hydrogenation over a Cs-Promoted Cu-Fe-Zn Catalyst. ACS Catal. 10, 5250–5260 (2020).

- (73) Li, S. H., Saranya, G., Chen, M. Y. & Zhu, Y. Selectivity switch in transformation of CO₂ from ethanol to methanol on Cu embedded in the defect carbon. *Sci China Chem* 63, 722–730 (2020).
- (74) Liu, X. L., Zhou, W., Yang, Y. D., Cheng, K., Kang, J. C., Zhang, L., Zhang, G. G., Min, X. J., Zhang, Q. H. & Wang, Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. *Chem. Sci.* 9, 4708–4718 (2018).
- (75) Choi, H., Oh, S. Y., Tran, S. B. T. & Park, J. Y. Size-controlled model Ni catalysts on Ga₂O₃ for CO₂ hydrogenation to methanol. *J. Catal.* **376**, 68–76 (2019).
- (76) Peng, Y. H., Wang, L. B., Luo, Q. Q., Gao, Y., Dai, Y. Z., Li, Z. L., Li, H. L., Zheng, X. S., Yan, W. S., Yang, J. L. & Zeng, J. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO₂ hydrogenation into methanol. *Chem* 4, 613–625 (2018).
- (77) Bai, S. X., Shao, Q., Wang, P. T., Dai, Q. G., Wang, X. Y. & Huang, X. Q. Highly Active and Selective Hydrogenation of CO₂ to Ethanol by Ordered Pd–Cu Nanoparticles. J. Am. Chem. Soc. 139, 6827–6830 (2017).
- (78) Choi, Y. M. & Liu, P. Mechanism of Ethanol Synthesis from Syngas on Rh(111). J. Am. Chem. Soc. 131, 13054–13061 (2009).
- (79) He, Z. H., Qian, Q. L., Ma, J., Meng, Q. L., Zhou, H. C., Song, J. L., Liu, Z. M. & Han, B. X. Water-enhanced synthesis of higher alcohols from CO₂ hydrogenation over a Pt/Co₃O₄ catalyst under milder conditions. *Angew. Chem. Int. Ed.* 55, 737–741 (2016).
- (80) An, B., Li, Z., Song, Y., Zhang, J. Z., Zeng, L. Z., Wang, C. & Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO₂ to ethanol. *Nat. Catal.* **2**, 709–717 (2019).

- (81) Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).
- (82) Wang, C. M., Wang, Y. D., Du, Y. J., Yang, G. & Xie, Z. K. Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: Insights from energetic span model. *Catal. Sci. Technol.* 5, 4354–4364 (2015).
- (83) Ronsch, S., Schneider, J., Matthischke, S., Schluter, M., Gotz, M., Lefebvre, J., Prabhakaran, P. & Bajohr, S. Review on methanation-From fundamentals to current projects. *Fuel* 166, 276–296 (2016).
- (84) Zhang, R. G., Wang, G. R. & Wang, B. J. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst. J. Catal. 305, 238–255 (2013).
- (85) Ren, J., Guo, H. L., Yang, J. Z., Qin, Z. F., Lin, J. Y. & Li, Z. Insights into the mechanisms of CO₂ methanation on Ni(111) surfaces by density functional theory. *Appl. Surf. Sci.* 351, 504–516 (2015).

Acknowledgements

The authors are grateful to the financial supports of the National Key R&D Program of China (2018YFB0604802; 2020YFB0606402), National Natural Science Foundation of China (U1910203; U1862101; 21991092; 21802157; 21875275; 201603254), Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDA21020500), Natural Science Foundation of Shanxi Province of China (201901D211581), Youth Innovation Promotion Association CAS (2021172), Autonomous research project of State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS (2020BWZ004), Young

Talent Training Program of State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS (2021BWZ003), Excellent doctoral student award and subsidy program of Shanxi Province (BK2018001), East-West Cooperation Project of Ningxia Key R & D Plan (2017BY063), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund, the CAS (DNL201919), and the European Union's Horizon 2020 research and innovation program under grant agreement no 837733. The calculations were performed in the Computer Network Information Center of CAS and the National Supercomputer Centers in Lvliang of China.

