
UNIVERSITY OF OSLO
Department of Informatics

Executable interface
specifications for
testing asyn-
chronous Creol
components

Research Report 375

Immo Grabe

Martin Steffen

Arild B. Torjusen

ISBN 82-7368-335-4
ISSN 0806-3036

14. July 2008

Executable interface specifications
for testing asynchronous Creol components?

14. July 2008

Immo Grabe1 and Martin Steffen2 and Arild B. Torjusen2

1 Christian-Albrechts University Kiel, Germany
2 University of Oslo, Norway

Abstract. Creol is a high-level, object-oriented language for distributed
systems, featuring active objects and asynchronous method calls. In this
paper we present a behavioral interface specification language over com-
munication trace labels to specify components in terms of traces of ob-
servable behavior.

In the specification, a clean separation of concerns between interaction
under the control of the component or coming from the environment is
central, which leads to an assumption-commitment style description of
a component’s behavior. The assumptions schedule the order of inputs,
whereas the outputs as commitments are being tested for conformance.
To ensure the mentioned separation of responsibilities, we define well-
formedness conditions which in addition assure that only “meaningful”
traces, i.e., those corresponding to actual behavior, can be specified. The
specification language is characterized by two other salient features: it
allows to specify freshness of communicated values and furthermore, it
respects the asynchronous nature of communication in Creol: the output
is tested only up-to an appropriate notion of observability.

1 Introduction

Reasoning about open distributed systems and predicting their behavior is in-
trinsically difficult and one reason for that is their inherent asynchronicity and
the resulting non-determinism. It is generally accepted that the only viable way
to approach complex systems is to “divide-and-conquer”, i.e., consider compo-
nents interacting with their environment. Abstracting from internal executions,
their black-box behavior is given by interactions at their interface. In this pa-
per, we use Creol [19], a programming and modeling language for distributed
systems based on concurrent, active objects communicating via asynchronous
method calls.

? Part of this work has been supported by the EU-project IST-33826 Credo: Modeling
and analysis of evolutionary structures for distributed services and the German-
Norwegian DAAD-NWO exchange project Avabi (Automated validation for behav-
ioral interfaces of asynchronous active objects).

http://www.cwi.nl/projects/credo/
http://www.ifi.uio.no/avabi/

4

To describe and test Creol components, we introduce a simple specification
language over communication labels. The expected behavior is given as a set of
traces at the interface. Both input and output interactions are specified but play
quite different roles. As input events are not under the control of the object, but
of the environment, input is considered as assumption about the environment
whereas output describes commitments of the object. For input interactions, we
will ensure that the specified assumptions on the environment are fulfilled by
scheduling the incoming calls in the order specified, while for output events,
which are controlled by the component, we will test that the events occur as
specified. An expression in the specification language thus gives an assumption-
commitment style specification for a component by defining the valid observ-
able output behavior under the assumption of a certain scheduling of the input.
Scheduling and testing of a component is done by synchronizing the execution
of the component with the specification. As a result, the scheduling is enforced
in the execution of the component and the actual outgoing interactions from
the component are tested against the output labels in the specification. This
gives a framework for testing compliance of an implementation of a component
with the interface specification, where incorrect or noncomplying behavior of the
component under a given scheduling is reported as an error.

As mentioned, it is important in the specification, to carefully distinguish be-
tween the interactions which are scheduled and those for which the component
is responsible and which are checked for compliance. We do so by formalizing
well-formedness conditions on specifications. Besides that, the specification lan-
guage captures two crucial features of the interface behavior of Creol objects.
First, Creol allows to dynamically create objects and threads (via asynchronous
method calls), which gives rise to dynamic scoping. This is reflected in the inter-
face behavior by scope extrusion and the specification language allows to express
freshness of communicated object and thread references. Secondly, it reflects the
asynchronous nature of the communication model: the order in which messages
are sent is not necessarily the order in which they arrive at an external observer.
Hence, in other words, the trace specifications are considered only up-to an ap-
propriate notion of observable equivalence, taking especially the asynchronous
message passing into account.

Overview The paper is organized as follows. In Section 2 we introduce a cal-
culus capturing core aspects of the Creol language and Section 3 presents the
behavioral specification language and formulates the well-formedness conditions.
Section 4 explains how to compose a Creol program and a specification and how
to use them for testing. Section 5 finally concludes with related and future work.

2 The Creol language

Creol [8,19] is a high-level object-oriented language for distributed systems, fea-
turing active objects and asynchronous method calls. Concentrating on the core

5

features, we elide first-class futures (recently introduced in Creol [9]), inheri-
tance, dynamic class upgrades, etc. They would complicate the interface de-
scription, but not alter the basic ideas presented here.

The Creol-language features active objects and its communication model is
based on exchanging messages asynchronously. This is in contrast with object-
oriented languages based on multi-threading, such as Java or C#, which use “syn-
chronous” message passing in which the calling thread inside one object blocks
and control is transferred to the callee. Exchanging messages asynchronously
decouples caller and callee, which makes that mode of communication advanta-
geous in a distributed setting.

On the receiver side, i.e., at the side of the callee, each object possesses an
input “queue” in which incoming messages are waiting to be served by the object.
To avoid uncontrolled interference, each object acts as a monitor, i.e., at most
one method body is executing at each point in time. The choice, which method
call in the input queue is allowed to enter the object next is non-deterministic
(i.e., the term input “queue” is a slight misnomer, as it seems to indicate fifo-
discipline in the scheduling).

We start with the abstract syntax in Section 2.1. Afterwards, Section 2.2
contains the startic typing rule and Section 2.3 the operational semantics.

2.1 Syntax

The abstract syntax of the calculus is given in Table 1. It distinguishes between
user syntax and run-time syntax, the latter underlined. The user syntax con-
tains the phrases in which programs are written; the run-time syntax contains
syntactic material additionally needed to express the behavior of the executing
program in the operational semantics. The latter are not found in a program
written by the user, but generated at run-time by the rules of the operational
semantics.

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, L] | n〈t〉 component

O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field
t ::= v | stop | letx:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.
| v@l(~v) | v.l() | v.l := ς(s:n).λ().v
| newn | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | > lock status

Table 1. Abstract syntax

6

The basic syntactic category of names n, which count among the values v,
represents references to classes, to objects, and to threads. To facilitate reading,
we allow ourselves to write o and its syntactic variants for names referring to
objects, c for classes, and n when being unspecific. Technically, the disambigua-
tion between the different roles of the names is done by the type system and
the abstract syntax of Table 1 uses the non-specific n for names. The unit value
is represented by () and x stands for variables, i.e., local variables and formal
parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads, with
0 representing the empty component. The sub-entities of a component are com-
posed using the parallel-construct ‖. The entities executing in parallel are the
named threads n〈t〉, where t is the code being executed and n the name of the
thread. The name n of the thread is, at the same time, the future reference
under which the result value of t, if any3, will be available. In this paper, when
describing the interface behavior, we restrict ourselves to the situation where
the component consists of one object only, plus arbitrary many threads/method
bodies under execution. A class c[(O)] carries a name c and defines its methods
and fields in O. An object o[c, F, L] with identity o keeps a reference to the
class c it instantiates, stores the current value F of its fields, and maintains a
binary lock L indicating whether any code is currently active inside the object
(in which case the lock is taken) or not (in which case the lock is free). The sym-
bols > and ⊥ indicate that the lock is taken or free respectively. Of the three
kinds of entities at the component level—threads n〈t〉, classes n[(O)], and objects
o[c, F, L]—only the threads are active, executing entities, being the target of the
reduction rules. The objects, in contrast, store the state in their fields or instance
variables, whereas the classes are constant entities specifying the methods.

