
UNIVERSITY OF OSLO
Department of Informatics

Integrating
Conduit with
Windows Installer

Master thesis

Erik Solhaug
Fløisbonn

23. april 2009

2

Contents

1 Introduction 5
1.1 Compatibility . 5
1.2 Problem . 6
1.3 Specialization . 6

1.3.1 The Advanced Packaging Tool 7
1.4 Conduitism . 7
1.5 Windows Installer . 8
1.6 Integration . 9
1.7 Guiding points . 9
1.8 Thesis structure . 11

2 Vision 13
2.1 Advanced features . 14
2.2 Platform specific operations 14
2.3 Seamless integration . 15
2.4 Microsoft package and cdtpackage 16
2.5 Realizing the vision . 17

3 Design 19
3.1 Distribution . 19
3.2 Deployment . 20
3.3 Concentration . 21
3.4 Deployment software . 21

3.4.1 cdtpkgmaker . 22
3.4.2 cdtdeploy . 24

4 Specifics 27
4.1 Windows Installer . 27
4.2 Creation and installation . 29

4.2.1 Get all files in an installation 31
4.2.2 Tools . 31

4.2.2.1 Msilib . 32
4.3 Package creation with msilib 32

3

4 CONTENTS

4.3.1 Initializing . 32
4.3.2 Adding installable data 33
4.3.3 Finalizing . 34

4.4 Package installation . 34
4.4.1 Windows Installer API 35
4.4.2 Installation with ctypes 35

4.5 A working example . 36

5 Conclusion 39
5.1 Vision . 39
5.2 Evaluation . 39
5.3 Deployment process . 40
5.4 Future development . 40

5.4.1 Add/Remove software 40
5.4.2 A better reality . 41

References . 46
Tables . 47
Figures . 49

Chapter 1

Introduction

Conduit is a multi-platform distribution and deployment system originally
created by Arve Knudsen. Conduit sets out to streamline the installation
process of software, and assist in the installation of software that might
otherwise be quite complex to install manually. The system is written in
the Python programming language and consists of a generic design which is
implemented on multiple operating through several Python modules.

The Conduit software suit consists of Python programs that handle the
creation, distribution and installation of software packages. These programs
provide facilities for the software provider to distribute their software, and
for the user to deploy the software. Together their purpose is to offer the
user an seamless operation of deployment.

1.1 Compatibility

The Conduit system was initially implemented on the Linux operating sys-
tem, but is designed and now implemented, to support multiple operating
systems. As a result of having compatibility for multiple operating systems,
the system supports the most common features present in all operating sys-
tems, the common denominator, and neglects unique features present in
some of the operating systems. The initial focus on Linux in development
of the Conduit system is apparent in the features it supports. It is stated
in the original documentation of the system that:

“The focus on Linux during development was a conscious deci-
sion, a way to keep complexity down.”[1, Introduction]

As a result of this, the system shows a skewness towards compatibility with
Linux, in essence neglecting the unique features of other operating systems.

5

6 CHAPTER 1. INTRODUCTION

One such operating system is Windows, who differ from Linux in many re-
gards. But with our focus on distribution and deployment of packages, the
most clear difference of the two operating systems is the installation ser-
vice shipped with Windows. This service is used by most programs being
installed on Windows. The service provides the user with a familiar user
interface when installing software, and a familiar location in Windows to
remove software. It gives the software provider a standard way of packaging
software, making the process easier than for operating systems like Linux,
which has no standard installation service. And it makes the installation
of packages easy for the users, as the packages are self-executable, and sup-
ported, out-of-the-box, by all modern versions of Windows1.

1.2 Problem

To keep things simple and to hold support for multiple operating systems,
the Conduit system uses its own installation and uninstallation routines.
These are coded in Python, and are created and tweaked for each platform.
An advanced feature like roll-back of installations is not present in Conduit’s
own deployment routines, meaning failed installations will not be removed
correctly. This together with the problem of keeping the routines up-to-date
as new versions of operating systems arrive, calls for the use of specialized
software that is better suited to function properly. By utilizing the already
present installation service in Windows, Conduit can use the service’s ad-
vanced features, like roll-back, to become a more advanced and dependable
system.

1.3 Specialization

The Unix Philosophy

“Make each program do one thing well” - Mike Gancarz [2]

The Conduit system has been built on the premise that it would be a general-
ized software concentrating on the concepts of distribution and deployment.
As with most multi-platform software, the process of staying compliant may
hinder the development of advanced specialized features. This does not how-
ever mean that the system, from the standpoint of the user, can not support
advanced specialized features. The system can get support for such features
through utilization of specialized software.

1Windows Installer is shipped with Windows Vista and Windows XP, and is installed
by default. Older versions of Windows can install Windows Installer through service packs.

1.4. CONDUITISM 7

Most package systems has a distinction between software handling distribu-
tion, and software handling deployment. These systems are usually a collec-
tion of specialized software each dealing with either distribution of packages,
or deployment of packages. One example of such system is Debian’s APT.

By looking at another widely used package system we can find similarities
and differences with the Conduit package system, and perhaps apply these
differences to Conduit for the goal of becoming a more advanced software
system.

1.3.1 The Advanced Packaging Tool

The Advanced Packaging Tool (APT) is a collection of tools that together
form the system’s functionality of distributing and installing software pack-
ages. APT functions as a front-end to dpkg, which is a program that solely
handles the installation and uninstallation of .deb packages. Any depen-
dencies that the software may have with other packages are not handled by
dpkg, but by APT. This shows a clear distinction between the software han-
dling distribution, and software handling installation. As the installation
software is separated from the distribution software, other software similar
to APT can have their own database of dependencies, and install .deb pack-
ages through dpkg. APT is a popular package system that is used by Debian
Linux, a distribution (distro) of Linux, that other popular Linux distros are
based on. APT has in recent years become quite popular as Debian based
distros such as Ubuntu has adventured into the mainstream.

1.4 Conduitism

The tradition in development of software in Unix-like operating systems
is to keep software simple, and to make software specialized. With a set
of specialized software, an advanced system such as a package system can
utilize the specialized software, and give the user an experience of a complete
system. This can be done through having a system acting like a conduit
between specialized software, each being relatively simple and doing their
thing well.

Looking at Conduit the program that is most similar to APT, in function-
ality, is cdtdeploy2. It downloads the packages and any of its dependencies,
and installs them on the user’s computer. The difference is however that

2APT is a command line program, so visually cdtdeploy is more similar to front-ends
to APT such Synaptic or Aptitude.

