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Abstract 

Purpose:  The effect of high arterial oxygen levels and supplemental oxygen administration on outcomes in trau-
matic brain injury (TBI) is debated, and data from large cohorts of TBI patients are limited. We investigated whether 
exposure to high blood oxygen levels and high oxygen supplementation is independently associated with outcomes 
in TBI patients admitted to the intensive care unit (ICU) and undergoing mechanical ventilation.

Methods:  This is a secondary analysis of two multicenter, prospective, observational, cohort studies performed in 
Europe and Australia. In TBI patients admitted to ICU, we describe the arterial partial pressure of oxygen (PaO2) and 
the oxygen inspired fraction (FiO2). We explored the association between high PaO2 and FiO2 levels within the first 
week with clinical outcomes. Furthermore, in the CENTER-TBI cohort, we investigate whether PaO2 and FiO2 levels may 
have differential relationships with outcome in the presence of varying levels of brain injury severity (as quantified by 
levels of glial fibrillary acidic protein (GFAP) in blood samples obtained within 24 h of injury).

Results:  The analysis included 1084 patients (11,577 measurements) in the CENTER-TBI cohort, of whom 55% had an 
unfavorable outcome, and 26% died at a 6-month follow-up. Median PaO2 ranged from 93 to 166 mmHg. Exposure to 
higher PaO2 and FiO2 in the first seven days after ICU admission was independently associated with a higher mortality 
rate. A trend of a higher mortality rate was partially confirmed in the OzENTER-TBI cohort (n = 159). GFAP was inde-
pendently associated with mortality and functional neurologic outcome at follow-up, but it did not modulate the 
outcome impact of high PaO2 and FiO2 levels, which remained independently associated with 6-month mortality.

Conclusions:  In two large prospective multicenter cohorts of critically ill patients with TBI, levels of PaO2 and FiO2 
varied widely across centers during the first seven days after ICU admission. Exposure to high arterial blood oxygen or 
high supplemental oxygen was independently associated with 6-month mortality in the CENTER-TBI cohort, and the 
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Introduction

In patients with traumatic brain injury (TBI), hypoxemia 
is a major predictor of hospital and 6-month mortal-
ity [1]. Oxygen supplementation aims to reverse tissue 
hypoxia and, thus, improve cell viability, organ function, 
and survival in critically ill patients [2]. However, this 
may lead to administering more oxygen than needed to 
patients admitted to the intensive care unit (ICU) [3].

While hyperbaric oxygen is known to be neurotoxic [4], 
it is not clear whether high normobaric oxygen levels may 
play a detrimental role in the brain [5]. Hyperoxia, i.e., 
high inspiratory oxygen fraction, may be associated with 
excitotoxicity in severe TBI [6]. Furthermore, hyperox-
emia, i.e., high blood oxygen partial pressure levels, may 
potentially worsen organ injury and impact the case fatal-
ity rate of critically ill patients with TBI [7, 8]. Therefore, 
not only too low but even extreme hyperoxemia might 
cause injury in TBI patients, as David et al. showed [9]. 
Data on more than 36,000 mixed ICU patients mechani-
cally ventilated with early arterial partial pressure of 
oxygen (PaO2) suggested an independent U-shape asso-
ciation with hospital mortality [10]. A recent metanalysis 
of 32 studies in acute brain-damaged patients highlighted 
that hyperoxemia, differently defined across studies, was 
associated with an increased risk of poor neurological 
outcomes [11]. Patients with a poor neurological out-
come also had a significantly higher maximum PaO2 and 
mean PaO2. These associations were present, especially 
in patients with subarachnoid hemorrhage and ischemic 
stroke, but not in traumatic brain injured.

Currently, there is no evidence to support the role of 
hyperoxemia or hyperoxia in a large real-world dataset 
of critically ill patients admitted to ICU with severe TBI 
[12–14].

Therefore, we described variability across centers in the 
blood oxygen levels (i.e., PaO2) and oxygen supplementa-
tion distributions (i.e., inspiratory oxygen fraction, FiO2) 
and investigated whether high PaO2 and FiO2 levels are 
associated with worse 6-month outcomes. We validated 
our findings in the multicenter Australian OzENTER-
TBI database [15]. Finally, we explored whether PaO2 and 
FiO2 levels may contribute differently to outcomes in the 

presence of increasing levels of glial fibrillary acidic pro-
tein (GFAP), a biomarker of brain injury severity.

The aims of this study are to:

1.	 Describe the values and the differences in PaO2 
and FiO2 in the first week from ICU admission in 
mechanically ventilated TBI patients across centers 
in CENTER-TBI;

2.	 assess whether high levels of PaO2 or FiO2 are inde-
pendently associated with 6-month mortality and 
unfavorable neurologic outcome in CENTER-TBI;

3.	 evaluate whether the impact of high levels of oxy-
gen exposure (PaO2) or high levels of supplemental 
oxygen (FiO2) on 6-month outcome could be wors-
ened by increasing brain injury severity, as assessed 
by acute (first 24  h) serum levels of GFAP in the 
CENTER-TBI cohort.

All these objectives (except the last one) were subse-
quently validated in an external cohort of patients with 
traumatic brain injury from OzENTER-TBI. Hypotheses 
of the current analyses were that exposure to high oxygen 
and FiO2 levels in TBI patients mechanically ventilated 
and admitted to ICU may promote brain injury and have 
a negative impact on both functional neurological dis-
ability and survival.

Methods
Study design and patients
The Collaborative European NeuroTrauma Effective-
ness in Research in Traumatic Brain Injury (CENTER-
TBI study, registered at clinicaltrials.gov NCT02210221) 

severity of brain injury did not modulate this relationship. Due to the limited sample size, the findings were not wholly 
validated in the external OzENTER-TBI cohort. We cannot exclude the possibility that the worse outcomes associated 
with higher PaO2 were due to use of higher FiO2 in patients with more severe injury or physiological compromise. 
Further, these findings may not apply to patients in whom FiO2 and PaO2 are titrated to brain tissue oxygen monitor-
ing (PbtO2) levels. However, at minimum, these findings support the need for caution with oxygen therapy in TBI, 
particularly since titration of supplemental oxygen is immediately applicable at the bedside.