The named threads n〈t〉 are incarnations of method bodies “in execution”.
Incarnations insofar, as the formal parameters have been replaced by actual ones,
especially the method’s self-parameter has been replaced by the identity of the
target object of the method call. The term t is basically a sequence of expressions,
where the let-construct is used for sequencing and for local declarations.4 During
execution, n〈t〉 contains in t the running code of a method body. When evaluated,
the thread is of the form n〈v〉 and the value can be accessed via n, the future
reference, or future for short.

Each thread belongs to one specific object “inside” which it executes, i.e.,
whose instance variables it has access to. Object locks are used to rule out
unprotected concurrent access to the object states: Though each object may have
more than one method body incarnation partially evaluated, at each time point
at most one of those bodies (the lock owner) can be active inside the object. In
the terminology of Java, all methods are implicitly considered “synchronized”.
The crucial difference between Java’s multi-threading concurrency model and
Creol’s active objects model used here is the way method calls are issued at the

3 There will be no result value in case of non-terminating methods.
4 t1; t2 (sequential composition) abbreviates letx:T = t1 in t2, where x does not occur

free in t2.

7

caller site. In Java and similar languages, method calls are synchronous in the
sense that the calling activity blocks to wait for the return of the result and
thus the control is transferred to the callee. Method calls in Creol are issued
asynchronously, i.e., the calling thread continues executing and the code of the
method being called is computed concurrently in a new thread located in the
callee object. In that way, a method call never transfers control from one object,
the caller, to another one, the callee. In other words, no thread ever crosses
the boundaries of an object, which means, the boundaries of an object are at
the same time boundaries of the threads and thus, the objects are at the same
time units of concurrency. Thus, the objects are harnessing the activities and
can be considered as bearers of the activities. This is typical for object-oriented
languages based on active objects.

The ν-operator is used for hiding and dynamic scoping, as known from the
π-calculus [21]. In a component C = ν(n:T).C ′, the scope of the name n (of
type T) is restricted to C ′ and unknown outside C. ν-binders are introduced
when dynamically creating new named entities, i.e., when instantiating new ob-
jects or new threads. The scope of a ν-binder is dynamic, when the name is
communicated by message passing, the scope is enlarged.

Besides components, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which are
basically sequences of expressions. A method ς(s:T).λ(~x:~T).t provides the method
body t abstracted over the ς-bound “self” parameter, here s, and the formal pa-
rameters ~x. For uniformity, fields are represented as methods without parameters
(except self), with a body being either a value or yet undefined. Note that the
methods are stored in the classes but the fields are kept in the objects, of course.
In freshly created objects, the lock is free, and all fields carry the undefined
reference ⊥c, where class name c is the (return) type of the field.

We use f for instance variables or fields and l = ς(s:T).λ().v, resp. l =
ς(s:T).λ().⊥c for field variable definition. Field access is written as v.l() and
field update as v′.l := ς(s:T).λ().v. By convention, we abbreviate the latter
constructs by l = v, l = ⊥c, v.l, and v′.l := v. Note that the construct v.l()
is used for field access only, but not for method invocation. We also use v⊥ to
denote either a value v or a symbol ⊥c for being undefined. Note that the syntax
does not allow to set a field back to undefined. Direct access (read or write) to
fields across object boundaries is forbidden by convention, and we do not allow
method update. Instantiation of a new object from class c is denoted by new c.

The expression o@l(~v) denotes an asynchronous method call, where the caller
creates a new thread/future reference and continues its execution. The further
expressions claim, get, suspend, grab, and release deal with synchronization. As
mentioned, objects come equipped with binary locks, responsible for assuring
mutual exclusion. The two basic, complementary operations on a lock are grab
and release. The first allows an activity to acquire access in case the lock is free
(⊥), thereby setting it to >, and release(o) conversely relinquishes the lock of
the object o, giving other threads the chance to be executed in its stead, when
succeeding to grab the lock via grab(o). The user is not allowed to directly ma-

8

nipulate the object locks. Thus, both expressions belong to the run-time syntax,
underlined in Table 1, and are only generated and handled by the operational
semantics as auxiliary expression at run-time. Instead of using directly grab and
release, the lock-handling is done automatically when executing a method body:
before starting to execute, the lock has to be acquired and upon termination, the
lock is released again. Besides that, lock-handling is involved also when results
are claimed, i.e., when a client code executing in an object, say o, intends to read
the result of a future. The expression claim@(n, o) is the attempt to obtain the
result of a method call from the future n while in possession of the lock of object
o. There are two possibilities in that situation: either the value of the future has
already been determined, i.e., the method calculating the result has terminated,
in which case the client just obtains the value without loosing its own lock. In
the alternative case, where the value is not yet determined, the client trying to
read the value gives up its lock via release and continues executing only after
the requested value has been determined (using get to read it) and after it has
re-acquired the lock. Unlike claim, the get-operation is not part of the user-
syntax. Both expressions are used to read back the value from a future and the
difference in behavior is that get unconditionally attempts to get the value, i.e.,
blocks until the value has arrived, whereas claim gives up the lock temporarily, if
the value has not yet arrived, as explained. Note the order in which get and grab
are executed after releasing the lock: the value is read in via get before the lock
has actually been re-acquired! We assume by convention, that when appearing
in methods of classes, the claim- and the suspend-command only refer to the
self-parameter self , i.e., they are written claim@(n, self) and suspend(self).

2.2 Typing

The calculus is strongly typed. The static type system is rather conventional and
coincides largely with the one given in [26]. We included the rules, for the sake
of completeness, in the appendix of this technical report, in Tables 13 and 14,
without much explanations. The typing jugdgments are of the following form:
∆ ` C : Θ on the level of components (cf. Table 13) asserts well-typedness of
C under the assumption name context ∆ and with commitments Θ. On the
level of threads, expressions, and their sub-phrases, Γ ;∆ ` t : T asserts well-
typedness of thread t with type T , under the name assumptions ∆ and variable
assumptions Γ .