8 CHAPTER 1. INTRODUCTION

APT uses an external program for installation of each package, while Con-
duit also takes care of the installation.

By making cdtdeploy utilize the Windows Installer service to install the
wanted packages, the deployment software will work as a conduit between
the distribution software in the Conduit system, and the installation software
on the user’s machine. In essence following the tradition of separation and
specialization.

Contrary to Conduit, APT is only functioning on Unix-like systems, but
with its use of an external installation software it is clear to see that utilizing
specialized software is not just normal, but the way for generalized systems
to support specialized features.

1.5 Windows Installer

Windows Installer is the native installation and configuration service for
the Windows operating system. It is installed by default on Windows XP
and Vista, and is available for installation through service packs for earlier
versions of Windows. Windows Installer uses packages with file extension
.msi, which more specifically is a relational database containing informa-
tion about the installable files together with the installable files themselves.
The installation service provides support for platform specific operations
like editing of the windows registry and creation of shortcuts, and supports
features such as uninstallation and rollback of a failed installation.[3]

Windows Installer runs as an active service in Windows, and because it
is shipped with most modern Windows versions, we can assume that is it
running at all times. The fact that it is shipped with Windows XP/Vista,
and running by default simplifies our situation greatly compared to situ-
ations where you are utilizing external software that may not be present.
You usually resolve such problems by bundling the software, or requiring the
installation of the software beforehand. But this is only necessary with Win-
dows versions older than Xp, in which case Windows Installer is available
through service packs.

1.6. INTEGRATION 9

1.6 Integration

“To make into a whole by bringing all parts together; unify.” –
Definition of integrate by The American Heritage[4].

Windows

Conduit
Windows Installer

Features

Figure 1.1: The integration of Conduit with Windows installer. The feature
entity represents the features that the integration will produce for the user.

By seeing that the Conduit system can get support for new advanced fea-
tures, by adding support for specialized software such as Windows Installer,
we can look at the process of integration explained in the rest of this thesis.
With integration we mean to bring features currently available in Windows
Installer to the Conduit system, and to bring features of Conduit to the
Windows environment through the use of Windows Installer. We start off
with Conduit and Windows Installer as two separate parts, they are not
utilizing each others features and do not know of each other.

In this thesis we will present what we believe is the most suitable integration
of Windows Installer and Conduit pertaining to the distribution and deploy-
ment of software packages. We will show what parts of Windows Installer
that Conduit should utilize, and what parts of Conduit Windows Installer
should utilize. This will result in piece of software, and will be presented as
a new version of Conduit containing the changes discussed in this thesis.

1.7 Guiding points

“Make everything as simple as possible, but not simpler.” – Al-
bert Einstein

In my pursuit for integration of Windows Installer I have set some guiding
points which I have followed religiously throughout the development process.
These are:

Keep compatibility

Because Conduit is a multi-platform software system, the integration
of Windows Installer should not diminish or destroy compatibility with

10 CHAPTER 1. INTRODUCTION

other platforms. It should instead increase the compatibility with the
Windows platform and strengthen the reliability of the system.

It would be very tempting to redesign certain parts of the Conduit
system to better suit the utilization of Windows Installer, but as the
other operating systems do not have a similar installation service, it
is better to use the current design to keep compatibility.

Keep things simple

As Conduit, and Windows Installer particularly, are big software sys-
tems, they offer many features, both simple and complex. And the
utilization of these can features can therefor span from shallow to full-
blown. With the introduction of Windows Installer to Conduit, I have
looked at the current Conduit system and tried to utilize Windows In-
staller the same way that Conduit operates internally. This has kept
me from introducing a lot of new concepts to the Conduit system, and
has allowed me to keep things simple and general.

A good tangible example of how I have kept things simple is the con-
nection between the Conduit database of installed packages, and Win-
dows Installer’s database of installed software. Windows Installer runs
as a service, and has it’s own database with the listing of installed soft-
ware installed through Windows Installer. This list could be a comple-
ment to the database Conduit is maintaining with installed software.
But as the relationship between the two databases would become quite
complex, it is better to concentrate on the distribution and deploy-
ment phase with creating packages and installing them, and ignoring,
at this point, the problem of finding software already installed on the
computer through Windows Installer.

Divide and conquer

By dividing a problem into smaller subproblems you can concentrate
on smaller specific problems without being flabbergasted by the overall
problem. In our case this applies to our approach to the Conduit
system, where we divide it into categories, and for each category tries
to find the optimal solution pertaining to the integration of Windows
Installer.

1.8. THESIS STRUCTURE 11

1.8 Thesis structure

In this thesis I will follow a top-down approach. I will start by stating
my vision for a Conduit system with the wanted degree of integration with
Windows Installer. This will be followed by a chapter explaining the current
design of the Conduit system together with my changes. The chapter is
followed by a chapter explaining the specifics of the changes, introducing
the complex nature of Windows Installer and explaining my approach to
the integration programmatically. The thesis is then concluded with a look
at my results, ending with a description of possible future improvements to
the Conduit system.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Vision

The Windows Installer software offers many services that can be utilized
in the Conduit system. With this in mind, I present a vision that the
integration of Conduit with Windows Installer will focus towards. My vision
is that:

• The Conduit system will utilize the services provided by Microsoft
Installer to become a better and more reliable deployment system.

To keep my vision concerning my integration with Windows Installer reach-
able and realistic, I have four overall goals for the integration:

1. Get the Conduit system to utilize the Windows Installer service to bet-
ter the process of deployment by adding support for advanced features
only present in state-of-the-art software.

2. Get better support for platform specific operations, with emphasis on
keeping the focus on the Conduit system to general distribution and
deployment of software.

3. Get a seamless integration with the Windows Installer software seen
from the standpoint of the user.

4. Use Windows Installer packages interchangeably with the current cdt-
package packages.

If the the goals above are met, to a degree that coincides with the guiding
points presented in the previous chapter, we feel that the Conduit system
will become a better and more reliable deployment system compared to the
current system.

13

14 CHAPTER 2. VISION

2.1 Advanced features

The Windows Installer service is a specialized software that is dealing with
packaging and installation of software. In these processes the service offers
advanced features that is hard to implement for smaller software. These
features include a GUI framework, automatic generation of uninstallation
scripts (roll-back) and advertisement of installation with installation on de-
mand.