Keywords:  PaO2, FiO2, Traumatic brain injury, GOSE, Mortality, GFAP

Take‑home message 

In two large prospective multicenter cohorts of traumatic brain 
injured patients, arterial and supplemental oxygen levels varied 
widely across centers during the first seven days after admission to 
the intensive care unit.

Exposure to high arterial blood oxygen or high supplemental oxy-
gen—a therapeutic gas immediately titratable at the bedside—was 
independently associated with 6-month mortality, regardless of 
brain injury severity.



is a longitudinal, prospective data collection from TBI 
patients across 65 centers in Europe between December 
2014 and December 2017. The design and the results of 
the screening and enrollment process have been previ-
ously described [12, 13]. The Australia–Europe Neu-
roTrauma Effectiveness Research in Traumatic Brain 
Injury OzENTER-TBI Study was conducted in two des-
ignated adult major trauma centers in Victoria, Australia, 
between February 2015 and March 2017 [15]. The Medi-
cal Ethics Committees approved both studies in all par-
ticipating centers, and informed consent was obtained 
according to local regulations (https://​www.​center-​tbi. 
eu/project/ethical-approval). Therefore, the studies have 
been performed per the ethical standards of the Declara-
tion of Helsinki and its later amendments.

In the OzENTER-TBI Study, patients or families were 
allowed to opt out of data collection. OzENTER-TBI was 
used as an external validation cohort.

Before starting the analysis, this project on PaO2 man-
agement was preregistered on the CENTER-TBI proposal 
platform and approved by the CENTER-TBI proposal 
review committee.

We included all patients in the CENTER-TBI Core 
study who had:

	– a TBI necessitating ICU admission,
 	 – tracheal intubation and mechanical ventilation,
	– at least two PaO2 measurements in the first seven days.

These inclusion criteria were also applied to select 
patients from the OzENTER-TBI study for the validation 
cohort.

This report complies with the Strengthening the 
Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guidelines.

Data collection and definitions
Detailed information on data collection is available on 
the study website (https://​www.​center-​tbi.​eu/​data/​dicti​
onary). The daily lowest and highest PaO2 and FiO2 val-
ues from arterial blood gases—that were collected as per 
the case report form—were evaluated in this study. Spe-
cifically, we investigated the role of variables representing 
different aspects of arterial oxygen levels and supplemen-
tal oxygen administration during the first week of ICU 
admission, including:

	– The highest PaO2 (PaO2max) and FiO2 (FiO2max) expo-
sures.

 	 – The mean of the highest daily PaO2 (PaO2mean) and 
FiO2 (FiO2mean).

	– The mean of the swings of PaO2 (ΔPaO2mean) and of 
FiO2 (ΔFiO2mean). The swings were calculated daily as 

the difference between the highest and the lowest PaO2 
and FiO2. They represent the average day-to-day vari-
ability of PaO2 and FiO2.

Mortality and functional neurological outcome meas-
ured as the 8-point Extended Glasgow Outcome Score 
(GOSE) were assessed six months post-injury. An unfa-
vorable outcome was defined as GOSE ≤ 4 (i.e., low 
and upper severe disability, vegetative state, or dead), 
including both poor functional outcome and mortality. 
All responses were obtained by trained study person-
nel—blinded to the PaO2 and FiO2 data—from patients 
or from a proxy (where impaired cognitive capacity pre-
vented patient interview), during a face-to-face visit, by 
telephone interview, or by postal questionnaire around 
six months after injury [16].

In CENTER-TBI, the severity of brain injury, tradition-
ally evaluated with clinical and neuroradiologic elements, 
was also gauged by serum brain injury biomarkers. 
For this study, a decision was made to use GFAP, a glial 
cytoskeletal protein, as a proxy measure of brain injury 
severity. GFAP was the brain injury biomarker with the 
highest discriminative performance on computed tomog-
raphy (CT) brain injury [17], and it is strongly associated 
with mortality and long-term outcomes after injury [18, 
19]. GFAP within 24 h after trauma was quantified by an 
ultrasensitive immunoassay using digital array technol-
ogy (Single Molecule Arrays, SiMoA)-based assay (Quan-
terix Corp., Lexington, MA).

Statistical methods
Patient characteristics were described by medians (inter-
quartile range, IQR) or means (standard deviations, 
SD) as appropriate and counts or proportions. The role 
of PaO2max, FiO2max, PaO2mean, FiO2mean or ΔPaO2mean, 
ΔFiO2mean (one at a time) on 6-month mortality and 
unfavorable neurological outcome was evaluated through 
mixed-effect logistic regression models, adjusting for 
the IMPACT core covariates (age, Glasgow Coma Scale 
(GCS) motor score and pupillary reactivity) and injury 
severity score (ISS), with the center as a random effect. 
The assumption of linearity of the effect for continuous 
variables was evaluated using splines, and the results of 
the models were reported as odds ratios (OR) along with 
the corresponding 95% confidence intervals (CI). To sim-
plify the clinical interpretation of the OR of the expo-
sure variables, PaO2 and FiO2 increases were referred to 
10 mmHg and 0.1 each, respectively. Then, we enriched 
the models, including GFAP, which was log-transformed 
to satisfy the linearity assumption. We also investigated a 
potential interaction between GFAP and the six variables 
representing the oxygen status (one at a time) through a 
flexible approach based on restricted cubic splines and 

https://www.center-tbi
https://www.center-tbi.eu/data/dictionary
https://www.center-tbi.eu/data/dictionary


tensor-product splines. The final models were selected 
using standard statistical performance measures such as 
Akaike Information Criteria (AIC) and likelihood ratio 
tests for non-nested and nested models. Finally, we used 
data from the OzENTER-TBI cohort to validate our 
findings through the same modeling approach used for 
CENTER-TBI. However, here we omitted the random 
term for centers, while including the only two centers in 
the study as a dummy variable. Analyses were done on 
complete cases and using the MICE algorithm for mul-
tiple imputations of missing data (ten imputed datasets). 
Tests were performed two-sided with a significance alpha 
level of 5%. To protect from the risk of alpha inflation in 
testing the effect of arterial oxygen levels and supplemen-
tal oxygen administration on outcomes, we also adjusted 
the p values in the models according to the approach of 
Benjamini–Hochberg. All analyses were conducted using 
R statistical software (version 4.03).