2.3 Operational semantics

The operational semantics of a program being tested is given in two stages:
steps internal to the program, and those occurring at the interface. The two
stages correspond to the rules of Table 2 and 5. The internal rules of Table 2
deal with steps not interacting with the object’s environment, such as sequential
composition, conditionals, field lookup and update, etc. The rules are standard
and fairly straightforward, and we show them for reference only. The steps are
given as unlabelled steps, where we distinguish between -steps (confluent) and

9

τ−→-steps (non-confluent, accessing the instance state) If the distinction does not
play a role, we write −→. Components and the reduction relation are interpreted
up-to standard structural congruences (cf. Table 15 and 16 in the appendix).
We write =⇒ for the reflexive and transitive closure of the internal steps from
Table 16.

n〈letx:T = v in t〉 n〈t[v/x]〉 Red

n〈letx2:T2 = (letx1:T1 = e1 in e) in t〉 n〈letx1:T1 = e1 in (letx2:T2 = e in t)〉 Let

n〈letx:T = (if v = v then e1 else e2) in t〉 n〈letx:T = e1 in t〉 Cond1

n〈letx:T = (if v1 = v2 then e1 else e2) in t〉 n〈letx:T = e2 in t〉 Cond2

n〈letx:T = (if undef(⊥c′) then e1 else e2) in t〉 n〈letx:T = e1 in t〉 Cond⊥1

n〈letx:T = (if undef(v) then e1 else e2) in t〉 n〈letx:T = e2 in t〉 Cond⊥2

n〈letx:T = stop in t〉 n〈stop〉 Stop

o[c, F, L] ‖ n〈letx:T = o.l() in t〉 τ−→ o[c, F, L] ‖ n〈letx:T = F.l(o)() in t〉 FLookup

o[c, F, L] ‖ n〈letx:T = o.l := v in t〉 τ−→ o[c, F.l := v, L] ‖ n〈letx:T = o in t〉 FUpdate

n〈letx : T = o@l(~v) in t〉 ν(n′:T)(n〈letx : T = n′ in t〉 ‖ n′〈letx : T = o.l(~v) in stop〉 CallOi

n1〈v〉 ‖ n2〈letx : T = claim@(n1, o) in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 Claim1
i

t2 6= v
Claim2

i
n2〈t2〉 ‖ n1〈letx : T = claim@(n2, o) in t′1〉

n2〈t2〉 ‖ n1〈letx : T = release(o); get@n2 in grab(o); t′1〉

n1〈v〉 ‖ n2〈letx : T = get@n1 in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 Geti

n〈suspend(o); t〉 n〈release(o); grab(o); t〉 Suspend

o[c, F,⊥] ‖ n〈grab(o); t〉 τ−→ o[c, F,>] ‖ n〈t〉 Grab

o[c, F,>] ‖ n〈release(o); t〉 τ−→ o[c, F,⊥] ‖ n〈t〉 Release

Table 2. Internal steps

The communication labels, the basic building blocks of the interface interac-
tions, are given in Table 3. A component or object exchanges information with
the environment via call - and return-labels, and the interactions is either incom-
ing or outgoing (marked ? resp. !). The basic label n〈call o.l(~v)〉 represents a call
of method l in object o. In that label, n is a name identifying the thread that
executes the method in the callee and is therefore the (future) reference under
which the result of the method call will be available (if ever) for the caller. The
incoming label n〈return(v)〉? hands the value from the corresponding call back

10

to the object, which renders it ready to be read. Its counterpart, the outgoing
return, passes the value to the environment. Besides that, labels can be prefixed
by bindings of the form ν(n:T) which express freshness of the transmitted name,
i.e., scope extrusion. As usual, the order of such bindings does not play a role

γ ::= n〈call n.l(~v)〉 | n〈return(n)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! input and output labels

Table 3. Communication labels

Given a basic label γ = ν(Ξ).γ′ where Ξ is a name context such that ν(Ξ)
abbreviates a sequence of single n:T bindings (whose names are assumed all
disjoint, as usual) and where γ′ does not contain any binders, we call γ′ the core
of the label and refer to it by bγc. We define the core analogously for receive and
send labels. The free names fn(a) and the bound names bn(a) of a label a are
defined as usual, whereas names(a) refer to all names of a.

The interface behavior is given by the 4 rules of Table 5, which correspond
to the 4 different kinds of labels, a call or a return, either incoming or outgoing.
The external steps are given as transitions of the form Ξ ` C a−→ Ξ́ ` Ć, where
Ξ and Ξ́ represents the assumption/commitment contexts of C before and after
the step, respectively. In particular, the context contains the identities of the
objects and threads known so far, and the corresponding typing information.
An important, but standard, part of the external semantics is to check the static
typing assumptions, e.g., whether at most the names actually occurring in the
core of the label are mentioned in the ν-binders of the label and whether the
transmitted values are of the correct types. Besides checking whether the as-
sumptions are met before a transition, the contexts are updated by a transition
step. These two operations are captured by the following notation

Ξ ` a : T and Ξ + a (1)

which constitute part of the rules’ premises in Table 5. Intuitively, they mean the
following: label a is well-formed and well-typed wrt. the information Ξ and refers
to an asynchronous call which results in a value of type T . If not interested in the
type, we write Ξ ` a : ok , instead. The right-hand notation of (1) extends the
binding context Ξ by the bindings transmitted as part of label a appropriately.
The formal definition of context update is given below and checking of static
typing assumptions is defined as follows:

Definition 1 (Well-formedness and well-typedness). A label a = ν(Ξ).bac
is well-formed, written ` a, if dom(Ξ) ⊆ names(bac) and if Ξ is a well-formed
name-context for object and future names, i.e., no name bound in Ξ occurs twice.
The assertion

Ξ́ ` o.l? : ~T → T (2)

11

Ξ́ ` n : [T] ; Ξ́ ` ~v : ~T a = n〈call o.l(~v)〉?
LT-CallI

Ξ́ ` a : ~T →

; Ξ́ ` v : T a = n〈return(v)〉?
LT-RetI

Ξ́ ` a : → T

Table 4. Typechecking labels

(“an incoming call of the method labeled l in object o expects arguments of type ~T
and results in a value of type T”) is given by the following rule, i.e., implication:

; Θ́ ` o : c ; Ξ́ ` c : [(. . . , l:~T → T, . . .)]

Ξ́ ` o.l? : ~T → T
(3)

For outgoing calls, Ξ́ ` o.l! : ~T → T is defined dually. In particular, in the first
premise, Θ́ is replaced by ∆́. Well-typedness of an incoming core label a with
expected type ~T , resp., T , and relative to the name context Ξ́ is asserted by

Ξ́ ` a : ~T → resp., Ξ́ ` a : → T , (4)

as given by Table 4.

Note that the receiver o of the call is checked using only the commitment context
Θ́, to assure that o is a component object. Note further that to check the interface
type of the class c, the full Ξ́ is consulted, since the argument types ~T or the
result type T may refer to both component and environment classes.

As mentioned, the contexts are updated by a transition step. especially they
are extended by the new names whose scope is extruded. For the binding part
Ξ ′ of a label ν(Ξ ′).γ, the scope of the references to existing objects and thread
names ∆′ extrudes across the border. In the step, ∆′ extends the assumption
context ∆ and Θ′ the commitment context Θ. This gives rise to the following
definition.