Not all of these features are relevant to the Conduit system. The GUI
framework enables the package creator to specify a user interface that shows
up when installing packages. This is not needed by Conduit as it has its
own user interface, which should not be interfered by other windows popping
up. Advertisement of installations will also not be utilized by the Conduit
system as it is a way for a package to install only certain bits of a package
and make the rest be installed on-demand.[?]

Automatic generation of uninstallation scripts (rollback) is an advanced
feature that Conduit can utilize. Windows Installer creates a undo-script
adding a undo-action for each action done in an installation. Together with
this script Windows Installer saves a copy of each file that is deleted dur-
ing installation. When an installation fails, Windows Installer performs a
rollback installation that returns the system to the state it was in before
installation.[5]

All the normal actions specified in a Windows Installer package has an cor-
responding undo-action, which means that a rollback-script is generated
automatically. By utilizing the Windows Installer service in Conduit, the
system will get the rollback feature without having to worry about the actual
process of generating a rollback script.

2.2 Platform specific operations

If we look at the three supported operating systems supported by the Con-
duit system, Windows, Linux and Mac OS X, they all operate with much
of the same concepts such as environment variables and shortcuts. They
do however differ in their implementation of these concepts, and it makes
it hard for generalized software to use these concepts uniformly. To make
things even worse, without having a standard way of using these concepts
the use of specialized code might be hard to maintain as implementations
change. To avoid this situation, a good solution is for the generalized system
to use a specialized software to handle the platform specific operations.

With the introduction of Windows Installer packages the Conduit system

2.3. SEAMLESS INTEGRATION 15

can describe the installation of a software and let the Windows Installer
service handle the details of the actual installation. This is done by let-
ting Conduit describe the structure of an installation through a Windows
Installer package. With this approach Conduit can focus on what to be
installed and let Windows Installer focus on how it should be installed. As
Windows Installer is created and constantly maintained by the creators of
the operating system, this approach assures that the installation of platform
specific operations are done properly.

2.3 Seamless integration

The ordinary user of the Conduit system sees the utilization of Windows
Installer mostly from a user interface perspective. As stated above the
design of the user interface will not be utilizing the GUI framework offered
by Windows Installer, but instead stay consistent with other platforms. As
a result, the changes done to the user interface to fit the incorporation
of Windows Installer software can be an indication of how seamless the
integration has been for the user. With this in mind we can state some
goals of how we want to present the integration for the user:

1. Progress of installation

The current Conduit system guides the user through the installation
of software. This is done through a user interface that shows the
progress of an installation as each package is installed. This progress is
updated through a callback function that the installation software uses
to update the progress bar. By using an external software this process
might not be possible in all cases, as the progress needs to be conveyed
between two separate programs when one of them are installing the
package. This is a complex task, and without a Windows Installer
API offering external UI the task would be very difficult. But as the
Windows Installer offers an API that is capable of this, utilizing the
interface correctly will result in showing the progress of installation
the same way as with cdtpackage packages.

2. Install with Windows Installer

With proper integration of Windows Installer, the Windows Installer
packages installed through the Conduit system should be listed in the
location where Windows lists its installed software. This location is
embedded in the Windows operating system, and is called add/remove
software (see figure 2.1). The Conduit user should be able to remove
the packages installed with Conduit in this location. By doing this we
are integrating the Conduit system into the Windows operating system

16 CHAPTER 2. VISION

and allowing the users to remove software in one familiar location.

Figure 2.1: The standard location for Windows users to remove installed
software.

2.4 Microsoft package and cdtpackage

To utilize the Windows Installer service in the Conduit service we need to
add support for the Windows Installer package format (.msi). This package
format is capable of holding the same data as the cdtpackage format, as it
consists of a relational database and an archive (.cab) holding the actual
files. The relational database is able to store custom tables that are not
used by Windows Installer, which makes us able to store metadata and the
same, or more, of the data that is currently in a cdtpackage package.

With this in mind it is quite reasonable to say that we should be able to
use the current cdtpackage and Windows Installer packages interchangeably
in the Conduit system. This involves adapting a similar interface to that
of cdtpackage to the Windows Installer packages, and letting the Conduit
system handle the installation of a package in a uniform way.

Figure 2.2: The Conduit cdtpackage package and the corresponding Win-
dows Installer package.

2.5. REALIZING THE VISION 17

2.5 Realizing the vision

With the goals of support for advanced features, platform specific operations
and seamless integration to the user in mind, we can look at what changes
has to be made to the system to realize the presented vision. In the next
chapter the design of the Conduit system will be revised, with the purpose
of creating the structure needed to move towards the vision explained in this
chapter.

18 CHAPTER 2. VISION

Chapter 3

Design

distr ibut ion

deployment

Conduit

Figure 3.1: The Conduit system with abstract categories.

The Conduit system consists of a collection of programs which mostly fit into
two categories: distribution and deployment. The programs that present fa-
cilities for the software provider to publish their content through the Conduit
system, are put in the distribution category. The programs that enable the
user to download and install the software added by the software providers
are put in the deployment category.

The reason for compartmentalizing the Conduit system into categories is
simple: it will enable us to look at parts of the Conduit system and con-
centrate on only the parts that are relevant to us. By doing this we are in
essence narrowing down our area of interest, and as a result, giving ourself
a better chance at grasping a complicated software system.

3.1 Distribution

The Conduit system has several programs dealing with distribution. These
include the web portal where the software provider controls his software, and

19

20 CHAPTER 3. DESIGN

Distr ibution

Portal

Project database

Figure 3.2: The distribution category with software facilitating distribution
for software providers.

the project database where the description of each project is stored. All of
these programs facilitate distribution of software, and they are mainly used
by the software providers or Conduit maintainers. However the service that
the project database provides is used by the deployment software, which
means that the distribution software acts like a service for the deployment
software.

3.2 Deployment

Deployment

Package maker

Deploy

Figure 3.3: The deployment category with software facilitating deployment
of software for the user.

The software in the Conduit system that gives the user the ability to down-
load and install software given by the software providers, is in the deploy-
ment category. These programs include cdtdeploy and cdtpkgmaker. The
cdtdeploy program is responsible for the actual deployment of packages, from
downloading of packages to installation and uninstallation. Cdtpkgmaker is
the program responsible for the creation of software packages. Even though
this program is not used by the Conduit user, but by the software providers,
it is placed in the deployment category as it uses the facilities offered by the
software in the distribution category.