Results
Of the 4509 patients included in the CENTER-TBI data-
set, 2138 subjects were admitted to ICU and, among 
these, 1084 (median age was 49 [29–65], and 75% male) 
from 51 centers fulfilled the inclusion criteria (Supple-
mental Fig.  1). Half of the population experienced tho-
racic trauma, which in 41.5% of the cases was major.

All 198 patients included in the OzENTER-TBI data-
set were admitted to ICU and, among these, 159 ful-
filled the inclusion criteria (Supplemental Figure  1). In 
OzENTER-TBI, the median age was 39 [24–65], and 77% 
of the population was male. Almost 55% of the popula-
tion experienced thoracic trauma, which in 46.5% of the 
cases was severe or critical. A comprehensive description 
of the population of the CENTER-TBI and OzENTER-
TBI study is reported in Table  1. Patient characteristics 
stratified by 6-month mortality are described in Supple-
mental Table 1 (CENTER-TBI) and Supplemental Table 2 
(OzENTER-TBI). We focused on the highest PaO2 and 
FiO2 daily levels in the current analysis in both cohorts.

CENTER‑TBI
Arterial oxygen levels and supplemental oxygen 
administration
During the first week of ICU admission, a total of 11,577 
measurements of PaO2 were available (5747 lowest and 
5830 highest daily values), for an overall median of PaO2 
and FiO2 of 112  mmHg (IQR 86–144) and 0.4 (IQR 
0.3–0.5), respectively. A total of 526 (48.5%) patients had 
complete daily measurements of high PaO2 during the 
first week (median of 6 measures, IQR 4–7). The remain-
ing patients had, respectively, 6 (136, 12.5%), 5 (72, 6.6%), 
4 (89, 8.2%), 3 (94, 8.7%) and 2 (167, 15.4%) daily meas-
urements of PaO2. The median highest PaO2 level during 

the first seven days since ICU admission was 134 mmHg 
(IQR 113–167). The median of highest FiO2 levels during 
the first seven days since ICU admission was 0.45 (IQR 
0.40–0.5) (Supplemental Fig. 2). Mean PaO2max, PaO2mean 
and ΔPaO2mean were 231, 156 and 57 mmHg, respectively. 
PaO2max showed a strong correlation with ΔPaO2mean 
(TKendall = 0.51, 95% CI [0.48–0.53]) and with PaO2mean 
(TKendall = 0.66, 95% CI [0.64–0.68]). Mean FiO2max, 
FiO2mean and ΔFiO2mean were 0.59, 0.45 and 0.05 mmHg, 
respectively (Table  1). The highest PaO2 levels varied 
widely across centers, with the center-specific median 
ranging from 88 to 170 mmHg and the highest PaO2 lev-
els within center ranging from 162 to 612 mmHg. Simi-
larly, the highest median FiO2 levels during the first seven 
days since ICU admission varied widely across cent-
ers ranging from 0.21 to 0.96. Center variability in PaO2 
(panel A) and FiO2 levels (panel B) across centers is rep-
resented in Fig.  1. Of note, overall median PaO2 levels 
in patients with brain tissue oxygen monitoring (PbtO2) 
were similar compared to the patient population with 
no PbtO2 monitoring (133 versus 137  mmHg, data not 
shown) (Supplemental Fig. 3).

Arterial oxygen levels and outcomes in TBI patients
Data on mortality and neurological functional score 
GOSE at 6  months were available in 967 (89.2%) TBI 
patients. Five hundred and twenty-eight patients (54.6%) 
had an unfavorable GOSE at a 6-month follow-up, and 
252 died within that period (26.1%). After adjusting, we 
estimated the OR for a 10 mmHg increase in PaO2. We 
found that both PaO2max (OR 1.02, 95% CI 1–1.04) and 
ΔPaO2mean (OR 1.07, 95% CI 1.03–1.12) were indepen-
dently associated with an unfavorable functional neu-
rologic outcome as expressed by a GOSE score ≤ 4 at 
6-month follow-up (Model 1, Table  2 and Supplemen-
tal Table  3 for the estimates in the complete regression 
model). Furthermore, we observed that all the exposure 
variables to high PaO2 were positively associated with 
an increased risk of mortality (PaO2max, OR 1.03, 95% 
CI 1.01–1.05; PaO2mean, OR 1.08, 95% CI 1.04–1.13; 
ΔPaO2mean, OR 1.14, 95% CI 1.08–1.2; all estimates for 
10 mmHg) (Model 1, Table 2 and Supplemental Table 4). 
A detailed description of all confounders estimates for 
both outcomes is described in Supplemental Tables 3 and 
4. The estimated probability of mortality from the regres-
sion model by arterial oxygen levels is depicted in Fig. 2 
(Panel A, B, C).

We also explored the role of exposure to high blood 
oxygen levels on the neurologic outcome by further 
adjusting the model for GFAP levels. GFAP was posi-
tively associated with a lower GOSE score and a higher 
mortality rate. Among the variables representing higher 
blood oxygenation, the ΔPaO2mean confirmed its positive 



Table 1  Characteristics of the study cohorts from CENTER-TBI and OzENTER-TBI

Variable Level CENTER-TBI (N = 1084) OzENTER-TBI (N = 159)

Demographic characteristics

Age, median [IQR] 49 [29–65] 39 [24–65]

Sex, n (%) Female 270 (25) 37 (23)

Male 814 (75) 122 (77)

Clinical presentation

Hypotension, n (%) No 843 (77.9) 116 (73)

Yes 239 (22.1) 43 (27)

NA (n) 2 0

Hypoxia, n (%) No 1030 (95) 157 (98.7)

Yes 54 (5) 2 (1.3)

Injury Severity Score, median [IQR] 34 [25–45] 29 [25–38]