Definition 2 (Context update). Let Ξ be a name context and a = ν(Ξ ′).bac
an incoming label. Then the definitions of the post-contexts ∆́ and Θ́ are given
as follows, when n:[T] is the binding for the thread name:

∆́ = (∆,Ξ ′) \n:T and Θ́ = Θ,n:T . (5)

We write Ξ + a for that update. For outgoing communication, the definition is
applied dually.

Given the definitions for well-typedness and context update, we describe the
rules of Table 5. Rule CallI deals with incoming calls, and basically adds the
new thread n (which at the same time represents the future reference for the

12

eventual result) in parallel with the rest of the program. In the configuration
after the reduction step, the meta-mathematical notation M.l(o)(~v) stands for
t[o/s][~v/~x], when the method suite [M] equals [. . . , l = ς(s:T).λ(~x:~T).t, . . .]. Note
that the step is only possible, if the lock of the object is free (⊥); after the step,
the lock is taken (>). An outgoing call (cf. CallO) is issued by executing o.l(~v).
Furthermore, the binding context Ξ is updated and, additionally, previously pri-
vate names mentioned in Ξ1 might escape by scope extrusion, which is calculated
by the second and third premise. Remember, that an asynchronous call, as given
in CallOi from Table 2 does not immediately lead to an interface interaction,
but is an internal step, which only afterwards (asynchronously) leads to the in-
terface interaction as specified in CallO here. Rules RetI and RetO deal with
returning the value at the end of a method call.

A trace of a well-typed component is a sequence of external steps; we write
Ξ1 ` C1

t=⇒ Ξ2 ` C2 when the component Ξ1 ` C1 evolves to Ξ2 ` C2

by executing the trace t. The corresponding rules are given in Table 17. For
Ξ1 ` C1

ε=⇒ Ξ2 ` C2, we write shorter Ξ1 ` C1 =⇒ Ξ2 ` C2, where ε denote
the empty trace.

Remark 1. The rules for external steps from Table 5 resemble the ones given in
[1]. There two differences are as follows. As we decided not to consider first-class
futures and promises here (as in [1]), the set of rules is simpler here; rules dealing
with obtaining the result of a future across the interface are not needed here. The
second difference concerns the treatment of incoming calls in rule CallI. Here,
an incoming call crossing the interface atomically grabs the lock, as we intend
to describe and schedule the behavior and order the message communication in
the order they are executed in the object. Thus, the object’s input queue is not
modeled here. This is in contrast to the formalization in [1]. ut

a = ν(Ξ ′). n〈call o.l(~v)〉? Ξ ` a : T Ξ́ = Ξ + a
CallI

Ξ ` C ‖ o[c, F,⊥]
a−→ Ξ́ ` C ‖ o[c, F,>] ‖ n〈letx:T = M.l(o)(~v) in release(o);x〉

a = ν(Ξ ′). n〈call o.l(~v)〉! Ξ ′ = fn(bac) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ ′ ∆ ` o Ξ́ = Ξ + a
CallO

Ξ ` ν(Ξ1).(C ‖ n〈letx:T = o.l(~v) in t〉) a−→ Ξ́ ` ν(Ξ́1).(C)

a = ν(Ξ ′). n〈return(v)〉? Ξ ` a : ok Ξ́ = Ξ + a
RetI

Ξ ` C a−→ Ξ́ ` C ‖ n〈v〉

a = ν(Ξ ′). n〈return(v)〉! Ξ ′ = fn(bac) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ ′ Ξ́ = Ξ + a
RetO

Ξ ` ν(Ξ1).(C ‖ n〈v〉) a−→ Ξ́ ` ν(Ξ́1).C

Table 5. External steps

13

3 Behavioral interface specification language

The behavior of an object (or a component consisting of a set of objects, for that
matter) at the interface is described by a sequence of labels as given by Table
3. The black-box behavior of a component can therefore be described by a set
of traces, each consisting of a finite sequence of labels. The syntax of the labels
in the specification language, naturally, quite resembles the labels of Table 3.
Comparing Tables 3 and 6, there are two differences: firstly, instead of names or
references n, the specification language here uses variables. Secondly. the labels
here allow a binding of the form (x:T).γ, which has no analog in Table 3; the
form ν(x:T).γ corresponds to ν(n:T).γ, of course. Both binding constructs act
as variable declarations, with the difference that ν(x:T).γ not just introduces
a variable (together with its type T), but in addition asserts that the names
represented by that variable must be fresh. The binding (x:T).γ corresponds to
a conventional variable declaration, introducing the variable x which represents
arbitrary values (of type T), either fresh or already known.

γ ::= x〈call x.l(~x)〉 | x〈return(x)〉 | ν(x:T).γ | (x:T).γ basic labels
a ::= γ? | γ! input and output labels

Table 6. Communication labels

To specify sets of label traces, we employ a simple recursive trace language.
Table 7 contains its syntax, describing sets of finite traces over labels.

ϕ ::= X | ε | a.ϕ | ϕ+ ϕ | rec X.ϕ specifications

Table 7. Specification language

In the specification, it is important to distinguish between input and output
interactions, as input messages are under the control of the environment, whereas
the outputs are to be provided by the object as specified. This splits the spec-
ification into an assumption part under the responsibility of the environment,
and a commitment part, controlled by the component. Consequently, the input
interactions are the ones being scheduled, whereas the outputs are not; they are
used for testing that the object behaves correctly. To specify non-deterministic
behavior, the language supports a choice operator, and we distinguish between
choices taken by the environment—external choice—and those the object is re-
sponsible for—internal choice. Especially, we do not allow so-called mixed choice,
i.e., choices are either under control of the object itself and concerns outgoing

14

communication, or under control of the environment and concerns incoming
communication. These restrictions are formalized as part of the well-formedness
conditions in the next section.

Example 1. We give an example to illustrate the scoping.

ν(n1:[T1])ν(o2:c2)n1〈call o2.l()〉! . ν(n2:[T2])(o3:c2)n2〈call o1.l
′(o3)〉?

The specification begins with o1 calling method l of o2. As being the first step
both objects o1 and o2 and the future reference n1 are new. After the initial call
we expect a call from o2 to o1. This call will be made by the new thread n2. We
expect o3 to be the parameter of this call. Since o3 is given as variable it might
be either new or old. ut

The programming language Creol is strongly typed. Accordingly, also the
interface specification language sets value on the fact to allow only specifications
that “make sense” type-wise. It makes, e.g., no sense to specify traces that insist
on transmitting values in method calls that do not fit to the expected values
as declared in the type of the corresponding method. Such specifications are
rejected as being ill-typed and the restriction is justified by the fact that no
component (which is assumed to be well-typed) can produce an ill-typed trace.
This fact will later be proved. Indeed, well-typedness is an important part of the
general well-formedness conditions we impose on the specifications. The typing
conditions are rather standard and we mostly elide the rules for typing. They
resemble closely the ones of [26] and especially from [1] for legality of traces. The
difference to the first case is that [26] deals with a calculus for Java instead of
Creol, and the latter [1] is more complex than the typing as considered here, as it
deals additionally with the concept of first-class futures and promises. In general,
the close resemblance wrt. typing is not surprising: the earlier papers dealt with
the interface behavior in forms of sets of traces, which is here generalized to a
more expressive recursive language to specify such behavior.