3.3. CONCENTRATION 21

3.3 Concentration

With the Conduit system divided into distribution and deployment it is quite
easy to see that the process of integrating Windows Installer with Conduit
must mainly be focused towards the software in the deployment category.
In fact, with the guiding points and goals explained in previous chapters in
mind, the integration of Windows Installer with Conduit will not include
the distribution software.

Windows Installer is an installation service, and you might say that it is
obvious for the integration of this to apply only to the deployment soft-
ware. But with the addition of the Windows Installer packages, it may not
be so obvious, as they bring their own concepts not found in the Conduit
cdtpackage format. But by creating relations between the package formats,
and stating that Windows Installer packages must adhere to some specific
rules, we can use the packages interchangeably and we can avoid making
changes to the distribution software.

By not changing the distribution software we can be sure that the distri-
bution part of Conduit will stay compatible with other operating systems.
And more importantly, it will force the integration of Windows Installer to
follow the design of the distribution software. This will avoid infesting the
distribution software with platform specific concepts.

3.4 Deployment software

In the process of incorporating Windows Installer into the Conduit system
there are two main processes to look at: the creation of the Windows In-
staller packages, and the installation of the packages. To be able to add
support for the creation and installation of such packages, their correspond-
ing software need to be looked at in detail. To what extent changes is needed
is only apparent after looking at the design of each program. We will start
with cdtpkgmaker.

22 CHAPTER 3. DESIGN

3.4.1 cdtpkgmaker

User interface

Logic

cdtpackage

Figure 3.4: The design of cdtpkgmaker, with user interface (ui), logic and
Conduit package format (cdtpackage).

The cdtpkgmaker program consists of a user interface (ui) guiding the user
through the process of creating a software package for the Conduit system.
This ui cooperates with a logic to enable the program to create a software
package. It does this by letting the ui have several defined stages. The most
relevant stages are:

1. Entering of package info

This stage lets the user specify values for the software release such as
project file, version of release and the address of the source for the
software package.

2. Creation of package

This stage has no user input and uses the cdtpackage software to create
a Conduit package. As the program is hardcoded to use the cdtpackage
package format, it uses this software to create a package ready to be
uploaded.

(a) Download source package

This step downloads the source package described in the project
file to the computer. The source is used by the Conduit build
system to build a software package.

(b) Build software

This step looks at the build method for the software, and builds
the software. This is done either by a configure & make process,
or through Python distutils with setup.py. When the building of
the software is complete, the software is ready to be packaged.

(c) Packaging

3.4. DEPLOYMENT SOFTWARE 23

This step packages the built software with the Conduit cdtpack-
age format. This step is hardcoded to use the cdtpackage format,
and results in a .cdtpkg file that is ready to be uploaded.

3. Upload package to database

This stage finds the path of the finished package and uploads it to the
package database, together with updating the project description of
the release so that it points to the newly created package.

The most interesting stage, which we can change to accommodate for the
support for Windows Installer packages, is stage 2, and more specifically step
b. Stage 1 and 3 are not dependent on the fact that the created package
is cdtpackage, as long as the windows installer package is able to store the
same data and metadata.

As Conduit is a multi-platform system, we must add support for the Win-
dows Installer package while still supporting the creation of packages on the
cdtpackage format. We need to find a way to decide what package format
to use on-the-go, with constraints to what operating system the user is us-
ing, and what package format he wants to use. There is however no reason
in making this process complicated, as the easiest and best solution is for
the user to decide what package format he wants. If the user is on a non-
compliant operating system, such as the scenario where he wants a Windows
package while using Linux, the system simply creates a cdtpackage with the
.cdtpkg extension.

To get cdtpkgmaker to work with the Windows Installer service the cdtp-
kgmaker software has to change its design slightly to also include Windows
Installer package software. The ui does not need to be changed - as ex-
plained above: the process of choosing the correct package format is done
automatically. The logic however must be changed to also work with the
Windows Installer service. But as the cdtpackage software is originally sepa-
rated from the internal logic of cdtpkgmaker (see figure 3.4), we do not need
to extract the cdtpackage software from the logic. But can instead create a
similar type of software for the Windows Installer package format, and let
the program choose among them at runtime.

The new design (Figure 3.5) of cdtpkgmaker has an extra entity represent-
ing the software responsible for the creation of Windows Installer packages.
With the new design ready we are able to concentrate our efforts towards
the process of developing the Windows Installer package software program-
matically.

24 CHAPTER 3. DESIGN

User interface

Logic

cdtpackage Windows installer

Figure 3.5: The revised design of cdtpkgmaker, with user interface (ui),
logic, Conduit package format (cdtpackage) and Windows Installer package
format.

3.4.2 cdtdeploy

Cdtdeploy is the program that the ordinary user of Conduit uses to install
software from the Conduit system. This program lists, installs and uninstalls
software from the Conduit project database. As with the cdtpkgmaker pro-
gram, this also operates with defined stages which guides the user through
the process. These stages are:

1. Listing of packages

This stage lists the packages available to be installed on the user’s
computer, taking into account the operating system and computer
architecture.

2. Installation of packages

This stage acts on the input given in the previous stage. With the
releases selected, the program goes through the process of installing
each release in a matter which resolves dependencies. The installation
of a package has 4 steps. These are:

(a) Installation of files: This step copy files from the package to the
correct directory on the user’s computer.

(b) Update OS environment: This stage updates the operating sys-
tem environment to work correctly with the operation of the Con-
duit system.

(c) Update Python path: This stage updates the Python path so it
points to any new installed Python modules.

(d) Start menu: This stage updates the start menu by adding items
described in the package

3. View of installation

3.4. DEPLOYMENT SOFTWARE 25

This stage shows the files copied through the installation stage together
with a description of the changes done to the environment.

As this program works as the front-end to the user for deployment of soft-
ware in Conduit, it is important that the program stays user friendly, and
consistent, regardless of what platform and package format is being used.
As a result, the user interface will not be changed - it will keep the same
stages. However the four steps of stage 2 might be fused together as these
steps will be handled by Windows Installer and not Conduit directly.

The old and new design of cdtdeploy is similar to that of cdtpkgmaker
described above (Figure 3.4, and Figure 3.5). This fact gives us the pos-
sibility to develop the internal workings of the Windows Installer software
independently from the logic of the Conduit software. We can do this by
adapting the same API as that of the cdtpackage software, to the Windows
Installer software, and let the deployment software use the package formats
interchangeably.