NA (n) 3 0

pH, median [IQR] Lowest 7.34 [7.29–7.39] 7.33 [7.29–7.37]

NA (n) 20 0

Highest 7.43 [7.39–7.47] 7.41 [7.38–7.45]

NA (n) 6 0

Neurological presentation

Pupillary reactivity, n (%) Both reactive 790 (72.9) 119 (74.8)

One reactive 87 (8) 11 (7)

Both unreactive 157 (14.5) 25 (15.7)

NA 50 (4.6) 4 (2.5)

GCS Motor Score, n (%) Localizes/obeys 419 (38.7) 33 (20.7)

None/extension 493 (45.5) 117 (73.6)

Any flexion 151 (13.9) 8 (5)

NA 21 (1.9) 1 (0.7)

GCS score, n (%) GCS > 8 370 (34.1) 58 (36.5)

GCS ≤ 8 657 (60.6) 97 (61)

NA 57 (5.3) 4 (2.5)

ICP at ICU admission, median [IQR] 8 [4–14] 11 [7–15]

NA (n) 521 108

Mean ICP, median [IQR] 11 [6–15] 11 [8–15]

NA (n) 521 108

Brain injury severity

Marshall CT Classification, median [IQR] 3 [2–6] 2 [2–6]

NA (n) 105 21

GFAP, median [IQR] ng/mL 20.5 [7–50.8] /

NA (n) 198 159

Oxygenation

Day 1 PaO2overall, mean (SD) mmHg 207.17 (99.91) 328.18 (144.46)

PaO2mean, mean (SD) mmHg 155.79 (46.93) 197.79 (73.79)

PaO2max, mean (SD) mmHg 230.92 (102.95) 356.01 (134.47)

ΔPaO2mean, mean (SD) mmHg 57 (36.7) 98.20 (59.95)

Day 1—PaO2/FiO2, mean (SD) mmHg 412.48 (197.08) 453.59 (207.1)

Day 1 FiO2overall, mean (SD) 0.54 (0.21) 0.76 (0.26)

FiO2mean, mean (SD) 0.45 (0.15) 0.48 (0.15)

FiO2max, mean (SD) 0.59 (0.22) 0.82 (0.23)

ΔFiO2mean, mean (SD) 0.05 (0.08) 0.15 (0.11)

Functional neurologic outcome

GOSE 6-month follow-up, n (%)

 GOSE < = 4 528 (48.7) 53 (33.3)

 GOSE > 4 439 (40.5) 95 (59.7)

 NA 117 (10.8) 11 (7)



association with a lower GOSE, while all the three high 
oxygenation variables remained positively associated 
with a higher mortality rate (Model 2, Table 2). A detailed 
description of all confounders estimates is reported in 
Supplemental Tables  5 and 6. We explored the interac-
tion between exposure to high PaO2max and GFAP levels 
on GOSE and mortality. We did not find any interaction 
between the studied variables, as shown in Supplemental 
Figure 4 (panel A) and in Fig. 3 (panel A), respectively, for 
PaO2max—and for both PaO2mean and ΔPaO2mean as well 
(data not shown), where the surfaces that represent the 
smoothed interactions (on log scale) are mainly flattened 
on zero.

Supplemental oxygen administration and outcome
After adjustment for confounders, FiO2max, FiO2mean and 
ΔFiO2mean had no significant association with neuro-
logical outcomes. However, they showed a positive inde-
pendent association with mortality at 6  months (Model 
3, Table  2, and Supplemental Tables  7 and 8). The esti-
mated mortality probability by administering supplemen-
tal oxygen is depicted in Fig. 2 (Panels D, E, and F). We 
also explored the role of exposure to high supplemen-
tal oxygen levels on the neurologic outcome by further 
adjusting the model for GFAP levels. GFAP was posi-
tively associated with a lower GOSE score and a higher 
mortality rate. Among the variables representing higher 

Table 1  (continued)
Hypotension was defined as a documented systolic blood pressure < 90 mmHg; hypoxia was defined as a documented partial pressure of oxygen (PaO2) < 8 kPa 
(60 mmHg), oxygen saturation (SaO2) < 90%, or both

CT computed tomography, GCS Glasgow Coma Scale, GFAP gliofibrillar acid protein, GOSE Glasgow Outcome Scale Extended, ICP intracranial pressure, ICU intensive 
care unit, IQR interquartile range, NA not available, SD standard deviation

Fig. 1  Center-specific median values of daily highest PaO2 and FiO2 in CENTER-TBI and OzENTER-TBI cohorts. A Center-specific median values 
(colored by country flag) of daily highest PaO2 with the corresponding interquartile range. The solid vertical line represents the overall CENTER-TBI 
median of daily highest PaO2 values, while the dashed one refers to OzENTER-TBI, and the size of the dots is proportional to the number of PaO2 
measurements in the center. B Center-specific median values (colored by country flag) of daily highest FiO2 with the corresponding interquartile 
range. The solid vertical line represents the overall CENTER-TBI median of daily highest FiO2 values, while the dashed one refers to OzENTER-TBI, and 
the size of the dots is proportional to the number of FiO2 measurements in the center



supplemental oxygen, no association was observed with 
GOSE. However, all the three high supplemental oxygen 
variables remained positively associated with a higher 
mortality rate (Model 4, Table 2). A detailed description 
of all confounders estimates is reported in Supplemental 
Tables 9 and 10. We explored the presence of interaction 
on GOSE and mortality between exposure to high FiO2 
levels and GFAP levels. We did not find any interaction 

among the studied variables, as shown in Supplemental 
Figure 4 (panel B) and in Fig. 3 (panel B), respectively, for 
FiO2max—and for both FiO2mean and ΔFiO2mean as well 
(data not shown)—where the surfaces that represent the 
smoothed interactions (on log scale) are mainly flattened 
on zero.