Remark 2. As mentioned, an important distinction in the trace specification is
the one between incoming communication and outgoing. Especially, we do not
allow mixed choices, i.e., a choice ϕ1 + ϕ2 where, e.g., ϕ1 starts with an input
and ϕ2 with an output. This distinction could be enforced syntactically, for
instance by distinguishing syntactically between external and internal choices.
Such a syntactic distinction is often found for instance in formalizations based
on session types [15,27], which can be seen a behavioral, trace-based interface
description formulated by type system (therefore the term “session type” and
not “session trace” . . .). Here we do not, however, reflect the distinction in the
grammar of Table 7. Instead, the well-formedness conditions later discriminate
between traces that start with an incoming communications and those starting
with an output. ut

3.1 Well-formedness

The grammar given in Table 7 allows to specify sets of traces. Not all speci-
fications, however, are meaningful, i.e., describe traces actually possible at the

15

interface of a component. We therefore formalize conditions to rule out such
ill-formed specifications. The main restrictions are the following:

typing: Values handed over must correspond to the expected types for that
methods.

scoping: Variables must be declared (together with their types) before their
use.

communication patterns: No value can be returned before a matching out-
going call has been seen at the interface.

Specifications adhering to these restrictions are called well-formed.
Well-formedness is given straightforwardly by structural induction by the

rules of Table 8. The rules formalize a judgment of the form

Ξ ` ϕ : wf p (6)

which stipulates ϕ’s well-formedness under the assumption context Ξ. The meta-
variable p (for polarity) stands for either ?, !, or ?!. As before, Ξ contains bindings
from variables and class names to their types. The class names are considered
as constants and also, the context Ξ will remain unchanged during the well-
formedness derivation, since all classes are assumed to be known in advance
and class names cannot be communicated. This is in contrast to the variables,
which represent object references and references to future variables (resp. thread
names). Besides that, the context also stores process variables X. The rules work
as follows: The empty trace is well-formed (cf. rule WF-Empty), and a process
variable X is well-formed, provided it had been declared before (written Ξ ` X,
cf. rule WF-Var). We omit the two rules WF-CallO and WF-RetO dealing
with outgoing calls, resp. outgoing get-labels, as they are dual to WF-CallI
and WF-RetI.

WF-Emtpy
Ξ ` ε : wf ?!

Ξ ` X
WF-Var

Ξ ` X : wf ?!

a = ν(Ξ ′).n〈call o.l(~v)〉? Ξ ` a : ok Ξ́ = Ξ + a Ξ́ ` ϕ : wf p

WF-CallI
Ξ ` a.ϕ : wf ?

a = ν(Ξ ′).n〈return(v)〉? Ξ ` a : ok Ξ́ = Ξ + a Ξ́ ` ϕ : wf p

WF-RetI
Ξ ` a.ϕ : wf ?

Ξ ` ϕ1 : wf p Ξ ` ϕ2 : wf p

WF-Choice
Ξ ` ϕ1 + ϕ2 : wf p

Ξ,X ` ϕ : wf p

WF-Rec
Ξ ` rec X.ϕ :wf p

Table 8. Well-formedness of trace specifications

16

Remark 3 (Regular expressions). The specification language as given in Table 7
uses label-prefixing to express sequentiality in a trace and recursion to represent
infinite behavior. Specifications thus resemble a automata-like or process-algebra
representation. An alternative design is to specify sets of traces using the syntax
of regular languages, i.e., to allow sequential composition ϕ1;ϕ2 of two formulas
and to use iteration ϕ∗ for infinite behavior.

Using regular expressions as sketched would slightly complicate the formula-
tion of the well-formedness conditions. To accommodated for general sequential
composition (in contrast to simple prefixing), the judgment for well-formedness
would need to mention also the context after the traces given by the formula.
I.e., the well-formedness judgment of equation (6) would have to be generalized
to

Ξ ` ϕ :wf p :: Ξ́ , (7)

where Ξ́ is the mentioned context after ϕ. Besides that, care must be taken wrt.
scope of the variables. For instance, in (ϕ1 + ϕ2);ϕ3, the trailing ϕ3 may only
use variables that have been introduced both in ϕ1 and ϕ2. In other words, the
scope of a variable introduced in ϕ1, say, does not extend unconditionally to ϕ2.
In a similar spirit and given ϕ+

1 ;ϕ2 scope of variables introduced in ϕ1 ends at
then end of ϕ1 and does not extend to ϕ2.

Both representations, the one of Table 7 and the one sketched here based
on regular expressions, are equally expressive. For the sake of simplicity for the
formalization, especially concerning the well-formedness conditions, we base this
paper on the one using label-prefixing and explicit recursion. In the examples
we sometimes use the regular expression syntax instead. ut

3.2 Observational blur

Creol objects communicate asynchronously and the order of messages might not
be preserved during communication. Thus, an outside observer or tester can not
see messages in the order in which they had been sent, and we need to relax the
specification up-to some appropriate notion of observational equivalence. This
notion is defined by the rules of Table 9. Rule Eq-Switch captures the asyn-
chronous nature of communication, in that the order of outgoing communication
does not play a role. The definition corresponds to the one given in [26] and also
of [17], in the context of multi-threading concurrency. Rule Eq-Plus allows to
distribute an output over a non-deterministic choice, provided that it’s a choice
itself over outputs, as required by the well-formed condition in the premise.
Rule Eq-Req finally expresses the standard unrolling of recursive definitions.
Eq-Plus-Comm expresses commutativity of choice.

The next lemma states that well-formedness is preserved under the given
equivalence.

Lemma 1. If Ξ ` ϕ : wf p and ϕ ≡obs ϕ
′, then Ξ ` ϕ′ : wf p.

Proof. By induction on the rules of Table 8. Note that rule Eq-Plus explicitly
requires output well-formedness of ϕ1 + ϕ2 it its premise. ut

17

Eq-Switch
ν(Ξ).γ1!.γ2!.ϕ ≡obs ν(Ξ).γ2!.γ1!.ϕ

` (ϕ1 + ϕ2) : wf !

Eq-Plus
γ!.(ϕ1 + ϕ2) ≡obs γ!.ϕ1 + γ!.ϕ2

rec X.ϕ ≡obs ϕ[rec X.ϕ/X] Eq-Rec

ϕ1 + ϕ2 ≡obs ϕ2 + ϕ1 Eq-Plus-Comm ϕ+ ε ≡obs ϕ Eq-Plus-Empty

Table 9. Equivalence

Given the equivalence relation, the meaning of a specification is given oper-
ationally, by the rather obvious reduction rules of Table 10.