26 CHAPTER 3. DESIGN

Chapter 4

Specifics

With the revised design of both deployment programs in the Conduit sys-
tem ready, we can go into more specific details surrounding the process of
integrating Conduit with Windows Installer. As explained earlier my vision
is for the cdtpackage format to be used interchangeably with the Windows
Installer packages. For this to become a reality we need to get familiar with
the concepts of Windows Installer, and try to set relationships between these
and the concepts of the Conduit system.

4.1 Windows Installer

The Windows Installer service divides installable software into four entities:
package, product, feature and component (see figure 4.1). A Windows In-
staller package describes the installation of products, and is manifested in
the form of a distributable file. These packages use the file extension .msi
and consist usually of a Cabinet archive (.cab) together with a relational
database holding installation data pertaining to the files in the archive.[6,
Installation Package]

The product described in a package is a set of programs, and is the most
general entity for Windows installer which can be uniquely identified, ig-
noring the package. A product is composed of components, which are the

Windows Installer: Package Conduit: Package
Product Release
Feature Interface
Component

Table 4.1: Terms used by Windows Installer and the Conduit system.

27

28 CHAPTER 4. SPECIFICS

atomic entity for what Windows Installer is concerned. Components are the
data, such as files and registry keys, that a program is made out of. The
feature entity is a collection of components and features, and is usually one
separate part of the total functionality of a program.[6, Components and
Features]. Figure 4.1 shows graphically the relationship between the terms
used by Windows Installer.

Conduit and Windows Installer both operate with packages as software con-
verted to a certain format ready for deployment. In Conduit a package is
a realization of a project release, and it has no concept of entities smaller
than a release. In comparison, a package in Windows Installer is a set of
not-necessarily-related products, which depends on smaller entities such as
components. As of such, confusion might ensue as to what a release in the
Conduit system corresponds to in a Windows Installer package.

Since a Windows Installer package may contain more than one product, a
release in Conduit is best compared to a product in Windows Installer. This
however leads to problems with the fact that a Windows Installer package
can contain several products. These products may, in theory, not be related,
and this may lead to problems, as a package in Conduit can only be said to
be a release of a certain project. There are two ways to resolve this issue.
Either we inject the project database with platform specific data and allow a
Windows Installer package to have multiple products, and in essence change
the current design of the distribution software. Or we can simply say that
a Windows Installer package, created with Conduit, can only consist of one
product. This way a product will correspond correctly with the dependencies
specified in the Conduit package database, and with the Conduit’s general
concept of a release.

Package

Products

Features

Components

Figure 4.1: Showing the relationship between terms used with Windows
Installer.

By saying that a single product in Windows Installer corresponds to a release
in the Conduit system, we get a consistent definition of the term release. As
a result, the Conduit program can work with both package formats the same

4.2. CREATION AND INSTALLATION 29

Table Description
Component Lists installation components
Directory Directory layout for the application
Environment Lists the environment variables
Feature Defines the logical tree structure of features
FeatureComponents Defines features and component relationships
File Complete list of source files with their attributes
Shortcut Lists information needed to create shortcuts

Table 4.2: Tables used by Windows Installer to describe installable data.
Excerpts from [7, Database Tables]

way without introducing disparities. By having one product per Windows
Installer package, the dependencies stated in the Conduit-release descrip-
tion will be valid for Windows Installer packages, and can consequently use
Conduit’s dependency resolver. Furthermore the two package types become
interchangeable, and the only difference in deployment is that they invoke
different package software systems depending on the package format.

To summarize, Windows Installer packages created with Conduit will con-
tain the following entities:

• Only 1 product. This product corresponds to the release in the Con-
duit system, and to the software in a cdtpackage package.

• Only 1 feature. This feature is the default one, which contains a
reference to the component of the root directory.

• Components. These components reference directories and files of the
software.

4.2 Creation and installation

Now that we have specified the relationship between the package formats,
the next step is to go into more details of how the actual packaging and
installation of Windows Installer packages will function. To explain this,
we need to get an understanding of what the Windows Installer packages
consist of. As explained before, a Windows Installer package consists of a
relational database. This database consists of several tables that are used
in describing the installation of a package. Besides having tables pertaining
to the actual installable data, it also has tables explaining the sequence of
installation, and description of the user interface. As Windows Installer
contains a myriad of tables, this section will focus on the tables describing
the data being installed. The remaining tables will not be described as they

30 CHAPTER 4. SPECIFICS

Column Type Key Nullable
Component Identifier Yes No
ComponentId GUID No Yes
Directory Identifier No No
Attributes Integer No No
Condition Condition No Yes
KeyPath Identifier No Yes

Table 4.3: Component table describing a component in the Windows In-
staller package. Taken from [8, Component Table]

Column Type Key Nullable
File Identifier Yes No
Component Identifier No No
FileName Text No No
FileSize DoubleInteger No No
Version Version No Yes
Language Language No Yes
Attributes Integer No Yes
Sequence Integer No No

Table 4.4: File table describing a file in the Windows Installer package.
Taken from [9, File Table]

will not be altered by us directly, but will be used with their default values.
This is mainly because we will use the Conduit system’s own user interface
while installing the package, and there is no practical reason for changing
the order of installation, or adding custom actions. The tables pertaining
to the data are listed in Table 4.2.

The Component table holds information about the components in a Win-
dows Installer package. It has the columns described in table 4.3. The
Component column is the key column for the table, and it uniquely identi-
fies a component. The File table holds information about files, and it has
the columns described in table 4.4.

Without going into too much details about every table, it’s columns and their
corresponding types, the files in a Windows Installer package are related to
a component through the Component -value in the File table. This happens
through a primary/foreign key fashion, and this is how all the tables relate
to each other in a Windows Installer database. The feature/component
relationship is stated as a row in the FeatureComponent table refering to the
component and feature. Directories, environment variables and shortcuts
are represented as rows in their respective tables.

4.2. CREATION AND INSTALLATION 31

4.2.1 Get all files in an installation

To get a better grasp of the structure of a Windows Installer database, I will
present an algorithm for the listing of all the files in an Windows Installer
database.

Algorithm: Given a Windows Installer package, get a list of all the files
referenced in the relational database.

1. Get root directory: A root directory is a row in the Directory table
which has no Directory parent, or has Directory Parent set to itself.
Add directories to list d list. Go to step 2 with d list tmp ← d list.

2. For each item i in d list tmp: Get a list d tmp with all directories in
table Directory with Directory parent equal to i. Append d tmp to
d list. If d tmp is empty: go to step 3. If not: go to step 2 with d list
← d tmp.