Results concerning PaO2 and FiO2 were confirmed 
when the Benjamini–Hochberg method was applied 

Table 2  Multivariable models on GOSE and mortality at 6-month follow-up in CENTER-TBI (Models 1, 2, 3 and 4)

Model 1. Adjusted odds ratio with 95% confidence intervals of exposure to high blood oxygen levels within 7 days of ICU admission on GOSE and mortality at 6-month 
follow-up in CENTER-TBI. Mixed-effect logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, both unreactive), GCS motor (any 
flexion, none/extension, localizes/obey), Injury Severity Score, and, once at a time, PaO2max, PaO2mean and ΔPaO2mean for CENTER-TBI with center as a random effect. 
Model 2. Model 1 plus the degree of brain injury quantified as GFAP levels. Model 3. Adjusted odds ratio with 95% CI of GOSE and mortality at 6-month follow-up in 
TBI patients exposed to high supplemental oxygen administration within 7 days of ICU admission in CENTER-TBI. Mixed-effect logistic regression models adjusted for 
age, pupillary reactivity (reactive, one reactive, both unreactive), GCS motor (any flexion, none/extension, localizes/obey) and, once at a time, FiO2max, FiO2mean and 
ΔFiO2mean for CENTER-TBI with center as a random effect. Full models with all covariates estimates are reported in the Supplemental material. Model 4. Model 3 plus 
the degree of brain injury quantified as GFAP levels
a  OR is for 10 mmHg increase in PaO2 covariate
b  1 patient did not have low PaO2
c  OR regards 0.1 increments in FiO2 covariate

CENTER-TBI 6-month GOSE
N = 912 patients, 489 GOSE≤4

6-month mortality
N = 912 patients, 225 died

Model 1 OR* 95% CI p OR* 95% CI p value

PaO2max (for 10 mmHg increase) 1.02 1–1.04 0.014 1.03 1.01–1.05 0.002

PaO2mean (for 10 mmHg increase) 1.03 1–1.07 0.059 1.08 1.04–1.13  < 0.001

ΔPaO2mean (for 10 mmHg increase)b 1.07 1.03–1.12 0.001 1.14 1.08–1.20  < 0.001

6-month GOSE
N = 764 patients, 407 GOSE≤4

6-month mortality
N = 764 patients, 175 died

Model 2 OR* 95% CI p OR* 95% CI p

Logarithm GFAP 1.51 1.33–1.71 < 0.001 1.51 1.29–1.77 < 0.001

PaO2max (for 10 mmHg increase) 1.02 1–1.03 0.064 1.03 1.01–1.05 0.008

Logarithm GFAP 1.52 1.34–1.72  < 0.001 1.52 1.3–1.78 < 0.001

PaO2mean (for 10 mmHg increase) 1.03 0.99–1.07 0.092 1.09 1.04–1.14 0.001

Logarithm GFAP 1.52 1.34–1.72 < 0.001 1.53 1.3–1.81 < 0.001

ΔPaO2mean (for 10 mmHg increase) 1.05 1–1.11 0.031 1.14 1.08–1.21 < 0.001

6-month GOSE
N = 877 patients, 470 GOSE≤4

6-month mortality
N = 877 patients, 212 died

Model 3 OR*** 95% CI p OR*** 95% CI p

FiO2max (for 0.1 increase) 1.03 0.96–1.1 0.453 1.18 1.08–1.29 < 0.001

FiO2mean, (for 0.1 increase) 1.02 0.92–1.14 0.694 1.31 1.13–1.51 < 0.001

ΔFiO2mean, (for 0.1 increase) 1.03 0.84–1.27 0.761 1.46 1.13–1.88 0.004

6-month GOSE
N = 741 patients, 397 GOSE≤4

6-month mortality
N = 741 patients, 168 died

Model 4 OR* 95% CI p OR* 95% CI p

Logarithm GFAP 1.52 1.34–1.72 < 0.001 1.55 1.31–1.83 < 0.001

FiO2max (for 0.1 increase) 1.03 0.96–1.12 0.389 1.20 1.08–1.33 0.001

Logarithm GFAP 1.52 1.34–1.72 < 0.001 1.55 1.32–1.84 < 0.001

FiO2mean (for 0.1 increase) 1.04 0.93–1.17 0.498 1.33 1.13–1.55 < 0.001

Logarithm GFAP 1.51 1.33–1.72 < 0.001 1.55 1.31–1.83 < 0.001

ΔFiO2mean (for 0.1 increase) 0.98 0.78–1.23 0.846 1.40 1.05–1.87 0.023



to control the false discovery rate (results not shown). 
The sensitivity analyses accounting for missing data also 
corroborated the findings from the models on com-
plete cases for both PaO2 and FiO2 data (Supplemen-
tal Table  11). From the descriptive analysis reported in 
Supplemental Table 12, patients with and without miss-
ing data have similar characteristics. As 5 patients died 
within 48  h with PaO2 levels beyond 450  mmHg and 
PaCO2 > 60  mmHg and may have undergone an apnea 
breath test, we performed a sensitivity analysis excluding 
these patients for all the explored outcomes in the origi-
nal analysis. No differences were observed as reported in 
Supplemental Table 13.

OzENTER‑TBI
Arterial oxygen levels and supplemental oxygen 
administration
During the first week of ICU admission, a total of 1651 
measurements of PaO2 were available (825 lowest and 
826 highest daily values) for an overall median value 
of PaO2 and FiO2 of 133 (IQR 109–212) and 0.3 (IQR 

0.25–0.4), respectively. During the first week, 43.4% had 
complete daily measurements of PaO2 (median 6, IQR 
3–7). The median of the highest PaO2 level during the 
first 7 days since ICU admission was 133 (IQR 109–212) 
(Supplemental Fig.  2). The highest median FiO2 levels 
during the first 7 days since ICU admission was 0.35 (IQR 
0.25–0.5) (Supplemental Fig. 2). Mean PaO2max, PaO2mean 
and ΔPaO2mean were 356, 197 and 98  mmHg, respec-
tively (Table 1). PaO2max showed a strong correlation with 
ΔPaO2mean (TKendall = 0.63, p = < 0.001) and with PaO2mean 
(TKendall = 0.71, p < 0.001). Mean FiO2max, FiO2mean and 
ΔFiO2mean were 0.82, 0.48 and 0.15 mmHg, respectively. 
Center variability in PaO2 (panel A) and FiO2 levels 
(panel B) across the 2 centers was represented in Fig. 1.