Ξ́ = Ξ + a
R-Pref

Ξ ` a.ϕ a−→ Ξ́ ` ϕ

Ξ ` ϕ1
a−→ Ξ́ ` ϕ′1

R-Plus1

Ξ ` ϕ1 + ϕ2
a−→ Ξ́ ` ϕ′1

ϕ ≡obs ϕ
′ Ξ ` ϕ′ a−→ Ξ ` ϕ′′

R-Equiv
Ξ ` ϕ a−→ Ξ ` ϕ′′

Table 10. ϕ rules

The next lemmas express simple properties of the well-formedness condition,
connecting it to the reduction relation.

Lemma 2. Assume Ξ ` ϕ : wf .

1. Exactly one of the three conditions holds: Ξ ` ϕ : wf ?!, Ξ ` ϕ : wf ?, or
Ξ ` ϕ : wf !

2. If ϕ a−→ with a an input, then Ξ ` ϕ : wf ?. Dually for outputs.
3. If Ξ ` ϕ : wf ?, then ϕ

a−→ with a an input. Dually for outputs.

Proof. Part 1 by straightforward induction on the rules of Table 8. Part 2 by
inverting the rules of 10 and by inspection of the rules for well-formedness. Part
3 works similarly.

Lemma 3 (Subject reduction). Ξ ` ϕ : wf and Ξ ` ϕ
a−→ Ξ́ ` ϕ́, then

Ξ́ ` ϕ́ : wf .

Proof. By straightforward induction on derivations of the rules of Table 10. ut

Lemma 4. Assume Ξ ` C. If Ξ ` C t=⇒, then Ξ ` ϕt : wf (where ϕt is the
trace t interpreted to conform to Table 7, i.e., the names of t are replaced by
variables).

18

Proof. By straightforward induction. The proof works similar to the proof in
[26], which shows that the behavior of a component is a legal trace. Note in this
context that ϕt is of a restricted form: it is constructed by prefixing and the
empty trace, only. ut

4 Scheduling and asynchronous testing of Creol objects

Next we put together the (external) behavior of an object (Section 2) and its
intended behavior specified as in Section 3. Table 11 defines the interaction of
the interface description with the component, basically by synchronous paral-
lel composition: both ϕ and component must engage in corresponding steps,
which, for incoming communication schedules the order of interactions with the
component whereas for outgoing communication, will raise an error.

Ξ ` C =⇒ Ξ ` Ć
Par-Int

Ξ ` C ‖ ϕ −→ Ξ ` Ć ‖ ϕ

Ξ ` ϕ : wf ?

Par-Error
Ξ ` ν(Ξ ′).(C ‖ n〈letx:T = o.l(~v) in t〉 ‖ ϕ) −→

Ξ1 ` C
a−→ Ξ́1 ` Ć Ξ1 ` ϕ

b−→ Ξ́2 ` ϕ́ ` a .σ b
Par

Ξ1 ` C ‖ ϕ −→ Ξ́1 ` Ć ‖ ϕ́σ

Table 11. Parallel composition

The component can proceed on its own via internal steps (cf. rule Par-Int).
Rule Par requires that, in order to proceed, the component and the specification
must engage in the “same” step, where ϕ’s step b is matched against the step
a of the component. The matching is not simple pattern matching as it needs
to take into account in particular the two different kinds of bindings in the
specification language, ν(x:T) as the freshness assertion and (x:T) representing
standard variable declarations; see Definition 3 below. Rule Par-Error finally
reports an error, if the specification requires an input as next step, the object
however could do an output. Note that the equivalence relation, according to
rule Eq-Switch, allows the reordering of outputs, but not inputs.

Definition 3 (Matching). Given two labels a1 and a2, we write ` a1 .σ a2

(read “a1 matches a2 with substitution σ”), if that judgment can be derived by
the rules of Table 12.

The rules of Table 12 work as follows. They define the matching relation
between two labels (written ` a1 .σ a2), where a1 is the label produced by the

19

M-Empty
` () . () : ok

` Ξ1 . Ξ2 : ok
M-NDec

` ν(n:T), Ξ1 . ν(n:T), Ξ2 : ok

` Ξ1 . Ξ2 : ok
M-Dec1

` ν(n:T), Ξ1 . (n:T), Ξ2 : ok

` Ξ1 . Ξ2 : ok
M-Dec2

` Ξ1 . (n:T), Ξ2 : ok

` a1 .σ a2 : ok ` Ξ1σ . Ξ2 : ok
M-Lab

` Ξ1.a1 .σ Ξ2.a2 : ok

Table 12. Matching of labels

component and a2 the one specified by the interface description. The subscript
σ is the substitution, a mapping from variables to names, that gives rise to the
match.

The difference between the two syntactic categories therefore is that a2 may
contain variables and a1 may not, and furthermore, the grammar for a2 allows
bindings of the form (x:T) and ν(x:T), whereas the first variant does not occur
for labels a1. A label a (for both cases) consists of a binding part and the core
of the label without bindings. In slight abuse of notation, we write Ξ for the
binding part or context. In rule M-Lab for matching the two labels, Ξ1 thus
contains bindings of the form ν(n:T), i.e., from names to types, denoting the
new names exchanged with the object in that step. Ξ2’s bindings on the other
hand, associating variables with types, are of the form (x:T) or ν(x:T). The
label Ξ1.a1 is matched against Ξ2.a2, as given by M-Lab in two steps. First, the
cores a1 and a2 of the two labels are matched against each other by standard
pattern matching, written ` a1 .σ a2. In other words, a1 = a2σ, where σ is the
(uniquely determined) substitution, which, when applied to a2, gives a1.5

The outer binding parts Ξ1 and Ξ2 are checked afterwards, as specified in the
remaining 4 rules, where the variables of Ξ1 are replaced by names, as given by
the matching substitution σ. Note that the well-formedness conditions assure,
that Ξ1σ no longer contains variable bindings, only bindings from names to
types. Note further that we consider the contexts Ξ1 and Ξ2 as un-ordered,
i.e., writing e.g. (o:T), Ξ does not indicate that the binding (o:T) occurs left-
most in Ξ. In other words, the contexts Ξ, as usual, are understood up-to re-
ordering. Rule M-NDec stipulates that if the specification requires a new name,
the transmitted name must indeed be fresh. If, however, the specification just
introduces a variable without insisting on freshness, then either the name can
be fresh (cf. rule M-Dec1) or the name had already been introduced, in which
case it is ignored (cf. rules M-Dec2). Finally, two empty contexts clearly match
(cf. rule M-Empty).

5 As an aside: assuming that both labels are checked for well-formedness, a type-
mismatch between the name and the variable does not occur.

20

Example 2. To illustrate the testing we sketch the well-known example of a travel
agency. A client asks the travel agent for a cheap flight and the travel agent finds
the cheapest flight by asking the flight companies. To test an implementation
of the travel agent program we give a specification modeling the behavior of
the client and the flight companies and specifying the expected behavior of the
travel agent. The client sends two messages. First an initiation message and then
the request. The travel agent tries to get the price information from the flight
companies and then reports the result to the client.

ϕb = nc〈call b.init()〉? . nc〈call b.getPrice(x)〉? .
nb〈call p1.l()〉! . nb〈call p2.l()〉! .
n1〈return(v1)〉? . n2〈return(v2)〉? . nb〈return(minv)〉!