3. For each item i in d list : Add all components in Component directory
which has Directory set to i to list c list.

4. For each item c in c list : Get all files in the File table that has Com-
ponent set to the c.

One ends up with a list of all the files that is referenced directly, and in-
directly, from the root directory. If one wants the path for each file, one
can add properties to the individual objects, and append the path as one is
recursively adding directories in step 2.

4.2.2 Tools

From a practical standpoint, splitting a tangible software into a chaos of
rows in a database, is not the optimal situation for small software. The
complexity of Windows Installer makes the process of creating a simple in-
staller package quite difficult. Without the help from tools, the task would
be mind-boggling. There exists however several commercial and a few gratis
tools that can be utilized for the creation of a package. A free toolset created
by Microsoft called WiX[10] exist, as well as a more commercial option such
as Installshield[11]. The Conduit system is closely coupled with the Python
programming language, and thankfully Python 2.5 and onwards comes bun-
dled with a low-level Windows Installer library called msilib. As the msilib
module is featured in the Python standard library, msilib is the obvious
choice for the Conduit system. By using msilib we avoid adding dependen-
cies to external programs besides Windows Installer, which we already have
assumed is present and running on the user’s computer.

32 CHAPTER 4. SPECIFICS

4.2.2.1 Msilib

Msilib is a Windows specific Python module that supports the creation of
.msi files[12]. The library consists of a set of routines that can be used to
create and read windows packages. The msilib library routines are quite
low-level, meaning the correspondence between the Python methods and
the wrapped Windows Installer functions are high. This enables the package
creator to get full control of the package process. It does however mean that
the package creation process can get quite complicated. With the added
bonus of practically no documentation of the usage of the msilib module,
the development process of the packaging software to this thesis has been
lead by a period of trial-and-error. The knowledge gained from this process
is presented in the following sections of the thesis and in the Conduit system,
and can hopefully function as a reference for future users of the library.

4.3 Package creation with msilib

According to the documentation of msilib, in the Python standard library,
“the package contents can be roughly split into four parts: low-level CAB
routines, low-level MSI routines, higher-level MSI routines, and standard
table structures.”[12]. In my package creation software using msilib, I have
used the low-level MSI routines, higher-level MSI routines and the standard
table structures. The low-level CAB routines are used indirectly through
the use of higher-level MSI routines. The process of creating a Windows
Installer package compatible with the Conduit system has been split into
three steps:

• Initializing package

• adding installable data

• finishing package

4.3.1 Initializing

The first step is to create a Windows Installer database that we can work
with in the following steps of the process. This is done by calling the msilib
method init database(), which initializes the database with a given schema.
It adds product name, product code and product version to the package.
The schema used is the one from the msilib module, which holds the defi-
nition of the tables needed for a working Windows Installer database. The
initialization step is ended by adding table contents to the various sequence
tables - the tables responsible for the sequence of installation.

4.3. PACKAGE CREATION WITH MSILIB 33

4.3.2 Adding installable data

The next step is to add installable data to the Windows Installer package.
This process has been split into the following steps:

1. Default feature

This step adds a default feature to the Windows Installer database.
This feature is be the only feature added to the Windows Installer
database and it references all the components holding installable files.

2. Cab file

This step adds a .cab file to the database which holds the actual con-
tent of the installable files. This cab-file is referenced by the compo-
nents to show what data the component consist of.

3. Root directory

This step adds a root directory to the database. The source directory
is set to SourceDir and the target directory is set to TARGETDIR.
By doing this we are specifying that this directory is the root direc-
tory for the installation. When the Conduit system is installing the
package, the TARGETDIR property is set by Conduit to the root of
the installation path.

4. Files

This step adds all the files in the directory that is to be packaged. We
do this by adding a directory and a corresponding component to each
directory we meet while traversing the path. This has to be done top-
down, beginning with the root directory, as all the directories in the
root directory reference their parent directory in the Directory Parent
column of the Directory table. When we encounter files, they are
added to the File table with a reference to the component that belongs
to the current directory.

5. Shortcuts and environment

As the files are added to the database, we can now add external refer-
ences to these files in the form of shortcuts and environment variables.
If the software has a recipe saying it should have a shortcut, a refer-
ence to the component of the file is added to the Shortcut table. Any
directory with library files, Python modules and executables are added
to the Environment table. This table allows us to append text to envi-
ronment variables, such as PATH, enabling the user to run executables
without knowing their full path.

34 CHAPTER 4. SPECIFICS

Category
User interface and logging
Handle management
Installation and configuration
Component-specific
Application-only
System status
Product query
Patching
File query
Transaction management
Database functions

Table 4.5: The categories that the Windows Installer functions can be di-
vided into.[13]

4.3.3 Finalizing

We now have a Windows Installer database with information pertaining to
installable data and sequence of installation, together with a .cab file con-
taining the actual installable files. Together they form a Windows Installer
package we want to add to the Conduit system. To finalize the package we
commit the changes to the cab file, together with the changes made to the
database. This results in a .msi Windows Installer package which is ready
to be uploaded, and be used in the description of a project.

4.4 Package installation

With a Windows Installer package ready we will now look at the process of
installing a .msi package. Like the situation with the creation of windows
installer packages described above, there are several ways to go in installing
a Windows Installer package. Users of a Windows operating system might
be familiar with the method of double-clicking a .msi file, and being shown
a wizard-like user interface. When such a double-click occurs, the msiexec
application bundled with Windows is invoked with the default options of an
installation. The msiexec application uses the Windows Installer application
programming interface (API), that the Windows operating system offers, to
show installation UI and start the installation. To get a similar process in
Conduit we need to get familiar with the Windows Installer API.

4.4. PACKAGE INSTALLATION 35

4.4.1 Windows Installer API

The Windows Installer API consists of a set of installer functions that one
can use to add Windows Installer functionality to an application. The in-
staller functions can be divided into the categories, listed in table 4.5, as they
are done in the installer function reference by Microsoft[13]. As we want to
install a package, and follow the progress, the most interesting functions
are the ones belonging to installation and configuration, and user interface
and logging. By using the functions in the installation and configuration
category, we can initiate an installation of a package. And with the user in-
terface and logging functions, we can specify that we want to have our own
user interface, and use callbacks to Python to keep track of the progress of
installation.

The API is there with the capabilities of installing packages and giving
feedback to Conduit on the progress of the installation. But now comes the
question of how to utilize the API. We can use:

1. Automation objects

We can work with COM and automation objects offered by Windows
Installer by using the win32com[14] Python module.