Author contributions

S.W., L.Z., P.W. implemented the experiments including catalyst preparation, characterization, catalytic reaction and theoretical calculation; S.W. wrote the paper; X.L., Z.Q., M.D. carried out part of catalytic tests as well as some catalyst characterization; J.W., L.H., U.O. gave fruitful discussions on the reaction mechanism; W.F. conceived the whole project, guided the work and revised the paper. S.W., L.Z., P.W., contributed equally to this work. All the authors contributed to the discussions on the experimental and theoretical calculation results.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Competing Interests: The authors declare no competing interests.

Figure 1. Catalysts characterization. (a) In situ XRD patterns and (b) in situ O(1s) XPS of fresh and H₂-treated (400 °C for 2 h) Cr_2O_3 ; (c) crystal structure of hexagonal Cr_2O_3 (Cr: grey; O: red); (d) TEM image of Cr_2O_3 (Insert: particle size distribution estimated by counting 100 NPs); (e) HRTEM image of Cr_2O_3 (Insert: magnified images); (f) selected-area electron diffraction (SAED) patterns of Cr_2O_3 ; (g) HAADF-STEM image and EDX elemental distributions of Cr and O elements of Cr_2O_3 .

Figure 2. Catalytic results. Dependences of CO₂ conversion and product distribution on the reaction time ((a) and (b)) and the reaction pressure ((e) and (f)) on the $Cr_2O_3/SAPO-34$ composite catalyst; and CO₂ conversion and product distribution obtained over various metal oxides/SAPO-34 composite catalysts ((c) and (d)) (typical reaction conditions: $H_2/CO_2 = 3:1$, GHSV = 4000 mL/(g·h), 0.5 MPa and 370 °C).

Figure 3. Catalyst stability. Catalytic stability of $Cr_2O_3/SAPO-34$ (Si/A1 = 0.15) composite catalyst in CO₂ hydrogenation to light olefins (reaction conditions: $H_2/CO_2 = 3/1$, 370 °C, 0.5 MPa and GHSV = 4000 mL/g·h).

Figure 4. In situ DRIFT spectroscopy. (a) and (b) Time-dependent DRIFT spectra for CO_2 hydrogenation on neat Cr_2O_3 (the spectra were collected every 5 min up to 60 min after the sample was treated at 400 °C for 2 h in a H₂ flow (30 mL/min), and then, purged at 300 °C for 0.5 h with an Ar flow (30 mL/min) (typical reaction conditions: 300 °C, 0.1 MPa)); (c) and (d) evolutions of DRIFT peak intensity with the reaction time on neat Cr_2O_3 at 300 °C in CO_2 hydrogenation.

Figure 5. Reaction mechanism. GC-MS diagrams of the methanol ((a) and (g)), ethanol ((b) and (h)) and acetic acid ((c) and (i)) in effluents obtained at different times on neat Cr_2O_3 ((a), (b) and (c)) and $ZnZrO_x$ ((g), (h) and (i)) at 370 °C in CO_2 hydrogenation (typical reaction conditions: 370 °C and 0.5 MPa); corresponding MS spectra of the generated methanol (d), ethanol (e) and acetic acid (f) in effluents. The blank experiment was conducted under the same reaction conditions without using the catalyst.

Figure 6. Density functional theory (DFT) calculations. (a) and (b) Free energy (ΔG_R), enthalpy (ΔH_R) and entropy (T ΔS_R) profiles for CO₂ hydrogenation at 300 °C on Cr₂O₃; (c)

reaction scheme for formation of methanol and ethanol in CO₂ hydrogenation on Cr₂O₃.