5 Conclusion

Related work Systematic testing is indispensable to assure quality of software
and systems (cf. [23,24,14,4,3], amongst others). [7] present a approach to inte-
grate black-box and white-box testing for object-oriented programs. Also based
on the notion of observable equivalence, as introduced by [12] [11] for testing.
Equivalence is based on the idea of observably equivalent terms and fundamental
pairs as test cases, but not in an asynchronous setting (and as in [2] [12] [11]
[13]). In the approach, pairs of (ground) terms are used for the test cases. Testing
for concurrent object-oriented programs based on synchronization sequences is
investigated in [6], using Petri nets and OBJ as foundation. Long in his thesis
[20] presents ConAn (“concurrency analyser”), which generates test drivers from
test scripts. The method allows to specifiy sequences of component method calls
and the order in which the calls should be issued. It can be seen as an extension
of the testing method for monitors from [5]. For scheduling the intended order,
an external clock is used, which is introduced for the purpose of testing, only.

Even if not specifically targeting Creol, [18] pursues similar goals as this
paper, validating component interfaces specified in rewriting logic. In contrast
to here, the interface behavior is specified by first-order logic over traces, where
from a given predicate an assumption part and a guarantee part can be derived.
The assumption part of the specification is used to generate arbitrary input to
the component under test, while the guarantee part is used for testing that the
output from the component conforms to the given predicate. Our approach is
more specific in that we schedule incoming calls to a component, and test the
output behavior. Our specification language is not first-order logic but a recursive
language over communication labels. As this paper, [25] targets Creol as language
and investigates how different schedulings of object activity restrict the behavior
of a Creol object, thus leading to more specific test scenarios. The focus, however,
is on the intra-object scheduling, and their test purposes are given as assertions
on the internal state of the object. This is in contrast to the setting here, focusing
on the interface communication. The testing methodologies are likewise different.
We execute the behavioral trace specification directly in composition with the

21

implementation being tested. They use a scheduling strategy and a model for an
object implementation to generate test cases which then are used afterwards to
test for compliance with an implemented Creol object.

Future work We intend to use the formalization presented here as specification
of an implementation in rewriting logic, using Maude as execution platform and
the already implemented framework of [18] as starting point. There are two dif-
ferent approaches to provide an interpreter for our theory. On the one hand the
interpreter can be adapted to accept trace specifications as well as Creol pro-
gram code and execute both. On the other hand the interpreter can be extended
to accept scheduling policies and a Creol program and such a scheduling policy
can be derived from the specification. Such an interpreter could be integrated
into the already existing validation tool suite for Creol. Apart from the fact
that the approach here is tailor-made for Creol (and not general for describing
interface behavior), we expect a gain in efficiency. We see two reasons justifying
that hope: First, the trace specification language is much simpler here, and thus
more efficiently executable by rewriting. Secondly, the theory presented here
took care to capture the effect of asynchronous message passing by an appro-
priate observational equivalence relation. Since Maude allows to directly specify
behavior using reduction relation modulo equivalence, this will allow a more ef-
ficient treatment of the asynchronous behavior. Besides that, we plan to extend
the theory to components under test instead of single objects. This leads to to
complex scheduling policies and complex specifications due to the asynchronous
and concurrent setting. Furthermore, there are several interesting features of
the Creol language which may be added, including first-class futures, promises,
processor release points, inheritance and dynamic class updates. It might also
be useful to apply model checking and abstraction to check conformance of an
object to its interface specification.

Acknowledgement We thank Marcel Kyas for helpful discussions, e.g., about
the intricacies of Creol, Andreas Grüner for giving insight to the field of testing of
(concurrent) object-oriented languages, and Jasmin C.Blanchette for his remarks
after reading a preliminary version of this report.

References

1. E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Abstract interface behavior
of an object-oriented language with futures and promises. Feb. 2008. Submitted
as invited journal contribution to a special edition of the Journal of Logic and
Algebraic Programming (NWPT’07). The paper is a reworked version of an earlier
UiO Technical Report TR-364, Oct. 2007.

2. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specifi-
cations. IEEE Software Engineering Journal, 6(6):387–405, Nov. 1991.

3. A. Bertolino. Software testing research: Achievements, challenges, dreams. In
Proceedings of Future of Software Engineering at ICSE 2007, pages 85–103, May
2007.

22

4. R. V. Binder. Testing Object-Oriented Systems, Models, Patterns, and Tools.
Addison-Wesley, 2000.

5. P. Brinch Hansen. Reproducible testing of monitors. Software – Practice and
Experience, 8(223–245), 1978.

6. H. Y. Chen, Y. X. Sun, and T. H. Tse. A strategy for selecting synchronization
sequences to test concurrent object-oriented software. In Proceedings of the 27th
International Computer Software and Application Conference (COMPSAC 2003),
Los Angeles, California. IEEE Computer Science Press, 2003.

7. H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black and white: An
integrated approach to class-level testing of object-oriented program. ACM Trans-
actions of Software Engineering and Methodology, 7(3):250–295, 1998.

8. The Creol language. http:heim.ifi.uio.no/creol, 2007.
9. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In

de Nicola [10], pages 316–330.
10. R. de Nicola, editor. ESOP’07, volume 4421 of Lecture Notes in Computer Science.

Springer-Verlag, 2007.
11. R.-K. Doong and P. G. Frankl. Case studies on testing object-oriented programs.

In Proceedings of the 4th Annual Symposium on Software Testing, Analysis, and
Verification (TAF 4), pages 165–177, 1991.

12. R.-K. Doong and P. G. Frankl. The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology, 3(2):101–
130, 1994.

13. P. G. Frankl and R.-K. Doong. Tools for testing object-oriented programs. In
Proceedings of the 8th Northwest Conference on Software Quality, pages 309–324,
1990.

14. M.-C. Gaudel. Testing can be formal, too. In Mosses et al. [22], pages 82–96.
15. K. Honda. Types for dyadic interaction. In E. Best, editor, Proceedings of

CONCUR ’93, volume 715 of Lecture Notes in Computer Science, pages 509–523.
Springer-Verlag, 1993.

16. IEEE. Seventeenth Annual Symposium on Logic in Computer Science (LICS)
(Copenhagen, Denmark). Computer Society Press, July 2002.

17. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In LICS’02 [16].

18. E. B. Johnsen, O. Owe, and A. B. Torjusen. Validating behavioral component
interfaces in rewriting logic. Fundamenta Informaticae, 82(4):341–359, 2008.

19. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

20. B. Long. Testing Concurrent Java Components. PhD thesis, University of Queens-
land, July 2005.

21. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77, Sept. 1992.