2. Windows shared libraries

We can use a foreign function interface (ffi), such as ctypes[15], and
use the shared libraries that comes with Windows. disregarded

According to the Windows Installer automation interface reference[16], in-
staller objects does not have the ability to use an external user interface.
This is needed as the current Conduit system shows the progress of installa-
tion by specifying a callback function. As we want to leave the user interface
alone, lessening the feedback to the user is not a solution and automation
objects is thereby disregarded as a solution.

Using shared libraries directly with ctypes, as ffi, gives us the ability to
specify an external user interface through the MsiSetExternal() method.
Conduit can initiate an installation, say that it will not want the internal
user interface, and specify a callback function that is called by Windows
Installer as the installation progresses.

4.4.2 Installation with ctypes

The ctypes module allows us to use shared libraries in Python by introducing
C types such as pointers. With these types we can define a callback method
that has the same arguments and return value of that which is needed.

36 CHAPTER 4. SPECIFICS

The process of installing a Windows Installer package with ctypes does not
involve many calls to the installer functions. All we need is to initiate instal-
lation, tell it to use our own user interface and specify a callback method.
This is done in the following way:

1. MsiSetInternalUI:

This method is used to suppress the internal user interface. By spec-
ifying the constant INSTALLUIULEVEL NONE, Windows Installer
will not show any user interface other than the internal one.

2. MsiSetExternalUI:

This method is called to specify our own callback method. The call-
back method is defined in Python, and through the use of ctypes, we
create a class that calls our function on our behalf. This ui is used in
both installation and uninstallation.

3. MsiInstallProduct:

With the internal user interface suppressed, and with a callback func-
tion ready, we can initiate the installation of the package with this
method.

By doing these calls we let Conduit initiate the installation of a Windows
Installer package. With the callback we let the cdtdeploy program be notified
that progress has been made in the installation. Features such as roll-back
is initiated automatically when an installation has failed, or is canceled by
the user. User interaction under installation is controlled by return values
from the callback method. If the user wants to cancel the installation, the
callback method checks the Conduit ui for such an action. If it is found, the
callback method returns a cancellation value to Windows Installer telling it
to stop the installation.

With the application of the methods described in this chapter to the Conduit
system, we are adding support for Windows Installer features. This is done
in such a matter that it allows Conduit to use different package formats,
and packaging software, and still keep the user interface consistent between
operating systems.

4.5 A working example

A working Conduit system, with the support for the Windows Installer
explained in this thesis, is available at the following url:

http://heim.ifi.uio.no/erif/Conduit/

4.5. A WORKING EXAMPLE 37

There you will find the documentation for the Windows Installer package
software, as well as screenshots showing examples of how Conduit is inte-
grated with Windows Installer.

Figure 4.2: The cdtpkgmaker application about to create a .msi package.

38 CHAPTER 4. SPECIFICS

Figure 4.3: The add/remove location showing the numeric package which
has been installed through Conduit.

Chapter 5

Conclusion

5.1 Vision

In this chapter we will reflect on the new Conduit system resulting from the
process described in the former chapters. This will be done by looking at
our initial goals, and seeing to what degree they have been reached. This
will give a measure of how well the integration of Conduit with Windows
Installer has been.

With the utilization of the Windows Installer service described in this the-
sis, the service is used by Conduit to improve its methods of deployment.
But as Windows Installer can offer other complementary features to that of
Conduit, future development of Conduit can be focused around getting a
fuller integration of Windows Installer features.

5.2 Evaluation

By looking at the new Conduit system we can see how well the integration
process has realized our vision outlined in chapter 2. The vision is for the
Conduit system to utilize the services provided by Windows Installer to
become a better and more reliable deployment system. To see if we have
realized the aforementioned vision, we can to see if we have reached the
goals set in chapter 2.

39

40 CHAPTER 5. CONCLUSION

5.3 Deployment process

The new Conduit system utilizes the Windows Installer service to deploy
Windows Installer packages. This is done by utilizing the API that Win-
dows Installer offers. By installing Windows Installer with the help of Win-
dows Installer, the Conduit system is getting support for advance features
such as roll-back. It is also getting better support for platform specific op-
erations such as changing environment variables, by allowing Conduit to
describe the data in a package, and let Windows Installer do the operation.
With Windows Installer supporting an external user interface, the integra-
tion of Windows Installer is seamless from the standpoint of the user as it
allows Conduit to keep its consistent user interface throughout operating
systems. And by adapting the API used by the cdtpackage format to the
new Windows Installer package format, we are allowing the Windows In-
staller packages to be used interchangeably with cdtpackage packages. The
reliability of the Conduit system is improved by allowing for rollback of any
unwanted changes done through a failed installation. In conclusion we feel
that the goals outlined in chapter 2 has been met, and to such a degree that
Conduit has become a better and a more reliable deployment system.

5.4 Future development

With reaching our goals of integration, the following section explains possible
future improvements to the Conduit system pertaining to the integration
with Windows Installer. Even with our goals of integration with Windows
Installer met, it does not mean that the integration is total. There are some
features that are not currently utilized, and some of the services currently
utilized can be improved further.

5.4.1 Add/Remove software

With the utilization of Windows Installer to install windows packages, the
Windows operating system notices what software that Conduit installs.
This allows Windows to list the installed programs in a location called
add/remove software, which is the standard place for users of Windows
to remove software from their system. The new Conduit system has its in-
stalled packages listed in this location, and the user can remove packages
installed through Conduit this way. The problem is however the connec-
tion between the Windows Installer database, and Conduit’s database of
installed packages. By removing software installed through the new Con-
duit, at the Add/remove location, the software is removed from the system

5.4. FUTURE DEVELOPMENT 41

but Conduit is unfortunately not notified of this. This basically means that
Conduit thinks that the software is still installed, and lists it normally as
installed, even though the software is not actually present. To get Conduit
notified of the removal, Windows Installer can use a custom action to run
an embedded JScript/VBscript, or run cdtdeploy directly with command
line arguments describing the removed package. This approach however de-
pends on us knowing where the Conduit system is located. Usually the user
of Conduit only downloads the cdtdeploy application as a standalone exe-
cutable, placing it on the desktop, and from there installing the Conduit
software. The next step the user takes is probably to remove the cdtde-
ploy executable as he is hopefully happy with the installation of software.
Without the cdtdeploy program available, the user can not remove software
installed through Conduit if the uninstallation process is solely based on the
cdtdeploy program.