Arterial oxygen levels and outcomes in TBI patients
Data on mortality and neurological functional score 
GOSE at 6  months were available for 148 (93.1%) TBI 
patients. Ninety-five patients (64.2%) had an unfavora-
ble GOSE at 6-month follow-up, and 40 died within that 
period (27%). After adjusting for multiple confounders, 

Fig. 2  The model-based probability for mortality in CENTER-TBI. A–C The probability for mortality estimated by Model 1 (i.e., Table 2) for PaO2max, 
PaO2mean and ΔPaO2mean vary through the corresponding spanned range of values, respectively, while continuous variables were set to median 
value and categorical variables to middle category. D–F The probability for mortality estimated by Model 3 (i.e., Table 2) for FiO2max, FiO2mean and 
ΔFiO2mean vary through the corresponding spanned range of values, respectively. At the same time, continuous variables were set to median value 
and categorical variables to middle category. Below each panel there are boxplots of the corresponding PaO2 and FiO2 variables, with scattered 
points of all measurements



including IMPACT core baseline covariates, ISS and the 
2 different centers (i.e., site code), we observed that none 
of the oxygen exposure variables was independently asso-
ciated with GOSE (Model 1, Table  3 and Supplemental 
Table  14). After adjustment for the same confounders, 

we observed that ΔPaO2mean, (OR 1.08, 95% CI 1–1.18) 
trended toward a higher mortality rate (Model 1, Table 3 
and Supplemental Table 15). A detailed description of all 
confounders estimates for both outcomes was described 
in Supplemental Tables 14 and 15.

Fig. 3  Tensor cubic spline for the interaction between PaO2max and FiO2max with GFAP in CENTER-TBI. In A on the left, we represented the tensor cubic 
spline with 4 degrees of freedom each, used for the interaction between PaO2max and GFAP in the logistic model with 6-month mortality as outcome. 
In B on the right, we represented the tensor cubic spline with 4 degrees of freedom each, used for the interaction between FiO2max and GFAP in the 
logistic model with 6-month mortality as outcome. All other continuous covariates were set to median values and mid-category for categorical ones

Table 3  Multivariable models on GOSE and mortality at 6-month follow-up in OzENTER-TBI (Model 1 and 2)

Model 1. Adjusted odds ratio with 95% confidence intervals effect of exposure to high blood oxygen levels within 7 days of ICU admission on GOSE and mortality at 
6-month follow-up. Validation on OzENTER-TBI. Standard logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, both unreactive), 
GCS Motor (any flexion, none/extension, localizes/obey), Injury Severity Score, and, once at a time, PaO2max, PaO2mean and ΔPaO2mean for OzENTER-TBI with a dummy 
variable for center. Model 2. Adjusted odds ratio with 95% CI of GOSE and mortality at 6-month follow-up in TBI patients exposed to high supplemental oxygen 
administration within 7 days of ICU admission in OzENTER-TBI. Standard logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, 
both unreactive), GCS Motor (any flexion, none/extension, localizes/obey) and, once at a time, FiO2max, FiO2mean and ΔFiO2mean for OzENTER-TBI with a dummy variable 
for center. Full models with all covariates estimates are reported in the Supplemental material
a  OR is for 10 mmHg increase in PaO2 covariate
b  OR regards 0.1 increments in FiO2 covariate

OzENTER-TBI 6-month GOSE
N = 141 patients, 92 GOSE ≤ 4

6-month mortality
N = 141 patients, 39 died

Model 1 ORa 95% CI p value ORa 95% CI p value

PaO2max (for 10 mmHg increase) 1.01 0.98–1.04 0.433 1 0.97–1.04 0.898

PaO2mean (for 10 mmHg increase) 1.01 0.96–1.07 0.656 1.05 0.99–1.11 0.118

ΔPaO2mean (for 10 mmHg increase) 1.03 0.96–1.12 0.376 1.08 1–1.18 0.054

6-month GOSE
N = 141 patients, 92 GOSE ≤ 4

6-month mortality
N = 141 patients, 39 died

Model 2 ORb 95% CI p value OR* 95% CI p value

FiO2max (for 0.1 increase) 1.06 0.89–1.26 0.492 1 0.83–1.23 0.963

FiO2mean (for 0.1 increase) 1.02 0.77–1.34 0.911 1.32 0.98–1.8 0.069

ΔFiO2mean (for 0.1 increase) 1.15 0.79–1.69 0.483 1 0.68–1.48 0.981



Supplemental oxygen administration and outcome
After adjustment for confounders, FiO2max, FiO2mean and 
ΔFiO2mean confirmed the data of CENTER-TBI with no 
significant association with neurological outcome. How-
ever, increases in FiO2mean trended toward a higher mor-
tality rate (Model 2, Table 3). A detailed description of all 
confounders estimates for both outcomes was described 
in Supplemental Tables 16 and 17.

Discussion
In this study, we investigated whether exposure to high 
blood oxygen levels and high oxygen supplementation is 
independently associated with outcomes in TBI patients 
admitted to ICU and undergoing mechanical ventilation.

The main findings can be summarized as follows:

1.	 TBI patients were largely exposed, with wide variabil-
ity between centers, to high levels of PaO2 during the 
first week of ICU admission.

2.	 Exposure to high PaO2 within seven days after ICU 
admission was an independent predictor of 6-month 
mortality in the CENTER-TBI cohort, even regard-
less of the severity of brain injury as defined by 
higher serum concentration of GFAP.

3.	 A higher average daily variability in PaO2 (ΔPaO2mean) 
predicts an unfavorable GOSE at 6  months in 
CENTER-TBI. These findings were not validated in 
the OzENTER-TBI cohort, where only ΔPaO2mean 
trended to a higher mortality rate.

4.	 Exposure to high levels of supplemental oxygen has 
an independent positive association with mortality 
in the CENTER-TBI cohort. In contrast, the associa-
tion between higher FiO2mean and worse mortality in 
the OzENTER-TBI cohort showed similar directional 
trends but did not achieve statistical significance.