22. P. D. Mosses, M. Nielsen, and M. I. Schwarzbach, editors. TAPSOFT ’95: The-
ory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

23. G. J. Myers. The Art of Software-Testing. John Wiley & Sons, New York, 1979.
24. R. Patton. Software Testing. SAMS, second edition, July 2005.
25. R. Schlatte, B. Aichernig, F. de Boer, A. Griesmayer, and E. B. Johnsen. Testing

(with) application-specific schedulers for concurrent objects. 2008. Accepted for
ICTAC 2008, 5th International Colloquium on Theoretical Aspects of Computing.

http:heim.ifi.uio.no/creol

23

T-Empty
∆ ` 0 : ()

∆,Θ2 ` C1 : Θ1 ∆,Θ1 ` C2 : Θ2
T-Par

∆ ` C1 ‖ C2 : Θ1, Θ2

∆ ` C : Θ,n:T
T-Nu

∆ ` ν(n:T).C : Θ

;∆, c:T ` [(O)] : T
T-NClass

∆ ` c[(O)] : (c:T)

;∆ ` c : [(TF , TM)] ;∆, o:c ` [F] : [TF]
T-NObj

∆ ` o[c, F, L] : (o:c)

;∆,n:[T] ` t : T
T-NThread

∆ ` n〈t〉 : (n:[T])

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ` C : Θ
T-Sub

∆
′ ` C : Θ

′

Table 13. Typechecking (1)

26. M. Steffen. Object-Connectivity and Observability for Class-Based, Object-Oriented
Languages. Habilitation thesis, Technische Faktultät der Christian-Albrechts-
Universität zu Kiel, 2006. Submitted 4th. July, accepted 7. February 2007.

27. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis,
editors, Proceedings of PARLE ’94, volume 817 of Lecture Notes in Computer
Science, pages 398–413. Springer-Verlag, 1994.

A Appendix

A.1 Type checking

Type checking is split into two levels, one on the level of components (cf. Table
13) and one on the level of thread, expressions, and their sub-phrases (cf. Table
14). For components, the rules formalize a judgement of the form ∆ ` C :
Θ, where ∆ is the assumption context and Θ the commintment context. Both
associate (class, thread, and object) names with their respective types, where the
assumption context takes care of those names which are part of the environmemt,
whereas dually Θ is reponsible for the names of the componenent. At the level
of threads and expressions, the judgments are of the form ∆;Γ ` t : T , where
∆ is the (assumption) name context, and Γ contains the bindings of the local
variables.

A.2 Structural congruence

Components are considered up-to a standard structural congruence, which is
formalized in Table A.2. The rule for scope extrusion on the left-bottom is ap-
plied under the side-condition that n does not occur free in C1. The congruence
relation is imported into thye reduction relation via the rules of Table 16.

A.3 Traces

A trace of a well-typed component is a sequence of external steps; we write
Ξ1 ` C1

t=⇒ Ξ2 ` C2 when the component Ξ1 ` C1 evolves to Ξ2 ` C2

24

by executing the trace t. The corresponding rules are given in Table 17. For
Ξ1 ` C1

ε=⇒ Ξ2 ` C2, we write shorter Ξ1 ` C1 =⇒ Ξ2 ` C2, where ε denote
the empty trace.

25

Γ ;∆ ` c : [(l1:U1, . . . , lk:Uk)] Γ ;∆ ` mi : Ui mi = ς(si:c).λ(~xi:~Ti).ti
T-Class

Γ ;∆ ` [(l1 = m1, . . . , lk = mk)] : c

Γ ;∆ ` c : [(l1:U1, . . . , lk:Uk)] Γ ;∆ ` fi : Ui fi = ς(si:c).λ().v⊥
T-Obj

Γ ;∆ ` [l1 = f1, . . . , lk = fk] : c

Γ, ~x:~T ;∆, s:c ` t : T ′ :: Γ́ ; ∆́ Γ ;∆ ` c : T T = [(. . . , l:~T → T ′, . . .)]
T-Memb

Γ ;∆ ` ς(s:c).λ(~x:~T).t : T.l

Γ ;∆, s:c ` c : [(. . . , l : Unit→ c′, . . .)]
T-Undef

Γ ;∆ ` ς(s:c).λ().⊥c′ : c
′

Γ ;∆ ` v : c Γ ;∆ ` c : T Γ ;∆ ` v′ : T.l
T-FUpdate

Γ ;∆ ` v.l := v
′

: c

Γ ;∆ ` c : [(T)]
T-NewC

Γ ;∆ ` new c : c

Γ ;∆ ` e : T1 Γ, x:T1;∆ ` t : T2
T-Let

Γ ;∆ ` let x:T1 = e in t : T2

Γ ;∆ ` v1 : T1 Γ ;∆ ` v2 : T1 Γ ;∆ ` e1 : T2 Γ ;∆ ` e2 : T2
T-Cond

Γ ;∆ ` if v1 = v2 then e1 else e2 : T2

Γ ;∆ ` v : c Γ ;∆ ` c : [(. . . , l:Unit→ T, . . .)] Γ ;∆ ` e1 : T2 Γ ;∆ ` e2 : T2
T-Cond⊥

Γ ;∆ ` if undef(v.l()) then e1 else e2 : T2

T-Stop
Γ ;∆ ` stop : T

T-Unit
Γ ;∆ ` () : Unit

Γ ;∆ ` v : c Γ ;∆ ` c : [(. . . , l:~T → T, . . .)] Γ ;∆ ` ~v : ~T
T-CallA

Γ ;∆ ` v@l(~v) : [T]

Γ ;∆ ` n : [T] Γ ;∆ ` o:c
T-Claim

Γ ;∆ ` claim@(n, o) : T

Γ ;∆ ` n : [T]
T-Get

Γ ;∆ ` get@n : T

Γ (x) = T
T-Var

Γ ;∆ ` x : T

∆(x) = T
T-Name

Γ ;∆ ` n : T

∆ ` o : c
T-Suspend

Γ ;∆ ` suspend(o) : Unit

∆ ` o : c
T-Grab

Γ ;∆ ` grab(o) : Unit

∆ ` o : c
T-Release

Γ ;∆ ` release(o) : Unit

Table 14. Typechecking (2)

26

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 15. Structural congruence

C ≡ ≡ C′

C C′

C C′

C ‖ C′′ C′ ‖ C′′
C C′

ν(n:T).C ν(n:T).C′

C ≡ τ−→ ≡ C′

C
τ−→ C′

C
τ−→ C′

C ‖ C′′ τ−→ C′ ‖ C′′
C

τ−→ C′

ν(n:T).C
τ−→ ν(n:T).C′

Table 16. Reduction modulo congruence

C1 =⇒ C2
Internal

Ξ1 ` C1
ε

=⇒ Ξ2 ` C2

Ξ1 ` C1
a−→ Ξ2 ` C2

Base
Ξ1 ` C1

a
=⇒ Ξ2 ` C2

Ξ1 ` C1
t1=⇒ Ξ2 ` C2 Ξ2 ` C2

t2=⇒ Ξ3 ` C3
Conc

Ξ1 ` C1
t1t2=⇒ Ξ3 ` C3

Table 17. Traces

	Executable interface specifications for testing asynchronous Creol components[0.1em] 14. July 2008
	Immo Grabe and Martin Steffen and Arild B. Torjusen