With this problem in mind, the strategy of placing the uninstallation logic
can become quite complex. The user should be able to remove software
through add/remove, either with cdtdeploy present or not. One solution to
the problem would be to create a Windows Installer package for the cdt-
deploy software, to make sure that the user installs the cdtdeploy software
as any other program. This would force the user to treat the cdtdeploy
software as an ordinary installable software, and it would most likely keep
the user from deleting it on a whim. It would also enable the custom ac-
tion, started with add/remove, to get the location of the cdtdeploy through
Windows Installer, and invoke it. The uninstallation process can then be
based on invoking cdtdeploy from the add/remove location, and removing
the program through cdtdeploy. In this scenario the user can still remove
the cdtdeploy software and render the software installed uninstallable. To
resolve this problem the custom action could start the uninstallation itself
if it does not find cdtdeploy installed.

5.4.2 A better reality

As mentioned above the Windows Installer offers some complementary fea-
tures that Conduit can use. One of these features is the Windows Installer
database that holds track of installed software. Through the utilization of
this database, Conduit could be able to recognize software that is already
present on the user’s computer.

Since Windows Installer is a very common way for installation of software
on Windows, the list of installed software that windows installer has corre-
sponds quite well with the actual installed software on the computer. This,
with the fact that the list is easily available, could make Conduit able to see
if required software of a release is already installed on the computer, and

42 CHAPTER 5. CONCLUSION

if so, keep from installing redundant software. This would be a improve-
ment to the current system, where you for instance can install Python even
though it is already installed through Windows Installer. With multiple
Python versions installed on the computer, conflicts could arise surrounding
what Python program is invoked when the user wants to start the Python
interpreter.

To get this connection between the Windows Installer database and Conduit
database, software in Conduit must be identified the same way as they
are described by the ordinary installer. This is needed to set a proper
relationship between software in Conduit, and software outside. For instance
Python would need to identify itself as Python in Conduit, just as it would
need to be described as Python in the installer provided by the creators of
Python.

The implementation of such a feature can be based on the Python module
pwis (see [17] for more details), which I created to list the installed software
on a user’s computer. This module consists of a shared library (.dll) that acts
as a wrapper for some of the Windows Installer API functions. The shared
library is used by a wrapper module through ctypes. The main module
is an Installer class, which consist of methods to extract information from
software installed through Windows Installer. Conduit can use this module
to extract information from the installed software, compare it to the software
in its database, and mark them as installed if the information corresponds
correctly.

Figure 5.1: Showing pwis, a Python module that lists installed software that
is installed through Windows Installer.

With the introduction of such a feature the Conduit system would expand
its horizon by also supporting already installed software. This would allow
Conduit to check for software that is not installed through Conduit. This

5.4. FUTURE DEVELOPMENT 43

would lead to less redundant software installed on the user’s computer, and
less traffic on the Conduit distribution system.

44 CHAPTER 5. CONCLUSION

Bibliography

[1] Arve Knudsen. Generic software distribution and deployment. 31. Jan-
uary 2006.

[2] Mike Gancarz. The unix philosophy. ISBN1555581234.

[3] Microsoft. Windows installer. http://msdn.microsoft.com/en-us/
library/cc185688(VS.85).aspx.

[4] Fourth Edition The American Heritage Dictionary of the English Lan-
guage. Definition of integrate. http://www.thefreedictionary.com/
integrated.

[5] Microsoft. Rollback installation. http://msdn.microsoft.com/
en-us/library/aa371370(VS.85).aspx.

[6] Microsoft. Windows installer sdk. http://www.
microsoft.com/downloads/details.aspx?FamilyId=
6A35AC14-2626-4846-BB51-DDCE49D6FFB6&displaylang=en.

[7] Microsoft. Windows installer - database tables. http://msdn.
microsoft.com/en-us/library/aa368259(VS.85).aspx.

[8] Microsoft. Windows installer - component table. http://msdn.
microsoft.com/en-us/library/aa368007(VS.85).aspx.

[9] Microsoft. Windows installer - file table. http://msdn.microsoft.
com/en-us/library/aa368596(VS.85).aspx.

[10] Microsoft. Wix. http://wix.sourceforge.net/.

[11] Acresso. Installshield. http://www.acresso.com/products/
installation/installshield.htm.

[12] Python standard library. msilib. http://docs.python.org/library/
msilib.html.

[13] Microsoft. Windows installer - installer function reference. http://
msdn.microsoft.com/en-us/library/aa369426(VS.85).aspx.

45

46 BIBLIOGRAPHY

[14] Mark Hammond. Python win32 extensions. http://starship.
python.net/crew/mhammond/win32/Downloads.html.

[15] Thomas Heller. Ctypes. http://python.net/crew/theller/ctypes/.

[16] Microsoft. Automation interface reference. http://msdn.microsoft.
com/en-us/library/aa367810(VS.85).aspx.

[17] Erik Fløisbonn. pwis - python module listing windows installer installed
software. http://heim.ifi.uio.no/erif/pwis/.

List of Tables

4.1 Terms used by Windows Installer and the Conduit system. . 27
4.2 Tables used by Windows Installer to describe installable data.

Excerpts from [7, Database Tables] 29
4.3 Component table describing a component in the Windows

Installer package. Taken from [8, Component Table] 30
4.4 File table describing a file in the Windows Installer package.

Taken from [9, File Table] . 30
4.5 The categories that the Windows Installer functions can be

divided into.[13] . 34

47

48 LIST OF TABLES

List of Figures

1.1 The integration of Conduit with Windows installer. The fea-
ture entity represents the features that the integration will
produce for the user. 9

2.1 The standard location for Windows users to remove installed
software. 16

2.2 The Conduit cdtpackage package and the corresponding Win-
dows Installer package. 16

3.1 The Conduit system with abstract categories. 19
3.2 The distribution category with software facilitating distribu-

tion for software providers. 20
3.3 The deployment category with software facilitating deploy-

ment of software for the user. 20
3.4 The design of cdtpkgmaker, with user interface (ui), logic and

Conduit package format (cdtpackage). 22
3.5 The revised design of cdtpkgmaker, with user interface (ui),

logic, Conduit package format (cdtpackage) and Windows In-
staller package format. 24

4.1 Showing the relationship between terms used with Windows
Installer. 28

4.2 The cdtpkgmaker application about to create a .msi package. 37
4.3 The add/remove location showing the numeric package which

has been installed through Conduit. 38

5.1 Showing pwis, a Python module that lists installed software
that is installed through Windows Installer. 42

49