The first insight of this study is that more than 50% 
of TBI patients are exposed to hyperoxemia, defined as 
PaO2 levels above 120  mmHg [20, 21], during the first 
week after ICU admission. Despite hyperoxemia being 
quite often defined as the presence of a PaO2 > 120 [20, 
22, 23], there is no agreement in the literature about a 
univocal threshold to define it [7, 8, 24–27]. Understand-
ing if there is a maximum dose of oxygen that may be 
harmful for the brain tissue and whether a prolonged 
time of exposure to high oxygen levels may impair brain 
function and have an impact on mortality is debated. 
The lack of a clear definition of hyperoxemia and a lim-
ited time of oxygen exposure may lead to underestimate 
an association with outcome in TBI patients [27–30], 
despite some reports of a higher mortality in TBI patients 
exposed to higher levels of oxygen [7–9, 24].

This clinical investigation highlights a relevant finding 
that might have a direct potential clinical implication.

We reported that increasing exposure to high blood 
oxygen levels within the first 7  days after ICU admis-
sion independently correlates with long-term mortality 
in patients with TBI. This association was observed by 
exploring either the highest PaO2 levels (interpreted for 
each 10-mmHg increase) or the daily highest PaO2 vari-
ability. This may suggest that clinicians should pay atten-
tion not just to the absolute values of PaO2 but also to the 
daily swings of blood oxygenation. We logically hypoth-
esized that PaO2 levels are driven by inappropriately high 
inspiratory levels of oxygen administered to TBI patients. 
When we explored the role of supplemental oxygen use 
(i.e., FiO2), similarly to the association reported between 
blood oxygenation and mortality, we showed that the 
highest the levels of FiO2 or the most elevated average 
daily swings of FiO2 within the first 7 days, the higher the 
mortality rate. These findings highlight a direct poten-
tial clinical implication for the management of oxygen 
administration in critically ill patients mechanically ven-
tilated and admitted to the ICU with TBI. The amount of 
oxygen delivered to TBI patients can be easily titrated by 
ICU physicians by setting FiO2 levels on the ventilator. In 
the presence of an isolated TBI, therefore not involving 
the lung parenchyma that may lead to impaired oxygena-
tion, high oxygen supplementation may be easily avoided 
on the ventilator by setting FiO2 levels to target a physi-
ological range of blood oxygenation.

Furthermore, avoiding major changes in daily FiO2—if 
not needed to avoid hypoxemia—should prevent a major 
blood oxygenation variability and limit exposure to high 
oxygen levels and its detrimental effects. Our findings are 
in line with the recent guidelines of the European Soci-
ety of Intensive Care Medicine (ESICM) on the manage-
ment of mechanical ventilation in patients with an acute 
brain injury which, with a low level of evidence, recom-
mend targeting normoxia (80–120  mmHg) regardless 
of the presence of intracranial pressure (ICP) elevation 
while it remains unknown whether a certain threshold of 
high PaO2 should be considered safe in TBI patients [20]. 
The pathophysiological mechanisms behind the role of 
oxygen toxicity induced by hyperoxia (i.e., high FiO2) [31, 
32] and hyperoxemia (i.e., high PaO2) [33, 34] in humans 
are widely recognized [5, 35]. On the one hand, hyper-
oxia has been shown to induce direct pulmonary toxic-
ity by alveolar-capillary leak and fibrogenesis in healthy 
volunteers [36] and to have cytotoxic properties [37–39]. 
On the other hand, hyperoxemia increases peripheral 
vascular resistances [40–43], and determines the produc-
tion of reactive oxygen species [44, 45] with the release 
of proinflammatory mediators [46]. In a cohort of severe 
TBI patients studied with advanced multimodality 



monitoring, hyperoxia had variable effects on lactate 
and lactate/pyruvate ratio. Microdialysis did not demon-
strate a constant increase in the cerebral metabolic rate 
of oxygen in at-risk tissue [47]. Similar results have been 
shown in TBI patients exposed to high FiO2. Hyperoxia 
marginally reduced lactate levels in brain tissue after 
TBI. However, the estimated redox status of the cells 
did not change and cerebral O2 extraction seemed to be 
reduced. These data indicate that glucose oxidation was 
not improved by hyperoxia in cerebral and adipose tissue 
and might even be impaired [48].

In recent years, the role of oxygen on outcome has been 
explored in ICU patients to evaluate whether oxygen’s 
inflammatory and cytotoxic effects on organ viability 
might translate into a worse survival. Two randomized 
controlled trials (RCTs) in critically ill (Oxygen-ICU) 
[49] and in septic patients (HYPERS-2S) [50] showed that 
targeting higher levels of PaO2 or hyperoxia could cause 
a higher mortality rate. A large meta-analysis including 
critically ill patients confirmed that a strategy targeting 
more elevated levels of PaO2 increased mortality [51].

In contrast, so far, 4 big RCTs (LOCO2 trial [52], ICU-
ROX trial [53], HOT-ICU trial [54] and O2-ICU trial 
[55]) suggested no significant differences in terms of pri-
mary study outcome (i.e., mortality [52, 54]; ventilator-
free days [53]; and non-respiratory Sequential Organ 
Failure Assessment (SOFA) score [55]) between patients 
managed with lower versus higher oxygen targets. How-
ever, these trials showed differences in their study design 
in terms of targeted physiologic variables of oxygena-
tion (i.e., PaO2, SpO2 and SaO2), targets of oxygenation, 
safety threshold for oxygen conservative therapy [52] and 
study outcomes. These trials were in broad populations 
of critically ill patients, and do not specifically address 
patients with TBI. Indeed, the one trial that specifically 
reported on patients with brain injury provided data sug-
gesting that patients with neurological disease not due to 
hypoxic–ischemic encephalopathy may have had worse 
outcomes with conservative oxygen therapy [53]. In the 
meantime, the UK-ROX trial (ISRCTN13384956) and the 
Mega-ROX trial (ACTRN12620000391976)—two large 
RCTs aimed at exploring the role of oxygen targets on 
mortality in critically ill patients—are currently ongoing 
and will shed further light on the role of oxygen targets 
on outcome in ICU.

We also investigated whether these negative asso-
ciations of hyperoxia with outcome were modulated 
by injury severity, as measured by GFAP levels [17, 56]. 
GFAP is a biomarker representing glial injury [56] and 
correlates well with the severity of brain injury evaluated 
by brain computed tomography [17]. Furthermore, GFAP 
is associated with outcomes in TBI patients [57]. How-
ever, we could not demonstrate an interaction between 

injury severity (as measured by GFAP levels) and the 
association between oxygen exposure variables and out-
come. This corroborates the idea that oxygen exposure 
may somehow influence the outcome in TBI patients 
regardless of the severity of brain injury. Therefore, pre-
venting exposure to high oxygen levels in TBI patients 
might be suggested even in milder TBI.

However, another potential explanation for the lack 
of interaction between oxygen levels and GFAP may be 
the temporal misalignment of GFAP and oxygen levels 
assessment. TBI is not an acute event but an evolving 
process. Hence, acute GFAP and sub-acute oxygen level 
measures may capture distinct complementary aspects 
providing independent prognostic information which 
can enable a more effective risk-stratification of patients 
with TBI. Moreover, it is conceivable that high blood oxy-
gen levels could have a differential effect based on the 
injury pattern/type rather than the severity of structural 
brain damage after TBI owing to distinct pathogenetic 
and pathobiological pathways. In support of such a pos-
sibility, robust experimental evidence has indicated spe-
cific therapeutic responses according to different injury 
models as also tracked by circulating GFAP [58, 59].

Strengths
Strengths of this work include the prospective nature 
of the two multicenter cohorts of patients, with the 
OzENTER-TBI validation cohort confirming a trend 
similar to the findings reported in the sizeable CENTER-
TBI cohort. Data comes from a large real-world dataset 
of patients with TBI representing a global population of 
TBI patients. Evaluating the effect of exposure to oxygen 
on the outcome is not episodic but integrated over the 
first week after ICU admission increases the association’s 
credibility. Furthermore, the exposure variables (i.e., 
PaO2 and FiO2) are not evaluated using a pre-set cut-
off. Still, their association with the outcome is explored 
by including them as continuous data, strengthening the 
findings in the multivariable models. The use of GFAP, 
which allowed to investigate whether oxygen expo-
sure could play a different contribution to the outcome 
because of a different degree of brain injury severity, 
make the results generalizable to most of the spectrum 
of TBI. Moreover, although we acknowledge that various 
models were performed, the strong associations we found 
on mortality were supported even when we accounted 
for multiple comparisons.

Limitations
Several limitations deserve mention. First, considering 
the observational nature of the data, it is speculative to 
draw a direct causal relationship between high arterial 
oxygen levels and supplemental oxygen administration 



and their relationship with outcome. Therefore, our 
results should be taken with caution. Further randomized 
controlled studies are necessary to assess the effect of 
high arterial oxygen levels and supplemental oxygen 
administration on the TBI patients’ outcomes. Second, 
6-month GOSE and mortality are influenced by several 
other factors, such as systemic and ICU complications 
and post-ICU events. To overcome this limitation, we 
used an analytic model considering the effect of other 
available confounding factors, particularly patient clinical 
condition and neuroimaging features.

Besides, in these two cohorts, only a minority of 
patients had a brain tissue oxygen monitor. As docu-
mented by a phase-2 RCT, monitoring brain tissue 
(PbtO2) oxygenation could reduce brain tissue hypoxia 
with a trend toward more favorable outcomes compared 
to treatment driven by intracranial pressure monitoring 
only [60]. A recent consensus suggested the possibility, in 
the presence of low PbtO2 values, of elevating the PaO2 
up to 150  mmHg or higher in more severe cases, fine-
tuned to the patient’s PbtO2 values [61]. Some phase III 
randomized trials are ongoing to demonstrate the ben-
efit of exposing hypoxic brain patients to higher oxygen 
levels. Therefore, our findings are not focused on a pop-
ulation with brain tissue hypoxia but to the overall TBI 
population, with/without brain hypoxia. However, we did 
not observe a difference in the distribution of PaO2 levels 
between TBI with or without PbtO2 monitoring. We can-
not exclude the possibility that the worse outcomes asso-
ciated with higher PaO2 were due to use of higher FiO2 
in patients with more severe injury or physiological com-
promise. Further, these findings may not apply to patients 
in whom FiO2 and PaO2 are titrated to PbtO2 levels.

Moreover, the two cohorts were prospectively collected 
with the primary aim of assessing the epidemiology and 
clinical practice in the management of TBI patients. As 
respiratory targets are not included in the primary out-
come, more frequent daily data on gas exchange and 
more specific data on the ventilator management of 
these patients are missing and would have strengthened 
our analysis. Further, we do not have detailed data about 
the presence of hyperoxemia in patients undergoing an 
apnea breath test. However, only five patients who died 
within 48  h had PaO2 levels beyond 450  mmHg with a 
PaCO2 > 60  mmHg in the CENTER-TBI dataset, which 
may suggest an apnea breath test. Sensitivity analyses 
excluding these patients confirmed the independent 
association with outcome of both PaO2 and FiO2 vari-
ables. Finally, our dataset is limited to the first week after 
TBI. However, our analysis includes data that provides a 
longitudinal view of PaO2 management over time.

Conclusions
In two large prospective multicenter cohorts of critically 
ill patients with TBI arterial oxygen levels and supple-
mental oxygen, administration varied widely across cent-
ers during the first 7 days after ICU admission. Exposure 
to high arterial blood oxygen and high supplemental oxy-
gen were independently associated with 6-month mortal-
ity in the CENTER-TBI cohort. This was not driven by 
the severity of brain injury quantified by serum levels 
of GFAP within 24  h. The findings were not externally 
validated in the OzENTER-TBI cohort likely due to the 
limited sample size, although the effects were in the 
same direction of the ones from CENTER-TBI. Titra-
tion of supplemental oxygen in the presence of TBI is a 
practice immediately applicable at bedside. Randomized 
controlled trials and high-level evidence guidelines are 
warranted to help clinicians optimize oxygen exposure 
management in this cohort of patients.
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